未验证 提交 f7fb4c22 编写于 作者: Q qingqing01 提交者: GitHub

Move hapi to python/paddle root dir. (#26442)

* Move hapi form paddle/incubate to paddle

* Remove vision/datasets/utils.py and clean code

* Add sample code for conll05

* Print pull path when saving model

* Fix sample code after paramter_list of SGD is changed to parameters

* Fix bug in wmt16 datase
上级 9a1ea9b4
......@@ -95,7 +95,6 @@ if (WITH_TESTING)
add_subdirectory(paddle/fluid/tests)
add_subdirectory(paddle/fluid/contrib/tests)
add_subdirectory(paddle/fluid/contrib/slim/tests)
add_subdirectory(paddle/incubate/hapi/tests)
endif()
install(DIRECTORY ${PADDLE_PYTHON_PACKAGE_DIR}
DESTINATION opt/paddle/share/wheels
......
......@@ -256,8 +256,6 @@ from .device import get_device
# from .tensor.tensor import LoDTensor #DEFINE_ALIAS
# from .tensor.tensor import LoDTensorArray #DEFINE_ALIAS
from . import incubate
from .incubate import hapi
from .fluid.dygraph.base import enable_dygraph as disable_static #DEFINE_ALIAS
from .fluid.dygraph.base import disable_dygraph as enable_static #DEFINE_ALIAS
from .fluid.framework import in_dygraph_mode as in_dynamic_mode #DEFINE_ALIAS
......@@ -265,3 +263,9 @@ from .fluid.dygraph.base import no_grad #DEFINE_ALIAS
from . import jit
from . import static
# high-level api
from .hapi import Model
from .hapi import callbacks
import paddle.text
import paddle.vision
......@@ -196,3 +196,14 @@ def cluster_files_reader(files_pattern,
yield line
return reader
def _check_exists_and_download(path, url, md5, module_name, download=True):
if path and os.path.exists(path):
return path
if download:
return paddle.dataset.common.download(url, module_name, md5)
else:
raise ValueError('{} not exists and auto download disabled'.format(
path))
......@@ -36,7 +36,7 @@ import tarfile
import gzip
from collections import defaultdict
import paddle.dataset.common
import paddle
import paddle.compat as cpt
__all__ = [
......
......@@ -13,9 +13,11 @@
# limitations under the License.
# TODO: define the functions to manipulate devices
import re
from paddle.fluid import core
from paddle.fluid import framework
import re
from paddle.fluid.dygraph.parallel import ParallelEnv
__all__ = [
'get_cudnn_version',
......@@ -81,8 +83,8 @@ def set_device(device):
.. code-block:: python
import paddle
paddle.enable_imperative()
paddle.fluid.dygraph.set_device("gpu:0")
paddle.disable_static()
paddle.set_device("cpu")
x1 = paddle.ones(name='x1', shape=[1, 2], dtype='int32')
x2 = paddle.zeros(name='x2', shape=[1, 2], dtype='int32')
data = paddle.stack([x1,x2], axis=1)
......@@ -90,18 +92,28 @@ def set_device(device):
lower_device = device.lower()
if lower_device == 'cpu':
place = core.CPUPlace()
framework._set_expected_place(place)
elif lower_device == 'gpu':
if not core.is_compiled_with_cuda():
raise ValueError(
"The device should not be 'gpu', " \
"since PaddlePaddle is not compiled with CUDA")
place = core.CUDAPlace(ParallelEnv().dev_id)
else:
avaliable_device = ((lower_device == 'cpu') or
re.match(r'gpu:\d+', lower_device))
avaliable_device = re.match(r'gpu:\d+', lower_device)
if not avaliable_device:
raise ValueError(
"The device must be a string which is like 'cpu' or 'gpu:0'")
"The device must be a string which is like 'cpu', 'gpu' or 'gpu:0'"
)
if not core.is_compiled_with_cuda():
raise ValueError(
"The device should not be {}, since PaddlePaddle is " \
"not compiled with CUDA".format(avaliable_device))
device_info_list = device.split(':', 1)
device_id = device_info_list[1]
device_id = int(device_id)
place = core.CUDAPlace(device_id)
framework._set_expected_place(place)
return place
def get_device():
......@@ -116,8 +128,8 @@ def get_device():
.. code-block:: python
import paddle
paddle.enable_imperative()
device = paddle.fluid.dygraph.get_device()
paddle.disable_static()
device = paddle.get_device()
"""
device = ''
......
......@@ -69,7 +69,7 @@ class ImperativeQuantAware(object):
from paddle.fluid.contrib.slim.quantization \
import ImperativeQuantAware
from paddle.incubate.hapi.vision.models \
from paddle.vision.models \
import resnet
model = resnet.resnet50(pretrained=True)
......
......@@ -16,10 +16,12 @@ from __future__ import print_function
from __future__ import division
import numpy as np
import math
from .sampler import Sampler, SequenceSampler, RandomSampler
from .dataset import Dataset, IterableDataset
__all__ = ["BatchSampler"]
__all__ = ["BatchSampler", "DistributedBatchSampler"]
class BatchSampler(Sampler):
......@@ -158,3 +160,185 @@ class _InfiniteIterableSampler(object):
def __iter__(self):
while True:
yield [None] * self.batch_size
class DistributedBatchSampler(BatchSampler):
"""Sampler that restricts data loading to a subset of the dataset.
In such case, each process can pass a DistributedBatchSampler instance
as a DataLoader sampler, and load a subset of the original dataset that
is exclusive to it.
.. note::
Dataset is assumed to be of constant size.
Args:
dataset(paddle.io.Dataset): this could be a `paddle.io.Dataset` implement
or other python object which implemented
`__len__` for BatchSampler to get sample
number of data source.
batch_size(int): sample indice number in a mini-batch indices.
num_replicas(int, optional): porcess number in distributed training.
If :attr:`num_replicas` is None, :attr:`num_replicas` will be
retrieved from :code:`paddle.fluid.dygraph.parallel.ParallenEnv`.
Default None.
rank(int, optional): the rank of the current process among :attr:`num_replicas`
processes. If :attr:`rank` is None, :attr:`rank` is retrieved from
:code:`paddle.fluid.dygraph.parallel.ParallenEnv`. Default None.
shuffle(bool): whther to shuffle indices order before genrating
batch indices. Default False.
drop_last(bool): whether drop the last incomplete batch dataset size
is not divisible by the batch size. Default False
Examples:
.. code-block:: python
import numpy as np
from paddle.io import Dataset, DistributedBatchSampler
# init with dataset
class RandomDataset(Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples
def __getitem__(self, idx):
image = np.random.random([784]).astype('float32')
label = np.random.randint(0, 9, (1, )).astype('int64')
return image, label
def __len__(self):
return self.num_samples
dataset = RandomDataset(100)
sampler = DistributedBatchSampler(dataset, batch_size=64)
for data in sampler:
# do something
break
"""
def __init__(self,
dataset,
batch_size,
num_replicas=None,
rank=None,
shuffle=False,
drop_last=False):
self.dataset = dataset
assert isinstance(batch_size, int) and batch_size > 0, \
"batch_size should be a positive integer"
self.batch_size = batch_size
assert isinstance(shuffle, bool), \
"shuffle should be a boolean value"
self.shuffle = shuffle
assert isinstance(drop_last, bool), \
"drop_last should be a boolean number"
from paddle.fluid.dygraph.parallel import ParallelEnv
if num_replicas is not None:
assert isinstance(num_replicas, int) and num_replicas > 0, \
"num_replicas should be a positive integer"
self.nranks = num_replicas
else:
self.nranks = ParallelEnv().nranks
if rank is not None:
assert isinstance(rank, int) and rank >= 0, \
"rank should be a non-negative integer"
self.local_rank = rank
else:
self.local_rank = ParallelEnv().local_rank
self.drop_last = drop_last
self.epoch = 0
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.nranks))
self.total_size = self.num_samples * self.nranks
def __iter__(self):
num_samples = len(self.dataset)
indices = np.arange(num_samples).tolist()
indices += indices[:(self.total_size - len(indices))]
assert len(indices) == self.total_size
if self.shuffle:
np.random.RandomState(self.epoch).shuffle(indices)
self.epoch += 1
# subsample
def _get_indices_by_batch_size(indices):
subsampled_indices = []
last_batch_size = self.total_size % (self.batch_size * self.nranks)
assert last_batch_size % self.nranks == 0
last_local_batch_size = last_batch_size // self.nranks
for i in range(self.local_rank * self.batch_size,
len(indices) - last_batch_size,
self.batch_size * self.nranks):
subsampled_indices.extend(indices[i:i + self.batch_size])
indices = indices[len(indices) - last_batch_size:]
subsampled_indices.extend(indices[
self.local_rank * last_local_batch_size:(
self.local_rank + 1) * last_local_batch_size])
return subsampled_indices
if self.nranks > 1:
indices = _get_indices_by_batch_size(indices)
assert len(indices) == self.num_samples
_sample_iter = iter(indices)
batch_indices = []
for idx in _sample_iter:
batch_indices.append(idx)
if len(batch_indices) == self.batch_size:
yield batch_indices
batch_indices = []
if not self.drop_last and len(batch_indices) > 0:
yield batch_indices
def __len__(self):
num_samples = self.num_samples
num_samples += int(not self.drop_last) * (self.batch_size - 1)
return num_samples // self.batch_size
def set_epoch(self, epoch):
"""
Sets the epoch number. When :attr:`shuffle=True`, this number is used
as seeds of random numbers. By default, users may not set this, all
replicas (workers) use a different random ordering for each epoch.
If set same number at each epoch, this sampler will yield the same
ordering at all epoches.
Arguments:
epoch (int): Epoch number.
Examples:
.. code-block:: python
import numpy as np
from paddle.io import Dataset, DistributedBatchSampler
# init with dataset
class RandomDataset(Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples
def __getitem__(self, idx):
image = np.random.random([784]).astype('float32')
label = np.random.randint(0, 9, (1, )).astype('int64')
return image, label
def __len__(self):
return self.num_samples
dataset = RandomDataset(100)
sampler = DistributedBatchSampler(dataset, batch_size=64)
for epoch in range(10):
sampler.set_epoch(epoch)
"""
self.epoch = epoch
......@@ -18,6 +18,7 @@ import unittest
import paddle.fluid as fluid
from paddle.io import BatchSampler, Dataset, Sampler, SequenceSampler, RandomSampler
from paddle.io import DistributedBatchSampler
class RandomDataset(Dataset):
......@@ -194,5 +195,15 @@ class TestBatchSamplerWithSamplerShuffle(unittest.TestCase):
pass
class TestDistributedBatchSamplerWithSampler(TestBatchSampler):
def init_batch_sampler(self):
dataset = RandomDataset(1000, 10)
bs = DistributedBatchSampler(
dataset=dataset,
batch_size=self.batch_size,
drop_last=self.drop_last)
return bs
if __name__ == '__main__':
unittest.main()
......@@ -13,34 +13,15 @@
# limitations under the License.
from . import logger
from . import progressbar
from . import callbacks
from . import download
from . import model
from .model import *
from . import datasets
from . import distributed
from . import vision
from . import text
from . import utils
from . import device
from .device import *
from .dygraph_layer_patch import monkey_patch_layer
logger.setup_logger()
__all__ = [
'callbacks',
'datasets',
'distributed',
'download',
'vision',
'text',
'utils',
] + model.__all__ + device.__all__
__all__ = ['callbacks'] + model.__all__
monkey_patch_layer()
......@@ -12,6 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from paddle.fluid.dygraph.parallel import ParallelEnv
from .progressbar import ProgressBar
......@@ -117,10 +119,10 @@ class Callback(object):
.. code-block:: python
from paddle.incubate.hapi.callbacks import Callback
import paddle
# build a simple model checkpoint callback
class ModelCheckpoint(Callback):
class ModelCheckpoint(paddle.callbacks.Callback):
def __init__(self, save_freq=1, save_dir=None):
self.save_freq = save_freq
self.save_dir = save_dir
......@@ -147,12 +149,12 @@ class Callback(object):
- 'verbose': an integer. Verbose mode is 0, 1 or 2.
0 = silent, 1 = progress bar, 2 = one line per epoch.
- 'metrics': a list of str. Names of metrics, including 'loss'
and the names of hapi.Metric.
and the names of paddle.metric.Metric.
"""
self.params = params
def set_model(self, model):
"""model is instance of hapi.Model.
"""model is instance of paddle.Model.
"""
self.model = model
......@@ -168,7 +170,7 @@ class Callback(object):
Args:
logs (dict): The logs is a dict or None. The keys of logs
passed by hapi.Model contains 'loss', metric names and
passed by paddle.Model contains 'loss', metric names and
`batch_size`.
"""
......@@ -177,10 +179,10 @@ class Callback(object):
Args:
logs (dict): The logs is a dict or None. The keys of logs
passed by hapi.Model contains 'steps' and 'metrics',
passed by paddle.Model contains 'steps' and 'metrics',
The `steps` is number of total steps of validation dataset.
The `metrics` is a list of str including 'loss' and the names
of hapi.Metric.
of paddle.metric.Metric.
"""
def on_eval_end(self, logs=None):
......@@ -188,7 +190,7 @@ class Callback(object):
Args:
logs (dict): The logs is a dict or None. The `logs` passed by
hapi.Model is a dict contains 'loss', metrics and 'batch_size'
paddle.Model is a dict contains 'loss', metrics and 'batch_size'
of last batch of validation dataset.
"""
......@@ -212,7 +214,7 @@ class Callback(object):
Args:
epoch (int): The index of epoch.
logs (dict): The logs is a dict or None. The `logs` passed by
hapi.Model is None.
paddle.Model is None.
"""
def on_epoch_end(self, epoch, logs=None):
......@@ -221,7 +223,7 @@ class Callback(object):
Args:
epoch (int): The index of epoch.
logs (dict): The logs is a dict or None. The `logs` passed by
hapi.Model is a dict, contains 'loss', metrics and 'batch_size'
paddle.Model is a dict, contains 'loss', metrics and 'batch_size'
of last batch.
"""
......@@ -231,7 +233,7 @@ class Callback(object):
Args:
step (int): The index of step (or iteration).
logs (dict): The logs is a dict or None. The `logs` passed by
hapi.Model is empty.
paddle.Model is empty.
"""
def on_train_batch_end(self, step, logs=None):
......@@ -240,7 +242,7 @@ class Callback(object):
Args:
step (int): The index of step (or iteration).
logs (dict): The logs is a dict or None. The `logs` passed by
hapi.Model is a dict, contains 'loss', metrics and 'batch_size'
paddle.Model is a dict, contains 'loss', metrics and 'batch_size'
of current batch.
"""
......@@ -250,7 +252,7 @@ class Callback(object):
Args:
step (int): The index of step (or iteration).
logs (dict): The logs is a dict or None. The `logs` passed by
hapi.Model is empty.
paddle.Model is empty.
"""
def on_eval_batch_end(self, step, logs=None):
......@@ -259,7 +261,7 @@ class Callback(object):
Args:
step (int): The index of step (or iteration).
logs (dict): The logs is a dict or None. The `logs` passed by
hapi.Model is a dict, contains 'loss', metrics and 'batch_size'
paddle.Model is a dict, contains 'loss', metrics and 'batch_size'
of current batch.
"""
......@@ -292,23 +294,22 @@ class ProgBarLogger(Callback):
.. code-block:: python
import paddle
import paddle.fluid as fluid
import paddle.incubate.hapi as hapi
from paddle.static import InputSpec
inputs = [hapi.Input([-1, 1, 28, 28], 'float32', 'image')]
labels = [hapi.Input([None, 1], 'int64', 'label')]
inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
labels = [InputSpec([None, 1], 'int64', 'label')]
train_dataset = hapi.datasets.MNIST(mode='train')
train_dataset = paddle.vision.datasets.MNIST(mode='train')
model = hapi.Model(hapi.vision.LeNet(classifier_activation=None),
model = paddle.Model(paddle.vision.LeNet(classifier_activation=None),
inputs, labels)
optim = fluid.optimizer.Adam(0.001)
optim = paddle.optimizer.Adam(0.001)
model.prepare(optimizer=optim,
loss=paddle.nn.CrossEntropyLoss(),
metrics=paddle.metric.Accuracy())
callback = hapi.callbacks.ProgBarLogger(log_freq=10)
callback = paddle.callbacks.ProgBarLogger(log_freq=10)
model.fit(train_dataset, batch_size=64, callbacks=callback)
"""
......@@ -428,23 +429,22 @@ class ModelCheckpoint(Callback):
.. code-block:: python
import paddle
import paddle.fluid as fluid
import paddle.incubate.hapi as hapi
from paddle.static import InputSpec
inputs = [hapi.Input([-1, 1, 28, 28], 'float32', 'image')]
labels = [hapi.Input([None, 1], 'int64', 'label')]
inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
labels = [InputSpec([None, 1], 'int64', 'label')]
train_dataset = hapi.datasets.MNIST(mode='train')
train_dataset = paddle.vision.datasets.MNIST(mode='train')
model = hapi.Model(hapi.vision.LeNet(classifier_activation=None),
model = paddle.Model(paddle.vision.LeNet(classifier_activation=None),
inputs, labels)
optim = fluid.optimizer.Adam(0.001)
optim = paddle.optimizer.Adam(0.001)
model.prepare(optimizer=optim,
loss=paddle.nn.CrossEntropyLoss(),
metrics=paddle.metric.Accuracy())
callback = hapi.callbacks.ModelCheckpoint(save_dir='./temp')
callback = paddle.callbacks.ModelCheckpoint(save_dir='./temp')
model.fit(train_dataset, batch_size=64, callbacks=callback)
"""
......@@ -461,11 +461,11 @@ class ModelCheckpoint(Callback):
def on_epoch_end(self, epoch, logs=None):
if self._is_save() and self.epoch % self.save_freq == 0:
path = '{}/{}'.format(self.save_dir, epoch)
print('save checkpoint at {}'.format(path))
print('save checkpoint at {}'.format(os.path.abspath(path)))
self.model.save(path)
def on_train_end(self, logs=None):
if self._is_save():
path = '{}/final'.format(self.save_dir)
print('save checkpoint at {}'.format(path))
print('save checkpoint at {}'.format(os.path.abspath(path)))
self.model.save(path)
......@@ -16,8 +16,7 @@ import warnings
import paddle.fluid as fluid
from paddle.fluid.framework import in_dygraph_mode
from .device import _get_device
from paddle.fluid.framework import _current_expected_place as _get_device
def monkey_patch_layer():
......
......@@ -22,37 +22,182 @@ import pickle
import numpy as np
import six
import warnings
import time
import socket
import contextlib
from collections import Iterable
import paddle
from paddle import fluid
from paddle.fluid import core
from paddle.fluid.framework import in_dygraph_mode, Variable, ParamBase, _current_expected_place
# Note: Use alias `Input` temporarily before releasing hapi feature.
from paddle.static import InputSpec as Input
from paddle.fluid.framework import in_dygraph_mode, Variable
from paddle.fluid.framework import _current_expected_place as _get_device
from paddle.fluid.executor import global_scope
from paddle.fluid.io import is_belong_to_optimizer
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import ParallelEnv
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator, FunctionSpec
from paddle.fluid.layers.utils import flatten
from paddle.fluid.layers import collective
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
from paddle.fluid.incubate.fleet.base import role_maker
from paddle.fluid.executor import scope_guard, Executor
from paddle.io import DataLoader, Dataset
from paddle.io import DataLoader, Dataset, DistributedBatchSampler
from paddle.fluid.executor import scope_guard, Executor
from paddle.fluid.dygraph.layers import Layer
from paddle.metric import Metric
from .distributed import DistributedBatchSampler, _all_gather, prepare_distributed_context, _parallel_context_initialized
from paddle.static import InputSpec as Input
from .callbacks import config_callbacks
from .utils import to_list, to_numpy, flatten_list, restore_flatten_list, extract_args
from .device import _get_device
__all__ = [
'Model',
'Input',
]
__all__ = ['Model', ]
_parallel_context_initialized = False
def to_list(value):
if value is None:
return value
if isinstance(value, (list, tuple)):
return list(value)
return [value]
def to_numpy(var):
assert isinstance(var, (Variable, fluid.core.VarBase)), "not a variable"
if isinstance(var, fluid.core.VarBase):
return var.numpy()
t = global_scope().find_var(var.name).get_tensor()
return np.array(t)
def flatten_list(l):
assert isinstance(l, list), "not a list"
outl = []
splits = []
for sl in l:
assert isinstance(sl, list), "sub content not a list"
splits.append(len(sl))
outl += sl
return outl, splits
def restore_flatten_list(l, splits):
outl = []
for split in splits:
assert len(l) >= split, "list length invalid"
sl, l = l[:split], l[split:]
outl.append(sl)
return outl
def extract_args(func):
if hasattr(inspect, 'getfullargspec'):
return inspect.getfullargspec(func)[0]
else:
return inspect.getargspec(func)[0]
def _all_gather(x, nranks, ring_id=0, use_calc_stream=True):
return collective._c_allgather(
x, nranks, ring_id=ring_id, use_calc_stream=use_calc_stream)
def wait_server_ready(endpoints):
assert not isinstance(endpoints, six.string_types)
while True:
all_ok = True
not_ready_endpoints = []
for ep in endpoints:
ip_port = ep.split(":")
with contextlib.closing(
socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
sock.settimeout(2)
result = sock.connect_ex((ip_port[0], int(ip_port[1])))
if result != 0:
all_ok = False
not_ready_endpoints.append(ep)
if not all_ok:
time.sleep(3)
else:
break
def init_communicator(program, rank, nranks, wait_port, current_endpoint,
endpoints):
if nranks < 2:
return
other_endpoints = endpoints[:]
other_endpoints.remove(current_endpoint)
if rank == 0 and wait_port:
wait_server_ready(other_endpoints)
block = program.global_block()
nccl_id_var = block.create_var(
name=fluid.unique_name.generate('nccl_id'),
persistable=True,
type=fluid.core.VarDesc.VarType.RAW)
block.append_op(
type='c_gen_nccl_id',
inputs={},
outputs={'Out': nccl_id_var},
attrs={
'rank': rank,
'endpoint': current_endpoint,
'other_endpoints': other_endpoints
})
block.append_op(
type='c_comm_init',
inputs={'X': nccl_id_var},
outputs={},
attrs={
'nranks': nranks,
'rank': rank,
'ring_id': 0,
})
def prepare_distributed_context(place=None):
if place is None:
place = fluid.CUDAPlace(ParallelEnv().dev_id) if ParallelEnv().nranks > 1 \
else fluid.CUDAPlace(0)
strategy = fluid.dygraph.parallel.ParallelStrategy()
strategy.nranks = ParallelEnv().nranks
strategy.local_rank = ParallelEnv().local_rank
strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
strategy.current_endpoint = ParallelEnv().current_endpoint
if strategy.nranks < 2:
return
global _parallel_context_initialized
if not _parallel_context_initialized and isinstance(place, fluid.CUDAPlace):
def _init_context():
communicator_prog = fluid.Program()
init_communicator(communicator_prog, strategy.local_rank,
strategy.nranks, True, strategy.current_endpoint,
strategy.trainer_endpoints)
exe = fluid.Executor(place)
exe.run(communicator_prog)
if fluid.in_dygraph_mode():
fluid.disable_dygraph()
_init_context()
fluid.enable_dygraph(place)
else:
_init_context()
else:
assert ("Only support CUDAPlace for now.")
_parallel_context_initialized = True
return strategy
class StaticGraphAdapter(object):
......@@ -640,55 +785,51 @@ class Model(object):
Dynamic graph and static graph are supported at the same time,
switched by `paddle.disable_static()`. The usage is as follows.
But note, the switching between dynamic and static should be before
instantiating a Model. The input description, i.e, hapi.Input,
instantiating a Model. The input description, i.e, paddle.static.InputSpec,
must be required for static graph.
Args:
network (paddle.nn.Layer): The network is an instance of
paddle.nn.Layer.
inputs (Input|list|dict|None): `inputs`, entry points of network,
could be a Input layer, or lits of Input layers,
or dict (name: Input), or None. For static graph,
inputs (InputSpec|list|dict|None): `inputs`, entry points of network,
could be a InputSpec instance, or lits of InputSpec instances,
or dict ({name: InputSpec}), or None. For static graph,
inputs must be set. For dynamic graph, it could be None.
labels (Input|list|None): `labels`, entry points of network,
could be a Input layer or lits of Input layers, or None.
For static graph, if labels is required in loss,
labels (InputSpec|list|None): `labels`, entry points of network,
could be a InputSpec instnace or lits of InputSpec instances,
or None. For static graph, if labels is required in loss,
labels must be set. Otherwise, it could be None.
Usage:
Examples:
.. code-block:: python
import paddle
import paddle.incubate.hapi as hapi
class MyNet(paddle.nn.Layer):
def __init__(self, classifier_act=None):
super(MyNet, self).__init__()
self._fc1 = paddle.nn.Linear(784, 200, act=classifier_act)
def forward(self, x):
y = self._fc1(x)
return y
import paddle.nn as nn
from paddle.static import InputSpec
device = hapi.set_device('gpu')
device = paddle.set_device('cpu') # or 'gpu'
# if use static graph, do not set
paddle.disable_static(device)
net = nn.Sequential(
nn.Linear(784, 200),
nn.Tanh(),
nn.Linear(200, 10))
# inputs and labels are not required for dynamic graph.
input = hapi.Input([None, 784], 'float32', 'x')
label = hapi.Input([None, 1], 'int64', 'label')
input = InputSpec([None, 784], 'float32', 'x')
label = InputSpec([None, 1], 'int64', 'label')
model = hapi.Model(MyNet(), input, label)
model = paddle.Model(net, input, label)
optim = paddle.optimizer.SGD(learning_rate=1e-3,
parameter_list=model.parameters())
parameters=model.parameters())
model.prepare(optim,
paddle.nn.CrossEntropyLoss(),
paddle.metric.Accuracy())
mnist_data = hapi.datasets.MNIST(mode='train', chw_format=False)
model.fit(mnist_data, epochs=2, batch_size=32, verbose=1)
data = paddle.vision.datasets.MNIST(mode='train', chw_format=False)
model.fit(data, epochs=2, batch_size=32, verbose=1)
"""
def __init__(self, network, inputs=None, labels=None):
......@@ -736,25 +877,22 @@ class Model(object):
import numpy as np
import paddle
import paddle.incubate.hapi as hapi
import paddle.nn as nn
from paddle.static import InputSpec
class MyNet(paddle.nn.Layer):
def __init__(self, classifier_act=None):
super(MyNet, self).__init__()
self._fc = paddle.nn.Linear(784, 10, act=classifier_act)
def forward(self, x):
y = self._fc(x)
return y
device = hapi.set_device('gpu')
device = paddle.set_device('cpu') # or 'gpu'
paddle.disable_static(device)
input = hapi.Input([None, 784], 'float32', 'x')
label = hapi.Input([None, 1], 'int64', 'label')
model = hapi.Model(MyNet(), input, label)
net = nn.Sequential(
nn.Linear(784, 200),
nn.Tanh(),
nn.Linear(200, 10))
input = InputSpec([None, 784], 'float32', 'x')
label = InputSpec([None, 1], 'int64', 'label')
model = paddle.Model(net, input, label)
optim = paddle.optimizer.SGD(learning_rate=1e-3,
parameter_list=model.parameters())
parameters=model.parameters())
model.prepare(optim, paddle.nn.CrossEntropyLoss())
data = np.random.random(size=(4,784)).astype(np.float32)
label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)
......@@ -784,25 +922,22 @@ class Model(object):
import numpy as np
import paddle
import paddle.incubate.hapi as hapi
class MyNet(paddle.nn.Layer):
def __init__(self, classifier_act=None):
super(MyNet, self).__init__()
self._fc = paddle.nn.Linear(784, 10, act=classifier_act)
def forward(self, x):
y = self._fc(x)
return y
import paddle.nn as nn
from paddle.static import InputSpec
device = hapi.set_device('gpu')
device = paddle.set_device('cpu') # or 'gpu'
paddle.disable_static(device)
input = hapi.Input([None, 784], 'float32', 'x')
label = hapi.Input([None, 1], 'int64', 'label')
model = hapi.Model(MyNet(), input, label)
net = nn.Sequential(
nn.Linear(784, 200),
nn.Tanh(),
nn.Linear(200, 10))
input = InputSpec([None, 784], 'float32', 'x')
label = InputSpec([None, 1], 'int64', 'label')
model = paddle.Model(net, input, label)
optim = paddle.optimizer.SGD(learning_rate=1e-3,
parameter_list=model.parameters())
parameters=model.parameters())
model.prepare(optim,
paddle.nn.CrossEntropyLoss())
data = np.random.random(size=(4,784)).astype(np.float32)
......@@ -830,20 +965,18 @@ class Model(object):
import numpy as np
import paddle
import paddle.incubate.hapi as hapi
class MyNet(paddle.nn.Layer):
def __init__(self):
super(MyNet, self).__init__()
self._fc = paddle.nn.Linear(784, 1, act='softmax')
def forward(self, x):
y = self._fc(x)
return y
import paddle.nn as nn
device = hapi.set_device('gpu')
device = paddle.set_device('cpu') # or 'gpu'
paddle.disable_static(device)
model = hapi.Model(MyNet())
net = nn.Sequential(
nn.Linear(784, 200),
nn.Tanh(),
nn.Linear(200, 10),
nn.Softmax())
model = paddle.Model(net)
model.prepare()
data = np.random.random(size=(4,784)).astype(np.float32)
out = model.test_batch([data])
......@@ -884,38 +1017,40 @@ class Model(object):
Examples:
.. code-block:: python
import paddle
import paddle.incubate.hapi as hapi
from paddle.nn import Linear
from paddle.incubate.hapi.datasets.mnist import MNIST as MnistDataset
import paddle.nn as nn
from paddle.static import InputSpec
class Mnist(paddle.nn.Layer):
class Mnist(nn.Layer):
def __init__(self):
super(Mnist, self).__init__()
self._fc = Linear(784, 10, act='softmax')
self.net = nn.Sequential(
nn.Linear(784, 200),
nn.Tanh(),
nn.Linear(200, 10),
nn.Softmax())
# If save for inference in dygraph, need this
@paddle.jit.to_static
def forward(self, x):
y = self._fc(x)
return y
return self.net(x)
dynamic = True # False
device = hapi.set_device('cpu')
device = paddle.set_device('cpu')
# if use static graph, do not set
paddle.disable_static(device) if dynamic else None
# inputs and labels are not required for dynamic graph.
input = hapi.Input([None, 784], 'float32', 'x')
label = hapi.Input([None, 1], 'int64', 'label')
model = hapi.Model(Mnist(), input, label)
input = InputSpec([None, 784], 'float32', 'x')
label = InputSpec([None, 1], 'int64', 'label')
model = paddle.Model(Mnist(), input, label)
optim = paddle.optimizer.SGD(learning_rate=1e-3,
parameter_list=model.parameters())
parameters=model.parameters())
model.prepare(optim, paddle.nn.CrossEntropyLoss())
mnist_data = hapi.datasets.MNIST(mode='train', chw_format=False)
model.fit(mnist_data, epochs=1, batch_size=32, verbose=0)
data = paddle.vision.datasets.MNIST(mode='train', chw_format=False)
model.fit(data, epochs=1, batch_size=32, verbose=0)
model.save('checkpoint/test') # save for training
model.save('inference_model', False) # save for inference
"""
if ParallelEnv().local_rank == 0:
......@@ -958,19 +1093,17 @@ class Model(object):
.. code-block:: python
import paddle
import paddle.incubate.hapi as hapi
class MyNet(paddle.nn.Layer):
def __init__(self):
super(MyNet, self).__init__()
self._fc = paddle.nn.Linear(784, 1, act='softmax')
def forward(self, x):
y = self._fc(x)
return y
import paddle.nn as nn
device = hapi.set_device('cpu')
device = paddle.set_device('cpu')
paddle.disable_static(device)
model = hapi.Model(MyNet())
model = paddle.Model(nn.Sequential(
nn.Linear(784, 200),
nn.Tanh(),
nn.Linear(200, 10),
nn.Softmax()))
model.save('checkpoint/test')
model.load('checkpoint/test')
"""
......@@ -1033,18 +1166,14 @@ class Model(object):
.. code-block:: python
import paddle
from paddle.incubate.hapi import Model
class MyNet(paddle.nn.Layer):
def __init__(self):
super(MyNet, self).__init__()
self._fc = paddle.nn.Linear(20, 10, act='softmax')
def forward(self, x):
y = self._fc(x)
return y
import paddle.nn as nn
paddle.disable_static()
model = Model(MyNet())
model = paddle.Model(nn.Sequential(
nn.Linear(784, 200),
nn.Tanh(),
nn.Linear(200, 10)))
params = model.parameters()
"""
return self._adapter.parameters()
......@@ -1173,19 +1302,20 @@ class Model(object):
.. code-block:: python
import paddle
import paddle.incubate.hapi as hapi
from paddle.static import InputSpec
dynamic = True
device = hapi.set_device('gpu')
device = paddle.set_device('cpu') # or 'gpu'
paddle.disable_static(device) if dynamic else None
train_dataset = hapi.datasets.MNIST(mode='train')
val_dataset = hapi.datasets.MNIST(mode='test')
train_dataset = paddle.vision.datasets.MNIST(mode='train')
val_dataset = paddle.vision.datasets.MNIST(mode='test')
input = hapi.Input([None, 1, 28, 28], 'float32', 'image')
label = hapi.Input([None, 1], 'int64', 'label')
input = InputSpec([None, 1, 28, 28], 'float32', 'image')
label = InputSpec([None, 1], 'int64', 'label')
model = hapi.Model(hapi.vision.LeNet(classifier_activation=None),
model = paddle.Model(
paddle.vision.models.LeNet(classifier_activation=None),
input, label)
optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters())
......@@ -1205,24 +1335,24 @@ class Model(object):
.. code-block:: python
import paddle
import paddle.incubate.hapi as hapi
from paddle.static import InputSpec
dynamic = True
device = hapi.set_device('gpu')
device = paddle.set_device('cpu') # or 'gpu'
paddle.disable_static(device) if dynamic else None
train_dataset = hapi.datasets.MNIST(mode='train')
train_dataset = paddle.vision.datasets.MNIST(mode='train')
train_loader = paddle.io.DataLoader(train_dataset,
places=device, batch_size=64)
val_dataset = hapi.datasets.MNIST(mode='test')
val_dataset = paddle.vision.datasets.MNIST(mode='test')
val_loader = paddle.io.DataLoader(val_dataset,
places=device, batch_size=64)
input = hapi.Input([None, 1, 28, 28], 'float32', 'image')
label = hapi.Input([None, 1], 'int64', 'label')
input = InputSpec([None, 1, 28, 28], 'float32', 'image')
label = InputSpec([None, 1], 'int64', 'label')
model = hapi.Model(hapi.vision.LeNet(classifier_activation=None),
input, label)
model = paddle.Model(
paddle.vision.models.LeNet(classifier_activation=None), input, label)
optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters())
model.prepare(
......@@ -1341,22 +1471,21 @@ class Model(object):
.. code-block:: python
import paddle
import paddle.incubate.hapi as hapi
from paddle.static import InputSpec
# declarative mode
val_dataset = hapi.datasets.MNIST(mode='test')
val_dataset = paddle.vision.datasets.MNIST(mode='test')
input = hapi.Input([-1, 1, 28, 28], 'float32', 'image')
label = hapi.Input([None, 1], 'int64', 'label')
model = hapi.Model(hapi.vision.LeNet(), input, label)
input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
label = InputSpec([None, 1], 'int64', 'label')
model = paddle.Model(paddle.vision.models.LeNet(), input, label)
model.prepare(metrics=paddle.metric.Accuracy())
result = model.evaluate(val_dataset, batch_size=64)
print(result)
# imperative mode
paddle.disable_static()
model = hapi.Model(hapi.vision.LeNet())
model = paddle.Model(paddle.vision.models.LeNet())
model.prepare(metrics=paddle.metric.Accuracy())
result = model.evaluate(val_dataset, batch_size=64)
print(result)
......@@ -1435,9 +1564,9 @@ class Model(object):
import numpy as np
import paddle
import paddle.incubate.hapi as hapi
from paddle.static import InputSpec
class MnistDataset(hapi.datasets.MNIST):
class MnistDataset(paddle.vision.datasets.MNIST):
def __init__(self, mode, return_label=True):
super(MnistDataset, self).__init__(mode=mode)
self.return_label = return_label
......@@ -1454,17 +1583,17 @@ class Model(object):
test_dataset = MnistDataset(mode='test', return_label=False)
# declarative mode
input = hapi.Input([-1, 1, 28, 28], 'float32', 'image')
model = hapi.Model(hapi.vision.LeNet(), input)
input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
model = paddle.Model(paddle.vision.models.LeNet(), input)
model.prepare()
result = model.predict(test_dataset, batch_size=64)
print(len(result[0]), result[0][0].shape)
# imperative mode
device = hapi.set_device('cpu')
device = paddle.set_device('cpu')
paddle.disable_static(device)
model = hapi.Model(hapi.vision.LeNet())
model = paddle.Model(paddle.vision.models.LeNet())
model.prepare()
result = model.predict(test_dataset, batch_size=64)
print(len(result[0]), result[0][0].shape)
......
......@@ -66,6 +66,7 @@ class ProgressBar(object):
return terminal_size(80, 24)
terminal_width, _ = get_terminal_size()
terminal_width = terminal_width if terminal_width > 0 else 80
max_width = min(int(terminal_width * 0.6), terminal_width - 50)
return max_width
......
......@@ -12,10 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from . import hapi
__all__ = []
__all__ += hapi.__all__
__all__ += ["reader"]
from ..fluid.contrib import reader
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import six
import paddle.fluid as fluid
from paddle.fluid.dygraph.parallel import ParallelEnv
__all__ = ['set_device', ]
# TODO(qingqing01): remove or refine _global_device, set_device and get_device
# after core framework supporting these function.
_global_device = None
def set_device(device):
"""
Args:
device (str): specify device type, 'cpu' or 'gpu'.
Returns:
fluid.CUDAPlace or fluid.CPUPlace: Created GPU or CPU place.
Examples:
.. code-block:: python
import paddle.incubate.hapi as hapi
input = hapi.set_device('gpu')
"""
assert isinstance(device, six.string_types) and device.lower() in ['cpu', 'gpu'], \
"Expected device in ['cpu', 'gpu'], but got {}".format(device)
device = fluid.CUDAPlace(ParallelEnv().dev_id) \
if device.lower() == 'gpu' and fluid.is_compiled_with_cuda() \
else fluid.CPUPlace()
global _global_device
_global_device = device
return device
def _get_device():
"""
Return global device.
"""
if _global_device is not None:
device = _global_device
else:
if fluid.is_compiled_with_cuda():
device = fluid.CUDAPlace(ParallelEnv().dev_id)
else:
device = fluid.CPUPlace()
return device
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import six
import time
import math
import socket
import contextlib
import numpy as np
from paddle import fluid
from paddle.fluid.layers import collective
from paddle.fluid.dygraph.parallel import ParallelEnv, ParallelStrategy
from paddle.io import BatchSampler
_parallel_context_initialized = False
__all__ = ['DistributedBatchSampler']
class DistributedBatchSampler(BatchSampler):
"""Sampler that restricts data loading to a subset of the dataset.
In such case, each process can pass a DistributedBatchSampler instance
as a DataLoader sampler, and load a subset of the original dataset that
is exclusive to it.
.. note::
Dataset is assumed to be of constant size.
Args:
dataset(paddle.io.Dataset): this could be a `paddle.io.Dataset` implement
or other python object which implemented
`__len__` for BatchSampler to get sample
number of data source.
batch_size(int): sample indice number in a mini-batch indices.
num_replicas(int, optional): porcess number in distributed training.
If :attr:`num_replicas` is None, :attr:`num_replicas` will be
retrieved from :code:`paddle.fluid.dygraph.parallel.ParallenEnv`.
Default None.
rank(int, optional): the rank of the current process among :attr:`num_replicas`
processes. If :attr:`rank` is None, :attr:`rank` is retrieved from
:code:`paddle.fluid.dygraph.parallel.ParallenEnv`. Default None.
shuffle(bool): whther to shuffle indices order before genrating
batch indices. Default False.
drop_last(bool): whether drop the last incomplete batch dataset size
is not divisible by the batch size. Default False
Examples:
.. code-block:: python
import numpy as np
from paddle.incubate.hapi.datasets import MNIST
from paddle.incubate.hapi.distributed import DistributedBatchSampler
class MnistDataset(MNIST):
def __init__(self, mode, return_label=True):
super(MnistDataset, self).__init__(mode=mode)
self.return_label = return_label
def __getitem__(self, idx):
img = np.reshape(self.images[idx], [1, 28, 28])
if self.return_label:
return img, np.array(self.labels[idx]).astype('int64')
return img,
def __len__(self):
return len(self.images)
train_dataset = MnistDataset(mode='train')
dist_train_dataloader = DistributedBatchSampler(train_dataset, batch_size=64)
for data in dist_train_dataloader:
# do something
break
"""
def __init__(self,
dataset,
batch_size,
num_replicas=None,
rank=None,
shuffle=False,
drop_last=False):
self.dataset = dataset
assert isinstance(batch_size, int) and batch_size > 0, \
"batch_size should be a positive integer"
self.batch_size = batch_size
assert isinstance(shuffle, bool), \
"shuffle should be a boolean value"
self.shuffle = shuffle
assert isinstance(drop_last, bool), \
"drop_last should be a boolean number"
if num_replicas is not None:
assert isinstance(num_replicas, int) and num_replicas > 0, \
"num_replicas should be a positive integer"
self.nranks = num_replicas
else:
self.nranks = ParallelEnv().nranks
if rank is not None:
assert isinstance(rank, int) and rank >= 0, \
"rank should be a non-negative integer"
self.local_rank = rank
else:
self.local_rank = ParallelEnv().local_rank
self.drop_last = drop_last
self.epoch = 0
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.nranks))
self.total_size = self.num_samples * self.nranks
def __iter__(self):
num_samples = len(self.dataset)
indices = np.arange(num_samples).tolist()
indices += indices[:(self.total_size - len(indices))]
assert len(indices) == self.total_size
if self.shuffle:
np.random.RandomState(self.epoch).shuffle(indices)
self.epoch += 1
# subsample
def _get_indices_by_batch_size(indices):
subsampled_indices = []
last_batch_size = self.total_size % (self.batch_size * self.nranks)
assert last_batch_size % self.nranks == 0
last_local_batch_size = last_batch_size // self.nranks
for i in range(self.local_rank * self.batch_size,
len(indices) - last_batch_size,
self.batch_size * self.nranks):
subsampled_indices.extend(indices[i:i + self.batch_size])
indices = indices[len(indices) - last_batch_size:]
subsampled_indices.extend(indices[
self.local_rank * last_local_batch_size:(
self.local_rank + 1) * last_local_batch_size])
return subsampled_indices
if self.nranks > 1:
indices = _get_indices_by_batch_size(indices)
assert len(indices) == self.num_samples
_sample_iter = iter(indices)
batch_indices = []
for idx in _sample_iter:
batch_indices.append(idx)
if len(batch_indices) == self.batch_size:
yield batch_indices
batch_indices = []
if not self.drop_last and len(batch_indices) > 0:
yield batch_indices
def __len__(self):
num_samples = self.num_samples
num_samples += int(not self.drop_last) * (self.batch_size - 1)
return num_samples // self.batch_size
def set_epoch(self, epoch):
self.epoch = epoch
def _all_gather(x, nranks, ring_id=0, use_calc_stream=True):
return collective._c_allgather(
x, nranks, ring_id=ring_id, use_calc_stream=use_calc_stream)
def wait_server_ready(endpoints):
assert not isinstance(endpoints, six.string_types)
while True:
all_ok = True
not_ready_endpoints = []
for ep in endpoints:
ip_port = ep.split(":")
with contextlib.closing(
socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
sock.settimeout(2)
result = sock.connect_ex((ip_port[0], int(ip_port[1])))
if result != 0:
all_ok = False
not_ready_endpoints.append(ep)
if not all_ok:
time.sleep(3)
else:
break
def init_communicator(program, rank, nranks, wait_port, current_endpoint,
endpoints):
if nranks < 2:
return
other_endpoints = endpoints[:]
other_endpoints.remove(current_endpoint)
if rank == 0 and wait_port:
wait_server_ready(other_endpoints)
block = program.global_block()
nccl_id_var = block.create_var(
name=fluid.unique_name.generate('nccl_id'),
persistable=True,
type=fluid.core.VarDesc.VarType.RAW)
block.append_op(
type='c_gen_nccl_id',
inputs={},
outputs={'Out': nccl_id_var},
attrs={
'rank': rank,
'endpoint': current_endpoint,
'other_endpoints': other_endpoints
})
block.append_op(
type='c_comm_init',
inputs={'X': nccl_id_var},
outputs={},
attrs={
'nranks': nranks,
'rank': rank,
'ring_id': 0,
})
def prepare_distributed_context(place=None):
if place is None:
place = fluid.CUDAPlace(ParallelEnv().dev_id) if ParallelEnv().nranks > 1 \
else fluid.CUDAPlace(0)
strategy = ParallelStrategy()
strategy.nranks = ParallelEnv().nranks
strategy.local_rank = ParallelEnv().local_rank
strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
strategy.current_endpoint = ParallelEnv().current_endpoint
if strategy.nranks < 2:
return
global _parallel_context_initialized
if not _parallel_context_initialized and isinstance(place, fluid.CUDAPlace):
def _init_context():
communicator_prog = fluid.Program()
init_communicator(communicator_prog, strategy.local_rank,
strategy.nranks, True, strategy.current_endpoint,
strategy.trainer_endpoints)
exe = fluid.Executor(place)
exe.run(communicator_prog)
if fluid.in_dygraph_mode():
fluid.disable_dygraph()
_init_context()
fluid.enable_dygraph(place)
else:
_init_context()
else:
assert ("Only support CUDAPlace for now.")
_parallel_context_initialized = True
return strategy
file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py")
string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
file(GLOB DIST_TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_dist_*.py")
string(REPLACE ".py" "" DIST_TEST_OPS "${DIST_TEST_OPS}")
foreach(TEST_OP ${DIST_TEST_OPS})
list(REMOVE_ITEM TEST_OPS ${TEST_OP})
endforeach()
foreach(src ${TEST_OPS})
py_test(${src} SRCS ${src}.py)
endforeach()
set_tests_properties(test_dataset_imdb PROPERTIES TIMEOUT 150)
function(py_dist_test TARGET_NAME)
if(WITH_TESTING)
set(options "")
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS ARGS ENVS)
cmake_parse_arguments(py_dist_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
if(WITH_COVERAGE AND WITH_GPU AND WITH_NCCL AND NOT WIN32)
add_test(NAME ${TARGET_NAME}
COMMAND ${CMAKE_COMMAND} -E env FLAGS_init_allocated_mem=true FLAGS_cudnn_deterministic=true
FLAGS_cpu_deterministic=true NCCL_P2P_DISABLE=1 NCCL_SHM_DISABLE=1
PYTHONPATH=${PADDLE_BINARY_DIR}/python ${py_dist_test_ENVS}
COVERAGE_FILE=${PADDLE_BINARY_DIR}/python-coverage.data
${PYTHON_EXECUTABLE} -u ${py_dist_test_SRCS} ${py_dist_test_ARGS}
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
# No unit test should exceed 10 minutes.
set_tests_properties(${TARGET_NAME} PROPERTIES TIMEOUT 600 LABELS "RUN_TYPE=DIST")
endif()
endif()
endfunction()
foreach(src ${DIST_TEST_OPS})
message(STATUS ${src})
py_dist_test(${src} SRCS ${src}.py)
endforeach()
# copyright (c) 2020 paddlepaddle authors. all rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
from __future__ import print_function
import unittest
import numpy as np
import shutil
import tempfile
from paddle import fluid
from paddle.nn import Conv2d, Pool2D, Linear, ReLU, Sequential, Softmax
from paddle.incubate.hapi.utils import uncombined_weight_to_state_dict
class LeNetDygraph(fluid.dygraph.Layer):
def __init__(self, num_classes=10, classifier_activation='softmax'):
super(LeNetDygraph, self).__init__()
self.num_classes = num_classes
self.features = Sequential(
Conv2d(
1, 6, 3, stride=1, padding=1),
ReLU(),
Pool2D(2, 'max', 2),
Conv2d(
6, 16, 5, stride=1, padding=0),
ReLU(),
Pool2D(2, 'max', 2))
if num_classes > 0:
self.fc = Sequential(
Linear(400, 120), Linear(120, 84), Linear(84, 10),
Softmax()) #Todo: accept any activation
def forward(self, inputs):
x = self.features(inputs)
if self.num_classes > 0:
x = fluid.layers.flatten(x, 1)
x = self.fc(x)
return x
class TestUncombinedWeight2StateDict(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.save_dir = tempfile.mkdtemp()
@classmethod
def tearDownClass(cls):
shutil.rmtree(cls.save_dir)
def test_infer(self):
start_prog = fluid.Program()
train_prog = fluid.Program()
x = fluid.data(name='x', shape=[None, 1, 28, 28], dtype='float32')
with fluid.program_guard(train_prog, start_prog):
with fluid.unique_name.guard():
x = fluid.data(
name='x', shape=[None, 1, 28, 28], dtype='float32')
model = LeNetDygraph()
output = model.forward(x)
excutor = fluid.Executor()
excutor.run(start_prog)
test_prog = train_prog.clone(for_test=True)
fluid.io.save_params(excutor, self.save_dir, test_prog)
rand_x = np.random.rand(1, 1, 28, 28).astype('float32')
out = excutor.run(program=test_prog,
feed={'x': rand_x},
fetch_list=[output.name],
return_numpy=True)
state_dict = uncombined_weight_to_state_dict(self.save_dir)
key2key_dict = {
'features.0.weight': 'conv2d_0.w_0',
'features.0.bias': 'conv2d_0.b_0',
'features.3.weight': 'conv2d_1.w_0',
'features.3.bias': 'conv2d_1.b_0',
'fc.0.weight': 'linear_0.w_0',
'fc.0.bias': 'linear_0.b_0',
'fc.1.weight': 'linear_1.w_0',
'fc.1.bias': 'linear_1.b_0',
'fc.2.weight': 'linear_2.w_0',
'fc.2.bias': 'linear_2.b_0'
}
fluid.enable_imperative()
dygraph_model = LeNetDygraph()
converted_state_dict = dygraph_model.state_dict()
for k1, k2 in key2key_dict.items():
converted_state_dict[k1] = state_dict[k2]
dygraph_model.set_dict(converted_state_dict)
dygraph_model.eval()
dy_out = dygraph_model(fluid.dygraph.to_variable(rand_x))
np.testing.assert_allclose(dy_out.numpy(), out[0], atol=1e-5)
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import inspect
import numpy as np
from collections import OrderedDict
from paddle import fluid
from paddle.fluid.framework import Variable
from paddle.fluid.executor import global_scope
__all__ = ['uncombined_weight_to_state_dict']
def uncombined_weight_to_state_dict(weight_dir):
"""
Convert uncombined weight which getted by using `fluid.io.save_params` or `fluid.io.save_persistables` to state_dict
Args:
weight_dir (str): weight direcotory path.
Returns:
OrderDict: weight dict.
Examples:
.. code-block:: python
import os
from paddle import fluid
from paddle.nn import Conv2D, Pool2D, Linear, ReLU, Sequential
from paddle.incubate.hapi.utils import uncombined_weight_to_state_dict
class LeNetDygraph(fluid.dygraph.Layer):
def __init__(self, num_classes=10, classifier_activation='softmax'):
super(LeNetDygraph, self).__init__()
self.num_classes = num_classes
self.features = Sequential(
Conv2D(
1, 6, 3, stride=1, padding=1),
ReLU(),
Pool2D(2, 'max', 2),
Conv2D(
6, 16, 5, stride=1, padding=0),
ReLU(),
Pool2D(2, 'max', 2))
if num_classes > 0:
self.fc = Sequential(
Linear(400, 120),
Linear(120, 84),
Linear(
84, 10, act=classifier_activation))
def forward(self, inputs):
x = self.features(inputs)
if self.num_classes > 0:
x = fluid.layers.flatten(x, 1)
x = self.fc(x)
return x
# save weight use fluid.io.save_params
save_dir = 'temp'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
start_prog = fluid.Program()
train_prog = fluid.Program()
x = fluid.data(name='x', shape=[None, 1, 28, 28], dtype='float32')
with fluid.program_guard(train_prog, start_prog):
with fluid.unique_name.guard():
x = fluid.data(
name='x', shape=[None, 1, 28, 28], dtype='float32')
model = LeNetDygraph()
output = model.forward(x)
excutor = fluid.Executor()
excutor.run(start_prog)
test_prog = train_prog.clone(for_test=True)
fluid.io.save_params(excutor, save_dir, test_prog)
# convert uncombined weight to state dict
state_dict = uncombined_weight_to_state_dict(save_dir)
key2key_dict = {
'features.0.weight': 'conv2d_0.w_0',
'features.0.bias': 'conv2d_0.b_0',
'features.3.weight': 'conv2d_1.w_0',
'features.3.bias': 'conv2d_1.b_0',
'fc.0.weight': 'linear_0.w_0',
'fc.0.bias': 'linear_0.b_0',
'fc.1.weight': 'linear_1.w_0',
'fc.1.bias': 'linear_1.b_0',
'fc.2.weight': 'linear_2.w_0',
'fc.2.bias': 'linear_2.b_0'
}
fluid.enable_imperative()
dygraph_model = LeNetDygraph()
converted_state_dict = dygraph_model.state_dict()
for k1, k2 in key2key_dict.items():
converted_state_dict[k1] = state_dict[k2]
# dygraph model load state dict which converted from uncombined weight
dygraph_model.set_dict(converted_state_dict)
"""
def _get_all_params_name(dir):
params_name = []
dir = os.path.expanduser(dir)
dir_len = len(dir)
for root, _, fnames in sorted(os.walk(dir, followlinks=True)):
for fname in sorted(fnames):
path = os.path.join(root[dir_len:], fname)
params_name.append(path)
return params_name
class Load(fluid.dygraph.Layer):
def __init__(self):
super(Load, self).__init__()
def forward(self, filename):
weight = self.create_parameter(
shape=[1],
dtype='float32',
default_initializer=fluid.initializer.ConstantInitializer(0.0))
self._helper.append_op(
type='load',
inputs={},
outputs={'Out': [weight]},
attrs={'file_path': filename})
return weight
params_name_list = _get_all_params_name(weight_dir)
if not fluid.in_dygraph_mode():
dygraph_enabled = False
fluid.enable_imperative()
else:
dygraph_enabled = True
load = Load()
state_dict = OrderedDict()
for param_name in params_name_list:
param_path = os.path.join(weight_dir, param_name)
weight = load(param_path)
try:
weight = weight.numpy()
except Exception as e:
print(e)
state_dict[param_name] = weight
if not dygraph_enabled:
fluid.disable_imperative()
return state_dict
def to_list(value):
if value is None:
return value
if isinstance(value, (list, tuple)):
return list(value)
return [value]
def to_numpy(var):
assert isinstance(var, (Variable, fluid.core.VarBase)), "not a variable"
if isinstance(var, fluid.core.VarBase):
return var.numpy()
t = global_scope().find_var(var.name).get_tensor()
return np.array(t)
def flatten_list(l):
assert isinstance(l, list), "not a list"
outl = []
splits = []
for sl in l:
assert isinstance(sl, list), "sub content not a list"
splits.append(len(sl))
outl += sl
return outl, splits
def restore_flatten_list(l, splits):
outl = []
for split in splits:
assert len(l) >= split, "list length invalid"
sl, l = l[:split], l[split:]
outl.append(sl)
return outl
def extract_args(func):
if hasattr(inspect, 'getfullargspec'):
return inspect.getfullargspec(func)[0]
else:
return inspect.getargspec(func)[0]
......@@ -18,6 +18,7 @@ __all__ = [
'IterableDataset',
'TensorDataset',
'BatchSampler',
'DistributedBatchSampler',
# 'Transform',
'DataLoader',
'get_worker_info',
......@@ -43,7 +44,7 @@ __all__ = [
from ..fluid.io import DataLoader
from ..fluid.dataloader import Dataset, IterableDataset, BatchSampler, get_worker_info, \
TensorDataset, Sampler, SequenceSampler, RandomSampler
TensorDataset, Sampler, SequenceSampler, RandomSampler, DistributedBatchSampler
from ..fluid.io import load, save, load_program_state, set_program_state, \
load_inference_model, save_inference_model, batch
from ..reader import shuffle, buffered, cache, chain, firstn, compose, map_readers, xmap_readers
......@@ -202,12 +202,11 @@ class Accuracy(Metric):
.. code-block:: python
import paddle
import paddle.incubate.hapi as hapi
paddle.disable_static()
train_dataset = hapi.datasets.MNIST(mode='train')
train_dataset = paddle.vision.datasets.MNIST(mode='train')
model = hapi.Model(hapi.vision.LeNet(classifier_activation=None))
model = paddle.Model(paddle.vision.LeNet(classifier_activation=None))
optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters())
model.prepare(
......@@ -336,7 +335,6 @@ class Precision(Metric):
import paddle
import paddle.nn as nn
import paddle.incubate.hapi as hapi
class Data(paddle.io.Dataset):
def __init__(self):
......@@ -352,7 +350,7 @@ class Precision(Metric):
return self.n
paddle.disable_static()
model = hapi.Model(nn.Sequential(
model = paddle.Model(nn.Sequential(
nn.Linear(10, 1),
nn.Sigmoid()
))
......@@ -471,7 +469,6 @@ class Recall(Metric):
import paddle
import paddle.nn as nn
import paddle.incubate.hapi as hapi
class Data(paddle.io.Dataset):
def __init__(self):
......@@ -487,7 +484,7 @@ class Recall(Metric):
return self.n
paddle.disable_static()
model = hapi.Model(nn.Sequential(
model = paddle.Model(nn.Sequential(
nn.Linear(10, 1),
nn.Sigmoid()
))
......@@ -617,7 +614,6 @@ class Auc(Metric):
import numpy as np
import paddle
import paddle.nn as nn
import paddle.incubate.hapi as hapi
class Data(paddle.io.Dataset):
def __init__(self):
......@@ -633,9 +629,9 @@ class Auc(Metric):
return self.n
paddle.disable_static()
model = hapi.Model(nn.Sequential(
nn.Linear(10, 2, act='softmax'),
))
model = paddle.Model(nn.Sequential(
nn.Linear(10, 2), nn.Softmax())
)
optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters())
......
file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py")
string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
file(GLOB DIST_TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_dist_*.py")
string(REPLACE ".py" "" DIST_TEST_OPS "${DIST_TEST_OPS}")
foreach(TEST_OP ${DIST_TEST_OPS})
list(REMOVE_ITEM TEST_OPS ${TEST_OP})
endforeach()
foreach(src ${TEST_OPS})
py_test(${src} SRCS ${src}.py)
endforeach()
function(py_dist_test TARGET_NAME)
if(WITH_TESTING)
set(options "")
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS ARGS ENVS)
cmake_parse_arguments(py_dist_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
if(WITH_COVERAGE AND WITH_GPU AND WITH_NCCL AND NOT WIN32)
add_test(NAME ${TARGET_NAME}
COMMAND ${CMAKE_COMMAND} -E env FLAGS_init_allocated_mem=true FLAGS_cudnn_deterministic=true
FLAGS_cpu_deterministic=true NCCL_P2P_DISABLE=1 NCCL_SHM_DISABLE=1
PYTHONPATH=${PADDLE_BINARY_DIR}/python ${py_dist_test_ENVS}
COVERAGE_FILE=${PADDLE_BINARY_DIR}/python-coverage.data
${PYTHON_EXECUTABLE} -u ${py_dist_test_SRCS} ${py_dist_test_ARGS}
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
# No unit test should exceed 10 minutes.
set_tests_properties(${TARGET_NAME} PROPERTIES TIMEOUT 600 LABELS "RUN_TYPE=DIST")
endif()
endif()
endfunction()
foreach(src ${DIST_TEST_OPS})
message(STATUS ${src})
py_dist_test(${src} SRCS ${src}.py)
endforeach()
......@@ -20,14 +20,15 @@ import unittest
import numpy as np
import contextlib
from paddle import fluid
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi import Model, Input, set_device
from paddle import Model, set_device
from paddle.static import InputSpec as Input
from paddle.nn.layer.loss import CrossEntropyLoss
from paddle.incubate.hapi.vision.models import LeNet
from paddle.metric import Accuracy
from paddle.incubate.hapi.callbacks import ProgBarLogger
from paddle.incubate.hapi.datasets import MNIST
from paddle.vision.models import LeNet
from paddle.vision.datasets import MNIST
class MnistDataset(MNIST):
......@@ -76,7 +77,7 @@ class TestDistTraning(unittest.TestCase):
val_dataset = MnistDataset(mode='test')
test_dataset = MnistDataset(mode='test', return_label=False)
cbk = ProgBarLogger(50)
cbk = paddle.callbacks.ProgBarLogger(50)
model.fit(train_dataset,
val_dataset,
epochs=2,
......
......@@ -20,14 +20,15 @@ import unittest
import numpy as np
import contextlib
from paddle import fluid
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi import Model, Input, set_device
from paddle import Model, set_device
from paddle.static import InputSpec as Input
from paddle.nn.layer.loss import CrossEntropyLoss
from paddle.incubate.hapi.vision.models import LeNet
from paddle.metric import Accuracy
from paddle.incubate.hapi.callbacks import ProgBarLogger
from paddle.incubate.hapi.datasets import MNIST
from paddle.vision.models import LeNet
from paddle.vision.datasets import MNIST
class MnistDataset(MNIST):
......@@ -75,7 +76,7 @@ class TestDistTraning(unittest.TestCase):
val_dataset = MnistDataset(mode='test')
test_dataset = MnistDataset(mode='test', return_label=False)
cbk = ProgBarLogger(50)
cbk = paddle.callbacks.ProgBarLogger(50)
model.fit(train_dataset,
val_dataset,
epochs=2,
......
......@@ -18,9 +18,10 @@ import random
import tempfile
import shutil
from paddle.incubate.hapi.model import Model, Input
from paddle.incubate.hapi.vision.models import LeNet
from paddle.incubate.hapi.callbacks import config_callbacks
from paddle import Model
from paddle.static import InputSpec
from paddle.vision.models import LeNet
from paddle.hapi.callbacks import config_callbacks
class TestCallbacks(unittest.TestCase):
......@@ -36,7 +37,7 @@ class TestCallbacks(unittest.TestCase):
freq = 2
eval_steps = 20
inputs = [Input([None, 1, 28, 28], 'float32', 'image')]
inputs = [InputSpec([None, 1, 28, 28], 'float32', 'image')]
lenet = Model(LeNet(), inputs)
lenet.prepare()
......
......@@ -13,14 +13,9 @@
# limitations under the License.
import unittest
import os
import numpy as np
import tempfile
import shutil
import cv2
from paddle.incubate.hapi.datasets import *
from paddle.incubate.hapi.datasets.utils import _check_exists_and_download
from paddle.vision.datasets import *
class TestCifar10Train(unittest.TestCase):
......
......@@ -12,15 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import os
import unittest
import numpy as np
import tempfile
import shutil
import cv2
from paddle.incubate.hapi.datasets import *
from paddle.incubate.hapi.datasets.utils import _check_exists_and_download
from paddle.text.datasets import *
class TestConll05st(unittest.TestCase):
......@@ -36,6 +32,8 @@ class TestConll05st(unittest.TestCase):
for s in sample:
self.assertTrue(len(s.shape) == 1)
assert os.path.exists(conll05st.get_embedding())
if __name__ == '__main__':
unittest.main()
......@@ -13,14 +13,9 @@
# limitations under the License.
import unittest
import os
import numpy as np
import tempfile
import shutil
import cv2
from paddle.incubate.hapi.datasets import *
from paddle.incubate.hapi.datasets.utils import _check_exists_and_download
from paddle.text.datasets import *
class TestImdbTrain(unittest.TestCase):
......
......@@ -13,14 +13,9 @@
# limitations under the License.
import unittest
import os
import numpy as np
import tempfile
import shutil
import cv2
from paddle.incubate.hapi.datasets import *
from paddle.incubate.hapi.datasets.utils import _check_exists_and_download
from paddle.text.datasets import *
class TestImikolovTrain(unittest.TestCase):
......
......@@ -13,14 +13,9 @@
# limitations under the License.
import unittest
import os
import numpy as np
import tempfile
import shutil
import cv2
from paddle.incubate.hapi.datasets import *
from paddle.incubate.hapi.datasets.utils import _check_exists_and_download
from paddle.text.datasets import *
class TestMovieReviewsTrain(unittest.TestCase):
......
......@@ -13,14 +13,9 @@
# limitations under the License.
import unittest
import os
import numpy as np
import tempfile
import shutil
import cv2
from paddle.incubate.hapi.datasets import *
from paddle.incubate.hapi.datasets.utils import _check_exists_and_download
from paddle.text.datasets import *
class TestMovielensTrain(unittest.TestCase):
......
......@@ -19,8 +19,7 @@ import tempfile
import shutil
import cv2
from paddle.incubate.hapi.datasets import *
from paddle.incubate.hapi.datasets.utils import _check_exists_and_download
from paddle.text.datasets import *
class TestUCIHousingTrain(unittest.TestCase):
......
......@@ -15,12 +15,8 @@
import unittest
import os
import numpy as np
import tempfile
import shutil
import cv2
from paddle.incubate.hapi.datasets import voc2012, VOC2012
from paddle.incubate.hapi.datasets.utils import _check_exists_and_download
from paddle.vision.datasets import voc2012, VOC2012
# VOC2012 is too large for unittest to download, stub a small dataset here
voc2012.VOC_URL = 'https://paddlemodels.bj.bcebos.com/voc2012_stub/VOCtrainval_11-May-2012.tar'
......
......@@ -13,14 +13,9 @@
# limitations under the License.
import unittest
import os
import numpy as np
import tempfile
import shutil
import cv2
from paddle.incubate.hapi.datasets import *
from paddle.incubate.hapi.datasets.utils import _check_exists_and_download
from paddle.text.datasets import *
class TestWMT14Train(unittest.TestCase):
......
......@@ -19,8 +19,8 @@ import tempfile
import shutil
import cv2
from paddle.incubate.hapi.datasets import *
from paddle.incubate.hapi.datasets.utils import _check_exists_and_download
from paddle.vision.datasets import *
from paddle.dataset.common import _check_exists_and_download
class TestFolderDatasets(unittest.TestCase):
......
......@@ -14,7 +14,7 @@
import unittest
from paddle.incubate.hapi.download import get_weights_path_from_url
from paddle.utils.download import get_weights_path_from_url
class TestDownload(unittest.TestCase):
......
......@@ -21,7 +21,7 @@ import numpy as np
import shutil
import tempfile
from paddle.incubate.hapi.logger import setup_logger
from paddle.hapi.logger import setup_logger
class TestSetupLogger(unittest.TestCase):
......
......@@ -22,7 +22,7 @@ import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi.utils import to_list
from paddle.hapi.model import to_list
def accuracy(pred, label, topk=(1, )):
......
......@@ -24,21 +24,22 @@ import tempfile
import paddle
from paddle import fluid
from paddle import to_tensor
from paddle.nn import Conv2d, Pool2D, Linear, ReLU, Sequential, Softmax
from paddle.fluid.dygraph.base import to_variable
import paddle.incubate.hapi as hapi
from paddle.incubate.hapi import Model, Input
from paddle import Model
from paddle.static import InputSpec
from paddle.nn.layer.loss import CrossEntropyLoss
from paddle.metric import Accuracy
from paddle.incubate.hapi.datasets import MNIST
from paddle.incubate.hapi.vision.models import LeNet
from paddle.incubate.hapi.distributed import DistributedBatchSampler, prepare_distributed_context
from paddle.vision.datasets import MNIST
from paddle.vision.models import LeNet
from paddle.io import DistributedBatchSampler
from paddle.hapi.model import prepare_distributed_context
from paddle.fluid.dygraph.jit import declarative
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator
class LeNetDygraph(fluid.dygraph.Layer):
class LeNetDygraph(paddle.nn.Layer):
def __init__(self, num_classes=10, classifier_activation=None):
super(LeNetDygraph, self).__init__()
self.num_classes = num_classes
......@@ -154,7 +155,7 @@ class TestModel(unittest.TestCase):
def setUpClass(cls):
if not fluid.is_compiled_with_cuda():
self.skipTest('module not tested when ONLY_CPU compling')
cls.device = hapi.set_device('gpu')
cls.device = paddle.set_device('gpu')
fluid.enable_dygraph(cls.device)
sp_num = 1280
......@@ -180,8 +181,8 @@ class TestModel(unittest.TestCase):
cls.acc1 = dynamic_evaluate(dy_lenet, cls.val_loader)
cls.inputs = [Input([-1, 1, 28, 28], 'float32', 'image')]
cls.labels = [Input([None, 1], 'int64', 'label')]
cls.inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
cls.labels = [InputSpec([None, 1], 'int64', 'label')]
cls.save_dir = tempfile.mkdtemp()
cls.weight_path = os.path.join(cls.save_dir, 'lenet')
......@@ -314,7 +315,7 @@ class TestModel(unittest.TestCase):
fluid.disable_dygraph() if dynamic else None
class MyModel(fluid.dygraph.Layer):
class MyModel(paddle.nn.Layer):
def __init__(self, classifier_activation='softmax'):
super(MyModel, self).__init__()
self._fc = Linear(20, 10)
......@@ -343,8 +344,8 @@ class TestModelFunction(unittest.TestCase):
optim = fluid.optimizer.SGD(learning_rate=0.001,
parameter_list=m.parameters())
m.train()
output = m(to_variable(data))
loss = CrossEntropyLoss(reduction='sum')(output, to_variable(label))
output = m(to_tensor(data))
loss = CrossEntropyLoss(reduction='sum')(output, to_tensor(label))
avg_loss = fluid.layers.reduce_sum(loss)
avg_loss.backward()
optim.minimize(avg_loss)
......@@ -354,7 +355,7 @@ class TestModelFunction(unittest.TestCase):
ref = get_expect()
for dynamic in [True, False]:
device = hapi.set_device('cpu')
device = paddle.set_device('cpu')
fluid.enable_dygraph(device) if dynamic else None
self.set_seed()
......@@ -362,8 +363,8 @@ class TestModelFunction(unittest.TestCase):
optim2 = fluid.optimizer.SGD(learning_rate=0.001,
parameter_list=net.parameters())
inputs = [Input([None, dim], 'float32', 'x')]
labels = [Input([None, 1], 'int64', 'label')]
inputs = [InputSpec([None, dim], 'float32', 'x')]
labels = [InputSpec([None, 1], 'int64', 'label')]
model = Model(net, inputs, labels)
model.prepare(optim2, loss=CrossEntropyLoss(reduction="sum"))
loss, = model.train_batch([data], [label])
......@@ -379,17 +380,17 @@ class TestModelFunction(unittest.TestCase):
self.set_seed()
m = MyModel()
m.eval()
output = m(to_variable(data))
output = m(to_tensor(data))
fluid.disable_dygraph()
return output.numpy()
ref = get_expect()
for dynamic in [True, False]:
device = hapi.set_device('cpu')
device = paddle.set_device('cpu')
fluid.enable_dygraph(device) if dynamic else None
self.set_seed()
net = MyModel()
inputs = [Input([None, dim], 'float32', 'x')]
inputs = [InputSpec([None, dim], 'float32', 'x')]
model = Model(net, inputs)
model.prepare()
out, = model.test_batch([data])
......@@ -400,11 +401,11 @@ class TestModelFunction(unittest.TestCase):
def test_save_load(self):
path = tempfile.mkdtemp()
for dynamic in [True, False]:
device = hapi.set_device('cpu')
device = paddle.set_device('cpu')
fluid.enable_dygraph(device) if dynamic else None
net = MyModel(classifier_activation=None)
inputs = [Input([None, 20], 'float32', 'x')]
labels = [Input([None, 1], 'int64', 'label')]
inputs = [InputSpec([None, 20], 'float32', 'x')]
labels = [InputSpec([None, 1], 'int64', 'label')]
optim = fluid.optimizer.SGD(learning_rate=0.001,
parameter_list=net.parameters())
model = Model(net, inputs, labels)
......@@ -418,7 +419,7 @@ class TestModelFunction(unittest.TestCase):
def test_dynamic_save_static_load(self):
path = tempfile.mkdtemp()
# dynamic saving
device = hapi.set_device('cpu')
device = paddle.set_device('cpu')
fluid.enable_dygraph(device)
model = Model(MyModel(classifier_activation=None))
optim = fluid.optimizer.SGD(learning_rate=0.001,
......@@ -427,8 +428,8 @@ class TestModelFunction(unittest.TestCase):
model.save(path + '/test')
fluid.disable_dygraph()
inputs = [Input([None, 20], 'float32', 'x')]
labels = [Input([None, 1], 'int64', 'label')]
inputs = [InputSpec([None, 20], 'float32', 'x')]
labels = [InputSpec([None, 1], 'int64', 'label')]
model = Model(MyModel(classifier_activation=None), inputs, labels)
optim = fluid.optimizer.SGD(learning_rate=0.001,
parameter_list=model.parameters())
......@@ -440,20 +441,20 @@ class TestModelFunction(unittest.TestCase):
path = tempfile.mkdtemp()
net = MyModel(classifier_activation=None)
inputs = [Input([None, 20], 'float32', 'x')]
labels = [Input([None, 1], 'int64', 'label')]
inputs = [InputSpec([None, 20], 'float32', 'x')]
labels = [InputSpec([None, 1], 'int64', 'label')]
optim = fluid.optimizer.SGD(learning_rate=0.001,
parameter_list=net.parameters())
model = Model(net, inputs, labels)
model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
model.save(path + '/test')
device = hapi.set_device('cpu')
device = paddle.set_device('cpu')
fluid.enable_dygraph(device) #if dynamic else None
net = MyModel(classifier_activation=None)
inputs = [Input([None, 20], 'float32', 'x')]
labels = [Input([None, 1], 'int64', 'label')]
inputs = [InputSpec([None, 20], 'float32', 'x')]
labels = [InputSpec([None, 1], 'int64', 'label')]
optim = fluid.optimizer.SGD(learning_rate=0.001,
parameter_list=net.parameters())
model = Model(net, inputs, labels)
......@@ -464,10 +465,10 @@ class TestModelFunction(unittest.TestCase):
def test_parameters(self):
for dynamic in [True, False]:
device = hapi.set_device('cpu')
device = paddle.set_device('cpu')
fluid.enable_dygraph(device) if dynamic else None
net = MyModel()
inputs = [Input([None, 20], 'float32', 'x')]
inputs = [InputSpec([None, 20], 'float32', 'x')]
model = Model(net, inputs)
model.prepare()
params = model.parameters()
......@@ -482,7 +483,7 @@ class TestModelFunction(unittest.TestCase):
prog_translator = ProgramTranslator()
prog_translator.enable(False) if not dynamic else None
net = LeNetDeclarative()
inputs = [Input([None, 1, 28, 28], 'float32', 'x')]
inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
model = Model(net, inputs)
model.prepare()
save_dir = tempfile.mkdtemp()
......@@ -514,8 +515,8 @@ class TestRaiseError(unittest.TestCase):
def test_input_without_name(self):
net = MyModel(classifier_activation=None)
inputs = [Input([None, 10], 'float32')]
labels = [Input([None, 1], 'int64', 'label')]
inputs = [InputSpec([None, 10], 'float32')]
labels = [InputSpec([None, 1], 'int64', 'label')]
with self.assertRaises(ValueError):
model = Model(net, inputs, labels)
......
......@@ -15,9 +15,9 @@
import unittest
import numpy as np
import paddle.fluid as fluid
import paddle.incubate.hapi.vision.models as models
from paddle.incubate.hapi import Model, Input
import paddle
from paddle.static import InputSpec
import paddle.vision.models as models
# test the predicted resutls of static graph and dynamic graph are equal
......@@ -25,16 +25,16 @@ from paddle.incubate.hapi import Model, Input
class TestPretrainedModel(unittest.TestCase):
def infer(self, x, arch, dygraph=True):
if dygraph:
fluid.enable_dygraph()
paddle.disable_static()
net = models.__dict__[arch](pretrained=True, classifier_activation=None)
inputs = [Input([None, 3, 224, 224], 'float32', 'image')]
model = Model(network=net, inputs=inputs)
inputs = [InputSpec([None, 3, 224, 224], 'float32', 'image')]
model = paddle.Model(network=net, inputs=inputs)
model.prepare()
res = model.test_batch(x)
if dygraph:
fluid.disable_dygraph()
paddle.enable_static()
return res
def test_models(self):
......
......@@ -17,7 +17,7 @@ import unittest
import random
import time
from paddle.incubate.hapi.progressbar import ProgressBar
from paddle.hapi.progressbar import ProgressBar
class TestProgressBar(unittest.TestCase):
......
......@@ -24,8 +24,9 @@ import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph import Embedding, Linear, Layer
from paddle.fluid.layers import BeamSearchDecoder
from paddle.incubate.hapi import Model, Input, set_device
from paddle.incubate.hapi.text import *
from paddle import Model, set_device
from paddle.static import InputSpec as Input
from paddle.text import *
class ModuleApiTest(unittest.TestCase):
......
......@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# when test, you should add hapi root path to the PYTHONPATH,
# export PYTHONPATH=PATH_TO_HAPI:$PYTHONPATH
import unittest
import os
import tempfile
......@@ -21,9 +19,9 @@ import cv2
import shutil
import numpy as np
from paddle.incubate.hapi.datasets import DatasetFolder
from paddle.incubate.hapi.vision.transforms import transforms
import paddle.incubate.hapi.vision.transforms.functional as F
from paddle.vision.datasets import DatasetFolder
from paddle.vision.transforms import transforms
import paddle.vision.transforms.functional as F
class TestTransforms(unittest.TestCase):
......
......@@ -15,8 +15,9 @@
import unittest
import numpy as np
import paddle.incubate.hapi.vision.models as models
import paddle.incubate.hapi as hapi
import paddle
from paddle.static import InputSpec
import paddle.vision.models as models
class TestVisonModels(unittest.TestCase):
......@@ -28,8 +29,8 @@ class TestVisonModels(unittest.TestCase):
else:
net = models.__dict__[arch](pretrained=pretrained)
input = hapi.Input([None, 3, 224, 224], 'float32', 'image')
model = hapi.Model(net, input)
input = InputSpec([None, 3, 224, 224], 'float32', 'image')
model = paddle.Model(net, input)
model.prepare()
model.test_batch(x)
......@@ -71,8 +72,8 @@ class TestVisonModels(unittest.TestCase):
self.models_infer('resnet152')
def test_lenet(self):
input = hapi.Input([None, 1, 28, 28], 'float32', 'x')
lenet = hapi.Model(models.__dict__['LeNet'](), input)
input = InputSpec([None, 1, 28, 28], 'float32', 'x')
lenet = paddle.Model(models.__dict__['LeNet'](), input)
lenet.prepare()
x = np.array(np.random.random((2, 1, 28, 28)), dtype=np.float32)
......
......@@ -15,4 +15,8 @@
from . import text
from .text import *
__all__ = text.__all__
from . import datasets
from .datasets import *
__all__ = text.__all__ \
+ datasets.__all__
......@@ -12,11 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from . import folder
from . import mnist
from . import flowers
from . import cifar
from . import voc2012
from . import conll05
from . import imdb
from . import imikolov
......@@ -26,11 +21,6 @@ from . import uci_housing
from . import wmt14
from . import wmt16
from .folder import *
from .mnist import *
from .flowers import *
from .cifar import *
from .voc2012 import *
from .conll05 import *
from .imdb import *
from .imikolov import *
......@@ -40,12 +30,7 @@ from .uci_housing import *
from .wmt14 import *
from .wmt16 import *
__all__ = folder.__all__ \
+ mnist.__all__ \
+ flowers.__all__ \
+ cifar.__all__ \
+ voc2012.__all__ \
+ conll05.__all__ \
__all__ = conll05.__all__ \
+ imdb.__all__ \
+ imikolov.__all__ \
+ movielens.__all__ \
......
......@@ -22,7 +22,7 @@ from six.moves import cPickle as pickle
from paddle.io import Dataset
import paddle.compat as cpt
from .utils import _check_exists_and_download
from paddle.dataset.common import _check_exists_and_download
__all__ = ['Conll05st']
......@@ -72,7 +72,7 @@ class Conll05st(Dataset):
.. code-block:: python
import paddle
from paddle.incubate.hapi.datasets import Conll05st
from paddle.text.datasets import Conll05st
class SimpleNet(paddle.nn.Layer):
def __init__(self):
......@@ -131,6 +131,12 @@ class Conll05st(Dataset):
target_dict_file, TRGDICT_URL, TRGDICT_MD5, 'conll05st',
download)
self.emb_file = emb_file
if self.emb_file is None:
assert download, "emb_file is not set and downloading automatically is disabled"
self.emb_file = _check_exists_and_download(
emb_file, EMB_URL, EMB_MD5, 'conll05st', download)
self.word_dict = self._load_dict(self.word_dict_file)
self.predicate_dict = self._load_dict(self.verb_dict_file)
self.label_dict = self._load_label_dict(self.target_dict_file)
......@@ -290,8 +296,27 @@ class Conll05st(Dataset):
def get_dict(self):
"""
Get the word, verb and label dictionary of Wikipedia corpus.
Examples:
.. code-block:: python
from paddle.text.datasets import Conll05st
conll05st = Conll05st()
word_dict, predicate_dict, label_dict = conll05st.get_dict()
"""
return self.word_dict, self.predicate_dict, self.label_dict
def get_embedding(self):
"""
Get the embedding dictionary file.
Examples:
.. code-block:: python
from paddle.text.datasets import Conll05st
conll05st = Conll05st()
emb_file = conll05st.get_embedding()
"""
return self.emb_file
......@@ -22,7 +22,7 @@ import numpy as np
import collections
from paddle.io import Dataset
from .utils import _check_exists_and_download
from paddle.dataset.common import _check_exists_and_download
__all__ = ['Imdb']
......@@ -50,7 +50,7 @@ class Imdb(Dataset):
.. code-block:: python
import paddle
from paddle.incubate.hapi.datasets import Imdb
from paddle.text.datasets import Imdb
class SimpleNet(paddle.nn.Layer):
def __init__(self):
......
......@@ -20,7 +20,7 @@ import numpy as np
import collections
from paddle.io import Dataset
from .utils import _check_exists_and_download
from paddle.dataset.common import _check_exists_and_download
__all__ = ['Imikolov']
......@@ -50,7 +50,7 @@ class Imikolov(Dataset):
.. code-block:: python
import paddle
from paddle.incubate.hapi.datasets import Imikolov
from paddle.text.datasets import Imikolov
class SimpleNet(paddle.nn.Layer):
def __init__(self):
......
......@@ -55,7 +55,7 @@ class MovieReviews(Dataset):
.. code-block:: python
import paddle
from paddle.incubate.hapi.datasets import MovieReviews
from paddle.text.datasets import MovieReviews
class SimpleNet(paddle.nn.Layer):
def __init__(self):
......
......@@ -24,7 +24,7 @@ import six
import paddle
from paddle.io import Dataset
import paddle.compat as cpt
from .utils import _check_exists_and_download
from paddle.dataset.common import _check_exists_and_download
__all__ = ['Movielens']
......@@ -107,7 +107,7 @@ class Movielens(Dataset):
.. code-block:: python
import paddle
from paddle.incubate.hapi.datasets import Movielens
from paddle.text.datasets import Movielens
class SimpleNet(paddle.nn.Layer):
def __init__(self):
......
......@@ -17,9 +17,8 @@ from __future__ import print_function
import six
import numpy as np
import paddle.dataset.common
from paddle.io import Dataset
from .utils import _check_exists_and_download
from paddle.dataset.common import _check_exists_and_download
__all__ = ["UCIHousing"]
......@@ -51,7 +50,7 @@ class UCIHousing(Dataset):
.. code-block:: python
import paddle
from paddle.incubate.hapi.datasets import UCIHousing
from paddle.text.datasets import UCIHousing
class SimpleNet(paddle.nn.Layer):
def __init__(self):
......
......@@ -20,7 +20,7 @@ import gzip
from paddle.io import Dataset
import paddle.compat as cpt
from .utils import _check_exists_and_download
from paddle.dataset.common import _check_exists_and_download
__all__ = ['WMT14']
......@@ -61,7 +61,7 @@ class WMT14(Dataset):
.. code-block:: python
import paddle
from paddle.incubate.hapi.datasets import WMT14
from paddle.text.datasets import WMT14
class SimpleNet(paddle.nn.Layer):
def __init__(self):
......@@ -173,6 +173,25 @@ class WMT14(Dataset):
return len(self.src_ids)
def get_dict(self, reverse=False):
"""
Get the source and target dictionary.
Args:
reverse (bool): wether to reverse key and value in dictionary,
i.e. key: value to value: key.
Returns:
Two dictionaries, the source and target dictionary.
Examples:
.. code-block:: python
from paddle.text.datasets import WMT14
wmt14 = WMT14(mode='train', dict_size=50)
src_dict, trg_dict = wmt14.get_dict()
"""
src_dict, trg_dict = self.src_dict, self.trg_dict
if reverse:
src_dict = {v: k for k, v in six.iteritems(src_dict)}
trg_dict = {v: k for k, v in six.iteritems(trg_dict)}
......
......@@ -25,7 +25,7 @@ from collections import defaultdict
import paddle
from paddle.io import Dataset
import paddle.compat as cpt
from .utils import _check_exists_and_download
from paddle.dataset.common import _check_exists_and_download
__all__ = ['WMT16']
......@@ -78,7 +78,7 @@ class WMT16(Dataset):
.. code-block:: python
import paddle
from paddle.incubate.hapi.datasets import WMT16
from paddle.text.datasets import WMT16
class SimpleNet(paddle.nn.Layer):
def __init__(self):
......@@ -235,8 +235,16 @@ class WMT16(Dataset):
Returns:
dict: The word dictionary for the specific language.
"""
Examples:
.. code-block:: python
from paddle.text.datasets import WMT16
wmt16 = WMT16(mode='train', src_dict_size=50, trg_dict_size=50)
en_dict = wmt16.get_dict('en')
"""
dict_size = self.src_dict_size if lang == self.lang else self.trg_dict_size
dict_path = os.path.join(paddle.dataset.common.DATA_HOME,
......@@ -244,4 +252,4 @@ class WMT16(Dataset):
assert os.path.exists(dict_path), "Word dictionary does not exist. "
"Please invoke paddle.dataset.wmt16.train/test/validation first "
"to build the dictionary."
return _load_dict(lang, dict_size)
return self._load_dict(lang, dict_size)
......@@ -227,7 +227,7 @@ class BasicLSTMCell(RNNCell):
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi.text import BasicLSTMCell, RNN
from paddle.text import BasicLSTMCell, RNN
inputs = paddle.rand((2, 4, 32))
cell = BasicLSTMCell(input_size=32, hidden_size=64)
......@@ -358,7 +358,7 @@ class BasicGRUCell(RNNCell):
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi.text import BasicGRUCell, RNN
from paddle.text import BasicGRUCell, RNN
inputs = paddle.rand((2, 4, 32))
cell = BasicGRUCell(input_size=32, hidden_size=64)
......@@ -495,7 +495,7 @@ class RNN(Layer):
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi.text import StackedLSTMCell, RNN
from paddle.text import StackedLSTMCell, RNN
inputs = paddle.rand((2, 4, 32))
cell = StackedLSTMCell(input_size=32, hidden_size=64)
......@@ -648,7 +648,7 @@ class StackedRNNCell(RNNCell):
.. code-block:: python
from paddle.incubate.hapi.text import BasicLSTMCell, StackedRNNCell
from paddle.text import BasicLSTMCell, StackedRNNCell
cells = [BasicLSTMCell(32, 32), BasicLSTMCell(32, 32)]
stack_rnn = StackedRNNCell(cells)
......@@ -789,7 +789,7 @@ class StackedLSTMCell(RNNCell):
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi.text import StackedLSTMCell, RNN
from paddle.text import StackedLSTMCell, RNN
inputs = paddle.rand((2, 4, 32))
cell = StackedLSTMCell(input_size=32, hidden_size=64)
......@@ -948,7 +948,7 @@ class LSTM(Layer):
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi.text import LSTM
from paddle.text import LSTM
inputs = paddle.rand((2, 4, 32))
lstm = LSTM(input_size=32, hidden_size=64, num_layers=2)
......@@ -1023,7 +1023,7 @@ class BidirectionalRNN(Layer):
.. code-block:: python
import paddle
from paddle.incubate.hapi.text import StackedLSTMCell, BidirectionalRNN
from paddle.text import StackedLSTMCell, BidirectionalRNN
inputs = paddle.rand((2, 4, 32))
cell_fw = StackedLSTMCell(32, 64)
......@@ -1215,7 +1215,7 @@ class BidirectionalLSTM(Layer):
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi.text import BidirectionalLSTM
from paddle.text import BidirectionalLSTM
inputs = paddle.rand((2, 4, 32))
bi_lstm = BidirectionalLSTM(input_size=32, hidden_size=64, num_layers=2)
......@@ -1384,7 +1384,7 @@ class StackedGRUCell(RNNCell):
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi.text import StackedGRUCell, RNN
from paddle.text import StackedGRUCell, RNN
inputs = paddle.rand((2, 4, 32))
cell = StackedGRUCell(input_size=32, hidden_size=64)
......@@ -1524,7 +1524,7 @@ class GRU(Layer):
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi.text import GRU
from paddle.text import GRU
inputs = paddle.rand((2, 4, 32))
gru = GRU(input_size=32, hidden_size=64, num_layers=2)
......@@ -1644,7 +1644,7 @@ class BidirectionalGRU(Layer):
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi.text import BidirectionalGRU
from paddle.text import BidirectionalGRU
inputs = paddle.rand((2, 4, 32))
bi_gru = BidirectionalGRU(input_size=32, hidden_size=64, num_layers=2)
......@@ -1802,7 +1802,7 @@ class DynamicDecode(Layer):
import paddle
import paddle.fluid as fluid
from paddle.fluid.layers import BeamSearchDecoder
from paddle.incubate.hapi.text import StackedLSTMCell, DynamicDecode
from paddle.text import StackedLSTMCell, DynamicDecode
paddle.disable_static()
......@@ -2033,7 +2033,7 @@ class Conv1dPoolLayer(Layer):
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi.text import Conv1dPoolLayer
from paddle.text import Conv1dPoolLayer
# input: [batch_size, num_channels, sequence_length]
input = paddle.rand((2, 32, 4))
......@@ -2162,7 +2162,7 @@ class CNNEncoder(Layer):
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi.text import CNNEncoder
from paddle.text import CNNEncoder
# input: [batch_size, num_channels, sequence_length]
input = paddle.rand((2, 32, 8))
......@@ -2273,10 +2273,10 @@ class TransformerCell(RNNCell):
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph import Embedding, Linear
from paddle.incubate.hapi.text import TransformerDecoder
from paddle.incubate.hapi.text import TransformerCell
from paddle.incubate.hapi.text import TransformerBeamSearchDecoder
from paddle.incubate.hapi.text import DynamicDecode
from paddle.text import TransformerDecoder
from paddle.text import TransformerCell
from paddle.text import TransformerBeamSearchDecoder
from paddle.text import DynamicDecode
paddle.disable_static()
......@@ -2440,10 +2440,10 @@ class TransformerBeamSearchDecoder(layers.BeamSearchDecoder):
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph import Embedding, Linear
from paddle.incubate.hapi.text import TransformerDecoder
from paddle.incubate.hapi.text import TransformerCell
from paddle.incubate.hapi.text import TransformerBeamSearchDecoder
from paddle.incubate.hapi.text import DynamicDecode
from paddle.text import TransformerDecoder
from paddle.text import TransformerCell
from paddle.text import TransformerBeamSearchDecoder
from paddle.text import DynamicDecode
paddle.disable_static()
......@@ -2627,7 +2627,7 @@ class PrePostProcessLayer(Layer):
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi.text import PrePostProcessLayer
from paddle.text import PrePostProcessLayer
# input: [batch_size, sequence_length, d_model]
x = paddle.rand((2, 4, 32))
......@@ -2709,7 +2709,7 @@ class MultiHeadAttention(Layer):
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi.text import MultiHeadAttention
from paddle.text import MultiHeadAttention
# encoder input: [batch_size, sequence_length, d_model]
query = paddle.rand((2, 4, 128))
......@@ -2917,7 +2917,7 @@ class FFN(Layer):
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi.text import FFN
from paddle.text import FFN
# input: [batch_size, sequence_length, d_model]
x = paddle.rand((2, 4, 32))
......@@ -2992,7 +2992,7 @@ class TransformerEncoderLayer(Layer):
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi.text import TransformerEncoderLayer
from paddle.text import TransformerEncoderLayer
# encoder input: [batch_size, src_len, d_model]
enc_input = paddle.rand((2, 4, 128))
......@@ -3095,7 +3095,7 @@ class TransformerEncoder(Layer):
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi.text import TransformerEncoder
from paddle.text import TransformerEncoder
# encoder input: [batch_size, src_len, d_model]
enc_input = paddle.rand((2, 4, 128))
......@@ -3206,7 +3206,7 @@ class TransformerDecoderLayer(Layer):
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi.text import TransformerDecoderLayer
from paddle.text import TransformerDecoderLayer
# decoder input: [batch_size, trg_len, d_model]
dec_input = paddle.rand((2, 4, 128))
......@@ -3348,7 +3348,7 @@ class TransformerDecoder(Layer):
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi.text import TransformerDecoder
from paddle.text import TransformerDecoder
# decoder input: [batch_size, trg_len, d_model]
dec_input = paddle.rand((2, 4, 128))
......@@ -3561,7 +3561,7 @@ class LinearChainCRF(Layer):
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi.text import LinearChainCRF
from paddle.text import LinearChainCRF
# emission: [batch_size, sequence_length, num_tags]
emission = paddle.rand((2, 8, 5))
......@@ -3689,7 +3689,7 @@ class CRFDecoding(Layer):
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi.text import CRFDecoding
from paddle.text import CRFDecoding
# emission: [batch_size, sequence_length, num_tags]
emission = paddle.rand((2, 8, 5))
......@@ -3858,7 +3858,7 @@ class SequenceTagging(Layer):
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.incubate.hapi.text import SequenceTagging
from paddle.text import SequenceTagging
# word: [batch_size, sequence_length]
# dummy input just for example
......
......@@ -17,8 +17,9 @@ from .profiler import ProfilerOptions
from .profiler import Profiler
from .profiler import get_profiler
from .deprecated import deprecated
from . import download
__all__ = ['dump_config', 'Ploter', 'deprecated']
__all__ = ['dump_config', 'Ploter', 'deprecated', 'download']
#TODO: define new api under this directory
# __all__ = ['unique_name',
......
......@@ -26,7 +26,6 @@ import tarfile
import zipfile
import time
from collections import OrderedDict
from paddle.fluid.dygraph.parallel import ParallelEnv
try:
from tqdm import tqdm
......@@ -156,6 +155,9 @@ def get_path_from_url(url, root_dir, md5sum=None, check_exist=True):
Returns:
str: a local path to save downloaded models & weights & datasets.
"""
from paddle.fluid.dygraph.parallel import ParallelEnv
assert is_url(url), "downloading from {} not a url".format(url)
# parse path after download to decompress under root_dir
fullpath = _map_path(url, root_dir)
......
#!/usr/bin/python
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Plot training and testing curve from paddle log.
It takes input from a file or stdin, and output to a file or stdout.
Note: must have numpy and matplotlib installed in order to use this tool.
usage: Plot training and testing curves from paddle log file.
[-h] [-i INPUT] [-o OUTPUT] [--format FORMAT] [key [key ...]]
positional arguments:
key keys of scores to plot, the default will be AvgCost
optional arguments:
-h, --help show this help message and exit
-i INPUT, --input INPUT
input filename of paddle log, default will be standard
input
-o OUTPUT, --output OUTPUT
output filename of figure, default will be standard
output
--format FORMAT figure format(png|pdf|ps|eps|svg)
The keys must be in the order of paddle output(!!!).
For example, paddle.INFO contains the following log
I0406 21:26:21.325584 3832 Trainer.cpp:601] Pass=0 Batch=7771 AvgCost=0.624935 Eval: error=0.260972
To use this script to generate plot for AvgCost, error:
python plotcurve.py -i paddle.INFO -o figure.png AvgCost error
"""
import six
import sys
import matplotlib
# the following line is added immediately after import matplotlib
# and before import pylot. The purpose is to ensure the plotting
# works even under remote login (i.e. headless display)
matplotlib.use('Agg')
from matplotlib import cm
import matplotlib.pyplot as pyplot
import numpy
import argparse
import re
import os
def plot_paddle_curve(keys, inputfile, outputfile, format='png',
show_fig=False):
"""Plot curves from paddle log and save to outputfile.
:param keys: a list of strings to be plotted, e.g. AvgCost
:param inputfile: a file object for input
:param outputfile: a file object for output
:return: None
"""
pass_pattern = r"Pass=([0-9]*)"
test_pattern = r"Test samples=([0-9]*)"
if not keys:
keys = ['AvgCost']
for k in keys:
pass_pattern += r".*?%s=([0-9e\-\.]*)" % k
test_pattern += r".*?%s=([0-9e\-\.]*)" % k
data = []
test_data = []
compiled_pattern = re.compile(pass_pattern)
compiled_test_pattern = re.compile(test_pattern)
for line in inputfile:
found = compiled_pattern.search(line)
found_test = compiled_test_pattern.search(line)
if found:
data.append([float(x) for x in found.groups()])
if found_test:
test_data.append([float(x) for x in found_test.groups()])
x = numpy.array(data)
x_test = numpy.array(test_data)
if x.shape[0] <= 0:
sys.stderr.write("No data to plot. Exiting!\n")
return
m = len(keys) + 1
for i in six.moves.xrange(1, m):
pyplot.plot(
x[:, 0],
x[:, i],
color=cm.jet(1.0 * (i - 1) / (2 * m)),
label=keys[i - 1])
if (x_test.shape[0] > 0):
pyplot.plot(
x[:, 0],
x_test[:, i],
color=cm.jet(1.0 - 1.0 * (i - 1) / (2 * m)),
label="Test " + keys[i - 1])
pyplot.xlabel('number of epoch')
pyplot.legend(loc='best')
if show_fig:
pyplot.show()
pyplot.savefig(outputfile, bbox_inches='tight')
pyplot.clf()
def main(argv):
"""
main method of plotting curves.
"""
cmdparser = argparse.ArgumentParser(
"Plot training and testing curves from paddle log file.")
cmdparser.add_argument(
'key', nargs='*', help='keys of scores to plot, the default is AvgCost')
cmdparser.add_argument(
'-i',
'--input',
help='input filename of paddle log, '
'default will be standard input')
cmdparser.add_argument(
'-o',
'--output',
help='output filename of figure, '
'default will be standard output')
cmdparser.add_argument('--format', help='figure format(png|pdf|ps|eps|svg)')
args = cmdparser.parse_args(argv)
keys = args.key
if args.input:
inputfile = open(args.input)
else:
inputfile = sys.stdin
format = args.format
if args.output:
outputfile = open(args.output, 'wb')
if not format:
format = os.path.splitext(args.output)[1]
if not format:
format = 'png'
else:
outputfile = sys.stdout
plot_paddle_curve(keys, inputfile, outputfile, format)
inputfile.close()
outputfile.close()
if __name__ == "__main__":
main(sys.argv[1:])
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os
import random
import numpy as np
import PIL.Image as Image
from six.moves import cStringIO as StringIO
from . import preprocess_util
from .image_util import crop_img
def resize_image(img, target_size):
"""
Resize an image so that the shorter edge has length target_size.
img: the input image to be resized.
target_size: the target resized image size.
"""
percent = (target_size / float(min(img.size[0], img.size[1])))
resized_size = int(round(img.size[0] * percent)),\
int(round(img.size[1] * percent))
img = img.resize(resized_size, Image.ANTIALIAS)
return img
class DiskImage:
"""
A class of image data on disk.
"""
def __init__(self, path, target_size):
"""
path: path of the image.
target_size: target resize size.
"""
self.path = path
self.target_size = target_size
self.img = None
pass
def read_image(self):
if self.img is None:
print("reading: " + self.path)
image = resize_image(Image.open(self.path), self.target_size)
self.img = image
def convert_to_array(self):
self.read_image()
np_array = np.array(self.img)
if len(np_array.shape) == 3:
np_array = np.swapaxes(np_array, 1, 2)
np_array = np.swapaxes(np_array, 1, 0)
return np_array
def convert_to_paddle_format(self):
"""
convert the image into the paddle batch format.
"""
self.read_image()
output = StringIO()
self.img.save(output, "jpeg")
contents = output.getvalue()
return contents
class ImageClassificationDatasetCreater(preprocess_util.DatasetCreater):
"""
A class to process data for image classification.
"""
def __init__(self, data_path, target_size, color=True):
"""
data_path: the path to store the training data and batches.
target_size: processed image size in a batch.
color: whether to use color images.
"""
preprocess_util.DatasetCreater.__init__(self, data_path)
self.target_size = target_size
self.color = color
self.keys = ["images", "labels"]
self.permute_key = "labels"
def create_meta_file(self, data):
"""
Create a meta file for image classification.
The meta file contains the meam image, as well as some configs.
data: the training Dataaet.
"""
output_path = os.path.join(self.data_path, self.batch_dir_name,
self.meta_filename)
if self.color:
mean_img = np.zeros((3, self.target_size, self.target_size))
else:
mean_img = np.zeros((self.target_size, self.target_size))
for d in data.data:
img = d[0].convert_to_array()
cropped_img = crop_img(img, self.target_size, self.color)
mean_img += cropped_img
mean_img /= len(data.data)
mean_img = mean_img.astype('int32').flatten()
preprocess_util.save_file({
"data_mean": mean_img,
"image_size": self.target_size,
"mean_image_size": self.target_size,
"num_classes": self.num_classes,
"color": self.color
}, output_path)
pass
def create_dataset_from_list(self, path):
data = []
label_set = []
for line in open(path):
items = line.rstrip.split()
image_path = items[0]
label_name = items[1]
if not label_name in label_set:
label_set[label_name] = len(list(label_set.keys()))
img = DiskImage(path=image_path, target_size=self.target_size)
label = preprocess_util.Lablel(
label=label_set[label_name], name=label_name)
return preprocess_util.Dataset(data, self.keys), label_set
def create_dataset_from_dir(self, path):
"""
Create a Dataset object for image classification.
Each folder in the path directory corresponds to a set of images of
this label, and the name of the folder is the name of the
path: the path of the image dataset.
"""
if self.from_list:
return self.create_dataset_from_list(path)
label_set = preprocess_util.get_label_set_from_dir(path)
data = []
for l_name in list(label_set.keys()):
image_paths = preprocess_util.list_images(
os.path.join(path, l_name))
for p in image_paths:
img = DiskImage(path=p, target_size=self.target_size)
label = preprocess_util.Label(
label=label_set[l_name], name=l_name)
data.append((img, label))
random.shuffle(data)
return preprocess_util.Dataset(data, self.keys), label_set
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import math
import six.moves.cPickle as pickle
import random
import collections
def save_file(data, filename):
"""
Save data into pickle format.
data: the data to save.
filename: the output filename.
"""
pickle.dump(data, open(filename, 'wb'), protocol=pickle.HIGHEST_PROTOCOL)
def save_list(l, outfile):
"""
Save a list of string into a text file. There is one line for each string.
l: the list of string to save
outfile: the output file
"""
open(outfile, "w").write("\n".join(l))
def exclude_pattern(f):
"""
Return whether f is in the exclude pattern.
Exclude the files that starts with . or ends with ~.
"""
return f.startswith(".") or f.endswith("~")
def list_dirs(path):
"""
Return a list of directories in path. Exclude all the directories that
start with '.'.
path: the base directory to search over.
"""
return [
os.path.join(path, d) for d in next(os.walk(path))[1]
if not exclude_pattern(d)
]
def list_images(path, exts=set(["jpg", "png", "bmp", "jpeg"])):
"""
Return a list of images in path.
path: the base directory to search over.
exts: the extensions of the images to find.
"""
return [os.path.join(path, d) for d in os.listdir(path) \
if os.path.isfile(os.path.join(path, d)) and not exclude_pattern(d)\
and os.path.splitext(d)[-1][1:] in exts]
def list_files(path):
"""
Return a list of files in path.
path: the base directory to search over.
exts: the extensions of the images to find.
"""
return [os.path.join(path, d) for d in os.listdir(path) \
if os.path.isfile(os.path.join(path, d)) and not exclude_pattern(d)]
def get_label_set_from_dir(path):
"""
Return a dictionary of the labels and label ids from a path.
Assume each directory in the path corresponds to a unique label.
The keys of the dictionary is the label name.
The values of the dictionary is the label id.
"""
dirs = list_dirs(path)
return dict([(os.path.basename(d), i) for i, d in enumerate(sorted(dirs))])
class Label:
"""
A class of label data.
"""
def __init__(self, label, name):
"""
label: the id of the label.
name: the name of the label.
"""
self.label = label
self.name = name
def convert_to_paddle_format(self):
"""
convert the image into the paddle batch format.
"""
return int(self.label)
def __hash__(self):
return hash((self.label))
class Dataset:
"""
A class to represent a dataset. A dataset contains a set of items.
Each item contains multiple slots of data.
For example: in image classification dataset, each item contains two slot,
The first slot is an image, and the second slot is a label.
"""
def __init__(self, data, keys):
"""
data: a list of data.
Each data is a tuple containing multiple slots of data.
Each slot is an object with convert_to_paddle_format function.
keys: contains a list of keys for all the slots.
"""
self.data = data
self.keys = keys
def check_valid(self):
for d in self.data:
assert (len(d) == len(self.keys))
def permute(self, key_id, num_per_batch):
"""
Permuate data for batching. It supports two types now:
1. if key_id == None, the batching process is completely random.
2. if key_id is not None. The batching process Permuate the data so that the key specified by key_id are
uniformly distributed in batches. See the comments of permute_by_key for details.
"""
if key_id is None:
self.uniform_permute()
else:
self.permute_by_key(key_id, num_per_batch)
def uniform_permute(self):
"""
Permuate the data randomly.
"""
random.shuffle(self.data)
def permute_by_key(self, key_id, num_per_batch):
"""
Permuate the data so that the key specified by key_id are
uniformly distributed in batches.
For example: if we have three labels, and the number of data
for each label are 100, 200, and 300, respectively. The number of batches is 4.
Then, the number of data for these labels is 25, 50, and 75.
"""
# Store the indices of the data that has the key value
# specified by key_id.
keyvalue_indices = collections.defaultdict(list)
for idx in range(len(self.data)):
keyvalue_indices[self.data[idx][key_id].label].append(idx)
for k in keyvalue_indices:
random.shuffle(keyvalue_indices[k])
num_data_per_key_batch = \
math.ceil(num_per_batch / float(len(list(keyvalue_indices.keys()))))
if num_data_per_key_batch < 2:
raise Exception("The number of data in a batch is too small")
permuted_data = []
keyvalue_readpointer = collections.defaultdict(int)
while len(permuted_data) < len(self.data):
for k in keyvalue_indices:
begin_idx = keyvalue_readpointer[k]
end_idx = int(
min(begin_idx + num_data_per_key_batch,
len(keyvalue_indices[k])))
print("begin_idx, end_idx")
print(begin_idx, end_idx)
for idx in range(begin_idx, end_idx):
permuted_data.append(self.data[keyvalue_indices[k][idx]])
keyvalue_readpointer[k] = end_idx
self.data = permuted_data
class DataBatcher:
"""
A class that is used to create batches for both training and testing
datasets.
"""
def __init__(self, train_data, test_data, label_set):
"""
train_data, test_data: Each one is a dataset object representing
training and testing data, respectively.
label_set: a dictionary storing the mapping from label name to label id.
"""
self.train_data = train_data
self.test_data = test_data
self.label_set = label_set
self.num_per_batch = 5000
assert (self.train_data.keys == self.test_data.keys)
def create_batches_and_list(self, output_path, train_list_name,
test_list_name, label_set_name):
"""
Create batches for both training and testing objects.
It also create train.list and test.list to indicate the list
of the batch files for training and testing data, respectively.
"""
train_list = self.create_batches(self.train_data, output_path, "train_",
self.num_per_batch)
test_list = self.create_batches(self.test_data, output_path, "test_",
self.num_per_batch)
save_list(train_list, os.path.join(output_path, train_list_name))
save_list(test_list, os.path.join(output_path, test_list_name))
save_file(self.label_set, os.path.join(output_path, label_set_name))
def create_batches(self,
data,
output_path,
prefix="",
num_data_per_batch=5000):
"""
Create batches for a Dataset object.
data: the Dataset object to process.
output_path: the output path of the batches.
prefix: the prefix of each batch.
num_data_per_batch: number of data in each batch.
"""
num_batches = int(math.ceil(len(data.data) / float(num_data_per_batch)))
batch_names = []
data.check_valid()
num_slots = len(data.keys)
for i in range(num_batches):
batch_name = os.path.join(output_path, prefix + "batch_%03d" % i)
out_data = dict([(k, []) for k in data.keys])
begin_idx = i * num_data_per_batch
end_idx = min((i + 1) * num_data_per_batch, len(data.data))
for j in range(begin_idx, end_idx):
for slot_id in range(num_slots):
out_data[data.keys[slot_id]].\
append(data.data[j][slot_id].convert_to_paddle_format())
save_file(out_data, batch_name)
batch_names.append(batch_name)
return batch_names
class DatasetCreater(object):
"""
A virtual class for creating datasets.
The derived class needs to implement the following methods:
- create_dataset()
- create_meta_file()
"""
def __init__(self, data_path):
"""
data_path: the path to store the training data and batches.
train_dir_name: relative training data directory.
test_dir_name: relative testing data directory.
batch_dir_name: relative batch directory.
num_per_batch: the number of data in a batch.
meta_filename: the filename of the meta file.
train_list_name: training batch list name.
test_list_name: testing batch list name.
label_set: label set name.
overwrite: whether to overwrite the files if the batches are already in
the given path.
"""
self.data_path = data_path
self.train_dir_name = 'train'
self.test_dir_name = 'test'
self.batch_dir_name = 'batches'
self.num_per_batch = 50000
self.meta_filename = "batches.meta"
self.train_list_name = "train.list"
self.test_list_name = "test.list"
self.label_set_name = "labels.pkl"
self.output_path = os.path.join(self.data_path, self.batch_dir_name)
self.overwrite = False
self.permutate_key = "labels"
self.from_list = False
def create_meta_file(self, data):
"""
Create a meta file from training data.
data: training data given in a Dataset format.
"""
raise NotImplementedError
def create_dataset(self, path):
"""
Create a data set object from a path.
It will use directory structure or a file list to determine dataset if
self.from_list is True. Otherwise, it will uses a file list to
determine the dataset.
path: the path of the dataset.
return a tuple of Dataset object, and a mapping from label set
to label id.
"""
if self.from_list:
return self.create_dataset_from_list(path)
else:
return self.create_dataset_from_dir(path)
def create_dataset_from_list(self, path):
"""
Create a data set object from a path.
It will uses a file list to determine the dataset.
path: the path of the dataset.
return a tuple of Dataset object, and a mapping from label set
to label id
"""
raise NotImplementedError
def create_dataset_from_dir(self, path):
"""
Create a data set object from a path.
It will use directory structure or a file list to determine dataset if
self.from_list is True.
path: the path of the dataset.
return a tuple of Dataset object, and a mapping from label set
to label id
"""
raise NotImplementedError
def create_batches(self):
"""
create batches and meta file.
"""
train_path = os.path.join(self.data_path, self.train_dir_name)
test_path = os.path.join(self.data_path, self.test_dir_name)
out_path = os.path.join(self.data_path, self.batch_dir_name)
if not os.path.exists(out_path):
os.makedirs(out_path)
if (self.overwrite or not os.path.exists(
os.path.join(out_path, self.train_list_name))):
train_data, train_label_set = \
self.create_dataset(train_path)
test_data, test_label_set = \
self.create_dataset(test_path)
train_data.permute(
self.keys.index(self.permutate_key), self.num_per_batch)
assert (train_label_set == test_label_set)
data_batcher = DataBatcher(train_data, test_data, train_label_set)
data_batcher.num_per_batch = self.num_per_batch
data_batcher.create_batches_and_list(
self.output_path, self.train_list_name, self.test_list_name,
self.label_set_name)
self.num_classes = len(list(train_label_set.keys()))
self.create_meta_file(train_data)
return out_path
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Show the content of proto buffer data file of PADDLE
"""
from __future__ import print_function
import os
import sys
from google.protobuf.internal.decoder import _DecodeVarint
import paddle.proto.DataFormat_pb2 as DataFormat
def read_proto(file, message):
"""
read a protobuffer struct from file, the length of the struct is stored as
a varint, then followed by the actual struct data.
@return True success, False for end of file
"""
buf = file.read(8)
if not buf:
return False
result, pos = _DecodeVarint(buf, 0)
buf = buf[pos:] + file.read(result - len(buf) + pos)
message.ParseFromString(buf)
return True
def usage():
print("Usage: python show_pb.py PROTO_DATA_FILE", file=sys.stderr)
exit(1)
if __name__ == '__main__':
if len(sys.argv) < 2:
usage()
f = open(sys.argv[1])
header = DataFormat.DataHeader()
read_proto(f, header)
print(header)
sample = DataFormat.DataSample()
while read_proto(f, sample):
print(sample)
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Convert torch parameter file to paddle model files.
Note: must have torchfile installed in order to use this tool.
Usage: python torch2paddle.py -i torchfile.t7 -l layers.txt -o path/to/paddle_model
"""
import os
import sys
import struct
import numpy as np
import torchfile
import six.moves.cPickle as pickle
import argparse
# save parameters
def save_layer_parameters(outfile, feats):
version = 0
value_size = 4
ret = ""
for feat in feats:
ret += feat.tostring()
size = len(ret) / 4
fo = open(outfile, 'wb')
fo.write(struct.pack('iIQ', version, value_size, size))
fo.write(ret)
fo.close()
def save_net_parameters(layers, params, output_path):
for i in range(len(layers)):
weight = params[i * 2]
biases = params[i * 2 + 1]
weight_file = os.path.join(output_path, '_%s.w0' % layers[i])
biases_file = os.path.join(output_path, '_%s.wbias' % layers[i])
print("Saving for layer %s." % layers[i])
save_layer_parameters(weight_file, [weight])
save_layer_parameters(biases_file, biases)
def load_layer_parameters(filename):
fn = open(filename, 'rb')
version, = struct.unpack('i', fn.read(4))
value_length, = struct.unpack("I", fn.read(4))
dtype = 'float32' if value_length == 4 else 'float64'
param_size, = struct.unpack("L", fn.read(8))
value = np.fromfile(fn, dtype)
return value
def main(argv):
"""
main method of converting torch to paddle files.
:param argv:
:return:
"""
cmdparser = argparse.ArgumentParser(
"Convert torch parameter file to paddle model files.")
cmdparser.add_argument(
'-i', '--input', help='input filename of torch parameters')
cmdparser.add_argument('-l', '--layers', help='list of layer names')
cmdparser.add_argument(
'-o', '--output', help='output file path of paddle model')
args = cmdparser.parse_args(argv)
if args.input and args.layers and args.output:
params = torchfile.load(args.input)
layers = [line.strip() for line in open(args.layers, 'r')]
save_net_parameters(layers, params, args.output)
else:
print(
'Usage: python torch2paddle.py -i torchfile.t7 -l layers.txt -o path/to/paddle_model'
)
if __name__ == "__main__":
main(sys.argv[1:])
......@@ -13,9 +13,14 @@
# limitations under the License.
from . import models
from . import transforms
from .models import *
from . import transforms
from .transforms import *
from . import datasets
from .datasets import *
__all__ = models.__all__ \
+ transforms.__all__
+ transforms.__all__ \
+ datasets.__all__
......@@ -12,18 +12,20 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from . import folder
from . import mnist
from . import flowers
from . import cifar
from . import voc2012
import os
import paddle.dataset.common
from .folder import *
from .mnist import *
from .flowers import *
from .cifar import *
from .voc2012 import *
def _check_exists_and_download(path, url, md5, module_name, download=True):
if path and os.path.exists(path):
return path
if download:
return paddle.dataset.common.download(url, module_name, md5)
else:
raise ValueError('{} not exists and auto download disabled'.format(
path))
__all__ = folder.__all__ \
+ mnist.__all__ \
+ flowers.__all__ \
+ cifar.__all__ \
+ voc2012.__all__
......@@ -20,7 +20,7 @@ import six
from six.moves import cPickle as pickle
from paddle.io import Dataset
from .utils import _check_exists_and_download
from paddle.dataset.common import _check_exists_and_download
__all__ = ['Cifar10', 'Cifar100']
......@@ -59,13 +59,16 @@ class Cifar10(Dataset):
.. code-block:: python
import paddle
from paddle.incubate.hapi.datasets import Cifar10
from paddle.incubate.hapi.vision.transforms import Normalize
import paddle.nn as nn
from paddle.vision.datasets import Cifar10
from paddle.vision.transforms import Normalize
class SimpleNet(paddle.nn.Layer):
def __init__(self):
super(SimpleNet, self).__init__()
self.fc = paddle.nn.Linear(3072, 10, act='softmax')
self.fc = nn.Sequential(
nn.Linear(3072, 10),
nn.Softmax())
def forward(self, image, label):
image = paddle.reshape(image, (3, -1))
......@@ -165,13 +168,16 @@ class Cifar100(Cifar10):
.. code-block:: python
import paddle
from paddle.incubate.hapi.datasets import Cifar100
from paddle.incubate.hapi.vision.transforms import Normalize
import paddle.nn as nn
from paddle.vision.datasets import Cifar100
from paddle.vision.transforms import Normalize
class SimpleNet(paddle.nn.Layer):
def __init__(self):
super(SimpleNet, self).__init__()
self.fc = paddle.nn.Linear(3072, 100, act='softmax')
self.fc = nn.Sequential(
nn.Linear(3072, 10),
nn.Softmax())
def forward(self, image, label):
image = paddle.reshape(image, (3, -1))
......
......@@ -22,7 +22,7 @@ import scipy.io as scio
from PIL import Image
from paddle.io import Dataset
from .utils import _check_exists_and_download
from paddle.dataset.common import _check_exists_and_download
__all__ = ["Flowers"]
......@@ -60,7 +60,7 @@ class Flowers(Dataset):
.. code-block:: python
from paddle.incubate.hapi.datasets import Flowers
from paddle.vision.datasets import Flowers
flowers = Flowers(mode='test')
......
......@@ -94,7 +94,7 @@ class DatasetFolder(Dataset):
import tempfile
import shutil
import numpy as np
from paddle.incubate.hapi.datasets import DatasetFolder
from paddle.vision.datasets import DatasetFolder
def make_fake_dir():
data_dir = tempfile.mkdtemp()
......@@ -224,7 +224,7 @@ class ImageFolder(Dataset):
import tempfile
import shutil
import numpy as np
from paddle.incubate.hapi.datasets import ImageFolder
from paddle.vision.datasets import ImageFolder
def make_fake_dir():
data_dir = tempfile.mkdtemp()
......
......@@ -19,9 +19,8 @@ import gzip
import struct
import numpy as np
import paddle.dataset.common
from paddle.io import Dataset
from .utils import _check_exists_and_download
from paddle.dataset.common import _check_exists_and_download
__all__ = ["MNIST"]
......@@ -58,7 +57,7 @@ class MNIST(Dataset):
.. code-block:: python
from paddle.incubate.hapi.datasets import MNIST
from paddle.vision.datasets import MNIST
mnist = MNIST(mode='test')
......
......@@ -20,7 +20,7 @@ import numpy as np
from PIL import Image
from paddle.io import Dataset
from .utils import _check_exists_and_download
from paddle.dataset.common import _check_exists_and_download
__all__ = ["VOC2012"]
......@@ -53,7 +53,7 @@ class VOC2012(Dataset):
.. code-block:: python
import paddle
from paddle.incubate.hapi.datasets import VOC2012
from paddle.vision.datasets import VOC2012
class SimpleNet(paddle.nn.Layer):
def __init__(self):
......
......@@ -30,7 +30,7 @@ class LeNet(fluid.dygraph.Layer):
Examples:
.. code-block:: python
from paddle.incubate.hapi.vision.models import LeNet
from paddle.vision.models import LeNet
model = LeNet()
"""
......
......@@ -17,7 +17,7 @@ from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from ...download import get_weights_path_from_url
from paddle.utils.download import get_weights_path_from_url
__all__ = ['MobileNetV1', 'mobilenet_v1']
......@@ -116,7 +116,7 @@ class MobileNetV1(fluid.dygraph.Layer):
Examples:
.. code-block:: python
from paddle.incubate.hapi.vision.models import MobileNetV1
from paddle.vision.models import MobileNetV1
model = MobileNetV1()
"""
......@@ -291,7 +291,7 @@ def mobilenet_v1(pretrained=False, scale=1.0, **kwargs):
Examples:
.. code-block:: python
from paddle.incubate.hapi.vision.models import mobilenet_v1
from paddle.vision.models import mobilenet_v1
# build model
model = mobilenet_v1()
......
......@@ -18,7 +18,7 @@ import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from ...download import get_weights_path_from_url
from paddle.utils.download import get_weights_path_from_url
__all__ = ['MobileNetV2', 'mobilenet_v2']
......@@ -163,7 +163,7 @@ class MobileNetV2(fluid.dygraph.Layer):
Examples:
.. code-block:: python
from paddle.incubate.hapi.vision.models import MobileNetV2
from paddle.vision.models import MobileNetV2
model = MobileNetV2()
"""
......@@ -267,7 +267,7 @@ def mobilenet_v2(pretrained=False, scale=1.0, **kwargs):
Examples:
.. code-block:: python
from paddle.incubate.hapi.vision.models import mobilenet_v2
from paddle.vision.models import mobilenet_v2
# build model
model = mobilenet_v2()
......
......@@ -21,7 +21,7 @@ import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.container import Sequential
from ...download import get_weights_path_from_url
from paddle.utils.download import get_weights_path_from_url
__all__ = [
'ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152'
......@@ -180,8 +180,8 @@ class ResNet(fluid.dygraph.Layer):
Examples:
.. code-block:: python
from paddle.incubate.hapi.vision.models import ResNet
from paddle.incubate.hapi.vision.models.resnet import BottleneckBlock, BasicBlock
from paddle.vision.models import ResNet
from paddle.vision.models.resnet import BottleneckBlock, BasicBlock
resnet50 = ResNet(BottleneckBlock, 50)
......@@ -292,7 +292,7 @@ def resnet18(pretrained=False, **kwargs):
Examples:
.. code-block:: python
from paddle.incubate.hapi.vision.models import resnet18
from paddle.vision.models import resnet18
# build model
model = resnet18()
......@@ -312,7 +312,7 @@ def resnet34(pretrained=False, **kwargs):
Examples:
.. code-block:: python
from paddle.incubate.hapi.vision.models import resnet34
from paddle.vision.models import resnet34
# build model
model = resnet34()
......@@ -332,7 +332,7 @@ def resnet50(pretrained=False, **kwargs):
Examples:
.. code-block:: python
from paddle.incubate.hapi.vision.models import resnet50
from paddle.vision.models import resnet50
# build model
model = resnet50()
......@@ -352,7 +352,7 @@ def resnet101(pretrained=False, **kwargs):
Examples:
.. code-block:: python
from paddle.incubate.hapi.vision.models import resnet101
from paddle.vision.models import resnet101
# build model
model = resnet101()
......@@ -372,7 +372,7 @@ def resnet152(pretrained=False, **kwargs):
Examples:
.. code-block:: python
from paddle.incubate.hapi.vision.models import resnet152
from paddle.vision.models import resnet152
# build model
model = resnet152()
......
......@@ -16,7 +16,7 @@ import paddle.fluid as fluid
from paddle.nn import Conv2d, Pool2D, BatchNorm, Linear, ReLU, Softmax
from paddle.fluid.dygraph.container import Sequential
from ...download import get_weights_path_from_url
from paddle.utils.download import get_weights_path_from_url
__all__ = [
'VGG',
......@@ -65,8 +65,8 @@ class VGG(fluid.dygraph.Layer):
Examples:
.. code-block:: python
from paddle.incubate.hapi.vision.models import VGG
from paddle.incubate.hapi.vision.models.vgg import make_layers
from paddle.vision.models import VGG
from paddle.vision.models.vgg import make_layers
vgg11_cfg = [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']
......@@ -160,7 +160,7 @@ def vgg11(pretrained=False, batch_norm=False, **kwargs):
Examples:
.. code-block:: python
from paddle.incubate.hapi.vision.models import vgg11
from paddle.vision.models import vgg11
# build model
model = vgg11()
......@@ -184,7 +184,7 @@ def vgg13(pretrained=False, batch_norm=False, **kwargs):
Examples:
.. code-block:: python
from paddle.incubate.hapi.vision.models import vgg13
from paddle.vision.models import vgg13
# build model
model = vgg13()
......@@ -208,7 +208,7 @@ def vgg16(pretrained=False, batch_norm=False, **kwargs):
Examples:
.. code-block:: python
from paddle.incubate.hapi.vision.models import vgg16
from paddle.vision.models import vgg16
# build model
model = vgg16()
......@@ -232,7 +232,7 @@ def vgg19(pretrained=False, batch_norm=False, **kwargs):
Examples:
.. code-block:: python
from paddle.incubate.hapi.vision.models import vgg19
from paddle.vision.models import vgg19
# build model
model = vgg19()
......
......@@ -64,7 +64,7 @@ def flip(image, code):
.. code-block:: python
import numpy as np
from paddle.incubate.hapi.vision.transforms import functional as F
from paddle.vision.transforms import functional as F
fake_img = np.random.rand(224, 224, 3)
......@@ -94,7 +94,7 @@ def resize(img, size, interpolation=cv2.INTER_LINEAR):
.. code-block:: python
import numpy as np
from paddle.incubate.hapi.vision.transforms import functional as F
from paddle.vision.transforms import functional as F
fake_img = np.random.rand(256, 256, 3)
......@@ -155,7 +155,7 @@ def pad(img, padding, fill=(0, 0, 0), padding_mode='constant'):
import numpy as np
from paddle.incubate.hapi.vision.transforms.functional import pad
from paddle.vision.transforms.functional import pad
fake_img = np.random.rand(500, 500, 3).astype('float32')
......@@ -243,7 +243,7 @@ def rotate(img,
import numpy as np
from paddle.incubate.hapi.vision.transforms.functional import rotate
from paddle.vision.transforms.functional import rotate
fake_img = np.random.rand(500, 500, 3).astype('float32')
......@@ -305,7 +305,7 @@ def to_grayscale(img, num_output_channels=1):
import numpy as np
from paddle.incubate.hapi.vision.transforms.functional import to_grayscale
from paddle.vision.transforms.functional import to_grayscale
fake_img = np.random.rand(500, 500, 3).astype('float32')
......
......@@ -76,8 +76,8 @@ class Compose(object):
.. code-block:: python
from paddle.incubate.hapi.datasets import Flowers
from paddle.incubate.hapi.vision.transforms import Compose, ColorJitter, Resize
from paddle.vision.datasets import Flowers
from paddle.vision.transforms import Compose, ColorJitter, Resize
transform = Compose([ColorJitter(), Resize(size=608)])
flowers = Flowers(mode='test', transform=transform)
......@@ -130,9 +130,9 @@ class BatchCompose(object):
import numpy as np
from paddle.io import DataLoader
from paddle.incubate.hapi import set_device
from paddle.incubate.hapi.datasets import Flowers
from paddle.incubate.hapi.vision.transforms import Compose, BatchCompose, Resize
from paddle import set_device
from paddle.vision.datasets import Flowers
from paddle.vision.transforms import Compose, BatchCompose, Resize
class NormalizeBatch(object):
def __init__(self,
......@@ -222,7 +222,7 @@ class Resize(object):
import numpy as np
from paddle.incubate.hapi.vision.transforms import Resize
from paddle.vision.transforms import Resize
transform = Resize(size=224)
......@@ -259,7 +259,7 @@ class RandomResizedCrop(object):
import numpy as np
from paddle.incubate.hapi.vision.transforms import RandomResizedCrop
from paddle.vision.transforms import RandomResizedCrop
transform = RandomResizedCrop(224)
......@@ -336,7 +336,7 @@ class CenterCropResize(object):
import numpy as np
from paddle.incubate.hapi.vision.transforms import CenterCropResize
from paddle.vision.transforms import CenterCropResize
transform = CenterCropResize(224)
......@@ -380,7 +380,7 @@ class CenterCrop(object):
import numpy as np
from paddle.incubate.hapi.vision.transforms import CenterCrop
from paddle.vision.transforms import CenterCrop
transform = CenterCrop(224)
......@@ -422,7 +422,7 @@ class RandomHorizontalFlip(object):
import numpy as np
from paddle.incubate.hapi.vision.transforms import RandomHorizontalFlip
from paddle.vision.transforms import RandomHorizontalFlip
transform = RandomHorizontalFlip(224)
......@@ -453,7 +453,7 @@ class RandomVerticalFlip(object):
import numpy as np
from paddle.incubate.hapi.vision.transforms import RandomVerticalFlip
from paddle.vision.transforms import RandomVerticalFlip
transform = RandomVerticalFlip(224)
......@@ -488,7 +488,7 @@ class Normalize(object):
import numpy as np
from paddle.incubate.hapi.vision.transforms import Normalize
from paddle.vision.transforms import Normalize
normalize = Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
......@@ -530,7 +530,7 @@ class Permute(object):
import numpy as np
from paddle.incubate.hapi.vision.transforms import Permute
from paddle.vision.transforms import Permute
transform = Permute()
......@@ -569,7 +569,7 @@ class GaussianNoise(object):
import numpy as np
from paddle.incubate.hapi.vision.transforms import GaussianNoise
from paddle.vision.transforms import GaussianNoise
transform = GaussianNoise()
......@@ -603,7 +603,7 @@ class BrightnessTransform(object):
import numpy as np
from paddle.incubate.hapi.vision.transforms import BrightnessTransform
from paddle.vision.transforms import BrightnessTransform
transform = BrightnessTransform(0.4)
......@@ -642,7 +642,7 @@ class ContrastTransform(object):
import numpy as np
from paddle.incubate.hapi.vision.transforms import ContrastTransform
from paddle.vision.transforms import ContrastTransform
transform = ContrastTransform(0.4)
......@@ -682,7 +682,7 @@ class SaturationTransform(object):
import numpy as np
from paddle.incubate.hapi.vision.transforms import SaturationTransform
from paddle.vision.transforms import SaturationTransform
transform = SaturationTransform(0.4)
......@@ -723,7 +723,7 @@ class HueTransform(object):
import numpy as np
from paddle.incubate.hapi.vision.transforms import HueTransform
from paddle.vision.transforms import HueTransform
transform = HueTransform(0.4)
......@@ -775,7 +775,7 @@ class ColorJitter(object):
import numpy as np
from paddle.incubate.hapi.vision.transforms import ColorJitter
from paddle.vision.transforms import ColorJitter
transform = ColorJitter(0.4)
......@@ -822,7 +822,7 @@ class RandomCrop(object):
import numpy as np
from paddle.incubate.hapi.vision.transforms import RandomCrop
from paddle.vision.transforms import RandomCrop
transform = RandomCrop(224)
......@@ -909,7 +909,7 @@ class RandomErasing(object):
import numpy as np
from paddle.incubate.hapi.vision.transforms import RandomCrop
from paddle.vision.transforms import RandomCrop
transform = RandomCrop(224)
......@@ -995,7 +995,7 @@ class Pad(object):
import numpy as np
from paddle.incubate.hapi.vision.transforms import Pad
from paddle.vision.transforms import Pad
transform = Pad(2)
......@@ -1051,7 +1051,7 @@ class RandomRotate(object):
import numpy as np
from paddle.incubate.hapi.vision.transforms import RandomRotate
from paddle.vision.transforms import RandomRotate
transform = RandomRotate(90)
......@@ -1119,7 +1119,7 @@ class Grayscale(object):
import numpy as np
from paddle.incubate.hapi.vision.transforms import Grayscale
from paddle.vision.transforms import Grayscale
transform = Grayscale()
......
......@@ -188,12 +188,13 @@ packages=['paddle',
'paddle.fluid.incubate.fleet.parameter_server.ir',
'paddle.fluid.incubate.fleet.collective',
'paddle.fluid.incubate.fleet.utils',
'paddle.incubate.hapi',
'paddle.incubate.hapi.datasets',
'paddle.incubate.hapi.vision',
'paddle.incubate.hapi.vision.models',
'paddle.incubate.hapi.vision.transforms',
'paddle.incubate.hapi.text',
'paddle.hapi',
'paddle.vision',
'paddle.vision.models',
'paddle.vision.transforms',
'paddle.vision.datasets',
'paddle.text',
'paddle.text.datasets',
'paddle.incubate',
'paddle.io',
'paddle.optimizer',
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册