Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
f8395631
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f8395631
编写于
12月 14, 2017
作者:
Y
Yancey1989
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix invalid dims
上级
1f9426fd
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
67 addition
and
32 deletion
+67
-32
paddle/operators/hierarchical_sigmoid_op.cc
paddle/operators/hierarchical_sigmoid_op.cc
+14
-14
paddle/operators/hierarchical_sigmoid_op.h
paddle/operators/hierarchical_sigmoid_op.h
+13
-13
paddle/operators/math/matrix_bit_code.cc
paddle/operators/math/matrix_bit_code.cc
+6
-5
python/paddle/v2/fluid/tests/test_hsigmoid_op.py
python/paddle/v2/fluid/tests/test_hsigmoid_op.py
+34
-0
未找到文件。
paddle/operators/hierarchical_sigmoid_op.cc
浏览文件 @
f8395631
...
...
@@ -60,12 +60,11 @@ class HierarchicalSigmoidOp : public framework::OperatorWithKernel {
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInputs
(
"X"
),
"Inputs
(X) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
hasInput
(
"X"
),
"Input
(X) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input(Label) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) should not be null."
);
const
int64_t
batch_size
=
ctx
->
GetInputsDim
(
"X"
)[
0
][
0
];
const
int64_t
size
=
ctx
->
GetInputsDim
(
"X"
).
size
();
std
::
vector
<
int64_t
>
output_shape
({
batch_size
,
size
});
const
int64_t
batch_size
=
ctx
->
GetInputDim
(
"X"
)[
0
];
std
::
vector
<
int64_t
>
output_shape
({
batch_size
,
num_classes_
-
1
});
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_shape
));
}
};
...
...
@@ -82,22 +81,23 @@ class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(Tensor
Array, required) The input array. Each Tensor has the
"
"
same shape with [N * D]."
)
.
AsDuplicable
(
);
"(Tensor
, required) The input Tensor, which the shape is
"
"
[N * D], which N is the size of mini-batch,"
"D is the embded size"
);
AddInput
(
"Parameters"
,
"(Tensor, required), The parameters of hierarchical "
"sigmoid operator, each of them is s a
2-D tensor."
)
.
AsDuplicable
(
);
"sigmoid operator, each of them is s a
3-D tensor, the shape is"
"[N, num_classes - 1, D]"
);
AddInput
(
"Label"
,
"(Tensor, required), The labels of training data. It's a"
"1-D tensor
.
"
);
"1-D tensor
, which the shape is [1, N]
"
);
AddInput
(
"Bias"
,
"(Tensor, optional), The bias is a 1-D tensor, "
"which is applied to the output."
);
AddOutput
(
"Out"
,
"(Tensor, required) The output of hierarchical sigmoid operator."
);
"which is applied to the output, the shape is"
"[1, num_classes -1]"
);
AddOutput
(
"Out"
,
"(Tensor, required) The output of hierarchical sigmoid operator."
"the shape is [N, 1]"
);
AddAttr
<
int
>
(
"num_classes"
,
"(int, required)"
,
"The number of classes"
);
AddComment
(
R"DOC(
The hierarchical sigmoid operator organize the classes into a binary tree.
...
...
paddle/operators/hierarchical_sigmoid_op.h
浏览文件 @
f8395631
...
...
@@ -28,8 +28,8 @@ template <typename Place, typename T>
class
HierarchicalSigmoidOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
ins
=
ctx
.
Multi
Input
<
framework
::
Tensor
>
(
"X"
);
auto
params
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"Parameters
"
);
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
param
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Parameter
"
);
auto
*
label
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
);
auto
*
bias
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Bias"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
...
...
@@ -56,8 +56,9 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
math
::
AddByBitCode
<
T
>
(
num_classes
,
*
label
,
pre_out
,
*
bias
);
}
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
++
i
)
{
math
::
MulByBitCode
<
T
>
(
num_classes
,
*
label
,
pre_out
,
*
params
[
i
],
*
ins
[
i
]);
for
(
size_t
i
=
0
;
i
<
in
.
dims
()[
0
];
++
i
)
{
math
::
MulByBitCode
<
T
>
(
num_classes
,
*
label
,
pre_out
,
*
params
->
Slice
(
i
,
i
+
1
),
*
in
->
Slice
(
i
,
i
+
1
));
}
// clip the matrix with (-40, 40)
pre_out_mat
.
device
(
place
)
=
...
...
@@ -79,11 +80,10 @@ template <typename Place, typename T>
class
HierarchicalSigmoidGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
ins
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"X"
);
auto
ins_grad
=
ctx
.
MultiOutput
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
params
=
ctx
.
MultiOutput
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Parameters"
));
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
in_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
params
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Parameters"
));
auto
*
bias
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
auto
*
label
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Label"
));
...
...
@@ -92,7 +92,7 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
framework
::
Tensor
pre_out
;
auto
place
=
ctx
.
GetEigenDevice
<
Place
>
();
auto
&
dev_ctx
=
ctx
.
device_context
();
int64_t
batch_size
=
in
s_grad
.
size
()
;
int64_t
batch_size
=
in
_grad
.
dims
()[
0
]
;
int64_t
code_length
=
math
::
FindLastSet
(
num_classes
-
1
);
auto
pre_out_mat
=
EigenMatrix
<
T
>::
From
(
pre_out
);
...
...
@@ -111,11 +111,11 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
math
::
AddByBitCodeGrad
<
T
>
(
num_classes
,
*
label
,
pre_out
,
*
bias
);
}
for
(
size_t
i
=
0
;
i
<
in
s_grad
.
size
()
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
in
_grad
.
dims
()[
0
]
;
++
i
)
{
math
::
MulByBitCodeGradWeight
<
T
>
(
num_classes
,
*
label
,
pre_out
,
*
params
[
i
],
*
in
s
[
i
]
);
*
in
[
i
]
->
Slice
(
i
,
i
+
1
)
);
math
::
MulByBitCodeGradError
<
T
>
(
num_classes
,
*
label
,
pre_out
,
*
params
[
i
],
*
ins_grad
[
i
]);
*
ins_grad
[
i
]
->
Slice
(
i
,
i
+
1
)
);
}
}
};
...
...
paddle/operators/math/matrix_bit_code.cc
浏览文件 @
f8395631
...
...
@@ -52,19 +52,20 @@ namespace math {
*/
template
<
class
CodeTable
,
class
Op
,
typename
T
>
static
void
AddByBitCodeT
(
Op
op
,
CodeTable
code_table
,
const
framework
::
Tensor
&
codes
,
framework
::
Tensor
&
a
,
const
framework
::
Tensor
&
b
)
{
const
framework
::
Tensor
&
codes
,
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
vec
)
{
size_t
num_classes
=
code_table
.
size
();
size_t
max_code_length
=
code_table
.
get_max_code_length
();
size_t
num_sample
=
a
.
dims
()[
0
];
size_t
width
=
a
.
dims
()[
1
];
size_t
num_sample
=
tmat
.
dims
()[
0
];
size_t
width
=
vec
.
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
num_sample
;
++
i
)
{
auto
code
=
code_table
(
codes
.
data
<
T
>
()[
i
]);
int
code_length
=
code
.
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
+
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
op
(
a
.
data
<
T
>
()[
i
*
width
+
j
],
b
.
data
<
T
>
()[
index
]);
op
(
tmat
.
data
<
T
>
()[
i
*
width
+
j
],
vec
.
data
<
T
>
()[
index
]);
}
}
}
...
...
python/paddle/v2/fluid/tests/test_hsigmoid_op.py
0 → 100644
浏览文件 @
f8395631
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
class
TestHSigmoidOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"hierarchical_sigmoid_op"
num_classes
=
6
embded_size
=
10
batch_size
=
5
x
=
np
.
random
.
random
((
batch_size
,
embded_size
)).
astype
(
"float32"
)
parameter
=
np
.
random
.
random
(
(
batch_size
,
num_classes
-
1
,
embded_size
)).
astype
(
"float32"
)
label
=
np
.
random
.
randint
(
0
,
num_classes
,
batch_size
).
astype
(
"int64"
)
bias
=
np
.
random
.
random
((
1
,
num_classes
-
1
))
self
.
inputs
=
{
'X'
:
x
,
'Parameters'
:
parameter
,
'Label'
:
label
,
'Bias'
:
bias
}
self
.
attrs
=
{
'num_classes'
:
num_classes
}
self
.
outputs
=
{
'Out'
:
label
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'x0'
],
'Out'
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录