未验证 提交 f7fb4c22 编写于 作者: Q qingqing01 提交者: GitHub

Move hapi to python/paddle root dir. (#26442)

* Move hapi form paddle/incubate to paddle

* Remove vision/datasets/utils.py and clean code

* Add sample code for conll05

* Print pull path when saving model

* Fix sample code after paramter_list of SGD is changed to parameters

* Fix bug in wmt16 datase
上级 9a1ea9b4
...@@ -95,7 +95,6 @@ if (WITH_TESTING) ...@@ -95,7 +95,6 @@ if (WITH_TESTING)
add_subdirectory(paddle/fluid/tests) add_subdirectory(paddle/fluid/tests)
add_subdirectory(paddle/fluid/contrib/tests) add_subdirectory(paddle/fluid/contrib/tests)
add_subdirectory(paddle/fluid/contrib/slim/tests) add_subdirectory(paddle/fluid/contrib/slim/tests)
add_subdirectory(paddle/incubate/hapi/tests)
endif() endif()
install(DIRECTORY ${PADDLE_PYTHON_PACKAGE_DIR} install(DIRECTORY ${PADDLE_PYTHON_PACKAGE_DIR}
DESTINATION opt/paddle/share/wheels DESTINATION opt/paddle/share/wheels
......
...@@ -256,8 +256,6 @@ from .device import get_device ...@@ -256,8 +256,6 @@ from .device import get_device
# from .tensor.tensor import LoDTensor #DEFINE_ALIAS # from .tensor.tensor import LoDTensor #DEFINE_ALIAS
# from .tensor.tensor import LoDTensorArray #DEFINE_ALIAS # from .tensor.tensor import LoDTensorArray #DEFINE_ALIAS
from . import incubate
from .incubate import hapi
from .fluid.dygraph.base import enable_dygraph as disable_static #DEFINE_ALIAS from .fluid.dygraph.base import enable_dygraph as disable_static #DEFINE_ALIAS
from .fluid.dygraph.base import disable_dygraph as enable_static #DEFINE_ALIAS from .fluid.dygraph.base import disable_dygraph as enable_static #DEFINE_ALIAS
from .fluid.framework import in_dygraph_mode as in_dynamic_mode #DEFINE_ALIAS from .fluid.framework import in_dygraph_mode as in_dynamic_mode #DEFINE_ALIAS
...@@ -265,3 +263,9 @@ from .fluid.dygraph.base import no_grad #DEFINE_ALIAS ...@@ -265,3 +263,9 @@ from .fluid.dygraph.base import no_grad #DEFINE_ALIAS
from . import jit from . import jit
from . import static from . import static
# high-level api
from .hapi import Model
from .hapi import callbacks
import paddle.text
import paddle.vision
...@@ -196,3 +196,14 @@ def cluster_files_reader(files_pattern, ...@@ -196,3 +196,14 @@ def cluster_files_reader(files_pattern,
yield line yield line
return reader return reader
def _check_exists_and_download(path, url, md5, module_name, download=True):
if path and os.path.exists(path):
return path
if download:
return paddle.dataset.common.download(url, module_name, md5)
else:
raise ValueError('{} not exists and auto download disabled'.format(
path))
...@@ -36,7 +36,7 @@ import tarfile ...@@ -36,7 +36,7 @@ import tarfile
import gzip import gzip
from collections import defaultdict from collections import defaultdict
import paddle.dataset.common import paddle
import paddle.compat as cpt import paddle.compat as cpt
__all__ = [ __all__ = [
......
...@@ -13,9 +13,11 @@ ...@@ -13,9 +13,11 @@
# limitations under the License. # limitations under the License.
# TODO: define the functions to manipulate devices # TODO: define the functions to manipulate devices
import re
from paddle.fluid import core from paddle.fluid import core
from paddle.fluid import framework from paddle.fluid import framework
import re from paddle.fluid.dygraph.parallel import ParallelEnv
__all__ = [ __all__ = [
'get_cudnn_version', 'get_cudnn_version',
...@@ -81,8 +83,8 @@ def set_device(device): ...@@ -81,8 +83,8 @@ def set_device(device):
.. code-block:: python .. code-block:: python
import paddle import paddle
paddle.enable_imperative() paddle.disable_static()
paddle.fluid.dygraph.set_device("gpu:0") paddle.set_device("cpu")
x1 = paddle.ones(name='x1', shape=[1, 2], dtype='int32') x1 = paddle.ones(name='x1', shape=[1, 2], dtype='int32')
x2 = paddle.zeros(name='x2', shape=[1, 2], dtype='int32') x2 = paddle.zeros(name='x2', shape=[1, 2], dtype='int32')
data = paddle.stack([x1,x2], axis=1) data = paddle.stack([x1,x2], axis=1)
...@@ -90,18 +92,28 @@ def set_device(device): ...@@ -90,18 +92,28 @@ def set_device(device):
lower_device = device.lower() lower_device = device.lower()
if lower_device == 'cpu': if lower_device == 'cpu':
place = core.CPUPlace() place = core.CPUPlace()
framework._set_expected_place(place) elif lower_device == 'gpu':
if not core.is_compiled_with_cuda():
raise ValueError(
"The device should not be 'gpu', " \
"since PaddlePaddle is not compiled with CUDA")
place = core.CUDAPlace(ParallelEnv().dev_id)
else: else:
avaliable_device = ((lower_device == 'cpu') or avaliable_device = re.match(r'gpu:\d+', lower_device)
re.match(r'gpu:\d+', lower_device))
if not avaliable_device: if not avaliable_device:
raise ValueError( raise ValueError(
"The device must be a string which is like 'cpu' or 'gpu:0'") "The device must be a string which is like 'cpu', 'gpu' or 'gpu:0'"
)
if not core.is_compiled_with_cuda():
raise ValueError(
"The device should not be {}, since PaddlePaddle is " \
"not compiled with CUDA".format(avaliable_device))
device_info_list = device.split(':', 1) device_info_list = device.split(':', 1)
device_id = device_info_list[1] device_id = device_info_list[1]
device_id = int(device_id) device_id = int(device_id)
place = core.CUDAPlace(device_id) place = core.CUDAPlace(device_id)
framework._set_expected_place(place) framework._set_expected_place(place)
return place
def get_device(): def get_device():
...@@ -116,8 +128,8 @@ def get_device(): ...@@ -116,8 +128,8 @@ def get_device():
.. code-block:: python .. code-block:: python
import paddle import paddle
paddle.enable_imperative() paddle.disable_static()
device = paddle.fluid.dygraph.get_device() device = paddle.get_device()
""" """
device = '' device = ''
......
...@@ -69,7 +69,7 @@ class ImperativeQuantAware(object): ...@@ -69,7 +69,7 @@ class ImperativeQuantAware(object):
from paddle.fluid.contrib.slim.quantization \ from paddle.fluid.contrib.slim.quantization \
import ImperativeQuantAware import ImperativeQuantAware
from paddle.incubate.hapi.vision.models \ from paddle.vision.models \
import resnet import resnet
model = resnet.resnet50(pretrained=True) model = resnet.resnet50(pretrained=True)
......
...@@ -16,10 +16,12 @@ from __future__ import print_function ...@@ -16,10 +16,12 @@ from __future__ import print_function
from __future__ import division from __future__ import division
import numpy as np import numpy as np
import math
from .sampler import Sampler, SequenceSampler, RandomSampler from .sampler import Sampler, SequenceSampler, RandomSampler
from .dataset import Dataset, IterableDataset from .dataset import Dataset, IterableDataset
__all__ = ["BatchSampler"] __all__ = ["BatchSampler", "DistributedBatchSampler"]
class BatchSampler(Sampler): class BatchSampler(Sampler):
...@@ -158,3 +160,185 @@ class _InfiniteIterableSampler(object): ...@@ -158,3 +160,185 @@ class _InfiniteIterableSampler(object):
def __iter__(self): def __iter__(self):
while True: while True:
yield [None] * self.batch_size yield [None] * self.batch_size
class DistributedBatchSampler(BatchSampler):
"""Sampler that restricts data loading to a subset of the dataset.
In such case, each process can pass a DistributedBatchSampler instance
as a DataLoader sampler, and load a subset of the original dataset that
is exclusive to it.
.. note::
Dataset is assumed to be of constant size.
Args:
dataset(paddle.io.Dataset): this could be a `paddle.io.Dataset` implement
or other python object which implemented
`__len__` for BatchSampler to get sample
number of data source.
batch_size(int): sample indice number in a mini-batch indices.
num_replicas(int, optional): porcess number in distributed training.
If :attr:`num_replicas` is None, :attr:`num_replicas` will be
retrieved from :code:`paddle.fluid.dygraph.parallel.ParallenEnv`.
Default None.
rank(int, optional): the rank of the current process among :attr:`num_replicas`
processes. If :attr:`rank` is None, :attr:`rank` is retrieved from
:code:`paddle.fluid.dygraph.parallel.ParallenEnv`. Default None.
shuffle(bool): whther to shuffle indices order before genrating
batch indices. Default False.
drop_last(bool): whether drop the last incomplete batch dataset size
is not divisible by the batch size. Default False
Examples:
.. code-block:: python
import numpy as np
from paddle.io import Dataset, DistributedBatchSampler
# init with dataset
class RandomDataset(Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples
def __getitem__(self, idx):
image = np.random.random([784]).astype('float32')
label = np.random.randint(0, 9, (1, )).astype('int64')
return image, label
def __len__(self):
return self.num_samples
dataset = RandomDataset(100)
sampler = DistributedBatchSampler(dataset, batch_size=64)
for data in sampler:
# do something
break
"""
def __init__(self,
dataset,
batch_size,
num_replicas=None,
rank=None,
shuffle=False,
drop_last=False):
self.dataset = dataset
assert isinstance(batch_size, int) and batch_size > 0, \
"batch_size should be a positive integer"
self.batch_size = batch_size
assert isinstance(shuffle, bool), \
"shuffle should be a boolean value"
self.shuffle = shuffle
assert isinstance(drop_last, bool), \
"drop_last should be a boolean number"
from paddle.fluid.dygraph.parallel import ParallelEnv
if num_replicas is not None:
assert isinstance(num_replicas, int) and num_replicas > 0, \
"num_replicas should be a positive integer"
self.nranks = num_replicas
else:
self.nranks = ParallelEnv().nranks
if rank is not None:
assert isinstance(rank, int) and rank >= 0, \
"rank should be a non-negative integer"
self.local_rank = rank
else:
self.local_rank = ParallelEnv().local_rank
self.drop_last = drop_last
self.epoch = 0
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.nranks))
self.total_size = self.num_samples * self.nranks
def __iter__(self):
num_samples = len(self.dataset)
indices = np.arange(num_samples).tolist()
indices += indices[:(self.total_size - len(indices))]
assert len(indices) == self.total_size
if self.shuffle:
np.random.RandomState(self.epoch).shuffle(indices)
self.epoch += 1
# subsample
def _get_indices_by_batch_size(indices):
subsampled_indices = []
last_batch_size = self.total_size % (self.batch_size * self.nranks)
assert last_batch_size % self.nranks == 0
last_local_batch_size = last_batch_size // self.nranks
for i in range(self.local_rank * self.batch_size,
len(indices) - last_batch_size,
self.batch_size * self.nranks):
subsampled_indices.extend(indices[i:i + self.batch_size])
indices = indices[len(indices) - last_batch_size:]
subsampled_indices.extend(indices[
self.local_rank * last_local_batch_size:(
self.local_rank + 1) * last_local_batch_size])
return subsampled_indices
if self.nranks > 1:
indices = _get_indices_by_batch_size(indices)
assert len(indices) == self.num_samples
_sample_iter = iter(indices)
batch_indices = []
for idx in _sample_iter:
batch_indices.append(idx)
if len(batch_indices) == self.batch_size:
yield batch_indices
batch_indices = []
if not self.drop_last and len(batch_indices) > 0:
yield batch_indices
def __len__(self):
num_samples = self.num_samples
num_samples += int(not self.drop_last) * (self.batch_size - 1)
return num_samples // self.batch_size
def set_epoch(self, epoch):
"""
Sets the epoch number. When :attr:`shuffle=True`, this number is used
as seeds of random numbers. By default, users may not set this, all
replicas (workers) use a different random ordering for each epoch.
If set same number at each epoch, this sampler will yield the same
ordering at all epoches.
Arguments:
epoch (int): Epoch number.
Examples:
.. code-block:: python
import numpy as np
from paddle.io import Dataset, DistributedBatchSampler
# init with dataset
class RandomDataset(Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples
def __getitem__(self, idx):
image = np.random.random([784]).astype('float32')
label = np.random.randint(0, 9, (1, )).astype('int64')
return image, label
def __len__(self):
return self.num_samples
dataset = RandomDataset(100)
sampler = DistributedBatchSampler(dataset, batch_size=64)
for epoch in range(10):
sampler.set_epoch(epoch)
"""
self.epoch = epoch
...@@ -18,6 +18,7 @@ import unittest ...@@ -18,6 +18,7 @@ import unittest
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.io import BatchSampler, Dataset, Sampler, SequenceSampler, RandomSampler from paddle.io import BatchSampler, Dataset, Sampler, SequenceSampler, RandomSampler
from paddle.io import DistributedBatchSampler
class RandomDataset(Dataset): class RandomDataset(Dataset):
...@@ -194,5 +195,15 @@ class TestBatchSamplerWithSamplerShuffle(unittest.TestCase): ...@@ -194,5 +195,15 @@ class TestBatchSamplerWithSamplerShuffle(unittest.TestCase):
pass pass
class TestDistributedBatchSamplerWithSampler(TestBatchSampler):
def init_batch_sampler(self):
dataset = RandomDataset(1000, 10)
bs = DistributedBatchSampler(
dataset=dataset,
batch_size=self.batch_size,
drop_last=self.drop_last)
return bs
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
...@@ -13,34 +13,15 @@ ...@@ -13,34 +13,15 @@
# limitations under the License. # limitations under the License.
from . import logger from . import logger
from . import progressbar
from . import callbacks from . import callbacks
from . import download
from . import model from . import model
from .model import * from .model import *
from . import datasets
from . import distributed
from . import vision
from . import text
from . import utils
from . import device
from .device import *
from .dygraph_layer_patch import monkey_patch_layer from .dygraph_layer_patch import monkey_patch_layer
logger.setup_logger() logger.setup_logger()
__all__ = [ __all__ = ['callbacks'] + model.__all__
'callbacks',
'datasets',
'distributed',
'download',
'vision',
'text',
'utils',
] + model.__all__ + device.__all__
monkey_patch_layer() monkey_patch_layer()
...@@ -12,6 +12,8 @@ ...@@ -12,6 +12,8 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import os
from paddle.fluid.dygraph.parallel import ParallelEnv from paddle.fluid.dygraph.parallel import ParallelEnv
from .progressbar import ProgressBar from .progressbar import ProgressBar
...@@ -117,10 +119,10 @@ class Callback(object): ...@@ -117,10 +119,10 @@ class Callback(object):
.. code-block:: python .. code-block:: python
from paddle.incubate.hapi.callbacks import Callback import paddle
# build a simple model checkpoint callback # build a simple model checkpoint callback
class ModelCheckpoint(Callback): class ModelCheckpoint(paddle.callbacks.Callback):
def __init__(self, save_freq=1, save_dir=None): def __init__(self, save_freq=1, save_dir=None):
self.save_freq = save_freq self.save_freq = save_freq
self.save_dir = save_dir self.save_dir = save_dir
...@@ -147,12 +149,12 @@ class Callback(object): ...@@ -147,12 +149,12 @@ class Callback(object):
- 'verbose': an integer. Verbose mode is 0, 1 or 2. - 'verbose': an integer. Verbose mode is 0, 1 or 2.
0 = silent, 1 = progress bar, 2 = one line per epoch. 0 = silent, 1 = progress bar, 2 = one line per epoch.
- 'metrics': a list of str. Names of metrics, including 'loss' - 'metrics': a list of str. Names of metrics, including 'loss'
and the names of hapi.Metric. and the names of paddle.metric.Metric.
""" """
self.params = params self.params = params
def set_model(self, model): def set_model(self, model):
"""model is instance of hapi.Model. """model is instance of paddle.Model.
""" """
self.model = model self.model = model
...@@ -168,7 +170,7 @@ class Callback(object): ...@@ -168,7 +170,7 @@ class Callback(object):
Args: Args:
logs (dict): The logs is a dict or None. The keys of logs logs (dict): The logs is a dict or None. The keys of logs
passed by hapi.Model contains 'loss', metric names and passed by paddle.Model contains 'loss', metric names and
`batch_size`. `batch_size`.
""" """
...@@ -177,10 +179,10 @@ class Callback(object): ...@@ -177,10 +179,10 @@ class Callback(object):
Args: Args:
logs (dict): The logs is a dict or None. The keys of logs logs (dict): The logs is a dict or None. The keys of logs
passed by hapi.Model contains 'steps' and 'metrics', passed by paddle.Model contains 'steps' and 'metrics',
The `steps` is number of total steps of validation dataset. The `steps` is number of total steps of validation dataset.
The `metrics` is a list of str including 'loss' and the names The `metrics` is a list of str including 'loss' and the names
of hapi.Metric. of paddle.metric.Metric.
""" """
def on_eval_end(self, logs=None): def on_eval_end(self, logs=None):
...@@ -188,7 +190,7 @@ class Callback(object): ...@@ -188,7 +190,7 @@ class Callback(object):
Args: Args:
logs (dict): The logs is a dict or None. The `logs` passed by logs (dict): The logs is a dict or None. The `logs` passed by
hapi.Model is a dict contains 'loss', metrics and 'batch_size' paddle.Model is a dict contains 'loss', metrics and 'batch_size'
of last batch of validation dataset. of last batch of validation dataset.
""" """
...@@ -212,7 +214,7 @@ class Callback(object): ...@@ -212,7 +214,7 @@ class Callback(object):
Args: Args:
epoch (int): The index of epoch. epoch (int): The index of epoch.
logs (dict): The logs is a dict or None. The `logs` passed by logs (dict): The logs is a dict or None. The `logs` passed by
hapi.Model is None. paddle.Model is None.
""" """
def on_epoch_end(self, epoch, logs=None): def on_epoch_end(self, epoch, logs=None):
...@@ -221,7 +223,7 @@ class Callback(object): ...@@ -221,7 +223,7 @@ class Callback(object):
Args: Args:
epoch (int): The index of epoch. epoch (int): The index of epoch.
logs (dict): The logs is a dict or None. The `logs` passed by logs (dict): The logs is a dict or None. The `logs` passed by
hapi.Model is a dict, contains 'loss', metrics and 'batch_size' paddle.Model is a dict, contains 'loss', metrics and 'batch_size'
of last batch. of last batch.
""" """
...@@ -231,7 +233,7 @@ class Callback(object): ...@@ -231,7 +233,7 @@ class Callback(object):
Args: Args:
step (int): The index of step (or iteration). step (int): The index of step (or iteration).
logs (dict): The logs is a dict or None. The `logs` passed by logs (dict): The logs is a dict or None. The `logs` passed by
hapi.Model is empty. paddle.Model is empty.
""" """
def on_train_batch_end(self, step, logs=None): def on_train_batch_end(self, step, logs=None):
...@@ -240,7 +242,7 @@ class Callback(object): ...@@ -240,7 +242,7 @@ class Callback(object):
Args: Args:
step (int): The index of step (or iteration). step (int): The index of step (or iteration).
logs (dict): The logs is a dict or None. The `logs` passed by logs (dict): The logs is a dict or None. The `logs` passed by
hapi.Model is a dict, contains 'loss', metrics and 'batch_size' paddle.Model is a dict, contains 'loss', metrics and 'batch_size'
of current batch. of current batch.
""" """
...@@ -250,7 +252,7 @@ class Callback(object): ...@@ -250,7 +252,7 @@ class Callback(object):
Args: Args:
step (int): The index of step (or iteration). step (int): The index of step (or iteration).
logs (dict): The logs is a dict or None. The `logs` passed by logs (dict): The logs is a dict or None. The `logs` passed by
hapi.Model is empty. paddle.Model is empty.
""" """
def on_eval_batch_end(self, step, logs=None): def on_eval_batch_end(self, step, logs=None):
...@@ -259,7 +261,7 @@ class Callback(object): ...@@ -259,7 +261,7 @@ class Callback(object):
Args: Args:
step (int): The index of step (or iteration). step (int): The index of step (or iteration).
logs (dict): The logs is a dict or None. The `logs` passed by logs (dict): The logs is a dict or None. The `logs` passed by
hapi.Model is a dict, contains 'loss', metrics and 'batch_size' paddle.Model is a dict, contains 'loss', metrics and 'batch_size'
of current batch. of current batch.
""" """
...@@ -292,23 +294,22 @@ class ProgBarLogger(Callback): ...@@ -292,23 +294,22 @@ class ProgBarLogger(Callback):
.. code-block:: python .. code-block:: python
import paddle import paddle
import paddle.fluid as fluid from paddle.static import InputSpec
import paddle.incubate.hapi as hapi
inputs = [hapi.Input([-1, 1, 28, 28], 'float32', 'image')] inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
labels = [hapi.Input([None, 1], 'int64', 'label')] labels = [InputSpec([None, 1], 'int64', 'label')]
train_dataset = hapi.datasets.MNIST(mode='train') train_dataset = paddle.vision.datasets.MNIST(mode='train')
model = hapi.Model(hapi.vision.LeNet(classifier_activation=None), model = paddle.Model(paddle.vision.LeNet(classifier_activation=None),
inputs, labels) inputs, labels)
optim = fluid.optimizer.Adam(0.001) optim = paddle.optimizer.Adam(0.001)
model.prepare(optimizer=optim, model.prepare(optimizer=optim,
loss=paddle.nn.CrossEntropyLoss(), loss=paddle.nn.CrossEntropyLoss(),
metrics=paddle.metric.Accuracy()) metrics=paddle.metric.Accuracy())
callback = hapi.callbacks.ProgBarLogger(log_freq=10) callback = paddle.callbacks.ProgBarLogger(log_freq=10)
model.fit(train_dataset, batch_size=64, callbacks=callback) model.fit(train_dataset, batch_size=64, callbacks=callback)
""" """
...@@ -428,23 +429,22 @@ class ModelCheckpoint(Callback): ...@@ -428,23 +429,22 @@ class ModelCheckpoint(Callback):
.. code-block:: python .. code-block:: python
import paddle import paddle
import paddle.fluid as fluid from paddle.static import InputSpec
import paddle.incubate.hapi as hapi
inputs = [hapi.Input([-1, 1, 28, 28], 'float32', 'image')] inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
labels = [hapi.Input([None, 1], 'int64', 'label')] labels = [InputSpec([None, 1], 'int64', 'label')]
train_dataset = hapi.datasets.MNIST(mode='train') train_dataset = paddle.vision.datasets.MNIST(mode='train')
model = hapi.Model(hapi.vision.LeNet(classifier_activation=None), model = paddle.Model(paddle.vision.LeNet(classifier_activation=None),
inputs, labels) inputs, labels)
optim = fluid.optimizer.Adam(0.001) optim = paddle.optimizer.Adam(0.001)
model.prepare(optimizer=optim, model.prepare(optimizer=optim,
loss=paddle.nn.CrossEntropyLoss(), loss=paddle.nn.CrossEntropyLoss(),
metrics=paddle.metric.Accuracy()) metrics=paddle.metric.Accuracy())
callback = hapi.callbacks.ModelCheckpoint(save_dir='./temp') callback = paddle.callbacks.ModelCheckpoint(save_dir='./temp')
model.fit(train_dataset, batch_size=64, callbacks=callback) model.fit(train_dataset, batch_size=64, callbacks=callback)
""" """
...@@ -461,11 +461,11 @@ class ModelCheckpoint(Callback): ...@@ -461,11 +461,11 @@ class ModelCheckpoint(Callback):
def on_epoch_end(self, epoch, logs=None): def on_epoch_end(self, epoch, logs=None):
if self._is_save() and self.epoch % self.save_freq == 0: if self._is_save() and self.epoch % self.save_freq == 0:
path = '{}/{}'.format(self.save_dir, epoch) path = '{}/{}'.format(self.save_dir, epoch)
print('save checkpoint at {}'.format(path)) print('save checkpoint at {}'.format(os.path.abspath(path)))
self.model.save(path) self.model.save(path)
def on_train_end(self, logs=None): def on_train_end(self, logs=None):
if self._is_save(): if self._is_save():
path = '{}/final'.format(self.save_dir) path = '{}/final'.format(self.save_dir)
print('save checkpoint at {}'.format(path)) print('save checkpoint at {}'.format(os.path.abspath(path)))
self.model.save(path) self.model.save(path)
...@@ -16,8 +16,7 @@ import warnings ...@@ -16,8 +16,7 @@ import warnings
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.framework import in_dygraph_mode from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.framework import _current_expected_place as _get_device
from .device import _get_device
def monkey_patch_layer(): def monkey_patch_layer():
......
...@@ -66,6 +66,7 @@ class ProgressBar(object): ...@@ -66,6 +66,7 @@ class ProgressBar(object):
return terminal_size(80, 24) return terminal_size(80, 24)
terminal_width, _ = get_terminal_size() terminal_width, _ = get_terminal_size()
terminal_width = terminal_width if terminal_width > 0 else 80
max_width = min(int(terminal_width * 0.6), terminal_width - 50) max_width = min(int(terminal_width * 0.6), terminal_width - 50)
return max_width return max_width
......
...@@ -12,10 +12,7 @@ ...@@ -12,10 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from . import hapi
__all__ = [] __all__ = []
__all__ += hapi.__all__
__all__ += ["reader"] __all__ += ["reader"]
from ..fluid.contrib import reader from ..fluid.contrib import reader
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import six
import paddle.fluid as fluid
from paddle.fluid.dygraph.parallel import ParallelEnv
__all__ = ['set_device', ]
# TODO(qingqing01): remove or refine _global_device, set_device and get_device
# after core framework supporting these function.
_global_device = None
def set_device(device):
"""
Args:
device (str): specify device type, 'cpu' or 'gpu'.
Returns:
fluid.CUDAPlace or fluid.CPUPlace: Created GPU or CPU place.
Examples:
.. code-block:: python
import paddle.incubate.hapi as hapi
input = hapi.set_device('gpu')
"""
assert isinstance(device, six.string_types) and device.lower() in ['cpu', 'gpu'], \
"Expected device in ['cpu', 'gpu'], but got {}".format(device)
device = fluid.CUDAPlace(ParallelEnv().dev_id) \
if device.lower() == 'gpu' and fluid.is_compiled_with_cuda() \
else fluid.CPUPlace()
global _global_device
_global_device = device
return device
def _get_device():
"""
Return global device.
"""
if _global_device is not None:
device = _global_device
else:
if fluid.is_compiled_with_cuda():
device = fluid.CUDAPlace(ParallelEnv().dev_id)
else:
device = fluid.CPUPlace()
return device
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import six
import time
import math
import socket
import contextlib
import numpy as np
from paddle import fluid
from paddle.fluid.layers import collective
from paddle.fluid.dygraph.parallel import ParallelEnv, ParallelStrategy
from paddle.io import BatchSampler
_parallel_context_initialized = False
__all__ = ['DistributedBatchSampler']
class DistributedBatchSampler(BatchSampler):
"""Sampler that restricts data loading to a subset of the dataset.
In such case, each process can pass a DistributedBatchSampler instance
as a DataLoader sampler, and load a subset of the original dataset that
is exclusive to it.
.. note::
Dataset is assumed to be of constant size.
Args:
dataset(paddle.io.Dataset): this could be a `paddle.io.Dataset` implement
or other python object which implemented
`__len__` for BatchSampler to get sample
number of data source.
batch_size(int): sample indice number in a mini-batch indices.
num_replicas(int, optional): porcess number in distributed training.
If :attr:`num_replicas` is None, :attr:`num_replicas` will be
retrieved from :code:`paddle.fluid.dygraph.parallel.ParallenEnv`.
Default None.
rank(int, optional): the rank of the current process among :attr:`num_replicas`
processes. If :attr:`rank` is None, :attr:`rank` is retrieved from
:code:`paddle.fluid.dygraph.parallel.ParallenEnv`. Default None.
shuffle(bool): whther to shuffle indices order before genrating
batch indices. Default False.
drop_last(bool): whether drop the last incomplete batch dataset size
is not divisible by the batch size. Default False
Examples:
.. code-block:: python
import numpy as np
from paddle.incubate.hapi.datasets import MNIST
from paddle.incubate.hapi.distributed import DistributedBatchSampler
class MnistDataset(MNIST):
def __init__(self, mode, return_label=True):
super(MnistDataset, self).__init__(mode=mode)
self.return_label = return_label
def __getitem__(self, idx):
img = np.reshape(self.images[idx], [1, 28, 28])
if self.return_label:
return img, np.array(self.labels[idx]).astype('int64')
return img,
def __len__(self):
return len(self.images)
train_dataset = MnistDataset(mode='train')
dist_train_dataloader = DistributedBatchSampler(train_dataset, batch_size=64)
for data in dist_train_dataloader:
# do something
break
"""
def __init__(self,
dataset,
batch_size,
num_replicas=None,
rank=None,
shuffle=False,
drop_last=False):
self.dataset = dataset
assert isinstance(batch_size, int) and batch_size > 0, \
"batch_size should be a positive integer"
self.batch_size = batch_size
assert isinstance(shuffle, bool), \
"shuffle should be a boolean value"
self.shuffle = shuffle
assert isinstance(drop_last, bool), \
"drop_last should be a boolean number"
if num_replicas is not None:
assert isinstance(num_replicas, int) and num_replicas > 0, \
"num_replicas should be a positive integer"
self.nranks = num_replicas
else:
self.nranks = ParallelEnv().nranks
if rank is not None:
assert isinstance(rank, int) and rank >= 0, \
"rank should be a non-negative integer"
self.local_rank = rank
else:
self.local_rank = ParallelEnv().local_rank
self.drop_last = drop_last
self.epoch = 0
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.nranks))
self.total_size = self.num_samples * self.nranks
def __iter__(self):
num_samples = len(self.dataset)
indices = np.arange(num_samples).tolist()
indices += indices[:(self.total_size - len(indices))]
assert len(indices) == self.total_size
if self.shuffle:
np.random.RandomState(self.epoch).shuffle(indices)
self.epoch += 1
# subsample
def _get_indices_by_batch_size(indices):
subsampled_indices = []
last_batch_size = self.total_size % (self.batch_size * self.nranks)
assert last_batch_size % self.nranks == 0
last_local_batch_size = last_batch_size // self.nranks
for i in range(self.local_rank * self.batch_size,
len(indices) - last_batch_size,
self.batch_size * self.nranks):
subsampled_indices.extend(indices[i:i + self.batch_size])
indices = indices[len(indices) - last_batch_size:]
subsampled_indices.extend(indices[
self.local_rank * last_local_batch_size:(
self.local_rank + 1) * last_local_batch_size])
return subsampled_indices
if self.nranks > 1:
indices = _get_indices_by_batch_size(indices)
assert len(indices) == self.num_samples
_sample_iter = iter(indices)
batch_indices = []
for idx in _sample_iter:
batch_indices.append(idx)
if len(batch_indices) == self.batch_size:
yield batch_indices
batch_indices = []
if not self.drop_last and len(batch_indices) > 0:
yield batch_indices
def __len__(self):
num_samples = self.num_samples
num_samples += int(not self.drop_last) * (self.batch_size - 1)
return num_samples // self.batch_size
def set_epoch(self, epoch):
self.epoch = epoch
def _all_gather(x, nranks, ring_id=0, use_calc_stream=True):
return collective._c_allgather(
x, nranks, ring_id=ring_id, use_calc_stream=use_calc_stream)
def wait_server_ready(endpoints):
assert not isinstance(endpoints, six.string_types)
while True:
all_ok = True
not_ready_endpoints = []
for ep in endpoints:
ip_port = ep.split(":")
with contextlib.closing(
socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
sock.settimeout(2)
result = sock.connect_ex((ip_port[0], int(ip_port[1])))
if result != 0:
all_ok = False
not_ready_endpoints.append(ep)
if not all_ok:
time.sleep(3)
else:
break
def init_communicator(program, rank, nranks, wait_port, current_endpoint,
endpoints):
if nranks < 2:
return
other_endpoints = endpoints[:]
other_endpoints.remove(current_endpoint)
if rank == 0 and wait_port:
wait_server_ready(other_endpoints)
block = program.global_block()
nccl_id_var = block.create_var(
name=fluid.unique_name.generate('nccl_id'),
persistable=True,
type=fluid.core.VarDesc.VarType.RAW)
block.append_op(
type='c_gen_nccl_id',
inputs={},
outputs={'Out': nccl_id_var},
attrs={
'rank': rank,
'endpoint': current_endpoint,
'other_endpoints': other_endpoints
})
block.append_op(
type='c_comm_init',
inputs={'X': nccl_id_var},
outputs={},
attrs={
'nranks': nranks,
'rank': rank,
'ring_id': 0,
})
def prepare_distributed_context(place=None):
if place is None:
place = fluid.CUDAPlace(ParallelEnv().dev_id) if ParallelEnv().nranks > 1 \
else fluid.CUDAPlace(0)
strategy = ParallelStrategy()
strategy.nranks = ParallelEnv().nranks
strategy.local_rank = ParallelEnv().local_rank
strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
strategy.current_endpoint = ParallelEnv().current_endpoint
if strategy.nranks < 2:
return
global _parallel_context_initialized
if not _parallel_context_initialized and isinstance(place, fluid.CUDAPlace):
def _init_context():
communicator_prog = fluid.Program()
init_communicator(communicator_prog, strategy.local_rank,
strategy.nranks, True, strategy.current_endpoint,
strategy.trainer_endpoints)
exe = fluid.Executor(place)
exe.run(communicator_prog)
if fluid.in_dygraph_mode():
fluid.disable_dygraph()
_init_context()
fluid.enable_dygraph(place)
else:
_init_context()
else:
assert ("Only support CUDAPlace for now.")
_parallel_context_initialized = True
return strategy
file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py")
string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
file(GLOB DIST_TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_dist_*.py")
string(REPLACE ".py" "" DIST_TEST_OPS "${DIST_TEST_OPS}")
foreach(TEST_OP ${DIST_TEST_OPS})
list(REMOVE_ITEM TEST_OPS ${TEST_OP})
endforeach()
foreach(src ${TEST_OPS})
py_test(${src} SRCS ${src}.py)
endforeach()
set_tests_properties(test_dataset_imdb PROPERTIES TIMEOUT 150)
function(py_dist_test TARGET_NAME)
if(WITH_TESTING)
set(options "")
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS ARGS ENVS)
cmake_parse_arguments(py_dist_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
if(WITH_COVERAGE AND WITH_GPU AND WITH_NCCL AND NOT WIN32)
add_test(NAME ${TARGET_NAME}
COMMAND ${CMAKE_COMMAND} -E env FLAGS_init_allocated_mem=true FLAGS_cudnn_deterministic=true
FLAGS_cpu_deterministic=true NCCL_P2P_DISABLE=1 NCCL_SHM_DISABLE=1
PYTHONPATH=${PADDLE_BINARY_DIR}/python ${py_dist_test_ENVS}
COVERAGE_FILE=${PADDLE_BINARY_DIR}/python-coverage.data
${PYTHON_EXECUTABLE} -u ${py_dist_test_SRCS} ${py_dist_test_ARGS}
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
# No unit test should exceed 10 minutes.
set_tests_properties(${TARGET_NAME} PROPERTIES TIMEOUT 600 LABELS "RUN_TYPE=DIST")
endif()
endif()
endfunction()
foreach(src ${DIST_TEST_OPS})
message(STATUS ${src})
py_dist_test(${src} SRCS ${src}.py)
endforeach()
# copyright (c) 2020 paddlepaddle authors. all rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
from __future__ import print_function
import unittest
import numpy as np
import shutil
import tempfile
from paddle import fluid
from paddle.nn import Conv2d, Pool2D, Linear, ReLU, Sequential, Softmax
from paddle.incubate.hapi.utils import uncombined_weight_to_state_dict
class LeNetDygraph(fluid.dygraph.Layer):
def __init__(self, num_classes=10, classifier_activation='softmax'):
super(LeNetDygraph, self).__init__()
self.num_classes = num_classes
self.features = Sequential(
Conv2d(
1, 6, 3, stride=1, padding=1),
ReLU(),
Pool2D(2, 'max', 2),
Conv2d(
6, 16, 5, stride=1, padding=0),
ReLU(),
Pool2D(2, 'max', 2))
if num_classes > 0:
self.fc = Sequential(
Linear(400, 120), Linear(120, 84), Linear(84, 10),
Softmax()) #Todo: accept any activation
def forward(self, inputs):
x = self.features(inputs)
if self.num_classes > 0:
x = fluid.layers.flatten(x, 1)
x = self.fc(x)
return x
class TestUncombinedWeight2StateDict(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.save_dir = tempfile.mkdtemp()
@classmethod
def tearDownClass(cls):
shutil.rmtree(cls.save_dir)
def test_infer(self):
start_prog = fluid.Program()
train_prog = fluid.Program()
x = fluid.data(name='x', shape=[None, 1, 28, 28], dtype='float32')
with fluid.program_guard(train_prog, start_prog):
with fluid.unique_name.guard():
x = fluid.data(
name='x', shape=[None, 1, 28, 28], dtype='float32')
model = LeNetDygraph()
output = model.forward(x)
excutor = fluid.Executor()
excutor.run(start_prog)
test_prog = train_prog.clone(for_test=True)
fluid.io.save_params(excutor, self.save_dir, test_prog)
rand_x = np.random.rand(1, 1, 28, 28).astype('float32')
out = excutor.run(program=test_prog,
feed={'x': rand_x},
fetch_list=[output.name],
return_numpy=True)
state_dict = uncombined_weight_to_state_dict(self.save_dir)
key2key_dict = {
'features.0.weight': 'conv2d_0.w_0',
'features.0.bias': 'conv2d_0.b_0',
'features.3.weight': 'conv2d_1.w_0',
'features.3.bias': 'conv2d_1.b_0',
'fc.0.weight': 'linear_0.w_0',
'fc.0.bias': 'linear_0.b_0',
'fc.1.weight': 'linear_1.w_0',
'fc.1.bias': 'linear_1.b_0',
'fc.2.weight': 'linear_2.w_0',
'fc.2.bias': 'linear_2.b_0'
}
fluid.enable_imperative()
dygraph_model = LeNetDygraph()
converted_state_dict = dygraph_model.state_dict()
for k1, k2 in key2key_dict.items():
converted_state_dict[k1] = state_dict[k2]
dygraph_model.set_dict(converted_state_dict)
dygraph_model.eval()
dy_out = dygraph_model(fluid.dygraph.to_variable(rand_x))
np.testing.assert_allclose(dy_out.numpy(), out[0], atol=1e-5)
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import inspect
import numpy as np
from collections import OrderedDict
from paddle import fluid
from paddle.fluid.framework import Variable
from paddle.fluid.executor import global_scope
__all__ = ['uncombined_weight_to_state_dict']
def uncombined_weight_to_state_dict(weight_dir):
"""
Convert uncombined weight which getted by using `fluid.io.save_params` or `fluid.io.save_persistables` to state_dict
Args:
weight_dir (str): weight direcotory path.
Returns:
OrderDict: weight dict.
Examples:
.. code-block:: python
import os
from paddle import fluid
from paddle.nn import Conv2D, Pool2D, Linear, ReLU, Sequential
from paddle.incubate.hapi.utils import uncombined_weight_to_state_dict
class LeNetDygraph(fluid.dygraph.Layer):
def __init__(self, num_classes=10, classifier_activation='softmax'):
super(LeNetDygraph, self).__init__()
self.num_classes = num_classes
self.features = Sequential(
Conv2D(
1, 6, 3, stride=1, padding=1),
ReLU(),
Pool2D(2, 'max', 2),
Conv2D(
6, 16, 5, stride=1, padding=0),
ReLU(),
Pool2D(2, 'max', 2))
if num_classes > 0:
self.fc = Sequential(
Linear(400, 120),
Linear(120, 84),
Linear(
84, 10, act=classifier_activation))
def forward(self, inputs):
x = self.features(inputs)
if self.num_classes > 0:
x = fluid.layers.flatten(x, 1)
x = self.fc(x)
return x
# save weight use fluid.io.save_params
save_dir = 'temp'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
start_prog = fluid.Program()
train_prog = fluid.Program()
x = fluid.data(name='x', shape=[None, 1, 28, 28], dtype='float32')
with fluid.program_guard(train_prog, start_prog):
with fluid.unique_name.guard():
x = fluid.data(
name='x', shape=[None, 1, 28, 28], dtype='float32')
model = LeNetDygraph()
output = model.forward(x)
excutor = fluid.Executor()
excutor.run(start_prog)
test_prog = train_prog.clone(for_test=True)
fluid.io.save_params(excutor, save_dir, test_prog)
# convert uncombined weight to state dict
state_dict = uncombined_weight_to_state_dict(save_dir)
key2key_dict = {
'features.0.weight': 'conv2d_0.w_0',
'features.0.bias': 'conv2d_0.b_0',
'features.3.weight': 'conv2d_1.w_0',
'features.3.bias': 'conv2d_1.b_0',
'fc.0.weight': 'linear_0.w_0',
'fc.0.bias': 'linear_0.b_0',
'fc.1.weight': 'linear_1.w_0',
'fc.1.bias': 'linear_1.b_0',
'fc.2.weight': 'linear_2.w_0',
'fc.2.bias': 'linear_2.b_0'
}
fluid.enable_imperative()
dygraph_model = LeNetDygraph()
converted_state_dict = dygraph_model.state_dict()
for k1, k2 in key2key_dict.items():
converted_state_dict[k1] = state_dict[k2]
# dygraph model load state dict which converted from uncombined weight
dygraph_model.set_dict(converted_state_dict)
"""
def _get_all_params_name(dir):
params_name = []
dir = os.path.expanduser(dir)
dir_len = len(dir)
for root, _, fnames in sorted(os.walk(dir, followlinks=True)):
for fname in sorted(fnames):
path = os.path.join(root[dir_len:], fname)
params_name.append(path)
return params_name
class Load(fluid.dygraph.Layer):
def __init__(self):
super(Load, self).__init__()
def forward(self, filename):
weight = self.create_parameter(
shape=[1],
dtype='float32',
default_initializer=fluid.initializer.ConstantInitializer(0.0))
self._helper.append_op(
type='load',
inputs={},
outputs={'Out': [weight]},
attrs={'file_path': filename})
return weight
params_name_list = _get_all_params_name(weight_dir)
if not fluid.in_dygraph_mode():
dygraph_enabled = False
fluid.enable_imperative()
else:
dygraph_enabled = True
load = Load()
state_dict = OrderedDict()
for param_name in params_name_list:
param_path = os.path.join(weight_dir, param_name)
weight = load(param_path)
try:
weight = weight.numpy()
except Exception as e:
print(e)
state_dict[param_name] = weight
if not dygraph_enabled:
fluid.disable_imperative()
return state_dict
def to_list(value):
if value is None:
return value
if isinstance(value, (list, tuple)):
return list(value)
return [value]
def to_numpy(var):
assert isinstance(var, (Variable, fluid.core.VarBase)), "not a variable"
if isinstance(var, fluid.core.VarBase):
return var.numpy()
t = global_scope().find_var(var.name).get_tensor()
return np.array(t)
def flatten_list(l):
assert isinstance(l, list), "not a list"
outl = []
splits = []
for sl in l:
assert isinstance(sl, list), "sub content not a list"
splits.append(len(sl))
outl += sl
return outl, splits
def restore_flatten_list(l, splits):
outl = []
for split in splits:
assert len(l) >= split, "list length invalid"
sl, l = l[:split], l[split:]
outl.append(sl)
return outl
def extract_args(func):
if hasattr(inspect, 'getfullargspec'):
return inspect.getfullargspec(func)[0]
else:
return inspect.getargspec(func)[0]
...@@ -18,6 +18,7 @@ __all__ = [ ...@@ -18,6 +18,7 @@ __all__ = [
'IterableDataset', 'IterableDataset',
'TensorDataset', 'TensorDataset',
'BatchSampler', 'BatchSampler',
'DistributedBatchSampler',
# 'Transform', # 'Transform',
'DataLoader', 'DataLoader',
'get_worker_info', 'get_worker_info',
...@@ -43,7 +44,7 @@ __all__ = [ ...@@ -43,7 +44,7 @@ __all__ = [
from ..fluid.io import DataLoader from ..fluid.io import DataLoader
from ..fluid.dataloader import Dataset, IterableDataset, BatchSampler, get_worker_info, \ from ..fluid.dataloader import Dataset, IterableDataset, BatchSampler, get_worker_info, \
TensorDataset, Sampler, SequenceSampler, RandomSampler TensorDataset, Sampler, SequenceSampler, RandomSampler, DistributedBatchSampler
from ..fluid.io import load, save, load_program_state, set_program_state, \ from ..fluid.io import load, save, load_program_state, set_program_state, \
load_inference_model, save_inference_model, batch load_inference_model, save_inference_model, batch
from ..reader import shuffle, buffered, cache, chain, firstn, compose, map_readers, xmap_readers from ..reader import shuffle, buffered, cache, chain, firstn, compose, map_readers, xmap_readers
...@@ -202,12 +202,11 @@ class Accuracy(Metric): ...@@ -202,12 +202,11 @@ class Accuracy(Metric):
.. code-block:: python .. code-block:: python
import paddle import paddle
import paddle.incubate.hapi as hapi
paddle.disable_static() paddle.disable_static()
train_dataset = hapi.datasets.MNIST(mode='train') train_dataset = paddle.vision.datasets.MNIST(mode='train')
model = hapi.Model(hapi.vision.LeNet(classifier_activation=None)) model = paddle.Model(paddle.vision.LeNet(classifier_activation=None))
optim = paddle.optimizer.Adam( optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters()) learning_rate=0.001, parameters=model.parameters())
model.prepare( model.prepare(
...@@ -336,7 +335,6 @@ class Precision(Metric): ...@@ -336,7 +335,6 @@ class Precision(Metric):
import paddle import paddle
import paddle.nn as nn import paddle.nn as nn
import paddle.incubate.hapi as hapi
class Data(paddle.io.Dataset): class Data(paddle.io.Dataset):
def __init__(self): def __init__(self):
...@@ -352,7 +350,7 @@ class Precision(Metric): ...@@ -352,7 +350,7 @@ class Precision(Metric):
return self.n return self.n
paddle.disable_static() paddle.disable_static()
model = hapi.Model(nn.Sequential( model = paddle.Model(nn.Sequential(
nn.Linear(10, 1), nn.Linear(10, 1),
nn.Sigmoid() nn.Sigmoid()
)) ))
...@@ -471,7 +469,6 @@ class Recall(Metric): ...@@ -471,7 +469,6 @@ class Recall(Metric):
import paddle import paddle
import paddle.nn as nn import paddle.nn as nn
import paddle.incubate.hapi as hapi
class Data(paddle.io.Dataset): class Data(paddle.io.Dataset):
def __init__(self): def __init__(self):
...@@ -487,7 +484,7 @@ class Recall(Metric): ...@@ -487,7 +484,7 @@ class Recall(Metric):
return self.n return self.n
paddle.disable_static() paddle.disable_static()
model = hapi.Model(nn.Sequential( model = paddle.Model(nn.Sequential(
nn.Linear(10, 1), nn.Linear(10, 1),
nn.Sigmoid() nn.Sigmoid()
)) ))
...@@ -617,7 +614,6 @@ class Auc(Metric): ...@@ -617,7 +614,6 @@ class Auc(Metric):
import numpy as np import numpy as np
import paddle import paddle
import paddle.nn as nn import paddle.nn as nn
import paddle.incubate.hapi as hapi
class Data(paddle.io.Dataset): class Data(paddle.io.Dataset):
def __init__(self): def __init__(self):
...@@ -633,9 +629,9 @@ class Auc(Metric): ...@@ -633,9 +629,9 @@ class Auc(Metric):
return self.n return self.n
paddle.disable_static() paddle.disable_static()
model = hapi.Model(nn.Sequential( model = paddle.Model(nn.Sequential(
nn.Linear(10, 2, act='softmax'), nn.Linear(10, 2), nn.Softmax())
)) )
optim = paddle.optimizer.Adam( optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters()) learning_rate=0.001, parameters=model.parameters())
......
file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py") file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py")
string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}") string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
file(GLOB DIST_TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_dist_*.py")
string(REPLACE ".py" "" DIST_TEST_OPS "${DIST_TEST_OPS}")
foreach(TEST_OP ${DIST_TEST_OPS})
list(REMOVE_ITEM TEST_OPS ${TEST_OP})
endforeach()
foreach(src ${TEST_OPS}) foreach(src ${TEST_OPS})
py_test(${src} SRCS ${src}.py) py_test(${src} SRCS ${src}.py)
endforeach() endforeach()
function(py_dist_test TARGET_NAME)
if(WITH_TESTING)
set(options "")
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS ARGS ENVS)
cmake_parse_arguments(py_dist_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
if(WITH_COVERAGE AND WITH_GPU AND WITH_NCCL AND NOT WIN32)
add_test(NAME ${TARGET_NAME}
COMMAND ${CMAKE_COMMAND} -E env FLAGS_init_allocated_mem=true FLAGS_cudnn_deterministic=true
FLAGS_cpu_deterministic=true NCCL_P2P_DISABLE=1 NCCL_SHM_DISABLE=1
PYTHONPATH=${PADDLE_BINARY_DIR}/python ${py_dist_test_ENVS}
COVERAGE_FILE=${PADDLE_BINARY_DIR}/python-coverage.data
${PYTHON_EXECUTABLE} -u ${py_dist_test_SRCS} ${py_dist_test_ARGS}
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
# No unit test should exceed 10 minutes.
set_tests_properties(${TARGET_NAME} PROPERTIES TIMEOUT 600 LABELS "RUN_TYPE=DIST")
endif()
endif()
endfunction()
foreach(src ${DIST_TEST_OPS})
message(STATUS ${src})
py_dist_test(${src} SRCS ${src}.py)
endforeach()
...@@ -20,14 +20,15 @@ import unittest ...@@ -20,14 +20,15 @@ import unittest
import numpy as np import numpy as np
import contextlib import contextlib
from paddle import fluid import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi import Model, Input, set_device from paddle import Model, set_device
from paddle.static import InputSpec as Input
from paddle.nn.layer.loss import CrossEntropyLoss from paddle.nn.layer.loss import CrossEntropyLoss
from paddle.incubate.hapi.vision.models import LeNet
from paddle.metric import Accuracy from paddle.metric import Accuracy
from paddle.incubate.hapi.callbacks import ProgBarLogger from paddle.vision.models import LeNet
from paddle.incubate.hapi.datasets import MNIST from paddle.vision.datasets import MNIST
class MnistDataset(MNIST): class MnistDataset(MNIST):
...@@ -76,7 +77,7 @@ class TestDistTraning(unittest.TestCase): ...@@ -76,7 +77,7 @@ class TestDistTraning(unittest.TestCase):
val_dataset = MnistDataset(mode='test') val_dataset = MnistDataset(mode='test')
test_dataset = MnistDataset(mode='test', return_label=False) test_dataset = MnistDataset(mode='test', return_label=False)
cbk = ProgBarLogger(50) cbk = paddle.callbacks.ProgBarLogger(50)
model.fit(train_dataset, model.fit(train_dataset,
val_dataset, val_dataset,
epochs=2, epochs=2,
......
...@@ -20,14 +20,15 @@ import unittest ...@@ -20,14 +20,15 @@ import unittest
import numpy as np import numpy as np
import contextlib import contextlib
from paddle import fluid import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi import Model, Input, set_device from paddle import Model, set_device
from paddle.static import InputSpec as Input
from paddle.nn.layer.loss import CrossEntropyLoss from paddle.nn.layer.loss import CrossEntropyLoss
from paddle.incubate.hapi.vision.models import LeNet
from paddle.metric import Accuracy from paddle.metric import Accuracy
from paddle.incubate.hapi.callbacks import ProgBarLogger from paddle.vision.models import LeNet
from paddle.incubate.hapi.datasets import MNIST from paddle.vision.datasets import MNIST
class MnistDataset(MNIST): class MnistDataset(MNIST):
...@@ -75,7 +76,7 @@ class TestDistTraning(unittest.TestCase): ...@@ -75,7 +76,7 @@ class TestDistTraning(unittest.TestCase):
val_dataset = MnistDataset(mode='test') val_dataset = MnistDataset(mode='test')
test_dataset = MnistDataset(mode='test', return_label=False) test_dataset = MnistDataset(mode='test', return_label=False)
cbk = ProgBarLogger(50) cbk = paddle.callbacks.ProgBarLogger(50)
model.fit(train_dataset, model.fit(train_dataset,
val_dataset, val_dataset,
epochs=2, epochs=2,
......
...@@ -18,9 +18,10 @@ import random ...@@ -18,9 +18,10 @@ import random
import tempfile import tempfile
import shutil import shutil
from paddle.incubate.hapi.model import Model, Input from paddle import Model
from paddle.incubate.hapi.vision.models import LeNet from paddle.static import InputSpec
from paddle.incubate.hapi.callbacks import config_callbacks from paddle.vision.models import LeNet
from paddle.hapi.callbacks import config_callbacks
class TestCallbacks(unittest.TestCase): class TestCallbacks(unittest.TestCase):
...@@ -36,7 +37,7 @@ class TestCallbacks(unittest.TestCase): ...@@ -36,7 +37,7 @@ class TestCallbacks(unittest.TestCase):
freq = 2 freq = 2
eval_steps = 20 eval_steps = 20
inputs = [Input([None, 1, 28, 28], 'float32', 'image')] inputs = [InputSpec([None, 1, 28, 28], 'float32', 'image')]
lenet = Model(LeNet(), inputs) lenet = Model(LeNet(), inputs)
lenet.prepare() lenet.prepare()
......
...@@ -13,14 +13,9 @@ ...@@ -13,14 +13,9 @@
# limitations under the License. # limitations under the License.
import unittest import unittest
import os
import numpy as np import numpy as np
import tempfile
import shutil
import cv2
from paddle.incubate.hapi.datasets import * from paddle.vision.datasets import *
from paddle.incubate.hapi.datasets.utils import _check_exists_and_download
class TestCifar10Train(unittest.TestCase): class TestCifar10Train(unittest.TestCase):
......
...@@ -12,15 +12,11 @@ ...@@ -12,15 +12,11 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import unittest
import os import os
import unittest
import numpy as np import numpy as np
import tempfile
import shutil
import cv2
from paddle.incubate.hapi.datasets import * from paddle.text.datasets import *
from paddle.incubate.hapi.datasets.utils import _check_exists_and_download
class TestConll05st(unittest.TestCase): class TestConll05st(unittest.TestCase):
...@@ -36,6 +32,8 @@ class TestConll05st(unittest.TestCase): ...@@ -36,6 +32,8 @@ class TestConll05st(unittest.TestCase):
for s in sample: for s in sample:
self.assertTrue(len(s.shape) == 1) self.assertTrue(len(s.shape) == 1)
assert os.path.exists(conll05st.get_embedding())
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
...@@ -13,14 +13,9 @@ ...@@ -13,14 +13,9 @@
# limitations under the License. # limitations under the License.
import unittest import unittest
import os
import numpy as np import numpy as np
import tempfile
import shutil
import cv2
from paddle.incubate.hapi.datasets import * from paddle.text.datasets import *
from paddle.incubate.hapi.datasets.utils import _check_exists_and_download
class TestImdbTrain(unittest.TestCase): class TestImdbTrain(unittest.TestCase):
......
...@@ -13,14 +13,9 @@ ...@@ -13,14 +13,9 @@
# limitations under the License. # limitations under the License.
import unittest import unittest
import os
import numpy as np import numpy as np
import tempfile
import shutil
import cv2
from paddle.incubate.hapi.datasets import * from paddle.text.datasets import *
from paddle.incubate.hapi.datasets.utils import _check_exists_and_download
class TestImikolovTrain(unittest.TestCase): class TestImikolovTrain(unittest.TestCase):
......
...@@ -13,14 +13,9 @@ ...@@ -13,14 +13,9 @@
# limitations under the License. # limitations under the License.
import unittest import unittest
import os
import numpy as np import numpy as np
import tempfile
import shutil
import cv2
from paddle.incubate.hapi.datasets import * from paddle.text.datasets import *
from paddle.incubate.hapi.datasets.utils import _check_exists_and_download
class TestMovieReviewsTrain(unittest.TestCase): class TestMovieReviewsTrain(unittest.TestCase):
......
...@@ -13,14 +13,9 @@ ...@@ -13,14 +13,9 @@
# limitations under the License. # limitations under the License.
import unittest import unittest
import os
import numpy as np import numpy as np
import tempfile
import shutil
import cv2
from paddle.incubate.hapi.datasets import * from paddle.text.datasets import *
from paddle.incubate.hapi.datasets.utils import _check_exists_and_download
class TestMovielensTrain(unittest.TestCase): class TestMovielensTrain(unittest.TestCase):
......
...@@ -19,8 +19,7 @@ import tempfile ...@@ -19,8 +19,7 @@ import tempfile
import shutil import shutil
import cv2 import cv2
from paddle.incubate.hapi.datasets import * from paddle.text.datasets import *
from paddle.incubate.hapi.datasets.utils import _check_exists_and_download
class TestUCIHousingTrain(unittest.TestCase): class TestUCIHousingTrain(unittest.TestCase):
......
...@@ -15,12 +15,8 @@ ...@@ -15,12 +15,8 @@
import unittest import unittest
import os import os
import numpy as np import numpy as np
import tempfile
import shutil
import cv2
from paddle.incubate.hapi.datasets import voc2012, VOC2012 from paddle.vision.datasets import voc2012, VOC2012
from paddle.incubate.hapi.datasets.utils import _check_exists_and_download
# VOC2012 is too large for unittest to download, stub a small dataset here # VOC2012 is too large for unittest to download, stub a small dataset here
voc2012.VOC_URL = 'https://paddlemodels.bj.bcebos.com/voc2012_stub/VOCtrainval_11-May-2012.tar' voc2012.VOC_URL = 'https://paddlemodels.bj.bcebos.com/voc2012_stub/VOCtrainval_11-May-2012.tar'
......
...@@ -13,14 +13,9 @@ ...@@ -13,14 +13,9 @@
# limitations under the License. # limitations under the License.
import unittest import unittest
import os
import numpy as np import numpy as np
import tempfile
import shutil
import cv2
from paddle.incubate.hapi.datasets import * from paddle.text.datasets import *
from paddle.incubate.hapi.datasets.utils import _check_exists_and_download
class TestWMT14Train(unittest.TestCase): class TestWMT14Train(unittest.TestCase):
......
...@@ -19,8 +19,8 @@ import tempfile ...@@ -19,8 +19,8 @@ import tempfile
import shutil import shutil
import cv2 import cv2
from paddle.incubate.hapi.datasets import * from paddle.vision.datasets import *
from paddle.incubate.hapi.datasets.utils import _check_exists_and_download from paddle.dataset.common import _check_exists_and_download
class TestFolderDatasets(unittest.TestCase): class TestFolderDatasets(unittest.TestCase):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import unittest import unittest
from paddle.incubate.hapi.download import get_weights_path_from_url from paddle.utils.download import get_weights_path_from_url
class TestDownload(unittest.TestCase): class TestDownload(unittest.TestCase):
......
...@@ -21,7 +21,7 @@ import numpy as np ...@@ -21,7 +21,7 @@ import numpy as np
import shutil import shutil
import tempfile import tempfile
from paddle.incubate.hapi.logger import setup_logger from paddle.hapi.logger import setup_logger
class TestSetupLogger(unittest.TestCase): class TestSetupLogger(unittest.TestCase):
......
...@@ -22,7 +22,7 @@ import numpy as np ...@@ -22,7 +22,7 @@ import numpy as np
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.incubate.hapi.utils import to_list from paddle.hapi.model import to_list
def accuracy(pred, label, topk=(1, )): def accuracy(pred, label, topk=(1, )):
......
...@@ -24,21 +24,22 @@ import tempfile ...@@ -24,21 +24,22 @@ import tempfile
import paddle import paddle
from paddle import fluid from paddle import fluid
from paddle import to_tensor
from paddle.nn import Conv2d, Pool2D, Linear, ReLU, Sequential, Softmax from paddle.nn import Conv2d, Pool2D, Linear, ReLU, Sequential, Softmax
from paddle.fluid.dygraph.base import to_variable
import paddle.incubate.hapi as hapi from paddle import Model
from paddle.incubate.hapi import Model, Input from paddle.static import InputSpec
from paddle.nn.layer.loss import CrossEntropyLoss from paddle.nn.layer.loss import CrossEntropyLoss
from paddle.metric import Accuracy from paddle.metric import Accuracy
from paddle.incubate.hapi.datasets import MNIST from paddle.vision.datasets import MNIST
from paddle.incubate.hapi.vision.models import LeNet from paddle.vision.models import LeNet
from paddle.incubate.hapi.distributed import DistributedBatchSampler, prepare_distributed_context from paddle.io import DistributedBatchSampler
from paddle.hapi.model import prepare_distributed_context
from paddle.fluid.dygraph.jit import declarative from paddle.fluid.dygraph.jit import declarative
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator
class LeNetDygraph(fluid.dygraph.Layer): class LeNetDygraph(paddle.nn.Layer):
def __init__(self, num_classes=10, classifier_activation=None): def __init__(self, num_classes=10, classifier_activation=None):
super(LeNetDygraph, self).__init__() super(LeNetDygraph, self).__init__()
self.num_classes = num_classes self.num_classes = num_classes
...@@ -154,7 +155,7 @@ class TestModel(unittest.TestCase): ...@@ -154,7 +155,7 @@ class TestModel(unittest.TestCase):
def setUpClass(cls): def setUpClass(cls):
if not fluid.is_compiled_with_cuda(): if not fluid.is_compiled_with_cuda():
self.skipTest('module not tested when ONLY_CPU compling') self.skipTest('module not tested when ONLY_CPU compling')
cls.device = hapi.set_device('gpu') cls.device = paddle.set_device('gpu')
fluid.enable_dygraph(cls.device) fluid.enable_dygraph(cls.device)
sp_num = 1280 sp_num = 1280
...@@ -180,8 +181,8 @@ class TestModel(unittest.TestCase): ...@@ -180,8 +181,8 @@ class TestModel(unittest.TestCase):
cls.acc1 = dynamic_evaluate(dy_lenet, cls.val_loader) cls.acc1 = dynamic_evaluate(dy_lenet, cls.val_loader)
cls.inputs = [Input([-1, 1, 28, 28], 'float32', 'image')] cls.inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
cls.labels = [Input([None, 1], 'int64', 'label')] cls.labels = [InputSpec([None, 1], 'int64', 'label')]
cls.save_dir = tempfile.mkdtemp() cls.save_dir = tempfile.mkdtemp()
cls.weight_path = os.path.join(cls.save_dir, 'lenet') cls.weight_path = os.path.join(cls.save_dir, 'lenet')
...@@ -314,7 +315,7 @@ class TestModel(unittest.TestCase): ...@@ -314,7 +315,7 @@ class TestModel(unittest.TestCase):
fluid.disable_dygraph() if dynamic else None fluid.disable_dygraph() if dynamic else None
class MyModel(fluid.dygraph.Layer): class MyModel(paddle.nn.Layer):
def __init__(self, classifier_activation='softmax'): def __init__(self, classifier_activation='softmax'):
super(MyModel, self).__init__() super(MyModel, self).__init__()
self._fc = Linear(20, 10) self._fc = Linear(20, 10)
...@@ -343,8 +344,8 @@ class TestModelFunction(unittest.TestCase): ...@@ -343,8 +344,8 @@ class TestModelFunction(unittest.TestCase):
optim = fluid.optimizer.SGD(learning_rate=0.001, optim = fluid.optimizer.SGD(learning_rate=0.001,
parameter_list=m.parameters()) parameter_list=m.parameters())
m.train() m.train()
output = m(to_variable(data)) output = m(to_tensor(data))
loss = CrossEntropyLoss(reduction='sum')(output, to_variable(label)) loss = CrossEntropyLoss(reduction='sum')(output, to_tensor(label))
avg_loss = fluid.layers.reduce_sum(loss) avg_loss = fluid.layers.reduce_sum(loss)
avg_loss.backward() avg_loss.backward()
optim.minimize(avg_loss) optim.minimize(avg_loss)
...@@ -354,7 +355,7 @@ class TestModelFunction(unittest.TestCase): ...@@ -354,7 +355,7 @@ class TestModelFunction(unittest.TestCase):
ref = get_expect() ref = get_expect()
for dynamic in [True, False]: for dynamic in [True, False]:
device = hapi.set_device('cpu') device = paddle.set_device('cpu')
fluid.enable_dygraph(device) if dynamic else None fluid.enable_dygraph(device) if dynamic else None
self.set_seed() self.set_seed()
...@@ -362,8 +363,8 @@ class TestModelFunction(unittest.TestCase): ...@@ -362,8 +363,8 @@ class TestModelFunction(unittest.TestCase):
optim2 = fluid.optimizer.SGD(learning_rate=0.001, optim2 = fluid.optimizer.SGD(learning_rate=0.001,
parameter_list=net.parameters()) parameter_list=net.parameters())
inputs = [Input([None, dim], 'float32', 'x')] inputs = [InputSpec([None, dim], 'float32', 'x')]
labels = [Input([None, 1], 'int64', 'label')] labels = [InputSpec([None, 1], 'int64', 'label')]
model = Model(net, inputs, labels) model = Model(net, inputs, labels)
model.prepare(optim2, loss=CrossEntropyLoss(reduction="sum")) model.prepare(optim2, loss=CrossEntropyLoss(reduction="sum"))
loss, = model.train_batch([data], [label]) loss, = model.train_batch([data], [label])
...@@ -379,17 +380,17 @@ class TestModelFunction(unittest.TestCase): ...@@ -379,17 +380,17 @@ class TestModelFunction(unittest.TestCase):
self.set_seed() self.set_seed()
m = MyModel() m = MyModel()
m.eval() m.eval()
output = m(to_variable(data)) output = m(to_tensor(data))
fluid.disable_dygraph() fluid.disable_dygraph()
return output.numpy() return output.numpy()
ref = get_expect() ref = get_expect()
for dynamic in [True, False]: for dynamic in [True, False]:
device = hapi.set_device('cpu') device = paddle.set_device('cpu')
fluid.enable_dygraph(device) if dynamic else None fluid.enable_dygraph(device) if dynamic else None
self.set_seed() self.set_seed()
net = MyModel() net = MyModel()
inputs = [Input([None, dim], 'float32', 'x')] inputs = [InputSpec([None, dim], 'float32', 'x')]
model = Model(net, inputs) model = Model(net, inputs)
model.prepare() model.prepare()
out, = model.test_batch([data]) out, = model.test_batch([data])
...@@ -400,11 +401,11 @@ class TestModelFunction(unittest.TestCase): ...@@ -400,11 +401,11 @@ class TestModelFunction(unittest.TestCase):
def test_save_load(self): def test_save_load(self):
path = tempfile.mkdtemp() path = tempfile.mkdtemp()
for dynamic in [True, False]: for dynamic in [True, False]:
device = hapi.set_device('cpu') device = paddle.set_device('cpu')
fluid.enable_dygraph(device) if dynamic else None fluid.enable_dygraph(device) if dynamic else None
net = MyModel(classifier_activation=None) net = MyModel(classifier_activation=None)
inputs = [Input([None, 20], 'float32', 'x')] inputs = [InputSpec([None, 20], 'float32', 'x')]
labels = [Input([None, 1], 'int64', 'label')] labels = [InputSpec([None, 1], 'int64', 'label')]
optim = fluid.optimizer.SGD(learning_rate=0.001, optim = fluid.optimizer.SGD(learning_rate=0.001,
parameter_list=net.parameters()) parameter_list=net.parameters())
model = Model(net, inputs, labels) model = Model(net, inputs, labels)
...@@ -418,7 +419,7 @@ class TestModelFunction(unittest.TestCase): ...@@ -418,7 +419,7 @@ class TestModelFunction(unittest.TestCase):
def test_dynamic_save_static_load(self): def test_dynamic_save_static_load(self):
path = tempfile.mkdtemp() path = tempfile.mkdtemp()
# dynamic saving # dynamic saving
device = hapi.set_device('cpu') device = paddle.set_device('cpu')
fluid.enable_dygraph(device) fluid.enable_dygraph(device)
model = Model(MyModel(classifier_activation=None)) model = Model(MyModel(classifier_activation=None))
optim = fluid.optimizer.SGD(learning_rate=0.001, optim = fluid.optimizer.SGD(learning_rate=0.001,
...@@ -427,8 +428,8 @@ class TestModelFunction(unittest.TestCase): ...@@ -427,8 +428,8 @@ class TestModelFunction(unittest.TestCase):
model.save(path + '/test') model.save(path + '/test')
fluid.disable_dygraph() fluid.disable_dygraph()
inputs = [Input([None, 20], 'float32', 'x')] inputs = [InputSpec([None, 20], 'float32', 'x')]
labels = [Input([None, 1], 'int64', 'label')] labels = [InputSpec([None, 1], 'int64', 'label')]
model = Model(MyModel(classifier_activation=None), inputs, labels) model = Model(MyModel(classifier_activation=None), inputs, labels)
optim = fluid.optimizer.SGD(learning_rate=0.001, optim = fluid.optimizer.SGD(learning_rate=0.001,
parameter_list=model.parameters()) parameter_list=model.parameters())
...@@ -440,20 +441,20 @@ class TestModelFunction(unittest.TestCase): ...@@ -440,20 +441,20 @@ class TestModelFunction(unittest.TestCase):
path = tempfile.mkdtemp() path = tempfile.mkdtemp()
net = MyModel(classifier_activation=None) net = MyModel(classifier_activation=None)
inputs = [Input([None, 20], 'float32', 'x')] inputs = [InputSpec([None, 20], 'float32', 'x')]
labels = [Input([None, 1], 'int64', 'label')] labels = [InputSpec([None, 1], 'int64', 'label')]
optim = fluid.optimizer.SGD(learning_rate=0.001, optim = fluid.optimizer.SGD(learning_rate=0.001,
parameter_list=net.parameters()) parameter_list=net.parameters())
model = Model(net, inputs, labels) model = Model(net, inputs, labels)
model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum")) model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
model.save(path + '/test') model.save(path + '/test')
device = hapi.set_device('cpu') device = paddle.set_device('cpu')
fluid.enable_dygraph(device) #if dynamic else None fluid.enable_dygraph(device) #if dynamic else None
net = MyModel(classifier_activation=None) net = MyModel(classifier_activation=None)
inputs = [Input([None, 20], 'float32', 'x')] inputs = [InputSpec([None, 20], 'float32', 'x')]
labels = [Input([None, 1], 'int64', 'label')] labels = [InputSpec([None, 1], 'int64', 'label')]
optim = fluid.optimizer.SGD(learning_rate=0.001, optim = fluid.optimizer.SGD(learning_rate=0.001,
parameter_list=net.parameters()) parameter_list=net.parameters())
model = Model(net, inputs, labels) model = Model(net, inputs, labels)
...@@ -464,10 +465,10 @@ class TestModelFunction(unittest.TestCase): ...@@ -464,10 +465,10 @@ class TestModelFunction(unittest.TestCase):
def test_parameters(self): def test_parameters(self):
for dynamic in [True, False]: for dynamic in [True, False]:
device = hapi.set_device('cpu') device = paddle.set_device('cpu')
fluid.enable_dygraph(device) if dynamic else None fluid.enable_dygraph(device) if dynamic else None
net = MyModel() net = MyModel()
inputs = [Input([None, 20], 'float32', 'x')] inputs = [InputSpec([None, 20], 'float32', 'x')]
model = Model(net, inputs) model = Model(net, inputs)
model.prepare() model.prepare()
params = model.parameters() params = model.parameters()
...@@ -482,7 +483,7 @@ class TestModelFunction(unittest.TestCase): ...@@ -482,7 +483,7 @@ class TestModelFunction(unittest.TestCase):
prog_translator = ProgramTranslator() prog_translator = ProgramTranslator()
prog_translator.enable(False) if not dynamic else None prog_translator.enable(False) if not dynamic else None
net = LeNetDeclarative() net = LeNetDeclarative()
inputs = [Input([None, 1, 28, 28], 'float32', 'x')] inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
model = Model(net, inputs) model = Model(net, inputs)
model.prepare() model.prepare()
save_dir = tempfile.mkdtemp() save_dir = tempfile.mkdtemp()
...@@ -514,8 +515,8 @@ class TestRaiseError(unittest.TestCase): ...@@ -514,8 +515,8 @@ class TestRaiseError(unittest.TestCase):
def test_input_without_name(self): def test_input_without_name(self):
net = MyModel(classifier_activation=None) net = MyModel(classifier_activation=None)
inputs = [Input([None, 10], 'float32')] inputs = [InputSpec([None, 10], 'float32')]
labels = [Input([None, 1], 'int64', 'label')] labels = [InputSpec([None, 1], 'int64', 'label')]
with self.assertRaises(ValueError): with self.assertRaises(ValueError):
model = Model(net, inputs, labels) model = Model(net, inputs, labels)
......
...@@ -15,9 +15,9 @@ ...@@ -15,9 +15,9 @@
import unittest import unittest
import numpy as np import numpy as np
import paddle.fluid as fluid import paddle
import paddle.incubate.hapi.vision.models as models from paddle.static import InputSpec
from paddle.incubate.hapi import Model, Input import paddle.vision.models as models
# test the predicted resutls of static graph and dynamic graph are equal # test the predicted resutls of static graph and dynamic graph are equal
...@@ -25,16 +25,16 @@ from paddle.incubate.hapi import Model, Input ...@@ -25,16 +25,16 @@ from paddle.incubate.hapi import Model, Input
class TestPretrainedModel(unittest.TestCase): class TestPretrainedModel(unittest.TestCase):
def infer(self, x, arch, dygraph=True): def infer(self, x, arch, dygraph=True):
if dygraph: if dygraph:
fluid.enable_dygraph() paddle.disable_static()
net = models.__dict__[arch](pretrained=True, classifier_activation=None) net = models.__dict__[arch](pretrained=True, classifier_activation=None)
inputs = [Input([None, 3, 224, 224], 'float32', 'image')] inputs = [InputSpec([None, 3, 224, 224], 'float32', 'image')]
model = Model(network=net, inputs=inputs) model = paddle.Model(network=net, inputs=inputs)
model.prepare() model.prepare()
res = model.test_batch(x) res = model.test_batch(x)
if dygraph: if dygraph:
fluid.disable_dygraph() paddle.enable_static()
return res return res
def test_models(self): def test_models(self):
......
...@@ -17,7 +17,7 @@ import unittest ...@@ -17,7 +17,7 @@ import unittest
import random import random
import time import time
from paddle.incubate.hapi.progressbar import ProgressBar from paddle.hapi.progressbar import ProgressBar
class TestProgressBar(unittest.TestCase): class TestProgressBar(unittest.TestCase):
......
...@@ -24,8 +24,9 @@ import paddle ...@@ -24,8 +24,9 @@ import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.dygraph import Embedding, Linear, Layer from paddle.fluid.dygraph import Embedding, Linear, Layer
from paddle.fluid.layers import BeamSearchDecoder from paddle.fluid.layers import BeamSearchDecoder
from paddle.incubate.hapi import Model, Input, set_device from paddle import Model, set_device
from paddle.incubate.hapi.text import * from paddle.static import InputSpec as Input
from paddle.text import *
class ModuleApiTest(unittest.TestCase): class ModuleApiTest(unittest.TestCase):
......
...@@ -12,8 +12,6 @@ ...@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# when test, you should add hapi root path to the PYTHONPATH,
# export PYTHONPATH=PATH_TO_HAPI:$PYTHONPATH
import unittest import unittest
import os import os
import tempfile import tempfile
...@@ -21,9 +19,9 @@ import cv2 ...@@ -21,9 +19,9 @@ import cv2
import shutil import shutil
import numpy as np import numpy as np
from paddle.incubate.hapi.datasets import DatasetFolder from paddle.vision.datasets import DatasetFolder
from paddle.incubate.hapi.vision.transforms import transforms from paddle.vision.transforms import transforms
import paddle.incubate.hapi.vision.transforms.functional as F import paddle.vision.transforms.functional as F
class TestTransforms(unittest.TestCase): class TestTransforms(unittest.TestCase):
......
...@@ -15,8 +15,9 @@ ...@@ -15,8 +15,9 @@
import unittest import unittest
import numpy as np import numpy as np
import paddle.incubate.hapi.vision.models as models import paddle
import paddle.incubate.hapi as hapi from paddle.static import InputSpec
import paddle.vision.models as models
class TestVisonModels(unittest.TestCase): class TestVisonModels(unittest.TestCase):
...@@ -28,8 +29,8 @@ class TestVisonModels(unittest.TestCase): ...@@ -28,8 +29,8 @@ class TestVisonModels(unittest.TestCase):
else: else:
net = models.__dict__[arch](pretrained=pretrained) net = models.__dict__[arch](pretrained=pretrained)
input = hapi.Input([None, 3, 224, 224], 'float32', 'image') input = InputSpec([None, 3, 224, 224], 'float32', 'image')
model = hapi.Model(net, input) model = paddle.Model(net, input)
model.prepare() model.prepare()
model.test_batch(x) model.test_batch(x)
...@@ -71,8 +72,8 @@ class TestVisonModels(unittest.TestCase): ...@@ -71,8 +72,8 @@ class TestVisonModels(unittest.TestCase):
self.models_infer('resnet152') self.models_infer('resnet152')
def test_lenet(self): def test_lenet(self):
input = hapi.Input([None, 1, 28, 28], 'float32', 'x') input = InputSpec([None, 1, 28, 28], 'float32', 'x')
lenet = hapi.Model(models.__dict__['LeNet'](), input) lenet = paddle.Model(models.__dict__['LeNet'](), input)
lenet.prepare() lenet.prepare()
x = np.array(np.random.random((2, 1, 28, 28)), dtype=np.float32) x = np.array(np.random.random((2, 1, 28, 28)), dtype=np.float32)
......
...@@ -15,4 +15,8 @@ ...@@ -15,4 +15,8 @@
from . import text from . import text
from .text import * from .text import *
__all__ = text.__all__ from . import datasets
from .datasets import *
__all__ = text.__all__ \
+ datasets.__all__
...@@ -12,11 +12,6 @@ ...@@ -12,11 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from . import folder
from . import mnist
from . import flowers
from . import cifar
from . import voc2012
from . import conll05 from . import conll05
from . import imdb from . import imdb
from . import imikolov from . import imikolov
...@@ -26,11 +21,6 @@ from . import uci_housing ...@@ -26,11 +21,6 @@ from . import uci_housing
from . import wmt14 from . import wmt14
from . import wmt16 from . import wmt16
from .folder import *
from .mnist import *
from .flowers import *
from .cifar import *
from .voc2012 import *
from .conll05 import * from .conll05 import *
from .imdb import * from .imdb import *
from .imikolov import * from .imikolov import *
...@@ -40,12 +30,7 @@ from .uci_housing import * ...@@ -40,12 +30,7 @@ from .uci_housing import *
from .wmt14 import * from .wmt14 import *
from .wmt16 import * from .wmt16 import *
__all__ = folder.__all__ \ __all__ = conll05.__all__ \
+ mnist.__all__ \
+ flowers.__all__ \
+ cifar.__all__ \
+ voc2012.__all__ \
+ conll05.__all__ \
+ imdb.__all__ \ + imdb.__all__ \
+ imikolov.__all__ \ + imikolov.__all__ \
+ movielens.__all__ \ + movielens.__all__ \
......
...@@ -22,7 +22,7 @@ from six.moves import cPickle as pickle ...@@ -22,7 +22,7 @@ from six.moves import cPickle as pickle
from paddle.io import Dataset from paddle.io import Dataset
import paddle.compat as cpt import paddle.compat as cpt
from .utils import _check_exists_and_download from paddle.dataset.common import _check_exists_and_download
__all__ = ['Conll05st'] __all__ = ['Conll05st']
...@@ -72,7 +72,7 @@ class Conll05st(Dataset): ...@@ -72,7 +72,7 @@ class Conll05st(Dataset):
.. code-block:: python .. code-block:: python
import paddle import paddle
from paddle.incubate.hapi.datasets import Conll05st from paddle.text.datasets import Conll05st
class SimpleNet(paddle.nn.Layer): class SimpleNet(paddle.nn.Layer):
def __init__(self): def __init__(self):
...@@ -131,6 +131,12 @@ class Conll05st(Dataset): ...@@ -131,6 +131,12 @@ class Conll05st(Dataset):
target_dict_file, TRGDICT_URL, TRGDICT_MD5, 'conll05st', target_dict_file, TRGDICT_URL, TRGDICT_MD5, 'conll05st',
download) download)
self.emb_file = emb_file
if self.emb_file is None:
assert download, "emb_file is not set and downloading automatically is disabled"
self.emb_file = _check_exists_and_download(
emb_file, EMB_URL, EMB_MD5, 'conll05st', download)
self.word_dict = self._load_dict(self.word_dict_file) self.word_dict = self._load_dict(self.word_dict_file)
self.predicate_dict = self._load_dict(self.verb_dict_file) self.predicate_dict = self._load_dict(self.verb_dict_file)
self.label_dict = self._load_label_dict(self.target_dict_file) self.label_dict = self._load_label_dict(self.target_dict_file)
...@@ -290,8 +296,27 @@ class Conll05st(Dataset): ...@@ -290,8 +296,27 @@ class Conll05st(Dataset):
def get_dict(self): def get_dict(self):
""" """
Get the word, verb and label dictionary of Wikipedia corpus. Get the word, verb and label dictionary of Wikipedia corpus.
Examples:
.. code-block:: python
from paddle.text.datasets import Conll05st
conll05st = Conll05st()
word_dict, predicate_dict, label_dict = conll05st.get_dict()
""" """
return self.word_dict, self.predicate_dict, self.label_dict return self.word_dict, self.predicate_dict, self.label_dict
def get_embedding(self): def get_embedding(self):
"""
Get the embedding dictionary file.
Examples:
.. code-block:: python
from paddle.text.datasets import Conll05st
conll05st = Conll05st()
emb_file = conll05st.get_embedding()
"""
return self.emb_file return self.emb_file
...@@ -22,7 +22,7 @@ import numpy as np ...@@ -22,7 +22,7 @@ import numpy as np
import collections import collections
from paddle.io import Dataset from paddle.io import Dataset
from .utils import _check_exists_and_download from paddle.dataset.common import _check_exists_and_download
__all__ = ['Imdb'] __all__ = ['Imdb']
...@@ -50,7 +50,7 @@ class Imdb(Dataset): ...@@ -50,7 +50,7 @@ class Imdb(Dataset):
.. code-block:: python .. code-block:: python
import paddle import paddle
from paddle.incubate.hapi.datasets import Imdb from paddle.text.datasets import Imdb
class SimpleNet(paddle.nn.Layer): class SimpleNet(paddle.nn.Layer):
def __init__(self): def __init__(self):
......
...@@ -20,7 +20,7 @@ import numpy as np ...@@ -20,7 +20,7 @@ import numpy as np
import collections import collections
from paddle.io import Dataset from paddle.io import Dataset
from .utils import _check_exists_and_download from paddle.dataset.common import _check_exists_and_download
__all__ = ['Imikolov'] __all__ = ['Imikolov']
...@@ -50,7 +50,7 @@ class Imikolov(Dataset): ...@@ -50,7 +50,7 @@ class Imikolov(Dataset):
.. code-block:: python .. code-block:: python
import paddle import paddle
from paddle.incubate.hapi.datasets import Imikolov from paddle.text.datasets import Imikolov
class SimpleNet(paddle.nn.Layer): class SimpleNet(paddle.nn.Layer):
def __init__(self): def __init__(self):
......
...@@ -55,7 +55,7 @@ class MovieReviews(Dataset): ...@@ -55,7 +55,7 @@ class MovieReviews(Dataset):
.. code-block:: python .. code-block:: python
import paddle import paddle
from paddle.incubate.hapi.datasets import MovieReviews from paddle.text.datasets import MovieReviews
class SimpleNet(paddle.nn.Layer): class SimpleNet(paddle.nn.Layer):
def __init__(self): def __init__(self):
......
...@@ -24,7 +24,7 @@ import six ...@@ -24,7 +24,7 @@ import six
import paddle import paddle
from paddle.io import Dataset from paddle.io import Dataset
import paddle.compat as cpt import paddle.compat as cpt
from .utils import _check_exists_and_download from paddle.dataset.common import _check_exists_and_download
__all__ = ['Movielens'] __all__ = ['Movielens']
...@@ -107,7 +107,7 @@ class Movielens(Dataset): ...@@ -107,7 +107,7 @@ class Movielens(Dataset):
.. code-block:: python .. code-block:: python
import paddle import paddle
from paddle.incubate.hapi.datasets import Movielens from paddle.text.datasets import Movielens
class SimpleNet(paddle.nn.Layer): class SimpleNet(paddle.nn.Layer):
def __init__(self): def __init__(self):
......
...@@ -17,9 +17,8 @@ from __future__ import print_function ...@@ -17,9 +17,8 @@ from __future__ import print_function
import six import six
import numpy as np import numpy as np
import paddle.dataset.common
from paddle.io import Dataset from paddle.io import Dataset
from .utils import _check_exists_and_download from paddle.dataset.common import _check_exists_and_download
__all__ = ["UCIHousing"] __all__ = ["UCIHousing"]
...@@ -51,7 +50,7 @@ class UCIHousing(Dataset): ...@@ -51,7 +50,7 @@ class UCIHousing(Dataset):
.. code-block:: python .. code-block:: python
import paddle import paddle
from paddle.incubate.hapi.datasets import UCIHousing from paddle.text.datasets import UCIHousing
class SimpleNet(paddle.nn.Layer): class SimpleNet(paddle.nn.Layer):
def __init__(self): def __init__(self):
......
...@@ -20,7 +20,7 @@ import gzip ...@@ -20,7 +20,7 @@ import gzip
from paddle.io import Dataset from paddle.io import Dataset
import paddle.compat as cpt import paddle.compat as cpt
from .utils import _check_exists_and_download from paddle.dataset.common import _check_exists_and_download
__all__ = ['WMT14'] __all__ = ['WMT14']
...@@ -61,7 +61,7 @@ class WMT14(Dataset): ...@@ -61,7 +61,7 @@ class WMT14(Dataset):
.. code-block:: python .. code-block:: python
import paddle import paddle
from paddle.incubate.hapi.datasets import WMT14 from paddle.text.datasets import WMT14
class SimpleNet(paddle.nn.Layer): class SimpleNet(paddle.nn.Layer):
def __init__(self): def __init__(self):
...@@ -173,6 +173,25 @@ class WMT14(Dataset): ...@@ -173,6 +173,25 @@ class WMT14(Dataset):
return len(self.src_ids) return len(self.src_ids)
def get_dict(self, reverse=False): def get_dict(self, reverse=False):
"""
Get the source and target dictionary.
Args:
reverse (bool): wether to reverse key and value in dictionary,
i.e. key: value to value: key.
Returns:
Two dictionaries, the source and target dictionary.
Examples:
.. code-block:: python
from paddle.text.datasets import WMT14
wmt14 = WMT14(mode='train', dict_size=50)
src_dict, trg_dict = wmt14.get_dict()
"""
src_dict, trg_dict = self.src_dict, self.trg_dict
if reverse: if reverse:
src_dict = {v: k for k, v in six.iteritems(src_dict)} src_dict = {v: k for k, v in six.iteritems(src_dict)}
trg_dict = {v: k for k, v in six.iteritems(trg_dict)} trg_dict = {v: k for k, v in six.iteritems(trg_dict)}
......
...@@ -25,7 +25,7 @@ from collections import defaultdict ...@@ -25,7 +25,7 @@ from collections import defaultdict
import paddle import paddle
from paddle.io import Dataset from paddle.io import Dataset
import paddle.compat as cpt import paddle.compat as cpt
from .utils import _check_exists_and_download from paddle.dataset.common import _check_exists_and_download
__all__ = ['WMT16'] __all__ = ['WMT16']
...@@ -78,7 +78,7 @@ class WMT16(Dataset): ...@@ -78,7 +78,7 @@ class WMT16(Dataset):
.. code-block:: python .. code-block:: python
import paddle import paddle
from paddle.incubate.hapi.datasets import WMT16 from paddle.text.datasets import WMT16
class SimpleNet(paddle.nn.Layer): class SimpleNet(paddle.nn.Layer):
def __init__(self): def __init__(self):
...@@ -235,8 +235,16 @@ class WMT16(Dataset): ...@@ -235,8 +235,16 @@ class WMT16(Dataset):
Returns: Returns:
dict: The word dictionary for the specific language. dict: The word dictionary for the specific language.
"""
Examples:
.. code-block:: python
from paddle.text.datasets import WMT16
wmt16 = WMT16(mode='train', src_dict_size=50, trg_dict_size=50)
en_dict = wmt16.get_dict('en')
"""
dict_size = self.src_dict_size if lang == self.lang else self.trg_dict_size dict_size = self.src_dict_size if lang == self.lang else self.trg_dict_size
dict_path = os.path.join(paddle.dataset.common.DATA_HOME, dict_path = os.path.join(paddle.dataset.common.DATA_HOME,
...@@ -244,4 +252,4 @@ class WMT16(Dataset): ...@@ -244,4 +252,4 @@ class WMT16(Dataset):
assert os.path.exists(dict_path), "Word dictionary does not exist. " assert os.path.exists(dict_path), "Word dictionary does not exist. "
"Please invoke paddle.dataset.wmt16.train/test/validation first " "Please invoke paddle.dataset.wmt16.train/test/validation first "
"to build the dictionary." "to build the dictionary."
return _load_dict(lang, dict_size) return self._load_dict(lang, dict_size)
...@@ -227,7 +227,7 @@ class BasicLSTMCell(RNNCell): ...@@ -227,7 +227,7 @@ class BasicLSTMCell(RNNCell):
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.incubate.hapi.text import BasicLSTMCell, RNN from paddle.text import BasicLSTMCell, RNN
inputs = paddle.rand((2, 4, 32)) inputs = paddle.rand((2, 4, 32))
cell = BasicLSTMCell(input_size=32, hidden_size=64) cell = BasicLSTMCell(input_size=32, hidden_size=64)
...@@ -358,7 +358,7 @@ class BasicGRUCell(RNNCell): ...@@ -358,7 +358,7 @@ class BasicGRUCell(RNNCell):
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.incubate.hapi.text import BasicGRUCell, RNN from paddle.text import BasicGRUCell, RNN
inputs = paddle.rand((2, 4, 32)) inputs = paddle.rand((2, 4, 32))
cell = BasicGRUCell(input_size=32, hidden_size=64) cell = BasicGRUCell(input_size=32, hidden_size=64)
...@@ -495,7 +495,7 @@ class RNN(Layer): ...@@ -495,7 +495,7 @@ class RNN(Layer):
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.incubate.hapi.text import StackedLSTMCell, RNN from paddle.text import StackedLSTMCell, RNN
inputs = paddle.rand((2, 4, 32)) inputs = paddle.rand((2, 4, 32))
cell = StackedLSTMCell(input_size=32, hidden_size=64) cell = StackedLSTMCell(input_size=32, hidden_size=64)
...@@ -648,7 +648,7 @@ class StackedRNNCell(RNNCell): ...@@ -648,7 +648,7 @@ class StackedRNNCell(RNNCell):
.. code-block:: python .. code-block:: python
from paddle.incubate.hapi.text import BasicLSTMCell, StackedRNNCell from paddle.text import BasicLSTMCell, StackedRNNCell
cells = [BasicLSTMCell(32, 32), BasicLSTMCell(32, 32)] cells = [BasicLSTMCell(32, 32), BasicLSTMCell(32, 32)]
stack_rnn = StackedRNNCell(cells) stack_rnn = StackedRNNCell(cells)
...@@ -789,7 +789,7 @@ class StackedLSTMCell(RNNCell): ...@@ -789,7 +789,7 @@ class StackedLSTMCell(RNNCell):
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.incubate.hapi.text import StackedLSTMCell, RNN from paddle.text import StackedLSTMCell, RNN
inputs = paddle.rand((2, 4, 32)) inputs = paddle.rand((2, 4, 32))
cell = StackedLSTMCell(input_size=32, hidden_size=64) cell = StackedLSTMCell(input_size=32, hidden_size=64)
...@@ -948,7 +948,7 @@ class LSTM(Layer): ...@@ -948,7 +948,7 @@ class LSTM(Layer):
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.incubate.hapi.text import LSTM from paddle.text import LSTM
inputs = paddle.rand((2, 4, 32)) inputs = paddle.rand((2, 4, 32))
lstm = LSTM(input_size=32, hidden_size=64, num_layers=2) lstm = LSTM(input_size=32, hidden_size=64, num_layers=2)
...@@ -1023,7 +1023,7 @@ class BidirectionalRNN(Layer): ...@@ -1023,7 +1023,7 @@ class BidirectionalRNN(Layer):
.. code-block:: python .. code-block:: python
import paddle import paddle
from paddle.incubate.hapi.text import StackedLSTMCell, BidirectionalRNN from paddle.text import StackedLSTMCell, BidirectionalRNN
inputs = paddle.rand((2, 4, 32)) inputs = paddle.rand((2, 4, 32))
cell_fw = StackedLSTMCell(32, 64) cell_fw = StackedLSTMCell(32, 64)
...@@ -1215,7 +1215,7 @@ class BidirectionalLSTM(Layer): ...@@ -1215,7 +1215,7 @@ class BidirectionalLSTM(Layer):
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.incubate.hapi.text import BidirectionalLSTM from paddle.text import BidirectionalLSTM
inputs = paddle.rand((2, 4, 32)) inputs = paddle.rand((2, 4, 32))
bi_lstm = BidirectionalLSTM(input_size=32, hidden_size=64, num_layers=2) bi_lstm = BidirectionalLSTM(input_size=32, hidden_size=64, num_layers=2)
...@@ -1384,7 +1384,7 @@ class StackedGRUCell(RNNCell): ...@@ -1384,7 +1384,7 @@ class StackedGRUCell(RNNCell):
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.incubate.hapi.text import StackedGRUCell, RNN from paddle.text import StackedGRUCell, RNN
inputs = paddle.rand((2, 4, 32)) inputs = paddle.rand((2, 4, 32))
cell = StackedGRUCell(input_size=32, hidden_size=64) cell = StackedGRUCell(input_size=32, hidden_size=64)
...@@ -1524,7 +1524,7 @@ class GRU(Layer): ...@@ -1524,7 +1524,7 @@ class GRU(Layer):
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.incubate.hapi.text import GRU from paddle.text import GRU
inputs = paddle.rand((2, 4, 32)) inputs = paddle.rand((2, 4, 32))
gru = GRU(input_size=32, hidden_size=64, num_layers=2) gru = GRU(input_size=32, hidden_size=64, num_layers=2)
...@@ -1644,7 +1644,7 @@ class BidirectionalGRU(Layer): ...@@ -1644,7 +1644,7 @@ class BidirectionalGRU(Layer):
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.incubate.hapi.text import BidirectionalGRU from paddle.text import BidirectionalGRU
inputs = paddle.rand((2, 4, 32)) inputs = paddle.rand((2, 4, 32))
bi_gru = BidirectionalGRU(input_size=32, hidden_size=64, num_layers=2) bi_gru = BidirectionalGRU(input_size=32, hidden_size=64, num_layers=2)
...@@ -1802,7 +1802,7 @@ class DynamicDecode(Layer): ...@@ -1802,7 +1802,7 @@ class DynamicDecode(Layer):
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.layers import BeamSearchDecoder from paddle.fluid.layers import BeamSearchDecoder
from paddle.incubate.hapi.text import StackedLSTMCell, DynamicDecode from paddle.text import StackedLSTMCell, DynamicDecode
paddle.disable_static() paddle.disable_static()
...@@ -2033,7 +2033,7 @@ class Conv1dPoolLayer(Layer): ...@@ -2033,7 +2033,7 @@ class Conv1dPoolLayer(Layer):
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.incubate.hapi.text import Conv1dPoolLayer from paddle.text import Conv1dPoolLayer
# input: [batch_size, num_channels, sequence_length] # input: [batch_size, num_channels, sequence_length]
input = paddle.rand((2, 32, 4)) input = paddle.rand((2, 32, 4))
...@@ -2162,7 +2162,7 @@ class CNNEncoder(Layer): ...@@ -2162,7 +2162,7 @@ class CNNEncoder(Layer):
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.incubate.hapi.text import CNNEncoder from paddle.text import CNNEncoder
# input: [batch_size, num_channels, sequence_length] # input: [batch_size, num_channels, sequence_length]
input = paddle.rand((2, 32, 8)) input = paddle.rand((2, 32, 8))
...@@ -2273,10 +2273,10 @@ class TransformerCell(RNNCell): ...@@ -2273,10 +2273,10 @@ class TransformerCell(RNNCell):
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.dygraph import Embedding, Linear from paddle.fluid.dygraph import Embedding, Linear
from paddle.incubate.hapi.text import TransformerDecoder from paddle.text import TransformerDecoder
from paddle.incubate.hapi.text import TransformerCell from paddle.text import TransformerCell
from paddle.incubate.hapi.text import TransformerBeamSearchDecoder from paddle.text import TransformerBeamSearchDecoder
from paddle.incubate.hapi.text import DynamicDecode from paddle.text import DynamicDecode
paddle.disable_static() paddle.disable_static()
...@@ -2440,10 +2440,10 @@ class TransformerBeamSearchDecoder(layers.BeamSearchDecoder): ...@@ -2440,10 +2440,10 @@ class TransformerBeamSearchDecoder(layers.BeamSearchDecoder):
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.dygraph import Embedding, Linear from paddle.fluid.dygraph import Embedding, Linear
from paddle.incubate.hapi.text import TransformerDecoder from paddle.text import TransformerDecoder
from paddle.incubate.hapi.text import TransformerCell from paddle.text import TransformerCell
from paddle.incubate.hapi.text import TransformerBeamSearchDecoder from paddle.text import TransformerBeamSearchDecoder
from paddle.incubate.hapi.text import DynamicDecode from paddle.text import DynamicDecode
paddle.disable_static() paddle.disable_static()
...@@ -2627,7 +2627,7 @@ class PrePostProcessLayer(Layer): ...@@ -2627,7 +2627,7 @@ class PrePostProcessLayer(Layer):
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.incubate.hapi.text import PrePostProcessLayer from paddle.text import PrePostProcessLayer
# input: [batch_size, sequence_length, d_model] # input: [batch_size, sequence_length, d_model]
x = paddle.rand((2, 4, 32)) x = paddle.rand((2, 4, 32))
...@@ -2709,7 +2709,7 @@ class MultiHeadAttention(Layer): ...@@ -2709,7 +2709,7 @@ class MultiHeadAttention(Layer):
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.incubate.hapi.text import MultiHeadAttention from paddle.text import MultiHeadAttention
# encoder input: [batch_size, sequence_length, d_model] # encoder input: [batch_size, sequence_length, d_model]
query = paddle.rand((2, 4, 128)) query = paddle.rand((2, 4, 128))
...@@ -2917,7 +2917,7 @@ class FFN(Layer): ...@@ -2917,7 +2917,7 @@ class FFN(Layer):
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.incubate.hapi.text import FFN from paddle.text import FFN
# input: [batch_size, sequence_length, d_model] # input: [batch_size, sequence_length, d_model]
x = paddle.rand((2, 4, 32)) x = paddle.rand((2, 4, 32))
...@@ -2992,7 +2992,7 @@ class TransformerEncoderLayer(Layer): ...@@ -2992,7 +2992,7 @@ class TransformerEncoderLayer(Layer):
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.incubate.hapi.text import TransformerEncoderLayer from paddle.text import TransformerEncoderLayer
# encoder input: [batch_size, src_len, d_model] # encoder input: [batch_size, src_len, d_model]
enc_input = paddle.rand((2, 4, 128)) enc_input = paddle.rand((2, 4, 128))
...@@ -3095,7 +3095,7 @@ class TransformerEncoder(Layer): ...@@ -3095,7 +3095,7 @@ class TransformerEncoder(Layer):
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.incubate.hapi.text import TransformerEncoder from paddle.text import TransformerEncoder
# encoder input: [batch_size, src_len, d_model] # encoder input: [batch_size, src_len, d_model]
enc_input = paddle.rand((2, 4, 128)) enc_input = paddle.rand((2, 4, 128))
...@@ -3206,7 +3206,7 @@ class TransformerDecoderLayer(Layer): ...@@ -3206,7 +3206,7 @@ class TransformerDecoderLayer(Layer):
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.incubate.hapi.text import TransformerDecoderLayer from paddle.text import TransformerDecoderLayer
# decoder input: [batch_size, trg_len, d_model] # decoder input: [batch_size, trg_len, d_model]
dec_input = paddle.rand((2, 4, 128)) dec_input = paddle.rand((2, 4, 128))
...@@ -3348,7 +3348,7 @@ class TransformerDecoder(Layer): ...@@ -3348,7 +3348,7 @@ class TransformerDecoder(Layer):
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.incubate.hapi.text import TransformerDecoder from paddle.text import TransformerDecoder
# decoder input: [batch_size, trg_len, d_model] # decoder input: [batch_size, trg_len, d_model]
dec_input = paddle.rand((2, 4, 128)) dec_input = paddle.rand((2, 4, 128))
...@@ -3561,7 +3561,7 @@ class LinearChainCRF(Layer): ...@@ -3561,7 +3561,7 @@ class LinearChainCRF(Layer):
import numpy as np import numpy as np
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.incubate.hapi.text import LinearChainCRF from paddle.text import LinearChainCRF
# emission: [batch_size, sequence_length, num_tags] # emission: [batch_size, sequence_length, num_tags]
emission = paddle.rand((2, 8, 5)) emission = paddle.rand((2, 8, 5))
...@@ -3689,7 +3689,7 @@ class CRFDecoding(Layer): ...@@ -3689,7 +3689,7 @@ class CRFDecoding(Layer):
import numpy as np import numpy as np
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.incubate.hapi.text import CRFDecoding from paddle.text import CRFDecoding
# emission: [batch_size, sequence_length, num_tags] # emission: [batch_size, sequence_length, num_tags]
emission = paddle.rand((2, 8, 5)) emission = paddle.rand((2, 8, 5))
...@@ -3858,7 +3858,7 @@ class SequenceTagging(Layer): ...@@ -3858,7 +3858,7 @@ class SequenceTagging(Layer):
import numpy as np import numpy as np
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.incubate.hapi.text import SequenceTagging from paddle.text import SequenceTagging
# word: [batch_size, sequence_length] # word: [batch_size, sequence_length]
# dummy input just for example # dummy input just for example
......
...@@ -17,8 +17,9 @@ from .profiler import ProfilerOptions ...@@ -17,8 +17,9 @@ from .profiler import ProfilerOptions
from .profiler import Profiler from .profiler import Profiler
from .profiler import get_profiler from .profiler import get_profiler
from .deprecated import deprecated from .deprecated import deprecated
from . import download
__all__ = ['dump_config', 'Ploter', 'deprecated'] __all__ = ['dump_config', 'Ploter', 'deprecated', 'download']
#TODO: define new api under this directory #TODO: define new api under this directory
# __all__ = ['unique_name', # __all__ = ['unique_name',
......
...@@ -26,7 +26,6 @@ import tarfile ...@@ -26,7 +26,6 @@ import tarfile
import zipfile import zipfile
import time import time
from collections import OrderedDict from collections import OrderedDict
from paddle.fluid.dygraph.parallel import ParallelEnv
try: try:
from tqdm import tqdm from tqdm import tqdm
...@@ -156,6 +155,9 @@ def get_path_from_url(url, root_dir, md5sum=None, check_exist=True): ...@@ -156,6 +155,9 @@ def get_path_from_url(url, root_dir, md5sum=None, check_exist=True):
Returns: Returns:
str: a local path to save downloaded models & weights & datasets. str: a local path to save downloaded models & weights & datasets.
""" """
from paddle.fluid.dygraph.parallel import ParallelEnv
assert is_url(url), "downloading from {} not a url".format(url) assert is_url(url), "downloading from {} not a url".format(url)
# parse path after download to decompress under root_dir # parse path after download to decompress under root_dir
fullpath = _map_path(url, root_dir) fullpath = _map_path(url, root_dir)
......
#!/usr/bin/python
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Plot training and testing curve from paddle log.
It takes input from a file or stdin, and output to a file or stdout.
Note: must have numpy and matplotlib installed in order to use this tool.
usage: Plot training and testing curves from paddle log file.
[-h] [-i INPUT] [-o OUTPUT] [--format FORMAT] [key [key ...]]
positional arguments:
key keys of scores to plot, the default will be AvgCost
optional arguments:
-h, --help show this help message and exit
-i INPUT, --input INPUT
input filename of paddle log, default will be standard
input
-o OUTPUT, --output OUTPUT
output filename of figure, default will be standard
output
--format FORMAT figure format(png|pdf|ps|eps|svg)
The keys must be in the order of paddle output(!!!).
For example, paddle.INFO contains the following log
I0406 21:26:21.325584 3832 Trainer.cpp:601] Pass=0 Batch=7771 AvgCost=0.624935 Eval: error=0.260972
To use this script to generate plot for AvgCost, error:
python plotcurve.py -i paddle.INFO -o figure.png AvgCost error
"""
import six
import sys
import matplotlib
# the following line is added immediately after import matplotlib
# and before import pylot. The purpose is to ensure the plotting
# works even under remote login (i.e. headless display)
matplotlib.use('Agg')
from matplotlib import cm
import matplotlib.pyplot as pyplot
import numpy
import argparse
import re
import os
def plot_paddle_curve(keys, inputfile, outputfile, format='png',
show_fig=False):
"""Plot curves from paddle log and save to outputfile.
:param keys: a list of strings to be plotted, e.g. AvgCost
:param inputfile: a file object for input
:param outputfile: a file object for output
:return: None
"""
pass_pattern = r"Pass=([0-9]*)"
test_pattern = r"Test samples=([0-9]*)"
if not keys:
keys = ['AvgCost']
for k in keys:
pass_pattern += r".*?%s=([0-9e\-\.]*)" % k
test_pattern += r".*?%s=([0-9e\-\.]*)" % k
data = []
test_data = []
compiled_pattern = re.compile(pass_pattern)
compiled_test_pattern = re.compile(test_pattern)
for line in inputfile:
found = compiled_pattern.search(line)
found_test = compiled_test_pattern.search(line)
if found:
data.append([float(x) for x in found.groups()])
if found_test:
test_data.append([float(x) for x in found_test.groups()])
x = numpy.array(data)
x_test = numpy.array(test_data)
if x.shape[0] <= 0:
sys.stderr.write("No data to plot. Exiting!\n")
return
m = len(keys) + 1
for i in six.moves.xrange(1, m):
pyplot.plot(
x[:, 0],
x[:, i],
color=cm.jet(1.0 * (i - 1) / (2 * m)),
label=keys[i - 1])
if (x_test.shape[0] > 0):
pyplot.plot(
x[:, 0],
x_test[:, i],
color=cm.jet(1.0 - 1.0 * (i - 1) / (2 * m)),
label="Test " + keys[i - 1])
pyplot.xlabel('number of epoch')
pyplot.legend(loc='best')
if show_fig:
pyplot.show()
pyplot.savefig(outputfile, bbox_inches='tight')
pyplot.clf()
def main(argv):
"""
main method of plotting curves.
"""
cmdparser = argparse.ArgumentParser(
"Plot training and testing curves from paddle log file.")
cmdparser.add_argument(
'key', nargs='*', help='keys of scores to plot, the default is AvgCost')
cmdparser.add_argument(
'-i',
'--input',
help='input filename of paddle log, '
'default will be standard input')
cmdparser.add_argument(
'-o',
'--output',
help='output filename of figure, '
'default will be standard output')
cmdparser.add_argument('--format', help='figure format(png|pdf|ps|eps|svg)')
args = cmdparser.parse_args(argv)
keys = args.key
if args.input:
inputfile = open(args.input)
else:
inputfile = sys.stdin
format = args.format
if args.output:
outputfile = open(args.output, 'wb')
if not format:
format = os.path.splitext(args.output)[1]
if not format:
format = 'png'
else:
outputfile = sys.stdout
plot_paddle_curve(keys, inputfile, outputfile, format)
inputfile.close()
outputfile.close()
if __name__ == "__main__":
main(sys.argv[1:])
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os
import random
import numpy as np
import PIL.Image as Image
from six.moves import cStringIO as StringIO
from . import preprocess_util
from .image_util import crop_img
def resize_image(img, target_size):
"""
Resize an image so that the shorter edge has length target_size.
img: the input image to be resized.
target_size: the target resized image size.
"""
percent = (target_size / float(min(img.size[0], img.size[1])))
resized_size = int(round(img.size[0] * percent)),\
int(round(img.size[1] * percent))
img = img.resize(resized_size, Image.ANTIALIAS)
return img
class DiskImage:
"""
A class of image data on disk.
"""
def __init__(self, path, target_size):
"""
path: path of the image.
target_size: target resize size.
"""
self.path = path
self.target_size = target_size
self.img = None
pass
def read_image(self):
if self.img is None:
print("reading: " + self.path)
image = resize_image(Image.open(self.path), self.target_size)
self.img = image
def convert_to_array(self):
self.read_image()
np_array = np.array(self.img)
if len(np_array.shape) == 3:
np_array = np.swapaxes(np_array, 1, 2)
np_array = np.swapaxes(np_array, 1, 0)
return np_array
def convert_to_paddle_format(self):
"""
convert the image into the paddle batch format.
"""
self.read_image()
output = StringIO()
self.img.save(output, "jpeg")
contents = output.getvalue()
return contents
class ImageClassificationDatasetCreater(preprocess_util.DatasetCreater):
"""
A class to process data for image classification.
"""
def __init__(self, data_path, target_size, color=True):
"""
data_path: the path to store the training data and batches.
target_size: processed image size in a batch.
color: whether to use color images.
"""
preprocess_util.DatasetCreater.__init__(self, data_path)
self.target_size = target_size
self.color = color
self.keys = ["images", "labels"]
self.permute_key = "labels"
def create_meta_file(self, data):
"""
Create a meta file for image classification.
The meta file contains the meam image, as well as some configs.
data: the training Dataaet.
"""
output_path = os.path.join(self.data_path, self.batch_dir_name,
self.meta_filename)
if self.color:
mean_img = np.zeros((3, self.target_size, self.target_size))
else:
mean_img = np.zeros((self.target_size, self.target_size))
for d in data.data:
img = d[0].convert_to_array()
cropped_img = crop_img(img, self.target_size, self.color)
mean_img += cropped_img
mean_img /= len(data.data)
mean_img = mean_img.astype('int32').flatten()
preprocess_util.save_file({
"data_mean": mean_img,
"image_size": self.target_size,
"mean_image_size": self.target_size,
"num_classes": self.num_classes,
"color": self.color
}, output_path)
pass
def create_dataset_from_list(self, path):
data = []
label_set = []
for line in open(path):
items = line.rstrip.split()
image_path = items[0]
label_name = items[1]
if not label_name in label_set:
label_set[label_name] = len(list(label_set.keys()))
img = DiskImage(path=image_path, target_size=self.target_size)
label = preprocess_util.Lablel(
label=label_set[label_name], name=label_name)
return preprocess_util.Dataset(data, self.keys), label_set
def create_dataset_from_dir(self, path):
"""
Create a Dataset object for image classification.
Each folder in the path directory corresponds to a set of images of
this label, and the name of the folder is the name of the
path: the path of the image dataset.
"""
if self.from_list:
return self.create_dataset_from_list(path)
label_set = preprocess_util.get_label_set_from_dir(path)
data = []
for l_name in list(label_set.keys()):
image_paths = preprocess_util.list_images(
os.path.join(path, l_name))
for p in image_paths:
img = DiskImage(path=p, target_size=self.target_size)
label = preprocess_util.Label(
label=label_set[l_name], name=l_name)
data.append((img, label))
random.shuffle(data)
return preprocess_util.Dataset(data, self.keys), label_set
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import math
import six.moves.cPickle as pickle
import random
import collections
def save_file(data, filename):
"""
Save data into pickle format.
data: the data to save.
filename: the output filename.
"""
pickle.dump(data, open(filename, 'wb'), protocol=pickle.HIGHEST_PROTOCOL)
def save_list(l, outfile):
"""
Save a list of string into a text file. There is one line for each string.
l: the list of string to save
outfile: the output file
"""
open(outfile, "w").write("\n".join(l))
def exclude_pattern(f):
"""
Return whether f is in the exclude pattern.
Exclude the files that starts with . or ends with ~.
"""
return f.startswith(".") or f.endswith("~")
def list_dirs(path):
"""
Return a list of directories in path. Exclude all the directories that
start with '.'.
path: the base directory to search over.
"""
return [
os.path.join(path, d) for d in next(os.walk(path))[1]
if not exclude_pattern(d)
]
def list_images(path, exts=set(["jpg", "png", "bmp", "jpeg"])):
"""
Return a list of images in path.
path: the base directory to search over.
exts: the extensions of the images to find.
"""
return [os.path.join(path, d) for d in os.listdir(path) \
if os.path.isfile(os.path.join(path, d)) and not exclude_pattern(d)\
and os.path.splitext(d)[-1][1:] in exts]
def list_files(path):
"""
Return a list of files in path.
path: the base directory to search over.
exts: the extensions of the images to find.
"""
return [os.path.join(path, d) for d in os.listdir(path) \
if os.path.isfile(os.path.join(path, d)) and not exclude_pattern(d)]
def get_label_set_from_dir(path):
"""
Return a dictionary of the labels and label ids from a path.
Assume each directory in the path corresponds to a unique label.
The keys of the dictionary is the label name.
The values of the dictionary is the label id.
"""
dirs = list_dirs(path)
return dict([(os.path.basename(d), i) for i, d in enumerate(sorted(dirs))])
class Label:
"""
A class of label data.
"""
def __init__(self, label, name):
"""
label: the id of the label.
name: the name of the label.
"""
self.label = label
self.name = name
def convert_to_paddle_format(self):
"""
convert the image into the paddle batch format.
"""
return int(self.label)
def __hash__(self):
return hash((self.label))
class Dataset:
"""
A class to represent a dataset. A dataset contains a set of items.
Each item contains multiple slots of data.
For example: in image classification dataset, each item contains two slot,
The first slot is an image, and the second slot is a label.
"""
def __init__(self, data, keys):
"""
data: a list of data.
Each data is a tuple containing multiple slots of data.
Each slot is an object with convert_to_paddle_format function.
keys: contains a list of keys for all the slots.
"""
self.data = data
self.keys = keys
def check_valid(self):
for d in self.data:
assert (len(d) == len(self.keys))
def permute(self, key_id, num_per_batch):
"""
Permuate data for batching. It supports two types now:
1. if key_id == None, the batching process is completely random.
2. if key_id is not None. The batching process Permuate the data so that the key specified by key_id are
uniformly distributed in batches. See the comments of permute_by_key for details.
"""
if key_id is None:
self.uniform_permute()
else:
self.permute_by_key(key_id, num_per_batch)
def uniform_permute(self):
"""
Permuate the data randomly.
"""
random.shuffle(self.data)
def permute_by_key(self, key_id, num_per_batch):
"""
Permuate the data so that the key specified by key_id are
uniformly distributed in batches.
For example: if we have three labels, and the number of data
for each label are 100, 200, and 300, respectively. The number of batches is 4.
Then, the number of data for these labels is 25, 50, and 75.
"""
# Store the indices of the data that has the key value
# specified by key_id.
keyvalue_indices = collections.defaultdict(list)
for idx in range(len(self.data)):
keyvalue_indices[self.data[idx][key_id].label].append(idx)
for k in keyvalue_indices:
random.shuffle(keyvalue_indices[k])
num_data_per_key_batch = \
math.ceil(num_per_batch / float(len(list(keyvalue_indices.keys()))))
if num_data_per_key_batch < 2:
raise Exception("The number of data in a batch is too small")
permuted_data = []
keyvalue_readpointer = collections.defaultdict(int)
while len(permuted_data) < len(self.data):
for k in keyvalue_indices:
begin_idx = keyvalue_readpointer[k]
end_idx = int(
min(begin_idx + num_data_per_key_batch,
len(keyvalue_indices[k])))
print("begin_idx, end_idx")
print(begin_idx, end_idx)
for idx in range(begin_idx, end_idx):
permuted_data.append(self.data[keyvalue_indices[k][idx]])
keyvalue_readpointer[k] = end_idx
self.data = permuted_data
class DataBatcher:
"""
A class that is used to create batches for both training and testing
datasets.
"""
def __init__(self, train_data, test_data, label_set):
"""
train_data, test_data: Each one is a dataset object representing
training and testing data, respectively.
label_set: a dictionary storing the mapping from label name to label id.
"""
self.train_data = train_data
self.test_data = test_data
self.label_set = label_set
self.num_per_batch = 5000
assert (self.train_data.keys == self.test_data.keys)
def create_batches_and_list(self, output_path, train_list_name,
test_list_name, label_set_name):
"""
Create batches for both training and testing objects.
It also create train.list and test.list to indicate the list
of the batch files for training and testing data, respectively.
"""
train_list = self.create_batches(self.train_data, output_path, "train_",
self.num_per_batch)
test_list = self.create_batches(self.test_data, output_path, "test_",
self.num_per_batch)
save_list(train_list, os.path.join(output_path, train_list_name))
save_list(test_list, os.path.join(output_path, test_list_name))
save_file(self.label_set, os.path.join(output_path, label_set_name))
def create_batches(self,
data,
output_path,
prefix="",
num_data_per_batch=5000):
"""
Create batches for a Dataset object.
data: the Dataset object to process.
output_path: the output path of the batches.
prefix: the prefix of each batch.
num_data_per_batch: number of data in each batch.
"""
num_batches = int(math.ceil(len(data.data) / float(num_data_per_batch)))
batch_names = []
data.check_valid()
num_slots = len(data.keys)
for i in range(num_batches):
batch_name = os.path.join(output_path, prefix + "batch_%03d" % i)
out_data = dict([(k, []) for k in data.keys])
begin_idx = i * num_data_per_batch
end_idx = min((i + 1) * num_data_per_batch, len(data.data))
for j in range(begin_idx, end_idx):
for slot_id in range(num_slots):
out_data[data.keys[slot_id]].\
append(data.data[j][slot_id].convert_to_paddle_format())
save_file(out_data, batch_name)
batch_names.append(batch_name)
return batch_names
class DatasetCreater(object):
"""
A virtual class for creating datasets.
The derived class needs to implement the following methods:
- create_dataset()
- create_meta_file()
"""
def __init__(self, data_path):
"""
data_path: the path to store the training data and batches.
train_dir_name: relative training data directory.
test_dir_name: relative testing data directory.
batch_dir_name: relative batch directory.
num_per_batch: the number of data in a batch.
meta_filename: the filename of the meta file.
train_list_name: training batch list name.
test_list_name: testing batch list name.
label_set: label set name.
overwrite: whether to overwrite the files if the batches are already in
the given path.
"""
self.data_path = data_path
self.train_dir_name = 'train'
self.test_dir_name = 'test'
self.batch_dir_name = 'batches'
self.num_per_batch = 50000
self.meta_filename = "batches.meta"
self.train_list_name = "train.list"
self.test_list_name = "test.list"
self.label_set_name = "labels.pkl"
self.output_path = os.path.join(self.data_path, self.batch_dir_name)
self.overwrite = False
self.permutate_key = "labels"
self.from_list = False
def create_meta_file(self, data):
"""
Create a meta file from training data.
data: training data given in a Dataset format.
"""
raise NotImplementedError
def create_dataset(self, path):
"""
Create a data set object from a path.
It will use directory structure or a file list to determine dataset if
self.from_list is True. Otherwise, it will uses a file list to
determine the dataset.
path: the path of the dataset.
return a tuple of Dataset object, and a mapping from label set
to label id.
"""
if self.from_list:
return self.create_dataset_from_list(path)
else:
return self.create_dataset_from_dir(path)
def create_dataset_from_list(self, path):
"""
Create a data set object from a path.
It will uses a file list to determine the dataset.
path: the path of the dataset.
return a tuple of Dataset object, and a mapping from label set
to label id
"""
raise NotImplementedError
def create_dataset_from_dir(self, path):
"""
Create a data set object from a path.
It will use directory structure or a file list to determine dataset if
self.from_list is True.
path: the path of the dataset.
return a tuple of Dataset object, and a mapping from label set
to label id
"""
raise NotImplementedError
def create_batches(self):
"""
create batches and meta file.
"""
train_path = os.path.join(self.data_path, self.train_dir_name)
test_path = os.path.join(self.data_path, self.test_dir_name)
out_path = os.path.join(self.data_path, self.batch_dir_name)
if not os.path.exists(out_path):
os.makedirs(out_path)
if (self.overwrite or not os.path.exists(
os.path.join(out_path, self.train_list_name))):
train_data, train_label_set = \
self.create_dataset(train_path)
test_data, test_label_set = \
self.create_dataset(test_path)
train_data.permute(
self.keys.index(self.permutate_key), self.num_per_batch)
assert (train_label_set == test_label_set)
data_batcher = DataBatcher(train_data, test_data, train_label_set)
data_batcher.num_per_batch = self.num_per_batch
data_batcher.create_batches_and_list(
self.output_path, self.train_list_name, self.test_list_name,
self.label_set_name)
self.num_classes = len(list(train_label_set.keys()))
self.create_meta_file(train_data)
return out_path
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Show the content of proto buffer data file of PADDLE
"""
from __future__ import print_function
import os
import sys
from google.protobuf.internal.decoder import _DecodeVarint
import paddle.proto.DataFormat_pb2 as DataFormat
def read_proto(file, message):
"""
read a protobuffer struct from file, the length of the struct is stored as
a varint, then followed by the actual struct data.
@return True success, False for end of file
"""
buf = file.read(8)
if not buf:
return False
result, pos = _DecodeVarint(buf, 0)
buf = buf[pos:] + file.read(result - len(buf) + pos)
message.ParseFromString(buf)
return True
def usage():
print("Usage: python show_pb.py PROTO_DATA_FILE", file=sys.stderr)
exit(1)
if __name__ == '__main__':
if len(sys.argv) < 2:
usage()
f = open(sys.argv[1])
header = DataFormat.DataHeader()
read_proto(f, header)
print(header)
sample = DataFormat.DataSample()
while read_proto(f, sample):
print(sample)
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Convert torch parameter file to paddle model files.
Note: must have torchfile installed in order to use this tool.
Usage: python torch2paddle.py -i torchfile.t7 -l layers.txt -o path/to/paddle_model
"""
import os
import sys
import struct
import numpy as np
import torchfile
import six.moves.cPickle as pickle
import argparse
# save parameters
def save_layer_parameters(outfile, feats):
version = 0
value_size = 4
ret = ""
for feat in feats:
ret += feat.tostring()
size = len(ret) / 4
fo = open(outfile, 'wb')
fo.write(struct.pack('iIQ', version, value_size, size))
fo.write(ret)
fo.close()
def save_net_parameters(layers, params, output_path):
for i in range(len(layers)):
weight = params[i * 2]
biases = params[i * 2 + 1]
weight_file = os.path.join(output_path, '_%s.w0' % layers[i])
biases_file = os.path.join(output_path, '_%s.wbias' % layers[i])
print("Saving for layer %s." % layers[i])
save_layer_parameters(weight_file, [weight])
save_layer_parameters(biases_file, biases)
def load_layer_parameters(filename):
fn = open(filename, 'rb')
version, = struct.unpack('i', fn.read(4))
value_length, = struct.unpack("I", fn.read(4))
dtype = 'float32' if value_length == 4 else 'float64'
param_size, = struct.unpack("L", fn.read(8))
value = np.fromfile(fn, dtype)
return value
def main(argv):
"""
main method of converting torch to paddle files.
:param argv:
:return:
"""
cmdparser = argparse.ArgumentParser(
"Convert torch parameter file to paddle model files.")
cmdparser.add_argument(
'-i', '--input', help='input filename of torch parameters')
cmdparser.add_argument('-l', '--layers', help='list of layer names')
cmdparser.add_argument(
'-o', '--output', help='output file path of paddle model')
args = cmdparser.parse_args(argv)
if args.input and args.layers and args.output:
params = torchfile.load(args.input)
layers = [line.strip() for line in open(args.layers, 'r')]
save_net_parameters(layers, params, args.output)
else:
print(
'Usage: python torch2paddle.py -i torchfile.t7 -l layers.txt -o path/to/paddle_model'
)
if __name__ == "__main__":
main(sys.argv[1:])
...@@ -13,9 +13,14 @@ ...@@ -13,9 +13,14 @@
# limitations under the License. # limitations under the License.
from . import models from . import models
from . import transforms
from .models import * from .models import *
from . import transforms
from .transforms import * from .transforms import *
from . import datasets
from .datasets import *
__all__ = models.__all__ \ __all__ = models.__all__ \
+ transforms.__all__ + transforms.__all__ \
+ datasets.__all__
...@@ -12,18 +12,20 @@ ...@@ -12,18 +12,20 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import print_function from . import folder
from . import mnist
from . import flowers
from . import cifar
from . import voc2012
import os from .folder import *
import paddle.dataset.common from .mnist import *
from .flowers import *
from .cifar import *
from .voc2012 import *
__all__ = folder.__all__ \
def _check_exists_and_download(path, url, md5, module_name, download=True): + mnist.__all__ \
if path and os.path.exists(path): + flowers.__all__ \
return path + cifar.__all__ \
+ voc2012.__all__
if download:
return paddle.dataset.common.download(url, module_name, md5)
else:
raise ValueError('{} not exists and auto download disabled'.format(
path))
...@@ -20,7 +20,7 @@ import six ...@@ -20,7 +20,7 @@ import six
from six.moves import cPickle as pickle from six.moves import cPickle as pickle
from paddle.io import Dataset from paddle.io import Dataset
from .utils import _check_exists_and_download from paddle.dataset.common import _check_exists_and_download
__all__ = ['Cifar10', 'Cifar100'] __all__ = ['Cifar10', 'Cifar100']
...@@ -59,13 +59,16 @@ class Cifar10(Dataset): ...@@ -59,13 +59,16 @@ class Cifar10(Dataset):
.. code-block:: python .. code-block:: python
import paddle import paddle
from paddle.incubate.hapi.datasets import Cifar10 import paddle.nn as nn
from paddle.incubate.hapi.vision.transforms import Normalize from paddle.vision.datasets import Cifar10
from paddle.vision.transforms import Normalize
class SimpleNet(paddle.nn.Layer): class SimpleNet(paddle.nn.Layer):
def __init__(self): def __init__(self):
super(SimpleNet, self).__init__() super(SimpleNet, self).__init__()
self.fc = paddle.nn.Linear(3072, 10, act='softmax') self.fc = nn.Sequential(
nn.Linear(3072, 10),
nn.Softmax())
def forward(self, image, label): def forward(self, image, label):
image = paddle.reshape(image, (3, -1)) image = paddle.reshape(image, (3, -1))
...@@ -165,13 +168,16 @@ class Cifar100(Cifar10): ...@@ -165,13 +168,16 @@ class Cifar100(Cifar10):
.. code-block:: python .. code-block:: python
import paddle import paddle
from paddle.incubate.hapi.datasets import Cifar100 import paddle.nn as nn
from paddle.incubate.hapi.vision.transforms import Normalize from paddle.vision.datasets import Cifar100
from paddle.vision.transforms import Normalize
class SimpleNet(paddle.nn.Layer): class SimpleNet(paddle.nn.Layer):
def __init__(self): def __init__(self):
super(SimpleNet, self).__init__() super(SimpleNet, self).__init__()
self.fc = paddle.nn.Linear(3072, 100, act='softmax') self.fc = nn.Sequential(
nn.Linear(3072, 10),
nn.Softmax())
def forward(self, image, label): def forward(self, image, label):
image = paddle.reshape(image, (3, -1)) image = paddle.reshape(image, (3, -1))
......
...@@ -22,7 +22,7 @@ import scipy.io as scio ...@@ -22,7 +22,7 @@ import scipy.io as scio
from PIL import Image from PIL import Image
from paddle.io import Dataset from paddle.io import Dataset
from .utils import _check_exists_and_download from paddle.dataset.common import _check_exists_and_download
__all__ = ["Flowers"] __all__ = ["Flowers"]
...@@ -60,7 +60,7 @@ class Flowers(Dataset): ...@@ -60,7 +60,7 @@ class Flowers(Dataset):
.. code-block:: python .. code-block:: python
from paddle.incubate.hapi.datasets import Flowers from paddle.vision.datasets import Flowers
flowers = Flowers(mode='test') flowers = Flowers(mode='test')
......
...@@ -94,7 +94,7 @@ class DatasetFolder(Dataset): ...@@ -94,7 +94,7 @@ class DatasetFolder(Dataset):
import tempfile import tempfile
import shutil import shutil
import numpy as np import numpy as np
from paddle.incubate.hapi.datasets import DatasetFolder from paddle.vision.datasets import DatasetFolder
def make_fake_dir(): def make_fake_dir():
data_dir = tempfile.mkdtemp() data_dir = tempfile.mkdtemp()
...@@ -224,7 +224,7 @@ class ImageFolder(Dataset): ...@@ -224,7 +224,7 @@ class ImageFolder(Dataset):
import tempfile import tempfile
import shutil import shutil
import numpy as np import numpy as np
from paddle.incubate.hapi.datasets import ImageFolder from paddle.vision.datasets import ImageFolder
def make_fake_dir(): def make_fake_dir():
data_dir = tempfile.mkdtemp() data_dir = tempfile.mkdtemp()
......
...@@ -19,9 +19,8 @@ import gzip ...@@ -19,9 +19,8 @@ import gzip
import struct import struct
import numpy as np import numpy as np
import paddle.dataset.common
from paddle.io import Dataset from paddle.io import Dataset
from .utils import _check_exists_and_download from paddle.dataset.common import _check_exists_and_download
__all__ = ["MNIST"] __all__ = ["MNIST"]
...@@ -58,7 +57,7 @@ class MNIST(Dataset): ...@@ -58,7 +57,7 @@ class MNIST(Dataset):
.. code-block:: python .. code-block:: python
from paddle.incubate.hapi.datasets import MNIST from paddle.vision.datasets import MNIST
mnist = MNIST(mode='test') mnist = MNIST(mode='test')
......
...@@ -20,7 +20,7 @@ import numpy as np ...@@ -20,7 +20,7 @@ import numpy as np
from PIL import Image from PIL import Image
from paddle.io import Dataset from paddle.io import Dataset
from .utils import _check_exists_and_download from paddle.dataset.common import _check_exists_and_download
__all__ = ["VOC2012"] __all__ = ["VOC2012"]
...@@ -53,7 +53,7 @@ class VOC2012(Dataset): ...@@ -53,7 +53,7 @@ class VOC2012(Dataset):
.. code-block:: python .. code-block:: python
import paddle import paddle
from paddle.incubate.hapi.datasets import VOC2012 from paddle.vision.datasets import VOC2012
class SimpleNet(paddle.nn.Layer): class SimpleNet(paddle.nn.Layer):
def __init__(self): def __init__(self):
......
...@@ -30,7 +30,7 @@ class LeNet(fluid.dygraph.Layer): ...@@ -30,7 +30,7 @@ class LeNet(fluid.dygraph.Layer):
Examples: Examples:
.. code-block:: python .. code-block:: python
from paddle.incubate.hapi.vision.models import LeNet from paddle.vision.models import LeNet
model = LeNet() model = LeNet()
""" """
......
...@@ -17,7 +17,7 @@ from paddle.fluid.initializer import MSRA ...@@ -17,7 +17,7 @@ from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from ...download import get_weights_path_from_url from paddle.utils.download import get_weights_path_from_url
__all__ = ['MobileNetV1', 'mobilenet_v1'] __all__ = ['MobileNetV1', 'mobilenet_v1']
...@@ -116,7 +116,7 @@ class MobileNetV1(fluid.dygraph.Layer): ...@@ -116,7 +116,7 @@ class MobileNetV1(fluid.dygraph.Layer):
Examples: Examples:
.. code-block:: python .. code-block:: python
from paddle.incubate.hapi.vision.models import MobileNetV1 from paddle.vision.models import MobileNetV1
model = MobileNetV1() model = MobileNetV1()
""" """
...@@ -291,7 +291,7 @@ def mobilenet_v1(pretrained=False, scale=1.0, **kwargs): ...@@ -291,7 +291,7 @@ def mobilenet_v1(pretrained=False, scale=1.0, **kwargs):
Examples: Examples:
.. code-block:: python .. code-block:: python
from paddle.incubate.hapi.vision.models import mobilenet_v1 from paddle.vision.models import mobilenet_v1
# build model # build model
model = mobilenet_v1() model = mobilenet_v1()
......
...@@ -18,7 +18,7 @@ import paddle.fluid as fluid ...@@ -18,7 +18,7 @@ import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from ...download import get_weights_path_from_url from paddle.utils.download import get_weights_path_from_url
__all__ = ['MobileNetV2', 'mobilenet_v2'] __all__ = ['MobileNetV2', 'mobilenet_v2']
...@@ -163,7 +163,7 @@ class MobileNetV2(fluid.dygraph.Layer): ...@@ -163,7 +163,7 @@ class MobileNetV2(fluid.dygraph.Layer):
Examples: Examples:
.. code-block:: python .. code-block:: python
from paddle.incubate.hapi.vision.models import MobileNetV2 from paddle.vision.models import MobileNetV2
model = MobileNetV2() model = MobileNetV2()
""" """
...@@ -267,7 +267,7 @@ def mobilenet_v2(pretrained=False, scale=1.0, **kwargs): ...@@ -267,7 +267,7 @@ def mobilenet_v2(pretrained=False, scale=1.0, **kwargs):
Examples: Examples:
.. code-block:: python .. code-block:: python
from paddle.incubate.hapi.vision.models import mobilenet_v2 from paddle.vision.models import mobilenet_v2
# build model # build model
model = mobilenet_v2() model = mobilenet_v2()
......
...@@ -21,7 +21,7 @@ import paddle.fluid as fluid ...@@ -21,7 +21,7 @@ import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.container import Sequential from paddle.fluid.dygraph.container import Sequential
from ...download import get_weights_path_from_url from paddle.utils.download import get_weights_path_from_url
__all__ = [ __all__ = [
'ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152' 'ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152'
...@@ -180,8 +180,8 @@ class ResNet(fluid.dygraph.Layer): ...@@ -180,8 +180,8 @@ class ResNet(fluid.dygraph.Layer):
Examples: Examples:
.. code-block:: python .. code-block:: python
from paddle.incubate.hapi.vision.models import ResNet from paddle.vision.models import ResNet
from paddle.incubate.hapi.vision.models.resnet import BottleneckBlock, BasicBlock from paddle.vision.models.resnet import BottleneckBlock, BasicBlock
resnet50 = ResNet(BottleneckBlock, 50) resnet50 = ResNet(BottleneckBlock, 50)
...@@ -292,7 +292,7 @@ def resnet18(pretrained=False, **kwargs): ...@@ -292,7 +292,7 @@ def resnet18(pretrained=False, **kwargs):
Examples: Examples:
.. code-block:: python .. code-block:: python
from paddle.incubate.hapi.vision.models import resnet18 from paddle.vision.models import resnet18
# build model # build model
model = resnet18() model = resnet18()
...@@ -312,7 +312,7 @@ def resnet34(pretrained=False, **kwargs): ...@@ -312,7 +312,7 @@ def resnet34(pretrained=False, **kwargs):
Examples: Examples:
.. code-block:: python .. code-block:: python
from paddle.incubate.hapi.vision.models import resnet34 from paddle.vision.models import resnet34
# build model # build model
model = resnet34() model = resnet34()
...@@ -332,7 +332,7 @@ def resnet50(pretrained=False, **kwargs): ...@@ -332,7 +332,7 @@ def resnet50(pretrained=False, **kwargs):
Examples: Examples:
.. code-block:: python .. code-block:: python
from paddle.incubate.hapi.vision.models import resnet50 from paddle.vision.models import resnet50
# build model # build model
model = resnet50() model = resnet50()
...@@ -352,7 +352,7 @@ def resnet101(pretrained=False, **kwargs): ...@@ -352,7 +352,7 @@ def resnet101(pretrained=False, **kwargs):
Examples: Examples:
.. code-block:: python .. code-block:: python
from paddle.incubate.hapi.vision.models import resnet101 from paddle.vision.models import resnet101
# build model # build model
model = resnet101() model = resnet101()
...@@ -372,7 +372,7 @@ def resnet152(pretrained=False, **kwargs): ...@@ -372,7 +372,7 @@ def resnet152(pretrained=False, **kwargs):
Examples: Examples:
.. code-block:: python .. code-block:: python
from paddle.incubate.hapi.vision.models import resnet152 from paddle.vision.models import resnet152
# build model # build model
model = resnet152() model = resnet152()
......
...@@ -16,7 +16,7 @@ import paddle.fluid as fluid ...@@ -16,7 +16,7 @@ import paddle.fluid as fluid
from paddle.nn import Conv2d, Pool2D, BatchNorm, Linear, ReLU, Softmax from paddle.nn import Conv2d, Pool2D, BatchNorm, Linear, ReLU, Softmax
from paddle.fluid.dygraph.container import Sequential from paddle.fluid.dygraph.container import Sequential
from ...download import get_weights_path_from_url from paddle.utils.download import get_weights_path_from_url
__all__ = [ __all__ = [
'VGG', 'VGG',
...@@ -65,8 +65,8 @@ class VGG(fluid.dygraph.Layer): ...@@ -65,8 +65,8 @@ class VGG(fluid.dygraph.Layer):
Examples: Examples:
.. code-block:: python .. code-block:: python
from paddle.incubate.hapi.vision.models import VGG from paddle.vision.models import VGG
from paddle.incubate.hapi.vision.models.vgg import make_layers from paddle.vision.models.vgg import make_layers
vgg11_cfg = [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'] vgg11_cfg = [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']
...@@ -160,7 +160,7 @@ def vgg11(pretrained=False, batch_norm=False, **kwargs): ...@@ -160,7 +160,7 @@ def vgg11(pretrained=False, batch_norm=False, **kwargs):
Examples: Examples:
.. code-block:: python .. code-block:: python
from paddle.incubate.hapi.vision.models import vgg11 from paddle.vision.models import vgg11
# build model # build model
model = vgg11() model = vgg11()
...@@ -184,7 +184,7 @@ def vgg13(pretrained=False, batch_norm=False, **kwargs): ...@@ -184,7 +184,7 @@ def vgg13(pretrained=False, batch_norm=False, **kwargs):
Examples: Examples:
.. code-block:: python .. code-block:: python
from paddle.incubate.hapi.vision.models import vgg13 from paddle.vision.models import vgg13
# build model # build model
model = vgg13() model = vgg13()
...@@ -208,7 +208,7 @@ def vgg16(pretrained=False, batch_norm=False, **kwargs): ...@@ -208,7 +208,7 @@ def vgg16(pretrained=False, batch_norm=False, **kwargs):
Examples: Examples:
.. code-block:: python .. code-block:: python
from paddle.incubate.hapi.vision.models import vgg16 from paddle.vision.models import vgg16
# build model # build model
model = vgg16() model = vgg16()
...@@ -232,7 +232,7 @@ def vgg19(pretrained=False, batch_norm=False, **kwargs): ...@@ -232,7 +232,7 @@ def vgg19(pretrained=False, batch_norm=False, **kwargs):
Examples: Examples:
.. code-block:: python .. code-block:: python
from paddle.incubate.hapi.vision.models import vgg19 from paddle.vision.models import vgg19
# build model # build model
model = vgg19() model = vgg19()
......
...@@ -64,7 +64,7 @@ def flip(image, code): ...@@ -64,7 +64,7 @@ def flip(image, code):
.. code-block:: python .. code-block:: python
import numpy as np import numpy as np
from paddle.incubate.hapi.vision.transforms import functional as F from paddle.vision.transforms import functional as F
fake_img = np.random.rand(224, 224, 3) fake_img = np.random.rand(224, 224, 3)
...@@ -94,7 +94,7 @@ def resize(img, size, interpolation=cv2.INTER_LINEAR): ...@@ -94,7 +94,7 @@ def resize(img, size, interpolation=cv2.INTER_LINEAR):
.. code-block:: python .. code-block:: python
import numpy as np import numpy as np
from paddle.incubate.hapi.vision.transforms import functional as F from paddle.vision.transforms import functional as F
fake_img = np.random.rand(256, 256, 3) fake_img = np.random.rand(256, 256, 3)
...@@ -155,7 +155,7 @@ def pad(img, padding, fill=(0, 0, 0), padding_mode='constant'): ...@@ -155,7 +155,7 @@ def pad(img, padding, fill=(0, 0, 0), padding_mode='constant'):
import numpy as np import numpy as np
from paddle.incubate.hapi.vision.transforms.functional import pad from paddle.vision.transforms.functional import pad
fake_img = np.random.rand(500, 500, 3).astype('float32') fake_img = np.random.rand(500, 500, 3).astype('float32')
...@@ -243,7 +243,7 @@ def rotate(img, ...@@ -243,7 +243,7 @@ def rotate(img,
import numpy as np import numpy as np
from paddle.incubate.hapi.vision.transforms.functional import rotate from paddle.vision.transforms.functional import rotate
fake_img = np.random.rand(500, 500, 3).astype('float32') fake_img = np.random.rand(500, 500, 3).astype('float32')
...@@ -305,7 +305,7 @@ def to_grayscale(img, num_output_channels=1): ...@@ -305,7 +305,7 @@ def to_grayscale(img, num_output_channels=1):
import numpy as np import numpy as np
from paddle.incubate.hapi.vision.transforms.functional import to_grayscale from paddle.vision.transforms.functional import to_grayscale
fake_img = np.random.rand(500, 500, 3).astype('float32') fake_img = np.random.rand(500, 500, 3).astype('float32')
......
...@@ -76,8 +76,8 @@ class Compose(object): ...@@ -76,8 +76,8 @@ class Compose(object):
.. code-block:: python .. code-block:: python
from paddle.incubate.hapi.datasets import Flowers from paddle.vision.datasets import Flowers
from paddle.incubate.hapi.vision.transforms import Compose, ColorJitter, Resize from paddle.vision.transforms import Compose, ColorJitter, Resize
transform = Compose([ColorJitter(), Resize(size=608)]) transform = Compose([ColorJitter(), Resize(size=608)])
flowers = Flowers(mode='test', transform=transform) flowers = Flowers(mode='test', transform=transform)
...@@ -130,9 +130,9 @@ class BatchCompose(object): ...@@ -130,9 +130,9 @@ class BatchCompose(object):
import numpy as np import numpy as np
from paddle.io import DataLoader from paddle.io import DataLoader
from paddle.incubate.hapi import set_device from paddle import set_device
from paddle.incubate.hapi.datasets import Flowers from paddle.vision.datasets import Flowers
from paddle.incubate.hapi.vision.transforms import Compose, BatchCompose, Resize from paddle.vision.transforms import Compose, BatchCompose, Resize
class NormalizeBatch(object): class NormalizeBatch(object):
def __init__(self, def __init__(self,
...@@ -222,7 +222,7 @@ class Resize(object): ...@@ -222,7 +222,7 @@ class Resize(object):
import numpy as np import numpy as np
from paddle.incubate.hapi.vision.transforms import Resize from paddle.vision.transforms import Resize
transform = Resize(size=224) transform = Resize(size=224)
...@@ -259,7 +259,7 @@ class RandomResizedCrop(object): ...@@ -259,7 +259,7 @@ class RandomResizedCrop(object):
import numpy as np import numpy as np
from paddle.incubate.hapi.vision.transforms import RandomResizedCrop from paddle.vision.transforms import RandomResizedCrop
transform = RandomResizedCrop(224) transform = RandomResizedCrop(224)
...@@ -336,7 +336,7 @@ class CenterCropResize(object): ...@@ -336,7 +336,7 @@ class CenterCropResize(object):
import numpy as np import numpy as np
from paddle.incubate.hapi.vision.transforms import CenterCropResize from paddle.vision.transforms import CenterCropResize
transform = CenterCropResize(224) transform = CenterCropResize(224)
...@@ -380,7 +380,7 @@ class CenterCrop(object): ...@@ -380,7 +380,7 @@ class CenterCrop(object):
import numpy as np import numpy as np
from paddle.incubate.hapi.vision.transforms import CenterCrop from paddle.vision.transforms import CenterCrop
transform = CenterCrop(224) transform = CenterCrop(224)
...@@ -422,7 +422,7 @@ class RandomHorizontalFlip(object): ...@@ -422,7 +422,7 @@ class RandomHorizontalFlip(object):
import numpy as np import numpy as np
from paddle.incubate.hapi.vision.transforms import RandomHorizontalFlip from paddle.vision.transforms import RandomHorizontalFlip
transform = RandomHorizontalFlip(224) transform = RandomHorizontalFlip(224)
...@@ -453,7 +453,7 @@ class RandomVerticalFlip(object): ...@@ -453,7 +453,7 @@ class RandomVerticalFlip(object):
import numpy as np import numpy as np
from paddle.incubate.hapi.vision.transforms import RandomVerticalFlip from paddle.vision.transforms import RandomVerticalFlip
transform = RandomVerticalFlip(224) transform = RandomVerticalFlip(224)
...@@ -488,7 +488,7 @@ class Normalize(object): ...@@ -488,7 +488,7 @@ class Normalize(object):
import numpy as np import numpy as np
from paddle.incubate.hapi.vision.transforms import Normalize from paddle.vision.transforms import Normalize
normalize = Normalize(mean=[0.5, 0.5, 0.5], normalize = Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5]) std=[0.5, 0.5, 0.5])
...@@ -530,7 +530,7 @@ class Permute(object): ...@@ -530,7 +530,7 @@ class Permute(object):
import numpy as np import numpy as np
from paddle.incubate.hapi.vision.transforms import Permute from paddle.vision.transforms import Permute
transform = Permute() transform = Permute()
...@@ -569,7 +569,7 @@ class GaussianNoise(object): ...@@ -569,7 +569,7 @@ class GaussianNoise(object):
import numpy as np import numpy as np
from paddle.incubate.hapi.vision.transforms import GaussianNoise from paddle.vision.transforms import GaussianNoise
transform = GaussianNoise() transform = GaussianNoise()
...@@ -603,7 +603,7 @@ class BrightnessTransform(object): ...@@ -603,7 +603,7 @@ class BrightnessTransform(object):
import numpy as np import numpy as np
from paddle.incubate.hapi.vision.transforms import BrightnessTransform from paddle.vision.transforms import BrightnessTransform
transform = BrightnessTransform(0.4) transform = BrightnessTransform(0.4)
...@@ -642,7 +642,7 @@ class ContrastTransform(object): ...@@ -642,7 +642,7 @@ class ContrastTransform(object):
import numpy as np import numpy as np
from paddle.incubate.hapi.vision.transforms import ContrastTransform from paddle.vision.transforms import ContrastTransform
transform = ContrastTransform(0.4) transform = ContrastTransform(0.4)
...@@ -682,7 +682,7 @@ class SaturationTransform(object): ...@@ -682,7 +682,7 @@ class SaturationTransform(object):
import numpy as np import numpy as np
from paddle.incubate.hapi.vision.transforms import SaturationTransform from paddle.vision.transforms import SaturationTransform
transform = SaturationTransform(0.4) transform = SaturationTransform(0.4)
...@@ -723,7 +723,7 @@ class HueTransform(object): ...@@ -723,7 +723,7 @@ class HueTransform(object):
import numpy as np import numpy as np
from paddle.incubate.hapi.vision.transforms import HueTransform from paddle.vision.transforms import HueTransform
transform = HueTransform(0.4) transform = HueTransform(0.4)
...@@ -775,7 +775,7 @@ class ColorJitter(object): ...@@ -775,7 +775,7 @@ class ColorJitter(object):
import numpy as np import numpy as np
from paddle.incubate.hapi.vision.transforms import ColorJitter from paddle.vision.transforms import ColorJitter
transform = ColorJitter(0.4) transform = ColorJitter(0.4)
...@@ -822,7 +822,7 @@ class RandomCrop(object): ...@@ -822,7 +822,7 @@ class RandomCrop(object):
import numpy as np import numpy as np
from paddle.incubate.hapi.vision.transforms import RandomCrop from paddle.vision.transforms import RandomCrop
transform = RandomCrop(224) transform = RandomCrop(224)
...@@ -909,7 +909,7 @@ class RandomErasing(object): ...@@ -909,7 +909,7 @@ class RandomErasing(object):
import numpy as np import numpy as np
from paddle.incubate.hapi.vision.transforms import RandomCrop from paddle.vision.transforms import RandomCrop
transform = RandomCrop(224) transform = RandomCrop(224)
...@@ -995,7 +995,7 @@ class Pad(object): ...@@ -995,7 +995,7 @@ class Pad(object):
import numpy as np import numpy as np
from paddle.incubate.hapi.vision.transforms import Pad from paddle.vision.transforms import Pad
transform = Pad(2) transform = Pad(2)
...@@ -1051,7 +1051,7 @@ class RandomRotate(object): ...@@ -1051,7 +1051,7 @@ class RandomRotate(object):
import numpy as np import numpy as np
from paddle.incubate.hapi.vision.transforms import RandomRotate from paddle.vision.transforms import RandomRotate
transform = RandomRotate(90) transform = RandomRotate(90)
...@@ -1119,7 +1119,7 @@ class Grayscale(object): ...@@ -1119,7 +1119,7 @@ class Grayscale(object):
import numpy as np import numpy as np
from paddle.incubate.hapi.vision.transforms import Grayscale from paddle.vision.transforms import Grayscale
transform = Grayscale() transform = Grayscale()
......
...@@ -188,12 +188,13 @@ packages=['paddle', ...@@ -188,12 +188,13 @@ packages=['paddle',
'paddle.fluid.incubate.fleet.parameter_server.ir', 'paddle.fluid.incubate.fleet.parameter_server.ir',
'paddle.fluid.incubate.fleet.collective', 'paddle.fluid.incubate.fleet.collective',
'paddle.fluid.incubate.fleet.utils', 'paddle.fluid.incubate.fleet.utils',
'paddle.incubate.hapi', 'paddle.hapi',
'paddle.incubate.hapi.datasets', 'paddle.vision',
'paddle.incubate.hapi.vision', 'paddle.vision.models',
'paddle.incubate.hapi.vision.models', 'paddle.vision.transforms',
'paddle.incubate.hapi.vision.transforms', 'paddle.vision.datasets',
'paddle.incubate.hapi.text', 'paddle.text',
'paddle.text.datasets',
'paddle.incubate', 'paddle.incubate',
'paddle.io', 'paddle.io',
'paddle.optimizer', 'paddle.optimizer',
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册