Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
f4904247
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f4904247
编写于
10月 17, 2016
作者:
T
Travis CI
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Deploy to GitHub Pages:
c2d418db
上级
8f5e20e7
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
4 addition
and
1312 deletion
+4
-1312
doc/_sources/ui/api/trainer_config_helpers/layers.txt
doc/_sources/ui/api/trainer_config_helpers/layers.txt
+0
-6
doc/searchindex.js
doc/searchindex.js
+1
-1
doc/ui/api/trainer_config_helpers/layers.html
doc/ui/api/trainer_config_helpers/layers.html
+0
-44
doc/ui/api/trainer_config_helpers/layers_index.html
doc/ui/api/trainer_config_helpers/layers_index.html
+0
-1
doc_cn/_sources/algorithm/rnn/hierarchical-layer.txt
doc_cn/_sources/algorithm/rnn/hierarchical-layer.txt
+0
-66
doc_cn/_sources/algorithm/rnn/hierarchical-rnn.txt
doc_cn/_sources/algorithm/rnn/hierarchical-rnn.txt
+0
-267
doc_cn/_sources/algorithm/rnn/rnn-tutorial.txt
doc_cn/_sources/algorithm/rnn/rnn-tutorial.txt
+0
-96
doc_cn/_sources/index.txt
doc_cn/_sources/index.txt
+1
-4
doc_cn/algorithm/rnn/hierarchical-layer.html
doc_cn/algorithm/rnn/hierarchical-layer.html
+0
-196
doc_cn/algorithm/rnn/hierarchical-rnn.html
doc_cn/algorithm/rnn/hierarchical-rnn.html
+0
-404
doc_cn/algorithm/rnn/rnn-tutorial.html
doc_cn/algorithm/rnn/rnn-tutorial.html
+0
-222
doc_cn/index.html
doc_cn/index.html
+1
-4
doc_cn/objects.inv
doc_cn/objects.inv
+0
-0
doc_cn/searchindex.js
doc_cn/searchindex.js
+1
-1
未找到文件。
doc/_sources/ui/api/trainer_config_helpers/layers.txt
浏览文件 @
f4904247
...
...
@@ -130,12 +130,6 @@ gru_step_layer
Recurrent Layer Group
=====================
memory
------
.. automodule:: paddle.trainer_config_helpers.layers
:members: memory
:noindex:
recurrent_group
---------------
.. automodule:: paddle.trainer_config_helpers.layers
...
...
doc/searchindex.js
浏览文件 @
f4904247
因为 它太大了无法显示 source diff 。你可以改为
查看blob
。
doc/ui/api/trainer_config_helpers/layers.html
浏览文件 @
f4904247
...
...
@@ -901,49 +901,6 @@ will get a warning.</li>
</div>
<div
class=
"section"
id=
"recurrent-layer-group"
>
<h1>
Recurrent Layer Group
<a
class=
"headerlink"
href=
"#recurrent-layer-group"
title=
"Permalink to this headline"
>
¶
</a></h1>
<div
class=
"section"
id=
"memory"
>
<h2>
memory
<a
class=
"headerlink"
href=
"#memory"
title=
"Permalink to this headline"
>
¶
</a></h2>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.trainer_config_helpers.layers.
</code><code
class=
"descname"
>
memory
</code><span
class=
"sig-paren"
>
(
</span><em>
name
</em>
,
<em>
size
</em>
,
<em>
is_seq=False
</em>
,
<em>
boot_layer=None
</em>
,
<em>
boot_bias=None
</em>
,
<em>
boot_bias_active_type=None
</em>
,
<em>
boot_with_const_id=None
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
The memory layers is a layer cross each time step. Reference this output
as previous time step layer
<code
class=
"code docutils literal"
><span
class=
"pre"
>
name
</span></code>
‘
s output.
</p>
<p>
The default memory is zero in first time step, previous time step
’
s
output in the rest time steps.
</p>
<p>
If boot_bias, the first time step value is this bias and
with activation.
</p>
<p>
If boot_with_const_id, then the first time stop is a IndexSlot, the
Arguments.ids()[0] is this
<code
class=
"code docutils literal"
><span
class=
"pre"
>
cost_id
</span></code>
.
</p>
<p>
If boot_layer is not null, the memory is just the boot_layer
’
s output.
Set
<code
class=
"code docutils literal"
><span
class=
"pre"
>
is_seq
</span></code>
is true boot layer is sequence.
</p>
<p>
The same name layer in recurrent group will set memory on each time
step.
</p>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
<tbody
valign=
"top"
>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
Parameters:
</th><td
class=
"field-body"
><ul
class=
"first simple"
>
<li><strong>
name
</strong>
(
<em>
basestring
</em>
)
–
memory
’
s name.
</li>
<li><strong>
size
</strong>
(
<em>
int
</em>
)
–
size of memory.
</li>
<li><strong>
is_seq
</strong>
(
<em>
bool
</em>
)
–
is sequence for boot_layer
</li>
<li><strong>
boot_layer
</strong>
(
<em>
LayerOutput|None
</em>
)
–
boot layer of memory.
</li>
<li><strong>
boot_bias
</strong>
(
<em>
ParameterAttribute|None
</em>
)
–
boot layer
’
s bias
</li>
<li><strong>
boot_bias_active_type
</strong>
(
<em>
BaseActivation
</em>
)
–
boot layer
’
s active type.
</li>
<li><strong>
boot_with_const_id
</strong>
(
<em>
int
</em>
)
–
boot layer
’
s id.
</li>
</ul>
</td>
</tr>
<tr
class=
"field-even field"
><th
class=
"field-name"
>
Returns:
</th><td
class=
"field-body"
><p
class=
"first"
>
LayerOutput object which is a memory.
</p>
</td>
</tr>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
Return type:
</th><td
class=
"field-body"
><p
class=
"first last"
>
LayerOutput
</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
<div
class=
"section"
id=
"recurrent-group"
>
<h2>
recurrent_group
<a
class=
"headerlink"
href=
"#recurrent-group"
title=
"Permalink to this headline"
>
¶
</a></h2>
<dl
class=
"function"
>
...
...
@@ -2690,7 +2647,6 @@ It is used by recurrent layer group.</p>
</ul>
</li>
<li><a
class=
"reference internal"
href=
"#recurrent-layer-group"
>
Recurrent Layer Group
</a><ul>
<li><a
class=
"reference internal"
href=
"#memory"
>
memory
</a></li>
<li><a
class=
"reference internal"
href=
"#recurrent-group"
>
recurrent_group
</a></li>
<li><a
class=
"reference internal"
href=
"#beam-search"
>
beam_search
</a></li>
<li><a
class=
"reference internal"
href=
"#get-output-layer"
>
get_output_layer
</a></li>
...
...
doc/ui/api/trainer_config_helpers/layers_index.html
浏览文件 @
f4904247
...
...
@@ -114,7 +114,6 @@ var _hmt = _hmt || [];
</ul>
</li>
<li
class=
"toctree-l1"
><a
class=
"reference internal"
href=
"layers.html#recurrent-layer-group"
>
Recurrent Layer Group
</a><ul>
<li
class=
"toctree-l2"
><a
class=
"reference internal"
href=
"layers.html#memory"
>
memory
</a></li>
<li
class=
"toctree-l2"
><a
class=
"reference internal"
href=
"layers.html#recurrent-group"
>
recurrent_group
</a></li>
<li
class=
"toctree-l2"
><a
class=
"reference internal"
href=
"layers.html#beam-search"
>
beam_search
</a></li>
<li
class=
"toctree-l2"
><a
class=
"reference internal"
href=
"layers.html#get-output-layer"
>
get_output_layer
</a></li>
...
...
doc_cn/_sources/algorithm/rnn/hierarchical-layer.txt
已删除
100644 → 0
浏览文件 @
8f5e20e7
# 支持双层序列作为输入的Layer
## 概述
在自然语言处理任务中,序列是一种常见的数据类型。一个独立的词语,可以看作是一个非序列输入,或者,我们称之为一个0层的序列;由词语构成的句子,是一个单层序列;若干个句子构成一个段落,是一个双层的序列。
双层序列是一个嵌套的序列,它的每一个元素,又是一个单层的序列。这是一种非常灵活的数据组织方式,帮助我们构造一些复杂的输入信息。
我们可以按照如下层次定义非序列,单层序列,以及双层序列。
+ 0层序列:一个独立的元素,类型可以是PaddlePaddle支持的任意输入数据类型
+ 单层序列:排成一列的多个元素,每个元素是一个0层序列,元素之间的顺序是重要的输入信息
+ 双层序列:排成一列的多个元素,每个元素是一个单层序列,称之为双层序列的一个子序列(subseq),subseq的每个元素是一个0层序列
在 PaddlePaddle中,下面这些Layer能够接受双层序列作为输入,完成相应的计算。
## pooling_layer
pooling_layer的使用示例如下,详细见<a href = "../../../doc/ui/api/trainer_config_helpers/layers.html#pooling-layer">配置API</a>。
```python
seq_pool = pooling_layer(input=layer,
pooling_type=AvgPooling(),
agg_level=AggregateLevel.EACH_SEQUENCE)
```
- `pooling_type` 目前支持两种,分别是:MaxPooling()和AvgPooling()。
- `agg_level=AggregateLevel.TIMESTEP`时(默认值):
- 作用:双层序列经过运算变成一个0层序列,或单层序列经过运算变成一个0层序列
- 输入:一个双层序列,或一个单层序列
- 输出:一个0层序列,即整个输入序列(单层或双层)的平均值(或最大值)
- `agg_level=AggregateLevel.EACH_SEQUENCE`时:
- 作用:一个双层序列经过运算变成一个单层序列
- 输入:必须是一个双层序列
- 输出:一个单层序列,序列的每个元素是原来双层序列每个subseq元素的平均值(或最大值)
## last_seq 和 first_seq
last_seq的使用示例如下(first_seq类似),详细见<a href = "../../../doc/ui/api/trainer_config_helpers/layers.html#last-seq">配置API</a>。
```python
last = last_seq(input=layer,
agg_level=AggregateLevel.EACH_SEQUENCE)
```
- `agg_level=AggregateLevel.TIMESTEP`时(默认值):
- 作用:一个双层序列经过运算变成一个0层序列,或一个单层序列经过运算变成一个0层序列
- 输入:一个双层序列或一个单层序列
- 输出:一个0层序列,即整个输入序列(双层或者单层)最后一个,或第一个元素。
- `agg_level=AggregateLevel.EACH_SEQUENCE`时:
- 作用:一个双层序列经过运算变成一个单层序列
- 输入:必须是一个双层序列
- 输出:一个单层序列,其中每个元素是双层序列中每个subseq最后一个(或第一个)元素。
## expand_layer
expand_layer的使用示例如下,详细见<a href = "../../../doc/ui/api/trainer_config_helpers/layers.html#expand-layer">配置API</a>。
```python
expand = expand_layer(input=layer1,
expand_as=layer2,
expand_level=ExpandLevel.FROM_TIMESTEP)
```
- `expand_level=ExpandLevel.FROM_TIMESTEP`时(默认值):
- 作用:一个0层序列经过运算扩展成一个单层序列,或者一个双层序列
- 输入:layer1必须是一个0层序列,是待扩展的数据;layer2可以是一个单层序列,或者是一个双层序列,提供扩展的长度信息
- 输出:一个单层序列,或一个双层序列,输出序列的类型(双层序列,或单层序列)和序列中含有元素的数目同 layer2一致。若输出是单层序列,单层序列的每个元素(0层序列),都是对layer1元素的拷贝;若输出是双层序列,双层序列每个subseq中每个元素(0层序列),都是对layer1元素的拷贝
- `expand_level=ExpandLevel.FROM_SEQUENCE`时:
- 作用:一个单层序列经过运算扩展成一个双层序列
- 输入:layer1必须是一个单层序列,是待扩展的数据;layer2必须是一个双层序列,提供扩展的长度信息
- 输出:一个双层序列,序列中含有元素的数目同layer2一致。要求单层序列含有元素的数目(0层序列),和双层序列含有subseq 的数目一致。单层序列第i个元素(0层序列),被扩展为一个单层序列,构成了输出双层序列的第i个subseq。
\ No newline at end of file
doc_cn/_sources/algorithm/rnn/hierarchical-rnn.txt
已删除
100644 → 0
浏览文件 @
8f5e20e7
# 双层RNN配置与示例
我们在`paddle/gserver/tests/test_RecurrentGradientMachine`单测中,通过多组语义相同的单双层RNN配置,讲解如何使用双层RNN。
## 示例1:双进双出,subseq间无memory
配置:单层RNN(`sequence_layer_group`)和双层RNN(`sequence_nest_layer_group`),语义完全相同。
### 读取双层序列的方法
首先,我们看一下单双层序列的不同数据组织形式(您也可以采用别的组织形式):
- 单层序列的数据(`Sequence/tour_train_wdseg`)如下,一共有10个样本。每个样本由两部分组成,一个label(此处都为2)和一个已经分词后的句子。
```text
2 酒店 有 很 舒适 的 床垫 子 , 床上用品 也 应该 是 一人 一 换 , 感觉 很 利落 对 卫生 很 放心 呀 。
2 很 温馨 , 也 挺 干净 的 * 地段 不错 , 出来 就 有 全家 , 离 地铁站 也 近 , 交通 很方便 * 就是 都 不 给 刷牙 的 杯子 啊 , 就 第一天 给 了 一次性杯子 *
2 位置 方便 , 强烈推荐 , 十一 出去玩 的 时候 选 的 , 对面 就是 华润万家 , 周围 吃饭 的 也 不少 。
2 交通便利 , 吃 很 便利 , 乾 浄 、 安静 , 商务 房 有 电脑 、 上网 快 , 价格 可以 , 就 早餐 不 好吃 。 整体 是 不错 的 。 適 合 出差 來 住 。
2 本来 准备 住 两 晚 , 第 2 天 一早 居然 停电 , 且 无 通知 , 只有 口头 道歉 。 总体来说 性价比 尚可 , 房间 较 新 , 还是 推荐 .
2 这个 酒店 去过 很多 次 了 , 选择 的 主要原因 是 离 客户 最 便宜 相对 又 近 的 酒店
2 挺好 的 汉庭 , 前台 服务 很 热情 , 卫生 很 整洁 , 房间 安静 , 水温 适中 , 挺好 !
2 HowardJohnson 的 品质 , 服务 相当 好 的 一 家 五星级 。 房间 不错 、 泳池 不错 、 楼层 安排 很 合理 。 还有 就是 地理位置 , 简直 一 流 。 就 在 天一阁 、 月湖 旁边 , 离 天一广场 也 不远 。 下次 来 宁波 还会 住 。
2 酒店 很干净 , 很安静 , 很 温馨 , 服务员 服务 好 , 各方面 都 不错 *
2 挺好 的 , 就是 没 窗户 , 不过 对 得 起 这 价格
```
- 双层序列的数据(`Sequence/tour_train_wdseg.nest`)如下,一共有4个样本。样本间用空行分开,代表不同的双层序列,序列数据和上面的完全一样。每个样本的子句数分别为2,3,2,3。
```text
2 酒店 有 很 舒适 的 床垫 子 , 床上用品 也 应该 是 一人 一 换 , 感觉 很 利落 对 卫生 很 放心 呀 。
2 很 温馨 , 也 挺 干净 的 * 地段 不错 , 出来 就 有 全家 , 离 地铁站 也 近 , 交通 很方便 * 就是 都 不 给 刷牙 的 杯子 啊 , 就 第一天 给 了 一次性杯子 *
2 位置 方便 , 强烈推荐 , 十一 出去玩 的 时候 选 的 , 对面 就是 华润万家 , 周围 吃饭 的 也 不少 。
2 交通便利 , 吃 很 便利 , 乾 浄 、 安静 , 商务 房 有 电脑 、 上网 快 , 价格 可以 , 就 早餐 不 好吃 。 整体 是 不错 的 。 適 合 出差 來 住 。
2 本来 准备 住 两 晚 , 第 2 天 一早 居然 停电 , 且 无 通知 , 只有 口头 道歉 。 总体来说 性价比 尚可 , 房间 较 新 , 还是 推荐 .
2 这个 酒店 去过 很多 次 了 , 选择 的 主要原因 是 离 客户 最 便宜 相对 又 近 的 酒店
2 挺好 的 汉庭 , 前台 服务 很 热情 , 卫生 很 整洁 , 房间 安静 , 水温 适中 , 挺好 !
2 HowardJohnson 的 品质 , 服务 相当 好 的 一 家 五星级 。 房间 不错 、 泳池 不错 、 楼层 安排 很 合理 。 还有 就是 地理位置 , 简直 一 流 。 就 在 天一阁 、 月湖 旁边 , 离 天一广场 也 不远 。 下次 来 宁波 还会 住 。
2 酒店 很干净 , 很安静 , 很 温馨 , 服务员 服务 好 , 各方面 都 不错 *
2 挺好 的 , 就是 没 窗户 , 不过 对 得 起 这 价格
```
其次,我们看一下单双层序列的不同dataprovider(见`sequenceGen.py`):
- 单层序列的dataprovider如下:
- word_slot是integer_value_sequence类型,代表单层序列。
- label是integer_value类型,代表一个向量。
```python
def hook(settings, dict_file, **kwargs):
settings.word_dict = dict_file
settings.input_types = [integer_value_sequence(len(settings.word_dict)),
integer_value(3)]
@provider(init_hook=hook)
def process(settings, file_name):
with open(file_name, 'r') as fdata:
for line in fdata:
label, comment = line.strip().split('\t')
label = int(''.join(label.split()))
words = comment.split()
word_slot = [settings.word_dict[w] for w in words if w in settings.word_dict]
yield word_slot, label
```
- 双层序列的dataprovider如下:
- word_slot是integer_value_sub_sequence类型,代表双层序列。
- label是integer_value_sequence类型,代表单层序列,即一个子句一个label。注意:也可以为integer_value类型,代表一个向量,即一个句子一个label。通常根据任务需求进行不同设置。
- 关于dataprovider中input_types的详细用法,参见PyDataProvider2。
```python
def hook2(settings, dict_file, **kwargs):
settings.word_dict = dict_file
settings.input_types = [integer_value_sub_sequence(len(settings.word_dict)),
integer_value_sequence(3)]
@provider(init_hook=hook2)
def process2(settings, file_name):
with open(file_name) as fdata:
label_list = []
word_slot_list = []
for line in fdata:
if (len(line)) > 1:
label,comment = line.strip().split('\t')
label = int(''.join(label.split()))
words = comment.split()
word_slot = [settings.word_dict[w] for w in words if w in settings.word_dict]
label_list.append(label)
word_slot_list.append(word_slot)
else:
yield word_slot_list, label_list
label_list = []
word_slot_list = []
```
### 模型中的配置
首先,我们看一下单层序列的配置(见`sequence_layer_group.conf`)。注意:batchsize=5表示一次过5句单层序列,因此2个batch就可以完成1个pass。
```python
settings(batch_size=5)
data = data_layer(name="word", size=dict_dim)
emb = embedding_layer(input=data, size=word_dim)
# (lstm_input + lstm) is equal to lstmemory
with mixed_layer(size=hidden_dim*4) as lstm_input:
lstm_input += full_matrix_projection(input=emb)
lstm = lstmemory_group(input=lstm_input,
size=hidden_dim,
act=TanhActivation(),
gate_act=SigmoidActivation(),
state_act=TanhActivation(),
lstm_layer_attr=ExtraLayerAttribute(error_clipping_threshold=50))
lstm_last = last_seq(input=lstm)
with mixed_layer(size=label_dim,
act=SoftmaxActivation(),
bias_attr=True) as output:
output += full_matrix_projection(input=lstm_last)
outputs(classification_cost(input=output, label=data_layer(name="label", size=1)))
```
其次,我们看一下语义相同的双层序列配置(见`sequence_nest_layer_group.conf`),并对其详细分析:
- batchsize=2表示一次过2句双层序列。但从上面的数据格式可知,2句双层序列和5句单层序列的数据完全一样。
- data_layer和embedding_layer不关心数据是否是序列格式,因此两个配置在这两层上的输出是一样的。
- lstmemory:
- 单层序列过了一个mixed_layer和lstmemory_group。
- 双层序列在同样的mixed_layer和lstmemory_group外,直接加了一层group。由于这个外层group里面没有memory,表示subseq间不存在联系,即起到的作用仅仅是把双层seq拆成单层,因此双层序列过完lstmemory的输出和单层的一样。
- last_seq:
- 单层序列直接取了最后一个元素
- 双层序列首先(last_seq层)取了每个subseq的最后一个元素,将其拼接成一个新的单层序列;接着(expand_layer层)将其扩展成一个新的双层序列,其中第i个subseq中的所有向量均为输入的单层序列中的第i个向量;最后(average_layer层)取了每个subseq的平均值。
- 分析得出:第一个last_seq后,每个subseq的最后一个元素就等于单层序列的最后一个元素,而expand_layer和average_layer后,依然保持每个subseq最后一个元素的值不变(这两层仅是为了展示它们的用法,实际中并不需要)。因此单双层序列的输出是一样旳。
```python
settings(batch_size=2)
data = data_layer(name="word", size=dict_dim)
emb_group = embedding_layer(input=data, size=word_dim)
# (lstm_input + lstm) is equal to lstmemory
def lstm_group(lstm_group_input):
with mixed_layer(size=hidden_dim*4) as group_input:
group_input += full_matrix_projection(input=lstm_group_input)
lstm_output = lstmemory_group(input=group_input,
name="lstm_group",
size=hidden_dim,
act=TanhActivation(),
gate_act=SigmoidActivation(),
state_act=TanhActivation(),
lstm_layer_attr=ExtraLayerAttribute(error_clipping_threshold=50))
return lstm_output
lstm_nest_group = recurrent_group(input=SubsequenceInput(emb_group),
step=lstm_group,
name="lstm_nest_group")
# hasSubseq ->(seqlastins) seq
lstm_last = last_seq(input=lstm_nest_group, agg_level=AggregateLevel.EACH_SEQUENCE)
# seq ->(expand) hasSubseq
lstm_expand = expand_layer(input=lstm_last, expand_as=emb_group, expand_level=ExpandLevel.FROM_SEQUENCE)
# hasSubseq ->(average) seq
lstm_average = pooling_layer(input=lstm_expand,
pooling_type=AvgPooling(),
agg_level=AggregateLevel.EACH_SEQUENCE)
with mixed_layer(size=label_dim,
act=SoftmaxActivation(),
bias_attr=True) as output:
output += full_matrix_projection(input=lstm_average)
outputs(classification_cost(input=output, label=data_layer(name="label", size=1)))
```
## 示例2:双进双出,subseq间有memory
配置:单层RNN(`sequence_rnn.conf`),双层RNN(`sequence_nest_rnn.conf`和`sequence_nest_rnn_readonly_memory.conf`),语义完全相同。
### 读取双层序列的方法
我们看一下单双层序列的不同数据组织形式和dataprovider(见`rnn_data_provider.py`)
```python
data = [
[[[1, 3, 2], [4, 5, 2]], 0],
[[[0, 2], [2, 5], [0, 1, 2]], 1],
]
@provider(input_types=[integer_value_sub_sequence(10),
integer_value(3)])
def process_subseq(settings, file_name):
for d in data:
yield d
@provider(input_types=[integer_value_sequence(10),
integer_value(3)])
def process_seq(settings, file_name):
for d in data:
seq = []
```
- 单层序列:有两句,分别为[1,3,2,4,5,2]和[0,2,2,5,0,1,2]。
- 双层序列:有两句,分别为[[1,3,2],[4,5,2]](2个子句)和[[0,2],[2,5],[0,1,2]](3个子句)。
- 单双层序列的label都分别是0和1
### 模型中的配置
我们选取单双层序列配置中的不同部分,来对比分析两者语义相同的原因。
- 单层序列:过了一个很简单的recurrent_group。每一个时间步,当前的输入y和上一个时间步的输出rnn_state做了一个全链接。
```python
def step(y):
mem = memory(name="rnn_state", size=hidden_dim)
return fc_layer(input=[y, mem],
size=hidden_dim,
act=TanhActivation(),
bias_attr=True,
name="rnn_state")
out = recurrent_group(step=step, input=emb)
```
- 双层序列,外层memory是一个元素:
- 内层inner_step的recurrent_group和单层序列的几乎一样。除了boot_layer=outer_mem,表示将外层的outer_mem作为内层memory的初始状态。外层outer_step中,outer_mem是一个子句的最后一个向量,即整个双层group是将前一个子句的最后一个向量,作为下一个子句memory的初始状态。
- 从输入数据上看,单双层序列的句子是一样的,只是双层序列将其又做了子序列划分。因此双层序列的配置中,必须将前一个子句的最后一个元素,作为boot_layer传给下一个子句的memory,才能保证和单层序列的配置中“每一个时间步都用了上一个时间步的输出结果”一致。
```python
def outer_step(x):
outer_mem = memory(name="outer_rnn_state", size=hidden_dim)
def inner_step(y):
inner_mem = memory(name="inner_rnn_state",
size=hidden_dim,
boot_layer=outer_mem)
return fc_layer(input=[y, inner_mem],
size=hidden_dim,
act=TanhActivation(),
bias_attr=True,
name="inner_rnn_state")
inner_rnn_output = recurrent_group(
step=inner_step,
input=x)
last = last_seq(input=inner_rnn_output, name="outer_rnn_state")
return inner_rnn_output
out = recurrent_group(step=outer_step, input=SubsequenceInput(emb))
```
- 双层序列,外层memory是单层序列:
- 由于外层每个时间步返回的是一个子句,这些子句的长度往往不等长。因此当外层有is_seq=True的memory时,内层是**无法直接使用**它的,即内层memory的boot_layer不能链接外层的这个memory。
- 如果内层memory想**间接使用**这个外层memory,只能通过`pooling_layer`、`last_seq`或`first_seq`这三个layer将它先变成一个元素。但这种情况下,外层memory必须有boot_layer,否则在第0个时间步时,由于外层memory没有任何seq信息,因此上述三个layer的前向会报出“**Check failed: input.sequenceStartPositions**”的错误。
## 示例3:双进双出,输入不等长
TBD
## 示例4:beam_search的生成
TBD
\ No newline at end of file
doc_cn/_sources/algorithm/rnn/rnn-tutorial.txt
已删除
100644 → 0
浏览文件 @
8f5e20e7
# Recurrent Group教程
## 概述
序列数据是自然语言处理任务面对的一种主要输入数据类型。
一句话是由词语构成的序列,多句话进一步构成了段落。因此,段落可以看作是一个嵌套的双层的序列,这个序列的每个元素又是一个序列。
双层序列是PaddlePaddle支持的一种非常灵活的数据组织方式,帮助我们更好地描述段落、多轮对话等更为复杂的语言数据。基于双层序列输入,我们可以设计搭建一个灵活的、层次化的RNN,分别从词语和句子级别编码输入数据,同时也能够引入更加复杂的记忆机制,更好地完成一些复杂的语言理解任务。
在PaddlePaddle中,`recurrent_group`是一种任意复杂的RNN单元,用户只需定义RNN在一个时间步内完成的计算,PaddlePaddle负责完成信息和误差在时间序列上的传播。
更进一步,`recurrent_group`同样可以扩展到双层序列的处理上。通过两个嵌套的`recurrent_group`分别定义子句级别和词语级别上需要完成的运算,最终实现一个层次化的复杂RNN。
目前,在PaddlePaddle中,能够对双向序列进行处理的有`recurrent_group`和部分Layer,具体可参考文档:<a href = "hierarchical-layer.html">支持双层序列作为输入的Layer</a>。
## 相关概念
### 基本原理
`recurrent_group` 是PaddlePaddle支持的一种任意复杂的RNN单元。使用者只需要关注于设计RNN在一个时间步之内完成的计算,PaddlePaddle负责完成信息和梯度在时间序列上的传播。
PaddlePaddle中,`recurrent_group`的一个简单调用如下:
``` python
recurrent_group(step, input, reverse)
```
- step:一个可调用的函数,定义一个时间步之内RNN单元完成的计算
- input:输入,必须是一个单层序列,或者一个双层序列
- reverse:是否以逆序处理输入序列
使用`recurrent_group`的核心是设计step函数的计算逻辑。step函数内部可以自由组合PaddlePaddle支持的各种layer,完成任意的运算逻辑。`recurrent_group` 的输入(即input)会成为step函数的输入,由于step 函数只关注于RNN一个时间步之内的计算,在这里`recurrent_group`替我们完成了原始输入数据的拆分。
### 输入
`recurrent_group`处理的输入序列主要分为以下三种类型:
- **数据输入**:一个双层序列进入`recurrent_group`会被拆解为一个单层序列,一个单层序列进入`recurrent_group`会被拆解为非序列,然后交给step函数,这一过程对用户是完全透明的。可以有以下两种:1)通过data_layer拿到的用户输入;2)其它layer的输出。
- **只读Memory输入**:`StaticInput` 定义了一个只读的Memory,由`StaticInput`指定的输入不会被`recurrent_group`拆解,`recurrent_group` 循环展开的每个时间步总是能够引用所有输入,可以是一个非序列,或者一个单层序列。
- **序列生成任务的输入**:`GeneratedInput`只用于在序列生成任务中指定输入数据。
### 输入示例
序列生成任务大多遵循encoder-decoer架构,encoder和decoder可以是能够处理序列的任意神经网络单元,而RNN是最流行的选择。
给定encoder输出和当前词,decoder每次预测产生下一个最可能的词语。在这种结构中,decoder接受两个输入:
- 要生成的目标序列:是decoder的数据输入,也是decoder循环展开的依据,`recurrent_group`会对这类输入进行拆解。
- encoder输出,可以是一个非序列,或者一个单层序列:是一个unbounded memory,decoder循环展开的每一个时间步会引用全部结果,不应该被拆解,这种类型的输入必须通过`StaticInput`指定。关于Unbounded Memory的更多讨论请参考论文 [Neural Turning Machine](https://arxiv.org/abs/1410.5401)。
在序列生成任务中,decoder RNN总是引用上一时刻预测出的词的词向量,作为当前时刻输入。`GeneratedInput`自动完成这一过程。
### 输出
`step`函数必须返回一个或多个Layer的输出,这个Layer的输出会作为整个`recurrent_group` 最终的输出结果。在输出的过程中,`recurrent_group` 会将每个时间步的输出拼接,这个过程对用户也是透明的。
### memory
memory只能在`recurrent_group`中定义和使用。memory不能独立存在,必须指向一个PaddlePaddle定义的Layer。引用memory得到这layer上一时刻输出,因此,可以将memory理解为一个时延操作。
可以显示地指定一个layer的输出用于初始化memory。不指定时,memory默认初始化为0。
## 双层RNN介绍
`recurrent_group`帮助我们完成对输入序列的拆分,对输出的合并,以及计算逻辑在序列上的循环展开。
利用这种特性,两个嵌套的`recurrent_group`能够处理双层序列,实现词语和句子两个级别的双层RNN结构。
- 单层(word-level)RNN:每个状态(state)对应一个词(word)。
- 双层(sequence-level)RNN:一个双层RNN由多个单层RNN组成,每个单层RNN(即双层RNN的每个状态)对应一个子句(subseq)。
为了描述方便,下文以NLP任务为例,将含有子句(subseq)的段落定义为一个双层序列,将含有词语的句子定义为一个单层序列,那么0层序列即为一个词语。
## 双层RNN的使用
### 训练流程的使用方法
使用 `recurrent_group`需要遵循以下约定:
- **单进单出**:输入和输出都是单层序列。
- 如果有多个输入,不同输入序列含有的词语数必须严格相等。
- 输出一个单层序列,输出序列的词语数和输入序列一致。
- memory:在step函数中定义 memory指向一个layer,通过引用memory得到这个layer上一个时刻输出,形成recurrent 连接。memory的is_seq参数必须为false。如果没有定义memory,每个时间步之内的运算是独立的。
- boot_layer:memory的初始状态,默认初始状为0,memory的is_seq参数必须为false。
- **双进双出**:输入和输出都是双层序列。
- 如果有多个输入序列,不同输入含有的子句(subseq)数必须严格相等,但子句含有的词语数可以不相等。
- 输出一个双层序列,子句(subseq)数、子句的单词数和指定的一个输入序列一致,默认为第一个输入。
- memory:在step函数中定义memory,指向一个layer,通过引用memory得到这个layer上一个时刻的输出,形成recurrent连接。定义在外层`recurrent_group` step函数中的memory,能够记录上一个subseq 的状态,可以是一个单层序列(只作为read-only memory),也可以是一个词语。如果没有定义memory,那么 subseq 之间的运算是独立的。
- boot_layer:memory 初始状态,可以是一个单层序列(只作为read-only memory)或一个向量。默认不设置,即初始状态为0。
- **双进单出**:目前还未支持,会报错"In hierachical RNN, all out links should be from sequences now"。
### 生成流程的使用方法
使用`beam_search`需要遵循以下约定:
- 单层RNN:从一个word生成下一个word。
- 双层RNN:即把单层RNN生成后的subseq给拼接成一个新的双层seq。从语义上看,也不存在一个subseq直接生成下一个subseq的情况。
\ No newline at end of file
doc_cn/_sources/index.txt
浏览文件 @
f4904247
...
...
@@ -16,7 +16,4 @@ PaddlePaddle文档
算法教程
--------
* `Recurrent Group教程 <algorithm/rnn/rnn-tutorial.html>`_
* `单层RNN示例 <../doc/algorithm/rnn/rnn.html>`_
* `双层RNN示例 <algorithm/rnn/hierarchical-rnn.html>`_
* `支持双层序列作为输入的Layer <algorithm/rnn/hierarchical-layer.html>`_
* `RNN配置 <../doc/algorithm/rnn/rnn.html>`_
doc_cn/algorithm/rnn/hierarchical-layer.html
已删除
100644 → 0
浏览文件 @
8f5e20e7
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html
xmlns=
"http://www.w3.org/1999/xhtml"
>
<head>
<meta
http-equiv=
"Content-Type"
content=
"text/html; charset=utf-8"
/>
<title>
支持双层序列作为输入的Layer
—
PaddlePaddle documentation
</title>
<link
rel=
"stylesheet"
href=
"../../_static/classic.css"
type=
"text/css"
/>
<link
rel=
"stylesheet"
href=
"../../_static/pygments.css"
type=
"text/css"
/>
<script
type=
"text/javascript"
>
var
DOCUMENTATION_OPTIONS
=
{
URL_ROOT
:
'
../../
'
,
VERSION
:
''
,
COLLAPSE_INDEX
:
false
,
FILE_SUFFIX
:
'
.html
'
,
HAS_SOURCE
:
true
};
</script>
<script
type=
"text/javascript"
src=
"../../_static/jquery.js"
></script>
<script
type=
"text/javascript"
src=
"../../_static/underscore.js"
></script>
<script
type=
"text/javascript"
src=
"../../_static/doctools.js"
></script>
<script
type=
"text/javascript"
src=
"https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"
></script>
<link
rel=
"index"
title=
"Index"
href=
"../../genindex.html"
/>
<link
rel=
"search"
title=
"Search"
href=
"../../search.html"
/>
<link
rel=
"top"
title=
"PaddlePaddle documentation"
href=
"../../index.html"
/>
<script>
var
_hmt
=
_hmt
||
[];
(
function
()
{
var
hm
=
document
.
createElement
(
"
script
"
);
hm
.
src
=
"
//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba
"
;
var
s
=
document
.
getElementsByTagName
(
"
script
"
)[
0
];
s
.
parentNode
.
insertBefore
(
hm
,
s
);
})();
</script>
</head>
<body
role=
"document"
>
<div
class=
"related"
role=
"navigation"
aria-label=
"related navigation"
>
<h3>
Navigation
</h3>
<ul>
<li
class=
"right"
style=
"margin-right: 10px"
>
<a
href=
"../../genindex.html"
title=
"General Index"
accesskey=
"I"
>
index
</a></li>
<li
class=
"nav-item nav-item-0"
><a
href=
"../../index.html"
>
PaddlePaddle documentation
</a>
»
</li>
</ul>
</div>
<div
class=
"document"
>
<div
class=
"documentwrapper"
>
<div
class=
"bodywrapper"
>
<div
class=
"body"
role=
"main"
>
<div
class=
"section"
id=
"layer"
>
<span
id=
"layer"
></span><h1>
支持双层序列作为输入的Layer
<a
class=
"headerlink"
href=
"#layer"
title=
"Permalink to this headline"
>
¶
</a></h1>
<div
class=
"section"
id=
""
>
<span
id=
"id1"
></span><h2>
概述
<a
class=
"headerlink"
href=
"#"
title=
"Permalink to this headline"
>
¶
</a></h2>
<p>
在自然语言处理任务中,序列是一种常见的数据类型。一个独立的词语,可以看作是一个非序列输入,或者,我们称之为一个0层的序列;由词语构成的句子,是一个单层序列;若干个句子构成一个段落,是一个双层的序列。
</p>
<p>
双层序列是一个嵌套的序列,它的每一个元素,又是一个单层的序列。这是一种非常灵活的数据组织方式,帮助我们构造一些复杂的输入信息。
</p>
<p>
我们可以按照如下层次定义非序列,单层序列,以及双层序列。
</p>
<ul
class=
"simple"
>
<li>
0层序列:一个独立的元素,类型可以是PaddlePaddle支持的任意输入数据类型
</li>
<li>
单层序列:排成一列的多个元素,每个元素是一个0层序列,元素之间的顺序是重要的输入信息
</li>
<li>
双层序列:排成一列的多个元素,每个元素是一个单层序列,称之为双层序列的一个子序列(subseq),subseq的每个元素是一个0层序列
</li>
</ul>
<p>
在 PaddlePaddle中,下面这些Layer能够接受双层序列作为输入,完成相应的计算。
</p>
</div>
<div
class=
"section"
id=
"pooling-layer"
>
<span
id=
"pooling-layer"
></span><h2>
pooling_layer
<a
class=
"headerlink"
href=
"#pooling-layer"
title=
"Permalink to this headline"
>
¶
</a></h2>
<p>
pooling_layer的使用示例如下,详细见
<a
href =
"../../../doc/ui/api/trainer_config_helpers/layers.html#pooling-layer"
>
配置API
</a>
。
</p>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"n"
>
seq_pool
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
pooling_layer
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
layer
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
pooling_type
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
AvgPooling
</span><span
class=
"p"
>
(),
</span>
<span
class=
"n"
>
agg_level
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
AggregateLevel
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
EACH_SEQUENCE
</span><span
class=
"p"
>
)
</span>
</pre></div>
</div>
<ul
class=
"simple"
>
<li><code
class=
"docutils literal"
><span
class=
"pre"
>
pooling_type
</span></code>
目前支持两种,分别是:MaxPooling()和AvgPooling()。
</li>
<li><code
class=
"docutils literal"
><span
class=
"pre"
>
agg_level=AggregateLevel.TIMESTEP
</span></code>
时(默认值):
<ul>
<li>
作用:双层序列经过运算变成一个0层序列,或单层序列经过运算变成一个0层序列
</li>
<li>
输入:一个双层序列,或一个单层序列
</li>
<li>
输出:一个0层序列,即整个输入序列(单层或双层)的平均值(或最大值)
</li>
</ul>
</li>
<li><code
class=
"docutils literal"
><span
class=
"pre"
>
agg_level=AggregateLevel.EACH_SEQUENCE
</span></code>
时:
<ul>
<li>
作用:一个双层序列经过运算变成一个单层序列
</li>
<li>
输入:必须是一个双层序列
</li>
<li>
输出:一个单层序列,序列的每个元素是原来双层序列每个subseq元素的平均值(或最大值)
</li>
</ul>
</li>
</ul>
</div>
<div
class=
"section"
id=
"last-seq-first-seq"
>
<span
id=
"last-seq-first-seq"
></span><h2>
last_seq 和 first_seq
<a
class=
"headerlink"
href=
"#last-seq-first-seq"
title=
"Permalink to this headline"
>
¶
</a></h2>
<p>
last_seq的使用示例如下(first_seq类似),详细见
<a
href =
"../../../doc/ui/api/trainer_config_helpers/layers.html#last-seq"
>
配置API
</a>
。
</p>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"n"
>
last
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
last_seq
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
layer
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
agg_level
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
AggregateLevel
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
EACH_SEQUENCE
</span><span
class=
"p"
>
)
</span>
</pre></div>
</div>
<ul
class=
"simple"
>
<li><code
class=
"docutils literal"
><span
class=
"pre"
>
agg_level=AggregateLevel.TIMESTEP
</span></code>
时(默认值):
<ul>
<li>
作用:一个双层序列经过运算变成一个0层序列,或一个单层序列经过运算变成一个0层序列
</li>
<li>
输入:一个双层序列或一个单层序列
</li>
<li>
输出:一个0层序列,即整个输入序列(双层或者单层)最后一个,或第一个元素。
</li>
</ul>
</li>
<li><code
class=
"docutils literal"
><span
class=
"pre"
>
agg_level=AggregateLevel.EACH_SEQUENCE
</span></code>
时:
<ul>
<li>
作用:一个双层序列经过运算变成一个单层序列
</li>
<li>
输入:必须是一个双层序列
</li>
<li>
输出:一个单层序列,其中每个元素是双层序列中每个subseq最后一个(或第一个)元素。
</li>
</ul>
</li>
</ul>
</div>
<div
class=
"section"
id=
"expand-layer"
>
<span
id=
"expand-layer"
></span><h2>
expand_layer
<a
class=
"headerlink"
href=
"#expand-layer"
title=
"Permalink to this headline"
>
¶
</a></h2>
<p>
expand_layer的使用示例如下,详细见
<a
href =
"../../../doc/ui/api/trainer_config_helpers/layers.html#expand-layer"
>
配置API
</a>
。
</p>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"n"
>
expand
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
expand_layer
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
layer1
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
expand_as
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
layer2
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
expand_level
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
ExpandLevel
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
FROM_TIMESTEP
</span><span
class=
"p"
>
)
</span>
</pre></div>
</div>
<ul
class=
"simple"
>
<li><code
class=
"docutils literal"
><span
class=
"pre"
>
expand_level=ExpandLevel.FROM_TIMESTEP
</span></code>
时(默认值):
<ul>
<li>
作用:一个0层序列经过运算扩展成一个单层序列,或者一个双层序列
</li>
<li>
输入:layer1必须是一个0层序列,是待扩展的数据;layer2可以是一个单层序列,或者是一个双层序列,提供扩展的长度信息
</li>
<li>
输出:一个单层序列,或一个双层序列,输出序列的类型(双层序列,或单层序列)和序列中含有元素的数目同 layer2一致。若输出是单层序列,单层序列的每个元素(0层序列),都是对layer1元素的拷贝;若输出是双层序列,双层序列每个subseq中每个元素(0层序列),都是对layer1元素的拷贝
</li>
</ul>
</li>
<li><code
class=
"docutils literal"
><span
class=
"pre"
>
expand_level=ExpandLevel.FROM_SEQUENCE
</span></code>
时:
<ul>
<li>
作用:一个单层序列经过运算扩展成一个双层序列
</li>
<li>
输入:layer1必须是一个单层序列,是待扩展的数据;layer2必须是一个双层序列,提供扩展的长度信息
</li>
<li>
输出:一个双层序列,序列中含有元素的数目同layer2一致。要求单层序列含有元素的数目(0层序列),和双层序列含有subseq 的数目一致。单层序列第i个元素(0层序列),被扩展为一个单层序列,构成了输出双层序列的第i个subseq。
</li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</div>
</div>
<div
class=
"sphinxsidebar"
role=
"navigation"
aria-label=
"main navigation"
>
<div
class=
"sphinxsidebarwrapper"
>
<h3><a
href=
"../../index.html"
>
Table Of Contents
</a></h3>
<ul>
<li><a
class=
"reference internal"
href=
"#"
>
支持双层序列作为输入的Layer
</a><ul>
<li><a
class=
"reference internal"
href=
"#"
>
概述
</a></li>
<li><a
class=
"reference internal"
href=
"#pooling-layer"
>
pooling_layer
</a></li>
<li><a
class=
"reference internal"
href=
"#last-seq-first-seq"
>
last_seq 和 first_seq
</a></li>
<li><a
class=
"reference internal"
href=
"#expand-layer"
>
expand_layer
</a></li>
</ul>
</li>
</ul>
<div
role=
"note"
aria-label=
"source link"
>
<h3>
This Page
</h3>
<ul
class=
"this-page-menu"
>
<li><a
href=
"../../_sources/algorithm/rnn/hierarchical-layer.txt"
rel=
"nofollow"
>
Show Source
</a></li>
</ul>
</div>
<div
id=
"searchbox"
style=
"display: none"
role=
"search"
>
<h3>
Quick search
</h3>
<form
class=
"search"
action=
"../../search.html"
method=
"get"
>
<div><input
type=
"text"
name=
"q"
/></div>
<div><input
type=
"submit"
value=
"Go"
/></div>
<input
type=
"hidden"
name=
"check_keywords"
value=
"yes"
/>
<input
type=
"hidden"
name=
"area"
value=
"default"
/>
</form>
</div>
<script
type=
"text/javascript"
>
$
(
'
#searchbox
'
).
show
(
0
);
</script>
</div>
</div>
<div
class=
"clearer"
></div>
</div>
<div
class=
"related"
role=
"navigation"
aria-label=
"related navigation"
>
<h3>
Navigation
</h3>
<ul>
<li
class=
"right"
style=
"margin-right: 10px"
>
<a
href=
"../../genindex.html"
title=
"General Index"
>
index
</a></li>
<li
class=
"nav-item nav-item-0"
><a
href=
"../../index.html"
>
PaddlePaddle documentation
</a>
»
</li>
</ul>
</div>
<div
class=
"footer"
role=
"contentinfo"
>
©
Copyright 2016, PaddlePaddle developers.
Created using
<a
href=
"http://sphinx-doc.org/"
>
Sphinx
</a>
1.4.8.
</div>
</body>
</html>
\ No newline at end of file
doc_cn/algorithm/rnn/hierarchical-rnn.html
已删除
100644 → 0
浏览文件 @
8f5e20e7
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html
xmlns=
"http://www.w3.org/1999/xhtml"
>
<head>
<meta
http-equiv=
"Content-Type"
content=
"text/html; charset=utf-8"
/>
<title>
双层RNN配置与示例
—
PaddlePaddle documentation
</title>
<link
rel=
"stylesheet"
href=
"../../_static/classic.css"
type=
"text/css"
/>
<link
rel=
"stylesheet"
href=
"../../_static/pygments.css"
type=
"text/css"
/>
<script
type=
"text/javascript"
>
var
DOCUMENTATION_OPTIONS
=
{
URL_ROOT
:
'
../../
'
,
VERSION
:
''
,
COLLAPSE_INDEX
:
false
,
FILE_SUFFIX
:
'
.html
'
,
HAS_SOURCE
:
true
};
</script>
<script
type=
"text/javascript"
src=
"../../_static/jquery.js"
></script>
<script
type=
"text/javascript"
src=
"../../_static/underscore.js"
></script>
<script
type=
"text/javascript"
src=
"../../_static/doctools.js"
></script>
<script
type=
"text/javascript"
src=
"https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"
></script>
<link
rel=
"index"
title=
"Index"
href=
"../../genindex.html"
/>
<link
rel=
"search"
title=
"Search"
href=
"../../search.html"
/>
<link
rel=
"top"
title=
"PaddlePaddle documentation"
href=
"../../index.html"
/>
<script>
var
_hmt
=
_hmt
||
[];
(
function
()
{
var
hm
=
document
.
createElement
(
"
script
"
);
hm
.
src
=
"
//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba
"
;
var
s
=
document
.
getElementsByTagName
(
"
script
"
)[
0
];
s
.
parentNode
.
insertBefore
(
hm
,
s
);
})();
</script>
</head>
<body
role=
"document"
>
<div
class=
"related"
role=
"navigation"
aria-label=
"related navigation"
>
<h3>
Navigation
</h3>
<ul>
<li
class=
"right"
style=
"margin-right: 10px"
>
<a
href=
"../../genindex.html"
title=
"General Index"
accesskey=
"I"
>
index
</a></li>
<li
class=
"nav-item nav-item-0"
><a
href=
"../../index.html"
>
PaddlePaddle documentation
</a>
»
</li>
</ul>
</div>
<div
class=
"document"
>
<div
class=
"documentwrapper"
>
<div
class=
"bodywrapper"
>
<div
class=
"body"
role=
"main"
>
<div
class=
"section"
id=
"rnn"
>
<span
id=
"rnn"
></span><h1>
双层RNN配置与示例
<a
class=
"headerlink"
href=
"#rnn"
title=
"Permalink to this headline"
>
¶
</a></h1>
<p>
我们在
<code
class=
"docutils literal"
><span
class=
"pre"
>
paddle/gserver/tests/test_RecurrentGradientMachine
</span></code>
单测中,通过多组语义相同的单双层RNN配置,讲解如何使用双层RNN。
</p>
<div
class=
"section"
id=
"subseqmemory"
>
<span
id=
"subseqmemory"
></span><h2>
示例1:双进双出,subseq间无memory
<a
class=
"headerlink"
href=
"#subseqmemory"
title=
"Permalink to this headline"
>
¶
</a></h2>
<p>
配置:单层RNN(
<code
class=
"docutils literal"
><span
class=
"pre"
>
sequence_layer_group
</span></code>
)和双层RNN(
<code
class=
"docutils literal"
><span
class=
"pre"
>
sequence_nest_layer_group
</span></code>
),语义完全相同。
</p>
<div
class=
"section"
id=
""
>
<span
id=
"id1"
></span><h3>
读取双层序列的方法
<a
class=
"headerlink"
href=
"#"
title=
"Permalink to this headline"
>
¶
</a></h3>
<p>
首先,我们看一下单双层序列的不同数据组织形式(您也可以采用别的组织形式):
</p>
<ul
class=
"simple"
>
<li>
单层序列的数据(
<code
class=
"docutils literal"
><span
class=
"pre"
>
Sequence/tour_train_wdseg
</span></code>
)如下,一共有10个样本。每个样本由两部分组成,一个label(此处都为2)和一个已经分词后的句子。
</li>
</ul>
<div
class=
"highlight-text"
><div
class=
"highlight"
><pre><span></span>
2 酒店 有 很 舒适 的 床垫 子 , 床上用品 也 应该 是 一人 一 换 , 感觉 很 利落 对 卫生 很 放心 呀 。
2 很 温馨 , 也 挺 干净 的 * 地段 不错 , 出来 就 有 全家 , 离 地铁站 也 近 , 交通 很方便 * 就是 都 不 给 刷牙 的 杯子 啊 , 就 第一天 给 了 一次性杯子 *
2 位置 方便 , 强烈推荐 , 十一 出去玩 的 时候 选 的 , 对面 就是 华润万家 , 周围 吃饭 的 也 不少 。
2 交通便利 , 吃 很 便利 , 乾 浄 、 安静 , 商务 房 有 电脑 、 上网 快 , 价格 可以 , 就 早餐 不 好吃 。 整体 是 不错 的 。 適 合 出差 來 住 。
2 本来 准备 住 两 晚 , 第 2 天 一早 居然 停电 , 且 无 通知 , 只有 口头 道歉 。 总体来说 性价比 尚可 , 房间 较 新 , 还是 推荐 .
2 这个 酒店 去过 很多 次 了 , 选择 的 主要原因 是 离 客户 最 便宜 相对 又 近 的 酒店
2 挺好 的 汉庭 , 前台 服务 很 热情 , 卫生 很 整洁 , 房间 安静 , 水温 适中 , 挺好 !
2 HowardJohnson 的 品质 , 服务 相当 好 的 一 家 五星级 。 房间 不错 、 泳池 不错 、 楼层 安排 很 合理 。 还有 就是 地理位置 , 简直 一 流 。 就 在 天一阁 、 月湖 旁边 , 离 天一广场 也 不远 。 下次 来 宁波 还会 住 。
2 酒店 很干净 , 很安静 , 很 温馨 , 服务员 服务 好 , 各方面 都 不错 *
2 挺好 的 , 就是 没 窗户 , 不过 对 得 起 这 价格
</pre></div>
</div>
<ul
class=
"simple"
>
<li>
双层序列的数据(
<code
class=
"docutils literal"
><span
class=
"pre"
>
Sequence/tour_train_wdseg.nest
</span></code>
)如下,一共有4个样本。样本间用空行分开,代表不同的双层序列,序列数据和上面的完全一样。每个样本的子句数分别为2,3,2,3。
</li>
</ul>
<div
class=
"highlight-text"
><div
class=
"highlight"
><pre><span></span>
2 酒店 有 很 舒适 的 床垫 子 , 床上用品 也 应该 是 一人 一 换 , 感觉 很 利落 对 卫生 很 放心 呀 。
2 很 温馨 , 也 挺 干净 的 * 地段 不错 , 出来 就 有 全家 , 离 地铁站 也 近 , 交通 很方便 * 就是 都 不 给 刷牙 的 杯子 啊 , 就 第一天 给 了 一次性杯子 *
2 位置 方便 , 强烈推荐 , 十一 出去玩 的 时候 选 的 , 对面 就是 华润万家 , 周围 吃饭 的 也 不少 。
2 交通便利 , 吃 很 便利 , 乾 浄 、 安静 , 商务 房 有 电脑 、 上网 快 , 价格 可以 , 就 早餐 不 好吃 。 整体 是 不错 的 。 適 合 出差 來 住 。
2 本来 准备 住 两 晚 , 第 2 天 一早 居然 停电 , 且 无 通知 , 只有 口头 道歉 。 总体来说 性价比 尚可 , 房间 较 新 , 还是 推荐 .
2 这个 酒店 去过 很多 次 了 , 选择 的 主要原因 是 离 客户 最 便宜 相对 又 近 的 酒店
2 挺好 的 汉庭 , 前台 服务 很 热情 , 卫生 很 整洁 , 房间 安静 , 水温 适中 , 挺好 !
2 HowardJohnson 的 品质 , 服务 相当 好 的 一 家 五星级 。 房间 不错 、 泳池 不错 、 楼层 安排 很 合理 。 还有 就是 地理位置 , 简直 一 流 。 就 在 天一阁 、 月湖 旁边 , 离 天一广场 也 不远 。 下次 来 宁波 还会 住 。
2 酒店 很干净 , 很安静 , 很 温馨 , 服务员 服务 好 , 各方面 都 不错 *
2 挺好 的 , 就是 没 窗户 , 不过 对 得 起 这 价格
</pre></div>
</div>
<p>
其次,我们看一下单双层序列的不同dataprovider(见
<code
class=
"docutils literal"
><span
class=
"pre"
>
sequenceGen.py
</span></code>
):
</p>
<ul
class=
"simple"
>
<li>
单层序列的dataprovider如下:
<ul>
<li>
word_slot是integer_value_sequence类型,代表单层序列。
</li>
<li>
label是integer_value类型,代表一个向量。
</li>
</ul>
</li>
</ul>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
hook
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
settings
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
dict_file
</span><span
class=
"p"
>
,
</span>
<span
class=
"o"
>
**
</span><span
class=
"n"
>
kwargs
</span><span
class=
"p"
>
):
</span>
<span
class=
"n"
>
settings
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
word_dict
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
dict_file
</span>
<span
class=
"n"
>
settings
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
input_types
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"p"
>
[
</span><span
class=
"n"
>
integer_value_sequence
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
len
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
settings
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
word_dict
</span><span
class=
"p"
>
)),
</span>
<span
class=
"n"
>
integer_value
</span><span
class=
"p"
>
(
</span><span
class=
"mi"
>
3
</span><span
class=
"p"
>
)]
</span>
<span
class=
"nd"
>
@provider
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
init_hook
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
hook
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
process
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
settings
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
file_name
</span><span
class=
"p"
>
):
</span>
<span
class=
"k"
>
with
</span>
<span
class=
"nb"
>
open
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
file_name
</span><span
class=
"p"
>
,
</span>
<span
class=
"s1"
>
'
r
'
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
as
</span>
<span
class=
"n"
>
fdata
</span><span
class=
"p"
>
:
</span>
<span
class=
"k"
>
for
</span>
<span
class=
"n"
>
line
</span>
<span
class=
"ow"
>
in
</span>
<span
class=
"n"
>
fdata
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
label
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
comment
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
line
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
strip
</span><span
class=
"p"
>
()
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
split
</span><span
class=
"p"
>
(
</span><span
class=
"s1"
>
'
</span><span
class=
"se"
>
\t
</span><span
class=
"s1"
>
'
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
label
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"nb"
>
int
</span><span
class=
"p"
>
(
</span><span
class=
"s1"
>
''
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
join
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
label
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
split
</span><span
class=
"p"
>
()))
</span>
<span
class=
"n"
>
words
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
comment
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
split
</span><span
class=
"p"
>
()
</span>
<span
class=
"n"
>
word_slot
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"p"
>
[
</span><span
class=
"n"
>
settings
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
word_dict
</span><span
class=
"p"
>
[
</span><span
class=
"n"
>
w
</span><span
class=
"p"
>
]
</span>
<span
class=
"k"
>
for
</span>
<span
class=
"n"
>
w
</span>
<span
class=
"ow"
>
in
</span>
<span
class=
"n"
>
words
</span>
<span
class=
"k"
>
if
</span>
<span
class=
"n"
>
w
</span>
<span
class=
"ow"
>
in
</span>
<span
class=
"n"
>
settings
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
word_dict
</span><span
class=
"p"
>
]
</span>
<span
class=
"k"
>
yield
</span>
<span
class=
"n"
>
word_slot
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
label
</span>
</pre></div>
</div>
<ul
class=
"simple"
>
<li>
双层序列的dataprovider如下:
<ul>
<li>
word_slot是integer_value_sub_sequence类型,代表双层序列。
</li>
<li>
label是integer_value_sequence类型,代表单层序列,即一个子句一个label。注意:也可以为integer_value类型,代表一个向量,即一个句子一个label。通常根据任务需求进行不同设置。
</li>
<li>
关于dataprovider中input_types的详细用法,参见PyDataProvider2。
</li>
</ul>
</li>
</ul>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
hook2
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
settings
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
dict_file
</span><span
class=
"p"
>
,
</span>
<span
class=
"o"
>
**
</span><span
class=
"n"
>
kwargs
</span><span
class=
"p"
>
):
</span>
<span
class=
"n"
>
settings
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
word_dict
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
dict_file
</span>
<span
class=
"n"
>
settings
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
input_types
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"p"
>
[
</span><span
class=
"n"
>
integer_value_sub_sequence
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
len
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
settings
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
word_dict
</span><span
class=
"p"
>
)),
</span>
<span
class=
"n"
>
integer_value_sequence
</span><span
class=
"p"
>
(
</span><span
class=
"mi"
>
3
</span><span
class=
"p"
>
)]
</span>
<span
class=
"nd"
>
@provider
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
init_hook
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
hook2
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
process2
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
settings
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
file_name
</span><span
class=
"p"
>
):
</span>
<span
class=
"k"
>
with
</span>
<span
class=
"nb"
>
open
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
file_name
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
as
</span>
<span
class=
"n"
>
fdata
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
label_list
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"p"
>
[]
</span>
<span
class=
"n"
>
word_slot_list
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"p"
>
[]
</span>
<span
class=
"k"
>
for
</span>
<span
class=
"n"
>
line
</span>
<span
class=
"ow"
>
in
</span>
<span
class=
"n"
>
fdata
</span><span
class=
"p"
>
:
</span>
<span
class=
"k"
>
if
</span>
<span
class=
"p"
>
(
</span><span
class=
"nb"
>
len
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
line
</span><span
class=
"p"
>
))
</span>
<span
class=
"o"
>
>
</span>
<span
class=
"mi"
>
1
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
label
</span><span
class=
"p"
>
,
</span><span
class=
"n"
>
comment
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
line
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
strip
</span><span
class=
"p"
>
()
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
split
</span><span
class=
"p"
>
(
</span><span
class=
"s1"
>
'
</span><span
class=
"se"
>
\t
</span><span
class=
"s1"
>
'
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
label
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"nb"
>
int
</span><span
class=
"p"
>
(
</span><span
class=
"s1"
>
''
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
join
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
label
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
split
</span><span
class=
"p"
>
()))
</span>
<span
class=
"n"
>
words
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
comment
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
split
</span><span
class=
"p"
>
()
</span>
<span
class=
"n"
>
word_slot
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"p"
>
[
</span><span
class=
"n"
>
settings
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
word_dict
</span><span
class=
"p"
>
[
</span><span
class=
"n"
>
w
</span><span
class=
"p"
>
]
</span>
<span
class=
"k"
>
for
</span>
<span
class=
"n"
>
w
</span>
<span
class=
"ow"
>
in
</span>
<span
class=
"n"
>
words
</span>
<span
class=
"k"
>
if
</span>
<span
class=
"n"
>
w
</span>
<span
class=
"ow"
>
in
</span>
<span
class=
"n"
>
settings
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
word_dict
</span><span
class=
"p"
>
]
</span>
<span
class=
"n"
>
label_list
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
append
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
label
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
word_slot_list
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
append
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
word_slot
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
else
</span><span
class=
"p"
>
:
</span>
<span
class=
"k"
>
yield
</span>
<span
class=
"n"
>
word_slot_list
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
label_list
</span>
<span
class=
"n"
>
label_list
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"p"
>
[]
</span>
<span
class=
"n"
>
word_slot_list
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"p"
>
[]
</span>
</pre></div>
</div>
</div>
<div
class=
"section"
id=
""
>
<span
id=
"id2"
></span><h3>
模型中的配置
<a
class=
"headerlink"
href=
"#"
title=
"Permalink to this headline"
>
¶
</a></h3>
<p>
首先,我们看一下单层序列的配置(见
<code
class=
"docutils literal"
><span
class=
"pre"
>
sequence_layer_group.conf
</span></code>
)。注意:batchsize=5表示一次过5句单层序列,因此2个batch就可以完成1个pass。
</p>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"n"
>
settings
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
batch_size
</span><span
class=
"o"
>
=
</span><span
class=
"mi"
>
5
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
data
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
data_layer
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s2"
>
"
word
"
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
dict_dim
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
emb
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
embedding_layer
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
data
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
word_dim
</span><span
class=
"p"
>
)
</span>
<span
class=
"c1"
>
# (lstm_input + lstm) is equal to lstmemory
</span>
<span
class=
"k"
>
with
</span>
<span
class=
"n"
>
mixed_layer
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
hidden_dim
</span><span
class=
"o"
>
*
</span><span
class=
"mi"
>
4
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
as
</span>
<span
class=
"n"
>
lstm_input
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
lstm_input
</span>
<span
class=
"o"
>
+=
</span>
<span
class=
"n"
>
full_matrix_projection
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
emb
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
lstm
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
lstmemory_group
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
lstm_input
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
hidden_dim
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
act
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
TanhActivation
</span><span
class=
"p"
>
(),
</span>
<span
class=
"n"
>
gate_act
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
SigmoidActivation
</span><span
class=
"p"
>
(),
</span>
<span
class=
"n"
>
state_act
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
TanhActivation
</span><span
class=
"p"
>
(),
</span>
<span
class=
"n"
>
lstm_layer_attr
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
ExtraLayerAttribute
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
error_clipping_threshold
</span><span
class=
"o"
>
=
</span><span
class=
"mi"
>
50
</span><span
class=
"p"
>
))
</span>
<span
class=
"n"
>
lstm_last
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
last_seq
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
lstm
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
with
</span>
<span
class=
"n"
>
mixed_layer
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
label_dim
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
act
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
SoftmaxActivation
</span><span
class=
"p"
>
(),
</span>
<span
class=
"n"
>
bias_attr
</span><span
class=
"o"
>
=
</span><span
class=
"bp"
>
True
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
as
</span>
<span
class=
"n"
>
output
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
output
</span>
<span
class=
"o"
>
+=
</span>
<span
class=
"n"
>
full_matrix_projection
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
lstm_last
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
outputs
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
classification_cost
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
output
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
label
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
data_layer
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s2"
>
"
label
"
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
)))
</span>
</pre></div>
</div>
<p>
其次,我们看一下语义相同的双层序列配置(见
<code
class=
"docutils literal"
><span
class=
"pre"
>
sequence_nest_layer_group.conf
</span></code>
),并对其详细分析:
</p>
<ul
class=
"simple"
>
<li>
batchsize=2表示一次过2句双层序列。但从上面的数据格式可知,2句双层序列和5句单层序列的数据完全一样。
</li>
<li>
data_layer和embedding_layer不关心数据是否是序列格式,因此两个配置在这两层上的输出是一样的。
</li>
<li>
lstmemory:
<ul>
<li>
单层序列过了一个mixed_layer和lstmemory_group。
</li>
<li>
双层序列在同样的mixed_layer和lstmemory_group外,直接加了一层group。由于这个外层group里面没有memory,表示subseq间不存在联系,即起到的作用仅仅是把双层seq拆成单层,因此双层序列过完lstmemory的输出和单层的一样。
</li>
</ul>
</li>
<li>
last_seq:
<ul>
<li>
单层序列直接取了最后一个元素
</li>
<li>
双层序列首先(last_seq层)取了每个subseq的最后一个元素,将其拼接成一个新的单层序列;接着(expand_layer层)将其扩展成一个新的双层序列,其中第i个subseq中的所有向量均为输入的单层序列中的第i个向量;最后(average_layer层)取了每个subseq的平均值。
</li>
<li>
分析得出:第一个last_seq后,每个subseq的最后一个元素就等于单层序列的最后一个元素,而expand_layer和average_layer后,依然保持每个subseq最后一个元素的值不变(这两层仅是为了展示它们的用法,实际中并不需要)。因此单双层序列的输出是一样旳。
</li>
</ul>
</li>
</ul>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"n"
>
settings
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
batch_size
</span><span
class=
"o"
>
=
</span><span
class=
"mi"
>
2
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
data
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
data_layer
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s2"
>
"
word
"
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
dict_dim
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
emb_group
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
embedding_layer
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
data
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
word_dim
</span><span
class=
"p"
>
)
</span>
<span
class=
"c1"
>
# (lstm_input + lstm) is equal to lstmemory
</span>
<span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
lstm_group
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
lstm_group_input
</span><span
class=
"p"
>
):
</span>
<span
class=
"k"
>
with
</span>
<span
class=
"n"
>
mixed_layer
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
hidden_dim
</span><span
class=
"o"
>
*
</span><span
class=
"mi"
>
4
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
as
</span>
<span
class=
"n"
>
group_input
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
group_input
</span>
<span
class=
"o"
>
+=
</span>
<span
class=
"n"
>
full_matrix_projection
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
lstm_group_input
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
lstm_output
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
lstmemory_group
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
group_input
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s2"
>
"
lstm_group
"
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
hidden_dim
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
act
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
TanhActivation
</span><span
class=
"p"
>
(),
</span>
<span
class=
"n"
>
gate_act
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
SigmoidActivation
</span><span
class=
"p"
>
(),
</span>
<span
class=
"n"
>
state_act
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
TanhActivation
</span><span
class=
"p"
>
(),
</span>
<span
class=
"n"
>
lstm_layer_attr
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
ExtraLayerAttribute
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
error_clipping_threshold
</span><span
class=
"o"
>
=
</span><span
class=
"mi"
>
50
</span><span
class=
"p"
>
))
</span>
<span
class=
"k"
>
return
</span>
<span
class=
"n"
>
lstm_output
</span>
<span
class=
"n"
>
lstm_nest_group
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
recurrent_group
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
SubsequenceInput
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
emb_group
</span><span
class=
"p"
>
),
</span>
<span
class=
"n"
>
step
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
lstm_group
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s2"
>
"
lstm_nest_group
"
</span><span
class=
"p"
>
)
</span>
<span
class=
"c1"
>
# hasSubseq -
>
(seqlastins) seq
</span>
<span
class=
"n"
>
lstm_last
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
last_seq
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
lstm_nest_group
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
agg_level
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
AggregateLevel
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
EACH_SEQUENCE
</span><span
class=
"p"
>
)
</span>
<span
class=
"c1"
>
# seq -
>
(expand) hasSubseq
</span>
<span
class=
"n"
>
lstm_expand
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
expand_layer
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
lstm_last
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
expand_as
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
emb_group
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
expand_level
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
ExpandLevel
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
FROM_SEQUENCE
</span><span
class=
"p"
>
)
</span>
<span
class=
"c1"
>
# hasSubseq -
>
(average) seq
</span>
<span
class=
"n"
>
lstm_average
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
pooling_layer
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
lstm_expand
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
pooling_type
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
AvgPooling
</span><span
class=
"p"
>
(),
</span>
<span
class=
"n"
>
agg_level
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
AggregateLevel
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
EACH_SEQUENCE
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
with
</span>
<span
class=
"n"
>
mixed_layer
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
label_dim
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
act
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
SoftmaxActivation
</span><span
class=
"p"
>
(),
</span>
<span
class=
"n"
>
bias_attr
</span><span
class=
"o"
>
=
</span><span
class=
"bp"
>
True
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
as
</span>
<span
class=
"n"
>
output
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
output
</span>
<span
class=
"o"
>
+=
</span>
<span
class=
"n"
>
full_matrix_projection
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
lstm_average
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
outputs
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
classification_cost
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
output
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
label
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
data_layer
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s2"
>
"
label
"
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
)))
</span>
</pre></div>
</div>
</div>
</div>
<div
class=
"section"
id=
"subseqmemory"
>
<span
id=
"id3"
></span><h2>
示例2:双进双出,subseq间有memory
<a
class=
"headerlink"
href=
"#subseqmemory"
title=
"Permalink to this headline"
>
¶
</a></h2>
<p>
配置:单层RNN(
<code
class=
"docutils literal"
><span
class=
"pre"
>
sequence_rnn.conf
</span></code>
),双层RNN(
<code
class=
"docutils literal"
><span
class=
"pre"
>
sequence_nest_rnn.conf
</span></code>
和
<code
class=
"docutils literal"
><span
class=
"pre"
>
sequence_nest_rnn_readonly_memory.conf
</span></code>
),语义完全相同。
</p>
<div
class=
"section"
id=
""
>
<span
id=
"id4"
></span><h3>
读取双层序列的方法
<a
class=
"headerlink"
href=
"#"
title=
"Permalink to this headline"
>
¶
</a></h3>
<p>
我们看一下单双层序列的不同数据组织形式和dataprovider(见
<code
class=
"docutils literal"
><span
class=
"pre"
>
rnn_data_provider.py
</span></code>
)
</p>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"n"
>
data
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"p"
>
[
</span>
<span
class=
"p"
>
[[[
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
3
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
2
</span><span
class=
"p"
>
],
</span>
<span
class=
"p"
>
[
</span><span
class=
"mi"
>
4
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
5
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
2
</span><span
class=
"p"
>
]],
</span>
<span
class=
"mi"
>
0
</span><span
class=
"p"
>
],
</span>
<span
class=
"p"
>
[[[
</span><span
class=
"mi"
>
0
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
2
</span><span
class=
"p"
>
],
</span>
<span
class=
"p"
>
[
</span><span
class=
"mi"
>
2
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
5
</span><span
class=
"p"
>
],
</span>
<span
class=
"p"
>
[
</span><span
class=
"mi"
>
0
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
1
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
2
</span><span
class=
"p"
>
]],
</span>
<span
class=
"mi"
>
1
</span><span
class=
"p"
>
],
</span>
<span
class=
"p"
>
]
</span>
<span
class=
"nd"
>
@provider
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
input_types
</span><span
class=
"o"
>
=
</span><span
class=
"p"
>
[
</span><span
class=
"n"
>
integer_value_sub_sequence
</span><span
class=
"p"
>
(
</span><span
class=
"mi"
>
10
</span><span
class=
"p"
>
),
</span>
<span
class=
"n"
>
integer_value
</span><span
class=
"p"
>
(
</span><span
class=
"mi"
>
3
</span><span
class=
"p"
>
)])
</span>
<span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
process_subseq
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
settings
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
file_name
</span><span
class=
"p"
>
):
</span>
<span
class=
"k"
>
for
</span>
<span
class=
"n"
>
d
</span>
<span
class=
"ow"
>
in
</span>
<span
class=
"n"
>
data
</span><span
class=
"p"
>
:
</span>
<span
class=
"k"
>
yield
</span>
<span
class=
"n"
>
d
</span>
<span
class=
"nd"
>
@provider
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
input_types
</span><span
class=
"o"
>
=
</span><span
class=
"p"
>
[
</span><span
class=
"n"
>
integer_value_sequence
</span><span
class=
"p"
>
(
</span><span
class=
"mi"
>
10
</span><span
class=
"p"
>
),
</span>
<span
class=
"n"
>
integer_value
</span><span
class=
"p"
>
(
</span><span
class=
"mi"
>
3
</span><span
class=
"p"
>
)])
</span>
<span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
process_seq
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
settings
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
file_name
</span><span
class=
"p"
>
):
</span>
<span
class=
"k"
>
for
</span>
<span
class=
"n"
>
d
</span>
<span
class=
"ow"
>
in
</span>
<span
class=
"n"
>
data
</span><span
class=
"p"
>
:
</span>
<span
class=
"n"
>
seq
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"p"
>
[]
</span>
</pre></div>
</div>
<ul
class=
"simple"
>
<li>
单层序列:有两句,分别为[1,3,2,4,5,2]和[0,2,2,5,0,1,2]。
</li>
<li>
双层序列:有两句,分别为[[1,3,2],[4,5,2]](2个子句)和[[0,2],[2,5],[0,1,2]](3个子句)。
</li>
<li>
单双层序列的label都分别是0和1
</li>
</ul>
</div>
<div
class=
"section"
id=
""
>
<span
id=
"id5"
></span><h3>
模型中的配置
<a
class=
"headerlink"
href=
"#"
title=
"Permalink to this headline"
>
¶
</a></h3>
<p>
我们选取单双层序列配置中的不同部分,来对比分析两者语义相同的原因。
</p>
<ul
class=
"simple"
>
<li>
单层序列:过了一个很简单的recurrent_group。每一个时间步,当前的输入y和上一个时间步的输出rnn_state做了一个全链接。
</li>
</ul>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
step
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
y
</span><span
class=
"p"
>
):
</span>
<span
class=
"n"
>
mem
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
memory
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s2"
>
"
rnn_state
"
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
hidden_dim
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
return
</span>
<span
class=
"n"
>
fc_layer
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"p"
>
[
</span><span
class=
"n"
>
y
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
mem
</span><span
class=
"p"
>
],
</span>
<span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
hidden_dim
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
act
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
TanhActivation
</span><span
class=
"p"
>
(),
</span>
<span
class=
"n"
>
bias_attr
</span><span
class=
"o"
>
=
</span><span
class=
"bp"
>
True
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s2"
>
"
rnn_state
"
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
out
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
recurrent_group
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
step
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
step
</span><span
class=
"p"
>
,
</span>
<span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
emb
</span><span
class=
"p"
>
)
</span>
</pre></div>
</div>
<ul
class=
"simple"
>
<li>
双层序列,外层memory是一个元素:
<ul>
<li>
内层inner_step的recurrent_group和单层序列的几乎一样。除了boot_layer=outer_mem,表示将外层的outer_mem作为内层memory的初始状态。外层outer_step中,outer_mem是一个子句的最后一个向量,即整个双层group是将前一个子句的最后一个向量,作为下一个子句memory的初始状态。
</li>
<li>
从输入数据上看,单双层序列的句子是一样的,只是双层序列将其又做了子序列划分。因此双层序列的配置中,必须将前一个子句的最后一个元素,作为boot_layer传给下一个子句的memory,才能保证和单层序列的配置中“每一个时间步都用了上一个时间步的输出结果”一致。
</li>
</ul>
</li>
</ul>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
outer_step
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
x
</span><span
class=
"p"
>
):
</span>
<span
class=
"n"
>
outer_mem
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
memory
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s2"
>
"
outer_rnn_state
"
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
hidden_dim
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
def
</span>
<span
class=
"nf"
>
inner_step
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
y
</span><span
class=
"p"
>
):
</span>
<span
class=
"n"
>
inner_mem
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
memory
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s2"
>
"
inner_rnn_state
"
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
hidden_dim
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
boot_layer
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
outer_mem
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
return
</span>
<span
class=
"n"
>
fc_layer
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"p"
>
[
</span><span
class=
"n"
>
y
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
inner_mem
</span><span
class=
"p"
>
],
</span>
<span
class=
"n"
>
size
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
hidden_dim
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
act
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
TanhActivation
</span><span
class=
"p"
>
(),
</span>
<span
class=
"n"
>
bias_attr
</span><span
class=
"o"
>
=
</span><span
class=
"bp"
>
True
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s2"
>
"
inner_rnn_state
"
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
inner_rnn_output
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
recurrent_group
</span><span
class=
"p"
>
(
</span>
<span
class=
"n"
>
step
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
inner_step
</span><span
class=
"p"
>
,
</span>
<span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
x
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
last
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
last_seq
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
inner_rnn_output
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s2"
>
"
outer_rnn_state
"
</span><span
class=
"p"
>
)
</span>
<span
class=
"k"
>
return
</span>
<span
class=
"n"
>
inner_rnn_output
</span>
<span
class=
"n"
>
out
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
recurrent_group
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
step
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
outer_step
</span><span
class=
"p"
>
,
</span>
<span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
SubsequenceInput
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
emb
</span><span
class=
"p"
>
))
</span>
</pre></div>
</div>
<ul
class=
"simple"
>
<li>
双层序列,外层memory是单层序列:
<ul>
<li>
由于外层每个时间步返回的是一个子句,这些子句的长度往往不等长。因此当外层有is_seq=True的memory时,内层是
<strong>
无法直接使用
</strong>
它的,即内层memory的boot_layer不能链接外层的这个memory。
</li>
<li>
如果内层memory想
<strong>
间接使用
</strong>
这个外层memory,只能通过
<code
class=
"docutils literal"
><span
class=
"pre"
>
pooling_layer
</span></code>
、
<code
class=
"docutils literal"
><span
class=
"pre"
>
last_seq
</span></code>
或
<code
class=
"docutils literal"
><span
class=
"pre"
>
first_seq
</span></code>
这三个layer将它先变成一个元素。但这种情况下,外层memory必须有boot_layer,否则在第0个时间步时,由于外层memory没有任何seq信息,因此上述三个layer的前向会报出“
<strong>
Check failed: input.sequenceStartPositions
</strong>
”的错误。
</li>
</ul>
</li>
</ul>
</div>
</div>
<div
class=
"section"
id=
""
>
<span
id=
"id6"
></span><h2>
示例3:双进双出,输入不等长
<a
class=
"headerlink"
href=
"#"
title=
"Permalink to this headline"
>
¶
</a></h2>
<p>
TBD
</p>
</div>
<div
class=
"section"
id=
"beam-search"
>
<span
id=
"beam-search"
></span><h2>
示例4:beam_search的生成
<a
class=
"headerlink"
href=
"#beam-search"
title=
"Permalink to this headline"
>
¶
</a></h2>
<p>
TBD
</p>
</div>
</div>
</div>
</div>
</div>
<div
class=
"sphinxsidebar"
role=
"navigation"
aria-label=
"main navigation"
>
<div
class=
"sphinxsidebarwrapper"
>
<h3><a
href=
"../../index.html"
>
Table Of Contents
</a></h3>
<ul>
<li><a
class=
"reference internal"
href=
"#"
>
双层RNN配置与示例
</a><ul>
<li><a
class=
"reference internal"
href=
"#subseqmemory"
>
示例1:双进双出,subseq间无memory
</a><ul>
<li><a
class=
"reference internal"
href=
"#"
>
读取双层序列的方法
</a></li>
<li><a
class=
"reference internal"
href=
"#"
>
模型中的配置
</a></li>
</ul>
</li>
<li><a
class=
"reference internal"
href=
"#subseqmemory"
>
示例2:双进双出,subseq间有memory
</a><ul>
<li><a
class=
"reference internal"
href=
"#"
>
读取双层序列的方法
</a></li>
<li><a
class=
"reference internal"
href=
"#"
>
模型中的配置
</a></li>
</ul>
</li>
<li><a
class=
"reference internal"
href=
"#"
>
示例3:双进双出,输入不等长
</a></li>
<li><a
class=
"reference internal"
href=
"#beam-search"
>
示例4:beam_search的生成
</a></li>
</ul>
</li>
</ul>
<div
role=
"note"
aria-label=
"source link"
>
<h3>
This Page
</h3>
<ul
class=
"this-page-menu"
>
<li><a
href=
"../../_sources/algorithm/rnn/hierarchical-rnn.txt"
rel=
"nofollow"
>
Show Source
</a></li>
</ul>
</div>
<div
id=
"searchbox"
style=
"display: none"
role=
"search"
>
<h3>
Quick search
</h3>
<form
class=
"search"
action=
"../../search.html"
method=
"get"
>
<div><input
type=
"text"
name=
"q"
/></div>
<div><input
type=
"submit"
value=
"Go"
/></div>
<input
type=
"hidden"
name=
"check_keywords"
value=
"yes"
/>
<input
type=
"hidden"
name=
"area"
value=
"default"
/>
</form>
</div>
<script
type=
"text/javascript"
>
$
(
'
#searchbox
'
).
show
(
0
);
</script>
</div>
</div>
<div
class=
"clearer"
></div>
</div>
<div
class=
"related"
role=
"navigation"
aria-label=
"related navigation"
>
<h3>
Navigation
</h3>
<ul>
<li
class=
"right"
style=
"margin-right: 10px"
>
<a
href=
"../../genindex.html"
title=
"General Index"
>
index
</a></li>
<li
class=
"nav-item nav-item-0"
><a
href=
"../../index.html"
>
PaddlePaddle documentation
</a>
»
</li>
</ul>
</div>
<div
class=
"footer"
role=
"contentinfo"
>
©
Copyright 2016, PaddlePaddle developers.
Created using
<a
href=
"http://sphinx-doc.org/"
>
Sphinx
</a>
1.4.8.
</div>
</body>
</html>
\ No newline at end of file
doc_cn/algorithm/rnn/rnn-tutorial.html
已删除
100644 → 0
浏览文件 @
8f5e20e7
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html
xmlns=
"http://www.w3.org/1999/xhtml"
>
<head>
<meta
http-equiv=
"Content-Type"
content=
"text/html; charset=utf-8"
/>
<title>
Recurrent Group教程
—
PaddlePaddle documentation
</title>
<link
rel=
"stylesheet"
href=
"../../_static/classic.css"
type=
"text/css"
/>
<link
rel=
"stylesheet"
href=
"../../_static/pygments.css"
type=
"text/css"
/>
<script
type=
"text/javascript"
>
var
DOCUMENTATION_OPTIONS
=
{
URL_ROOT
:
'
../../
'
,
VERSION
:
''
,
COLLAPSE_INDEX
:
false
,
FILE_SUFFIX
:
'
.html
'
,
HAS_SOURCE
:
true
};
</script>
<script
type=
"text/javascript"
src=
"../../_static/jquery.js"
></script>
<script
type=
"text/javascript"
src=
"../../_static/underscore.js"
></script>
<script
type=
"text/javascript"
src=
"../../_static/doctools.js"
></script>
<script
type=
"text/javascript"
src=
"https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"
></script>
<link
rel=
"index"
title=
"Index"
href=
"../../genindex.html"
/>
<link
rel=
"search"
title=
"Search"
href=
"../../search.html"
/>
<link
rel=
"top"
title=
"PaddlePaddle documentation"
href=
"../../index.html"
/>
<script>
var
_hmt
=
_hmt
||
[];
(
function
()
{
var
hm
=
document
.
createElement
(
"
script
"
);
hm
.
src
=
"
//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba
"
;
var
s
=
document
.
getElementsByTagName
(
"
script
"
)[
0
];
s
.
parentNode
.
insertBefore
(
hm
,
s
);
})();
</script>
</head>
<body
role=
"document"
>
<div
class=
"related"
role=
"navigation"
aria-label=
"related navigation"
>
<h3>
Navigation
</h3>
<ul>
<li
class=
"right"
style=
"margin-right: 10px"
>
<a
href=
"../../genindex.html"
title=
"General Index"
accesskey=
"I"
>
index
</a></li>
<li
class=
"nav-item nav-item-0"
><a
href=
"../../index.html"
>
PaddlePaddle documentation
</a>
»
</li>
</ul>
</div>
<div
class=
"document"
>
<div
class=
"documentwrapper"
>
<div
class=
"bodywrapper"
>
<div
class=
"body"
role=
"main"
>
<div
class=
"section"
id=
"recurrent-group"
>
<span
id=
"recurrent-group"
></span><h1>
Recurrent Group教程
<a
class=
"headerlink"
href=
"#recurrent-group"
title=
"Permalink to this headline"
>
¶
</a></h1>
<div
class=
"section"
id=
""
>
<span
id=
"id1"
></span><h2>
概述
<a
class=
"headerlink"
href=
"#"
title=
"Permalink to this headline"
>
¶
</a></h2>
<p>
序列数据是自然语言处理任务面对的一种主要输入数据类型。
</p>
<p>
一句话是由词语构成的序列,多句话进一步构成了段落。因此,段落可以看作是一个嵌套的双层的序列,这个序列的每个元素又是一个序列。
</p>
<p>
双层序列是PaddlePaddle支持的一种非常灵活的数据组织方式,帮助我们更好地描述段落、多轮对话等更为复杂的语言数据。基于双层序列输入,我们可以设计搭建一个灵活的、层次化的RNN,分别从词语和句子级别编码输入数据,同时也能够引入更加复杂的记忆机制,更好地完成一些复杂的语言理解任务。
</p>
<p>
在PaddlePaddle中,
<code
class=
"docutils literal"
><span
class=
"pre"
>
recurrent_group
</span></code>
是一种任意复杂的RNN单元,用户只需定义RNN在一个时间步内完成的计算,PaddlePaddle负责完成信息和误差在时间序列上的传播。
</p>
<p>
更进一步,
<code
class=
"docutils literal"
><span
class=
"pre"
>
recurrent_group
</span></code>
同样可以扩展到双层序列的处理上。通过两个嵌套的
<code
class=
"docutils literal"
><span
class=
"pre"
>
recurrent_group
</span></code>
分别定义子句级别和词语级别上需要完成的运算,最终实现一个层次化的复杂RNN。
</p>
<p>
目前,在PaddlePaddle中,能够对双向序列进行处理的有
<code
class=
"docutils literal"
><span
class=
"pre"
>
recurrent_group
</span></code>
和部分Layer,具体可参考文档:
<a
href =
"hierarchical-layer.html"
>
支持双层序列作为输入的Layer
</a>
。
</p>
</div>
<div
class=
"section"
id=
""
>
<span
id=
"id2"
></span><h2>
相关概念
<a
class=
"headerlink"
href=
"#"
title=
"Permalink to this headline"
>
¶
</a></h2>
<div
class=
"section"
id=
""
>
<span
id=
"id3"
></span><h3>
基本原理
<a
class=
"headerlink"
href=
"#"
title=
"Permalink to this headline"
>
¶
</a></h3>
<p><code
class=
"docutils literal"
><span
class=
"pre"
>
recurrent_group
</span></code>
是PaddlePaddle支持的一种任意复杂的RNN单元。使用者只需要关注于设计RNN在一个时间步之内完成的计算,PaddlePaddle负责完成信息和梯度在时间序列上的传播。
</p>
<p>
PaddlePaddle中,
<code
class=
"docutils literal"
><span
class=
"pre"
>
recurrent_group
</span></code>
的一个简单调用如下:
</p>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"n"
>
recurrent_group
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
step
</span><span
class=
"p"
>
,
</span>
<span
class=
"nb"
>
input
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
reverse
</span><span
class=
"p"
>
)
</span>
</pre></div>
</div>
<ul
class=
"simple"
>
<li>
step:一个可调用的函数,定义一个时间步之内RNN单元完成的计算
</li>
<li>
input:输入,必须是一个单层序列,或者一个双层序列
</li>
<li>
reverse:是否以逆序处理输入序列
</li>
</ul>
<p>
使用
<code
class=
"docutils literal"
><span
class=
"pre"
>
recurrent_group
</span></code>
的核心是设计step函数的计算逻辑。step函数内部可以自由组合PaddlePaddle支持的各种layer,完成任意的运算逻辑。
<code
class=
"docutils literal"
><span
class=
"pre"
>
recurrent_group
</span></code>
的输入(即input)会成为step函数的输入,由于step 函数只关注于RNN一个时间步之内的计算,在这里
<code
class=
"docutils literal"
><span
class=
"pre"
>
recurrent_group
</span></code>
替我们完成了原始输入数据的拆分。
</p>
</div>
<div
class=
"section"
id=
""
>
<span
id=
"id4"
></span><h3>
输入
<a
class=
"headerlink"
href=
"#"
title=
"Permalink to this headline"
>
¶
</a></h3>
<p><code
class=
"docutils literal"
><span
class=
"pre"
>
recurrent_group
</span></code>
处理的输入序列主要分为以下三种类型:
</p>
<ul
class=
"simple"
>
<li><strong>
数据输入
</strong>
:一个双层序列进入
<code
class=
"docutils literal"
><span
class=
"pre"
>
recurrent_group
</span></code>
会被拆解为一个单层序列,一个单层序列进入
<code
class=
"docutils literal"
><span
class=
"pre"
>
recurrent_group
</span></code>
会被拆解为非序列,然后交给step函数,这一过程对用户是完全透明的。可以有以下两种:1)通过data_layer拿到的用户输入;2)其它layer的输出。
</li>
<li><strong>
只读Memory输入
</strong>
:
<code
class=
"docutils literal"
><span
class=
"pre"
>
StaticInput
</span></code>
定义了一个只读的Memory,由
<code
class=
"docutils literal"
><span
class=
"pre"
>
StaticInput
</span></code>
指定的输入不会被
<code
class=
"docutils literal"
><span
class=
"pre"
>
recurrent_group
</span></code>
拆解,
<code
class=
"docutils literal"
><span
class=
"pre"
>
recurrent_group
</span></code>
循环展开的每个时间步总是能够引用所有输入,可以是一个非序列,或者一个单层序列。
</li>
<li><strong>
序列生成任务的输入
</strong>
:
<code
class=
"docutils literal"
><span
class=
"pre"
>
GeneratedInput
</span></code>
只用于在序列生成任务中指定输入数据。
</li>
</ul>
</div>
<div
class=
"section"
id=
""
>
<span
id=
"id5"
></span><h3>
输入示例
<a
class=
"headerlink"
href=
"#"
title=
"Permalink to this headline"
>
¶
</a></h3>
<p>
序列生成任务大多遵循encoder-decoer架构,encoder和decoder可以是能够处理序列的任意神经网络单元,而RNN是最流行的选择。
</p>
<p>
给定encoder输出和当前词,decoder每次预测产生下一个最可能的词语。在这种结构中,decoder接受两个输入:
</p>
<ul
class=
"simple"
>
<li>
要生成的目标序列:是decoder的数据输入,也是decoder循环展开的依据,
<code
class=
"docutils literal"
><span
class=
"pre"
>
recurrent_group
</span></code>
会对这类输入进行拆解。
</li>
<li>
encoder输出,可以是一个非序列,或者一个单层序列:是一个unbounded memory,decoder循环展开的每一个时间步会引用全部结果,不应该被拆解,这种类型的输入必须通过
<code
class=
"docutils literal"
><span
class=
"pre"
>
StaticInput
</span></code>
指定。关于Unbounded Memory的更多讨论请参考论文
<a
class=
"reference external"
href=
"https://arxiv.org/abs/1410.5401"
>
Neural Turning Machine
</a>
。
</li>
</ul>
<p>
在序列生成任务中,decoder RNN总是引用上一时刻预测出的词的词向量,作为当前时刻输入。
<code
class=
"docutils literal"
><span
class=
"pre"
>
GeneratedInput
</span></code>
自动完成这一过程。
</p>
</div>
<div
class=
"section"
id=
""
>
<span
id=
"id6"
></span><h3>
输出
<a
class=
"headerlink"
href=
"#"
title=
"Permalink to this headline"
>
¶
</a></h3>
<p><code
class=
"docutils literal"
><span
class=
"pre"
>
step
</span></code>
函数必须返回一个或多个Layer的输出,这个Layer的输出会作为整个
<code
class=
"docutils literal"
><span
class=
"pre"
>
recurrent_group
</span></code>
最终的输出结果。在输出的过程中,
<code
class=
"docutils literal"
><span
class=
"pre"
>
recurrent_group
</span></code>
会将每个时间步的输出拼接,这个过程对用户也是透明的。
</p>
</div>
<div
class=
"section"
id=
"memory"
>
<span
id=
"memory"
></span><h3>
memory
<a
class=
"headerlink"
href=
"#memory"
title=
"Permalink to this headline"
>
¶
</a></h3>
<p>
memory只能在
<code
class=
"docutils literal"
><span
class=
"pre"
>
recurrent_group
</span></code>
中定义和使用。memory不能独立存在,必须指向一个PaddlePaddle定义的Layer。引用memory得到这layer上一时刻输出,因此,可以将memory理解为一个时延操作。
</p>
<p>
可以显示地指定一个layer的输出用于初始化memory。不指定时,memory默认初始化为0。
</p>
</div>
</div>
<div
class=
"section"
id=
"rnn"
>
<span
id=
"rnn"
></span><h2>
双层RNN介绍
<a
class=
"headerlink"
href=
"#rnn"
title=
"Permalink to this headline"
>
¶
</a></h2>
<p><code
class=
"docutils literal"
><span
class=
"pre"
>
recurrent_group
</span></code>
帮助我们完成对输入序列的拆分,对输出的合并,以及计算逻辑在序列上的循环展开。
</p>
<p>
利用这种特性,两个嵌套的
<code
class=
"docutils literal"
><span
class=
"pre"
>
recurrent_group
</span></code>
能够处理双层序列,实现词语和句子两个级别的双层RNN结构。
</p>
<ul
class=
"simple"
>
<li>
单层(word-level)RNN:每个状态(state)对应一个词(word)。
</li>
<li>
双层(sequence-level)RNN:一个双层RNN由多个单层RNN组成,每个单层RNN(即双层RNN的每个状态)对应一个子句(subseq)。
</li>
</ul>
<p>
为了描述方便,下文以NLP任务为例,将含有子句(subseq)的段落定义为一个双层序列,将含有词语的句子定义为一个单层序列,那么0层序列即为一个词语。
</p>
</div>
<div
class=
"section"
id=
"rnn"
>
<span
id=
"id7"
></span><h2>
双层RNN的使用
<a
class=
"headerlink"
href=
"#rnn"
title=
"Permalink to this headline"
>
¶
</a></h2>
<div
class=
"section"
id=
""
>
<span
id=
"id8"
></span><h3>
训练流程的使用方法
<a
class=
"headerlink"
href=
"#"
title=
"Permalink to this headline"
>
¶
</a></h3>
<p>
使用
<code
class=
"docutils literal"
><span
class=
"pre"
>
recurrent_group
</span></code>
需要遵循以下约定:
</p>
<ul
class=
"simple"
>
<li><strong>
单进单出
</strong>
:输入和输出都是单层序列。
<ul>
<li>
如果有多个输入,不同输入序列含有的词语数必须严格相等。
</li>
<li>
输出一个单层序列,输出序列的词语数和输入序列一致。
</li>
<li>
memory:在step函数中定义 memory指向一个layer,通过引用memory得到这个layer上一个时刻输出,形成recurrent 连接。memory的is_seq参数必须为false。如果没有定义memory,每个时间步之内的运算是独立的。
</li>
<li>
boot_layer:memory的初始状态,默认初始状为0,memory的is_seq参数必须为false。
</li>
</ul>
</li>
<li><strong>
双进双出
</strong>
:输入和输出都是双层序列。
<ul>
<li>
如果有多个输入序列,不同输入含有的子句(subseq)数必须严格相等,但子句含有的词语数可以不相等。
</li>
<li>
输出一个双层序列,子句(subseq)数、子句的单词数和指定的一个输入序列一致,默认为第一个输入。
</li>
<li>
memory:在step函数中定义memory,指向一个layer,通过引用memory得到这个layer上一个时刻的输出,形成recurrent连接。定义在外层
<code
class=
"docutils literal"
><span
class=
"pre"
>
recurrent_group
</span></code>
step函数中的memory,能够记录上一个subseq 的状态,可以是一个单层序列(只作为read-only memory),也可以是一个词语。如果没有定义memory,那么 subseq 之间的运算是独立的。
</li>
<li>
boot_layer:memory 初始状态,可以是一个单层序列(只作为read-only memory)或一个向量。默认不设置,即初始状态为0。
</li>
</ul>
</li>
<li><strong>
双进单出
</strong>
:目前还未支持,会报错
”
In hierachical RNN, all out links should be from sequences now
”
。
</li>
</ul>
</div>
<div
class=
"section"
id=
""
>
<span
id=
"id9"
></span><h3>
生成流程的使用方法
<a
class=
"headerlink"
href=
"#"
title=
"Permalink to this headline"
>
¶
</a></h3>
<p>
使用
<code
class=
"docutils literal"
><span
class=
"pre"
>
beam_search
</span></code>
需要遵循以下约定:
</p>
<ul
class=
"simple"
>
<li>
单层RNN:从一个word生成下一个word。
</li>
<li>
双层RNN:即把单层RNN生成后的subseq给拼接成一个新的双层seq。从语义上看,也不存在一个subseq直接生成下一个subseq的情况。
</li>
</ul>
</div>
</div>
</div>
</div>
</div>
</div>
<div
class=
"sphinxsidebar"
role=
"navigation"
aria-label=
"main navigation"
>
<div
class=
"sphinxsidebarwrapper"
>
<h3><a
href=
"../../index.html"
>
Table Of Contents
</a></h3>
<ul>
<li><a
class=
"reference internal"
href=
"#"
>
Recurrent Group教程
</a><ul>
<li><a
class=
"reference internal"
href=
"#"
>
概述
</a></li>
<li><a
class=
"reference internal"
href=
"#"
>
相关概念
</a><ul>
<li><a
class=
"reference internal"
href=
"#"
>
基本原理
</a></li>
<li><a
class=
"reference internal"
href=
"#"
>
输入
</a></li>
<li><a
class=
"reference internal"
href=
"#"
>
输入示例
</a></li>
<li><a
class=
"reference internal"
href=
"#"
>
输出
</a></li>
<li><a
class=
"reference internal"
href=
"#memory"
>
memory
</a></li>
</ul>
</li>
<li><a
class=
"reference internal"
href=
"#rnn"
>
双层RNN介绍
</a></li>
<li><a
class=
"reference internal"
href=
"#rnn"
>
双层RNN的使用
</a><ul>
<li><a
class=
"reference internal"
href=
"#"
>
训练流程的使用方法
</a></li>
<li><a
class=
"reference internal"
href=
"#"
>
生成流程的使用方法
</a></li>
</ul>
</li>
</ul>
</li>
</ul>
<div
role=
"note"
aria-label=
"source link"
>
<h3>
This Page
</h3>
<ul
class=
"this-page-menu"
>
<li><a
href=
"../../_sources/algorithm/rnn/rnn-tutorial.txt"
rel=
"nofollow"
>
Show Source
</a></li>
</ul>
</div>
<div
id=
"searchbox"
style=
"display: none"
role=
"search"
>
<h3>
Quick search
</h3>
<form
class=
"search"
action=
"../../search.html"
method=
"get"
>
<div><input
type=
"text"
name=
"q"
/></div>
<div><input
type=
"submit"
value=
"Go"
/></div>
<input
type=
"hidden"
name=
"check_keywords"
value=
"yes"
/>
<input
type=
"hidden"
name=
"area"
value=
"default"
/>
</form>
</div>
<script
type=
"text/javascript"
>
$
(
'
#searchbox
'
).
show
(
0
);
</script>
</div>
</div>
<div
class=
"clearer"
></div>
</div>
<div
class=
"related"
role=
"navigation"
aria-label=
"related navigation"
>
<h3>
Navigation
</h3>
<ul>
<li
class=
"right"
style=
"margin-right: 10px"
>
<a
href=
"../../genindex.html"
title=
"General Index"
>
index
</a></li>
<li
class=
"nav-item nav-item-0"
><a
href=
"../../index.html"
>
PaddlePaddle documentation
</a>
»
</li>
</ul>
</div>
<div
class=
"footer"
role=
"contentinfo"
>
©
Copyright 2016, PaddlePaddle developers.
Created using
<a
href=
"http://sphinx-doc.org/"
>
Sphinx
</a>
1.4.8.
</div>
</body>
</html>
\ No newline at end of file
doc_cn/index.html
浏览文件 @
f4904247
...
...
@@ -78,10 +78,7 @@ var _hmt = _hmt || [];
<div
class=
"section"
id=
"id9"
>
<h2>
算法教程
<a
class=
"headerlink"
href=
"#id9"
title=
"Permalink to this headline"
>
¶
</a></h2>
<ul
class=
"simple"
>
<li><a
class=
"reference external"
href=
"algorithm/rnn/rnn-tutorial.html"
>
Recurrent Group教程
</a></li>
<li><a
class=
"reference external"
href=
"../doc/algorithm/rnn/rnn.html"
>
单层RNN示例
</a></li>
<li><a
class=
"reference external"
href=
"algorithm/rnn/hierarchical-rnn.html"
>
双层RNN示例
</a></li>
<li><a
class=
"reference external"
href=
"algorithm/rnn/hierarchical-layer.html"
>
支持双层序列作为输入的Layer
</a></li>
<li><a
class=
"reference external"
href=
"../doc/algorithm/rnn/rnn.html"
>
RNN配置
</a></li>
</ul>
</div>
</div>
...
...
doc_cn/objects.inv
浏览文件 @
f4904247
无法预览此类型文件
doc_cn/searchindex.js
浏览文件 @
f4904247
Search
.
setIndex
({
envversion
:
49
,
filenames
:[
"
algorithm/rnn/hierarchical-layer
"
,
"
algorithm/rnn/hierarchical-rnn
"
,
"
algorithm/rnn/rnn-tutorial
"
,
"
build/docker/build_docker_image
"
,
"
build_and_install/cmake/compile_options
"
,
"
build_and_install/cmake/index
"
,
"
build_and_install/cmake/install_deps
"
,
"
build_and_install/cmake/make_and_install
"
,
"
build_and_install/index
"
,
"
build_and_install/install/docker_install
"
,
"
build_and_install/install/ubuntu_install
"
,
"
cluster/index
"
,
"
demo/index
"
,
"
demo/quick_start/index
"
,
"
index
"
,
"
ui/cmd/dump_config
"
,
"
ui/cmd/index
"
,
"
ui/cmd/make_diagram
"
,
"
ui/cmd/merge_model
"
,
"
ui/cmd/paddle_pserver
"
,
"
ui/cmd/paddle_train
"
,
"
ui/cmd/paddle_version
"
,
"
ui/data_provider/index
"
,
"
ui/data_provider/pydataprovider2
"
,
"
ui/data_provider/write_new_dataprovider
"
,
"
ui/index
"
,
"
ui/predict/swig_py_paddle
"
],
objects
:{},
objnames
:{},
objtypes
:{},
terms
:{
"
0000x
"
:
13
,
"
000
\
u5f20
\
u7070
\
u5ea6
\
u56fe
\
u7247
\
u7684
\
u6570
\
u5b57
\
u5206
\
u7c7b
\
u6570
\
u636e
\
u96c6
"
:
23
,
"
00186201e
"
:
26
,
"
04
\
u4e2d
\
u6b63
\
u786e
"
:
10
,
"
08823112e
"
:
26
,
"
0
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
0b1
"
:
10
,
"
10
\
u4ee5
\
u4e0a
\
u7684linux
"
:
9
,
"
10
\
u7ef4
\
u7684
\
u6574
\
u6570
\
u503c
"
:
23
,
"
10gbe
"
:
9
,
"
10m
"
:
3
,
"
12194102e
"
:
26
,
"
12
\
u7248
\
u672c
\
u6d4b
\
u8bd5
\
u901a
\
u8fc7
"
:
3
,
"
12
\
u7248
\
u672c
\
u7684
\
u60c5
\
u51b5
\
u4e0b
\
u5e76
\
u6ca1
\
u6709
\
u6d4b
\
u8bd5
"
:
3
,
"
15501715e
"
:
26
,
"
15mb
"
:
13
,
"
16mb
"
:
13
,
"
1
\
u7684
\
u8bdd
"
:
23
,
"
252kb
"
:
13
,
"
25639710e
"
:
26
,
"
25k
"
:
13
,
"
27787406e
"
:
26
,
"
28
\
u7684
\
u50cf
\
u7d20
\
u7070
\
u5ea6
\
u503c
"
:
23
,
"
28
\
u7684
\
u7a20
\
u5bc6
\
u5411
\
u91cf
\
u548c
\
u4e00
\
u4e2a
"
:
23
,
"
2
\
u4e2a
\
u5b50
\
u53e5
"
:
1
,
"
2
\
u53e5
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u548c5
\
u53e5
\
u5355
\
u5c42
\
u5e8f
\
u5217
\
u7684
\
u6570
\
u636e
\
u5b8c
\
u5168
\
u4e00
\
u6837
"
:
1
,
"
2
\
u8868
\
u793a
\
u4e00
\
u6b21
\
u8fc72
\
u53e5
\
u53cc
\
u5c42
\
u5e8f
\
u5217
"
:
1
,
"
2
\
u8fdb
\
u884c
\
u8fdb
\
u4e00
\
u6b65
\
u6f14
\
u5316
"
:
13
,
"
32777140e
"
:
26
,
"
36540484e
"
:
26
,
"
3
\
u4e2a
\
u5b50
\
u53e5
"
:
1
,
"
40gbe
"
:
9
,
"
43630644e
"
:
26
,
"
48565123e
"
:
26
,
"
48684503e
"
:
26
,
"
49316648e
"
:
26
,
"
50k
"
:
3
,
"
51111044e
"
:
26
,
"
53018653e
"
:
26
,
"
56gbe
"
:
9
,
"
5
\
u5230
\
u672c
\
u5730
\
u73af
\
u5883
\
u4e2d
"
:
10
,
"
5
\
u8868
\
u793a
\
u4e00
\
u6b21
\
u8fc75
\
u53e5
\
u5355
\
u5c42
\
u5e8f
\
u5217
"
:
1
,
"
70634608e
"
:
26
,
"
72296313e
"
:
26
,
"
85625684e
"
:
26
,
"
93137714e
"
:
26
,
"
96644767e
"
:
26
,
"
99982715e
"
:
26
,
"
9
\
u7684
\
u6570
\
u5b57
"
:
23
,
"
\
u4e00
"
:
1
,
"
\
u4e00
\
u4e2a0
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
\
u4e00
\
u4e2a0
\
u5c42
\
u5e8f
\
u5217
\
u7ecf
\
u8fc7
\
u8fd0
\
u7b97
\
u6269
\
u5c55
\
u6210
\
u4e00
\
u4e2a
\
u5355
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
\
u4e00
\
u4e2a
\
u5355
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
\
u4e00
\
u4e2a
\
u5355
\
u5c42
\
u5e8f
\
u5217
\
u7ecf
\
u8fc7
\
u8fd0
\
u7b97
\
u6269
\
u5c55
\
u6210
\
u4e00
\
u4e2a
\
u53cc
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
\
u4e00
\
u4e2a
\
u5355
\
u5c42
\
u5e8f
\
u5217
\
u8fdb
\
u5165
"
:
2
,
"
\
u4e00
\
u4e2a
\
u53cc
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
\
u4e00
\
u4e2a
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u6216
\
u4e00
\
u4e2a
\
u5355
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
\
u4e00
\
u4e2a
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u7ecf
\
u8fc7
\
u8fd0
\
u7b97
\
u53d8
\
u6210
\
u4e00
\
u4e2a0
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
\
u4e00
\
u4e2a
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u7ecf
\
u8fc7
\
u8fd0
\
u7b97
\
u53d8
\
u6210
\
u4e00
\
u4e2a
\
u5355
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
\
u4e00
\
u4e2a
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u8fdb
\
u5165
"
:
2
,
"
\
u4e00
\
u4e2a
\
u53cc
\
u5c42rnn
\
u7531
\
u591a
\
u4e2a
\
u5355
\
u5c42rnn
\
u7ec4
\
u6210
"
:
2
,
"
\
u4e00
\
u4e2a
\
u53ef
\
u8c03
\
u7528
\
u7684
\
u51fd
\
u6570
"
:
2
,
"
\
u4e00
\
u4e2a
\
u6587
\
u4ef6
"
:
23
,
"
\
u4e00
\
u4e2a
\
u72ec
\
u7acb
\
u7684
\
u5143
\
u7d20
"
:
0
,
"
\
u4e00
\
u4e2a
\
u72ec
\
u7acb
\
u7684
\
u8bcd
\
u8bed
"
:
0
,
"
\
u4e00
\
u4e2alabel
"
:
1
,
"
\
u4e00
\
u4e2alogging
\
u5bf9
\
u8c61
"
:
23
,
"
\
u4e00
\
u4e2apass
\
u8868
\
u793a
\
u8fc7
\
u4e00
\
u904d
\
u6240
\
u6709
\
u8bad
\
u7ec3
\
u6837
\
u672c
"
:
13
,
"
\
u4e00
\
u4eba
"
:
1
,
"
\
u4e00
\
u5171
\
u670910
\
u4e2a
\
u6837
\
u672c
"
:
1
,
"
\
u4e00
\
u5171
\
u67094
\
u4e2a
\
u6837
\
u672c
"
:
1
,
"
\
u4e00
\
u53e5
\
u8bdd
\
u662f
\
u7531
\
u8bcd
\
u8bed
\
u6784
\
u6210
\
u7684
\
u5e8f
\
u5217
"
:
2
,
"
\
u4e00
\
u65e9
"
:
1
,
"
\
u4e00
\
u6761
"
:
23
,
"
\
u4e00
\
u6b21
\
u6027
\
u676f
\
u5b50
"
:
1
,
"
\
u4e00
\
u81f4
"
:
1
,
"
\
u4e00
\
u81f4
\
u7684
\
u7279
\
u5f81
"
:
23
,
"
\
u4e00
\
u822c
\
u60c5
\
u51b5
\
u4e0b
"
:
22
,
"
\
u4e00
\
u822c
\
u63a8
\
u8350
\
u8bbe
\
u7f6e
\
u6210true
"
:
23
,
"
\
u4e00
\
u884c
\
u4e3a
\
u4e00
\
u4e2a
\
u6837
\
u672c
"
:
13
,
"
\
u4e00
\
u884c
\
u5bf9
\
u5e94
\
u4e00
\
u4e2a
\
u6570
\
u636e
\
u6587
\
u4ef6
"
:
22
,
"
\
u4e0a
\
u7684
\
u6548
\
u679c
"
:
13
,
"
\
u4e0a
\
u7f51
"
:
1
,
"
\
u4e0b
\
u6587
\
u4ee5nlp
\
u4efb
\
u52a1
\
u4e3a
\
u4f8b
"
:
2
,
"
\
u4e0b
\
u6b21
"
:
1
,
"
\
u4e0b
\
u8f7d
\
u8fdb
\
u7a0b
\
u4f1a
\
u91cd
\
u542f
"
:
3
,
"
\
u4e0b
\
u8ff0
\
u5185
\
u5bb9
\
u5c06
\
u5206
\
u4e3a
\
u5982
\
u4e0b
\
u51e0
\
u4e2a
\
u7c7b
\
u522b
\
u63cf
\
u8ff0
"
:
9
,
"
\
u4e0b
\
u975e
\
u5e38
\
u5c11
\
u7684
\
u53d8
\
u91cf
\
u5f15
\
u7528
"
:
23
,
"
\
u4e0b
\
u9762
\
u8fd9
\
u4e9blayer
\
u80fd
\
u591f
\
u63a5
\
u53d7
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u4f5c
\
u4e3a
\
u8f93
\
u5165
"
:
0
,
"
\
u4e0b
\
u9762dataprovid
"
:
13
,
"
\
u4e0d
"
:
1
,
"
\
u4e0d
\
u4e00
\
u5b9a
\
u548c
\
u65f6
\
u95f4
\
u6709
\
u5173
\
u7cfb
"
:
23
,
"
\
u4e0d
\
u4f1a
\
u6267
\
u884c
\
u6d4b
\
u8bd5
\
u64cd
\
u4f5c
"
:
22
,
"
\
u4e0d
\
u5305
\
u542blabel
"
:
26
,
"
\
u4e0d
\
u540c
\
u7684
\
u6570
\
u636e
\
u7c7b
\
u578b
\
u548c
\
u5e8f
\
u5217
\
u6a21
\
u5f0f
\
u8fd4
\
u56de
\
u7684
\
u683c
\
u5f0f
\
u4e0d
\
u540c
"
:
23
,
"
\
u4e0d
\
u540c
\
u8f93
\
u5165
\
u542b
\
u6709
\
u7684
\
u5b50
\
u53e5
"
:
2
,
"
\
u4e0d
\
u540c
\
u8f93
\
u5165
\
u5e8f
\
u5217
\
u542b
\
u6709
\
u7684
\
u8bcd
\
u8bed
\
u6570
\
u5fc5
\
u987b
\
u4e25
\
u683c
\
u76f8
\
u7b49
"
:
2
,
"
\
u4e0d
\
u5c11
"
:
1
,
"
\
u4e0d
\
u5e94
\
u8be5
\
u88ab
\
u62c6
\
u89e3
"
:
2
,
"
\
u4e0d
\
u6307
\
u5b9a
\
u65f6
"
:
2
,
"
\
u4e0d
\
u652f
\
u6301avx
\
u6307
\
u4ee4
\
u96c6
\
u7684cpu
\
u4e5f
\
u53ef
\
u4ee5
\
u8fd0
\
u884c
"
:
9
,
"
\
u4e0d
\
u7f13
\
u5b58
\
u4efb
\
u4f55
\
u6570
\
u636e
"
:
23
,
"
\
u4e0d
\
u8fc7
"
:
1
,
"
\
u4e0d
\
u8fdc
"
:
1
,
"
\
u4e0d
\
u9519
"
:
1
,
"
\
u4e0d
\
u9700
\
u8981avx
\
u6307
\
u4ee4
\
u96c6
\
u7684cpu
\
u4e5f
\
u53ef
\
u4ee5
\
u8fd0
\
u884c
"
:
9
,
"
\
u4e0e
\
u8bad
\
u7ec3
\
u7f51
\
u7edc
\
u914d
\
u7f6e
\
u4e0d
\
u540c
\
u7684
\
u662f
"
:
13
,
"
\
u4e14
"
:
1
,
"
\
u4e14
\
u5e8f
\
u5217
\
u7684
\
u6bcf
\
u4e00
\
u4e2a
\
u5143
\
u7d20
\
u8fd8
\
u662f
\
u4e00
\
u4e2a
\
u65f6
\
u95f4
\
u5e8f
\
u5217
"
:
23
,
"
\
u4e24
"
:
1
,
"
\
u4e24
\
u4e2a
\
u5d4c
\
u5957
\
u7684
"
:
2
,
"
\
u4e24
\
u4e2a
\
u6587
\
u6863
"
:
9
,
"
\
u4e24
\
u7c7b
"
:
13
,
"
\
u4e25
\
u91cd
\
u7684
\
u95ee
\
u9898
"
:
23
,
"
\
u4e2a
"
:
13
,
"
\
u4e2ayield
"
:
23
,
"
\
u4e2d
"
:
13
,
"
\
u4e2d
\
u5b9a
\
u4e49
\
u4f7f
\
u7528
\
u54ea
\
u79cddataprovider
\
u53ca
\
u5176
\
u53c2
\
u6570
"
:
22
,
"
\
u4e2d
\
u5b9a
\
u4e49
\
u548c
\
u4f7f
\
u7528
"
:
2
,
"
\
u4e2d
\
u5b9a
\
u4e49
\
u7684
\
u987a
\
u5e8f
\
u4e00
\
u81f4
"
:
23
,
"
\
u4e2d
\
u5bfb
\
u627e
\
u8fd9
\
u4e9bblas
\
u7684
\
u5b9e
\
u73b0
"
:
4
,
"
\
u4e2d
\
u7684
"
:
23
,
"
\
u4e2d
\
u7684
\
u4e8c
\
u8fdb
\
u5236
\
u4f7f
\
u7528
\
u4e86
"
:
9
,
"
\
u4e2d
\
u7684set
"
:
23
,
"
\
u4e2d
\
u914d
\
u7f6e
"
:
23
,
"
\
u4e3a
"
:
23
,
"
\
u4e3a
\
u4e86
\
u63cf
\
u8ff0
\
u65b9
\
u4fbf
"
:
2
,
"
\
u4e3a
\
u4e86
\
u8fd0
\
u884cpaddlepaddle
\
u7684docker
\
u955c
\
u50cf
"
:
9
,
"
\
u4e3a
\
u4f8b
\
u8fdb
\
u884c
\
u9884
\
u6d4b
"
:
13
,
"
\
u4e3b
\
u8981
\
u51fd
\
u6570
\
u662fprocess
\
u51fd
\
u6570
"
:
23
,
"
\
u4e3b
\
u8981
\
u5206
\
u4e3a
\
u4ee5
\
u4e0b
\
u51e0
\
u4e2a
\
u6b65
\
u9aa4
"
:
26
,
"
\
u4e3b
\
u8981
\
u5305
\
u62ec
\
u4e24
\
u90e8
\
u5206
"
:
13
,
"
\
u4e3b
\
u8981
\
u539f
\
u56e0
"
:
1
,
"
\
u4e3b
\
u8981
\
u662f
\
u589e
\
u52a0
\
u4e86
\
u521d
\
u59cb
\
u5316
\
u673a
\
u5236
"
:
23
,
"
\
u4e3b
\
u8981
\
u6b65
\
u9aa4
\
u4e3a
"
:
26
,
"
\
u4e3b
\
u8981
\
u7531
\
u4e8e
\
u65e7
\
u7248
\
u672c
"
:
3
,
"
\
u4e3b
\
u8981
\
u7684
\
u8f6f
\
u4ef6
\
u5305
\
u4e3apy_paddl
"
:
26
,
"
\
u4e4b
\
u95f4
\
u7684
\
u8fd0
\
u7b97
\
u662f
\
u72ec
\
u7acb
\
u7684
"
:
2
,
"
\
u4e5f
"
:
1
,
"
\
u4e5f
\
u4e0d
\
u5b58
\
u5728
\
u4e00
\
u4e2asubseq
\
u76f4
\
u63a5
\
u751f
\
u6210
\
u4e0b
\
u4e00
\
u4e2asubseq
\
u7684
\
u60c5
\
u51b5
"
:
2
,
"
\
u4e5f
\
u4f1a
\
u6254
\
u5230
\
u8fd9
\
u6761
\
u6570
\
u636e
"
:
23
,
"
\
u4e5f
\
u4f1a
\
u8bfb
\
u53d6
\
u76f8
\
u5173
\
u8def
\
u5f84
\
u53d8
\
u91cf
\
u6765
\
u8fdb
\
u884c
\
u641c
\
u7d22
"
:
4
,
"
\
u4e5f
\
u53ef
\
u4ee5
"
:
23
,
"
\
u4e5f
\
u53ef
\
u4ee5
\
u4e3ainteg
"
:
1
,
"
\
u4e5f
\
u53ef
\
u4ee5
\
u4f7f
\
u7528
"
:
23
,
"
\
u4e5f
\
u53ef
\
u4ee5
\
u548cpaddl
"
:
16
,
"
\
u4e5f
\
u53ef
\
u4ee5
\
u662f
\
u4e00
\
u4e2a
\
u8bcd
\
u8bed
"
:
2
,
"
\
u4e5f
\
u53ef
\
u4ee5
\
u76f4
\
u63a5
\
u6267
\
u884c
"
:
9
,
"
\
u4e5f
\
u53ef
\
u4ee5
\
u901a
\
u8fc7
\
u5982
\
u4e0b
\
u65b9
\
u5f0f
\
u9884
\
u6d4b
"
:
13
,
"
\
u4e5f
\
u53ef
\
u4ee5
\
u901a
\
u8fc7save
"
:
13
,
"
\
u4e5f
\
u53ef
\
u4ee5
\
u9884
\
u6d4b
\
u6ca1
\
u6709label
\
u7684
\
u6d4b
\
u8bd5
\
u96c6
"
:
13
,
"
\
u4e5f
\
u5c31
\
u662f
\
u5c06
\
u8bcd
\
u5411
\
u91cf
\
u6a21
\
u578b
\
u989d
\
u6b65
"
:
13
,
"
\
u4e5f
\
u5c31
\
u662f
\
u76f4
\
u63a5
\
u5199
\
u5185
\
u5b58
\
u7684float
\
u6570
\
u7ec4
"
:
26
,
"
\
u4e5f
\
u662fdecoder
\
u5faa
\
u73af
\
u5c55
\
u5f00
\
u7684
\
u4f9d
\
u636e
"
:
2
,
"
\
u4e5f
\
u9700
\
u8981
\
u4e24
\
u6b21
\
u968f
\
u673a
\
u9009
\
u62e9
\
u5230
\
u540c
\
u6837
\
u7684generator
\
u7684
\
u65f6
\
u5019
"
:
23
,
"
\
u4e7e
"
:
1
,
"
\
u4e86
"
:
1
,
"
\
u4e86
\
u975e
\
u5e38
\
u65b9
\
u4fbf
\
u7684
\
u4e8c
\
u8fdb
\
u5236
\
u5206
\
u53d1
\
u624b
\
u6bb5
"
:
9
,
"
\
u4e8c
\
u6b21
\
u5f00
\
u53d1
\
u53ef
\
u4ee5
"
:
9
,
"
\
u4e94
\
u661f
\
u7ea7
"
:
1
,
"
\
u4ea4
\
u901a
"
:
1
,
"
\
u4ea4
\
u901a
\
u4fbf
\
u5229
"
:
1
,
"
\
u4eba
\
u5458
\
u7b49
\
u7b49
"
:
3
,
"
\
u4ec5
\
u4ec5
\
u9700
\
u8981
"
:
23
,
"
\
u4ecb
\
u7ecdpaddlepaddle
\
u4f7f
\
u7528
\
u6d41
\
u7a0b
\
u548c
\
u5e38
\
u7528
\
u7684
\
u7f51
\
u7edc
\
u57fa
\
u7840
\
u5355
\
u5143
\
u7684
\
u914d
\
u7f6e
\
u65b9
\
u6cd5
"
:
13
,
"
\
u4ece
\
u4e00
\
u4e2aword
\
u751f
\
u6210
\
u4e0b
\
u4e00
\
u4e2aword
"
:
2
,
"
\
u4ece
\
u6587
\
u4ef6
\
u4e2d
\
u8bfb
\
u53d6
\
u6bcf
\
u4e00
\
u6761
\
u6570
\
u636e
"
:
23
,
"
\
u4ece
\
u6587
\
u672c
\
u6587
\
u4ef6
\
u4e2d
\
u8bfb
\
u53d6
"
:
23
,
"
\
u4ece
\
u800c
\
u4e0d
\
u80fd
\
u5728
\
u8fd0
\
u884c
\
u7f16
\
u8bd1
\
u547d
\
u4ee4
\
u7684
\
u65f6
\
u5019
\
u63a5
\
u53d7
\
u53c2
\
u6570
"
:
3
,
"
\
u4ece
\
u800c
\
u751f
\
u6210
\
u591a
\
u4e2agener
"
:
23
,
"
\
u4ece
\
u800c
\
u9632
\
u6b62
\
u8fc7
\
u62df
\
u5408
"
:
22
,
"
\
u4ece
\
u8bed
\
u4e49
\
u4e0a
\
u770b
"
:
2
,
"
\
u4ece
\
u8f93
\
u5165
\
u6570
\
u636e
\
u4e0a
\
u770b
"
:
1
,
"
\
u4ed6
\
u4eec
\
u662f
"
:[
9
,
10
,
16
,
23
],
"
\
u4ed6
\
u4eec
\
u7684imag
"
:
9
,
"
\
u4ed6
\
u53ef
\
u4ee5
\
u5c06
\
u67d0
\
u4e00
\
u4e2a
\
u51fd
\
u6570
\
u6807
\
u8bb0
\
u6210
\
u4e00
\
u4e2apydataprovid
"
:
23
,
"
\
u4ee3
\
u8868
\
u4e00
\
u4e2a
\
u5411
\
u91cf
"
:
1
,
"
\
u4ee3
\
u8868
\
u4e0d
\
u540c
\
u7684
\
u53cc
\
u5c42
\
u5e8f
\
u5217
"
:
1
,
"
\
u4ee3
\
u8868
\
u5355
\
u5c42
\
u5e8f
\
u5217
"
:
1
,
"
\
u4ee3
\
u8868
\
u53cc
\
u5c42
\
u5e8f
\
u5217
"
:
1
,
"
\
u4ee4
\
u884c
\
u53c2
\
u6570
\
u6587
\
u6863
"
:
13
,
"
\
u4ee5
\
u53ca
\
u53cc
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
\
u4ee5
\
u53ca
\
u8ba1
\
u7b97
\
u903b
\
u8f91
\
u5728
\
u5e8f
\
u5217
\
u4e0a
\
u7684
\
u5faa
\
u73af
\
u5c55
\
u5f00
"
:
2
,
"
\
u4ee5
\
u592a
\
u7f51
\
u5361
"
:
9
,
"
\
u4ee5
\
u76f8
\
u5bf9
\
u8def
\
u5f84
\
u5f15
\
u7528
"
:
22
,
"
\
u4ef7
\
u683c
"
:
1
,
"
\
u4efb
\
u610f
\
u4e00
\
u79cdcblas
\
u5b9e
\
u73b0
"
:
4
,
"
\
u4f1a
\
u5bf9
\
u8fd9
\
u7c7b
\
u8f93
\
u5165
\
u8fdb
\
u884c
\
u62c6
\
u89e3
"
:
2
,
"
\
u4f1a
\
u5c06
\
u6bcf
\
u4e2a
\
u65f6
\
u95f4
\
u6b65
\
u7684
\
u8f93
\
u51fa
\
u62fc
\
u63a5
"
:
2
,
"
\
u4f1a
\
u6210
\
u4e3astep
\
u51fd
\
u6570
\
u7684
\
u8f93
\
u5165
"
:
2
,
"
\
u4f1a
\
u62a5
\
u5bfb
\
u627e
\
u4e0d
\
u5230
\
u8fd9
\
u4e9b
\
u52a8
\
u6001
\
u5e93
"
:
10
,
"
\
u4f1a
\
u62a5
\
u9519
"
:
2
,
"
\
u4f1a
\
u6839
\
u636e
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
\
u6307
\
u5b9a
\
u7684
\
u6d4b
\
u8bd5
\
u65b9
\
u5f0f
"
:
22
,
"
\
u4f1a
\
u6839
\
u636einput_types
\
u68c0
\
u67e5
\
u6570
\
u636e
\
u7684
\
u5408
\
u6cd5
\
u6027
"
:
23
,
"
\
u4f1a
\
u751f
\
u6210
\
u591a
\
u4e2agener
"
:
23
,
"
\
u4f1a
\
u88ab
\
u62c6
\
u89e3
\
u4e3a
\
u4e00
\
u4e2a
\
u5355
\
u5c42
\
u5e8f
\
u5217
"
:
2
,
"
\
u4f1a
\
u88ab
\
u62c6
\
u89e3
\
u4e3a
\
u975e
\
u5e8f
\
u5217
"
:
2
,
"
\
u4f1a
\
u9884
\
u5148
\
u8bfb
\
u53d6
\
u5168
\
u90e8
\
u6570
\
u636e
\
u5230
\
u5185
\
u5b58
\
u4e2d
"
:
23
,
"
\
u4f20
\
u5165
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
\
u521d
\
u59cb
\
u5316
"
:
26
,
"
\
u4f20
\
u5165
\
u7684
\
u662f
\
u4e00
\
u4e2a
\
u51fd
\
u6570
"
:
23
,
"
\
u4f20
\
u5165
\
u7684
\
u914d
\
u7f6e
\
u53c2
\
u6570
\
u5305
\
u62ec
"
:
3
,
"
\
u4f20
\
u5165
\
u8fd9
\
u4e2a
\
u53d8
\
u91cf
\
u7684
\
u65b9
\
u5f0f
\
u4e3a
"
:
23
,
"
\
u4f46
\
u4ece
\
u4e0a
\
u9762
\
u7684
\
u6570
\
u636e
\
u683c
\
u5f0f
\
u53ef
\
u77e5
"
:
1
,
"
\
u4f46
\
u5b50
\
u53e5
\
u542b
\
u6709
\
u7684
\
u8bcd
\
u8bed
\
u6570
\
u53ef
\
u4ee5
\
u4e0d
\
u76f8
\
u7b49
"
:
2
,
"
\
u4f46
\
u662f
"
:[
3
,
23
],
"
\
u4f46
\
u662f
\
u5728
"
:
23
,
"
\
u4f46
\
u662f
\
u5982
\
u679c
\
u4f7f
\
u7528
\
u4e86
\
u9ad8
\
u6027
\
u80fd
\
u7684
\
u7f51
\
u5361
"
:
9
,
"
\
u4f46
\
u662f
\
u65b9
\
u4fbf
\
u8c03
\
u8bd5
\
u548cbenchmark
"
:
4
,
"
\
u4f46
\
u662f
\
u6709
\
u65f6
\
u4e3a
\
u4e86
\
u8ba1
\
u7b97
\
u5747
\
u8861
\
u6027
"
:
23
,
"
\
u4f46
\
u7406
\
u8bba
\
u4e0a
\
u652f
\
u6301
\
u5176
\
u4ed6
\
u7684
"
:
10
,
"
\
u4f46
\
u8fd9
\
u79cd
\
u60c5
\
u51b5
\
u4e0b
"
:
1
,
"
\
u4f46
\
u9700
\
u8981
\
u6ce8
\
u610f
\
u7684
\
u662f
\
u7f16
\
u8bd1
\
u548c
"
:
4
,
"
\
u4f4d
\
u7f6e
"
:
1
,
"
\
u4f4e
\
u4e8edocker
"
:
3
,
"
\
u4f4f
"
:
1
,
"
\
u4f53
\
u53ef
\
u4ee5
\
u53c2
\
u8003
"
:
23
,
"
\
u4f5c
\
u4e3a
\
u4e0b
\
u4e00
\
u4e2a
\
u5b50
\
u53e5memory
\
u7684
\
u521d
\
u59cb
\
u72b6
\
u6001
"
:
1
,
"
\
u4f5c
\
u4e3a
\
u5f53
\
u524d
\
u65f6
\
u523b
\
u8f93
\
u5165
"
:
2
,
"
\
u4f5c
\
u4e3aboot
"
:
1
,
"
\
u4f5c
\
u7528
"
:
0
,
"
\
u4f7f
\
u5728python
\
u73af
\
u5883
\
u4e0b
\
u7684
\
u9884
\
u6d4b
\
u63a5
\
u53e3
\
u66f4
\
u52a0
\
u7b80
\
u5355
"
:
26
,
"
\
u4f7f
\
u7528
"
:[
2
,
4
,
9
,
26
],
"
\
u4f7f
\
u7528
\
u5982
\
u4e0b
\
u811a
\
u672c
\
u53ef
\
u4ee5
\
u786e
\
u5b9a
\
u672c
\
u673a
\
u7684cpu
\
u77e5
\
u5426
\
u652f
\
u6301
"
:
9
,
"
\
u4f7f
\
u7528
\
u7684
\
u547d
\
u4ee4
\
u4e5f
\
u662f
"
:
4
,
"
\
u4f7f
\
u7528
\
u8005
\
u53ea
\
u9700
\
u8981
\
u5173
\
u6ce8
\
u4e8e
\
u8bbe
\
u8ba1rnn
\
u5728
\
u4e00
\
u4e2a
\
u65f6
\
u95f4
\
u6b65
\
u4e4b
\
u5185
\
u5b8c
\
u6210
\
u7684
\
u8ba1
\
u7b97
"
:
2
,
"
\
u4f7f
\
u7528
\
u8be5
\
u63a5
\
u53e3
\
u7528
\
u6237
\
u53ef
\
u4ee5
\
u53ea
\
u5173
\
u6ce8
\
u5982
\
u4f55
"
:
23
,
"
\
u4f7f
\
u7528
\
u8be5dockerfile
\
u6784
\
u5efa
\
u51fa
\
u955c
\
u50cf
"
:
9
,
"
\
u4f7f
\
u7528
\
u8fd9
\
u4e2a
\
u5173
\
u952e
\
u8bcd
"
:
23
,
"
\
u4f7f
\
u7528deb
\
u5305
\
u5728ubuntu
\
u4e0a
\
u5b89
\
u88c5paddlepaddl
"
:
8
,
"
\
u4f7f
\
u7528dockerfile
\
u6784
\
u5efa
\
u4e00
\
u4e2a
\
u5168
\
u65b0
\
u7684dock
"
:
9
,
"
\
u4f7f
\
u7528mnist
\
u624b
\
u5199
\
u8bc6
\
u522b
\
u4f5c
\
u4e3a
\
u6837
\
u4f8b
"
:
26
,
"
\
u4f7f
\
u7528ssh
\
u8bbf
\
u95eepaddlepaddle
\
u955c
\
u50cf
"
:
9
,
"
\
u4f86
"
:
1
,
"
\
u4f8b
\
u5982
"
:[
4
,
13
,
23
],
"
\
u4f8b
\
u5982
\
u6587
\
u4ef6
\
u540d
\
u662f
"
:
23
,
"
\
u4f8b
\
u5982rdma
\
u7f51
\
u5361
"
:
9
,
"
\
u4f8b
\
u5982sigmoid
\
u53d8
\
u6362
"
:
13
,
"
\
u4f9d
\
u6b21
\
u8fd4
\
u56de
\
u4e86
\
u6587
\
u4ef6
\
u4e2d
\
u7684
\
u6bcf
\
u6761
\
u6570
\
u636e
"
:
23
,
"
\
u4f9d
\
u7136
\
u4fdd
\
u6301
\
u6bcf
\
u4e2asubseq
\
u6700
\
u540e
\
u4e00
\
u4e2a
\
u5143
\
u7d20
\
u7684
\
u503c
\
u4e0d
\
u53d8
"
:
1
,
"
\
u4fbf
\
u5229
"
:
1
,
"
\
u4fbf
\
u5b9c
"
:
1
,
"
\
u4fe1
\
u606f
"
:
9
,
"
\
u505c
\
u7535
"
:
1
,
"
\
u5143
\
u7d20
"
:
0
,
"
\
u5143
\
u7d20
\
u4e4b
\
u95f4
\
u7684
\
u987a
\
u5e8f
\
u662f
\
u91cd
\
u8981
\
u7684
\
u8f93
\
u5165
\
u4fe1
\
u606f
"
:
0
,
"
\
u5168
\
u5bb6
"
:
1
,
"
\
u5173
\
u4e8edataprovider
\
u4e2dinput
"
:
1
,
"
\
u5173
\
u4e8eunbound
"
:
2
,
"
\
u5173
\
u95edcontain
"
:
9
,
"
\
u5176
\
u4e2d
"
:[
3
,
9
,
10
,
22
,
23
,
26
],
"
\
u5176
\
u4e2d
\
u6587
\
u672c
\
u8f93
\
u5165
\
u7c7b
\
u578b
\
u5b9a
\
u4e49
\
u4e3a
\
u6574
\
u6570
\
u65f6
\
u5e8f
\
u7c7b
\
u578binteg
"
:
13
,
"
\
u5176
\
u4e2d
\
u6bcf
\
u4e2a
\
u5143
\
u7d20
\
u662f
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u4e2d
\
u6bcf
\
u4e2asubseq
\
u6700
\
u540e
\
u4e00
\
u4e2a
"
:
0
,
"
\
u5176
\
u4e2d
\
u7b2c
\
u4e00
\
u884c
\
u662f
\
u5f15
\
u5165paddlepaddle
\
u7684pydataprovider2
\
u5305
"
:
23
,
"
\
u5176
\
u4e2d
\
u7b2ci
\
u4e2asubseq
\
u4e2d
\
u7684
\
u6240
\
u6709
\
u5411
\
u91cf
\
u5747
\
u4e3a
\
u8f93
\
u5165
\
u7684
\
u5355
\
u5c42
\
u5e8f
\
u5217
\
u4e2d
\
u7684
\
u7b2ci
\
u4e2a
\
u5411
\
u91cf
"
:
1
,
"
\
u5176
\
u4ed6
\
u53c2
\
u6570
\
u5747
\
u4f7f
\
u7528kei
"
:
23
,
"
\
u5176
\
u4ed6
\
u53c2
\
u6570
\
u8bf7
\
u53c2
\
u8003
"
:
13
,
"
\
u5176
\
u4ed6
\
u53c2
\
u6570
\
u90fd
\
u4f7f
\
u7528kei
"
:
23
,
"
\
u5176
\
u4f5c
\
u7528
\
u662f
\
u5c06
\
u8bad
\
u7ec3
\
u6570
\
u636e
\
u4f20
\
u5165
\
u5185
\
u5b58
\
u6216
\
u8005
\
u663e
\
u5b58
"
:
22
,
"
\
u5176
\
u5b83
\
u90e8
\
u5206
\
u548c
\
u903b
\
u8f91
\
u56de
\
u5f52
\
u7f51
\
u7edc
\
u7ed3
\
u6784
\
u4e00
\
u81f4
"
:
13
,
"
\
u5176
\
u5b83layer
\
u7684
\
u8f93
\
u51fa
"
:
2
,
"
\
u5176
\
u6570
\
u636e
\
u4f7f
\
u7528
"
:
23
,
"
\
u5176
\
u6b21
"
:
1
,
"
\
u5176
\
u7b2c
\
u4e00
\
u884c
\
u8bf4
\
u660e
\
u4e86paddle
\
u7684
\
u7248
\
u672c
"
:
21
,
"
\
u5177
"
:
23
,
"
\
u5177
\
u4f53
\
u53ef
\
u4ee5
\
u8bbe
\
u7f6e
\
u6210
\
u4ec0
\
u4e48
\
u5176
\
u4ed6
\
u683c
"
:
23
,
"
\
u5177
\
u4f53
\
u53ef
\
u53c2
\
u8003
\
u6587
\
u6863
"
:
2
,
"
\
u5177
\
u4f53
\
u6709
\
u54ea
\
u4e9b
\
u683c
\
u5f0f
"
:
23
,
"
\
u5177
\
u4f53
\
u8bf7
\
u53c2
\
u8003
\
u6ce8
\
u610f
\
u4e8b
\
u9879
\
u4e2d
\
u7684
"
:
9
,
"
\
u5177
\
u4f53dataprovider
\
u8fd8
\
u5177
\
u6709
\
u4ec0
\
u4e48
\
u529f
\
u80fd
"
:
23
,
"
\
u5177
\
u6709
\
u4e24
\
u4e2a
\
u53c2
\
u6570
"
:
23
,
"
\
u5177
\
u6709
\
u548c
\
u5bbf
\
u4e3b
\
u673a
\
u76f8
\
u8fd1
\
u7684
\
u8fd0
\
u884c
\
u6548
\
u7387
"
:
9
,
"
\
u5177
\
u6709
\
u7684
\
u5c5e
\
u6027
\
u6709
"
:
23
,
"
\
u5178
\
u578b
\
u7684
\
u8f93
\
u51fa
\
u7ed3
\
u679c
\
u4e3a
"
:
26
,
"
\
u5178
\
u578b
\
u7684
\
u9884
\
u6d4b
\
u4ee3
\
u7801
\
u5982
\
u4e0b
"
:
26
,
"
\
u5185
\
u5b58
\
u4e0d
\
u591f
\
u7528
\
u7684
\
u60c5
\
u51b5
"
:
22
,
"
\
u5185
\
u5c42
\
u662f
"
:
1
,
"
\
u5185
\
u5c42inner
"
:
1
,
"
\
u518d
\
u6307
\
u5b9a
"
:
4
,
"
\
u5199
\
u5165train
"
:
23
,
"
\
u5199
\
u5728train
"
:
22
,
"
\
u51c6
\
u5907
"
:
1
,
"
\
u51c6
\
u5907
\
u6570
\
u636e
"
:
26
,
"
\
u51fa
\
u53bb
\
u73a9
"
:
1
,
"
\
u51fa
\
u5dee
"
:
1
,
"
\
u51fa
\
u6765
"
:
1
,
"
\
u51fd
\
u6570
"
:
23
,
"
\
u51fd
\
u6570
\
u4e2d
"
:
23
,
"
\
u51fd
\
u6570
\
u4e2d
\
u4f7f
\
u7528
"
:
23
,
"
\
u51fd
\
u6570
\
u4e2d
\
u7684
"
:
23
,
"
\
u51fd
\
u6570
\
u53ea
\
u5173
\
u6ce8
\
u4e8ernn
\
u4e00
\
u4e2a
\
u65f6
\
u95f4
\
u6b65
\
u4e4b
\
u5185
\
u7684
\
u8ba1
\
u7b97
"
:
2
,
"
\
u51fd
\
u6570
\
u5fc5
\
u987b
\
u8fd4
\
u56de
\
u4e00
\
u4e2a
\
u6216
\
u591a
\
u4e2alayer
\
u7684
\
u8f93
\
u51fa
"
:
2
,
"
\
u51fd
\
u6570
\
u662f
\
u4f7f
\
u7528
"
:
23
,
"
\
u51fd
\
u6570
\
u6765
\
u4fdd
\
u8bc1
\
u517c
\
u5bb9
\
u6027
"
:
23
,
"
\
u51fd
\
u6570
\
u67e5
\
u8be2
\
u6587
\
u6863
"
:
26
,
"
\
u5206
\
u522b
\
u4e3a
"
:
1
,
"
\
u5206
\
u522b
\
u4ece
\
u8bcd
\
u8bed
\
u548c
\
u53e5
\
u5b50
\
u7ea7
\
u522b
\
u7f16
\
u7801
\
u8f93
\
u5165
\
u6570
\
u636e
"
:
2
,
"
\
u5206
\
u522b
\
u5b9a
\
u4e49
\
u5b50
\
u53e5
\
u7ea7
\
u522b
\
u548c
\
u8bcd
\
u8bed
\
u7ea7
\
u522b
\
u4e0a
\
u9700
\
u8981
\
u5b8c
\
u6210
\
u7684
\
u8fd0
\
u7b97
"
:
2
,
"
\
u5206
\
u522b
\
u662f
"
:
0
,
"
\
u5206
\
u5e03
\
u5f0f
\
u8bad
\
u7ec3
"
:
13
,
"
\
u5206
\
u6790
\
u5f97
\
u51fa
"
:
1
,
"
\
u5206
\
u7c7b
\
u6210
\
u6b63
\
u9762
\
u60c5
\
u7eea
\
u548c
"
:
23
,
"
\
u5217
\
u8868
\
u5982
\
u4e0b
"
:
23
,
"
\
u5219
\
u53ef
\
u4ee5
\
u4f7f
\
u7528
"
:
9
,
"
\
u5219
\
u53ef
\
u4ee5
\
u9009
\
u62e9
\
u4e0a
\
u8868
\
u4e2d
\
u7684avx
\
u7248
\
u672cpaddlepaddl
"
:
9
,
"
\
u5219
\
u5b57
\
u4e0e
\
u5b57
\
u4e4b
\
u95f4
\
u7528
\
u7a7a
\
u683c
\
u5206
\
u9694
"
:
13
,
"
\
u5219
\
u9700
\
u8981
\
u4f7f
\
u7528
"
:
10
,
"
\
u5219
\
u9700
\
u8981
\
u5148
\
u5c06
"
:
9
,
"
\
u5219
\
u9700
\
u8981
\
u8fdb
\
u884c
\
u4e00
\
u5b9a
\
u7684
\
u4e8c
\
u6b21
\
u5f00
\
u53d1
"
:
9
,
"
\
u521b
\
u5efa
\
u4e00
\
u4e2a
"
:
26
,
"
\
u521b
\
u5efagener
"
:
23
,
"
\
u521d
\
u59cb
\
u72b6
\
u6001
"
:
2
,
"
\
u5220
\
u9664contain
"
:
9
,
"
\
u5229
\
u7528
\
u5355
\
u8bcdid
\
u67e5
\
u627e
\
u5bf9
\
u5e94
\
u7684
\
u8be5
\
u5355
\
u8bcd
\
u7684
\
u8fde
\
u7eed
\
u8868
\
u793a
\
u5411
\
u91cf
"
:
13
,
"
\
u5229
\
u7528
\
u8fd9
\
u79cd
\
u7279
\
u6027
"
:
2
,
"
\
u5229
\
u7528
\
u903b
\
u8f91
\
u56de
\
u5f52
\
u6a21
\
u578b
\
u5bf9
\
u8be5
\
u5411
\
u91cf
\
u8fdb
\
u884c
\
u5206
\
u7c7b
"
:
13
,
"
\
u5229
\
u843d
"
:
1
,
"
\
u522b
"
:
13
,
"
\
u5237
\
u7259
"
:
1
,
"
\
u524d
\
u53f0
"
:
1
,
"
\
u5269
\
u4e0b
\
u7684pass
\
u4f1a
\
u76f4
\
u63a5
\
u4ece
\
u5185
\
u5b58
\
u91cc
"
:
23
,
"
\
u52a0
\
u4e86l2
\
u6b63
\
u5219
\
u548c
\
u68af
\
u5ea6
\
u622a
\
u65ad
"
:
13
,
"
\
u52a0
\
u8f7d
\
u6570
\
u636e
"
:
13
,
"
\
u5305
"
:
9
,
"
\
u5305
\
u548c
"
:
9
,
"
\
u5305
\
u62ec
"
:
13
,
"
\
u5305
\
u62ec
\
u7b80
\
u5355
\
u7684rnn
\
u6a21
\
u578b
"
:
13
,
"
\
u5305
\
u62ecdocker
\
u955c
\
u50cf
"
:
8
,
"
\
u5305
\
u62ecpaddle
\
u7684
\
u4e8c
\
u8fdb
\
u5236
"
:
9
,
"
\
u5305
\
u62ecpaddle
\
u8fd0
\
u884cdemo
\
u6240
\
u9700
\
u8981
\
u7684
\
u4f9d
\
u8d56
"
:
9
,
"
\
u5341
\
u4e00
"
:
1
,
"
\
u534e
\
u6da6
\
u4e07
\
u5bb6
"
:
1
,
"
\
u5355
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u7684
\
u53e5
\
u5b50
\
u662f
\
u4e00
\
u6837
\
u7684
"
:
1
,
"
\
u5355
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u7684label
\
u90fd
\
u5206
\
u522b
\
u662f0
\
u548c1
"
:
1
,
"
\
u5355
\
u5c42
"
:
2
,
"
\
u5355
\
u5c42
\
u5e8f
\
u5217
"
:[
0
,
1
],
"
\
u5355
\
u5c42
\
u5e8f
\
u5217
\
u7684
\
u6570
\
u636e
"
:
1
,
"
\
u5355
\
u5c42
\
u5e8f
\
u5217
\
u7684
\
u6bcf
\
u4e2a
\
u5143
\
u7d20
"
:
0
,
"
\
u5355
\
u5c42
\
u5e8f
\
u5217
\
u7684dataprovider
\
u5982
\
u4e0b
"
:
1
,
"
\
u5355
\
u5c42
\
u5e8f
\
u5217
\
u76f4
\
u63a5
\
u53d6
\
u4e86
\
u6700
\
u540e
\
u4e00
\
u4e2a
\
u5143
\
u7d20
"
:
1
,
"
\
u5355
\
u5c42
\
u5e8f
\
u5217
\
u7b2ci
\
u4e2a
\
u5143
\
u7d20
"
:
0
,
"
\
u5355
\
u5c42
\
u5e8f
\
u5217
\
u8fc7
\
u4e86
\
u4e00
\
u4e2amix
"
:
1
,
"
\
u5355
\
u5c42
\
u6216
\
u53cc
\
u5c42
"
:
0
,
"
\
u5355
\
u5c42rnn
"
:[
1
,
2
],
"
\
u5355
\
u5c42rnn
\
u793a
\
u4f8b
"
:
14
,
"
\
u5355
\
u6d4b
\
u4e2d
"
:
1
,
"
\
u5355
\
u8fdb
\
u5355
\
u51fa
"
:
2
,
"
\
u536b
\
u751f
"
:
1
,
"
\
u5373
"
:[
9
,
13
],
"
\
u5373
\
u4e00
\
u4e2a
\
u53e5
\
u5b50
\
u4e00
\
u4e2alabel
"
:
1
,
"
\
u5373
\
u4e00
\
u4e2a
\
u5b50
\
u53e5
\
u4e00
\
u4e2alabel
"
:
1
,
"
\
u5373
\
u4e0d
\
u5728
\
u4e4e
\
u5185
\
u5b58
\
u6682
\
u5b58
\
u591a
\
u5c11
\
u6761
\
u6570
\
u636e
"
:
23
,
"
\
u5373
\
u4e0d
\
u662f
\
u4e00
\
u6761
\
u5e8f
\
u5217
"
:
23
,
"
\
u5373
\
u4ece
\
u5355
\
u8bcd
\
u5b57
\
u7b26
\
u4e32
\
u5230
\
u5355
\
u8bcdid
\
u7684
\
u5b57
\
u5178
"
:
23
,
"
\
u5373
\
u4f1a
\
u751f
\
u6210100
\
u4e2agener
"
:
23
,
"
\
u5373
\
u4f7f
\
u5728check
\
u4e2d
\
u6570
\
u636e
\
u4e0d
\
u5408
\
u6cd5
"
:
23
,
"
\
u5373
\
u4f7f
\
u5728process
\
u91cc
\
u9762
\
u53ea
\
u4f1a
\
u6709
\
u4e00
"
:
23
,
"
\
u5373
\
u5185
\
u5c42memory
\
u7684boot
"
:
1
,
"
\
u5373
\
u521d
\
u59cb
\
u72b6
\
u6001
\
u4e3a0
"
:
2
,
"
\
u5373
\
u5305
\
u542b
\
u65f6
\
u95f4
\
u6b65
\
u4fe1
\
u606f
"
:
23
,
"
\
u5373
\
u53cc
\
u5c42rnn
\
u7684
\
u6bcf
\
u4e2a
\
u72b6
\
u6001
"
:
2
,
"
\
u5373
\
u53ef
"
:
23
,
"
\
u5373
\
u53ef
\
u4ee5
\
u4f7f
\
u7528ssh
\
u8bbf
\
u95ee
\
u5bbf
\
u4e3b
\
u673a
\
u76848022
\
u7aef
\
u53e3
"
:
9
,
"
\
u5373
\
u53ef
\
u542f
\
u52a8
\
u548c
\
u8fdb
\
u5165paddlepaddle
\
u7684contain
"
:
9
,
"
\
u5373
\
u53ef
\
u5728
\
u672c
\
u5730
\
u7f16
\
u8bd1
\
u51fapaddlepaddle
\
u7684
\
u955c
\
u50cf
"
:
3
,
"
\
u5373
\
u53ef
\
u6253
\
u5370
\
u51fapaddlepaddle
\
u7684
\
u7248
\
u672c
\
u548c
\
u6784
\
u5efa
"
:
9
,
"
\
u5373
\
u5927
\
u90e8
\
u5206
\
u503c
\
u4e3a0
"
:
23
,
"
\
u5373
\
u5982
\
u679ctrain
"
:
23
,
"
\
u5373
\
u5bf9
\
u7b2c3
\
u6b65
\
u8fdb
\
u884c
\
u66ff
\
u6362
"
:
13
,
"
\
u5373
\
u628a
\
u5355
\
u5c42rnn
\
u751f
\
u6210
\
u540e
\
u7684subseq
\
u7ed9
\
u62fc
\
u63a5
\
u6210
\
u4e00
\
u4e2a
\
u65b0
\
u7684
\
u53cc
\
u5c42seq
"
:
2
,
"
\
u5373
\
u6574
\
u4e2a
\
u53cc
\
u5c42group
\
u662f
\
u5c06
\
u524d
\
u4e00
\
u4e2a
\
u5b50
\
u53e5
\
u7684
\
u6700
\
u540e
\
u4e00
\
u4e2a
\
u5411
\
u91cf
"
:
1
,
"
\
u5373
\
u6574
\
u4e2a
\
u8f93
\
u5165
\
u5e8f
\
u5217
"
:
0
,
"
\
u5373
\
u662f
\
u4e00
\
u6761
\
u65f6
\
u95f4
\
u5e8f
\
u5217
"
:
23
,
"
\
u5373
\
u8d77
\
u5230
\
u7684
\
u4f5c
\
u7528
\
u4ec5
\
u4ec5
\
u662f
\
u628a
\
u53cc
\
u5c42seq
\
u62c6
\
u6210
\
u5355
\
u5c42
"
:
1
,
"
\
u5373input
"
:
2
,
"
\
u5373train
"
:
23
,
"
\
u5377
\
u79ef
\
u7f51
\
u7edc
\
u662f
\
u4e00
\
u79cd
\
u7279
\
u6b8a
\
u7684
\
u4ece
\
u8bcd
\
u5411
\
u91cf
\
u8868
\
u793a
\
u5230
\
u53e5
\
u5b50
\
u8868
\
u793a
\
u7684
\
u65b9
\
u6cd5
"
:
13
,
"
\
u53bb
\
u8fc7
"
:
1
,
"
\
u53c2
\
u6570
"
:
3
,
"
\
u53c2
\
u6570
\
u6570
\
u91cf
"
:
13
,
"
\
u53c2
\
u8003
"
:
22
,
"
\
u53c2
\
u89c1
"
:[
6
,
7
],
"
\
u53c2
\
u89c1pydataprovider2
"
:
1
,
"
\
u53c8
"
:
1
,
"
\
u53c8
\
u662f
\
u4e00
\
u4e2a
\
u5355
\
u5c42
\
u7684
\
u5e8f
\
u5217
"
:
0
,
"
\
u53cc
\
u5c42
"
:
2
,
"
\
u53cc
\
u5c42
\
u5e8f
\
u5217
"
:[
0
,
1
],
"
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u5728
\
u540c
\
u6837
\
u7684mix
"
:
1
,
"
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u662f
\
u4e00
\
u4e2a
\
u5d4c
\
u5957
\
u7684
\
u5e8f
\
u5217
"
:
0
,
"
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u662fpaddlepaddle
\
u652f
\
u6301
\
u7684
\
u4e00
\
u79cd
\
u975e
\
u5e38
\
u7075
\
u6d3b
\
u7684
\
u6570
\
u636e
\
u7ec4
\
u7ec7
\
u65b9
\
u5f0f
"
:
2
,
"
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u6bcf
\
u4e2asubseq
\
u4e2d
\
u6bcf
\
u4e2a
\
u5143
\
u7d20
"
:
0
,
"
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u7684
\
u6570
\
u636e
"
:
1
,
"
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u7684dataprovider
\
u5982
\
u4e0b
"
:
1
,
"
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u7ecf
\
u8fc7
\
u8fd0
\
u7b97
\
u53d8
\
u6210
\
u4e00
\
u4e2a0
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u9996
\
u5148
"
:
1
,
"
\
u53cc
\
u5c42
\
u6216
\
u8005
\
u5355
\
u5c42
"
:
0
,
"
\
u53cc
\
u5c42rnn
"
:[
1
,
2
],
"
\
u53cc
\
u5c42rnn
\
u793a
\
u4f8b
"
:
14
,
"
\
u53cc
\
u8fdb
\
u5355
\
u51fa
"
:
2
,
"
\
u53d1
\
u884c
\
u7248
"
:
10
,
"
\
u53d6
\
u4e86
\
u6bcf
\
u4e2asubseq
\
u7684
\
u5e73
\
u5747
\
u503c
"
:
1
,
"
\
u53d6
\
u4e86
\
u6bcf
\
u4e2asubseq
\
u7684
\
u6700
\
u540e
\
u4e00
\
u4e2a
\
u5143
\
u7d20
"
:
1
,
"
\
u53d6
\
u51b3
\
u4e8e
\
u662f
\
u5426
\
u5bfb
\
u627e
\
u5230gflags
"
:
4
,
"
\
u53d6
\
u51b3
\
u4e8e
\
u662f
\
u5426
\
u5bfb
\
u627e
\
u5230glog
"
:
4
,
"
\
u53d6
\
u51b3
\
u4e8e
\
u662f
\
u5426
\
u5bfb
\
u627e
\
u5230gtest
"
:
4
,
"
\
u53d6
\
u51b3
\
u4e8e
\
u662f
\
u5426
\
u627e
\
u5230swig
"
:
4
,
"
\
u53d8
\
u4e3a3
\
u4e2a
\
u65b0
\
u7684
\
u5b50
\
u6b65
\
u9aa4
"
:
13
,
"
\
u53d8
\
u4f1a
\
u62a5
\
u8fd9
\
u4e2a
\
u9519
\
u8bef
"
:
10
,
"
\
u53d8
\
u91cf
"
:
23
,
"
\
u53e3
\
u5934
"
:
1
,
"
\
u53e5
\
u5b50
\
u8868
\
u793a
\
u7684
\
u8ba1
\
u7b97
\
u66f4
\
u65b0
\
u4e3a2
\
u6b65
"
:
13
,
"
\
u53ea
\
u4f5c
\
u4e3aread
"
:
2
,
"
\
u53ea
\
u5305
\
u62ecpaddle
\
u7684
\
u4e8c
\
u8fdb
\
u5236
"
:
9
,
"
\
u53ea
\
u662f
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u5c06
\
u5176
\
u53c8
\
u505a
\
u4e86
\
u5b50
\
u5e8f
\
u5217
\
u5212
\
u5206
"
:
1
,
"
\
u53ea
\
u662f
\
u5c06
\
u53e5
\
u5b50
\
u5229
\
u7528
\
u8fde
\
u7eed
\
u5411
\
u91cf
\
u8868
\
u793a
\
u66ff
\
u6362
\
u7a00
\
u758f
"
:
13
,
"
\
u53ea
\
u662f
\
u8bf4
\
u660e
\
u6570
\
u636e
\
u7684
\
u987a
\
u5e8f
\
u662f
\
u91cd
\
u8981
\
u7684
"
:
23
,
"
\
u53ea
\
u6709
"
:
1
,
"
\
u53ea
\
u7528
\
u4e8e
\
u5728
\
u5e8f
\
u5217
\
u751f
\
u6210
\
u4efb
\
u52a1
\
u4e2d
\
u6307
\
u5b9a
\
u8f93
\
u5165
\
u6570
\
u636e
"
:
2
,
"
\
u53ea
\
u80fd
\
u591f
\
u8fd4
\
u56delist
\
u6216
\
u8005tupl
"
:
23
,
"
\
u53ea
\
u80fd
\
u901a
\
u8fc7
"
:
1
,
"
\
u53ea
\
u8bfbmemory
\
u8f93
\
u5165
"
:
2
,
"
\
u53ea
\
u9700
\
u8981
\
u4f7f
\
u7528
\
u4e00
\
u884c
\
u4ee3
\
u7801
\
u5373
\
u53ef
\
u4ee5
\
u8bbe
\
u7f6e
\
u8bad
\
u7ec3
\
u5f15
\
u7528
\
u8fd9
\
u4e2adataprovid
"
:
23
,
"
\
u53ea
\
u9700
\
u8981
\
u5728
"
:
23
,
"
\
u53ea
\
u9700
\
u8981
\
u77e5
\
u9053
\
u8fd9
\
u53ea
\
u662f
\
u4e00
\
u4e2a
\
u6807
\
u8bb0
\
u5c5e
\
u6027
\
u7684
\
u65b9
\
u6cd5
\
u5c31
\
u53ef
\
u4ee5
\
u4e86
"
:
23
,
"
\
u53ef
\
u4ee5
"
:
1
,
"
\
u53ef
\
u4ee5
\
u4e3a
\
u4e00
\
u4e2a
\
u6570
\
u636e
\
u6587
\
u4ef6
\
u8fd4
\
u56de
\
u591a
\
u6761
\
u8bad
\
u7ec3
\
u6837
\
u672c
"
:
23
,
"
\
u53ef
\
u4ee5
\
u4f20
\
u516510k
"
:
3
,
"
\
u53ef
\
u4ee5
\
u4f7f
\
u7528
"
:
3
,
"
\
u53ef
\
u4ee5
\
u4f7f
\
u7528
\
u547d
\
u4ee4
"
:
10
,
"
\
u53ef
\
u4ee5
\
u4f7f
\
u7528
\
u8bad
\
u7ec3
\
u597d
\
u7684
\
u6a21
\
u578b
\
u8bc4
\
u4f30
\
u5e26
\
u6709label
\
u7684
\
u9a8c
\
u8bc1
\
u96c6
"
:
13
,
"
\
u53ef
\
u4ee5
\
u4f7f
\
u7528graphviz
\
u5bf9paddlepaddle
\
u7684
\
u7f51
\
u7edc
\
u6a21
\
u578b
\
u8fdb
\
u884c
\
u7ed8
\
u5236
"
:
16
,
"
\
u53ef
\
u4ee5
\
u4f7f
\
u7528paddl
"
:
16
,
"
\
u53ef
\
u4ee5
\
u4f7f
\
u7528python
\
u7684
"
:
26
,
"
\
u53ef
\
u4ee5
\
u53c2
\
u8003
"
:
13
,
"
\
u53ef
\
u4ee5
\
u5728
\
u4e00
\
u4e2a
\
u51fd
\
u6570
\
u91cc
"
:
23
,
"
\
u53ef
\
u4ee5
\
u5728cmake
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u8bbe
\
u7f6e
"
:
4
,
"
\
u53ef
\
u4ee5
\
u5c06
\
u4e00
\
u6761
\
u6570
\
u636e
\
u8bbe
\
u7f6e
\
u6210
\
u591a
\
u4e2abatch
"
:
23
,
"
\
u53ef
\
u4ee5
\
u5c06memory
\
u7406
\
u89e3
\
u4e3a
\
u4e00
\
u4e2a
\
u65f6
\
u5ef6
\
u64cd
\
u4f5c
"
:
2
,
"
\
u53ef
\
u4ee5
\
u5c06paddlepaddle
\
u7684
\
u6a21
\
u578b
\
u548c
\
u914d
\
u7f6e
\
u6253
\
u5305
\
u6210
\
u4e00
\
u4e2a
\
u6587
\
u4ef6
"
:
16
,
"
\
u53ef
\
u4ee5
\
u5c06paddlepaddle
\
u7684
\
u8bad
\
u7ec3
\
u6a21
\
u578b
\
u4ee5proto
"
:
16
,
"
\
u53ef
\
u4ee5
\
u65b9
\
u4fbf
\
u5d4c
\
u5165
\
u5f0f
\
u5de5
\
u4f5c
"
:
4
,
"
\
u53ef
\
u4ee5
\
u662f
\
u4e00
\
u4e2a
\
u5355
\
u5c42
\
u5e8f
\
u5217
"
:
2
,
"
\
u53ef
\
u4ee5
\
u662f
\
u4e00
\
u4e2a
\
u975e
\
u5e8f
\
u5217
"
:
2
,
"
\
u53ef
\
u4ee5
\
u663e
\
u793a
\
u5730
\
u6307
\
u5b9a
\
u4e00
\
u4e2alayer
\
u7684
\
u8f93
\
u51fa
\
u7528
\
u4e8e
\
u521d
\
u59cb
\
u5316memori
"
:
2
,
"
\
u53ef
\
u4ee5
\
u6709
\
u4ee5
\
u4e0b
\
u4e24
\
u79cd
"
:
2
,
"
\
u53ef
\
u4ee5
\
u6839
\
u636e
\
u4e0d
\
u540c
\
u7684
\
u6570
\
u636e
\
u914d
\
u7f6e
\
u4e0d
\
u540c
\
u7684
\
u8f93
\
u5165
\
u7c7b
\
u578b
"
:
23
,
"
\
u53ef
\
u4ee5
\
u770b
\
u4f5c
\
u662f
\
u4e00
\
u4e2a
\
u975e
\
u5e8f
\
u5217
\
u8f93
\
u5165
"
:
0
,
"
\
u53ef
\
u4ee5
\
u8fd4
\
u56de
\
u4e00
\
u4e2adict
"
:
23
,
"
\
u53ef
\
u4ee5
\
u901a
\
u8fc7show
"
:
13
,
"
\
u53ef
\
u7528
\
u5728
\
u6d4b
\
u8bd5
\
u6216
\
u8bad
\
u7ec3
\
u65f6
\
u6307
\
u5b9a
\
u521d
\
u59cb
\
u5316
\
u6a21
\
u578b
"
:
13
,
"
\
u53ef
\
u80fd
\
u7684
\
u5185
\
u5b58
\
u6cc4
\
u9732
\
u95ee
\
u9898
"
:
22
,
"
\
u53ef
\
u80fd
\
u7684
\
u8f93
\
u51fa
\
u4e3a
"
:
10
,
"
\
u53ef
\
u9009
"
:
23
,
"
\
u5403
"
:
1
,
"
\
u5403
\
u996d
"
:
1
,
"
\
u5404
\
u65b9
\
u9762
"
:
1
,
"
\
u5404
\
u79cd
\
u53c2
\
u6570
\
u548c
\
u7ef4
\
u62a4
"
:
3
,
"
\
u5408
"
:
1
,
"
\
u5408
\
u7406
"
:
1
,
"
\
u540c
\
u65f6
"
:[
3
,
4
,
23
],
"
\
u540c
\
u65f6
\
u4e5f
\
u80fd
\
u591f
\
u5f15
\
u5165
\
u66f4
\
u52a0
\
u590d
\
u6742
\
u7684
\
u8bb0
\
u5fc6
\
u673a
\
u5236
"
:
2
,
"
\
u540c
\
u65f6
\
u4f1a
\
u8ba1
\
u7b97
\
u5206
\
u7c7b
\
u51c6
\
u786e
\
u7387
"
:
13
,
"
\
u540c
\
u65f6
\
u6b22
\
u8fce
\
u8d21
\
u732e
\
u66f4
\
u591a
\
u7684
\
u5b89
\
u88c5
\
u5305
"
:
8
,
"
\
u540c
\
u6837
\
u53ef
\
u4ee5
\
u6269
\
u5c55
\
u5230
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u7684
\
u5904
\
u7406
\
u4e0a
"
:
2
,
"
\
u540d
\
u79f0
"
:
13
,
"
\
u540e
\
u9762
\
u8ddf
\
u7740
\
u4e00
\
u7cfb
\
u5217
\
u7f16
\
u8bd1
\
u53c2
\
u6570
"
:
21
,
"
\
u5411
\
u91cf
\
u8868
\
u793a
"
:
13
,
"
\
u5426
"
:
4
,
"
\
u5426
\
u5219
"
:
22
,
"
\
u5426
\
u5219
\
u5728
\
u7b2c0
\
u4e2a
\
u65f6
\
u95f4
\
u6b65
\
u65f6
"
:
1
,
"
\
u5426
\
u5219
\
u9700
\
u8981
\
u9009
\
u62e9
\
u975eavx
\
u7684paddlepaddl
"
:
9
,
"
\
u5440
"
:
1
,
"
\
u5468
\
u56f4
"
:
1
,
"
\
u547d
\
u4ee4
"
:
3
,
"
\
u547d
\
u4ee4
\
u4e3a
"
:
9
,
"
\
u547d
\
u4ee4
\
u5373
\
u53ef
\
u5b8c
\
u6210
\
u5b89
\
u88c5
"
:
10
,
"
\
u547d
\
u4ee4
\
u6307
\
u5b9a
\
u7684
\
u53c2
\
u6570
\
u4f1a
\
u4f20
\
u5165
\
u7f51
\
u7edc
\
u914d
\
u7f6e
\
u4e2d
"
:
13
,
"
\
u547d
\
u4ee4
\
u8fd0
\
u884c
\
u955c
\
u50cf
"
:
9
,
"
\
u547d
\
u4ee4
\
u9884
\
u5148
\
u4e0b
\
u8f7d
\
u955c
\
u50cf
"
:
9
,
"
\
u548c
\
u4e00
\
u4e2a
\
u5df2
\
u7ecf
\
u5206
\
u8bcd
\
u540e
\
u7684
\
u53e5
\
u5b50
"
:
1
,
"
\
u548c
\
u4e09
\
u79cd
\
u5e8f
\
u5217
\
u6a21
\
u5f0f
"
:
23
,
"
\
u548c
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u542b
\
u6709subseq
"
:
0
,
"
\
u548c
\
u53cc
\
u5c42rnn
"
:
1
,
"
\
u548c
\
u5dee
\
u8bc4
"
:
13
,
"
\
u548c
\
u5e8f
\
u5217
\
u4e2d
\
u542b
\
u6709
\
u5143
\
u7d20
\
u7684
\
u6570
\
u76ee
\
u540c
"
:
0
,
"
\
u548c
\
u6587
\
u672c
\
u4fe1
\
u606f
\
u7528tab
\
u95f4
\
u9694
"
:
13
,
"
\
u548c
\
u6d4b
\
u8bd5
\
u6587
\
u4ef6
\
u5217
\
u8868
"
:
22
,
"
\
u548c
\
u7528
\
u6237
\
u4f20
\
u5165
\
u7684
\
u53c2
\
u6570
"
:
23
,
"
\
u548c
\
u90e8
\
u5206layer
"
:
2
,
"
\
u548c
\
u9884
\
u5904
\
u7406
\
u811a
\
u672c
"
:
13
,
"
\
u548cavgpool
"
:
0
,
"
\
u548ccudnn
"
:
10
,
"
\
u548cinitalizer
\
u91cc
\
u5b9a
\
u4e49
\
u987a
\
u5e8f
\
u4e00
\
u81f4
"
:
13
,
"
\
u54c1
\
u8d28
"
:
1
,
"
\
u5546
\
u52a1
"
:
1
,
"
\
u554a
"
:
1
,
"
\
u5668
"
:
13
,
"
\
u56db
\
u4e2a
\
u7248
\
u672c
"
:
10
,
"
\
u56db
\
u79cd
\
u6570
\
u636e
\
u7c7b
\
u578b
\
u662f
"
:
23
,
"
\
u56e0
\
u6b64
"
:
2
,
"
\
u56e0
\
u6b642
\
u4e2abatch
\
u5c31
\
u53ef
\
u4ee5
\
u5b8c
\
u62101
\
u4e2apass
"
:
1
,
"
\
u56e0
\
u6b64
\
u4e0a
\
u8ff0
\
u4e09
\
u4e2alayer
\
u7684
\
u524d
\
u5411
\
u4f1a
\
u62a5
\
u51fa
"
:
1
,
"
\
u56e0
\
u6b64
\
u4e24
\
u4e2a
\
u914d
\
u7f6e
\
u5728
\
u8fd9
\
u4e24
\
u5c42
\
u4e0a
\
u7684
\
u8f93
\
u51fa
\
u662f
\
u4e00
\
u6837
\
u7684
"
:
1
,
"
\
u56e0
\
u6b64
\
u5355
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u7684
\
u8f93
\
u51fa
\
u662f
\
u4e00
\
u6837
\
u65f3
"
:
1
,
"
\
u56e0
\
u6b64
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u7684
\
u914d
\
u7f6e
\
u4e2d
"
:
1
,
"
\
u56e0
\
u6b64
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u8fc7
\
u5b8clstmemory
\
u7684
\
u8f93
\
u51fa
\
u548c
\
u5355
\
u5c42
\
u7684
\
u4e00
\
u6837
"
:
1
,
"
\
u56e0
\
u6b64
\
u5f53
\
u5916
\
u5c42
\
u6709i
"
:
1
,
"
\
u56fe
\
u50cf
\
u5206
\
u7c7b
"
:
12
,
"
\
u5728
"
:[
0
,
1
,
4
,
10
,
23
],
"
\
u5728
\
u58f0
\
u660edataprovider
\
u7684
\
u65f6
\
u5019
\
u4f20
\
u5165
\
u4e86dictionary
\
u4f5c
\
u4e3a
\
u53c2
\
u6570
"
:
23
,
"
\
u5728
\
u5b8c
\
u6210
\
u4e86
\
u6570
\
u636e
\
u548c
\
u7f51
\
u7edc
\
u7ed3
\
u6784
\
u642d
\
u5efa
\
u4e4b
\
u540e
"
:
13
,
"
\
u5728
\
u5e8f
\
u5217
\
u751f
\
u6210
\
u4efb
\
u52a1
\
u4e2d
"
:
2
,
"
\
u5728
\
u672c
\
u95ee
\
u9898
\
u4e2d
"
:
13
,
"
\
u5728
\
u6a21
\
u578b
\
u914d
\
u7f6e
\
u4e2d
\
u5229
\
u7528
"
:
13
,
"
\
u5728
\
u6b64
\
u4e3a
\
u65b9
\
u4fbf
\
u5bf9
\
u6bd4
\
u4e0d
\
u540c
\
u7f51
\
u7edc
\
u7ed3
\
u6784
"
:
13
,
"
\
u5728
\
u6bcf
\
u4e2a
\
u7ef4
\
u5ea6
\
u4e0a
\
u53d6
\
u51fa
\
u5728
\
u8be5
\
u53e5
\
u8bdd
\
u65b0
\
u7684
\
u5411
\
u91cf
\
u96c6
\
u5408
\
u4e0a
\
u8be5
\
u7ef4
\
u5ea6
\
u7684
\
u6700
\
u5927
\
u503c
\
u4f5c
\
u4e3a
\
u6700
\
u540e
\
u7684
\
u53e5
\
u5b50
\
u8868
\
u793a
\
u5411
\
u91cf
"
:
13
,
"
\
u5728
\
u7a0b
\
u5e8f
\
u5f00
\
u59cb
\
u9636
\
u6bb5
"
:
26
,
"
\
u5728
\
u81ea
\
u7136
\
u8bed
\
u8a00
\
u5904
\
u7406
\
u4efb
\
u52a1
\
u4e2d
"
:
0
,
"
\
u5728
\
u8bad
\
u7ec3
\
u8fc7
\
u7a0b
\
u4e2d
\
u8fdb
\
u884c
\
u6d4b
\
u8bd5
"
:
22
,
"
\
u5728
\
u8bad
\
u7ec3
\
u914d
\
u7f6e
\
u91cc
"
:
23
,
"
\
u5728
\
u8f93
\
u51fa
\
u7684
\
u8fc7
\
u7a0b
\
u4e2d
"
:
2
,
"
\
u5728
\
u8fd9
\
u4e2a
\
u51fd
\
u6570
\
u4e2d
"
:
23
,
"
\
u5728
\
u8fd9
\
u79cd
\
u7ed3
\
u6784
\
u4e2d
"
:
2
,
"
\
u5728
\
u8fd9
\
u91cc
"
:
2
,
"
\
u5728
\
u914d
\
u7f6e
\
u4e2d
\
u8bfb
\
u53d6
\
u4e86
\
u5b57
\
u5178
"
:
23
,
"
\
u5728cmake
\
u914d
\
u7f6e
\
u65f6
\
u53ef
\
u4ee5
\
u4f7f
\
u7528
"
:
4
,
"
\
u5728paddlepaddle
\
u4e2d
"
:
2
,
"
\
u5728pydataprovider
\
u4e2d
"
:
23
,
"
\
u5728python
\
u73af
\
u5883
\
u4e0b
\
u9884
\
u6d4b
\
u7ed3
\
u679c
"
:
26
,
"
\
u5728step
\
u51fd
\
u6570
\
u4e2d
\
u5b9a
\
u4e49
"
:
2
,
"
\
u5728step
\
u51fd
\
u6570
\
u4e2d
\
u5b9a
\
u4e49memori
"
:
2
,
"
\
u5730
\
u6bb5
"
:
1
,
"
\
u5730
\
u7406
\
u4f4d
\
u7f6e
"
:
1
,
"
\
u5730
\
u94c1
\
u7ad9
"
:
1
,
"
\
u57fa
\
u4e8e
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u8f93
\
u5165
"
:
2
,
"
\
u57fa
\
u672c
\
u4e0a
\
u4e0d
\
u80fd
\
u6574
\
u4f53
\
u4fee
\
u6b63
"
:
23
,
"
\
u57fa
\
u672c
\
u7684
\
u5904
\
u7406
\
u903b
\
u8f91
\
u4e5f
\
u548cmnist
\
u903b
\
u8f91
\
u4e00
\
u81f4
"
:
23
,
"
\
u57fa
\
u672c
\
u7684pydataprovider
\
u4f7f
\
u7528
\
u4ecb
\
u7ecd
\
u5b8c
\
u6bd5
\
u4e86
"
:
23
,
"
\
u5904
\
u7406
\
u7684
\
u8f93
\
u5165
\
u5e8f
\
u5217
\
u4e3b
\
u8981
\
u5206
\
u4e3a
\
u4ee5
\
u4e0b
\
u4e09
\
u79cd
\
u7c7b
\
u578b
"
:
2
,
"
\
u5916
\
u5c42memory
\
u5fc5
\
u987b
\
u6709boot
"
:
1
,
"
\
u5916
\
u5c42memory
\
u662f
\
u4e00
\
u4e2a
\
u5143
\
u7d20
"
:
1
,
"
\
u5916
\
u5c42memory
\
u662f
\
u5355
\
u5c42
\
u5e8f
\
u5217
"
:
1
,
"
\
u5916
\
u5c42outer
"
:
1
,
"
\
u591a
\
u4e2ainput
\
u4ee5list
\
u65b9
\
u5f0f
\
u8f93
\
u5165
"
:
13
,
"
\
u591a
\
u53e5
\
u8bdd
\
u8fdb
\
u4e00
\
u6b65
\
u6784
\
u6210
\
u4e86
\
u6bb5
\
u843d
"
:
2
,
"
\
u591a
\
u6b21
\
u8fd4
\
u56de
\
u53d8
\
u91cf
"
:
23
,
"
\
u591a
\
u7ebf
\
u7a0b
\
u4e0b
\
u8f7d
\
u8fc7
\
u7a0b
\
u4e2d
"
:
3
,
"
\
u591a
\
u7ebf
\
u7a0b
\
u6570
\
u636e
\
u8bfb
\
u53d6
"
:
23
,
"
\
u591a
\
u8f6e
\
u5bf9
\
u8bdd
\
u7b49
\
u66f4
\
u4e3a
\
u590d
\
u6742
\
u7684
\
u8bed
\
u8a00
\
u6570
\
u636e
"
:
2
,
"
\
u5927
"
:
23
,
"
\
u5929
"
:
1
,
"
\
u5929
\
u4e00
\
u5e7f
\
u573a
"
:
1
,
"
\
u5929
\
u4e00
\
u9601
"
:
1
,
"
\
u597d
"
:
1
,
"
\
u597d
\
u5403
"
:
1
,
"
\
u597d
\
u8bc4
"
:
13
,
"
\
u5982
\
u4e0b
"
:
1
,
"
\
u5982
\
u679c
"
:[
10
,
23
],
"
\
u5982
\
u679c
\
u4e0d
\
u4e86
\
u89e3
"
:
23
,
"
\
u5982
\
u679c
\
u4e0d
\
u4f7f
\
u7528
\
u5219
\
u4f1a
\
u4f7f
\
u7528
\
u4e00
\
u4e2a
\
u7b80
\
u5316
\
u7248
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
\
u89e3
\
u6790
"
:
4
,
"
\
u5982
\
u679c
\
u4e0d
\
u4f7f
\
u7528
\
u5219
\
u4f1a
\
u4f7f
\
u7528
\
u4e00
\
u4e2a
\
u7b80
\
u5316
\
u7248
\
u7684
\
u65e5
\
u5fd7
\
u5b9e
\
u73b0
"
:
4
,
"
\
u5982
\
u679c
\
u4e0d
\
u5207
\
u8bcd
"
:
13
,
"
\
u5982
\
u679c
\
u4e0d
\
u8bbe
\
u7f6e
\
u7684
\
u8bdd
"
:
23
,
"
\
u5982
\
u679c
\
u4f7f
\
u7528gpu
\
u7248
\
u672c
\
u7684paddlepaddl
"
:
10
,
"
\
u5982
\
u679c
\
u5185
\
u5c42memory
\
u60f3
"
:
1
,
"
\
u5982
\
u679c
\
u5728
"
:
10
,
"
\
u5982
\
u679c
\
u5728
\
u7b2c
\
u4e00
\
u6b21cmake
\
u4e4b
\
u540e
\
u60f3
\
u8981
\
u91cd
\
u65b0
\
u8bbe
"
:
4
,
"
\
u5982
\
u679c
\
u5728
\
u8bad
\
u7ec3
\
u65f6
"
:
23
,
"
\
u5982
\
u679c
\
u5c0f
\
u4e8e
\
u8fd9
\
u4e2a
\
u4e0b
\
u8f7d
\
u901f
\
u5ea6
"
:
3
,
"
\
u5982
\
u679c
\
u60a8
\
u4f7f
\
u7528
"
:
9
,
"
\
u5982
\
u679c
\
u60f3
\
u8981
\
u5728
\
u5916
\
u90e8
\
u673a
\
u5668
\
u8bbf
\
u95ee
\
u8fd9
\
u4e2acontain
"
:
9
,
"
\
u5982
\
u679c
\
u662ffalse
\
u7684
\
u8bdd
"
:
23
,
"
\
u5982
\
u679c
\
u662ftrue
\
u7684
\
u8bdd
"
:
23
,
"
\
u5982
\
u679c
\
u6709
\
u591a
\
u4e2a
\
u8f93
\
u5165
"
:
2
,
"
\
u5982
\
u679c
\
u6709
\
u591a
\
u4e2a
\
u8f93
\
u5165
\
u5e8f
\
u5217
"
:
2
,
"
\
u5982
\
u679c
\
u6709
\
u66f4
\
u590d
\
u6742
\
u7684
\
u4f7f
\
u7528
"
:
22
,
"
\
u5982
\
u679c
\
u6ca1
\
u6709
\
u5b9a
\
u4e49memori
"
:
2
,
"
\
u5982
\
u679c
\
u7528
\
u6237
\
u4e0d
\
u6307
\
u5b9a
\
u8fd4
\
u56de
\
u6570
\
u636e
\
u7684
\
u5bf9
\
u5e94
\
u5173
\
u7cfb
"
:
23
,
"
\
u5982
\
u679c
\
u8bbe
\
u7f6e
\
u6210true
\
u7684
\
u8bdd
"
:
23
,
"
\
u5982
\
u679c
\
u8f93
\
u51fa
"
:
9
,
"
\
u5982
\
u679c
\
u8fd0
\
u884cgpu
\
u7248
\
u672c
\
u7684paddlepaddl
"
:
9
,
"
\
u5982
\
u679ctest
"
:
22
,
"
\
u5b50
"
:
1
,
"
\
u5b50
\
u53e5
"
:
2
,
"
\
u5b50
\
u53e5
\
u7684
\
u5355
\
u8bcd
\
u6570
\
u548c
\
u6307
\
u5b9a
\
u7684
\
u4e00
\
u4e2a
\
u8f93
\
u5165
\
u5e8f
\
u5217
\
u4e00
\
u81f4
"
:
2
,
"
\
u5b81
\
u6ce2
"
:
1
,
"
\
u5b83
\
u5305
\
u542b
\
u7684
\
u53c2
\
u6570
\
u6709
"
:
23
,
"
\
u5b83
\
u7684
"
:
1
,
"
\
u5b83
\
u7684
\
u6bcf
\
u4e00
\
u4e2a
\
u5143
\
u7d20
"
:
0
,
"
\
u5b89
\
u6392
"
:
1
,
"
\
u5b89
\
u88c5
\
u5305
\
u5728ubuntu
"
:
10
,
"
\
u5b89
\
u88c5
\
u5305
\
u7684
\
u4e0b
\
u8f7d
\
u5730
\
u5740
\
u662f
"
:
10
,
"
\
u5b89
\
u88c5
\
u597d
\
u7684paddlepaddle
\
u811a
\
u672c
\
u5305
\
u62ec
\
u591a
\
u6761
\
u547d
\
u4ee4
"
:
16
,
"
\
u5b89
\
u88c5
\
u5b8c
\
u6210
\
u540e
"
:
10
,
"
\
u5b89
\
u88c5
\
u5b8c
\
u6210
\
u7684paddlepaddle
\
u4e3b
\
u4f53
\
u5305
\
u62ec
\
u4e09
\
u4e2a
\
u90e8
\
u5206
"
:
9
,
"
\
u5b89
\
u88c5
\
u5b8c
\
u6210paddlepaddle
\
u540e
"
:
10
,
"
\
u5b89
\
u88c5
\
u6559
\
u7a0b
"
:
13
,
"
\
u5b89
\
u88c5
\
u65b9
\
u6cd5
\
u8bf7
\
u53c2
\
u8003
"
:
9
,
"
\
u5b89
\
u88c5
\
u7f16
\
u8bd1
\
u4f9d
\
u8d56
"
:
6
,
"
\
u5b89
\
u88c5
\
u7f16
\
u8bd1paddlepaddle
\
u9700
\
u8981
\
u7684
\
u4f9d
\
u8d56
"
:
5
,
"
\
u5b89
\
u88c5docker
\
u9700
\
u8981
\
u60a8
\
u7684
\
u673a
\
u5668
"
:
9
,
"
\
u5b89
\
u88c5paddlepaddl
"
:
13
,
"
\
u5b89
\
u88c5paddlepaddle
\
u7684docker
\
u955c
\
u50cf
"
:
8
,
"
\
u5b89
\
u9759
"
:
1
,
"
\
u5b8c
\
u6210
\
u4efb
\
u610f
\
u7684
\
u8fd0
\
u7b97
\
u903b
\
u8f91
"
:
2
,
"
\
u5b8c
\
u6210
\
u591a
\
u673a
\
u8bad
\
u7ec3
"
:
16
,
"
\
u5b8c
\
u6210
\
u76f8
\
u5e94
\
u7684
\
u8ba1
\
u7b97
"
:
0
,
"
\
u5b8c
\
u6574
\
u4ee3
\
u7801
\
u89c1
"
:
26
,
"
\
u5b9a
\
u4e49
\
u4e00
\
u4e2a
\
u65f6
\
u95f4
\
u6b65
\
u4e4b
\
u5185rnn
\
u5355
\
u5143
\
u5b8c
\
u6210
\
u7684
\
u8ba1
\
u7b97
"
:
2
,
"
\
u5b9a
\
u4e49
\
u4e86
\
u4e00
\
u4e2a
\
u53ea
\
u8bfb
\
u7684memori
"
:
2
,
"
\
u5b9a
\
u4e49
\
u5728
\
u5916
\
u5c42
"
:
2
,
"
\
u5b9a
\
u4e49
\
u6587
\
u672c
\
u4fe1
\
u606f
"
:
13
,
"
\
u5b9e
\
u73b0
\
u4e86
\
u6253
\
u5f00
\
u6587
\
u672c
\
u6587
\
u4ef6
"
:
23
,
"
\
u5b9e
\
u73b0
\
u8bcd
\
u8bed
\
u548c
\
u53e5
\
u5b50
\
u4e24
\
u4e2a
\
u7ea7
\
u522b
\
u7684
\
u53cc
\
u5c42rnn
\
u7ed3
\
u6784
"
:
2
,
"
\
u5b9e
\
u9645
\
u4e2d
\
u5e76
\
u4e0d
\
u9700
\
u8981
"
:
1
,
"
\
u5ba2
\
u6237
"
:
1
,
"
\
u5bb6
"
:
1
,
"
\
u5bc6
\
u7801
\
u4e5f
\
u662froot
"
:
9
,
"
\
u5bf9
"
:
1
,
"
\
u5bf9
\
u4e8e
\
u7528
\
u6237
\
u6765
\
u8bf4
"
:
23
,
"
\
u5bf9
\
u4e8e
\
u7ed9
\
u5b9a
\
u7684
\
u4e00
\
u6761
\
u6587
\
u672c
"
:
13
,
"
\
u5bf9
\
u4e8ecuda
\
u7684toolkit
\
u6709
\
u65ad
\
u70b9
\
u7eed
\
u4f20
\
u548c
\
u4f20
\
u8f93
\
u901f
\
u5ea6
\
u8fc7
\
u5c0f
\
u91cd
\
u542f
\
u4e0b
\
u8f7d
\
u7684
"
:
3
,
"
\
u5bf9
\
u4e8emnist
\
u800c
\
u8a00
"
:
23
,
"
\
u5bf9
\
u5e94
\
u4e00
\
u4e2a
\
u5b50
\
u53e5
"
:
2
,
"
\
u5bf9
\
u5e94
\
u4e00
\
u4e2a
\
u8bcd
"
:
2
,
"
\
u5bf9
\
u8be5
\
u8868
\
u793a
\
u8fdb
\
u884c
\
u975e
\
u7ebf
\
u6027
\
u53d8
\
u6362
"
:
13
,
"
\
u5bf9
\
u8c61
"
:
23
,
"
\
u5bf9
\
u8c61convert
"
:
26
,
"
\
u5bf9
\
u8f93
\
u51fa
\
u7684
\
u5408
\
u5e76
"
:
2
,
"
\
u5bf9
\
u9762
"
:
1
,
"
\
u5c06
\
u4f1a
\
u6d4b
\
u8bd5
\
u914d
\
u7f6e
\
u6587
\
u4ef6
\
u4e2dtest
"
:
13
,
"
\
u5c06
\
u5176
\
u6269
\
u5c55
\
u6210
\
u4e00
\
u4e2a
\
u65b0
\
u7684
\
u53cc
\
u5c42
\
u5e8f
\
u5217
"
:
1
,
"
\
u5c06
\
u5176
\
u62fc
\
u63a5
\
u6210
\
u4e00
\
u4e2a
\
u65b0
\
u7684
\
u5355
\
u5c42
\
u5e8f
\
u5217
"
:
1
,
"
\
u5c06
\
u542b
\
u6709
\
u5b50
\
u53e5
"
:
2
,
"
\
u5c06
\
u542b
\
u6709
\
u8bcd
\
u8bed
\
u7684
\
u53e5
\
u5b50
\
u5b9a
\
u4e49
\
u4e3a
\
u4e00
\
u4e2a
\
u5355
\
u5c42
\
u5e8f
\
u5217
"
:
2
,
"
\
u5c06
\
u5b57
\
u5178
\
u5b58
\
u5165
\
u4e86set
"
:
23
,
"
\
u5c06
\
u5bbf
\
u4e3b
\
u673a
\
u76848022
\
u7aef
\
u53e3
\
u6620
\
u5c04
\
u5230container
\
u768422
\
u7aef
\
u53e3
\
u4e0a
"
:
9
,
"
\
u5c06
\
u6570
\
u636e
\
u7ec4
\
u5408
\
u6210batch
\
u8bad
\
u7ec3
"
:
23
,
"
\
u5c06
\
u6587
\
u4ef6
\
u7684
\
u7edd
\
u5bf9
\
u8def
\
u5f84
\
u6216
\
u76f8
\
u5bf9
\
u8def
\
u5f84
"
:
22
,
"
\
u5c06
\
u8bc4
\
u8bba
\
u5206
\
u4e3a
\
u597d
\
u8bc4
"
:
13
,
"
\
u5c06
\
u8be5
\
u53e5
\
u8bdd
\
u5305
\
u542b
\
u7684
\
u6240
\
u6709
\
u5355
\
u8bcd
\
u5411
\
u91cf
\
u6c42
\
u5e73
\
u5747
\
u5f97
\
u5230
\
u53e5
\
u5b50
\
u7684
\
u8868
\
u793a
"
:
13
,
"
\
u5c06ssh
\
u88c5
\
u5165
\
u7cfb
\
u7edf
\
u5185
\
u5e76
\
u5f00
\
u542f
\
u8fdc
\
u7a0b
\
u8bbf
\
u95ee
"
:
9
,
"
\
u5c1a
\
u53ef
"
:
1
,
"
\
u5c31
"
:[
1
,
23
],
"
\
u5c31
\
u50cf
\
u8fd9
\
u4e2a
\
u6837
\
u4f8b
\
u4e00
\
u6837
"
:
23
,
"
\
u5c31
\
u662f
"
:
1
,
"
\
u5c31
\
u662f
\
u5c06
\
u8fd9
\
u4e9b
\
u52a8
\
u6001
\
u5e93
\
u52a0
\
u5230
\
u73af
\
u5883
\
u53d8
\
u91cf
\
u91cc
\
u9762
"
:
10
,
"
\
u5c42
\
u6b21
\
u5316
\
u7684rnn
"
:
2
,
"
\
u5c45
\
u7136
"
:
1
,
"
\
u5c5e
\
u6027
"
:
23
,
"
\
u5dee
\
u8bc4
"
:
13
,
"
\
u5e2e
\
u52a9
\
u6211
\
u4eec
\
u5b8c
\
u6210
\
u5bf9
\
u8f93
\
u5165
\
u5e8f
\
u5217
\
u7684
\
u62c6
\
u5206
"
:
2
,
"
\
u5e2e
\
u52a9
\
u6211
\
u4eec
\
u66f4
\
u597d
\
u5730
\
u63cf
\
u8ff0
\
u6bb5
\
u843d
"
:
2
,
"
\
u5e2e
\
u52a9
\
u6211
\
u4eec
\
u6784
\
u9020
\
u4e00
\
u4e9b
\
u590d
\
u6742
\
u7684
\
u8f93
\
u5165
\
u4fe1
\
u606f
"
:
0
,
"
\
u5e38
\
u89c1
\
u7684
\
u8f93
\
u51fa
\
u683c
\
u5f0f
\
u4e3a
"
:
21
,
"
\
u5e72
\
u51c0
"
:
1
,
"
\
u5e76
\
u4e14
"
:
23
,
"
\
u5e76
\
u4e14
\
u4f7f
\
u7528
\
u5173
\
u952e
\
u8bcd
"
:
23
,
"
\
u5e76
\
u4e14
\
u5220
\
u9664container
\
u4e2d
\
u7684
\
u6570
\
u636e
"
:
9
,
"
\
u5e76
\
u4e14
\
u5728
\
u5185
\
u5b58
\
u8db3
\
u591f
"
:
23
,
"
\
u5e76
\
u4e14
\
u6807
\
u8bb0process
\
u51fd
\
u6570
\
u662f
\
u4e00
\
u4e2adataprovid
"
:
23
,
"
\
u5e76
\
u4f7f
\
u7528
\
u4e86dropout
"
:
13
,
"
\
u5e76
\
u572823
\
u884c
\
u8fd4
\
u56de
\
u7ed9paddlepaddle
\
u8fdb
\
u7a0b
"
:
23
,
"
\
u5e76
\
u5bf9
\
u5176
\
u8be6
\
u7ec6
\
u5206
\
u6790
"
:
1
,
"
\
u5e76
\
u5c06
\
u6bcf
\
u884c
\
u8f6c
\
u6362
\
u6210
\
u548c
"
:
23
,
"
\
u5e76
\
u63d0
\
u4f9b
"
:
9
,
"
\
u5e76
\
u63d0
\
u4f9b
\
u4e86
\
u7b80
\
u5355
\
u7684cache
\
u529f
\
u80fd
"
:
23
,
"
\
u5e76
\
u8bbe
\
u7f6e
\
u597d
\
u5bf9
\
u5e94
\
u7684
\
u73af
\
u5883
\
u53d8
\
u91cf
"
:
10
,
"
\
u5e76
\
u9010
\
u6e10
\
u5c55
\
u793a
\
u66f4
\
u52a0
\
u6df1
\
u5165
\
u7684
\
u529f
\
u80fd
"
:
13
,
"
\
u5e8a
\
u4e0a
\
u7528
\
u54c1
"
:
1
,
"
\
u5e8a
\
u57ab
"
:
1
,
"
\
u5e8f
\
u5217
\
u4e2d
\
u542b
\
u6709
\
u5143
\
u7d20
\
u7684
\
u6570
\
u76ee
\
u540clayer2
\
u4e00
\
u81f4
"
:
0
,
"
\
u5e8f
\
u5217
\
u6570
\
u636e
\
u548c
\
u4e0a
\
u9762
\
u7684
\
u5b8c
\
u5168
\
u4e00
\
u6837
"
:
1
,
"
\
u5e8f
\
u5217
\
u6570
\
u636e
\
u662f
\
u81ea
\
u7136
\
u8bed
\
u8a00
\
u5904
\
u7406
\
u4efb
\
u52a1
\
u9762
\
u5bf9
\
u7684
\
u4e00
\
u79cd
\
u4e3b
\
u8981
\
u8f93
\
u5165
\
u6570
\
u636e
\
u7c7b
\
u578b
"
:
2
,
"
\
u5e8f
\
u5217
\
u662f
\
u4e00
\
u79cd
\
u5e38
\
u89c1
\
u7684
\
u6570
\
u636e
\
u7c7b
\
u578b
"
:
0
,
"
\
u5e8f
\
u5217
\
u6a21
\
u578b
\
u6570
\
u636e
\
u63d0
\
u4f9b
"
:
22
,
"
\
u5e8f
\
u5217
\
u6a21
\
u578b
\
u662f
\
u6307
\
u6570
\
u636e
\
u7684
\
u67d0
\
u4e00
\
u7ef4
\
u5ea6
\
u662f
\
u4e00
\
u4e2a
\
u5e8f
\
u5217
\
u5f62
\
u5f0f
"
:
23
,
"
\
u5e8f
\
u5217
\
u751f
\
u6210
\
u4efb
\
u52a1
\
u5927
\
u591a
\
u9075
\
u5faaencod
"
:
2
,
"
\
u5e8f
\
u5217
\
u751f
\
u6210
\
u4efb
\
u52a1
\
u7684
\
u8f93
\
u5165
"
:
2
,
"
\
u5e8f
\
u5217
\
u7684
\
u6bcf
\
u4e2a
\
u5143
\
u7d20
\
u662f
\
u539f
\
u6765
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u6bcf
\
u4e2asubseq
\
u5143
\
u7d20
\
u7684
\
u5e73
\
u5747
\
u503c
"
:
0
,
"
\
u5e93
\
u7684
\
u8bdd
"
:
10
,
"
\
u5e94
\
u8be5
"
:
1
,
"
\
u5f0f
"
:
23
,
"
\
u5f15
\
u7528
\
u7684dataprovider
\
u662f
"
:
23
,
"
\
u5f15
\
u7528memory
\
u5f97
\
u5230
\
u8fd9layer
\
u4e0a
\
u4e00
\
u65f6
\
u523b
\
u8f93
\
u51fa
"
:
2
,
"
\
u5f3a
\
u70c8
\
u63a8
\
u8350
"
:
1
,
"
\
u5f53
\
u51fd
\
u6570
\
u8fd4
\
u56de
\
u7684
\
u65f6
\
u5019
"
:
23
,
"
\
u5f53
\
u524d
\
u7684
\
u8f93
\
u5165y
\
u548c
\
u4e0a
\
u4e00
\
u4e2a
\
u65f6
\
u95f4
\
u6b65
\
u7684
\
u8f93
\
u51farnn
"
:
1
,
"
\
u5f53
\
u524dlog_period
\
u4e2abatch
\
u6240
\
u6709
\
u6837
\
u672c
\
u7684
\
u5e73
\
u5747
\
u5206
\
u7c7b
\
u9519
\
u8bef
\
u7387
"
:
13
,
"
\
u5f53
\
u524dlog_period
\
u4e2abatch
\
u6240
\
u6709
\
u6837
\
u672c
\
u7684
\
u5e73
\
u5747cost
"
:
13
,
"
\
u5f53
\
u7136
"
:
22
,
"
\
u5f53
\
u8c03
"
:
23
,
"
\
u5f62
\
u6210recurr
"
:
2
,
"
\
u5f62
\
u6210recurrent
\
u8fde
\
u63a5
"
:
2
,
"
\
u5f88
"
:[
1
,
13
],
"
\
u5f88
\
u591a
"
:
1
,
"
\
u5f88
\
u5b89
\
u9759
"
:
1
,
"
\
u5f88
\
u5e72
\
u51c0
"
:
1
,
"
\
u5f88
\
u65b9
\
u4fbf
"
:
1
,
"
\
u5f97
"
:
1
,
"
\
u5f97
\
u5230
\
u7ed3
\
u679c
"
:
10
,
"
\
u5faa
\
u73af
\
u5c55
\
u5f00
\
u7684
\
u6bcf
\
u4e2a
\
u65f6
\
u95f4
\
u6b65
\
u603b
\
u662f
\
u80fd
\
u591f
\
u5f15
\
u7528
\
u6240
\
u6709
\
u8f93
\
u5165
"
:
2
,
"
\
u5fc5
\
u987b
\
u5c06
\
u524d
\
u4e00
\
u4e2a
\
u5b50
\
u53e5
\
u7684
\
u6700
\
u540e
\
u4e00
\
u4e2a
\
u5143
\
u7d20
"
:
1
,
"
\
u5fc5
\
u987b
\
u6307
\
u5411
\
u4e00
\
u4e2apaddlepaddle
\
u5b9a
\
u4e49
\
u7684lay
"
:
2
,
"
\
u5fc5
\
u987b
\
u662f
\
u4e00
\
u4e2a
\
u5355
\
u5c42
\
u5e8f
\
u5217
"
:
2
,
"
\
u5fc5
\
u987b
\
u662f
\
u4e00
\
u4e2a
\
u53cc
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
\
u5feb
"
:
1
,
"
\
u5feb
\
u901f
\
u5165
\
u95e8
"
:
14
,
"
\
u5ff5
\
u662f
"
:
23
,
"
\
u6027
\
u4ef7
\
u6bd4
"
:
1
,
"
\
u603b
\
u4f53
\
u6765
\
u8bf4
"
:
1
,
"
\
u60a8
\
u4e5f
\
u53ef
\
u4ee5
\
u91c7
\
u7528
\
u522b
\
u7684
\
u7ec4
\
u7ec7
\
u5f62
\
u5f0f
"
:
1
,
"
\
u60a8
\
u53ef
\
u4ee5
\
u4f7f
\
u7528
"
:
9
,
"
\
u60a8
\
u5c31
\
u53ef
\
u4ee5
\
u8fdc
\
u7a0b
\
u7684
\
u4f7f
\
u7528paddlepaddle
\
u5566
"
:
9
,
"
\
u60a8
\
u9700
\
u8981
\
u5728
\
u673a
\
u5668
\
u4e2d
\
u5b89
\
u88c5
\
u597ddocker
"
:
9
,
"
\
u60a8
\
u9700
\
u8981
\
u8fdb
\
u5165
\
u955c
\
u50cf
\
u8fd0
\
u884cpaddlepaddl
"
:
9
,
"
\
u60c5
\
u611f
\
u5206
\
u6790
"
:
12
,
"
\
u60f3
\
u8981
\
u8fd0
\
u884cpaddlepaddl
"
:
9
,
"
\
u611f
\
u89c9
"
:
1
,
"
\
u6210
\
u4e3a
\
u7ef4
\
u5ea6
\
u4e3ahidden
"
:
13
,
"
\
u6211
\
u4eec
\
u4ece
\
u63d0
\
u524d
\
u7ed9
\
u5b9a
\
u7684
\
u7c7b
\
u522b
\
u96c6
\
u5408
\
u4e2d
\
u9009
\
u62e9
\
u5176
\
u6240
\
u5c5e
\
u7c7b
"
:
13
,
"
\
u6211
\
u4eec
\
u4ee5
\
u6587
\
u672c
\
u5206
\
u7c7b
\
u95ee
\
u9898
\
u4f5c
\
u4e3a
\
u80cc
\
u666f
"
:
13
,
"
\
u6211
\
u4eec
\
u4f7f
\
u7528
"
:
13
,
"
\
u6211
\
u4eec
\
u53ef
\
u4ee5
\
u6309
\
u7167
\
u5982
\
u4e0b
\
u5c42
\
u6b21
\
u5b9a
\
u4e49
\
u975e
\
u5e8f
\
u5217
"
:
0
,
"
\
u6211
\
u4eec
\
u53ef
\
u4ee5
\
u8bbe
\
u8ba1
\
u642d
\
u5efa
\
u4e00
\
u4e2a
\
u7075
\
u6d3b
\
u7684
"
:
2
,
"
\
u6211
\
u4eec
\
u5728
"
:
1
,
"
\
u6211
\
u4eec
\
u5728
\
u6b64
\
u603b
"
:
13
,
"
\
u6211
\
u4eec
\
u5c06
\
u4ee5
\
u57fa
\
u672c
\
u7684
\
u903b
\
u8f91
\
u56de
\
u5f52
\
u7f51
\
u7edc
\
u4f5c
\
u4e3a
\
u8d77
\
u70b9
"
:
13
,
"
\
u6211
\
u4eec
\
u5c06
\
u5728
\
u540e
\
u9762
\
u4ecb
\
u7ecd
\
u8bad
\
u7ec3
\
u548c
\
u9884
\
u6d4b
\
u7684
\
u6d41
\
u7a0b
\
u7684
\
u811a
\
u672c
"
:
13
,
"
\
u6211
\
u4eec
\
u5c06
\
u8bad
\
u7ec3
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u4fdd
\
u5b58
\
u5728
\
u4e86
"
:
13
,
"
\
u6211
\
u4eec
\
u63a8
\
u8350
\
u4f7f
\
u7528docker
\
u955c
\
u50cf
\
u6765
\
u90e8
\
u7f72
\
u73af
\
u5883
"
:
8
,
"
\
u6211
\
u4eec
\
u63d0
\
u4f9b
\
u4e8612
\
u4e2a
"
:
9
,
"
\
u6211
\
u4eec
\
u63d0
\
u4f9b
\
u4e86
\
u4e00
\
u4e2a
\
u5de5
\
u5177
\
u7c7bdataproviderconvert
"
:
26
,
"
\
u6211
\
u4eec
\
u770b
\
u4e00
\
u4e0b
\
u5355
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u7684
\
u4e0d
\
u540c
\
u6570
\
u636e
\
u7ec4
\
u7ec7
\
u5f62
\
u5f0f
"
:
1
,
"
\
u6211
\
u4eec
\
u770b
\
u4e00
\
u4e0b
\
u5355
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u7684
\
u4e0d
\
u540c
\
u6570
\
u636e
\
u7ec4
\
u7ec7
\
u5f62
\
u5f0f
\
u548cdataprovid
"
:
1
,
"
\
u6211
\
u4eec
\
u770b
\
u4e00
\
u4e0b
\
u5355
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u7684
\
u4e0d
\
u540cdataprovid
"
:
1
,
"
\
u6211
\
u4eec
\
u770b
\
u4e00
\
u4e0b
\
u5355
\
u5c42
\
u5e8f
\
u5217
\
u7684
\
u914d
\
u7f6e
"
:
1
,
"
\
u6211
\
u4eec
\
u770b
\
u4e00
\
u4e0b
\
u8bed
\
u4e49
\
u76f8
\
u540c
\
u7684
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u914d
\
u7f6e
"
:
1
,
"
\
u6211
\
u4eec
\
u79f0
\
u4e4b
\
u4e3a
\
u4e00
\
u4e2a0
\
u5c42
\
u7684
\
u5e8f
\
u5217
"
:
0
,
"
\
u6211
\
u4eec
\
u8fdb
\
u5165
\
u5230
\
u8bad
\
u7ec3
\
u90e8
\
u5206
"
:
13
,
"
\
u6211
\
u4eec
\
u9009
\
u53d6
\
u5355
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u914d
\
u7f6e
\
u4e2d
\
u7684
\
u4e0d
\
u540c
\
u90e8
\
u5206
"
:
1
,
"
\
u6211
\
u4eec
\
u91c7
\
u7528
\
u5355
\
u5c42lstm
\
u6a21
\
u578b
"
:
13
,
"
\
u6211
\
u4eec
\
u968f
\
u65f6
\
u603b
\
u7ed3
\
u4e86
\
u5404
\
u4e2a
\
u7f51
\
u7edc
\
u7684
\
u590d
\
u6742
\
u5ea6
\
u548c
\
u6548
\
u679c
"
:
13
,
"
\
u6216
"
:
1
,
"
\
u6216
\
u4e00
\
u4e2a
\
u5355
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
\
u6216
\
u4e00
\
u4e2a
\
u5355
\
u5c42
\
u5e8f
\
u5217
\
u7ecf
\
u8fc7
\
u8fd0
\
u7b97
\
u53d8
\
u6210
\
u4e00
\
u4e2a0
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
\
u6216
\
u4e00
\
u4e2a
\
u53cc
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
\
u6216
\
u4e00
\
u4e2a
\
u5411
\
u91cf
"
:
2
,
"
\
u6216
\
u5176
\
u4ed6
"
:
13
,
"
\
u6216
\
u5355
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
\
u6216
\
u5355
\
u5c42
\
u5e8f
\
u5217
\
u7ecf
\
u8fc7
\
u8fd0
\
u7b97
\
u53d8
\
u6210
\
u4e00
\
u4e2a0
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
\
u6216
\
u6700
\
u5927
\
u503c
"
:
0
,
"
\
u6216
\
u7b2c
\
u4e00
\
u4e2a
"
:
0
,
"
\
u6216
\
u7b2c
\
u4e00
\
u4e2a
\
u5143
\
u7d20
"
:
0
,
"
\
u6216
\
u8005
"
:[
0
,
9
],
"
\
u6216
\
u800510g
\
u8fd9
\
u6837
\
u7684
\
u5355
\
u4f4d
"
:
3
,
"
\
u6216
\
u8005
\
u4e00
\
u4e2a
\
u5355
\
u5c42
\
u5e8f
\
u5217
"
:
2
,
"
\
u6216
\
u8005
\
u4e00
\
u4e2a
\
u53cc
\
u5c42
\
u5e8f
\
u5217
"
:[
0
,
2
],
"
\
u6216
\
u8005
\
u4f7f
\
u7528
\
u4e0b
\
u9762
\
u4e00
\
u6761
\
u547d
\
u4ee4
\
u5b89
\
u88c5
"
:
10
,
"
\
u6216
\
u8005
\
u5728python
"
:
23
,
"
\
u6216
\
u8005
\
u6570
\
u636e
\
u5e93
\
u8fde
\
u63a5
\
u5730
\
u5740
\
u7b49
\
u7b49
"
:
22
,
"
\
u6216
\
u8005
\
u662f
\
u4e00
\
u4e2a
\
u53cc
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
\
u6216
\
u8005
\
u8bbe
\
u7f6e
\
u4e3anone
"
:
22
,
"
\
u6216
\
u8005
\
u9700
\
u8981
\
u66f4
\
u9ad8
\
u7684
\
u6548
\
u7387
"
:
22
,
"
\
u6216
\
u8005
\
u9ad8
\
u6027
\
u80fd
\
u7684
"
:
9
,
"
\
u623f
"
:
1
,
"
\
u623f
\
u95f4
"
:
1
,
"
\
u6240
\
u4ee5
"
:[
23
,
26
],
"
\
u6240
\
u4ee5
\
u5728cpu
\
u7684
\
u8fd0
\
u7b97
\
u6027
\
u80fd
\
u4e0a
\
u5e76
\
u4e0d
\
u4f1a
\
u6709
\
u4e25
\
u91cd
\
u7684
\
u5f71
\
u54cd
"
:
9
,
"
\
u6240
\
u4ee5
\
u5982
\
u679c
\
u5bf9
\
u4e8e
\
u5185
\
u5b58
\
u6bd4
\
u8f83
\
u5c0f
\
u7684
\
u673a
\
u5668
"
:
23
,
"
\
u6240
\
u4ee5
\
u5982
\
u679c
\
u60f3
\
u8981
\
u5728
\
u540e
\
u53f0
\
u542f
\
u7528ssh
"
:
9
,
"
\
u6240
\
u4ee5
\
u5c06
"
:
23
,
"
\
u6240
\
u4ee5
\
u63a8
\
u8350
\
u4f7f
\
u7528
\
u663e
\
u5f0f
\
u6307
\
u5b9a
\
u8fd4
\
u56de
\
u503c
\
u548c
\
u6570
\
u636e
\
u5bf9
\
u5e94
\
u5173
\
u7cfb
"
:
23
,
"
\
u6240
\
u4ee5
\
u6700
\
u4f73
\
u5b9e
\
u8df5
\
u63a8
\
u8350
\
u4e0d
\
u8981
\
u5c06
\
u6bcf
\
u4e00
\
u4e2a
\
u6837
\
u672c
\
u90fd
\
u653e
\
u5165train
"
:
23
,
"
\
u6240
\
u4ee5
\
u7528
\
u4e8e
\
u9884
\
u6d4b
\
u7684
\
u914d
\
u7f6e
\
u6587
\
u4ef6
\
u8981
\
u505a
\
u76f8
\
u5e94
\
u7684
\
u4fee
\
u6539
"
:
26
,
"
\
u6240
\
u4ee5
\
u8f93
\
u51fa
\
u7684value
\
u5305
\
u542b
\
u4e24
\
u4e2a
\
u5411
\
u91cf
"
:
26
,
"
\
u6240
\
u4ee5gpu
\
u5728
\
u8fd0
\
u7b97
\
u6027
\
u80fd
\
u4e0a
\
u4e5f
\
u4e0d
\
u4f1a
\
u6709
\
u4e25
\
u91cd
\
u7684
\
u5f71
\
u54cd
"
:
9
,
"
\
u6240
\
u4ee5init_hook
\
u5c3d
\
u91cf
\
u4f7f
\
u7528
"
:
23
,
"
\
u6240
\
u6709
\
u5b57
\
u7b26
\
u90fd
\
u5c06
\
u8f6c
\
u6362
\
u4e3a
\
u8fde
\
u7eed
\
u6574
\
u6570
\
u8868
\
u793a
\
u7684id
\
u4f20
\
u7ed9
\
u6a21
\
u578b
"
:
13
,
"
\
u6240
\
u6709
\
u6587
\
u4ef6
\
u5217
\
u8868
"
:
23
,
"
\
u6240
\
u6709
\
u7684
"
:
4
,
"
\
u6240
\
u6709
\
u7684
\
u4e0b
\
u8f7d
\
u7ebf
\
u7a0b
\
u5173
\
u95ed
\
u65f6
"
:
3
,
"
\
u6240
\
u6709
\
u914d
\
u7f6e
\
u5728
"
:
13
,
"
\
u6240
\
u8c13
\
u65f6
\
u95f4
\
u6b65
\
u4fe1
\
u606f
"
:
23
,
"
\
u624d
\
u4f1a
\
u91ca
\
u653e
\
u8be5
\
u6bb5
\
u5185
\
u5b58
"
:
23
,
"
\
u624d
\
u4f1astop
"
:
23
,
"
\
u624d
\
u80fd
\
u4fdd
\
u8bc1
\
u548c
\
u5355
\
u5c42
\
u5e8f
\
u5217
\
u7684
\
u914d
\
u7f6e
\
u4e2d
"
:
1
,
"
\
u6253
\
u5370
\
u7684
\
u65e5
\
u5fd7
\
u53d8
\
u591a
"
:
4
,
"
\
u6267
\
u884c
"
:
3
,
"
\
u6267
\
u884c
\
u5982
\
u4e0b
\
u547d
\
u4ee4
\
u5373
\
u53ef
\
u4ee5
\
u5173
\
u95ed
\
u8fd9
\
u4e2acontain
"
:
9
,
"
\
u6267
\
u884c
\
u65b9
\
u6cd5
\
u5982
\
u4e0b
"
:
9
,
"
\
u62a5
\
u9519
"
:
10
,
"
\
u62c6
\
u89e3
"
:
2
,
"
\
u62fc
\
u63a5
\
u6210
\
u4e00
\
u4e2a
\
u65b0
\
u7684
\
u5411
\
u91cf
\
u8868
\
u793a
"
:
13
,
"
\
u6307
\
u4ee4
\
u96c6
"
:
9
,
"
\
u6307
\
u5411
\
u4e00
\
u4e2alayer
"
:
2
,
"
\
u6307
\
u5b9a
"
:
2
,
"
\
u6307
\
u5b9a
\
u521d
\
u59cb
\
u5316
\
u6a21
\
u578b
\
u8def
\
u5f84
"
:
13
,
"
\
u6307
\
u5b9a
\
u751f
\
u6210
\
u6570
\
u636e
\
u7684
\
u51fd
\
u6570
"
:
13
,
"
\
u6307
\
u5b9a
\
u7684
\
u8f93
\
u5165
\
u4e0d
\
u4f1a
\
u88ab
"
:
2
,
"
\
u6307
\
u5b9a
\
u8bad
\
u7ec3
"
:
13
,
"
\
u6307
\
u5b9abatch
"
:
13
,
"
\
u6307
\
u5b9aoutputs
\
u8f93
\
u51fa
\
u6982
\
u7387
\
u5c42
"
:
13
,
"
\
u633a
"
:
1
,
"
\
u633a
\
u597d
"
:
1
,
"
\
u6362
"
:
1
,
"
\
u6389
\
u7f16
\
u8bd1
\
u76ee
\
u5f55
\
u540e
"
:
4
,
"
\
u6392
\
u6210
\
u4e00
\
u5217
\
u7684
\
u591a
\
u4e2a
\
u5143
\
u7d20
"
:
0
,
"
\
u63a5
\
u4e0b
\
u6765
\
u4f7f
\
u7528
"
:
26
,
"
\
u63a5
\
u53e3
\
u4f7f
\
u7528
\
u591a
\
u7ebf
\
u7a0b
\
u8bfb
\
u53d6
\
u6570
\
u636e
"
:
23
,
"
\
u63a5
\
u7740
"
:
1
,
"
\
u63a8
\
u8350
"
:
1
,
"
\
u63a8
\
u8350
\
u4f7f
\
u7528
\
u5c06
\
u672c
\
u5730
\
u7f51
\
u5361
"
:
9
,
"
\
u63a8
\
u8350
\
u4f7f
\
u7528
\
u6700
\
u65b0
\
u7248
\
u672c
\
u7684cudnn
"
:
4
,
"
\
u63a8
\
u8350
\
u6e05
\
u7406
"
:
4
,
"
\
u63a8
\
u8350
\
u76f4
\
u63a5
\
u653e
\
u7f6e
\
u5230
\
u8bad
\
u7ec3
\
u76ee
\
u5f55
"
:
22
,
"
\
u63a8
\
u8350
\
u8bbe
\
u7f6e
"
:
23
,
"
\
u63cf
\
u8ff0
"
:
4
,
"
\
u63cf
\
u8ff0
\
u4e86docker
"
:
3
,
"
\
u63d0
\
u4f9b
\
u6269
\
u5c55
\
u7684
\
u957f
\
u5ea6
\
u4fe1
\
u606f
"
:
0
,
"
\
u653e
\
u5fc3
"
:
1
,
"
\
u6548
\
u679c
\
u4e00
\
u81f4
"
:
23
,
"
\
u6548
\
u679c
\
u603b
\
u7ed3
"
:
13
,
"
\
u6559
\
u7a0b
"
:
13
,
"
\
u6570
"
:
2
,
"
\
u6570
\
u5fc5
\
u987b
\
u4e25
\
u683c
\
u76f8
\
u7b49
"
:
2
,
"
\
u6570
\
u636e
"
:
23
,
"
\
u6570
\
u636e
\
u4f20
\
u8f93
\
u65e0
\
u9700label
\
u6570
\
u636e
"
:
13
,
"
\
u6570
\
u636e
\
u5904
\
u7406python
\
u6587
\
u4ef6
\
u540d
"
:
13
,
"
\
u6570
\
u636e
\
u5982
\
u4f55
\
u5b58
\
u50a8
\
u7b49
\
u7b49
"
:
23
,
"
\
u6570
\
u636e
\
u63d0
\
u4f9b
"
:
22
,
"
\
u6570
\
u636e
\
u6587
\
u4ef6
\
u5b58
\
u653e
\
u5728
\
u672c
\
u5730
\
u78c1
\
u76d8
\
u4e2d
"
:
22
,
"
\
u6570
\
u636e
\
u662f
\
u7ed9
\
u4e00
\
u6bb5
\
u82f1
\
u6587
\
u6587
\
u672c
"
:
23
,
"
\
u6570
\
u636e
\
u683c
\
u5f0f
\
u548c
\
u8be6
\
u7ec6
\
u6587
\
u6863
\
u8bf7
\
u53c2
\
u8003
"
:
13
,
"
\
u6570
\
u636e
\
u8f93
\
u5165
"
:
2
,
"
\
u6574
\
u4f53
"
:
1
,
"
\
u6574
\
u6d01
"
:
1
,
"
\
u6587
\
u4ef6
"
:
23
,
"
\
u6587
\
u4ef6
\
u4e2d
"
:
13
,
"
\
u6587
\
u672c
\
u4e2d
\
u7684
\
u5355
\
u8bcd
\
u7528
\
u7a7a
\
u683c
\
u5206
\
u9694
"
:
13
,
"
\
u6587
\
u672c
\
u4fe1
\
u606f
\
u5c31
\
u662f
\
u4e00
\
u4e2a
\
u5e8f
\
u5217
"
:
23
,
"
\
u6587
\
u672c
\
u5206
\
u7c7b
\
u95ee
\
u9898
"
:
13
,
"
\
u6587
\
u672c
\
u5377
\
u79ef
\
u5206
\
u4e3a
\
u4e09
\
u4e2a
\
u6b65
\
u9aa4
"
:
13
,
"
\
u6587
\
u672c
\
u751f
\
u6210
"
:
12
,
"
\
u65b0
"
:
1
,
"
\
u65b0
\
u5199layer
"
:
14
,
"
\
u65b9
\
u4fbf
"
:
1
,
"
\
u65b9
\
u4fbf
\
u8c03
\
u8bd5
\
u4f7f
\
u7528
"
:
16
,
"
\
u65b9
\
u4fbf
\
u90e8
\
u7f72
\
u5206
\
u53d1
"
:
16
,
"
\
u65c1
\
u8fb9
"
:
1
,
"
\
u65e0
"
:
1
,
"
\
u65e0
\
u6cd5
\
u76f4
\
u63a5
\
u4f7f
\
u7528
"
:
1
,
"
\
u65e0
\
u9700label
\
u76f8
\
u5173
\
u7684
\
u5c42
"
:
13
,
"
\
u65e9
\
u9910
"
:
1
,
"
\
u65f6
"
:
0
,
"
\
u65f6
\
u5019
"
:
1
,
"
\
u65f6
\
u5e8f
\
u6a21
\
u578b
\
u5373
\
u4e3arnn
\
u6a21
\
u578b
"
:
13
,
"
\
u65f6
\
u5e8f
\
u6a21
\
u578b
\
u5747
\
u4f7f
\
u7528
\
u8be5
\
u811a
\
u672c
"
:
13
,
"
\
u662f
"
:[
1
,
4
],
"
\
u662f
\
u4e00
\
u4e2a
\
u5355
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
\
u662f
\
u4e00
\
u4e2a
\
u53cc
\
u5c42
\
u7684
\
u5e8f
\
u5217
"
:
0
,
"
\
u662f
\
u4e00
\
u4e2abatch
"
:
23
,
"
\
u662f
\
u4e00
\
u4e2apython
\
u7684
"
:
23
,
"
\
u662f
\
u4e00
\
u4e2aswig
\
u5c01
\
u88c5
\
u7684paddlepaddle
\
u5305
"
:
9
,
"
\
u662f
\
u4e00
\
u4e2aunbound
"
:
2
,
"
\
u662f
\
u4e00
\
u79cd
\
u4efb
\
u610f
\
u590d
\
u6742
\
u7684rnn
\
u5355
\
u5143
"
:
2
,
"
\
u662f
\
u4e0d
\
u662f
\
u5f88
\
u7b80
\
u5355
\
u5462
"
:
23
,
"
\
u662f
\
u4e2adataprovider
\
u662f
\
u4e0d
\
u662f
\
u8981
\
u505ashuffl
"
:
23
,
"
\
u662f
\
u4ec0
\
u4e48
\
u4e5f
\
u6ca1
\
u5173
\
u7cfb
"
:
23
,
"
\
u662f
\
u4ece
\
u8bad
\
u7ec3
\
u914d
\
u7f6e
\
u4f20
\
u5165
\
u7684dict
\
u5bf9
\
u8c61
"
:
23
,
"
\
u662f
\
u51e0
\
u4e4e
\
u4e0d
\
u5360
\
u5185
\
u5b58
\
u7684
"
:
23
,
"
\
u662f
\
u521d
\
u59cb
\
u5316
\
u65f6
\
u8c03
\
u7528
\
u7684
\
u51fd
\
u6570
"
:
23
,
"
\
u662f
\
u540c
\
u4e00
\
u4e2a
\
u5bf9
\
u8c61
"
:
23
,
"
\
u662f
\
u5426
\
u4ee5
\
u9006
\
u5e8f
\
u5904
\
u7406
\
u8f93
\
u5165
\
u5e8f
\
u5217
"
:
2
,
"
\
u662f
\
u5426
\
u4f7f
\
u7528
\
u53cc
\
u7cbe
\
u5ea6
\
u6d6e
\
u70b9
\
u6570
"
:
4
,
"
\
u662f
\
u5426
\
u4f7f
\
u7528
\
u8fd0
\
u884c
\
u65f6
\
u52a8
\
u6001
\
u52a0
\
u8f7dcuda
\
u52a8
\
u6001
\
u5e93
"
:
4
,
"
\
u662f
\
u5426
\
u4f7f
\
u7528gflags
"
:
4
,
"
\
u662f
\
u5426
\
u4f7f
\
u7528glog
"
:
4
,
"
\
u662f
\
u5426
\
u5185
\
u5d4cpython
\
u89e3
\
u91ca
\
u5668
"
:
4
,
"
\
u662f
\
u5426
\
u5bfb
\
u627e
\
u5230cuda
\
u5de5
\
u5177
\
u94fe
"
:
4
,
"
\
u662f
\
u5426
\
u5f00
\
u542f
\
u5355
\
u5143
\
u6d4b
\
u8bd5
"
:
4
,
"
\
u662f
\
u5426
\
u5f00
\
u542f
\
u8ba1
\
u65f6
\
u529f
\
u80fd
\
u5f00
\
u542f
\
u8ba1
\
u65f6
\
u529f
\
u80fd
\
u4f1a
\
u5bfc
\
u81f4
\
u8fd0
\
u884c
\
u7565
\
u6162
"
:
4
,
"
\
u662f
\
u5426
\
u5f00
\
u542fgpu
\
u529f
\
u80fd
"
:
3
,
"
\
u662f
\
u5426
\
u5f00
\
u542frdma
\
u652f
\
u6301
"
:
4
,
"
\
u662f
\
u5426
\
u7f16
\
u8bd1
\
u4e2d
\
u6587
\
u6587
\
u6863
"
:
4
,
"
\
u662f
\
u5426
\
u7f16
\
u8bd1
\
u542b
\
u6709avx
\
u6307
\
u4ee4
\
u96c6
\
u7684paddlepaddle
\
u4e8c
\
u8fdb
\
u5236
"
:
4
,
"
\
u662f
\
u5426
\
u7f16
\
u8bd1
\
u65f6
\
u8fdb
\
u884c
\
u4ee3
\
u7801
\
u98ce
\
u683c
\
u68c0
\
u67e5
"
:
4
,
"
\
u662f
\
u5426
\
u7f16
\
u8bd1
\
u82f1
\
u6587
\
u6587
\
u6863
"
:
4
,
"
\
u662f
\
u5426
\
u7f16
\
u8bd1gpu
\
u652f
\
u6301
"
:
4
,
"
\
u662f
\
u5426
\
u7f16
\
u8bd1python
\
u7684swig
\
u63a5
\
u53e3
"
:
4
,
"
\
u662f
\
u5728
\
u8fd0
\
u884c
\
u65f6
\
u6267
\
u884c
\
u7684
"
:
23
,
"
\
u662f
\
u5f85
\
u6269
\
u5c55
\
u7684
\
u6570
\
u636e
"
:
0
,
"
\
u662f
\
u6570
\
u636e
\
u7f13
\
u5b58
\
u7684
\
u7b56
\
u7565
"
:
23
,
"
\
u662f
\
u6570
\
u636e
\
u8f93
\
u5165
\
u683c
\
u5f0f
"
:
23
,
"
\
u662f
\
u8bbe
\
u7f6e
\
u8fd9
\
u4e2adataprovider
\
u8fd4
\
u56de
\
u4ec0
\
u4e48
\
u6837
\
u7684
\
u6570
\
u636e
"
:
23
,
"
\
u662f
\
u8bbe
\
u7f6edataprovider
\
u5728
\
u5185
\
u5b58
\
u4e2d
\
u6682
\
u5b58
\
u7684
\
u6570
\
u636e
\
u6761
\
u6570
"
:
23
,
"
\
u662f
\
u8bbe
\
u7f6edataprovider
\
u5728
\
u5185
\
u5b58
\
u4e2d
\
u6700
\
u5c0f
\
u6682
\
u5b58
\
u7684
\
u6570
\
u636e
\
u6761
\
u6570
"
:
23
,
"
\
u662fdecoder
\
u7684
\
u6570
\
u636e
\
u8f93
\
u5165
"
:
2
,
"
\
u662fpaddlepaddle
\
u652f
\
u6301
\
u7684
\
u4e00
\
u79cd
\
u4efb
\
u610f
\
u590d
\
u6742
\
u7684rnn
\
u5355
\
u5143
"
:
2
,
"
\
u662fpaddlepaddle
\
u8d1f
\
u8d23
\
u63d0
\
u4f9b
\
u6570
\
u636e
\
u7684
\
u6a21
\
u5757
"
:
22
,
"
\
u662fpython
\
u7684
\
u4e00
\
u4e2a
\
u5173
\
u952e
\
u8bcd
"
:
23
,
"
\
u663e
"
:
13
,
"
\
u665a
"
:
1
,
"
\
u666e
\
u901a
\
u7528
\
u6237
\
u8bf7
\
u8d70
\
u5b89
\
u88c5
\
u6d41
\
u7a0b
"
:
8
,
"
\
u66f4
\
u597d
\
u5730
\
u5b8c
\
u6210
\
u4e00
\
u4e9b
\
u590d
\
u6742
\
u7684
\
u8bed
\
u8a00
\
u7406
\
u89e3
\
u4efb
\
u52a1
"
:
2
,
"
\
u66f4
\
u8be6
\
u7ec6
\
u7528
\
u4f8b
\
u8bf7
\
u53c2
\
u8003
\
u6587
\
u6863
"
:
13
,
"
\
u66f4
\
u8be6
\
u7ec6
\
u7684
\
u4ecb
\
u7ecd
\
u8bf7
\
u53c2
\
u8003
\
u5404
\
u4e2a
\
u547d
\
u4ee4
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
\
u6587
\
u6863
"
:
16
,
"
\
u66f4
\
u8be6
\
u7ec6
\
u7684
\
u7f51
\
u7edc
\
u914d
\
u7f6e
"
:
13
,
"
\
u66f4
\
u8fdb
\
u4e00
\
u6b65
"
:
2
,
"
\
u66ff
\
u6211
\
u4eec
\
u5b8c
\
u6210
\
u4e86
\
u539f
\
u59cb
\
u8f93
\
u5165
\
u6570
\
u636e
\
u7684
\
u62c6
\
u5206
"
:
2
,
"
\
u6700
"
:
1
,
"
\
u6700
\
u4f4e
\
u7ebf
\
u7a0b
\
u7684
\
u4e0b
\
u8f7d
\
u901f
\
u5ea6
"
:
3
,
"
\
u6700
\
u540e
"
:
1
,
"
\
u6700
\
u540e
\
u4e00
\
u4e2a
"
:
0
,
"
\
u6700
\
u540e
\
u4f7f
\
u7528
"
:
26
,
"
\
u6700
\
u7ec8
\
u5b9e
\
u73b0
\
u4e00
\
u4e2a
\
u5c42
\
u6b21
\
u5316
\
u7684
\
u590d
\
u6742rnn
"
:
2
,
"
\
u6700
\
u7ec8
\
u7684
\
u8f93
\
u51fa
\
u7ed3
\
u679c
"
:
2
,
"
\
u6708
\
u6e56
"
:
1
,
"
\
u6709
"
:
1
,
"
\
u6709100
\
u4e2a
\
u8bad
\
u7ec3
\
u6587
\
u4ef6
"
:
23
,
"
\
u6709
\
u4e24
\
u53e5
"
:
1
,
"
\
u6709
\
u503c
\
u7684
\
u4f4d
\
u7f6e
\
u53ea
\
u80fd
\
u53d61
"
:
23
,
"
\
u6709
\
u503c
\
u7684
\
u90e8
\
u5206
\
u53ef
\
u4ee5
\
u662f
\
u4efb
\
u4f55
\
u6d6e
\
u70b9
\
u6570
"
:
23
,
"
\
u6709
\
u90e8
\
u5206
\
u53c2
\
u6570
\
u662fpaddle
\
u81ea
\
u52a8
\
u751f
\
u6210
\
u7684
"
:
23
,
"
\
u670d
\
u52a1
"
:
1
,
"
\
u670d
\
u52a1
\
u5458
"
:
1
,
"
\
u672c
\
u6765
"
:
1
,
"
\
u672c
\
u8282
\
u6211
\
u4eec
\
u5c06
\
u4e13
\
u6ce8
\
u4e8e
\
u7f51
\
u7edc
\
u7ed3
\
u6784
\
u7684
\
u4ecb
\
u7ecd
"
:
13
,
"
\
u6765
"
:
1
,
"
\
u6765
\
u5b89
\
u88c5
"
:
10
,
"
\
u6765
\
u5bf9
\
u6bd4
\
u5206
\
u6790
\
u4e24
\
u8005
\
u8bed
\
u4e49
\
u76f8
\
u540c
\
u7684
\
u539f
\
u56e0
"
:
1
,
"
\
u6765
\
u5f15
\
u7528
\
u8fd9
\
u4e2aimag
"
:
9
,
"
\
u6765
\
u63a5
\
u53d7
\
u4e0d
\
u4f7f
\
u7528
\
u7684
"
:
23
,
"
\
u6765
\
u786e
\
u5b9a
\
u5bf9
\
u5e94
\
u5173
\
u7cfb
"
:
23
,
"
\
u6765
\
u81ea
\
u5b9a
\
u4e49
\
u4f20
\
u6570
\
u636e
\
u7684
\
u8fc7
\
u7a0b
"
:
22
,
"
\
u6765
\
u8bf4
\
u660e
\
u7b80
\
u5355
\
u7684pydataprovider
\
u5982
\
u4f55
\
u4f7f
\
u7528
"
:
23
,
"
\
u6765
\
u8fdb
\
u884c
\
u8bad
\
u7ec3
"
:
9
,
"
\
u6765
\
u914d
\
u7f6ecudnn
\
u7684
\
u5b89
\
u88c5
\
u8def
\
u5f84
"
:
4
,
"
\
u676f
\
u5b50
"
:
1
,
"
\
u6784
\
u6210
\
u4e86
\
u8f93
\
u51fa
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u7684
\
u7b2ci
\
u4e2asubseq
"
:
0
,
"
\
u6784
\
u9020gradientmachin
"
:
26
,
"
\
u6790
\
u597d
\
u7684
\
u914d
\
u7f6e
\
u521b
\
u5efa
\
u795e
\
u7ecf
\
u7f51
\
u7edc
"
:
26
,
"
\
u67e5
\
u770b
\
u5b89
\
u88c5
\
u540e
\
u7684paddl
"
:
10
,
"
\
u6807
\
u7b7e
\
u662f0
"
:
23
,
"
\
u6837
\
u4f8b
\
u6570
\
u636e
\
u4e3a
"
:
23
,
"
\
u6837
\
u4f8b
\
u6570
\
u636e
\
u5982
\
u4e0b
"
:
23
,
"
\
u6837
\
u672c
"
:
23
,
"
\
u6837
\
u672c
\
u95f4
\
u7528
\
u7a7a
\
u884c
\
u5206
\
u5f00
"
:
1
,
"
\
u6839
\
u636e
\
u4e0a
\
u4e00
\
u6b65
\
u89e3
"
:
26
,
"
\
u6839
\
u636e
\
u6a21
\
u578b
\
u914d
\
u7f6e
\
u6587
\
u4ef6
\
u4e2d
"
:
23
,
"
\
u683c
\
u5f0f
\
u5982
\
u4e0b
"
:
13
,
"
\
u68d2
"
:
13
,
"
\
u697c
\
u5c42
"
:
1
,
"
\
u6a21
\
u578b
\
u5b58
\
u50a8
\
u8def
\
u5f84
"
:
13
,
"
\
u6a21
\
u578b
\
u8bad
\
u7ec3
\
u4f1a
\
u770b
\
u5230
\
u8fd9
\
u6837
\
u7684
\
u65e5
\
u5fd7
"
:
13
,
"
\
u6a21
\
u578b
\
u914d
\
u7f6e
"
:
14
,
"
\
u6a2a
\
u5411
\
u5305
\
u62ec
\
u4e09
\
u4e2a
\
u7248
\
u672c
"
:
9
,
"
\
u6b21
"
:
1
,
"
\
u6b63
\
u5e38
\
u7684docker
"
:
9
,
"
\
u6b63
\
u6837
\
u672c
"
:
13
,
"
\
u6b64
\
u5904
\
u90fd
\
u4e3a2
"
:
1
,
"
\
u6bb5
\
u843d
\
u53ef
\
u4ee5
\
u770b
\
u4f5c
\
u662f
\
u4e00
\
u4e2a
\
u5d4c
\
u5957
\
u7684
\
u53cc
\
u5c42
\
u7684
\
u5e8f
\
u5217
"
:
2
,
"
\
u6bcf
\
u4e00
\
u4e2a
\
u4efb
\
u52a1
\
u6d41
\
u7a0b
\
u90fd
\
u53ef
\
u4ee5
\
u5206
\
u4e3a
\
u5982
\
u4e0b5
\
u4e2a
\
u57fa
\
u7840
\
u90e8
\
u5206
"
:
13
,
"
\
u6bcf
\
u4e00
\
u4e2a
\
u65f6
\
u95f4
\
u6b65
"
:
1
,
"
\
u6bcf
\
u4e00
\
u4e2a
\
u65f6
\
u95f4
\
u6b65
\
u90fd
\
u7528
\
u4e86
\
u4e0a
\
u4e00
\
u4e2a
\
u65f6
\
u95f4
\
u6b65
\
u7684
\
u8f93
\
u51fa
\
u7ed3
\
u679c
"
:
1
,
"
\
u6bcf
\
u4e00
\
u6761
\
u8bad
\
u7ec3
\
u6570
\
u636e
\
u90fd
\
u662f
\
u4e00
\
u4e2a
\
u6587
\
u4ef6
"
:
23
,
"
\
u6bcf
\
u4e00
\
u884c
"
:
23
,
"
\
u6bcf
\
u4e2a
\
u5143
\
u7d20
\
u662f
\
u4e00
\
u4e2a0
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
\
u6bcf
\
u4e2a
\
u5143
\
u7d20
\
u662f
\
u4e00
\
u4e2a
\
u5355
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
\
u6bcf
\
u4e2a
\
u5355
\
u5c42rnn
"
:
2
,
"
\
u6bcf
\
u4e2a
\
u5c42
\
u90fd
\
u6709
\
u4e00
\
u4e2a
\
u6216
\
u591a
\
u4e2ainput
"
:
13
,
"
\
u6bcf
\
u4e2a
\
u65f6
\
u95f4
\
u6b65
\
u4e4b
\
u5185
\
u7684
\
u8fd0
\
u7b97
\
u662f
\
u72ec
\
u7acb
\
u7684
"
:
2
,
"
\
u6bcf
\
u4e2a
\
u6837
\
u672c
\
u7531
\
u4e24
\
u90e8
\
u5206
\
u7ec4
\
u6210
"
:
1
,
"
\
u6bcf
\
u4e2a
\
u6837
\
u672c
\
u7684
\
u5b50
\
u53e5
\
u6570
\
u5206
\
u522b
\
u4e3a2
"
:
1
,
"
\
u6bcf
\
u4e2a
\
u72b6
\
u6001
"
:
2
,
"
\
u6bcf
\
u4e2agenerator
\
u5728
\
u6ca1
\
u6709
\
u8c03
\
u7528
\
u7684
\
u65f6
\
u5019
"
:
23
,
"
\
u6bcf
\
u4e2apass
\
u7684
\
u7b2c0
\
u4e2abatch
\
u5230
\
u5f53
\
u524dbatch
\
u6240
\
u6709
\
u6837
\
u672c
\
u7684
\
u5e73
\
u5747
\
u5206
\
u7c7b
\
u9519
\
u8bef
\
u7387
"
:
13
,
"
\
u6bcf
\
u4e2apass
\
u7684
\
u7b2c0
\
u4e2abatch
\
u5230
\
u5f53
\
u524dbatch
\
u6240
\
u6709
\
u6837
\
u672c
\
u7684
\
u5e73
\
u5747cost
"
:
13
,
"
\
u6bcf
\
u4e2asubseq
\
u7684
\
u6700
\
u540e
\
u4e00
\
u4e2a
\
u5143
\
u7d20
\
u5c31
\
u7b49
\
u4e8e
\
u5355
\
u5c42
\
u5e8f
\
u5217
\
u7684
\
u6700
\
u540e
\
u4e00
\
u4e2a
\
u5143
\
u7d20
"
:
1
,
"
\
u6bcf
\
u6b21
\
u90fd
\
u4f1a
\
u4ecepython
\
u7aef
\
u8bfb
\
u53d6
\
u6570
\
u636e
"
:
23
,
"
\
u6bcf
\
u884c
\
u4fdd
\
u5b58
\
u4e00
\
u6761
\
u6837
\
u672c
"
:
13
,
"
\
u6bcf
\
u9694
\
u591a
\
u5c11batch
\
u6253
\
u5370
\
u4e00
\
u6b21
\
u65e5
\
u5fd7
"
:
13
,
"
\
u6bd4
\
u5982
\
u901a
\
u8fc7
\
u7528
\
u6237
\
u5bf9
\
u7535
\
u5b50
\
u5546
\
u52a1
\
u7f51
\
u7ad9
\
u8bc4
\
u8bba
"
:
13
,
"
\
u6bd4
\
u8f83
\
u53ef
\
u80fd
\
u7684
\
u547d
\
u4ee4
\
u5982
\
u4e0b
"
:
10
,
"
\
u6c34
\
u6e29
"
:
1
,
"
\
u6c49
\
u5ead
"
:
1
,
"
\
u6ca1
"
:
1
,
"
\
u6ca1
\
u6709
\
u4f5c
\
u7528
"
:
23
,
"
\
u6ca1
\
u6709
\
u5b89
\
u88c5
"
:
10
,
"
\
u6ca1
\
u6709
\
u8bbe
\
u7f6e
"
:
10
,
"
\
u6ce8
\
u610f
"
:[
1
,
3
,
23
],
"
\
u6cf3
\
u6c60
"
:
1
,
"
\
u6d41
"
:
1
,
"
\
u6d41
\
u7a0b
\
u5982
\
u4e0b
"
:
13
,
"
\
u6d44
"
:
1
,
"
\
u6d4b
\
u8bd5
\
u6570
\
u636e
"
:
13
,
"
\
u6d4b
\
u8bd5
\
u7684
\
u65f6
\
u5019
\
u9ed8
\
u8ba4
\
u4e0dshuffl
"
:
23
,
"
\
u6d4b
\
u8bd5
\
u811a
\
u672c
\
u5982
\
u4e0b
"
:
13
,
"
\
u6e29
\
u99a8
"
:
1
,
"
\
u6e90
\
u7801
"
:
13
,
"
\
u6e90
\
u7801
\
u6839
\
u76ee
\
u5f55
"
:
3
,
"
\
u6fc0
\
u6d3b
\
u51fd
\
u6570
\
u7c7b
\
u578b
"
:
13
,
"
\
u70ed
\
u60c5
"
:
1
,
"
\
u7136
\
u540e
\
u4ea4
\
u7ed9step
\
u51fd
\
u6570
"
:
2
,
"
\
u7136
\
u540e
\
u6267
\
u884c
\
u5982
\
u4e0b
"
:
10
,
"
\
u7136
\
u540e
\
u8fd0
\
u884c
\
u8fd9
\
u4e2acontainer
\
u5373
\
u53ef
"
:
9
,
"
\
u7248
\
u672c
"
:
10
,
"
\
u751f
\
u6210
\
u5404
\
u4e2a
\
u5e73
\
u53f0
\
u7684makefil
"
:
4
,
"
\
u75280
\
u548c1
\
u8868
\
u793a
"
:
23
,
"
\
u7528
\
u4e86
\
u4e24
\
u4e2a
\
u6708
\
u4e4b
\
u540e
\
u8fd9
\
u4e2a
\
u663e
\
u793a
\
u5668
\
u5c4f
\
u5e55
\
u788e
\
u4e86
"
:
13
,
"
\
u7528
\
u4e8e
\
u4e0d
\
u652f
\
u6301avx
\
u6307
\
u4ee4
\
u96c6
\
u7684cpu
"
:
10
,
"
\
u7528
\
u6237
\
u4e5f
\
u53ef
\
u4ee5
\
u5728c
"
:
22
,
"
\
u7528
\
u6237
\
u4e5f
\
u53ef
\
u4ee5
\
u663e
\
u5f0f
\
u6307
\
u5b9a
\
u8fd4
\
u56de
\
u7684
\
u6570
\
u636e
\
u5bf9
\
u5e94
\
u5173
\
u7cfb
"
:
23
,
"
\
u7528
\
u6237
\
u53ea
\
u9700
\
u5b9a
\
u4e49rnn
\
u5728
\
u4e00
\
u4e2a
\
u65f6
\
u95f4
\
u6b65
\
u5185
\
u5b8c
\
u6210
\
u7684
\
u8ba1
\
u7b97
"
:
2
,
"
\
u7528
\
u6237
\
u53ef
\
u4ee5
\
u4f7f
\
u7528python
\
u7684
"
:
22
,
"
\
u7528
\
u6237
\
u53ef
\
u4ee5
\
u6839
\
u636e
\
u8bad
\
u7ec3log
\
u9009
\
u62e9test
\
u7ed3
\
u679c
\
u6700
\
u597d
\
u7684
\
u6a21
\
u578b
\
u6765
\
u9884
\
u6d4b
"
:
13
,
"
\
u7528
\
u6237
\
u53ef
\
u4ee5
\
u9009
\
u62e9
\
u5bf9
\
u5e94
\
u7248
\
u672c
\
u7684docker
"
:
9
,
"
\
u7528
\
u6237
\
u540d
\
u4e3a
"
:
9
,
"
\
u7528
\
u6237
\
u5728dataprovider
\
u4e2d
\
u9700
\
u8981
\
u5b9e
\
u73b0
\
u5982
\
u4f55
\
u8bbf
\
u95ee
\
u5176
\
u4e2d
\
u6bcf
\
u4e00
\
u4e2a
\
u6587
\
u4ef6
"
:
22
,
"
\
u7528
\
u6237
\
u5b9a
\
u4e49
\
u7684
\
u53c2
\
u6570
\
u4f7f
\
u7528args
\
u5728
\
u8bad
\
u7ec3
\
u914d
\
u7f6e
\
u4e2d
\
u8bbe
\
u7f6e
"
:
23
,
"
\
u7528
\
u6237
\
u63a5
\
u53e3
"
:
14
,
"
\
u7528
\
u6237
\
u9700
\
u8981
\
u5148
\
u5c06paddlepaddle
\
u5b89
\
u88c5
\
u5305
\
u4e0b
\
u8f7d
\
u5230
\
u672c
\
u5730
"
:
10
,
"
\
u7528
\
u6765
\
u505a
\
u9884
\
u6d4b
\
u548c
\
u7b80
\
u5355
\
u7684
\
u5b9a
\
u5236
\
u5316
"
:
9
,
"
\
u7528
\
u8fc7
\
u4e00
\
u6b21
\
u7684
\
u65f6
\
u5019
"
:
23
,
"
\
u7531
"
:
2
,
"
\
u7531
\
u4e8e
\
u5916
\
u5c42
\
u6bcf
\
u4e2a
\
u65f6
\
u95f4
\
u6b65
\
u8fd4
\
u56de
\
u7684
\
u662f
\
u4e00
\
u4e2a
\
u5b50
\
u53e5
"
:
1
,
"
\
u7531
\
u4e8e
\
u5916
\
u5c42memory
\
u6ca1
\
u6709
\
u4efb
\
u4f55seq
\
u4fe1
\
u606f
"
:
1
,
"
\
u7531
\
u4e8e
\
u6570
\
u636e
\
u662f
\
u4e24
\
u6761
"
:
26
,
"
\
u7531
\
u4e8e
\
u8fd9
\
u4e2a
\
u5916
\
u5c42group
\
u91cc
\
u9762
\
u6ca1
\
u6709memori
"
:
1
,
"
\
u7531
\
u4e8edocker
\
u662f
\
u57fa
\
u4e8e
\
u5bb9
\
u5668
\
u7684
\
u8f7b
\
u91cf
\
u5316
\
u865a
\
u62df
\
u65b9
\
u6848
"
:
9
,
"
\
u7531
\
u4e8epaddlepaddle
\
u7684docker
\
u955c
\
u50cf
\
u5e76
\
u4e0d
\
u5305
\
u542b
\
u4efb
\
u4f55
\
u9884
\
u5b9a
\
u4e49
\
u7684
\
u8fd0
\
u884c
\
u547d
\
u4ee4
"
:
9
,
"
\
u7531
\
u4e8estep
"
:
2
,
"
\
u7531
\
u6613
\
u5230
\
u96be
\
u5c55
\
u793a4
\
u79cd
\
u4e0d
\
u540c
\
u7684
\
u7f51
\
u7edc
\
u914d
\
u7f6e
"
:
13
,
"
\
u7531
\
u8bcd
\
u8bed
\
u6784
\
u6210
\
u7684
\
u53e5
\
u5b50
"
:
0
,
"
\
u7535
\
u8111
"
:
1
,
"
\
u7684
"
:[
1
,
13
],
"
\
u7684
\
u4e00
\
u4e2a
\
u7b80
\
u5355
\
u8c03
\
u7528
\
u5982
\
u4e0b
"
:
2
,
"
\
u7684
\
u540d
\
u5b57
"
:
23
,
"
\
u7684
\
u5b89
\
u88c5
\
u6587
\
u6863
"
:
9
,
"
\
u7684
\
u5e73
\
u5747
\
u503c
"
:
0
,
"
\
u7684
\
u60c5
\
u51b5
\
u4e0b
\
u8d8a
\
u5927
\
u8d8a
\
u597d
"
:
23
,
"
\
u7684
\
u6570
\
u76ee
\
u4e00
\
u81f4
"
:
0
,
"
\
u7684
\
u6587
\
u6863
"
:
23
,
"
\
u7684
\
u65f6
\
u5019
\
u5982
\
u679c
\
u62a5
\
u4e00
\
u4e9b
\
u4f9d
\
u8d56
\
u672a
\
u627e
\
u5230
\
u7684
\
u9519
\
u8bef
\
u662f
\
u6b63
\
u5e38
\
u7684
"
:
10
,
"
\
u7684
\
u662f
"
:
23
,
"
\
u7684
\
u673a
\
u5668
\
u4e0a
\
u8fdb
\
u884c
"
:
3
,
"
\
u7684
\
u6838
\
u5fc3
\
u662f
\
u8bbe
\
u8ba1step
\
u51fd
\
u6570
\
u7684
\
u8ba1
\
u7b97
\
u903b
\
u8f91
"
:
2
,
"
\
u7684
\
u6bb5
\
u843d
\
u5b9a
\
u4e49
\
u4e3a
\
u4e00
\
u4e2a
\
u53cc
\
u5c42
\
u5e8f
\
u5217
"
:
2
,
"
\
u7684
\
u72b6
\
u6001
"
:
2
,
"
\
u7684
\
u7f51
\
u6865
\
u6765
\
u8fdb
\
u884c
\
u7f51
\
u7edc
\
u901a
\
u4fe1
"
:
9
,
"
\
u7684
\
u8f93
\
u5165
"
:
2
,
"
\
u7684
\
u9519
\
u8bef
"
:
1
,
"
\
u7684demo
\
u5b66
\
u4e60
\
u5982
\
u4f55
\
u8fdb
\
u884c
\
u591a
\
u673a
\
u8bad
\
u7ec3
"
:
13
,
"
\
u7684docker
\
u53ef
\
u80fd
\
u7f3a
\
u4e4f
"
:
3
,
"
\
u7684matrix
"
:
26
,
"
\
u7684python
\
u5305
\
u662fpaddlepaddle
\
u7684
\
u8bad
\
u7ec3
\
u4e3b
\
u8981
\
u7a0b
\
u5e8f
"
:
9
,
"
\
u7684python
\
u5305
\
u6765
\
u505a
\
u914d
\
u7f6e
\
u6587
\
u4ef6
\
u89e3
\
u6790
\
u7b49
\
u5de5
\
u4f5c
"
:
9
,
"
\
u7684python
\
u9884
\
u6d4b
\
u8fc7
\
u7a0b
"
:
13
,
"
\
u76ee
\
u524d
"
:
2
,
"
\
u76ee
\
u524d
\
u652f
\
u6301
\
u4e24
\
u79cd
"
:
0
,
"
\
u76ee
\
u524d
\
u8fd8
\
u672a
\
u652f
\
u6301
"
:
2
,
"
\
u76ee
\
u5f55
"
:
13
,
"
\
u76ee
\
u5f55
\
u4e0b
"
:
3
,
"
\
u76f4
\
u63a5
\
u52a0
\
u4e86
\
u4e00
\
u5c42group
"
:
1
,
"
\
u76f4
\
u63a5
\
u63d0
\
u53d6
\
u51fa
\
u795e
\
u7ecf
\
u7f51
\
u7edcoutput
\
u5c42
\
u7684
\
u8f93
\
u51fa
\
u7ed3
\
u679c
"
:
26
,
"
\
u76f8
\
u5173
\
u547d
\
u4ee4
\
u4e3a
"
:
9
,
"
\
u76f8
\
u5173
\
u7684
\
u6982
"
:
23
,
"
\
u76f8
\
u5bf9
"
:
1
,
"
\
u76f8
\
u5bf9
\
u4e8epaddlepaddle
\
u7a0b
\
u5e8f
\
u8fd0
\
u884c
\
u65f6
\
u7684
\
u8def
\
u5f84
"
:
22
,
"
\
u76f8
\
u5f53
"
:
1
,
"
\
u77e5
\
u9053
\
u5982
\
u4f55
\
u4ece
"
:
23
,
"
\
u793a
"
:
13
,
"
\
u79bb
"
:
1
,
"
\
u79f0
\
u4e4b
\
u4e3a
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u7684
\
u4e00
\
u4e2a
\
u5b50
\
u5e8f
\
u5217
"
:
0
,
"
\
u7a0b
\
u5e8f
\
u6216
\
u8005
\
u81ea
\
u5b9a
\
u4e49
\
u4e00
\
u4e2a
\
u542b
\
u6709
\
u542f
\
u52a8
\
u811a
\
u672c
\
u7684imag
"
:
9
,
"
\
u7a97
\
u6237
"
:
1
,
"
\
u7aef
\
u81ea
\
u5b9a
\
u4e49
\
u4e00
\
u4e2a
"
:
22
,
"
\
u7b2c
"
:
1
,
"
\
u7b2c
\
u4e00
\
u4e2a
\
u53c2
\
u6570
\
u662f
"
:
23
,
"
\
u7b2c
\
u4e00
\
u4e2alast
"
:
1
,
"
\
u7b2c
\
u4e00
\
u4e2apass
\
u4f1a
\
u4ecepython
\
u7aef
\
u8bfb
\
u53d6
\
u6570
\
u636e
"
:
23
,
"
\
u7b2c
\
u4e00
\
u5929
"
:
1
,
"
\
u7b2c
\
u4e00
\
u6bb5
\
u6570
\
u636e
\
u4e3a
\
u8fd9
\
u5f20
\
u56fe
\
u7247
\
u7684label
"
:
23
,
"
\
u7b2c
\
u4e8c
\
u4e2a
\
u53c2
\
u6570
\
u662ffilenam
"
:
23
,
"
\
u7b2c
\
u4e8c
\
u6bb5
\
u6570
\
u636e
\
u4e3a
\
u8fd9
\
u4e2a
\
u56fe
\
u7247
\
u7684
\
u50cf
\
u7d20
\
u503c
"
:
23
,
"
\
u7b80
\
u5355
\
u4f18
\
u5316
"
:
3
,
"
\
u7b80
\
u5355
\
u7684
\
u4f7f
\
u7528
"
:
22
,
"
\
u7b80
\
u5355
\
u7684
\
u4f7f
\
u7528
\
u573a
\
u666f
"
:
22
,
"
\
u7b80
\
u5355
\
u7684
\
u4f7f
\
u7528
\
u6837
\
u4f8b
\
u4e3a
"
:
3
,
"
\
u7b80
\
u5355
\
u7684
\
u542b
\
u6709ssh
\
u7684dockerfile
\
u5982
\
u4e0b
"
:
9
,
"
\
u7b80
\
u5355
\
u7684pydataprovider
\
u6837
\
u4f8b
\
u5c31
\
u8bf4
\
u660e
\
u5b8c
\
u6bd5
\
u4e86
"
:
23
,
"
\
u7b80
\
u76f4
"
:
1
,
"
\
u7c7b
\
u522bid
"
:
13
,
"
\
u7c7b
\
u522bid
\
u7684
\
u6570
\
u636e
\
u7c7b
\
u578b
"
:
13
,
"
\
u7c7b
\
u578b
\
u53ef
\
u4ee5
\
u662fpaddlepaddle
\
u652f
\
u6301
\
u7684
\
u4efb
\
u610f
\
u8f93
\
u5165
\
u6570
\
u636e
\
u7c7b
\
u578b
"
:
0
,
"
\
u7c7b
\
u578b
\
u6765
\
u8bbe
\
u7f6e
"
:
23
,
"
\
u7eb5
\
u5411
\
u5305
\
u62ec
\
u56db
\
u4e2a
\
u7248
\
u672c
"
:
9
,
"
\
u7ec3
"
:
16
,
"
\
u7ed3
\
u4e0a
\
u8ff0
\
u7f51
\
u7edc
\
u7ed3
\
u6784
\
u5728amazon
"
:
13
,
"
\
u7ed9
"
:
1
,
"
\
u7ed9
\
u5b9aencoder
\
u8f93
\
u51fa
\
u548c
\
u5f53
\
u524d
\
u8bcd
"
:
2
,
"
\
u7ee7
\
u7eed
\
u8bad
\
u7ec3
"
:
23
,
"
\
u7ef4
\
u5ea6
\
u4e3aword
"
:
13
,
"
\
u7ef4
\
u5ea6
\
u662f
\
u7c7b
\
u522b
\
u4e2a
\
u6570
"
:
13
,
"
\
u7ef4
\
u5ea6
\
u662f
\
u8bcd
\
u5178
\
u5927
\
u5c0f
"
:
13
,
"
\
u7f13
\
u5b58
\
u8bad
\
u7ec3
\
u6570
\
u636e
\
u5230
\
u5185
\
u5b58
"
:
23
,
"
\
u7f16
\
u8bd1
\
u53c2
\
u6570
\
u9009
\
u9879
\
u6587
\
u4ef6
"
:
21
,
"
\
u7f16
\
u8bd1
\
u73af
\
u5883
\
u548c
\
u6e90
\
u4ee3
\
u7801
"
:
9
,
"
\
u7f16
\
u8bd1
\
u9009
\
u9879
"
:
4
,
"
\
u7f16
\
u8bd1
\
u9009
\
u9879
\
u4e3b
\
u8981
\
u63a8
\
u8350
\
u9ad8
\
u7ea7
\
u7528
\
u6237
\
u67e5
\
u770b
"
:
8
,
"
\
u7f16
\
u8bd1
\
u9009
\
u9879
\
u5217
\
u8868
\
u5982
\
u4e0b
"
:
4
,
"
\
u7f16
\
u8bd1paddlepaddle
\
u7684gpu
\
u7248
\
u672c
\
u5e76
\
u4e0d
\
u9700
\
u8981
\
u4e00
\
u5b9a
\
u5728
\
u5177
\
u6709gpu
"
:
3
,
"
\
u7f51
\
u7edc
\
u540d
\
u79f0
"
:
13
,
"
\
u7f51
\
u7edc
\
u914d
\
u7f6e
"
:
13
,
"
\
u7f6e
\
u8fd9
\
u4e9b
\
u53d8
\
u91cf
"
:
4
,
"
\
u800c
"
:
9
,
"
\
u800c
\
u4e09
\
u79cd
\
u5e8f
\
u5217
\
u6a21
\
u5f0f
\
u4e3a
"
:
23
,
"
\
u800c
\
u4e0d
\
u4f7f
\
u7528docker
"
:
9
,
"
\
u800c
\
u4e0d
\
u7528
\
u5173
\
u5fc3
\
u6570
\
u636e
\
u5982
\
u4f55
\
u4f20
\
u8f93
\
u7ed9paddlepaddl
"
:
23
,
"
\
u800c
\
u4e14
\
u9884
\
u6d4b
\
u7f51
\
u7edc
\
u901a
\
u5e38
\
u76f4
\
u63a5
\
u8f93
\
u51fa
\
u6700
\
u540e
\
u4e00
\
u5c42
\
u7684
\
u7ed3
\
u679c
\
u800c
\
u4e0d
\
u662f
\
u50cf
\
u8bad
\
u7ec3
\
u65f6
\
u4e00
\
u6837
\
u4ee5cost
"
:
26
,
"
\
u800c
\
u5728
"
:[
4
,
23
],
"
\
u800c
\
u5982
\
u679c
\
u6309
\
u987a
\
u5e8f
\
u8c03
\
u7528
\
u8fd9
\
u4e9bgenerator
\
u5c31
\
u4e0d
\
u4f1a
\
u51fa
\
u73b0
\
u8fd9
\
u4e2a
\
u95ee
\
u9898
"
:
23
,
"
\
u800c
\
u662f
\
u5c06
\
u6837
\
u672c
\
u7684
\
u5730
\
u5740
\
u653e
\
u5165
\
u53e6
\
u4e00
\
u4e2a
\
u6587
\
u672c
"
:
23
,
"
\
u800c
\
u6ca1
\
u6709
\
u6d4b
\
u8bd5
\
u6570
\
u636e
"
:
23
,
"
\
u800c
\
u7279
\
u5f81
\
u5373
\
u4e3a
"
:
23
,
"
\
u800c
\
u8fd9
\
u4e2a
\
u4e00
\
u822c
\
u8bf4
\
u660epaddlepaddle
\
u5df2
\
u7ecf
\
u5b89
\
u88c5
\
u5b8c
\
u6bd5
\
u4e86
"
:
10
,
"
\
u800c
\
u8fd9
\
u4e2a
\
u53d8
\
u91cf
\
u63a8
\
u8350
\
u5927
\
u4e8e
\
u8bad
\
u7ec3
\
u7684batch
"
:
23
,
"
\
u800c
\
u8fd9
\
u4e2acontext
\
u53ef
\
u80fd
\
u4f1a
\
u975e
\
u5e38
"
:
23
,
"
\
u800c
\
u975e
\
u9759
\
u6001
\
u52a0
\
u8f7dcuda
\
u52a8
\
u6001
\
u5e93
"
:
4
,
"
\
u800cexpand
"
:
1
,
"
\
u800cgpu
\
u7684
\
u9a71
\
u52a8
\
u548c
\
u8bbe
\
u5907
\
u5168
\
u90e8
\
u6620
\
u5c04
\
u5230
\
u4e86
\
u5bb9
\
u5668
\
u5185
"
:
9
,
"
\
u800cpaddlepaddle
\
u8fdb
\
u7a0b
\
u5e2e
\
u52a9
\
u7528
\
u6237
\
u505a
\
u4e86
"
:
23
,
"
\
u800crnn
\
u662f
\
u6700
\
u6d41
\
u884c
\
u7684
\
u9009
\
u62e9
"
:
2
,
"
\
u80fd
\
u591f
\
u5904
\
u7406
\
u53cc
\
u5c42
\
u5e8f
\
u5217
"
:
2
,
"
\
u80fd
\
u591f
\
u5bf9
\
u53cc
\
u5411
\
u5e8f
\
u5217
\
u8fdb
\
u884c
\
u5904
\
u7406
\
u7684
\
u6709
"
:
2
,
"
\
u80fd
\
u591f
\
u8bb0
\
u5f55
\
u4e0a
\
u4e00
\
u4e2asubseq
"
:
2
,
"
\
u811a
\
u672c
"
:
9
,
"
\
u811a
\
u672c
\
u53ef
\
u4ee5
\
u542f
\
u52a8paddlepaddle
\
u7684
\
u8bad
\
u7ec3
\
u8fdb
\
u7a0b
\
u548cpserv
"
:
9
,
"
\
u811a
\
u672c
\
u548c
"
:
9
,
"
\
u811a
\
u672c
\
u7c7b
\
u4f3c
\
u4e8e
"
:
9
,
"
\
u81ea
\
u52a8
\
u5b8c
\
u6210
\
u8fd9
\
u4e00
\
u8fc7
\
u7a0b
"
:
2
,
"
\
u81ea
\
u5b9a
\
u4e49
\
u4e00
\
u4e2adataprovid
"
:
22
,
"
\
u81f3
\
u5c11
\
u5177
\
u67093
"
:
9
,
"
\
u81f3
\
u6b64
"
:[
9
,
23
],
"
\
u8212
\
u9002
"
:
1
,
"
\
u82e5
\
u5e72
\
u4e2a
\
u53e5
\
u5b50
\
u6784
\
u6210
\
u4e00
\
u4e2a
\
u6bb5
\
u843d
"
:
0
,
"
\
u82e5
\
u8f93
\
u51fa
\
u662f
\
u5355
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
\
u82e5
\
u8f93
\
u51fa
\
u662f
\
u53cc
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
\
u83b7
\
u53d6
\
u5229
\
u7528one
"
:
13
,
"
\
u83b7
\
u53d6
\
u6bcf
\
u4e2a
\
u5355
\
u8bcd
\
u5de6
\
u53f3
\
u5404k
\
u4e2a
\
u8fd1
\
u90bb
"
:
13
,
"
\
u83b7
\
u53d6
\
u8be5
\
u6761
\
u6837
\
u672c
\
u7c7b
\
u522bid
"
:
13
,
"
\
u8868
\
u793a
\
u5c06
\
u5916
\
u5c42
\
u7684outer
"
:
1
,
"
\
u8868
\
u793a
\
u6574
\
u6570
\
u6807
\
u7b7e
"
:
23
,
"
\
u8868
\
u793a
\
u662f
\
u5426
\
u5141
\
u8bb8paddle
\
u6682
\
u5b58
\
u7565
\
u5fae
\
u591a
\
u4f59pool_size
\
u7684
\
u6570
\
u636e
"
:
23
,
"
\
u8868
\
u793a
\
u7a00
\
u758f
\
u7684
\
u5411
\
u91cf
"
:
23
,
"
\
u8868
\
u793a
\
u7a00
\
u758f
\
u7684
\
u96f6
\
u4e00
\
u5411
\
u91cf
"
:
23
,
"
\
u8868
\
u793a
\
u7a20
\
u5bc6
\
u7684
\
u6d6e
\
u70b9
\
u6570
\
u5411
\
u91cf
"
:
23
,
"
\
u8868
\
u793a
\
u8fc7
\
u4e8620
\
u4e2abatch
"
:
13
,
"
\
u8868
\
u793a
\
u8fc7
\
u4e862560
\
u4e2a
\
u6837
\
u672c
"
:
13
,
"
\
u8868
\
u793a
\
u8fd9
\
u4e2adataprovider
\
u662f
\
u8bad
\
u7ec3
\
u7528
\
u7684dataprovider
\
u6216
\
u8005
\
u6d4b
\
u8bd5
\
u7528
\
u7684
"
:
23
,
"
\
u8868
\
u793asubseq
\
u95f4
\
u4e0d
\
u5b58
\
u5728
\
u8054
\
u7cfb
"
:
1
,
"
\
u88ab
\
u6269
\
u5c55
\
u4e3a
\
u4e00
\
u4e2a
\
u5355
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
\
u8981
\
u6c42
\
u5355
\
u5c42
\
u5e8f
\
u5217
\
u542b
\
u6709
\
u5143
\
u7d20
\
u7684
\
u6570
\
u76ee
"
:
0
,
"
\
u8981
\
u751f
\
u6210
\
u7684
\
u76ee
\
u6807
\
u5e8f
\
u5217
"
:
2
,
"
\
u89c1
"
:
1
,
"
\
u89e3
\
u51b3
\
u529e
\
u6cd5
\
u662f
\
u5c06cuda
"
:
10
,
"
\
u89e3
\
u51b3
\
u65b9
\
u6cd5
\
u5f88
\
u7b80
\
u5355
"
:
10
,
"
\
u89e3
\
u6790
\
u8bad
\
u7ec3
\
u65f6
\
u7684
\
u914d
\
u7f6e
\
u6587
\
u4ef6
"
:
26
,
"
\
u89e3
\
u91ca
"
:
13
,
"
\
u8ba9
\
u795e
\
u7ecf
\
u7f51
\
u7edc
\
u53ef
\
u4ee5
\
u8fdb
\
u884c
\
u8bad
\
u7ec3
"
:
22
,
"
\
u8bad
\
u7ec3
"
:
9
,
"
\
u8bad
\
u7ec3
\
u6570
\
u636e
\
u975e
\
u5e38
\
u591a
\
u7684
\
u60c5
\
u51b5
\
u4e0b
"
:
23
,
"
\
u8bad
\
u7ec3
\
u6587
\
u4ef6
\
u5217
\
u8868
"
:
22
,
"
\
u8bad
\
u7ec3
\
u65f6
\
u6240
\
u9700
\
u8bbe
\
u7f6e
\
u7684
\
u4e3b
\
u8981
\
u53c2
\
u6570
\
u5982
\
u4e0b
"
:
13
,
"
\
u8bad
\
u7ec3
\
u7684
\
u65f6
\
u5019
\
u9ed8
\
u8ba4shuffl
"
:
23
,
"
\
u8bad
\
u7ec3
\
u811a
\
u672c
"
:
13
,
"
\
u8bad
\
u7ec3
\
u811a
\
u672c
\
u5728
"
:
13
,
"
\
u8bad
\
u7ec3
\
u8f6e
\
u6b21
"
:
13
,
"
\
u8bb2
\
u6570
\
u636e
\
u53d1
\
u9001
\
u7ed9paddlepaddl
"
:
23
,
"
\
u8bb2
\
u89e3
\
u5982
\
u4f55
\
u4f7f
\
u7528
\
u53cc
\
u5c42rnn
"
:
1
,
"
\
u8bbe
\
u7f6e
\
u4e0b
\
u5217
\
u7f16
\
u8bd1
\
u9009
\
u9879
\
u65f6
"
:
4
,
"
\
u8bbe
\
u7f6e
\
u6210
"
:
23
,
"
\
u8bbe
\
u7f6e
\
u6210
\
u4e86
\
u5e8f
\
u5217
"
:
23
,
"
\
u8bbe
\
u7f6e
\
u6210true
\
u7684
\
u8bdd
"
:
23
,
"
\
u8bbe
\
u7f6e
\
u8f93
\
u5165
\
u7c7b
\
u578b
"
:
23
,
"
\
u8bc4
\
u4f30
\
u4ea7
\
u54c1
\
u7684
\
u8d28
\
u91cf
"
:
13
,
"
\
u8bcd
\
u6027
\
u6807
\
u6ce8
"
:
12
,
"
\
u8be5
\
u5c42
\
u795e
\
u7ecf
\
u5143
\
u4e2a
\
u6570
"
:
13
,
"
\
u8be5
\
u6570
\
u636e
"
:
23
,
"
\
u8be5
\
u6784
\
u5efa
\
u811a
\
u672c
\
u5145
\
u5206
\
u8003
\
u8651
\
u4e86
\
u7f51
\
u7edc
\
u4e0d
\
u7a33
\
u5b9a
\
u7684
\
u60c5
\
u51b5
"
:
3
,
"
\
u8be5
\
u6a21
\
u578b
\
u4f9d
\
u7136
\
u662f
\
u4f7f
\
u7528
\
u903b
\
u8f91
\
u56de
\
u5f52
\
u5206
\
u7c7b
\
u7f51
\
u7edc
\
u7684
\
u6846
\
u67b6
"
:
13
,
"
\
u8be5
\
u76ee
\
u5f55
\
u4e0b
\
u6709
\
u4e24
\
u4e2a
\
u6587
\
u4ef6
"
:
3
,
"
\
u8be5
\
u811a
\
u672c
\
u7684
\
u4f7f
\
u7528
\
u65b9
\
u6cd5
\
u662f
"
:
3
,
"
\
u8be5image
\
u57fa
\
u4e8eubuntu
"
:
3
,
"
\
u8be5image
\
u7684
\
u6784
\
u5efa
\
u5728dock
"
:
3
,
"
\
u8be6
\
u60c5
\
u8bf7
\
u53c2
\
u8003
"
:
26
,
"
\
u8be6
\
u7ec6
\
u7684
\
u53c2
\
u6570
\
u89e3
\
u91ca
\
u5982
\
u4e0b
\
u9762
\
u8868
\
u683c
"
:
13
,
"
\
u8be6
\
u7ec6
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
\
u8bf7
\
u53c2
\
u8003
"
:
26
,
"
\
u8be6
\
u7ec6
\
u7684cmake
\
u4f7f
\
u7528
\
u65b9
\
u6cd5
\
u53ef
\
u4ee5
\
u53c2
\
u8003
"
:
4
,
"
\
u8be6
\
u7ec6
\
u89c1
"
:
0
,
"
\
u8bed
\
u4e49
\
u5b8c
\
u5168
\
u76f8
\
u540c
"
:
1
,
"
\
u8bf4
\
u660e
"
:
4
,
"
\
u8bf4
\
u660e
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
"
:
10
,
"
\
u8bf7
\
u53c2
\
u8003
"
:[
9
,
23
],
"
\
u8bf7
\
u53c2
\
u8003
\
u4e0b
\
u8282refer
"
:
23
,
"
\
u8bf7
\
u53c2
\
u8003
\
u4e0b
\
u8ff0
\
u6587
\
u7ae0
"
:
22
,
"
\
u8bf7
\
u5b89
\
u88c5cuda
"
:
10
,
"
\
u8bfb
\
u5165
\
u89e3
\
u6790
\
u8bad
\
u7ec3
\
u914d
\
u7f6e
"
:
26
,
"
\
u8bfb
\
u53d6
\
u6570
\
u636e
"
:
23
,
"
\
u8c03
\
u7528
"
:
4
,
"
\
u8c03
\
u7528
\
u4e00
\
u6b21
"
:
23
,
"
\
u8c03
\
u7528
\
u7b2c
\
u4e8c
\
u6b21
\
u7684
\
u65f6
\
u5019
"
:
23
,
"
\
u8d1f
\
u6837
\
u672c
"
:
13
,
"
\
u8d1f
\
u8d23
\
u591a
\
u673a
\
u8bad
\
u7ec3
\
u4e2d
\
u7684
\
u53c2
\
u6570
\
u805a
\
u5408
\
u5de5
\
u4f5c
"
:
16
,
"
\
u8d1f
\
u9762
\
u60c5
\
u7eea
\
u4e24
\
u7c7b
"
:
23
,
"
\
u8d77
"
:
1
,
"
\
u8def
\
u5f84
\
u53d8
\
u91cf
\
u4e3a
"
:
4
,
"
\
u8f83
"
:
1
,
"
\
u8f93
\
u5165
"
:
0
,
"
\
u8f93
\
u5165
\
u548c
\
u8f93
\
u51fa
\
u90fd
\
u662f
\
u5355
\
u5c42
\
u5e8f
\
u5217
"
:
2
,
"
\
u8f93
\
u5165
\
u548c
\
u8f93
\
u51fa
\
u90fd
\
u662f
\
u53cc
\
u5c42
\
u5e8f
\
u5217
"
:
2
,
"
\
u8f93
\
u5165n
\
u4e2a
\
u5355
\
u8bcd
"
:
13
,
"
\
u8f93
\
u51fa
"
:
0
,
"
\
u8f93
\
u51fa
\
u4e00
\
u4e2a
\
u5355
\
u5c42
\
u5e8f
\
u5217
"
:
2
,
"
\
u8f93
\
u51fa
\
u4e00
\
u4e2a
\
u53cc
\
u5c42
\
u5e8f
\
u5217
"
:
2
,
"
\
u8f93
\
u51fa
\
u4e3an
\
u4e2aword
"
:
13
,
"
\
u8f93
\
u51fa
\
u5e8f
\
u5217
\
u7684
\
u7c7b
\
u578b
"
:
0
,
"
\
u8f93
\
u51fa
\
u5e8f
\
u5217
\
u7684
\
u8bcd
\
u8bed
\
u6570
\
u548c
\
u8f93
\
u5165
\
u5e8f
\
u5217
\
u4e00
\
u81f4
"
:
2
,
"
\
u8fc7
\
u4e86
\
u4e00
\
u4e2a
\
u5f88
\
u7b80
\
u5355
\
u7684recurr
"
:
1
,
"
\
u8fd0
\
u884c
"
:[
9
,
10
],
"
\
u8fd0
\
u884c
\
u4f7f
\
u7528
\
u7684cudnn
\
u5c3d
\
u91cf
\
u662f
\
u540c
\
u4e00
\
u4e2a
\
u7248
\
u672c
"
:
4
,
"
\
u8fd0
\
u884c
\
u8fd9
\
u4e2acontain
"
:
9
,
"
\
u8fd0
\
u884cpaddlepaddle
\
u7684gpu
\
u7248
\
u672c
\
u4e00
\
u5b9a
\
u8981
\
u5728
\
u5177
\
u6709cuda
\
u7684
\
u673a
\
u5668
\
u4e0a
\
u8fd0
\
u884c
"
:
3
,
"
\
u8fd1
"
:
1
,
"
\
u8fd4
\
u56de0
"
:
23
,
"
\
u8fd4
\
u56de
\
u4e00
\
u4e2alist
\
u6216
\
u8005tupl
"
:
23
,
"
\
u8fd4
\
u56de
\
u6570
\
u636e
\
u5728paddlepaddle
\
u4e2d
\
u662f
\
u4ec5
\
u4ec5
\
u8fd4
\
u56de
\
u4e00
\
u6761
\
u5b8c
\
u6574
\
u7684
\
u8bad
\
u7ec3
\
u6837
\
u672c
"
:
23
,
"
\
u8fd4
\
u56de
\
u7684
\
u987a
\
u5e8f
\
u9700
\
u8981
\
u548c
"
:
23
,
"
\
u8fd4
\
u56debatch_size
\
u7684
\
u5927
\
u5c0f
"
:
23
,
"
\
u8fd8
\
u4f1a
"
:
1
,
"
\
u8fd8
\
u662f
"
:
1
,
"
\
u8fd8
\
u6709
"
:
1
,
"
\
u8fd9
"
:[
1
,
13
],
"
\
u8fd93
\
u4e2a
\
u5b50
\
u6b65
\
u9aa4
\
u53ef
\
u914d
\
u7f6e
\
u4e3a
"
:
13
,
"
\
u8fd9
\
u4e00
\
u8fc7
\
u7a0b
\
u5bf9
\
u7528
\
u6237
\
u662f
\
u5b8c
\
u5168
\
u900f
\
u660e
\
u7684
"
:
2
,
"
\
u8fd9
\
u4e09
\
u4e2alayer
\
u5c06
\
u5b83
\
u5148
\
u53d8
\
u6210
\
u4e00
\
u4e2a
\
u5143
\
u7d20
"
:
1
,
"
\
u8fd9
\
u4e24
\
u5c42
\
u4ec5
\
u662f
\
u4e3a
\
u4e86
\
u5c55
\
u793a
\
u5b83
\
u4eec
\
u7684
\
u7528
\
u6cd5
"
:
1
,
"
\
u8fd9
\
u4e2a
"
:
1
,
"
\
u8fd9
\
u4e2a
\
u4e5f
\
u662fpaddlepaddle
\
u6240
\
u80fd
\
u591f
\
u4fdd
\
u8bc1
\
u7684shuffle
\
u7c92
\
u5ea6
"
:
23
,
"
\
u8fd9
\
u4e2a
\
u51fd
\
u6570
\
u4ee5
\
u4e00
\
u6761
\
u6570
\
u636e
\
u4e3a
\
u53c2
\
u6570
"
:
23
,
"
\
u8fd9
\
u4e2a
\
u51fd
\
u6570
\
u4f1a
\
u5728
"
:
23
,
"
\
u8fd9
\
u4e2a
\
u51fd
\
u6570
\
u5728
\
u521d
\
u59cb
\
u5316
\
u7684
\
u65f6
\
u5019
\
u4f1a
\
u88ab
\
u8c03
\
u7528
"
:
23
,
"
\
u8fd9
\
u4e2a
\
u51fd
\
u6570
\
u7684
\
u53c2
\
u6570
\
u662f
"
:
23
,
"
\
u8fd9
\
u4e2a
\
u521d
\
u59cb
\
u5316
\
u51fd
\
u6570
\
u5177
\
u6709
\
u5982
\
u4e0b
\
u53c2
\
u6570
"
:
23
,
"
\
u8fd9
\
u4e2a
\
u53c2
\
u6570
\
u5728
\
u8fd9
\
u4e2a
\
u6837
\
u4f8b
\
u91cc
\
u6ca1
\
u6709
\
u4f7f
\
u7528
"
:
23
,
"
\
u8fd9
\
u4e2a
\
u53c2
\
u6570
\
u88abpaddlepaddle
\
u8fdb
\
u7a0b
\
u4f20
\
u5165
"
:
23
,
"
\
u8fd9
\
u4e2a
\
u548c
\
u5728
"
:
23
,
"
\
u8fd9
\
u4e2a
\
u58f0
\
u660e
\
u57fa
\
u672c
\
u4e0a
\
u548cmnist
\
u7684
\
u6837
\
u4f8b
\
u4e00
\
u81f4
"
:
23
,
"
\
u8fd9
\
u4e2a
\
u5916
\
u5c42memori
"
:
1
,
"
\
u8fd9
\
u4e2a
\
u5b57
\
u5178
\
u53ef
\
u4ee5
\
u5728
"
:
23
,
"
\
u8fd9
\
u4e2a
\
u5bf9
\
u5e94
\
u5173
\
u7cfb
\
u53ef
\
u80fd
\
u4e0d
\
u6b63
\
u786e
"
:
23
,
"
\
u8fd9
\
u4e2a
\
u5bf9
\
u8c61
\
u548cprocess
\
u7684
\
u7b2c
\
u4e00
\
u4e2a
\
u53c2
\
u6570
\
u4e00
\
u81f4
"
:
23
,
"
\
u8fd9
\
u4e2a
\
u5de5
\
u5177
\
u7c7b
\
u63a5
\
u6536
\
u548cpydataprovider2
\
u4e00
\
u6837
\
u7684
\
u8f93
\
u5165
\
u6570
\
u636e
"
:
26
,
"
\
u8fd9
\
u4e2a
\
u5e8f
\
u5217
\
u6a21
\
u578b
\
u6bd4
\
u8f83
\
u590d
\
u6742
"
:
23
,
"
\
u8fd9
\
u4e2a
\
u5e8f
\
u5217
\
u7684
\
u6bcf
\
u4e2a
\
u5143
\
u7d20
\
u53c8
\
u662f
\
u4e00
\
u4e2a
\
u5e8f
\
u5217
"
:
2
,
"
\
u8fd9
\
u4e2a
\
u63a5
\
u53e3
\
u5e76
\
u4e0d
\
u7528
\
u6237
\
u53cb
\
u597d
"
:
26
,
"
\
u8fd9
\
u4e2a
\
u663e
\
u793a
\
u5668
\
u5f88
\
u68d2
"
:
13
,
"
\
u8fd9
\
u4e2a
\
u672c
\
u8eab
\
u4e0d
\
u662f
\
u4e00
\
u4e2a
\
u5f88
"
:
23
,
"
\
u8fd9
\
u4e2a
\
u6a21
\
u5757
\
u4e2d
\
u7684
"
:
23
,
"
\
u8fd9
\
u4e2a
\
u8bbe
\
u7f6e
\
u4e3a
"
:
23
,
"
\
u8fd9
\
u4e2a
\
u8f6f
\
u4ef6
\
u5305
\
u6587
\
u6863
\
u76f8
\
u5bf9
\
u5b8c
\
u5584
"
:
26
,
"
\
u8fd9
\
u4e2a
\
u8fc7
\
u7a0b
\
u5bf9
\
u7528
\
u6237
\
u4e5f
\
u662f
\
u900f
\
u660e
\
u7684
"
:
2
,
"
\
u8fd9
\
u4e2a
\
u95ee
\
u9898
\
u662fpydataprovider
\
u8bfb
\
u6570
\
u636e
\
u65f6
\
u5019
\
u7684
\
u903b
\
u8f91
\
u95ee
\
u9898
"
:
23
,
"
\
u8fd9
\
u4e2alayer
\
u7684
\
u8f93
\
u51fa
\
u4f1a
\
u4f5c
\
u4e3a
\
u6574
\
u4e2a
"
:
2
,
"
\
u8fd9
\
u4e9b
\
u53c2
\
u6570
\
u5305
\
u62ecpaddle
\
u5b9a
\
u4e49
\
u7684
\
u53c2
\
u6570
"
:
23
,
"
\
u8fd9
\
u4e9b
\
u53d8
"
:
4
,
"
\
u8fd9
\
u4e9b
\
u53d8
\
u91cf
\
u53ea
\
u5728
\
u7b2c
\
u4e00
\
u6b21cmake
\
u7684
\
u65f6
\
u5019
\
u6709
\
u6548
"
:
4
,
"
\
u8fd9
\
u4e9b
\
u53d8
\
u91cf
\
u5747
\
u53ef
\
u4ee5
\
u4f7f
\
u7528
"
:
4
,
"
\
u8fd9
\
u4e9b
\
u5b50
\
u53e5
\
u7684
\
u957f
\
u5ea6
\
u5f80
\
u5f80
\
u4e0d
\
u7b49
\
u957f
"
:
1
,
"
\
u8fd9
\
u4e9b
\
u6d41
\
u7a0b
\
u4e2d
\
u7684
\
u6570
\
u636e
\
u4e0b
\
u8f7d
"
:
13
,
"
\
u8fd9
\
u662f
\
u4e00
\
u79cd
\
u975e
\
u5e38
\
u7075
\
u6d3b
\
u7684
\
u6570
\
u636e
\
u7ec4
\
u7ec7
\
u65b9
\
u5f0f
"
:
0
,
"
\
u8fd9
\
u6837
\
u505a
\
u53ef
\
u4ee5
\
u907f
\
u514d
\
u5f88
\
u591a
\
u6b7b
\
u9501
\
u95ee
\
u9898
"
:
23
,
"
\
u8fd9
\
u79cd
\
u7c7b
\
u578b
\
u7684
\
u8f93
\
u5165
\
u5fc5
\
u987b
\
u901a
\
u8fc7
"
:
2
,
"
\
u8fd9
\
u884c
\
u7684
\
u4f5c
\
u7528
\
u662f
\
u8bbe
\
u7f6edataprovider
\
u7684
\
u4e00
\
u4e9b
\
u5c5e
\
u6027
"
:
23
,
"
\
u8fd9
\
u91cc
"
:
23
,
"
\
u8fd9
\
u91cc
\
u4e3e
\
u4f8b
\
u7684
\
u6570
\
u636e
\
u662f
\
u82f1
\
u6587
\
u60c5
\
u611f
\
u5206
\
u7c7b
\
u7684
\
u6570
\
u636e
"
:
23
,
"
\
u8fd9
\
u91cc
\
u4ee5
"
:
13
,
"
\
u8fd9
\
u91cc
\
u4ee5mnist
\
u624b
\
u5199
\
u8bc6
\
u522b
\
u4e3a
\
u4f8b
"
:
23
,
"
\
u8fd9
\
u91cc
\
u53ef
\
u4ee5
\
u53c2
\
u8003paddle
\
u7684
"
:
21
,
"
\
u8fd9
\
u91cc
\
u6211
\
u4eec
\
u4f7f
\
u7528
\
u7b80
\
u5355
\
u7684
\
u6587
\
u672c
\
u6587
\
u4ef6
\
u8868
\
u793amnist
\
u56fe
\
u7247
"
:
23
,
"
\
u8fd9
\
u91cc
\
u6307
\
u5b9a
\
u8bcd
\
u5178
"
:
13
,
"
\
u8fd9
\
u91cc
\
u6ca1
\
u6709
\
u4ecb
\
u7ecd
\
u591a
\
u673a
\
u5206
\
u5e03
\
u5f0f
\
u8bad
\
u7ec3
"
:
13
,
"
\
u8fd9
\
u91cc
\
u7684
"
:
23
,
"
\
u8fd9
\
u91cc
\
u7684
\
u8f93
\
u5165
\
u7279
\
u5f81
\
u662f
\
u8bcdid
\
u7684
\
u5e8f
\
u5217
"
:
23
,
"
\
u8fd9
\
u91cc
\
u8981
\
u6ce8
\
u610f
\
u9884
\
u6d4b
\
u6570
\
u636e
\
u901a
\
u5e38
"
:
26
,
"
\
u8fd9
\
u91cc
\
u8bbe
\
u7f6e
\
u7684
\
u662f
\
u8fd4
\
u56de
\
u4e00
\
u4e2a
"
:
23
,
"
\
u8fd9
\
u91cc
\
u8bf4
\
u660e
\
u4e86
\
u8bad
\
u7ec3
\
u6570
\
u636e
\
u662f
"
:
23
,
"
\
u8fd9
\
u91cc
\
u91c7
\
u7528adam
\
u4f18
\
u5316
\
u65b9
\
u6cd5
"
:
13
,
"
\
u8fdb
\
u5165
\
u8be5
\
u6e90
\
u7801
\
u76ee
\
u5f55
"
:
3
,
"
\
u8fdb
\
u5165docker
"
:
9
,
"
\
u8fdc
\
u7a0b
\
u8bbf
\
u95ee
"
:
9
,
"
\
u8fde
\
u63a5
"
:
2
,
"
\
u8fde
\
u63a5
\
u8bf7
\
u53c2
\
u8003
"
:
13
,
"
\
u9002
\
u4e2d
"
:
1
,
"
\
u9009
"
:
1
,
"
\
u9009
\
u62e9
"
:
1
,
"
\
u9009
\
u62e9
\
u666e
\
u901acpu
\
u7248
\
u672c
\
u7684devel
\
u7248
\
u672c
\
u7684imag
"
:
9
,
"
\
u9009
\
u9879
"
:
4
,
"
\
u901a
\
u5e38
\
u6839
\
u636e
\
u4efb
\
u52a1
\
u9700
\
u6c42
\
u8fdb
\
u884c
\
u4e0d
\
u540c
\
u8bbe
\
u7f6e
"
:
1
,
"
\
u901a
\
u77e5
"
:
1
,
"
\
u901a
\
u8fc7
\
u4e24
\
u4e2a
\
u5d4c
\
u5957
\
u7684
"
:
2
,
"
\
u901a
\
u8fc7
\
u591a
\
u7ec4
\
u8bed
\
u4e49
\
u76f8
\
u540c
\
u7684
\
u5355
\
u53cc
\
u5c42rnn
\
u914d
\
u7f6e
"
:
1
,
"
\
u901a
\
u8fc7
\
u5f15
\
u7528memory
\
u5f97
\
u5230
\
u8fd9
\
u4e2alayer
\
u4e0a
\
u4e00
\
u4e2a
\
u65f6
\
u523b
\
u7684
\
u8f93
\
u51fa
"
:
2
,
"
\
u901a
\
u8fc7
\
u5f15
\
u7528memory
\
u5f97
\
u5230
\
u8fd9
\
u4e2alayer
\
u4e0a
\
u4e00
\
u4e2a
\
u65f6
\
u523b
\
u8f93
\
u51fa
"
:
2
,
"
\
u901a
\
u8fc7
\
u7f16
\
u8bd1
\
u65f6
\
u6307
\
u5b9a
\
u8def
\
u5f84
\
u6765
\
u5b9e
\
u73b0
\
u5f15
\
u7528
\
u5404
\
u79cdbla
"
:
4
,
"
\
u901a
\
u8fc7data
"
:
2
,
"
\
u903b
\
u8f91
\
u56de
\
u5f52
"
:
13
,
"
\
u9053
\
u6b49
"
:
1
,
"
\
u9069
"
:
1
,
"
\
u90a3
\
u4e48
"
:[
2
,
23
],
"
\
u90a3
\
u4e480
\
u5c42
\
u5e8f
\
u5217
\
u5373
\
u4e3a
\
u4e00
\
u4e2a
\
u8bcd
\
u8bed
"
:
2
,
"
\
u90a3
\
u4e48
\
u5728
\
u8bad
\
u7ec3
\
u8fc7
\
u7a0b
\
u4e2d
"
:
22
,
"
\
u90a3
\
u4e48
\
u5bf9
\
u5e94
\
u7684dataprovider
\
u65e2
\
u4e3a
"
:
23
,
"
\
u90a3
\
u4e48
\
u8fd9
\
u4e2a
\
u4e0b
\
u8f7d
\
u7ebf
\
u7a0b
\
u5c06
\
u4f1a
\
u5173
\
u95ed
"
:
3
,
"
\
u90a3
\
u4e48paddlepaddle
\
u4f1a
\
u7c97
\
u7565
\
u7684
\
u6839
\
u636elayer
\
u7684
\
u58f0
\
u660e
\
u987a
\
u5e8f
"
:
23
,
"
\
u90fd
"
:
1
,
"
\
u90fd
\
u4f20
\
u9012
\
u7ed9process
\
u51fd
\
u6570
"
:
23
,
"
\
u90fd
\
u662f
\
u5bf9layer1
\
u5143
\
u7d20
\
u7684
\
u62f7
\
u8d1d
"
:
0
,
"
\
u914d
\
u7f6e
"
:
1
,
"
\
u914d
\
u7f6e
\
u4e86
"
:
23
,
"
\
u914d
\
u7f6e
\
u53c2
\
u6570
\
u914d
\
u7f6e
\
u7ed9dataprovider
\
u7684
"
:
23
,
"
\
u914d
\
u7f6e
\
u6587
\
u4ef6
"
:
13
,
"
\
u914d
\
u7f6eapi
"
:
0
,
"
\
u9152
\
u5e97
"
:
1
,
"
\
u91cc
\
u4f1a
\
u7ee7
\
u7eed
\
u5b89
\
u88c5
"
:
10
,
"
\
u91cc
\
u63d0
\
u4f9b
\
u4e86
\
u6570
\
u636e
\
u4e0b
\
u8f7d
\
u811a
\
u672c
"
:
13
,
"
\
u91cc
\
u9762
\
u8bfb
\
u53d6
"
:
23
,
"
\
u91cf
\
u4e5f
\
u53ef
\
u4ee5
\
u901a
\
u8fc7
\
u8c03
\
u7528cmake
\
u547d
\
u4ee4
\
u524d
\
u901a
\
u8fc7
\
u73af
\
u5883
\
u53d8
\
u91cf
\
u6307
\
u5b9a
"
:
4
,
"
\
u9488
\
u5bf9
\
u672c
\
u95ee
\
u9898
"
:
13
,
"
\
u94fe
\
u63a5
\
u4f55
\
u79cdblas
\
u7b49
\
u7b49
"
:
4
,
"
\
u9519
\
u8bef
\
u7387
"
:
13
,
"
\
u95f4
\
u63a5
\
u4f7f
\
u7528
"
:
1
,
"
\
u95f4
\
u9694
"
:
23
,
"
\
u9664
\
u4e86
"
:
23
,
"
\
u9664
\
u4e86boot
"
:
1
,
"
\
u9664
\
u8fc7data
\
u5c42
"
:
13
,
"
\
u9700
\
u8981
\
u53c2
\
u8003
"
:
9
,
"
\
u9700
\
u8981
\
u652f
\
u6301avx
\
u6307
\
u4ee4
\
u96c6
\
u7684cpu
"
:
9
,
"
\
u9700
\
u8981
\
u6ce8
\
u610f
"
:
23
,
"
\
u9700
\
u8981
\
u6ce8
\
u610f
\
u7684
\
u662f
"
:[
4
,
10
],
"
\
u9700
\
u8981
\
u9075
\
u5faa
\
u4ee5
\
u4e0b
\
u7ea6
\
u5b9a
"
:
2
,
"
\
u9884
\
u6d4b
\
u6570
\
u636e
\
u6307
\
u5b9atest
"
:
13
,
"
\
u9884
\
u6d4b
\
u7ed3
\
u679c
\
u4ee5
\
u6587
\
u672c
\
u7684
\
u5f62
\
u5f0f
\
u4fdd
\
u5b58
\
u5728
"
:
13
,
"
\
u9884
\
u6d4b
\
u811a
\
u672c
"
:
13
,
"
\
u9884
\
u6d4bid
"
:
13
,
"
\
u989d
\
u5916
\
u7684
\
u53c2
\
u6570
"
:
13
,
"
\
u9996
\
u5148
"
:
1
,
"
\
u9996
\
u5148
\
u5217
\
u4e3e
\
u903b
\
u8f91
\
u56de
\
u5f52
\
u7f51
\
u7edc
"
:
13
,
"
\
u9996
\
u5148
\
u6211
\
u4eec
\
u5c06
\
u8fd9
\
u4e2a
\
u6570
\
u636e
\
u6587
\
u4ef6
"
:
23
,
"
\
u9996
\
u5148
\
u8bf7
\
u53c2
\
u8003
"
:
13
,
"
\
u9aa43
"
:
13
,
"
\
u9ed8
\
u8ba4
\
u4e00
\
u4e2apass
\
u4fdd
\
u5b58
\
u4e00
\
u6b21
\
u6a21
\
u578b
"
:
13
,
"
\
u9ed8
\
u8ba4
\
u4e0d
\
u8bbe
\
u7f6e
"
:
2
,
"
\
u9ed8
\
u8ba4
\
u4e3a
\
u7b2c
\
u4e00
\
u4e2a
\
u8f93
\
u5165
"
:
2
,
"
\
u9ed8
\
u8ba4
\
u503c
"
:[
0
,
4
],
"
\
u9ed8
\
u8ba4
\
u521d
\
u59cb
\
u72b6
\
u4e3a0
"
:
2
,
"
\
u9ed8
\
u8ba4
\
u5355
\
u4f4d
\
u662fbyte
"
:
3
,
"
\
u9ed8
\
u8ba4
\
u60c5
\
u51b5
\
u4e0b
\
u4e00
\
u6761
\
u6570
\
u636e
"
:
23
,
"
adamax
\
u7b49
"
:
13
,
"
amazon
\
u7535
\
u5b50
\
u4ea7
\
u54c1
\
u8bc4
\
u8bba
\
u6570
\
u636e
"
:
13
,
"
api
\
u9884
\
u6d4b
"
:
13
,
"
argument
\
u4f20
\
u5165
"
:
23
,
"
argument
\
u5f62
\
u5f0f
\
u4f20
\
u5165
"
:
23
,
"
atlas
\
u5e93
\
u7684
\
u8def
\
u5f84
"
:
4
,
"
batches
\
u8bbe
\
u7f6e
\
u6bcf
\
u9694
\
u591a
\
u5c11batch
\
u4fdd
\
u5b58
\
u4e00
\
u6b21
\
u6a21
\
u578b
"
:
13
,
"
bool
\
u53c2
\
u6570
"
:
23
,
"
case
"
:[
13
,
25
],
"
cd
\
u5230
\
u542b
\
u6709dockerfile
\
u7684
\
u8def
\
u5f84
\
u4e2d
"
:
9
,
"
check
\
u662ffalse
\
u7684
\
u8bdd
"
:
23
,
"
cmake
\
u53ef
\
u4ee5
\
u5c06cmake
\
u9879
\
u76ee
\
u6587
\
u4ef6
"
:
4
,
"
cmake
\
u662f
\
u4e00
\
u4e2a
\
u8de8
\
u5e73
\
u53f0
\
u7684
\
u7f16
\
u8bd1
\
u811a
\
u672c
"
:
4
,
"
cmake
\
u7684
\
u5b98
\
u65b9
\
u6587
\
u6863
"
:
4
,
"
cmake
\
u7f16
\
u8bd1
\
u65f6
\
u4f1a
\
u9996
\
u5148
\
u5728
\
u7cfb
\
u7edf
\
u8def
\
u5f84
"
:
4
,
"
container
\
u540e
"
:
9
,
"
cpu
\
u7248
\
u672c
"
:
9
,
"
cuda
\
u76f8
\
u5173
\
u7684driver
\
u548c
\
u8bbe
\
u5907
\
u6620
\
u5c04
\
u8fdbcontainer
\
u4e2d
"
:
9
,
"
d
\
u547d
\
u4ee4
\
u5373
\
u53ef
"
:
4
,
"
d
\
u547d
\
u4ee4
\
u6307
\
u5b9a
"
:
4
,
"
dataprovider
\
u521b
\
u5efa
\
u7684
\
u65f6
\
u5019
\
u6267
\
u884c
"
:
23
,
"
dataprovider
\
u53ef
\
u4ee5
\
u662f
"
:
23
,
"
dataprovider
\
u63d0
\
u4f9b
\
u4e86
\
u4e24
\
u79cd
\
u7b80
\
u5355
\
u7684cache
\
u7b56
\
u7565
"
:
23
,
"
dataprovider
\
u7684
\
u5177
\
u4f53
\
u7528
\
u6cd5
\
u548c
\
u5982
\
u4f55
\
u5b9e
\
u73b0
\
u4e00
\
u4e2a
\
u65b0
\
u7684dataprovid
"
:
22
,
"
decoder
\
u5faa
\
u73af
\
u5c55
\
u5f00
\
u7684
\
u6bcf
\
u4e00
\
u4e2a
\
u65f6
\
u95f4
\
u6b65
\
u4f1a
\
u5f15
\
u7528
\
u5168
\
u90e8
\
u7ed3
\
u679c
"
:
2
,
"
decoder
\
u63a5
\
u53d7
\
u4e24
\
u4e2a
\
u8f93
\
u5165
"
:
2
,
"
decoder
\
u6bcf
\
u6b21
\
u9884
\
u6d4b
\
u4ea7
\
u751f
\
u4e0b
\
u4e00
\
u4e2a
\
u6700
\
u53ef
\
u80fd
\
u7684
\
u8bcd
\
u8bed
"
:
2
,
"
decoer
\
u67b6
\
u6784
"
:
2
,
"
devel
\
u548cdemo
"
:
9
,
"
dim
\
u7684
\
u65b0
\
u7684
\
u5411
\
u91cf
"
:
13
,
"
dim
\
u7ef4
\
u5ea6
\
u5411
\
u91cf
"
:
13
,
"
docker
\
u662f
\
u4e00
\
u4e2a
\
u57fa
\
u4e8e
\
u5bb9
\
u5668
\
u7684
\
u8f7b
\
u91cf
\
u7ea7
\
u865a
\
u62df
\
u73af
\
u5883
"
:
9
,
"
docker
\
u7684
\
u5b98
\
u65b9
\
u6587
\
u6863
"
:
9
,
"
dockerfile
\
u548cbuild
"
:
3
,
"
dockerfile
\
u662fdock
"
:
3
,
"
dockerfile
\
u7684
\
u6587
\
u6863
"
:
9
,
"
dockerfile
\
u7684
\
u6700
\
u4f73
\
u5b9e
\
u8df5
"
:
9
,
"
driver
\
u6dfb
\
u52a0
\
u5230ld_library_path
\
u4e2d
"
:
10
,
"
elec
\
u6d4b
\
u8bd5
\
u96c6
"
:
13
,
"
embedding
\
u6a21
\
u578b
\
u9700
\
u8981
\
u7a0d
\
u5fae
\
u6539
\
u53d8
\
u6570
\
u636e
\
u63d0
\
u4f9b
\
u7684
\
u811a
\
u672c
"
:
13
,
"
encoder
\
u548cdecoder
\
u53ef
\
u4ee5
\
u662f
\
u80fd
\
u591f
\
u5904
\
u7406
\
u5e8f
\
u5217
\
u7684
\
u4efb
\
u610f
\
u795e
\
u7ecf
\
u7f51
\
u7edc
\
u5355
\
u5143
"
:
2
,
"
encoder
\
u8f93
\
u51fa
"
:
2
,
"
export
"
:[
4
,
9
,
10
],
"
f
\
u4ee3
\
u8868
\
u4e00
\
u4e2a
\
u6d6e
\
u70b9
\
u6570
"
:
23
,
"
float
"
:
23
,
"
generator
\
u4fbf
\
u4f1a
\
u5b58
\
u4e0b
\
u5f53
\
u524d
\
u7684
\
u4e0a
\
u4e0b
\
u6587
"
:
23
,
"
generator
\
u7684
\
u4e0a
\
u4e0b
\
u6587
\
u4e2d
\
u5c3d
\
u91cf
\
u7559
"
:
23
,
"
generator
\
u81f3
\
u5c11
\
u8c03
\
u7528
\
u4e24
\
u6b21
\
u624d
\
u4f1a
\
u77e5
\
u9053
\
u662f
\
u5426
\
u505c
\
u6b62
"
:
23
,
"
gpu
\
u53cc
\
u7f13
\
u5b58
"
:
23
,
"
gpu
\
u7248
\
u672c
"
:
9
,
"
gpu
\
u7248
\
u672c
\
u4e8c
\
u8fdb
\
u5236
"
:
4
,
"
group
\
u548c
\
u5355
\
u5c42
\
u5e8f
\
u5217
\
u7684
\
u51e0
\
u4e4e
\
u4e00
\
u6837
"
:
1
,
"
group
\
u5916
"
:
1
,
"
gru
\
u6a21
\
u578b
"
:
13
,
"
gru
\
u6a21
\
u578b
\
u914d
\
u7f6e
"
:
13
,
"
i
\
u4ee3
\
u8868
\
u4e00
\
u4e2a
\
u6574
\
u6570
"
:
23
,
"
id
\
u4e3a0
\
u7684
\
u6982
\
u7387
"
:
13
,
"
id
\
u4e3a1
\
u7684
\
u6982
\
u7387
"
:
13
,
"
image
\
u6784
\
u5efa
\
u6e90
\
u7801
\
u653e
\
u7f6e
\
u5728
"
:
3
,
"
image
\
u7684
\
u4e3b
\
u8981
\
u63cf
\
u8ff0
\
u6587
\
u4ef6
"
:
3
,
"
image
\
u7684
\
u4e3b
\
u8981
\
u6784
\
u5efa
\
u6b65
\
u9aa4
"
:
3
,
"
image
\
u7684
\
u6784
\
u5efa
\
u6b65
\
u9aa4
"
:
3
,
"
import
"
:[
13
,
23
,
26
],
"
include
\
u4e0b
\
u9700
\
u8981
\
u5305
\
u542bcbla
"
:
4
,
"
include
\
u4e0b
\
u9700
\
u8981
\
u5305
\
u542bmkl
"
:
4
,
"
init_hook
\
u53ef
\
u4ee5
\
u4f20
\
u5165
\
u4e00
\
u4e2a
\
u51fd
\
u6570
"
:
23
,
"
int
"
:[
1
,
13
,
23
],
"
key
\
u662fdata_layer
\
u7684
\
u540d
\
u5b57
"
:
23
,
"
label
\
u662finteg
"
:
1
,
"
layer1
\
u5fc5
\
u987b
\
u662f
\
u4e00
\
u4e2a0
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
layer1
\
u5fc5
\
u987b
\
u662f
\
u4e00
\
u4e2a
\
u5355
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
layer2
\
u4e00
\
u81f4
"
:
0
,
"
layer2
\
u53ef
\
u4ee5
\
u662f
\
u4e00
\
u4e2a
\
u5355
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
layer2
\
u5fc5
\
u987b
\
u662f
\
u4e00
\
u4e2a
\
u53cc
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
layer
\
u4e0d
\
u5173
\
u5fc3
\
u6570
\
u636e
\
u662f
\
u5426
\
u662f
\
u5e8f
\
u5217
\
u683c
\
u5f0f
"
:
1
,
"
layer
\
u4e0d
\
u80fd
\
u94fe
\
u63a5
\
u5916
\
u5c42
\
u7684
\
u8fd9
\
u4e2amemori
"
:
1
,
"
layer
\
u4f20
\
u7ed9
\
u4e0b
\
u4e00
\
u4e2a
\
u5b50
\
u53e5
\
u7684memori
"
:
1
,
"
layer
\
u4f5c
\
u4e3a
\
u8f93
\
u51fa
"
:
26
,
"
layer
\
u540e
"
:
1
,
"
layer
\
u548caverag
"
:
1
,
"
layer
\
u548cembed
"
:
1
,
"
layer
\
u548clstmemori
"
:
1
,
"
layer
\
u5c42
"
:
1
,
"
layer
\
u62ff
\
u5230
\
u7684
\
u7528
\
u6237
\
u8f93
\
u5165
"
:
2
,
"
layer
\
u6587
\
u6863
"
:
13
,
"
layer
\
u7684
\
u4f7f
\
u7528
\
u793a
\
u4f8b
\
u5982
\
u4e0b
"
:
0
,
"
ld_library_path
\
u7b49
\
u7b49
"
:
10
,
"
ld_library_path
\
u91cc
\
u9762
\
u627e
\
u4e0d
\
u5230
\
u8fd9
\
u4e9b
\
u52a8
\
u6001
"
:
10
,
"
lib
\
u4e0b
\
u9700
\
u8981
\
u5305
\
u542bcblas
\
u548catlas
\
u4e24
\
u4e2a
\
u5e93
"
:
4
,
"
lib
\
u4e0b
\
u9700
\
u8981
\
u5305
\
u542bcblas
\
u5e93
"
:
4
,
"
lib
\
u4e0b
\
u9700
\
u8981
\
u5305
\
u542bopenblas
\
u5e93
"
:
4
,
"
lib
\
u76ee
\
u5f55
\
u4e0b
\
u9700
\
u8981
\
u5305
\
u542b
"
:
4
,
"
list
\
u4e0d
\
u8bbe
\
u7f6e
"
:
22
,
"
list
\
u4e2d
"
:[
22
,
23
],
"
list
\
u4e2d
\
u7684
\
u4e00
\
u884c
"
:
23
,
"
list
\
u4e2d
\
u7684
\
u6bcf
\
u4e00
\
u884c
"
:
23
,
"
list
\
u4e3a
\
u7eaf
\
u6587
\
u672c
\
u6587
\
u4ef6
"
:
22
,
"
list
\
u4e5f
\
u53ef
\
u4ee5
\
u653e
\
u7f6ehdfs
\
u6587
\
u4ef6
\
u8def
\
u5f84
"
:
22
,
"
list
\
u5199
\
u5165
\
u90a3
\
u4e2a
\
u6587
\
u672c
\
u6587
\
u4ef6
\
u7684
\
u5730
\
u5740
"
:
23
,
"
list
\
u5373
\
u4e3a
"
:
23
,
"
list
\
u548ctest
"
:
22
,
"
list
\
u5747
\
u4e3a
\
u672c
\
u5730
\
u7684
\
u4e24
\
u4e2a
\
u6587
\
u4ef6
"
:
22
,
"
list
\
u6307
\
u5b9a
\
u7684
\
u6570
\
u636e
"
:
13
,
"
list
\
u7684
\
u4f4d
\
u7f6e
"
:
13
,
"
list
\
u82e5
\
u5e72
\
u6570
\
u636e
\
u6587
\
u4ef6
\
u8def
\
u5f84
\
u7684
\
u67d0
\
u4e00
\
u4e2a
\
u8def
\
u5f84
"
:
23
,
"
lstm
\
u6a21
\
u578b
\
u7b49
"
:
13
,
"
lstm
\
u6a21
\
u578b
\
u914d
\
u7f6e
"
:
13
,
"
make
\
u548cmak
"
:
5
,
"
mem
\
u4f5c
\
u4e3a
\
u5185
\
u5c42memory
\
u7684
\
u521d
\
u59cb
\
u72b6
\
u6001
"
:
1
,
"
mem
\
u662f
\
u4e00
\
u4e2a
\
u5b50
\
u53e5
\
u7684
\
u6700
\
u540e
\
u4e00
\
u4e2a
\
u5411
\
u91cf
"
:
1
,
"
memory
\
u4e0d
\
u80fd
\
u72ec
\
u7acb
\
u5b58
\
u5728
"
:
2
,
"
memory
\
u53ea
\
u80fd
\
u5728
"
:
2
,
"
memory
\
u6307
\
u5411
\
u4e00
\
u4e2alay
"
:
2
,
"
memory
\
u7684
\
u521d
\
u59cb
\
u72b6
\
u6001
"
:
2
,
"
memory
\
u7684
\
u66f4
\
u591a
\
u8ba8
\
u8bba
\
u8bf7
\
u53c2
\
u8003
\
u8bba
\
u6587
"
:
2
,
"
memory
\
u7684i
"
:
2
,
"
memory
\
u9ed8
\
u8ba4
\
u521d
\
u59cb
\
u5316
\
u4e3a0
"
:
2
,
"
mkl
\
u7684
\
u8def
\
u5f84
"
:
4
,
"
mkl_sequential
\
u548cmkl_intel_lp64
\
u4e09
\
u4e2a
\
u5e93
"
:
4
,
"
mnist
\
u662f
\
u4e00
\
u4e2a
\
u5305
\
u542b
\
u6709
"
:
23
,
"
movielens
\
u6570
\
u636e
\
u96c6
"
:
12
,
"
movielens
\
u8bc4
\
u5206
\
u56de
\
u5f52
"
:
12
,
"
name
\
u90fd
\
u662f
"
:
9
,
"
osx
\
u6216
\
u8005
\
u662fwindows
\
u673a
\
u5668
"
:
9
,
"
osx
\
u7684
\
u5b89
\
u88c5
\
u6587
\
u6863
"
:
9
,
"
paddle
\
u5b9a
\
u4e49
\
u7684
\
u53c2
\
u6570
\
u5305
\
u62ec
"
:
23
,
"
paddle
\
u7684
"
:
10
,
"
paddlepaddle
\
u4e2d
"
:[
0
,
2
],
"
paddlepaddle
\
u4f7f
\
u7528
\
u8fd0
\
u884c
\
u65f6
\
u52a8
\
u6001
\
u8fde
\
u63a5cuda
\
u7684so
"
:
10
,
"
paddlepaddle
\
u4fdd
\
u7559
\
u6dfb
\
u52a0
\
u53c2
\
u6570
\
u7684
\
u6743
\
u529b
"
:
23
,
"
paddlepaddle
\
u53ef
\
u4ee5
\
u4f7f
\
u7528
"
:
4
,
"
paddlepaddle
\
u53ef
\
u4ee5
\
u8bfb
\
u53d6python
\
u5199
\
u7684
\
u4f20
\
u8f93
\
u6570
\
u636e
\
u811a
\
u672c
"
:
13
,
"
paddlepaddle
\
u5728
\
u8fd0
\
u884c
\
u65f6
\
u627e
\
u4e0d
\
u5230
\
u5bf9
\
u5e94
\
u7684config
\
u6587
\
u4ef6
"
:
10
,
"
paddlepaddle
\
u5c06train
"
:
23
,
"
paddlepaddle
\
u63a8
\
u8350
\
u4f7f
\
u7528docker
\
u8fdb
\
u884cpaddlepaddle
\
u7684
\
u90e8
\
u7f72
\
u548c
"
:
9
,
"
paddlepaddle
\
u63d0
\
u4f9b
\
u4e86docker
\
u7684
\
u4f7f
\
u7528
\
u955c
\
u50cf
"
:
9
,
"
paddlepaddle
\
u63d0
\
u4f9b
\
u6570
\
u4e2a
\
u9884
\
u7f16
\
u8bd1
\
u7684
\
u4e8c
\
u8fdb
\
u5236
\
u6765
\
u8fdb
\
u884c
\
u5b89
\
u88c5
"
:
8
,
"
paddlepaddle
\
u63d0
\
u4f9b
\
u7684
\
u955c
\
u50cf
\
u5e76
\
u4e0d
\
u5305
\
u542b
\
u4efb
\
u4f55
\
u547d
\
u4ee4
\
u8fd0
\
u884c
"
:
9
,
"
paddlepaddle
\
u7684
\
u6570
\
u636e
\
u5305
\
u62ec
\
u56db
\
u79cd
\
u4e3b
\
u8981
\
u7c7b
\
u578b
"
:
23
,
"
paddlepaddle
\
u7684
\
u7f16
\
u8bd1
\
u9009
\
u9879
\
u53ef
\
u4ee5
\
u5728
\
u8c03
\
u7528cmake
\
u7684
\
u65f6
\
u5019
\
u8bbe
\
u7f6e
"
:
4
,
"
paddlepaddle
\
u7684
\
u7f16
\
u8bd1
\
u9009
\
u9879
\
u662f
\
u53ef
\
u4ee5
\
u63a7
\
u5236paddlepaddle
\
u751f
\
u6210cpu
"
:
4
,
"
paddlepaddle
\
u7684dock
"
:
3
,
"
paddlepaddle
\
u7684python
\
u9884
\
u6d4b
\
u63a5
\
u53e3
"
:
25
,
"
paddlepaddle
\
u7684ubuntu
\
u5b89
\
u88c5
\
u5305
\
u5206
\
u4e3a
\
u56db
\
u4e2a
\
u7248
\
u672c
"
:
10
,
"
paddlepaddle
\
u76ee
\
u524d
\
u4f7f
\
u7528swig
\
u5bf9
\
u5176
\
u5e38
\
u7528
\
u7684
\
u9884
\
u6d4b
\
u63a5
\
u53e3
\
u8fdb
\
u884c
\
u4e86
\
u5c01
\
u88c5
"
:
26
,
"
paddlepaddle
\
u76ee
\
u524d
\
u652f
\
u6301
\
u4f7f
\
u7528deb
\
u5305
\
u5b89
\
u88c5
"
:
10
,
"
paddlepaddle
\
u8d1f
\
u8d23
\
u5b8c
\
u6210
\
u4fe1
\
u606f
\
u548c
\
u68af
\
u5ea6
\
u5728
\
u65f6
\
u95f4
\
u5e8f
\
u5217
\
u4e0a
\
u7684
\
u4f20
\
u64ad
"
:
2
,
"
paddlepaddle
\
u8d1f
\
u8d23
\
u5b8c
\
u6210
\
u4fe1
\
u606f
\
u548c
\
u8bef
\
u5dee
\
u5728
\
u65f6
\
u95f4
\
u5e8f
\
u5217
\
u4e0a
\
u7684
\
u4f20
\
u64ad
"
:
2
,
"
paddlepaddle
\
u8fd0
\
u884c
\
u65f6
\
u5982
\
u679c
\
u6ca1
\
u6709
\
u5bfb
\
u627e
\
u5230cuda
\
u7684driv
"
:
10
,
"
paddlepaddle
\
u9700
\
u8981
\
u7528
\
u6237
\
u5728
\
u7f51
\
u7edc
\
u914d
\
u7f6e
"
:
22
,
"
period
\
u8bbe
\
u7f6e
\
u6253
\
u5370
\
u53c2
\
u6570
\
u4fe1
\
u606f
\
u7b49
"
:
13
,
"
process
\
u51fd
\
u6570
"
:
23
,
"
process
\
u51fd
\
u6570
\
u662f
\
u5b9e
\
u73b0
\
u6570
\
u636e
\
u8f93
\
u5165
\
u7684
\
u4e3b
\
u51fd
\
u6570
"
:
23
,
"
process
\
u51fd
\
u6570
\
u8c03
\
u7528
\
u591a
\
u6b21
"
:
23
,
"
pserver
\
u4e3apaddlepaddle
\
u7684paramet
"
:
16
,
"
pserver
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
"
:
16
,
"
pserver
\
u7ec4
\
u5408
\
u4f7f
\
u7528
"
:
16
,
"
py
\
u6587
\
u4ef6
\
u7ed9
\
u51fa
\
u4e86
\
u5b8c
\
u6574
\
u4f8b
\
u5b50
"
:
13
,
"
pydataprovider2
\
u4f1a
\
u5c3d
\
u91cf
\
u4f7f
\
u7528
\
u5185
\
u5b58
"
:
23
,
"
pydataprovider2
\
u6587
\
u6863
"
:
26
,
"
pydataprovider2
\
u7684
\
u4f7f
\
u7528
"
:
22
,
"
pydataprovider
\
u662fpaddlepaddle
\
u4f7f
\
u7528python
\
u63d0
\
u4f9b
\
u6570
\
u636e
\
u7684
\
u63a8
\
u8350
\
u63a5
\
u53e3
"
:
23
,
"
python
\
u5305
"
:
9
,
"
python
\
u53ef
\
u4ee5
\
u89e3
\
u9664
\
u6389
\
u5185
\
u90e8
\
u53d8
\
u91cf
\
u7684
\
u5f15
\
u7528
"
:
23
,
"
python
\
u7684
"
:
9
,
"
python
\
u7684swig
\
u63a5
\
u53e3
\
u53ef
\
u4ee5
\
u65b9
\
u4fbf
\
u8fdb
\
u884c
\
u9884
\
u6d4b
\
u548c
\
u5b9a
\
u5236
\
u5316
\
u8bad
\
u7ec3
"
:
4
,
"
return
"
:[
1
,
13
,
23
],
"
rnn
\
u603b
\
u662f
\
u5f15
\
u7528
\
u4e0a
\
u4e00
\
u65f6
\
u523b
\
u9884
\
u6d4b
\
u51fa
\
u7684
\
u8bcd
\
u7684
\
u8bcd
\
u5411
\
u91cf
"
:
2
,
"
search
\
u7684
\
u751f
\
u6210
"
:
1
,
"
seq
\
u53c2
\
u6570
\
u5fc5
\
u987b
\
u4e3afals
"
:
2
,
"
seq
\
u540e
"
:
1
,
"
seq
\
u5c42
"
:
1
,
"
seq
\
u7684
\
u4f7f
\
u7528
\
u793a
\
u4f8b
\
u5982
\
u4e0b
"
:
0
,
"
seq
\
u7c7b
\
u4f3c
"
:
0
,
"
sequence
\
u7c7b
\
u578b
"
:
1
,
"
server
\
u8fdb
\
u7a0b
"
:
16
,
"
sh
\
u662fdocker
"
:
3
,
"
shuffle
\
u8bad
\
u7ec3
\
u6570
\
u636e
"
:
23
,
"
slot
\
u662finteg
"
:
1
,
"
softmax
\
u8f93
\
u51fa
"
:
13
,
"
state
\
u505a
\
u4e86
\
u4e00
\
u4e2a
\
u5168
\
u94fe
\
u63a5
"
:
1
,
"
step
\
u4e2d
"
:
1
,
"
step
\
u51fd
\
u6570
\
u4e2d
\
u7684memori
"
:
2
,
"
step
\
u51fd
\
u6570
\
u5185
\
u90e8
\
u53ef
\
u4ee5
\
u81ea
\
u7531
\
u7ec4
\
u5408paddlepaddle
\
u652f
\
u6301
\
u7684
\
u5404
\
u79cdlay
"
:
2
,
"
step
\
u7684recurr
"
:
1
,
"
string
\
u7684
\
u683c
\
u5f0f
\
u6253
\
u5370
\
u51fa
\
u6765
"
:
16
,
"
subseq
\
u7684
\
u6bcf
\
u4e2a
\
u5143
\
u7d20
\
u662f
\
u4e00
\
u4e2a0
\
u5c42
\
u5e8f
\
u5217
"
:
0
,
"
swig_paddle
\
u63a5
\
u53d7
\
u7684
\
u539f
\
u59cb
\
u6570
\
u636e
\
u662fc
"
:
26
,
"
tag
\
u5206
\
u522b
\
u4e3a
"
:
9
,
"
train
\
u5373
\
u4e3apaddlepaddle
\
u7684
\
u8bad
\
u7ec3
\
u8fdb
\
u7a0b
"
:
16
,
"
train
\
u5b8c
\
u6210
\
u5355
\
u673a
\
u591a
\
u663e
\
u5361
\
u591a
\
u7ebf
\
u7a0b
\
u7684
\
u8bad
"
:
16
,
"
train
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
"
:
16
,
"
true
"
:
1
,
"
true
\
u7684memory
\
u65f6
"
:
1
,
"
types
\
u7684
\
u8be6
\
u7ec6
\
u7528
\
u6cd5
"
:
1
,
"
ubuntu
\
u7684deb
\
u5b89
\
u88c5
\
u5305
\
u7b49
"
:
8
,
"
v2
\
u4e4b
\
u540e
\
u7684
\
u4efb
\
u4f55
\
u4e00
\
u4e2acudnn
\
u7248
\
u672c
\
u6765
\
u7f16
\
u8bd1
\
u8fd0
\
u884c
"
:
4
,
"
value
\
u5373
\
u4e3asoftmax
\
u5c42
\
u7684
\
u8f93
\
u51fa
"
:
26
,
"
value
\
u662f
\
u7279
\
u5f81
\
u503c
"
:
23
,
"
value
\
u7c7b
\
u578b
"
:
1
,
"
var
"
:
9
,
"
vector
\
u8868
\
u793a
\
u7684
\
u6bcf
\
u4e2a
\
u5355
\
u8bcd
"
:
13
,
"
version
\
u53ef
\
u4ee5
\
u6253
\
u5370
\
u51fapaddle
\
u7684
\
u7248
\
u672c
\
u4fe1
\
u606f
\
u548c
\
u7f16
\
u8bd1
\
u7684
\
u9009
\
u9879
"
:
21
,
"
version
\
u53ef
\
u4ee5
\
u6253
\
u5370
\
u51fapaddlepaddle
\
u7684
\
u7248
\
u672c
\
u548c
\
u7f16
\
u8bd1
\
u65f6
\
u4fe1
\
u606f
"
:
16
,
"
version
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
"
:
16
,
"
yield
\
u6587
\
u672c
\
u4fe1
\
u606f
\
u548c
\
u7c7b
\
u522bid
"
:
13
,
__main__
:
26
,
__name__
:
26
,
abov
:
23
,
act
:[
1
,
13
],
act_typ
:
13
,
activ
:
13
,
adadelta
:
13
,
adagrad
:
13
,
adam
:
13
,
adamoptim
:
13
,
afi
:
23
,
agg_level
:[
0
,
1
],
aggregatelevel
:[
0
,
1
],
all
:[
2
,
23
],
allow
:
13
,
alreadi
:
10
,
also
:
13
,
append
:[
1
,
23
],
apt
:[
9
,
10
],
arg
:[
3
,
13
,
23
],
around
:
23
,
arrai
:
26
,
assert
:
26
,
atla
:
4
,
atlas_root
:
4
,
averag
:
1
,
avg
:
13
,
avgcost
:
13
,
avgpool
:[
0
,
1
,
13
],
avx
:
9
,
bag
:
13
,
baidu
:[
9
,
10
],
batch
:
13
,
batch_siz
:[
1
,
13
],
batchsiz
:
1
,
beam
:
1
,
beam_search
:
2
,
bias_attr
:
1
,
binari
:
13
,
bla
:
4
,
bool
:
13
,
boot
:
2
,
boot_lay
:
1
,
both
:
13
,
bow
:
13
,
build
:[
3
,
9
],
cach
:[
13
,
22
],
cache_pass_in_mem
:[
13
,
23
],
cachetyp
:[
13
,
23
],
calc_batch_s
:
23
,
call
:
13
,
can
:
13
,
can_over_batch_s
:
23
,
cat
:
9
,
categori
:
13
,
check
:[
1
,
10
,
23
],
check_fail_continu
:
23
,
chines
:
12
,
chpasswd
:
9
,
classif
:
13
,
classification_cost
:[
1
,
13
],
classification_error_evalu
:
13
,
close
:
23
,
cmake
:
4
,
cmd
:
9
,
cnn
:
13
,
code
:[
3
,
23
,
26
],
com
:[
9
,
10
],
comment
:[
1
,
13
],
compil
:[
10
,
21
],
conf
:[
1
,
26
],
config
:[
10
,
13
],
config_arg
:
13
,
config_pars
:
26
,
connect
:
13
,
contain
:[
13
,
23
],
context
:
23
,
context_len
:
13
,
context_start
:
13
,
convert
:[
13
,
23
,
26
],
couldn
:
10
,
cpp
:[
10
,
13
],
cpu
:[
9
,
10
,
23
],
cpuinfo
:
9
,
createfromconfigproto
:
26
,
cross
:
13
,
cuda_so
:
9
,
cudastat
:
10
,
cudasuccess
:
10
,
cudnn
:
4
,
cudnn_root
:
4
,
cudnnv5
:
4
,
current
:[
13
,
23
],
currentcost
:
13
,
currentev
:
13
,
dalla
:
23
,
data
:[
1
,
10
],
data_config
:
26
,
data_initialz
:
13
,
data_lay
:[
1
,
13
,
23
],
dataprovid
:
13
,
dataprovider_bow
:
13
,
dataprovider_emb
:
13
,
dataproviderconvert
:
26
,
dataset
:
13
,
deb
:
10
,
debian
:
10
,
decod
:
2
,
decor
:
23
,
def
:[
1
,
13
,
23
,
26
],
defin
:[
13
,
23
],
define_py_data_sources2
:[
13
,
23
],
delar
:
13
,
demo
:[
9
,
13
],
dense_vector
:[
23
,
26
],
describ
:
13
,
descript
:
25
,
detail
:
25
,
dev
:
9
,
devel
:
9
,
devic
:
9
,
devices
:
9
,
dict
:[
13
,
23
],
dict_dim
:
1
,
dict_fil
:[
1
,
13
],
dictionai
:
13
,
dictionari
:[
13
,
23
],
dictrionari
:
13
,
differ
:
13
,
dim
:
13
,
dimens
:
13
,
dir
:
13
,
doc
:
26
,
documentari
:
23
,
dpkg
:
10
,
driver
:
10
,
dso_handl
:
10
,
dtype
:
26
,
dump_config
:
16
,
dure
:[
13
,
23
],
dynam
:
23
,
each
:[
13
,
23
],
each_pixel_str
:
23
,
each_sequence
:[
0
,
1
],
each_word
:
23
,
echo
:
9
,
either
:
13
,
els
:[
1
,
9
,
13
],
emb
:[
1
,
13
],
emb_group
:
1
,
embed
:
12
,
embedding_lay
:[
1
,
13
],
entropi
:
13
,
enumer
:
13
,
equal
:
1
,
error
:[
10
,
13
],
error_clipping_threshold
:
1
,
etc
:
9
,
eval
:
13
,
exampl
:
13
,
expand
:[
0
,
1
],
expand_a
:[
0
,
1
],
expand_level
:[
0
,
1
],
expandlevel
:[
0
,
1
],
expose
:
9
,
extralayerattribut
:
1
,
f0831
:
10
,
fail
:[
1
,
10
],
fals
:
13
,
fc_layer
:[
1
,
13
],
fdata
:
1
,
featur
:[
13
,
23
],
festiv
:
23
,
file
:[
13
,
23
],
file_list
:
23
,
file_nam
:[
1
,
13
],
filenam
:
23
,
fill
:
13
,
find
:
10
,
first
:[
0
,
13
],
float32
:
26
,
fly
:
13
,
forwardtest
:
26
,
framework
:
13
,
from
:[
2
,
9
,
13
,
23
,
26
],
from_sequence
:[
0
,
1
],
from_timestep
:
0
,
full_matrix_project
:
1
,
fulli
:
13
,
func
:
23
,
gate_act
:
1
,
gdebi
:
10
,
gener
:[
13
,
23
],
generatedinput
:
2
,
get
:[
9
,
10
,
13
,
23
],
get_config_arg
:
13
,
get_data
:
13
,
github
:
10
,
give
:
23
,
given
:
13
,
globe
:
23
,
gpu
:[
9
,
10
],
gradient_clipping_threshold
:
13
,
gradientmachin
:
26
,
grep
:
9
,
group
:
1
,
group_input
:
1
,
gru
:
13
,
gru_siz
:
13
,
gserver
:
1
,
hassubseq
:
1
,
help
:
26
,
hidden_dim
:
1
,
hierach
:
2
,
hint
:
26
,
hl_cuda_devic
:
10
,
hl_dso_load
:
10
,
hook2
:
1
,
hook
:
1
,
host
:
9
,
hot
:
13
,
hous
:
23
,
howardjohnson
:
1
,
http
:
10
,
ignor
:
23
,
imag
:
9
,
imagenet
:
12
,
img
:
23
,
inarg
:
26
,
includ
:
13
,
init
:
13
,
init_hook
:[
1
,
13
,
22
],
init_model_path
:
13
,
initi
:[
13
,
23
],
initpaddl
:
26
,
inner_mem
:
1
,
inner_rnn_output
:
1
,
inner_rnn_st
:
1
,
inner_step
:
1
,
input
:[
0
,
1
,
2
,
13
,
23
],
input_typ
:[
1
,
13
,
22
],
instal
:
5
,
insuffici
:
10
,
integ
:[
13
,
23
],
integer_sequ
:
23
,
integer_valu
:[
1
,
13
,
23
],
integer_value_sequ
:[
1
,
13
],
integer_value_sub_sequ
:
1
,
invok
:
23
,
is_predict
:
13
,
is_train
:
23
,
isinst
:
26
,
iterat
:
23
,
job
:
13
,
join
:
1
,
kernel
:
9
,
kwarg
:[
1
,
13
,
23
],
l2regular
:
13
,
label
:[
1
,
13
,
23
],
label_dim
:[
1
,
13
],
label_list
:
1
,
lake
:
23
,
last
:[
0
,
1
],
later
:
13
,
latest
:[
3
,
9
],
layer1
:
0
,
layer2
:
0
,
layer
:[
0
,
1
,
2
,
13
],
ld_library_path
:
10
,
learning_method
:
13
,
learning_r
:
13
,
len
:[
1
,
13
,
23
],
level
:
2
,
lib64
:[
9
,
10
],
lib
:
4
,
libcuda
:
9
,
libnvidia
:
9
,
librari
:
10
,
line
:
1
,
link
:
2
,
list
:[
13
,
22
,
23
],
load_data_arg
:
26
,
loadparamet
:
26
,
local
:[
4
,
10
],
log_period
:
13
,
logger
:
23
,
look
:[
13
,
23
],
loss
:
13
,
lowest_dl_speed
:
3
,
lstm
:[
1
,
13
],
lstm_averag
:
1
,
lstm_expand
:
1
,
lstm_group
:
1
,
lstm_group_input
:
1
,
lstm_input
:
1
,
lstm_last
:
1
,
lstm_layer_attr
:
1
,
lstm_nest_group
:
1
,
lstm_output
:
1
,
lstm_size
:
13
,
lstmemori
:
1
,
lstmemory_group
:
1
,
mac
:
9
,
machin
:
2
,
main
:
26
,
maintainer
:
9
,
make
:[
10
,
23
],
make_diagram
:
16
,
maxid
:
13
,
maxid_lay
:
13
,
maxpool
:
0
,
mean
:
13
,
mem
:
1
,
memori
:
1
,
merge_model
:
16
,
method
:
23
,
min_pool_s
:
23
,
mixed_lay
:
1
,
mkdir
:
9
,
mkl
:
4
,
mkl_core
:
4
,
mkl_root
:
4
,
mnist
:
23
,
mnist_model
:
26
,
mnist_provid
:
23
,
mnist_train
:
23
,
model_config
:
26
,
modul
:[
13
,
23
],
momentum
:
13
,
movi
:
23
,
must
:
10
,
name
:[
1
,
9
,
13
,
23
],
necessari
:
13
,
need
:
13
,
neg
:[
13
,
23
],
nest
:
1
,
net
:
9
,
neural
:
2
,
next
:
23
,
no_cache
:
23
,
no_sequence
:
23
,
noavx
:[
9
,
10
],
none
:[
13
,
23
,
26
],
normal
:
9
,
note
:
10
,
now
:
2
,
nullptr
:
10
,
num
:
13
,
num_pass
:
13
,
nvidia
:
9
,
obj
:[
13
,
23
],
object
:[
13
,
23
],
off
:[
3
,
4
,
10
,
21
],
omit
:
13
,
on_init
:
23
,
onli
:[
2
,
13
],
open
:[
1
,
13
,
23
],
openbla
:
4
,
openblas_root
:
4
,
openssh
:
9
,
opt
:
4
,
other
:
13
,
out
:[
1
,
2
],
outer
:
1
,
outer_mem
:
1
,
outer_rnn_st
:
1
,
outer_step
:
1
,
outlin
:
25
,
output
:[
1
,
13
],
outsid
:
23
,
paddl
:[
1
,
3
,
9
,
10
,
13
,
16
],
paddle_gpu
:
3
,
paddle_ssh
:
9
,
paddle_ssh_machin
:
9
,
paddledev
:
9
,
paddlepaddl
:[
9
,
10
,
21
,
26
],
paramet
:
13
,
parse_config
:
26
,
pass
:[
13
,
23
],
path
:[
10
,
13
],
period
:
13
,
permitrootlogin
:
9
,
pixel
:
23
,
pixels_float
:
23
,
pixels_str
:
23
,
place
:
23
,
pleas
:
10
,
pool
:
0
,
pool_siz
:
23
,
pooling_typ
:[
0
,
1
,
13
],
posit
:[
13
,
23
],
pred
:
13
,
predict_output_dir
:
13
,
predict_sampl
:
26
,
preprocess
:
13
,
print
:
26
,
proc
:
9
,
process2
:
1
,
process
:[
1
,
13
,
23
],
process_pr
:
13
,
process_seq
:
1
,
process_subseq
:
1
,
properli
:
13
,
provid
:
1
,
pull
:
9
,
put
:
13
,
py_paddl
:[
9
,
26
],
pydataprovid
:
22
,
pydataprovider2
:[
13
,
23
,
26
],
pydataproviderwrapp
:
13
,
python
:
13
,
quick_start
:
13
,
rang
:
13
,
rank
:
13
,
rare
:
23
,
read
:[
13
,
23
],
real_process
:
23
,
recurrent_group
:[
1
,
2
],
refer
:
22
,
reference_cblas_root
:
4
,
reffer
:
4
,
regular
:
13
,
releas
:
10
,
repres
:
13
,
represent
:
13
,
resnet
:
12
,
result
:[
13
,
23
],
revers
:
2
,
rmsprop
:
13
,
rnn
:
2
,
rnn_data_provid
:
1
,
rnn_state
:
1
,
roce
:
9
,
root
:
9
,
run
:
9
,
runtim
:[
10
,
23
],
same
:[
13
,
23
],
sampl
:[
13
,
23
],
save
:[
13
,
23
],
save_dir
:
13
,
saw
:
23
,
sbin
:
9
,
script
:
3
,
second
:
13
,
sed
:
9
,
see
:
13
,
sentenc
:
23
,
sentiment
:
23
,
sentimental_provid
:
23
,
separ
:
13
,
seq
:[
0
,
1
],
seq_pool
:
0
,
seq_typ
:
23
,
seqlastin
:
1
,
sequel
:
23
,
sequenc
:[
1
,
2
],
sequence
:
23
,
sequence_conv_pool
:
13
,
sequence_layer_group
:
1
,
sequence_nest_layer_group
:
1
,
sequence_nest_rnn
:
1
,
sequence_nest_rnn_readonly_memori
:
1
,
sequence_rnn
:
1
,
sequencegen
:
1
,
sequencestartposit
:
1
,
sequencetyp
:
23
,
server
:
9
,
set
:[
1
,
13
,
23
],
setup
:
13
,
should
:
2
,
should_shuffl
:
23
,
sigmoidactiv
:
1
,
simple_gru
:
13
,
simple_lstm
:
13
,
size
:[
1
,
13
,
23
],
softmax
:
13
,
softmaxactiv
:[
1
,
13
],
sourc
:
13
,
spars
:
13
,
sparse_binary_vector
:[
13
,
23
],
sparse_float_vector
:
23
,
specifi
:[
10
,
13
],
split
:[
1
,
13
,
23
],
src_root
:
26
,
ssh
:
9
,
sshd
:
9
,
sshd_config
:
9
,
stat
:
13
,
state
:
2
,
state_act
:
1
,
staticinput
:
2
,
step
:[
1
,
2
],
stop
:
9
,
store
:
13
,
string
:
23
,
strip
:[
1
,
13
],
structur
:
13
,
stun
:
23
,
sub
:
1
,
sub_sequence
:
23
,
subseq
:[
0
,
2
],
subsequenceinput
:
1
,
sudo
:
10
,
support
:
9
,
sure
:
10
,
swig_paddl
:
26
,
tag
:
3
,
take
:
23
,
tanhactiv
:
1
,
tbd
:[
1
,
24
],
team
:
9
,
test
:[
1
,
13
,
22
],
test_data
:
26
,
test_list
:[
13
,
23
],
test_recurrentgradientmachin
:
1
,
text
:[
13
,
23
],
text_conv
:
13
,
them
:
13
,
thi
:[
13
,
23
],
thing
:
23
,
timestep
:
0
,
tmp
:
23
,
tour_train_wdseg
:
1
,
train
:
10
,
train_list
:[
13
,
23
],
trainer
:[
13
,
23
,
26
],
trainer_config
:[
13
,
22
,
23
,
26
],
trainer_config_help
:[
13
,
23
],
trainerintern
:
13
,
trainermain
:
10
,
travel
:
23
,
trn
:
13
,
tst
:
13
,
turn
:
2
,
two
:
13
,
txt
:[
13
,
23
],
type
:[
13
,
23
],
unk_idx
:
13
,
updat
:
9
,
use
:[
13
,
25
],
use_dynamic_ord
:
23
,
use_gpu
:[
13
,
26
],
usepam
:
9
,
user
:
13
,
usr
:[
4
,
9
,
10
],
valid
:
10
,
valu
:[
1
,
13
,
23
,
26
],
version
:[
9
,
10
],
via
:
10
,
want
:
23
,
what
:
13
,
when
:
23
,
which
:
13
,
whole
:
23
,
wilder
:
23
,
window
:
9
,
with_avx
:[
4
,
10
,
21
],
with_doc
:
4
,
with_doc_cn
:
4
,
with_doubl
:[
10
,
21
],
with_double
:
4
,
with_dso
:
4
,
with_gflag
:[
10
,
21
],
with_gflags
:
4
,
with_glog
:[
4
,
10
,
21
],
with_gpu
:[
3
,
4
,
10
,
21
],
with_metric_learn
:[
10
,
21
],
with_predict_sdk
:[
10
,
21
],
with_python
:[
4
,
10
,
21
],
with_rdma
:[
4
,
10
,
21
],
with_style_check
:
4
,
with_swig_py
:
4
,
with_testing
:
4
,
with_tim
:[
10
,
21
],
with_timer
:
4
,
without
:
9
,
wonder
:
23
,
word
:[
1
,
2
,
12
],
word_dict
:[
1
,
13
],
word_dim
:[
1
,
13
],
word_id
:
23
,
word_slot
:
1
,
word_slot_list
:
1
,
word_vector
:
13
,
xarg
:
9
,
yield
:[
1
,
13
,
23
],
you
:[
10
,
23
],
your_host_machine
:
9
},
titles
:[
"
\
u652f
\
u6301
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u4f5c
\
u4e3a
\
u8f93
\
u5165
\
u7684Layer
"
,
"
\
u53cc
\
u5c42RNN
\
u914d
\
u7f6e
\
u4e0e
\
u793a
\
u4f8b
"
,
"
Recurrent Group
\
u6559
\
u7a0b
"
,
"
\
u6784
\
u5efaPaddlePaddle Docker Image
"
,
"
\
u8bbe
\
u7f6ePaddlePaddle
\
u7684
\
u7f16
\
u8bd1
\
u9009
\
u9879
"
,
"
\
u4f7f
\
u7528cmake
\
u7f16
\
u8bd1PaddlePaddle
"
,
"
\
u5b89
\
u88c5
\
u7f16
\
u8bd1PaddlePaddle
\
u9700
\
u8981
\
u7684
\
u4f9d
\
u8d56
"
,
"
make
\
u548cmake install
"
,
"
\
u7f16
\
u8bd1
\
u4e0e
\
u5b89
\
u88c5
"
,
"
\
u5b89
\
u88c5PaddlePaddle
\
u7684Docker
\
u955c
\
u50cf
"
,
"
\
u4f7f
\
u7528deb
\
u5305
\
u5728Ubuntu
\
u4e0a
\
u5b89
\
u88c5PaddlePaddle
"
,
"
\
u96c6
\
u7fa4
\
u8bad
\
u7ec3
"
,
"
\
u4f7f
\
u7528
\
u793a
\
u4f8b
"
,
"
PaddlePaddle
\
u5feb
\
u901f
\
u5165
\
u95e8
\
u6559
\
u7a0b
"
,
"
PaddlePaddle
\
u6587
\
u6863
"
,
"
<no title>
"
,
"
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
"
,
"
<no title>
"
,
"
<no title>
"
,
"
paddle pserver
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
"
,
"
paddle train
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
"
,
"
paddle version
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
"
,
"
PaddlePaddle
\
u7684
\
u6570
\
u636e
\
u63d0
\
u4f9b(DataProvider)
\
u4ecb
\
u7ecd
"
,
"
PyDataProvider2
\
u7684
\
u4f7f
\
u7528
"
,
"
\
u81ea
\
u5b9a
\
u4e49
\
u4e00
\
u4e2aDataProvider
"
,
"
\
u7528
\
u6237
\
u63a5
\
u53e3
"
,
"
PaddlePaddle
\
u7684Python
\
u9884
\
u6d4b
\
u63a5
\
u53e3
"
],
titleterms
:{
"
\
u4e0b
\
u8f7d
\
u548c
\
u8fd0
\
u884cdocker
\
u955c
\
u50cf
"
:
9
,
"
\
u4ecb
\
u7ecd
"
:
22
,
"
\
u4f18
\
u5316
\
u7b97
\
u6cd5
"
:
13
,
"
\
u4f7f
\
u7528
\
u6307
\
u5357
"
:
14
,
"
\
u4f7f
\
u7528
\
u6982
\
u8ff0
"
:
13
,
"
\
u4f7f
\
u7528
\
u793a
\
u4f8b
"
:
12
,
"
\
u4f7f
\
u7528
\
u811a
\
u672c
\
u6784
\
u5efapaddlepaddl
"
:
3
,
"
\
u4f7f
\
u7528cmake
\
u7f16
\
u8bd1paddlepaddl
"
:
5
,
"
\
u4f7f
\
u7528deb
\
u5305
\
u5728ubuntu
\
u4e0a
\
u5b89
\
u88c5paddlepaddl
"
:
10
,
"
\
u5185
\
u5b58
\
u4e0d
\
u591f
\
u7528
\
u7684
\
u60c5
\
u51b5
"
:
23
,
"
\
u5377
\
u79ef
\
u6a21
\
u578b
"
:
13
,
"
\
u53c2
\
u8003
"
:
23
,
"
\
u53cc
\
u5c42rnn
\
u4ecb
\
u7ecd
"
:
2
,
"
\
u53cc
\
u5c42rnn
\
u7684
\
u4f7f
\
u7528
"
:
2
,
"
\
u53cc
\
u5c42rnn
\
u914d
\
u7f6e
\
u4e0e
\
u793a
\
u4f8b
"
:
1
,
"
\
u53cc
\
u8fdb
\
u53cc
\
u51fa
"
:
1
,
"
\
u53ef
\
u80fd
\
u7684
\
u5185
\
u5b58
\
u6cc4
\
u9732
\
u95ee
\
u9898
"
:
23
,
"
\
u53ef
\
u80fd
\
u9047
\
u5230
\
u7684
\
u95ee
\
u9898
"
:
10
,
"
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
"
:[
13
,
16
,
25
],
"
\
u548c
"
:
0
,
"
\
u56fe
\
u50cf
"
:
12
,
"
\
u57fa
\
u672c
\
u539f
\
u7406
"
:
2
,
"
\
u5b89
\
u88c5
"
:[
8
,
13
],
"
\
u5b89
\
u88c5
\
u7f16
\
u8bd1paddlepaddle
\
u9700
\
u8981
\
u7684
\
u4f9d
\
u8d56
"
:
6
,
"
\
u5b89
\
u88c5paddlepaddle
\
u7684docker
\
u955c
\
u50cf
"
:
9
,
"
\
u5e38
\
u7528
\
u6a21
\
u578b
"
:
12
,
"
\
u5e8f
\
u5217
\
u6a21
\
u578b
\
u6570
\
u636e
\
u63d0
\
u4f9b
"
:
23
,
"
\
u5f00
\
u53d1
\
u6307
\
u5357
"
:
14
,
"
\
u6027
\
u80fd
\
u95ee
\
u9898
"
:
9
,
"
\
u603b
\
u4f53
\
u6548
\
u679c
\
u603b
\
u7ed3
"
:
13
,
"
\
u63a8
\
u8350
"
:
12
,
"
\
u652f
\
u6301
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u4f5c
\
u4e3a
\
u8f93
\
u5165
\
u7684layer
"
:
0
,
"
\
u6570
\
u636e
\
u5411
\
u6a21
\
u578b
\
u4f20
\
u9001
"
:
13
,
"
\
u6570
\
u636e
\
u63d0
\
u4f9b
"
:
25
,
"
\
u6570
\
u636e
\
u683c
\
u5f0f
\
u51c6
\
u5907
"
:
13
,
"
\
u65f6
\
u5e8f
\
u6a21
\
u578b
"
:
13
,
"
\
u6784
\
u5efapaddlepaddl
"
:
3
,
"
\
u6982
\
u8ff0
"
:[
0
,
2
],
"
\
u6a21
\
u578b
\
u4e2d
\
u7684
\
u914d
\
u7f6e
"
:
1
,
"
\
u6ce8
\
u610f
\
u4e8b
\
u9879
"
:[
9
,
23
],
"
\
u751f
\
u6210
\
u6d41
\
u7a0b
\
u7684
\
u4f7f
\
u7528
\
u65b9
\
u6cd5
"
:
2
,
"
\
u7528
\
u6237
\
u63a5
\
u53e3
"
:
25
,
"
\
u76f8
\
u5173
\
u6982
\
u5ff5
"
:
2
,
"
\
u793a
\
u4f8b1
"
:
1
,
"
\
u793a
\
u4f8b2
"
:
1
,
"
\
u793a
\
u4f8b3
"
:
1
,
"
\
u793a
\
u4f8b4
"
:
1
,
"
\
u7b80
\
u5355
\
u7684
\
u4f7f
\
u7528
\
u573a
\
u666f
"
:
23
,
"
\
u7b97
\
u6cd5
\
u6559
\
u7a0b
"
:
14
,
"
\
u7f16
\
u8bd1
"
:
8
,
"
\
u7f16
\
u8bd1
\
u4e0e
\
u5b89
\
u88c5
"
:
8
,
"
\
u7f51
\
u7edc
\
u7ed3
\
u6784
"
:
13
,
"
\
u81ea
\
u5b9a
\
u4e49
\
u4e00
\
u4e2adataprovid
"
:
24
,
"
\
u81ea
\
u7136
\
u8bed
\
u8a00
\
u5904
\
u7406
"
:
12
,
"
\
u8bad
\
u7ec3
\
u6a21
\
u578b
"
:
13
,
"
\
u8bad
\
u7ec3
\
u6d41
\
u7a0b
\
u7684
\
u4f7f
\
u7528
\
u65b9
\
u6cd5
"
:
2
,
"
\
u8bbe
\
u7f6epaddlepaddle
\
u7684
\
u7f16
\
u8bd1
\
u9009
\
u9879
"
:
4
,
"
\
u8bcd
\
u5411
\
u91cf
\
u6a21
\
u578b
"
:
13
,
"
\
u8bfb
\
u53d6
\
u53cc
\
u5c42
\
u5e8f
\
u5217
\
u7684
\
u65b9
\
u6cd5
"
:
1
,
"
\
u8f93
\
u5165
"
:
2
,
"
\
u8f93
\
u5165
\
u4e0d
\
u7b49
\
u957f
"
:
1
,
"
\
u8f93
\
u5165
\
u793a
\
u4f8b
"
:
2
,
"
\
u8f93
\
u51fa
"
:
2
,
"
\
u8f93
\
u51fa
\
u65e5
\
u5fd7
"
:
13
,
"
\
u8fdc
\
u7a0b
\
u8bbf
\
u95ee
\
u95ee
\
u9898
\
u548c
\
u4e8c
\
u6b21
\
u5f00
\
u53d1
"
:
9
,
"
\
u903b
\
u8f91
\
u56de
\
u5f52
\
u6a21
\
u578b
"
:
13
,
"
\
u914d
\
u7f6e
\
u4e2d
\
u7684
\
u6570
\
u636e
\
u52a0
\
u8f7d
\
u5b9a
\
u4e49
"
:
13
,
"
\
u9644
\
u5f55
"
:
13
,
"
\
u96c6
\
u7fa4
\
u8bad
\
u7ec3
"
:
11
,
"
\
u9884
\
u6d4b
"
:[
13
,
25
],
"
beam_search
\
u7684
\
u751f
\
u6210
"
:
1
,
"
blas
\
u76f8
\
u5173
\
u7684
\
u7f16
\
u8bd1
\
u9009
\
u9879
"
:
4
,
"
bool
\
u578b
\
u7684
\
u7f16
\
u8bd1
\
u9009
\
u9879
"
:
4
,
"
config
\
u6587
\
u4ef6
\
u627e
\
u4e0d
\
u5230
"
:
10
,
"
cudnn
\
u76f8
\
u5173
\
u7684
\
u7f16
\
u8bd1
\
u9009
\
u9879
"
:
4
,
"
driver
\
u627e
\
u4e0d
\
u5230
"
:
10
,
"
group
\
u6559
\
u7a0b
"
:
2
,
"
make
\
u548cmak
"
:
7
,
"
paddlepaddle
\
u5feb
\
u901f
\
u5165
\
u95e8
\
u6559
\
u7a0b
"
:
13
,
"
paddlepaddle
\
u63d0
\
u4f9b
\
u7684docker
\
u955c
\
u50cf
\
u7248
\
u672c
"
:
9
,
"
paddlepaddle
\
u6587
\
u6863
"
:
14
,
"
paddlepaddle
\
u7684
\
u6570
\
u636e
\
u63d0
\
u4f9b
"
:
22
,
"
paddlepaddle
\
u7684
\
u7f16
\
u8bd1
\
u9009
\
u9879
"
:
4
,
"
paddlepaddle
\
u7684bool
\
u578b
\
u7f16
\
u8bd1
\
u9009
\
u9879
"
:
4
,
"
paddlepaddle
\
u7684cblas
\
u7f16
\
u8bd1
\
u9009
\
u9879
"
:
4
,
"
paddlepaddle
\
u7684python
\
u9884
\
u6d4b
\
u63a5
\
u53e3
"
:
26
,
"
pserver
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
"
:
19
,
"
pydataprovider2
\
u7684
\
u4f7f
\
u7528
"
:
23
,
"
python
\
u6570
\
u636e
\
u52a0
\
u8f7d
\
u811a
\
u672c
"
:
13
,
"
so
\
u627e
\
u4e0d
\
u5230
"
:
10
,
"
subseq
\
u95f4
\
u65e0memori
"
:
1
,
"
subseq
\
u95f4
\
u6709memori
"
:
1
,
"
train
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
"
:
20
,
"
version
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
"
:
21
,
algorithm
:
13
,
appendix
:
13
,
architectur
:
13
,
argument
:
13
,
cach
:
23
,
command
:
13
,
configur
:
13
,
convolut
:
13
,
cuda
:[
4
,
10
],
data
:
13
,
dataprovid
:
22
,
docker
:
3
,
expand_lay
:
0
,
first_seq
:
0
,
image
:
3
,
init_hook
:
23
,
input_typ
:
23
,
instal
:
7
,
install
:
13
,
last_seq
:
0
,
libcudart
:
10
,
libcudnn
:
10
,
line
:
13
,
log
:
13
,
logist
:
13
,
memori
:
2
,
model
:
13
,
network
:
13
,
optimiz
:
13
,
overview
:
13
,
paddl
:[
19
,
20
,
21
],
pooling_lay
:
0
,
predict
:
13
,
prepar
:
13
,
provid
:[
13
,
23
],
recurr
:
2
,
refer
:
23
,
regress
:
13
,
script
:
13
,
sequenc
:
13
,
summari
:
13
,
time
:
13
,
train
:
13
,
transfer
:
13
,
vector
:
13
,
word
:
13
}})
\ No newline at end of file
Search
.
setIndex
({
envversion
:
49
,
filenames
:[
"
build/docker/build_docker_image
"
,
"
build_and_install/cmake/compile_options
"
,
"
build_and_install/cmake/index
"
,
"
build_and_install/cmake/install_deps
"
,
"
build_and_install/cmake/make_and_install
"
,
"
build_and_install/index
"
,
"
build_and_install/install/docker_install
"
,
"
build_and_install/install/ubuntu_install
"
,
"
cluster/index
"
,
"
demo/index
"
,
"
demo/quick_start/index
"
,
"
index
"
,
"
ui/cmd/dump_config
"
,
"
ui/cmd/index
"
,
"
ui/cmd/make_diagram
"
,
"
ui/cmd/merge_model
"
,
"
ui/cmd/paddle_pserver
"
,
"
ui/cmd/paddle_train
"
,
"
ui/cmd/paddle_version
"
,
"
ui/data_provider/index
"
,
"
ui/data_provider/pydataprovider2
"
,
"
ui/data_provider/write_new_dataprovider
"
,
"
ui/index
"
,
"
ui/predict/swig_py_paddle
"
],
objects
:{},
objnames
:{},
objtypes
:{},
terms
:{
"
0000x
"
:
10
,
"
000
\
u5f20
\
u7070
\
u5ea6
\
u56fe
\
u7247
\
u7684
\
u6570
\
u5b57
\
u5206
\
u7c7b
\
u6570
\
u636e
\
u96c6
"
:
20
,
"
00186201e
"
:
23
,
"
04
\
u4e2d
\
u6b63
\
u786e
"
:
7
,
"
08823112e
"
:
23
,
"
0b1
"
:
7
,
"
10
\
u4ee5
\
u4e0a
\
u7684linux
"
:
6
,
"
10
\
u7ef4
\
u7684
\
u6574
\
u6570
\
u503c
"
:
20
,
"
10gbe
"
:
6
,
"
10m
"
:
0
,
"
12194102e
"
:
23
,
"
12
\
u7248
\
u672c
\
u6d4b
\
u8bd5
\
u901a
\
u8fc7
"
:
0
,
"
12
\
u7248
\
u672c
\
u7684
\
u60c5
\
u51b5
\
u4e0b
\
u5e76
\
u6ca1
\
u6709
\
u6d4b
\
u8bd5
"
:
0
,
"
15501715e
"
:
23
,
"
15mb
"
:
10
,
"
16mb
"
:
10
,
"
1
\
u7684
\
u8bdd
"
:
20
,
"
252kb
"
:
10
,
"
25639710e
"
:
23
,
"
25k
"
:
10
,
"
27787406e
"
:
23
,
"
28
\
u7684
\
u50cf
\
u7d20
\
u7070
\
u5ea6
\
u503c
"
:
20
,
"
28
\
u7684
\
u7a20
\
u5bc6
\
u5411
\
u91cf
\
u548c
\
u4e00
\
u4e2a
"
:
20
,
"
2
\
u8fdb
\
u884c
\
u8fdb
\
u4e00
\
u6b65
\
u6f14
\
u5316
"
:
10
,
"
32777140e
"
:
23
,
"
36540484e
"
:
23
,
"
40gbe
"
:
6
,
"
43630644e
"
:
23
,
"
48565123e
"
:
23
,
"
48684503e
"
:
23
,
"
49316648e
"
:
23
,
"
50k
"
:
0
,
"
51111044e
"
:
23
,
"
53018653e
"
:
23
,
"
56gbe
"
:
6
,
"
5
\
u5230
\
u672c
\
u5730
\
u73af
\
u5883
\
u4e2d
"
:
7
,
"
70634608e
"
:
23
,
"
72296313e
"
:
23
,
"
85625684e
"
:
23
,
"
93137714e
"
:
23
,
"
96644767e
"
:
23
,
"
99982715e
"
:
23
,
"
9
\
u7684
\
u6570
\
u5b57
"
:
20
,
"
\
u4e00
\
u4e2a
\
u6587
\
u4ef6
"
:
20
,
"
\
u4e00
\
u4e2alogging
\
u5bf9
\
u8c61
"
:
20
,
"
\
u4e00
\
u4e2apass
\
u8868
\
u793a
\
u8fc7
\
u4e00
\
u904d
\
u6240
\
u6709
\
u8bad
\
u7ec3
\
u6837
\
u672c
"
:
10
,
"
\
u4e00
\
u6761
"
:
20
,
"
\
u4e00
\
u81f4
\
u7684
\
u7279
\
u5f81
"
:
20
,
"
\
u4e00
\
u822c
\
u60c5
\
u51b5
\
u4e0b
"
:
19
,
"
\
u4e00
\
u822c
\
u63a8
\
u8350
\
u8bbe
\
u7f6e
\
u6210true
"
:
20
,
"
\
u4e00
\
u884c
\
u4e3a
\
u4e00
\
u4e2a
\
u6837
\
u672c
"
:
10
,
"
\
u4e00
\
u884c
\
u5bf9
\
u5e94
\
u4e00
\
u4e2a
\
u6570
\
u636e
\
u6587
\
u4ef6
"
:
19
,
"
\
u4e0a
\
u7684
\
u6548
\
u679c
"
:
10
,
"
\
u4e0b
\
u8f7d
\
u8fdb
\
u7a0b
\
u4f1a
\
u91cd
\
u542f
"
:
0
,
"
\
u4e0b
\
u8ff0
\
u5185
\
u5bb9
\
u5c06
\
u5206
\
u4e3a
\
u5982
\
u4e0b
\
u51e0
\
u4e2a
\
u7c7b
\
u522b
\
u63cf
\
u8ff0
"
:
6
,
"
\
u4e0b
\
u975e
\
u5e38
\
u5c11
\
u7684
\
u53d8
\
u91cf
\
u5f15
\
u7528
"
:
20
,
"
\
u4e0b
\
u9762dataprovid
"
:
10
,
"
\
u4e0d
\
u4e00
\
u5b9a
\
u548c
\
u65f6
\
u95f4
\
u6709
\
u5173
\
u7cfb
"
:
20
,
"
\
u4e0d
\
u4f1a
\
u6267
\
u884c
\
u6d4b
\
u8bd5
\
u64cd
\
u4f5c
"
:
19
,
"
\
u4e0d
\
u5305
\
u542blabel
"
:
23
,
"
\
u4e0d
\
u540c
\
u7684
\
u6570
\
u636e
\
u7c7b
\
u578b
\
u548c
\
u5e8f
\
u5217
\
u6a21
\
u5f0f
\
u8fd4
\
u56de
\
u7684
\
u683c
\
u5f0f
\
u4e0d
\
u540c
"
:
20
,
"
\
u4e0d
\
u652f
\
u6301avx
\
u6307
\
u4ee4
\
u96c6
\
u7684cpu
\
u4e5f
\
u53ef
\
u4ee5
\
u8fd0
\
u884c
"
:
6
,
"
\
u4e0d
\
u7f13
\
u5b58
\
u4efb
\
u4f55
\
u6570
\
u636e
"
:
20
,
"
\
u4e0d
\
u9700
\
u8981avx
\
u6307
\
u4ee4
\
u96c6
\
u7684cpu
\
u4e5f
\
u53ef
\
u4ee5
\
u8fd0
\
u884c
"
:
6
,
"
\
u4e0e
\
u8bad
\
u7ec3
\
u7f51
\
u7edc
\
u914d
\
u7f6e
\
u4e0d
\
u540c
\
u7684
\
u662f
"
:
10
,
"
\
u4e14
\
u5e8f
\
u5217
\
u7684
\
u6bcf
\
u4e00
\
u4e2a
\
u5143
\
u7d20
\
u8fd8
\
u662f
\
u4e00
\
u4e2a
\
u65f6
\
u95f4
\
u5e8f
\
u5217
"
:
20
,
"
\
u4e24
\
u4e2a
\
u6587
\
u6863
"
:
6
,
"
\
u4e24
\
u7c7b
"
:
10
,
"
\
u4e25
\
u91cd
\
u7684
\
u95ee
\
u9898
"
:
20
,
"
\
u4e2a
"
:
10
,
"
\
u4e2ayield
"
:
20
,
"
\
u4e2d
"
:
10
,
"
\
u4e2d
\
u5b9a
\
u4e49
\
u4f7f
\
u7528
\
u54ea
\
u79cddataprovider
\
u53ca
\
u5176
\
u53c2
\
u6570
"
:
19
,
"
\
u4e2d
\
u5b9a
\
u4e49
\
u7684
\
u987a
\
u5e8f
\
u4e00
\
u81f4
"
:
20
,
"
\
u4e2d
\
u5bfb
\
u627e
\
u8fd9
\
u4e9bblas
\
u7684
\
u5b9e
\
u73b0
"
:
1
,
"
\
u4e2d
\
u7684
"
:
20
,
"
\
u4e2d
\
u7684
\
u4e8c
\
u8fdb
\
u5236
\
u4f7f
\
u7528
\
u4e86
"
:
6
,
"
\
u4e2d
\
u7684set
"
:
20
,
"
\
u4e2d
\
u914d
\
u7f6e
"
:
20
,
"
\
u4e3a
"
:
20
,
"
\
u4e3a
\
u4e86
\
u8fd0
\
u884cpaddlepaddle
\
u7684docker
\
u955c
\
u50cf
"
:
6
,
"
\
u4e3a
\
u4f8b
\
u8fdb
\
u884c
\
u9884
\
u6d4b
"
:
10
,
"
\
u4e3b
\
u8981
\
u51fd
\
u6570
\
u662fprocess
\
u51fd
\
u6570
"
:
20
,
"
\
u4e3b
\
u8981
\
u5206
\
u4e3a
\
u4ee5
\
u4e0b
\
u51e0
\
u4e2a
\
u6b65
\
u9aa4
"
:
23
,
"
\
u4e3b
\
u8981
\
u5305
\
u62ec
\
u4e24
\
u90e8
\
u5206
"
:
10
,
"
\
u4e3b
\
u8981
\
u662f
\
u589e
\
u52a0
\
u4e86
\
u521d
\
u59cb
\
u5316
\
u673a
\
u5236
"
:
20
,
"
\
u4e3b
\
u8981
\
u6b65
\
u9aa4
\
u4e3a
"
:
23
,
"
\
u4e3b
\
u8981
\
u7531
\
u4e8e
\
u65e7
\
u7248
\
u672c
"
:
0
,
"
\
u4e3b
\
u8981
\
u7684
\
u8f6f
\
u4ef6
\
u5305
\
u4e3apy_paddl
"
:
23
,
"
\
u4e5f
\
u4f1a
\
u6254
\
u5230
\
u8fd9
\
u6761
\
u6570
\
u636e
"
:
20
,
"
\
u4e5f
\
u4f1a
\
u8bfb
\
u53d6
\
u76f8
\
u5173
\
u8def
\
u5f84
\
u53d8
\
u91cf
\
u6765
\
u8fdb
\
u884c
\
u641c
\
u7d22
"
:
1
,
"
\
u4e5f
\
u53ef
\
u4ee5
"
:
20
,
"
\
u4e5f
\
u53ef
\
u4ee5
\
u4f7f
\
u7528
"
:
20
,
"
\
u4e5f
\
u53ef
\
u4ee5
\
u548cpaddl
"
:
13
,
"
\
u4e5f
\
u53ef
\
u4ee5
\
u76f4
\
u63a5
\
u6267
\
u884c
"
:
6
,
"
\
u4e5f
\
u53ef
\
u4ee5
\
u901a
\
u8fc7
\
u5982
\
u4e0b
\
u65b9
\
u5f0f
\
u9884
\
u6d4b
"
:
10
,
"
\
u4e5f
\
u53ef
\
u4ee5
\
u901a
\
u8fc7save
"
:
10
,
"
\
u4e5f
\
u53ef
\
u4ee5
\
u9884
\
u6d4b
\
u6ca1
\
u6709label
\
u7684
\
u6d4b
\
u8bd5
\
u96c6
"
:
10
,
"
\
u4e5f
\
u5c31
\
u662f
\
u5c06
\
u8bcd
\
u5411
\
u91cf
\
u6a21
\
u578b
\
u989d
\
u6b65
"
:
10
,
"
\
u4e5f
\
u5c31
\
u662f
\
u76f4
\
u63a5
\
u5199
\
u5185
\
u5b58
\
u7684float
\
u6570
\
u7ec4
"
:
23
,
"
\
u4e5f
\
u9700
\
u8981
\
u4e24
\
u6b21
\
u968f
\
u673a
\
u9009
\
u62e9
\
u5230
\
u540c
\
u6837
\
u7684generator
\
u7684
\
u65f6
\
u5019
"
:
20
,
"
\
u4e86
\
u975e
\
u5e38
\
u65b9
\
u4fbf
\
u7684
\
u4e8c
\
u8fdb
\
u5236
\
u5206
\
u53d1
\
u624b
\
u6bb5
"
:
6
,
"
\
u4e8c
\
u6b21
\
u5f00
\
u53d1
\
u53ef
\
u4ee5
"
:
6
,
"
\
u4eba
\
u5458
\
u7b49
\
u7b49
"
:
0
,
"
\
u4ec5
\
u4ec5
\
u9700
\
u8981
"
:
20
,
"
\
u4ecb
\
u7ecdpaddlepaddle
\
u4f7f
\
u7528
\
u6d41
\
u7a0b
\
u548c
\
u5e38
\
u7528
\
u7684
\
u7f51
\
u7edc
\
u57fa
\
u7840
\
u5355
\
u5143
\
u7684
\
u914d
\
u7f6e
\
u65b9
\
u6cd5
"
:
10
,
"
\
u4ece
\
u6587
\
u4ef6
\
u4e2d
\
u8bfb
\
u53d6
\
u6bcf
\
u4e00
\
u6761
\
u6570
\
u636e
"
:
20
,
"
\
u4ece
\
u6587
\
u672c
\
u6587
\
u4ef6
\
u4e2d
\
u8bfb
\
u53d6
"
:
20
,
"
\
u4ece
\
u800c
\
u4e0d
\
u80fd
\
u5728
\
u8fd0
\
u884c
\
u7f16
\
u8bd1
\
u547d
\
u4ee4
\
u7684
\
u65f6
\
u5019
\
u63a5
\
u53d7
\
u53c2
\
u6570
"
:
0
,
"
\
u4ece
\
u800c
\
u751f
\
u6210
\
u591a
\
u4e2agener
"
:
20
,
"
\
u4ece
\
u800c
\
u9632
\
u6b62
\
u8fc7
\
u62df
\
u5408
"
:
19
,
"
\
u4ed6
\
u4eec
\
u662f
"
:[
6
,
7
,
13
,
20
],
"
\
u4ed6
\
u4eec
\
u7684imag
"
:
6
,
"
\
u4ed6
\
u53ef
\
u4ee5
\
u5c06
\
u67d0
\
u4e00
\
u4e2a
\
u51fd
\
u6570
\
u6807
\
u8bb0
\
u6210
\
u4e00
\
u4e2apydataprovid
"
:
20
,
"
\
u4ee4
\
u884c
\
u53c2
\
u6570
\
u6587
\
u6863
"
:
10
,
"
\
u4ee5
\
u592a
\
u7f51
\
u5361
"
:
6
,
"
\
u4ee5
\
u76f8
\
u5bf9
\
u8def
\
u5f84
\
u5f15
\
u7528
"
:
19
,
"
\
u4efb
\
u610f
\
u4e00
\
u79cdcblas
\
u5b9e
\
u73b0
"
:
1
,
"
\
u4f1a
\
u62a5
\
u5bfb
\
u627e
\
u4e0d
\
u5230
\
u8fd9
\
u4e9b
\
u52a8
\
u6001
\
u5e93
"
:
7
,
"
\
u4f1a
\
u6839
\
u636e
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
\
u6307
\
u5b9a
\
u7684
\
u6d4b
\
u8bd5
\
u65b9
\
u5f0f
"
:
19
,
"
\
u4f1a
\
u6839
\
u636einput_types
\
u68c0
\
u67e5
\
u6570
\
u636e
\
u7684
\
u5408
\
u6cd5
\
u6027
"
:
20
,
"
\
u4f1a
\
u751f
\
u6210
\
u591a
\
u4e2agener
"
:
20
,
"
\
u4f1a
\
u9884
\
u5148
\
u8bfb
\
u53d6
\
u5168
\
u90e8
\
u6570
\
u636e
\
u5230
\
u5185
\
u5b58
\
u4e2d
"
:
20
,
"
\
u4f20
\
u5165
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
\
u521d
\
u59cb
\
u5316
"
:
23
,
"
\
u4f20
\
u5165
\
u7684
\
u662f
\
u4e00
\
u4e2a
\
u51fd
\
u6570
"
:
20
,
"
\
u4f20
\
u5165
\
u7684
\
u914d
\
u7f6e
\
u53c2
\
u6570
\
u5305
\
u62ec
"
:
0
,
"
\
u4f20
\
u5165
\
u8fd9
\
u4e2a
\
u53d8
\
u91cf
\
u7684
\
u65b9
\
u5f0f
\
u4e3a
"
:
20
,
"
\
u4f46
\
u662f
"
:[
0
,
20
],
"
\
u4f46
\
u662f
\
u5728
"
:
20
,
"
\
u4f46
\
u662f
\
u5982
\
u679c
\
u4f7f
\
u7528
\
u4e86
\
u9ad8
\
u6027
\
u80fd
\
u7684
\
u7f51
\
u5361
"
:
6
,
"
\
u4f46
\
u662f
\
u65b9
\
u4fbf
\
u8c03
\
u8bd5
\
u548cbenchmark
"
:
1
,
"
\
u4f46
\
u662f
\
u6709
\
u65f6
\
u4e3a
\
u4e86
\
u8ba1
\
u7b97
\
u5747
\
u8861
\
u6027
"
:
20
,
"
\
u4f46
\
u7406
\
u8bba
\
u4e0a
\
u652f
\
u6301
\
u5176
\
u4ed6
\
u7684
"
:
7
,
"
\
u4f46
\
u9700
\
u8981
\
u6ce8
\
u610f
\
u7684
\
u662f
\
u7f16
\
u8bd1
\
u548c
"
:
1
,
"
\
u4f4e
\
u4e8edocker
"
:
0
,
"
\
u4f53
\
u53ef
\
u4ee5
\
u53c2
\
u8003
"
:
20
,
"
\
u4f7f
\
u5728python
\
u73af
\
u5883
\
u4e0b
\
u7684
\
u9884
\
u6d4b
\
u63a5
\
u53e3
\
u66f4
\
u52a0
\
u7b80
\
u5355
"
:
23
,
"
\
u4f7f
\
u7528
"
:[
1
,
6
,
23
],
"
\
u4f7f
\
u7528
\
u5982
\
u4e0b
\
u811a
\
u672c
\
u53ef
\
u4ee5
\
u786e
\
u5b9a
\
u672c
\
u673a
\
u7684cpu
\
u77e5
\
u5426
\
u652f
\
u6301
"
:
6
,
"
\
u4f7f
\
u7528
\
u7684
\
u547d
\
u4ee4
\
u4e5f
\
u662f
"
:
1
,
"
\
u4f7f
\
u7528
\
u8be5
\
u63a5
\
u53e3
\
u7528
\
u6237
\
u53ef
\
u4ee5
\
u53ea
\
u5173
\
u6ce8
\
u5982
\
u4f55
"
:
20
,
"
\
u4f7f
\
u7528
\
u8be5dockerfile
\
u6784
\
u5efa
\
u51fa
\
u955c
\
u50cf
"
:
6
,
"
\
u4f7f
\
u7528
\
u8fd9
\
u4e2a
\
u5173
\
u952e
\
u8bcd
"
:
20
,
"
\
u4f7f
\
u7528deb
\
u5305
\
u5728ubuntu
\
u4e0a
\
u5b89
\
u88c5paddlepaddl
"
:
5
,
"
\
u4f7f
\
u7528dockerfile
\
u6784
\
u5efa
\
u4e00
\
u4e2a
\
u5168
\
u65b0
\
u7684dock
"
:
6
,
"
\
u4f7f
\
u7528mnist
\
u624b
\
u5199
\
u8bc6
\
u522b
\
u4f5c
\
u4e3a
\
u6837
\
u4f8b
"
:
23
,
"
\
u4f7f
\
u7528ssh
\
u8bbf
\
u95eepaddlepaddle
\
u955c
\
u50cf
"
:
6
,
"
\
u4f8b
\
u5982
"
:[
1
,
10
,
20
],
"
\
u4f8b
\
u5982
\
u6587
\
u4ef6
\
u540d
\
u662f
"
:
20
,
"
\
u4f8b
\
u5982rdma
\
u7f51
\
u5361
"
:
6
,
"
\
u4f8b
\
u5982sigmoid
\
u53d8
\
u6362
"
:
10
,
"
\
u4f9d
\
u6b21
\
u8fd4
\
u56de
\
u4e86
\
u6587
\
u4ef6
\
u4e2d
\
u7684
\
u6bcf
\
u6761
\
u6570
\
u636e
"
:
20
,
"
\
u4fe1
\
u606f
"
:
6
,
"
\
u5173
\
u95edcontain
"
:
6
,
"
\
u5176
\
u4e2d
"
:[
0
,
6
,
7
,
19
,
20
,
23
],
"
\
u5176
\
u4e2d
\
u6587
\
u672c
\
u8f93
\
u5165
\
u7c7b
\
u578b
\
u5b9a
\
u4e49
\
u4e3a
\
u6574
\
u6570
\
u65f6
\
u5e8f
\
u7c7b
\
u578binteg
"
:
10
,
"
\
u5176
\
u4e2d
\
u7b2c
\
u4e00
\
u884c
\
u662f
\
u5f15
\
u5165paddlepaddle
\
u7684pydataprovider2
\
u5305
"
:
20
,
"
\
u5176
\
u4ed6
\
u53c2
\
u6570
\
u5747
\
u4f7f
\
u7528kei
"
:
20
,
"
\
u5176
\
u4ed6
\
u53c2
\
u6570
\
u8bf7
\
u53c2
\
u8003
"
:
10
,
"
\
u5176
\
u4ed6
\
u53c2
\
u6570
\
u90fd
\
u4f7f
\
u7528kei
"
:
20
,
"
\
u5176
\
u4f5c
\
u7528
\
u662f
\
u5c06
\
u8bad
\
u7ec3
\
u6570
\
u636e
\
u4f20
\
u5165
\
u5185
\
u5b58
\
u6216
\
u8005
\
u663e
\
u5b58
"
:
19
,
"
\
u5176
\
u5b83
\
u90e8
\
u5206
\
u548c
\
u903b
\
u8f91
\
u56de
\
u5f52
\
u7f51
\
u7edc
\
u7ed3
\
u6784
\
u4e00
\
u81f4
"
:
10
,
"
\
u5176
\
u6570
\
u636e
\
u4f7f
\
u7528
"
:
20
,
"
\
u5176
\
u7b2c
\
u4e00
\
u884c
\
u8bf4
\
u660e
\
u4e86paddle
\
u7684
\
u7248
\
u672c
"
:
18
,
"
\
u5177
"
:
20
,
"
\
u5177
\
u4f53
\
u53ef
\
u4ee5
\
u8bbe
\
u7f6e
\
u6210
\
u4ec0
\
u4e48
\
u5176
\
u4ed6
\
u683c
"
:
20
,
"
\
u5177
\
u4f53
\
u6709
\
u54ea
\
u4e9b
\
u683c
\
u5f0f
"
:
20
,
"
\
u5177
\
u4f53
\
u8bf7
\
u53c2
\
u8003
\
u6ce8
\
u610f
\
u4e8b
\
u9879
\
u4e2d
\
u7684
"
:
6
,
"
\
u5177
\
u4f53dataprovider
\
u8fd8
\
u5177
\
u6709
\
u4ec0
\
u4e48
\
u529f
\
u80fd
"
:
20
,
"
\
u5177
\
u6709
\
u4e24
\
u4e2a
\
u53c2
\
u6570
"
:
20
,
"
\
u5177
\
u6709
\
u548c
\
u5bbf
\
u4e3b
\
u673a
\
u76f8
\
u8fd1
\
u7684
\
u8fd0
\
u884c
\
u6548
\
u7387
"
:
6
,
"
\
u5177
\
u6709
\
u7684
\
u5c5e
\
u6027
\
u6709
"
:
20
,
"
\
u5178
\
u578b
\
u7684
\
u8f93
\
u51fa
\
u7ed3
\
u679c
\
u4e3a
"
:
23
,
"
\
u5178
\
u578b
\
u7684
\
u9884
\
u6d4b
\
u4ee3
\
u7801
\
u5982
\
u4e0b
"
:
23
,
"
\
u5185
\
u5b58
\
u4e0d
\
u591f
\
u7528
\
u7684
\
u60c5
\
u51b5
"
:
19
,
"
\
u518d
\
u6307
\
u5b9a
"
:
1
,
"
\
u5199
\
u5165train
"
:
20
,
"
\
u5199
\
u5728train
"
:
19
,
"
\
u51c6
\
u5907
\
u6570
\
u636e
"
:
23
,
"
\
u51fd
\
u6570
"
:
20
,
"
\
u51fd
\
u6570
\
u4e2d
"
:
20
,
"
\
u51fd
\
u6570
\
u4e2d
\
u4f7f
\
u7528
"
:
20
,
"
\
u51fd
\
u6570
\
u4e2d
\
u7684
"
:
20
,
"
\
u51fd
\
u6570
\
u662f
\
u4f7f
\
u7528
"
:
20
,
"
\
u51fd
\
u6570
\
u6765
\
u4fdd
\
u8bc1
\
u517c
\
u5bb9
\
u6027
"
:
20
,
"
\
u51fd
\
u6570
\
u67e5
\
u8be2
\
u6587
\
u6863
"
:
23
,
"
\
u5206
\
u5e03
\
u5f0f
\
u8bad
\
u7ec3
"
:
10
,
"
\
u5206
\
u7c7b
\
u6210
\
u6b63
\
u9762
\
u60c5
\
u7eea
\
u548c
"
:
20
,
"
\
u5217
\
u8868
\
u5982
\
u4e0b
"
:
20
,
"
\
u5219
\
u53ef
\
u4ee5
\
u4f7f
\
u7528
"
:
6
,
"
\
u5219
\
u53ef
\
u4ee5
\
u9009
\
u62e9
\
u4e0a
\
u8868
\
u4e2d
\
u7684avx
\
u7248
\
u672cpaddlepaddl
"
:
6
,
"
\
u5219
\
u5b57
\
u4e0e
\
u5b57
\
u4e4b
\
u95f4
\
u7528
\
u7a7a
\
u683c
\
u5206
\
u9694
"
:
10
,
"
\
u5219
\
u9700
\
u8981
\
u4f7f
\
u7528
"
:
7
,
"
\
u5219
\
u9700
\
u8981
\
u5148
\
u5c06
"
:
6
,
"
\
u5219
\
u9700
\
u8981
\
u8fdb
\
u884c
\
u4e00
\
u5b9a
\
u7684
\
u4e8c
\
u6b21
\
u5f00
\
u53d1
"
:
6
,
"
\
u521b
\
u5efa
\
u4e00
\
u4e2a
"
:
23
,
"
\
u521b
\
u5efagener
"
:
20
,
"
\
u5220
\
u9664contain
"
:
6
,
"
\
u5229
\
u7528
\
u5355
\
u8bcdid
\
u67e5
\
u627e
\
u5bf9
\
u5e94
\
u7684
\
u8be5
\
u5355
\
u8bcd
\
u7684
\
u8fde
\
u7eed
\
u8868
\
u793a
\
u5411
\
u91cf
"
:
10
,
"
\
u5229
\
u7528
\
u903b
\
u8f91
\
u56de
\
u5f52
\
u6a21
\
u578b
\
u5bf9
\
u8be5
\
u5411
\
u91cf
\
u8fdb
\
u884c
\
u5206
\
u7c7b
"
:
10
,
"
\
u522b
"
:
10
,
"
\
u5269
\
u4e0b
\
u7684pass
\
u4f1a
\
u76f4
\
u63a5
\
u4ece
\
u5185
\
u5b58
\
u91cc
"
:
20
,
"
\
u52a0
\
u4e86l2
\
u6b63
\
u5219
\
u548c
\
u68af
\
u5ea6
\
u622a
\
u65ad
"
:
10
,
"
\
u52a0
\
u8f7d
\
u6570
\
u636e
"
:
10
,
"
\
u5305
"
:
6
,
"
\
u5305
\
u548c
"
:
6
,
"
\
u5305
\
u62ec
"
:
10
,
"
\
u5305
\
u62ec
\
u7b80
\
u5355
\
u7684rnn
\
u6a21
\
u578b
"
:
10
,
"
\
u5305
\
u62ecdocker
\
u955c
\
u50cf
"
:
5
,
"
\
u5305
\
u62ecpaddle
\
u7684
\
u4e8c
\
u8fdb
\
u5236
"
:
6
,
"
\
u5305
\
u62ecpaddle
\
u8fd0
\
u884cdemo
\
u6240
\
u9700
\
u8981
\
u7684
\
u4f9d
\
u8d56
"
:
6
,
"
\
u5373
"
:[
6
,
10
],
"
\
u5373
\
u4e0d
\
u5728
\
u4e4e
\
u5185
\
u5b58
\
u6682
\
u5b58
\
u591a
\
u5c11
\
u6761
\
u6570
\
u636e
"
:
20
,
"
\
u5373
\
u4e0d
\
u662f
\
u4e00
\
u6761
\
u5e8f
\
u5217
"
:
20
,
"
\
u5373
\
u4ece
\
u5355
\
u8bcd
\
u5b57
\
u7b26
\
u4e32
\
u5230
\
u5355
\
u8bcdid
\
u7684
\
u5b57
\
u5178
"
:
20
,
"
\
u5373
\
u4f1a
\
u751f
\
u6210100
\
u4e2agener
"
:
20
,
"
\
u5373
\
u4f7f
\
u5728check
\
u4e2d
\
u6570
\
u636e
\
u4e0d
\
u5408
\
u6cd5
"
:
20
,
"
\
u5373
\
u4f7f
\
u5728process
\
u91cc
\
u9762
\
u53ea
\
u4f1a
\
u6709
\
u4e00
"
:
20
,
"
\
u5373
\
u5305
\
u542b
\
u65f6
\
u95f4
\
u6b65
\
u4fe1
\
u606f
"
:
20
,
"
\
u5373
\
u53ef
"
:
20
,
"
\
u5373
\
u53ef
\
u4ee5
\
u4f7f
\
u7528ssh
\
u8bbf
\
u95ee
\
u5bbf
\
u4e3b
\
u673a
\
u76848022
\
u7aef
\
u53e3
"
:
6
,
"
\
u5373
\
u53ef
\
u542f
\
u52a8
\
u548c
\
u8fdb
\
u5165paddlepaddle
\
u7684contain
"
:
6
,
"
\
u5373
\
u53ef
\
u5728
\
u672c
\
u5730
\
u7f16
\
u8bd1
\
u51fapaddlepaddle
\
u7684
\
u955c
\
u50cf
"
:
0
,
"
\
u5373
\
u53ef
\
u6253
\
u5370
\
u51fapaddlepaddle
\
u7684
\
u7248
\
u672c
\
u548c
\
u6784
\
u5efa
"
:
6
,
"
\
u5373
\
u5927
\
u90e8
\
u5206
\
u503c
\
u4e3a0
"
:
20
,
"
\
u5373
\
u5982
\
u679ctrain
"
:
20
,
"
\
u5373
\
u5bf9
\
u7b2c3
\
u6b65
\
u8fdb
\
u884c
\
u66ff
\
u6362
"
:
10
,
"
\
u5373
\
u662f
\
u4e00
\
u6761
\
u65f6
\
u95f4
\
u5e8f
\
u5217
"
:
20
,
"
\
u5373train
"
:
20
,
"
\
u5377
\
u79ef
\
u7f51
\
u7edc
\
u662f
\
u4e00
\
u79cd
\
u7279
\
u6b8a
\
u7684
\
u4ece
\
u8bcd
\
u5411
\
u91cf
\
u8868
\
u793a
\
u5230
\
u53e5
\
u5b50
\
u8868
\
u793a
\
u7684
\
u65b9
\
u6cd5
"
:
10
,
"
\
u53c2
\
u6570
"
:
0
,
"
\
u53c2
\
u6570
\
u6570
\
u91cf
"
:
10
,
"
\
u53c2
\
u8003
"
:
19
,
"
\
u53c2
\
u89c1
"
:[
3
,
4
],
"
\
u53d1
\
u884c
\
u7248
"
:
7
,
"
\
u53d6
\
u51b3
\
u4e8e
\
u662f
\
u5426
\
u5bfb
\
u627e
\
u5230gflags
"
:
1
,
"
\
u53d6
\
u51b3
\
u4e8e
\
u662f
\
u5426
\
u5bfb
\
u627e
\
u5230glog
"
:
1
,
"
\
u53d6
\
u51b3
\
u4e8e
\
u662f
\
u5426
\
u5bfb
\
u627e
\
u5230gtest
"
:
1
,
"
\
u53d6
\
u51b3
\
u4e8e
\
u662f
\
u5426
\
u627e
\
u5230swig
"
:
1
,
"
\
u53d8
\
u4e3a3
\
u4e2a
\
u65b0
\
u7684
\
u5b50
\
u6b65
\
u9aa4
"
:
10
,
"
\
u53d8
\
u4f1a
\
u62a5
\
u8fd9
\
u4e2a
\
u9519
\
u8bef
"
:
7
,
"
\
u53d8
\
u91cf
"
:
20
,
"
\
u53e5
\
u5b50
\
u8868
\
u793a
\
u7684
\
u8ba1
\
u7b97
\
u66f4
\
u65b0
\
u4e3a2
\
u6b65
"
:
10
,
"
\
u53ea
\
u5305
\
u62ecpaddle
\
u7684
\
u4e8c
\
u8fdb
\
u5236
"
:
6
,
"
\
u53ea
\
u662f
\
u5c06
\
u53e5
\
u5b50
\
u5229
\
u7528
\
u8fde
\
u7eed
\
u5411
\
u91cf
\
u8868
\
u793a
\
u66ff
\
u6362
\
u7a00
\
u758f
"
:
10
,
"
\
u53ea
\
u662f
\
u8bf4
\
u660e
\
u6570
\
u636e
\
u7684
\
u987a
\
u5e8f
\
u662f
\
u91cd
\
u8981
\
u7684
"
:
20
,
"
\
u53ea
\
u80fd
\
u591f
\
u8fd4
\
u56delist
\
u6216
\
u8005tupl
"
:
20
,
"
\
u53ea
\
u9700
\
u8981
\
u4f7f
\
u7528
\
u4e00
\
u884c
\
u4ee3
\
u7801
\
u5373
\
u53ef
\
u4ee5
\
u8bbe
\
u7f6e
\
u8bad
\
u7ec3
\
u5f15
\
u7528
\
u8fd9
\
u4e2adataprovid
"
:
20
,
"
\
u53ea
\
u9700
\
u8981
\
u5728
"
:
20
,
"
\
u53ea
\
u9700
\
u8981
\
u77e5
\
u9053
\
u8fd9
\
u53ea
\
u662f
\
u4e00
\
u4e2a
\
u6807
\
u8bb0
\
u5c5e
\
u6027
\
u7684
\
u65b9
\
u6cd5
\
u5c31
\
u53ef
\
u4ee5
\
u4e86
"
:
20
,
"
\
u53ef
\
u4ee5
\
u4e3a
\
u4e00
\
u4e2a
\
u6570
\
u636e
\
u6587
\
u4ef6
\
u8fd4
\
u56de
\
u591a
\
u6761
\
u8bad
\
u7ec3
\
u6837
\
u672c
"
:
20
,
"
\
u53ef
\
u4ee5
\
u4f20
\
u516510k
"
:
0
,
"
\
u53ef
\
u4ee5
\
u4f7f
\
u7528
"
:
0
,
"
\
u53ef
\
u4ee5
\
u4f7f
\
u7528
\
u547d
\
u4ee4
"
:
7
,
"
\
u53ef
\
u4ee5
\
u4f7f
\
u7528
\
u8bad
\
u7ec3
\
u597d
\
u7684
\
u6a21
\
u578b
\
u8bc4
\
u4f30
\
u5e26
\
u6709label
\
u7684
\
u9a8c
\
u8bc1
\
u96c6
"
:
10
,
"
\
u53ef
\
u4ee5
\
u4f7f
\
u7528graphviz
\
u5bf9paddlepaddle
\
u7684
\
u7f51
\
u7edc
\
u6a21
\
u578b
\
u8fdb
\
u884c
\
u7ed8
\
u5236
"
:
13
,
"
\
u53ef
\
u4ee5
\
u4f7f
\
u7528paddl
"
:
13
,
"
\
u53ef
\
u4ee5
\
u4f7f
\
u7528python
\
u7684
"
:
23
,
"
\
u53ef
\
u4ee5
\
u53c2
\
u8003
"
:
10
,
"
\
u53ef
\
u4ee5
\
u5728
\
u4e00
\
u4e2a
\
u51fd
\
u6570
\
u91cc
"
:
20
,
"
\
u53ef
\
u4ee5
\
u5728cmake
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u8bbe
\
u7f6e
"
:
1
,
"
\
u53ef
\
u4ee5
\
u5c06
\
u4e00
\
u6761
\
u6570
\
u636e
\
u8bbe
\
u7f6e
\
u6210
\
u591a
\
u4e2abatch
"
:
20
,
"
\
u53ef
\
u4ee5
\
u5c06paddlepaddle
\
u7684
\
u6a21
\
u578b
\
u548c
\
u914d
\
u7f6e
\
u6253
\
u5305
\
u6210
\
u4e00
\
u4e2a
\
u6587
\
u4ef6
"
:
13
,
"
\
u53ef
\
u4ee5
\
u5c06paddlepaddle
\
u7684
\
u8bad
\
u7ec3
\
u6a21
\
u578b
\
u4ee5proto
"
:
13
,
"
\
u53ef
\
u4ee5
\
u65b9
\
u4fbf
\
u5d4c
\
u5165
\
u5f0f
\
u5de5
\
u4f5c
"
:
1
,
"
\
u53ef
\
u4ee5
\
u6839
\
u636e
\
u4e0d
\
u540c
\
u7684
\
u6570
\
u636e
\
u914d
\
u7f6e
\
u4e0d
\
u540c
\
u7684
\
u8f93
\
u5165
\
u7c7b
\
u578b
"
:
20
,
"
\
u53ef
\
u4ee5
\
u8fd4
\
u56de
\
u4e00
\
u4e2adict
"
:
20
,
"
\
u53ef
\
u4ee5
\
u901a
\
u8fc7show
"
:
10
,
"
\
u53ef
\
u7528
\
u5728
\
u6d4b
\
u8bd5
\
u6216
\
u8bad
\
u7ec3
\
u65f6
\
u6307
\
u5b9a
\
u521d
\
u59cb
\
u5316
\
u6a21
\
u578b
"
:
10
,
"
\
u53ef
\
u80fd
\
u7684
\
u5185
\
u5b58
\
u6cc4
\
u9732
\
u95ee
\
u9898
"
:
19
,
"
\
u53ef
\
u80fd
\
u7684
\
u8f93
\
u51fa
\
u4e3a
"
:
7
,
"
\
u53ef
\
u9009
"
:
20
,
"
\
u5404
\
u79cd
\
u53c2
\
u6570
\
u548c
\
u7ef4
\
u62a4
"
:
0
,
"
\
u540c
\
u65f6
"
:[
0
,
1
,
20
],
"
\
u540c
\
u65f6
\
u4f1a
\
u8ba1
\
u7b97
\
u5206
\
u7c7b
\
u51c6
\
u786e
\
u7387
"
:
10
,
"
\
u540c
\
u65f6
\
u6b22
\
u8fce
\
u8d21
\
u732e
\
u66f4
\
u591a
\
u7684
\
u5b89
\
u88c5
\
u5305
"
:
5
,
"
\
u540d
\
u79f0
"
:
10
,
"
\
u540e
\
u9762
\
u8ddf
\
u7740
\
u4e00
\
u7cfb
\
u5217
\
u7f16
\
u8bd1
\
u53c2
\
u6570
"
:
18
,
"
\
u5411
\
u91cf
\
u8868
\
u793a
"
:
10
,
"
\
u5426
"
:
1
,
"
\
u5426
\
u5219
"
:
19
,
"
\
u5426
\
u5219
\
u9700
\
u8981
\
u9009
\
u62e9
\
u975eavx
\
u7684paddlepaddl
"
:
6
,
"
\
u547d
\
u4ee4
"
:
0
,
"
\
u547d
\
u4ee4
\
u4e3a
"
:
6
,
"
\
u547d
\
u4ee4
\
u5373
\
u53ef
\
u5b8c
\
u6210
\
u5b89
\
u88c5
"
:
7
,
"
\
u547d
\
u4ee4
\
u6307
\
u5b9a
\
u7684
\
u53c2
\
u6570
\
u4f1a
\
u4f20
\
u5165
\
u7f51
\
u7edc
\
u914d
\
u7f6e
\
u4e2d
"
:
10
,
"
\
u547d
\
u4ee4
\
u8fd0
\
u884c
\
u955c
\
u50cf
"
:
6
,
"
\
u547d
\
u4ee4
\
u9884
\
u5148
\
u4e0b
\
u8f7d
\
u955c
\
u50cf
"
:
6
,
"
\
u548c
"
:[
1
,
6
,
20
],
"
\
u548c
\
u4e09
\
u79cd
\
u5e8f
\
u5217
\
u6a21
\
u5f0f
"
:
20
,
"
\
u548c
\
u5dee
\
u8bc4
"
:
10
,
"
\
u548c
\
u6587
\
u672c
\
u4fe1
\
u606f
\
u7528tab
\
u95f4
\
u9694
"
:
10
,
"
\
u548c
\
u6d4b
\
u8bd5
\
u6587
\
u4ef6
\
u5217
\
u8868
"
:
19
,
"
\
u548c
\
u7528
\
u6237
\
u4f20
\
u5165
\
u7684
\
u53c2
\
u6570
"
:
20
,
"
\
u548c
\
u9884
\
u5904
\
u7406
\
u811a
\
u672c
"
:
10
,
"
\
u548ccudnn
"
:
7
,
"
\
u548cinitalizer
\
u91cc
\
u5b9a
\
u4e49
\
u987a
\
u5e8f
\
u4e00
\
u81f4
"
:
10
,
"
\
u5668
"
:
10
,
"
\
u56db
\
u4e2a
\
u7248
\
u672c
"
:
7
,
"
\
u56db
\
u79cd
\
u6570
\
u636e
\
u7c7b
\
u578b
\
u662f
"
:
20
,
"
\
u56fe
\
u50cf
\
u5206
\
u7c7b
"
:
9
,
"
\
u5728
"
:[
1
,
7
,
20
],
"
\
u5728
\
u58f0
\
u660edataprovider
\
u7684
\
u65f6
\
u5019
\
u4f20
\
u5165
\
u4e86dictionary
\
u4f5c
\
u4e3a
\
u53c2
\
u6570
"
:
20
,
"
\
u5728
\
u5b8c
\
u6210
\
u4e86
\
u6570
\
u636e
\
u548c
\
u7f51
\
u7edc
\
u7ed3
\
u6784
\
u642d
\
u5efa
\
u4e4b
\
u540e
"
:
10
,
"
\
u5728
\
u672c
\
u95ee
\
u9898
\
u4e2d
"
:
10
,
"
\
u5728
\
u6a21
\
u578b
\
u914d
\
u7f6e
\
u4e2d
\
u5229
\
u7528
"
:
10
,
"
\
u5728
\
u6b64
\
u4e3a
\
u65b9
\
u4fbf
\
u5bf9
\
u6bd4
\
u4e0d
\
u540c
\
u7f51
\
u7edc
\
u7ed3
\
u6784
"
:
10
,
"
\
u5728
\
u6bcf
\
u4e2a
\
u7ef4
\
u5ea6
\
u4e0a
\
u53d6
\
u51fa
\
u5728
\
u8be5
\
u53e5
\
u8bdd
\
u65b0
\
u7684
\
u5411
\
u91cf
\
u96c6
\
u5408
\
u4e0a
\
u8be5
\
u7ef4
\
u5ea6
\
u7684
\
u6700
\
u5927
\
u503c
\
u4f5c
\
u4e3a
\
u6700
\
u540e
\
u7684
\
u53e5
\
u5b50
\
u8868
\
u793a
\
u5411
\
u91cf
"
:
10
,
"
\
u5728
\
u7a0b
\
u5e8f
\
u5f00
\
u59cb
\
u9636
\
u6bb5
"
:
23
,
"
\
u5728
\
u8bad
\
u7ec3
\
u8fc7
\
u7a0b
\
u4e2d
\
u8fdb
\
u884c
\
u6d4b
\
u8bd5
"
:
19
,
"
\
u5728
\
u8bad
\
u7ec3
\
u914d
\
u7f6e
\
u91cc
"
:
20
,
"
\
u5728
\
u8fd9
\
u4e2a
\
u51fd
\
u6570
\
u4e2d
"
:
20
,
"
\
u5728
\
u914d
\
u7f6e
\
u4e2d
\
u8bfb
\
u53d6
\
u4e86
\
u5b57
\
u5178
"
:
20
,
"
\
u5728cmake
\
u914d
\
u7f6e
\
u65f6
\
u53ef
\
u4ee5
\
u4f7f
\
u7528
"
:
1
,
"
\
u5728pydataprovider
\
u4e2d
"
:
20
,
"
\
u5728python
\
u73af
\
u5883
\
u4e0b
\
u9884
\
u6d4b
\
u7ed3
\
u679c
"
:
23
,
"
\
u57fa
\
u672c
\
u4e0a
\
u4e0d
\
u80fd
\
u6574
\
u4f53
\
u4fee
\
u6b63
"
:
20
,
"
\
u57fa
\
u672c
\
u7684
\
u5904
\
u7406
\
u903b
\
u8f91
\
u4e5f
\
u548cmnist
\
u903b
\
u8f91
\
u4e00
\
u81f4
"
:
20
,
"
\
u57fa
\
u672c
\
u7684pydataprovider
\
u4f7f
\
u7528
\
u4ecb
\
u7ecd
\
u5b8c
\
u6bd5
\
u4e86
"
:
20
,
"
\
u591a
\
u4e2ainput
\
u4ee5list
\
u65b9
\
u5f0f
\
u8f93
\
u5165
"
:
10
,
"
\
u591a
\
u6b21
\
u8fd4
\
u56de
\
u53d8
\
u91cf
"
:
20
,
"
\
u591a
\
u7ebf
\
u7a0b
\
u4e0b
\
u8f7d
\
u8fc7
\
u7a0b
\
u4e2d
"
:
0
,
"
\
u591a
\
u7ebf
\
u7a0b
\
u6570
\
u636e
\
u8bfb
\
u53d6
"
:
20
,
"
\
u5927
"
:
20
,
"
\
u597d
\
u8bc4
"
:
10
,
"
\
u5982
\
u679c
"
:[
7
,
20
],
"
\
u5982
\
u679c
\
u4e0d
\
u4e86
\
u89e3
"
:
20
,
"
\
u5982
\
u679c
\
u4e0d
\
u4f7f
\
u7528
\
u5219
\
u4f1a
\
u4f7f
\
u7528
\
u4e00
\
u4e2a
\
u7b80
\
u5316
\
u7248
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
\
u89e3
\
u6790
"
:
1
,
"
\
u5982
\
u679c
\
u4e0d
\
u4f7f
\
u7528
\
u5219
\
u4f1a
\
u4f7f
\
u7528
\
u4e00
\
u4e2a
\
u7b80
\
u5316
\
u7248
\
u7684
\
u65e5
\
u5fd7
\
u5b9e
\
u73b0
"
:
1
,
"
\
u5982
\
u679c
\
u4e0d
\
u5207
\
u8bcd
"
:
10
,
"
\
u5982
\
u679c
\
u4e0d
\
u8bbe
\
u7f6e
\
u7684
\
u8bdd
"
:
20
,
"
\
u5982
\
u679c
\
u4f7f
\
u7528gpu
\
u7248
\
u672c
\
u7684paddlepaddl
"
:
7
,
"
\
u5982
\
u679c
\
u5728
"
:
7
,
"
\
u5982
\
u679c
\
u5728
\
u7b2c
\
u4e00
\
u6b21cmake
\
u4e4b
\
u540e
\
u60f3
\
u8981
\
u91cd
\
u65b0
\
u8bbe
"
:
1
,
"
\
u5982
\
u679c
\
u5728
\
u8bad
\
u7ec3
\
u65f6
"
:
20
,
"
\
u5982
\
u679c
\
u5c0f
\
u4e8e
\
u8fd9
\
u4e2a
\
u4e0b
\
u8f7d
\
u901f
\
u5ea6
"
:
0
,
"
\
u5982
\
u679c
\
u60a8
\
u4f7f
\
u7528
"
:
6
,
"
\
u5982
\
u679c
\
u60f3
\
u8981
\
u5728
\
u5916
\
u90e8
\
u673a
\
u5668
\
u8bbf
\
u95ee
\
u8fd9
\
u4e2acontain
"
:
6
,
"
\
u5982
\
u679c
\
u662ffalse
\
u7684
\
u8bdd
"
:
20
,
"
\
u5982
\
u679c
\
u662ftrue
\
u7684
\
u8bdd
"
:
20
,
"
\
u5982
\
u679c
\
u6709
\
u66f4
\
u590d
\
u6742
\
u7684
\
u4f7f
\
u7528
"
:
19
,
"
\
u5982
\
u679c
\
u7528
\
u6237
\
u4e0d
\
u6307
\
u5b9a
\
u8fd4
\
u56de
\
u6570
\
u636e
\
u7684
\
u5bf9
\
u5e94
\
u5173
\
u7cfb
"
:
20
,
"
\
u5982
\
u679c
\
u8bbe
\
u7f6e
\
u6210true
\
u7684
\
u8bdd
"
:
20
,
"
\
u5982
\
u679c
\
u8f93
\
u51fa
"
:
6
,
"
\
u5982
\
u679c
\
u8fd0
\
u884cgpu
\
u7248
\
u672c
\
u7684paddlepaddl
"
:
6
,
"
\
u5982
\
u679ctest
"
:
19
,
"
\
u5b83
\
u5305
\
u542b
\
u7684
\
u53c2
\
u6570
\
u6709
"
:
20
,
"
\
u5b89
\
u88c5
\
u5305
\
u5728ubuntu
"
:
7
,
"
\
u5b89
\
u88c5
\
u5305
\
u7684
\
u4e0b
\
u8f7d
\
u5730
\
u5740
\
u662f
"
:
7
,
"
\
u5b89
\
u88c5
\
u597d
\
u7684paddlepaddle
\
u811a
\
u672c
\
u5305
\
u62ec
\
u591a
\
u6761
\
u547d
\
u4ee4
"
:
13
,
"
\
u5b89
\
u88c5
\
u5b8c
\
u6210
\
u540e
"
:
7
,
"
\
u5b89
\
u88c5
\
u5b8c
\
u6210
\
u7684paddlepaddle
\
u4e3b
\
u4f53
\
u5305
\
u62ec
\
u4e09
\
u4e2a
\
u90e8
\
u5206
"
:
6
,
"
\
u5b89
\
u88c5
\
u5b8c
\
u6210paddlepaddle
\
u540e
"
:
7
,
"
\
u5b89
\
u88c5
\
u6559
\
u7a0b
"
:
10
,
"
\
u5b89
\
u88c5
\
u65b9
\
u6cd5
\
u8bf7
\
u53c2
\
u8003
"
:
6
,
"
\
u5b89
\
u88c5
\
u7f16
\
u8bd1
\
u4f9d
\
u8d56
"
:
3
,
"
\
u5b89
\
u88c5
\
u7f16
\
u8bd1paddlepaddle
\
u9700
\
u8981
\
u7684
\
u4f9d
\
u8d56
"
:
2
,
"
\
u5b89
\
u88c5docker
\
u9700
\
u8981
\
u60a8
\
u7684
\
u673a
\
u5668
"
:
6
,
"
\
u5b89
\
u88c5paddlepaddl
"
:
10
,
"
\
u5b89
\
u88c5paddlepaddle
\
u7684docker
\
u955c
\
u50cf
"
:
5
,
"
\
u5b8c
\
u6210
\
u591a
\
u673a
\
u8bad
\
u7ec3
"
:
13
,
"
\
u5b8c
\
u6574
\
u4ee3
\
u7801
\
u89c1
"
:
23
,
"
\
u5b9a
\
u4e49
\
u6587
\
u672c
\
u4fe1
\
u606f
"
:
10
,
"
\
u5b9e
\
u73b0
\
u4e86
\
u6253
\
u5f00
\
u6587
\
u672c
\
u6587
\
u4ef6
"
:
20
,
"
\
u5bc6
\
u7801
\
u4e5f
\
u662froot
"
:
6
,
"
\
u5bf9
\
u4e8e
\
u7528
\
u6237
\
u6765
\
u8bf4
"
:
20
,
"
\
u5bf9
\
u4e8e
\
u7ed9
\
u5b9a
\
u7684
\
u4e00
\
u6761
\
u6587
\
u672c
"
:
10
,
"
\
u5bf9
\
u4e8ecuda
\
u7684toolkit
\
u6709
\
u65ad
\
u70b9
\
u7eed
\
u4f20
\
u548c
\
u4f20
\
u8f93
\
u901f
\
u5ea6
\
u8fc7
\
u5c0f
\
u91cd
\
u542f
\
u4e0b
\
u8f7d
\
u7684
"
:
0
,
"
\
u5bf9
\
u4e8emnist
\
u800c
\
u8a00
"
:
20
,
"
\
u5bf9
\
u8be5
\
u8868
\
u793a
\
u8fdb
\
u884c
\
u975e
\
u7ebf
\
u6027
\
u53d8
\
u6362
"
:
10
,
"
\
u5bf9
\
u8c61
"
:
20
,
"
\
u5bf9
\
u8c61convert
"
:
23
,
"
\
u5c06
\
u4f1a
\
u6d4b
\
u8bd5
\
u914d
\
u7f6e
\
u6587
\
u4ef6
\
u4e2dtest
"
:
10
,
"
\
u5c06
\
u5b57
\
u5178
\
u5b58
\
u5165
\
u4e86set
"
:
20
,
"
\
u5c06
\
u5bbf
\
u4e3b
\
u673a
\
u76848022
\
u7aef
\
u53e3
\
u6620
\
u5c04
\
u5230container
\
u768422
\
u7aef
\
u53e3
\
u4e0a
"
:
6
,
"
\
u5c06
\
u6570
\
u636e
\
u7ec4
\
u5408
\
u6210batch
\
u8bad
\
u7ec3
"
:
20
,
"
\
u5c06
\
u6587
\
u4ef6
\
u7684
\
u7edd
\
u5bf9
\
u8def
\
u5f84
\
u6216
\
u76f8
\
u5bf9
\
u8def
\
u5f84
"
:
19
,
"
\
u5c06
\
u8bc4
\
u8bba
\
u5206
\
u4e3a
\
u597d
\
u8bc4
"
:
10
,
"
\
u5c06
\
u8be5
\
u53e5
\
u8bdd
\
u5305
\
u542b
\
u7684
\
u6240
\
u6709
\
u5355
\
u8bcd
\
u5411
\
u91cf
\
u6c42
\
u5e73
\
u5747
\
u5f97
\
u5230
\
u53e5
\
u5b50
\
u7684
\
u8868
\
u793a
"
:
10
,
"
\
u5c06ssh
\
u88c5
\
u5165
\
u7cfb
\
u7edf
\
u5185
\
u5e76
\
u5f00
\
u542f
\
u8fdc
\
u7a0b
\
u8bbf
\
u95ee
"
:
6
,
"
\
u5c31
"
:
20
,
"
\
u5c31
\
u50cf
\
u8fd9
\
u4e2a
\
u6837
\
u4f8b
\
u4e00
\
u6837
"
:
20
,
"
\
u5c31
\
u662f
\
u5c06
\
u8fd9
\
u4e9b
\
u52a8
\
u6001
\
u5e93
\
u52a0
\
u5230
\
u73af
\
u5883
\
u53d8
\
u91cf
\
u91cc
\
u9762
"
:
7
,
"
\
u5c5e
\
u6027
"
:
20
,
"
\
u5dee
\
u8bc4
"
:
10
,
"
\
u5e38
\
u89c1
\
u7684
\
u8f93
\
u51fa
\
u683c
\
u5f0f
\
u4e3a
"
:
18
,
"
\
u5e76
\
u4e14
"
:
20
,
"
\
u5e76
\
u4e14
\
u4f7f
\
u7528
\
u5173
\
u952e
\
u8bcd
"
:
20
,
"
\
u5e76
\
u4e14
\
u5220
\
u9664container
\
u4e2d
\
u7684
\
u6570
\
u636e
"
:
6
,
"
\
u5e76
\
u4e14
\
u5728
\
u5185
\
u5b58
\
u8db3
\
u591f
"
:
20
,
"
\
u5e76
\
u4e14
\
u6807
\
u8bb0process
\
u51fd
\
u6570
\
u662f
\
u4e00
\
u4e2adataprovid
"
:
20
,
"
\
u5e76
\
u4f7f
\
u7528
\
u4e86dropout
"
:
10
,
"
\
u5e76
\
u572823
\
u884c
\
u8fd4
\
u56de
\
u7ed9paddlepaddle
\
u8fdb
\
u7a0b
"
:
20
,
"
\
u5e76
\
u5c06
\
u6bcf
\
u884c
\
u8f6c
\
u6362
\
u6210
\
u548c
"
:
20
,
"
\
u5e76
\
u63d0
\
u4f9b
"
:
6
,
"
\
u5e76
\
u63d0
\
u4f9b
\
u4e86
\
u7b80
\
u5355
\
u7684cache
\
u529f
\
u80fd
"
:
20
,
"
\
u5e76
\
u8bbe
\
u7f6e
\
u597d
\
u5bf9
\
u5e94
\
u7684
\
u73af
\
u5883
\
u53d8
\
u91cf
"
:
7
,
"
\
u5e76
\
u9010
\
u6e10
\
u5c55
\
u793a
\
u66f4
\
u52a0
\
u6df1
\
u5165
\
u7684
\
u529f
\
u80fd
"
:
10
,
"
\
u5e8f
\
u5217
\
u6a21
\
u578b
\
u6570
\
u636e
\
u63d0
\
u4f9b
"
:
19
,
"
\
u5e8f
\
u5217
\
u6a21
\
u578b
\
u662f
\
u6307
\
u6570
\
u636e
\
u7684
\
u67d0
\
u4e00
\
u7ef4
\
u5ea6
\
u662f
\
u4e00
\
u4e2a
\
u5e8f
\
u5217
\
u5f62
\
u5f0f
"
:
20
,
"
\
u5e93
\
u7684
\
u8bdd
"
:
7
,
"
\
u5f0f
"
:
20
,
"
\
u5f15
\
u7528
\
u7684dataprovider
\
u662f
"
:
20
,
"
\
u5f53
\
u51fd
\
u6570
\
u8fd4
\
u56de
\
u7684
\
u65f6
\
u5019
"
:
20
,
"
\
u5f53
\
u524dlog_period
\
u4e2abatch
\
u6240
\
u6709
\
u6837
\
u672c
\
u7684
\
u5e73
\
u5747
\
u5206
\
u7c7b
\
u9519
\
u8bef
\
u7387
"
:
10
,
"
\
u5f53
\
u524dlog_period
\
u4e2abatch
\
u6240
\
u6709
\
u6837
\
u672c
\
u7684
\
u5e73
\
u5747cost
"
:
10
,
"
\
u5f53
\
u7136
"
:
19
,
"
\
u5f53
\
u8c03
"
:
20
,
"
\
u5f88
"
:
10
,
"
\
u5f97
\
u5230
\
u7ed3
\
u679c
"
:
7
,
"
\
u5feb
\
u901f
\
u5165
\
u95e8
"
:
11
,
"
\
u5ff5
\
u662f
"
:
20
,
"
\
u60a8
\
u53ef
\
u4ee5
\
u4f7f
\
u7528
"
:
6
,
"
\
u60a8
\
u5c31
\
u53ef
\
u4ee5
\
u8fdc
\
u7a0b
\
u7684
\
u4f7f
\
u7528paddlepaddle
\
u5566
"
:
6
,
"
\
u60a8
\
u9700
\
u8981
\
u5728
\
u673a
\
u5668
\
u4e2d
\
u5b89
\
u88c5
\
u597ddocker
"
:
6
,
"
\
u60a8
\
u9700
\
u8981
\
u8fdb
\
u5165
\
u955c
\
u50cf
\
u8fd0
\
u884cpaddlepaddl
"
:
6
,
"
\
u60c5
\
u611f
\
u5206
\
u6790
"
:
9
,
"
\
u60f3
\
u8981
\
u8fd0
\
u884cpaddlepaddl
"
:
6
,
"
\
u6210
\
u4e3a
\
u7ef4
\
u5ea6
\
u4e3ahidden
"
:
10
,
"
\
u6211
\
u4eec
\
u4ece
\
u63d0
\
u524d
\
u7ed9
\
u5b9a
\
u7684
\
u7c7b
\
u522b
\
u96c6
\
u5408
\
u4e2d
\
u9009
\
u62e9
\
u5176
\
u6240
\
u5c5e
\
u7c7b
"
:
10
,
"
\
u6211
\
u4eec
\
u4ee5
\
u6587
\
u672c
\
u5206
\
u7c7b
\
u95ee
\
u9898
\
u4f5c
\
u4e3a
\
u80cc
\
u666f
"
:
10
,
"
\
u6211
\
u4eec
\
u4f7f
\
u7528
"
:
10
,
"
\
u6211
\
u4eec
\
u5728
\
u6b64
\
u603b
"
:
10
,
"
\
u6211
\
u4eec
\
u5c06
\
u4ee5
\
u57fa
\
u672c
\
u7684
\
u903b
\
u8f91
\
u56de
\
u5f52
\
u7f51
\
u7edc
\
u4f5c
\
u4e3a
\
u8d77
\
u70b9
"
:
10
,
"
\
u6211
\
u4eec
\
u5c06
\
u5728
\
u540e
\
u9762
\
u4ecb
\
u7ecd
\
u8bad
\
u7ec3
\
u548c
\
u9884
\
u6d4b
\
u7684
\
u6d41
\
u7a0b
\
u7684
\
u811a
\
u672c
"
:
10
,
"
\
u6211
\
u4eec
\
u5c06
\
u8bad
\
u7ec3
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u4fdd
\
u5b58
\
u5728
\
u4e86
"
:
10
,
"
\
u6211
\
u4eec
\
u63a8
\
u8350
\
u4f7f
\
u7528docker
\
u955c
\
u50cf
\
u6765
\
u90e8
\
u7f72
\
u73af
\
u5883
"
:
5
,
"
\
u6211
\
u4eec
\
u63d0
\
u4f9b
\
u4e8612
\
u4e2a
"
:
6
,
"
\
u6211
\
u4eec
\
u63d0
\
u4f9b
\
u4e86
\
u4e00
\
u4e2a
\
u5de5
\
u5177
\
u7c7bdataproviderconvert
"
:
23
,
"
\
u6211
\
u4eec
\
u8fdb
\
u5165
\
u5230
\
u8bad
\
u7ec3
\
u90e8
\
u5206
"
:
10
,
"
\
u6211
\
u4eec
\
u91c7
\
u7528
\
u5355
\
u5c42lstm
\
u6a21
\
u578b
"
:
10
,
"
\
u6211
\
u4eec
\
u968f
\
u65f6
\
u603b
\
u7ed3
\
u4e86
\
u5404
\
u4e2a
\
u7f51
\
u7edc
\
u7684
\
u590d
\
u6742
\
u5ea6
\
u548c
\
u6548
\
u679c
"
:
10
,
"
\
u6216
\
u5176
\
u4ed6
"
:
10
,
"
\
u6216
\
u8005
"
:
6
,
"
\
u6216
\
u800510g
\
u8fd9
\
u6837
\
u7684
\
u5355
\
u4f4d
"
:
0
,
"
\
u6216
\
u8005
\
u4f7f
\
u7528
\
u4e0b
\
u9762
\
u4e00
\
u6761
\
u547d
\
u4ee4
\
u5b89
\
u88c5
"
:
7
,
"
\
u6216
\
u8005
\
u5728python
"
:
20
,
"
\
u6216
\
u8005
\
u6570
\
u636e
\
u5e93
\
u8fde
\
u63a5
\
u5730
\
u5740
\
u7b49
\
u7b49
"
:
19
,
"
\
u6216
\
u8005
\
u8bbe
\
u7f6e
\
u4e3anone
"
:
19
,
"
\
u6216
\
u8005
\
u9700
\
u8981
\
u66f4
\
u9ad8
\
u7684
\
u6548
\
u7387
"
:
19
,
"
\
u6216
\
u8005
\
u9ad8
\
u6027
\
u80fd
\
u7684
"
:
6
,
"
\
u6240
\
u4ee5
"
:[
20
,
23
],
"
\
u6240
\
u4ee5
\
u5728cpu
\
u7684
\
u8fd0
\
u7b97
\
u6027
\
u80fd
\
u4e0a
\
u5e76
\
u4e0d
\
u4f1a
\
u6709
\
u4e25
\
u91cd
\
u7684
\
u5f71
\
u54cd
"
:
6
,
"
\
u6240
\
u4ee5
\
u5982
\
u679c
\
u5bf9
\
u4e8e
\
u5185
\
u5b58
\
u6bd4
\
u8f83
\
u5c0f
\
u7684
\
u673a
\
u5668
"
:
20
,
"
\
u6240
\
u4ee5
\
u5982
\
u679c
\
u60f3
\
u8981
\
u5728
\
u540e
\
u53f0
\
u542f
\
u7528ssh
"
:
6
,
"
\
u6240
\
u4ee5
\
u5c06
"
:
20
,
"
\
u6240
\
u4ee5
\
u63a8
\
u8350
\
u4f7f
\
u7528
\
u663e
\
u5f0f
\
u6307
\
u5b9a
\
u8fd4
\
u56de
\
u503c
\
u548c
\
u6570
\
u636e
\
u5bf9
\
u5e94
\
u5173
\
u7cfb
"
:
20
,
"
\
u6240
\
u4ee5
\
u6700
\
u4f73
\
u5b9e
\
u8df5
\
u63a8
\
u8350
\
u4e0d
\
u8981
\
u5c06
\
u6bcf
\
u4e00
\
u4e2a
\
u6837
\
u672c
\
u90fd
\
u653e
\
u5165train
"
:
20
,
"
\
u6240
\
u4ee5
\
u7528
\
u4e8e
\
u9884
\
u6d4b
\
u7684
\
u914d
\
u7f6e
\
u6587
\
u4ef6
\
u8981
\
u505a
\
u76f8
\
u5e94
\
u7684
\
u4fee
\
u6539
"
:
23
,
"
\
u6240
\
u4ee5
\
u8f93
\
u51fa
\
u7684value
\
u5305
\
u542b
\
u4e24
\
u4e2a
\
u5411
\
u91cf
"
:
23
,
"
\
u6240
\
u4ee5gpu
\
u5728
\
u8fd0
\
u7b97
\
u6027
\
u80fd
\
u4e0a
\
u4e5f
\
u4e0d
\
u4f1a
\
u6709
\
u4e25
\
u91cd
\
u7684
\
u5f71
\
u54cd
"
:
6
,
"
\
u6240
\
u4ee5init_hook
\
u5c3d
\
u91cf
\
u4f7f
\
u7528
"
:
20
,
"
\
u6240
\
u6709
\
u5b57
\
u7b26
\
u90fd
\
u5c06
\
u8f6c
\
u6362
\
u4e3a
\
u8fde
\
u7eed
\
u6574
\
u6570
\
u8868
\
u793a
\
u7684id
\
u4f20
\
u7ed9
\
u6a21
\
u578b
"
:
10
,
"
\
u6240
\
u6709
\
u6587
\
u4ef6
\
u5217
\
u8868
"
:
20
,
"
\
u6240
\
u6709
\
u7684
"
:
1
,
"
\
u6240
\
u6709
\
u7684
\
u4e0b
\
u8f7d
\
u7ebf
\
u7a0b
\
u5173
\
u95ed
\
u65f6
"
:
0
,
"
\
u6240
\
u6709
\
u914d
\
u7f6e
\
u5728
"
:
10
,
"
\
u6240
\
u8c13
\
u65f6
\
u95f4
\
u6b65
\
u4fe1
\
u606f
"
:
20
,
"
\
u624d
\
u4f1a
\
u91ca
\
u653e
\
u8be5
\
u6bb5
\
u5185
\
u5b58
"
:
20
,
"
\
u624d
\
u4f1astop
"
:
20
,
"
\
u6253
\
u5370
\
u7684
\
u65e5
\
u5fd7
\
u53d8
\
u591a
"
:
1
,
"
\
u6267
\
u884c
"
:
0
,
"
\
u6267
\
u884c
\
u5982
\
u4e0b
\
u547d
\
u4ee4
\
u5373
\
u53ef
\
u4ee5
\
u5173
\
u95ed
\
u8fd9
\
u4e2acontain
"
:
6
,
"
\
u6267
\
u884c
\
u65b9
\
u6cd5
\
u5982
\
u4e0b
"
:
6
,
"
\
u62a5
\
u9519
"
:
7
,
"
\
u62fc
\
u63a5
\
u6210
\
u4e00
\
u4e2a
\
u65b0
\
u7684
\
u5411
\
u91cf
\
u8868
\
u793a
"
:
10
,
"
\
u6307
\
u4ee4
\
u96c6
"
:
6
,
"
\
u6307
\
u5b9a
\
u521d
\
u59cb
\
u5316
\
u6a21
\
u578b
\
u8def
\
u5f84
"
:
10
,
"
\
u6307
\
u5b9a
\
u751f
\
u6210
\
u6570
\
u636e
\
u7684
\
u51fd
\
u6570
"
:
10
,
"
\
u6307
\
u5b9a
\
u8bad
\
u7ec3
"
:
10
,
"
\
u6307
\
u5b9abatch
"
:
10
,
"
\
u6307
\
u5b9aoutputs
\
u8f93
\
u51fa
\
u6982
\
u7387
\
u5c42
"
:
10
,
"
\
u6389
\
u7f16
\
u8bd1
\
u76ee
\
u5f55
\
u540e
"
:
1
,
"
\
u63a5
\
u4e0b
\
u6765
\
u4f7f
\
u7528
"
:
23
,
"
\
u63a5
\
u53e3
\
u4f7f
\
u7528
\
u591a
\
u7ebf
\
u7a0b
\
u8bfb
\
u53d6
\
u6570
\
u636e
"
:
20
,
"
\
u63a8
\
u8350
\
u4f7f
\
u7528
\
u5c06
\
u672c
\
u5730
\
u7f51
\
u5361
"
:
6
,
"
\
u63a8
\
u8350
\
u4f7f
\
u7528
\
u6700
\
u65b0
\
u7248
\
u672c
\
u7684cudnn
"
:
1
,
"
\
u63a8
\
u8350
\
u6e05
\
u7406
"
:
1
,
"
\
u63a8
\
u8350
\
u76f4
\
u63a5
\
u653e
\
u7f6e
\
u5230
\
u8bad
\
u7ec3
\
u76ee
\
u5f55
"
:
19
,
"
\
u63a8
\
u8350
\
u8bbe
\
u7f6e
"
:
20
,
"
\
u63cf
\
u8ff0
"
:
1
,
"
\
u63cf
\
u8ff0
\
u4e86docker
"
:
0
,
"
\
u6548
\
u679c
\
u4e00
\
u81f4
"
:
20
,
"
\
u6548
\
u679c
\
u603b
\
u7ed3
"
:
10
,
"
\
u6559
\
u7a0b
"
:
10
,
"
\
u6570
\
u636e
"
:
20
,
"
\
u6570
\
u636e
\
u4f20
\
u8f93
\
u65e0
\
u9700label
\
u6570
\
u636e
"
:
10
,
"
\
u6570
\
u636e
\
u5904
\
u7406python
\
u6587
\
u4ef6
\
u540d
"
:
10
,
"
\
u6570
\
u636e
\
u5982
\
u4f55
\
u5b58
\
u50a8
\
u7b49
\
u7b49
"
:
20
,
"
\
u6570
\
u636e
\
u63d0
\
u4f9b
"
:
19
,
"
\
u6570
\
u636e
\
u6587
\
u4ef6
\
u5b58
\
u653e
\
u5728
\
u672c
\
u5730
\
u78c1
\
u76d8
\
u4e2d
"
:
19
,
"
\
u6570
\
u636e
\
u662f
\
u7ed9
\
u4e00
\
u6bb5
\
u82f1
\
u6587
\
u6587
\
u672c
"
:
20
,
"
\
u6570
\
u636e
\
u683c
\
u5f0f
\
u548c
\
u8be6
\
u7ec6
\
u6587
\
u6863
\
u8bf7
\
u53c2
\
u8003
"
:
10
,
"
\
u6587
\
u4ef6
"
:
20
,
"
\
u6587
\
u4ef6
\
u4e2d
"
:
10
,
"
\
u6587
\
u672c
\
u4e2d
\
u7684
\
u5355
\
u8bcd
\
u7528
\
u7a7a
\
u683c
\
u5206
\
u9694
"
:
10
,
"
\
u6587
\
u672c
\
u4fe1
\
u606f
\
u5c31
\
u662f
\
u4e00
\
u4e2a
\
u5e8f
\
u5217
"
:
20
,
"
\
u6587
\
u672c
\
u5206
\
u7c7b
\
u95ee
\
u9898
"
:
10
,
"
\
u6587
\
u672c
\
u5377
\
u79ef
\
u5206
\
u4e3a
\
u4e09
\
u4e2a
\
u6b65
\
u9aa4
"
:
10
,
"
\
u6587
\
u672c
\
u751f
\
u6210
"
:
9
,
"
\
u65b0
\
u5199layer
"
:
11
,
"
\
u65b9
\
u4fbf
\
u8c03
\
u8bd5
\
u4f7f
\
u7528
"
:
13
,
"
\
u65b9
\
u4fbf
\
u90e8
\
u7f72
\
u5206
\
u53d1
"
:
13
,
"
\
u65e0
\
u9700label
\
u76f8
\
u5173
\
u7684
\
u5c42
"
:
10
,
"
\
u65f6
\
u5e8f
\
u6a21
\
u578b
\
u5373
\
u4e3arnn
\
u6a21
\
u578b
"
:
10
,
"
\
u65f6
\
u5e8f
\
u6a21
\
u578b
\
u5747
\
u4f7f
\
u7528
\
u8be5
\
u811a
\
u672c
"
:
10
,
"
\
u662f
"
:
1
,
"
\
u662f
\
u4e00
\
u4e2abatch
"
:
20
,
"
\
u662f
\
u4e00
\
u4e2apython
\
u7684
"
:
20
,
"
\
u662f
\
u4e00
\
u4e2aswig
\
u5c01
\
u88c5
\
u7684paddlepaddle
\
u5305
"
:
6
,
"
\
u662f
\
u4e0d
\
u662f
\
u5f88
\
u7b80
\
u5355
\
u5462
"
:
20
,
"
\
u662f
\
u4e2adataprovider
\
u662f
\
u4e0d
\
u662f
\
u8981
\
u505ashuffl
"
:
20
,
"
\
u662f
\
u4ec0
\
u4e48
\
u4e5f
\
u6ca1
\
u5173
\
u7cfb
"
:
20
,
"
\
u662f
\
u4ece
\
u8bad
\
u7ec3
\
u914d
\
u7f6e
\
u4f20
\
u5165
\
u7684dict
\
u5bf9
\
u8c61
"
:
20
,
"
\
u662f
\
u51e0
\
u4e4e
\
u4e0d
\
u5360
\
u5185
\
u5b58
\
u7684
"
:
20
,
"
\
u662f
\
u521d
\
u59cb
\
u5316
\
u65f6
\
u8c03
\
u7528
\
u7684
\
u51fd
\
u6570
"
:
20
,
"
\
u662f
\
u540c
\
u4e00
\
u4e2a
\
u5bf9
\
u8c61
"
:
20
,
"
\
u662f
\
u5426
\
u4f7f
\
u7528
\
u53cc
\
u7cbe
\
u5ea6
\
u6d6e
\
u70b9
\
u6570
"
:
1
,
"
\
u662f
\
u5426
\
u4f7f
\
u7528
\
u8fd0
\
u884c
\
u65f6
\
u52a8
\
u6001
\
u52a0
\
u8f7dcuda
\
u52a8
\
u6001
\
u5e93
"
:
1
,
"
\
u662f
\
u5426
\
u4f7f
\
u7528gflags
"
:
1
,
"
\
u662f
\
u5426
\
u4f7f
\
u7528glog
"
:
1
,
"
\
u662f
\
u5426
\
u5185
\
u5d4cpython
\
u89e3
\
u91ca
\
u5668
"
:
1
,
"
\
u662f
\
u5426
\
u5bfb
\
u627e
\
u5230cuda
\
u5de5
\
u5177
\
u94fe
"
:
1
,
"
\
u662f
\
u5426
\
u5f00
\
u542f
\
u5355
\
u5143
\
u6d4b
\
u8bd5
"
:
1
,
"
\
u662f
\
u5426
\
u5f00
\
u542f
\
u8ba1
\
u65f6
\
u529f
\
u80fd
\
u5f00
\
u542f
\
u8ba1
\
u65f6
\
u529f
\
u80fd
\
u4f1a
\
u5bfc
\
u81f4
\
u8fd0
\
u884c
\
u7565
\
u6162
"
:
1
,
"
\
u662f
\
u5426
\
u5f00
\
u542fgpu
\
u529f
\
u80fd
"
:
0
,
"
\
u662f
\
u5426
\
u5f00
\
u542frdma
\
u652f
\
u6301
"
:
1
,
"
\
u662f
\
u5426
\
u7f16
\
u8bd1
\
u4e2d
\
u6587
\
u6587
\
u6863
"
:
1
,
"
\
u662f
\
u5426
\
u7f16
\
u8bd1
\
u542b
\
u6709avx
\
u6307
\
u4ee4
\
u96c6
\
u7684paddlepaddle
\
u4e8c
\
u8fdb
\
u5236
"
:
1
,
"
\
u662f
\
u5426
\
u7f16
\
u8bd1
\
u65f6
\
u8fdb
\
u884c
\
u4ee3
\
u7801
\
u98ce
\
u683c
\
u68c0
\
u67e5
"
:
1
,
"
\
u662f
\
u5426
\
u7f16
\
u8bd1
\
u82f1
\
u6587
\
u6587
\
u6863
"
:
1
,
"
\
u662f
\
u5426
\
u7f16
\
u8bd1gpu
\
u652f
\
u6301
"
:
1
,
"
\
u662f
\
u5426
\
u7f16
\
u8bd1python
\
u7684swig
\
u63a5
\
u53e3
"
:
1
,
"
\
u662f
\
u5728
\
u8fd0
\
u884c
\
u65f6
\
u6267
\
u884c
\
u7684
"
:
20
,
"
\
u662f
\
u6570
\
u636e
\
u7f13
\
u5b58
\
u7684
\
u7b56
\
u7565
"
:
20
,
"
\
u662f
\
u6570
\
u636e
\
u8f93
\
u5165
\
u683c
\
u5f0f
"
:
20
,
"
\
u662f
\
u8bbe
\
u7f6e
\
u8fd9
\
u4e2adataprovider
\
u8fd4
\
u56de
\
u4ec0
\
u4e48
\
u6837
\
u7684
\
u6570
\
u636e
"
:
20
,
"
\
u662f
\
u8bbe
\
u7f6edataprovider
\
u5728
\
u5185
\
u5b58
\
u4e2d
\
u6682
\
u5b58
\
u7684
\
u6570
\
u636e
\
u6761
\
u6570
"
:
20
,
"
\
u662f
\
u8bbe
\
u7f6edataprovider
\
u5728
\
u5185
\
u5b58
\
u4e2d
\
u6700
\
u5c0f
\
u6682
\
u5b58
\
u7684
\
u6570
\
u636e
\
u6761
\
u6570
"
:
20
,
"
\
u662fpaddlepaddle
\
u8d1f
\
u8d23
\
u63d0
\
u4f9b
\
u6570
\
u636e
\
u7684
\
u6a21
\
u5757
"
:
19
,
"
\
u662fpython
\
u7684
\
u4e00
\
u4e2a
\
u5173
\
u952e
\
u8bcd
"
:
20
,
"
\
u663e
"
:
10
,
"
\
u666e
\
u901a
\
u7528
\
u6237
\
u8bf7
\
u8d70
\
u5b89
\
u88c5
\
u6d41
\
u7a0b
"
:
5
,
"
\
u66f4
\
u8be6
\
u7ec6
\
u7528
\
u4f8b
\
u8bf7
\
u53c2
\
u8003
\
u6587
\
u6863
"
:
10
,
"
\
u66f4
\
u8be6
\
u7ec6
\
u7684
\
u4ecb
\
u7ecd
\
u8bf7
\
u53c2
\
u8003
\
u5404
\
u4e2a
\
u547d
\
u4ee4
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
\
u6587
\
u6863
"
:
13
,
"
\
u66f4
\
u8be6
\
u7ec6
\
u7684
\
u7f51
\
u7edc
\
u914d
\
u7f6e
"
:
10
,
"
\
u6700
\
u4f4e
\
u7ebf
\
u7a0b
\
u7684
\
u4e0b
\
u8f7d
\
u901f
\
u5ea6
"
:
0
,
"
\
u6700
\
u540e
\
u4f7f
\
u7528
"
:
23
,
"
\
u6709100
\
u4e2a
\
u8bad
\
u7ec3
\
u6587
\
u4ef6
"
:
20
,
"
\
u6709
\
u503c
\
u7684
\
u4f4d
\
u7f6e
\
u53ea
\
u80fd
\
u53d61
"
:
20
,
"
\
u6709
\
u503c
\
u7684
\
u90e8
\
u5206
\
u53ef
\
u4ee5
\
u662f
\
u4efb
\
u4f55
\
u6d6e
\
u70b9
\
u6570
"
:
20
,
"
\
u6709
\
u90e8
\
u5206
\
u53c2
\
u6570
\
u662fpaddle
\
u81ea
\
u52a8
\
u751f
\
u6210
\
u7684
"
:
20
,
"
\
u672c
\
u8282
\
u6211
\
u4eec
\
u5c06
\
u4e13
\
u6ce8
\
u4e8e
\
u7f51
\
u7edc
\
u7ed3
\
u6784
\
u7684
\
u4ecb
\
u7ecd
"
:
10
,
"
\
u6765
\
u5b89
\
u88c5
"
:
7
,
"
\
u6765
\
u5f15
\
u7528
\
u8fd9
\
u4e2aimag
"
:
6
,
"
\
u6765
\
u63a5
\
u53d7
\
u4e0d
\
u4f7f
\
u7528
\
u7684
"
:
20
,
"
\
u6765
\
u786e
\
u5b9a
\
u5bf9
\
u5e94
\
u5173
\
u7cfb
"
:
20
,
"
\
u6765
\
u81ea
\
u5b9a
\
u4e49
\
u4f20
\
u6570
\
u636e
\
u7684
\
u8fc7
\
u7a0b
"
:
19
,
"
\
u6765
\
u8bf4
\
u660e
\
u7b80
\
u5355
\
u7684pydataprovider
\
u5982
\
u4f55
\
u4f7f
\
u7528
"
:
20
,
"
\
u6765
\
u8fdb
\
u884c
\
u8bad
\
u7ec3
"
:
6
,
"
\
u6765
\
u914d
\
u7f6ecudnn
\
u7684
\
u5b89
\
u88c5
\
u8def
\
u5f84
"
:
1
,
"
\
u6784
\
u9020gradientmachin
"
:
23
,
"
\
u6790
\
u597d
\
u7684
\
u914d
\
u7f6e
\
u521b
\
u5efa
\
u795e
\
u7ecf
\
u7f51
\
u7edc
"
:
23
,
"
\
u67e5
\
u770b
\
u5b89
\
u88c5
\
u540e
\
u7684paddl
"
:
7
,
"
\
u6807
\
u7b7e
\
u662f0
"
:
20
,
"
\
u6837
\
u4f8b
\
u6570
\
u636e
\
u4e3a
"
:
20
,
"
\
u6837
\
u4f8b
\
u6570
\
u636e
\
u5982
\
u4e0b
"
:
20
,
"
\
u6837
\
u672c
"
:
20
,
"
\
u6839
\
u636e
\
u4e0a
\
u4e00
\
u6b65
\
u89e3
"
:
23
,
"
\
u6839
\
u636e
\
u6a21
\
u578b
\
u914d
\
u7f6e
\
u6587
\
u4ef6
\
u4e2d
"
:
20
,
"
\
u683c
\
u5f0f
\
u5982
\
u4e0b
"
:
10
,
"
\
u68d2
"
:
10
,
"
\
u6a21
\
u578b
\
u5b58
\
u50a8
\
u8def
\
u5f84
"
:
10
,
"
\
u6a21
\
u578b
\
u8bad
\
u7ec3
\
u4f1a
\
u770b
\
u5230
\
u8fd9
\
u6837
\
u7684
\
u65e5
\
u5fd7
"
:
10
,
"
\
u6a21
\
u578b
\
u914d
\
u7f6e
"
:
11
,
"
\
u6a2a
\
u5411
\
u5305
\
u62ec
\
u4e09
\
u4e2a
\
u7248
\
u672c
"
:
6
,
"
\
u6b63
\
u5e38
\
u7684docker
"
:
6
,
"
\
u6b63
\
u6837
\
u672c
"
:
10
,
"
\
u6bcf
\
u4e00
\
u4e2a
\
u4efb
\
u52a1
\
u6d41
\
u7a0b
\
u90fd
\
u53ef
\
u4ee5
\
u5206
\
u4e3a
\
u5982
\
u4e0b5
\
u4e2a
\
u57fa
\
u7840
\
u90e8
\
u5206
"
:
10
,
"
\
u6bcf
\
u4e00
\
u6761
\
u8bad
\
u7ec3
\
u6570
\
u636e
\
u90fd
\
u662f
\
u4e00
\
u4e2a
\
u6587
\
u4ef6
"
:
20
,
"
\
u6bcf
\
u4e00
\
u884c
"
:
20
,
"
\
u6bcf
\
u4e2a
\
u5c42
\
u90fd
\
u6709
\
u4e00
\
u4e2a
\
u6216
\
u591a
\
u4e2ainput
"
:
10
,
"
\
u6bcf
\
u4e2agenerator
\
u5728
\
u6ca1
\
u6709
\
u8c03
\
u7528
\
u7684
\
u65f6
\
u5019
"
:
20
,
"
\
u6bcf
\
u4e2apass
\
u7684
\
u7b2c0
\
u4e2abatch
\
u5230
\
u5f53
\
u524dbatch
\
u6240
\
u6709
\
u6837
\
u672c
\
u7684
\
u5e73
\
u5747
\
u5206
\
u7c7b
\
u9519
\
u8bef
\
u7387
"
:
10
,
"
\
u6bcf
\
u4e2apass
\
u7684
\
u7b2c0
\
u4e2abatch
\
u5230
\
u5f53
\
u524dbatch
\
u6240
\
u6709
\
u6837
\
u672c
\
u7684
\
u5e73
\
u5747cost
"
:
10
,
"
\
u6bcf
\
u6b21
\
u90fd
\
u4f1a
\
u4ecepython
\
u7aef
\
u8bfb
\
u53d6
\
u6570
\
u636e
"
:
20
,
"
\
u6bcf
\
u884c
\
u4fdd
\
u5b58
\
u4e00
\
u6761
\
u6837
\
u672c
"
:
10
,
"
\
u6bcf
\
u9694
\
u591a
\
u5c11batch
\
u6253
\
u5370
\
u4e00
\
u6b21
\
u65e5
\
u5fd7
"
:
10
,
"
\
u6bd4
\
u5982
\
u901a
\
u8fc7
\
u7528
\
u6237
\
u5bf9
\
u7535
\
u5b50
\
u5546
\
u52a1
\
u7f51
\
u7ad9
\
u8bc4
\
u8bba
"
:
10
,
"
\
u6bd4
\
u8f83
\
u53ef
\
u80fd
\
u7684
\
u547d
\
u4ee4
\
u5982
\
u4e0b
"
:
7
,
"
\
u6ca1
\
u6709
\
u4f5c
\
u7528
"
:
20
,
"
\
u6ca1
\
u6709
\
u5b89
\
u88c5
"
:
7
,
"
\
u6ca1
\
u6709
\
u8bbe
\
u7f6e
"
:
7
,
"
\
u6ce8
\
u610f
"
:[
0
,
20
],
"
\
u6d41
\
u7a0b
\
u5982
\
u4e0b
"
:
10
,
"
\
u6d4b
\
u8bd5
\
u6570
\
u636e
"
:
10
,
"
\
u6d4b
\
u8bd5
\
u7684
\
u65f6
\
u5019
\
u9ed8
\
u8ba4
\
u4e0dshuffl
"
:
20
,
"
\
u6d4b
\
u8bd5
\
u811a
\
u672c
\
u5982
\
u4e0b
"
:
10
,
"
\
u6e90
\
u7801
"
:
10
,
"
\
u6e90
\
u7801
\
u6839
\
u76ee
\
u5f55
"
:
0
,
"
\
u6fc0
\
u6d3b
\
u51fd
\
u6570
\
u7c7b
\
u578b
"
:
10
,
"
\
u7136
\
u540e
\
u6267
\
u884c
\
u5982
\
u4e0b
"
:
7
,
"
\
u7136
\
u540e
\
u8fd0
\
u884c
\
u8fd9
\
u4e2acontainer
\
u5373
\
u53ef
"
:
6
,
"
\
u7248
\
u672c
"
:
7
,
"
\
u751f
\
u6210
\
u5404
\
u4e2a
\
u5e73
\
u53f0
\
u7684makefil
"
:
1
,
"
\
u75280
\
u548c1
\
u8868
\
u793a
"
:
20
,
"
\
u7528
\
u4e86
\
u4e24
\
u4e2a
\
u6708
\
u4e4b
\
u540e
\
u8fd9
\
u4e2a
\
u663e
\
u793a
\
u5668
\
u5c4f
\
u5e55
\
u788e
\
u4e86
"
:
10
,
"
\
u7528
\
u4e8e
\
u4e0d
\
u652f
\
u6301avx
\
u6307
\
u4ee4
\
u96c6
\
u7684cpu
"
:
7
,
"
\
u7528
\
u6237
\
u4e5f
\
u53ef
\
u4ee5
\
u5728c
"
:
19
,
"
\
u7528
\
u6237
\
u4e5f
\
u53ef
\
u4ee5
\
u663e
\
u5f0f
\
u6307
\
u5b9a
\
u8fd4
\
u56de
\
u7684
\
u6570
\
u636e
\
u5bf9
\
u5e94
\
u5173
\
u7cfb
"
:
20
,
"
\
u7528
\
u6237
\
u53ef
\
u4ee5
\
u4f7f
\
u7528python
\
u7684
"
:
19
,
"
\
u7528
\
u6237
\
u53ef
\
u4ee5
\
u6839
\
u636e
\
u8bad
\
u7ec3log
\
u9009
\
u62e9test
\
u7ed3
\
u679c
\
u6700
\
u597d
\
u7684
\
u6a21
\
u578b
\
u6765
\
u9884
\
u6d4b
"
:
10
,
"
\
u7528
\
u6237
\
u53ef
\
u4ee5
\
u9009
\
u62e9
\
u5bf9
\
u5e94
\
u7248
\
u672c
\
u7684docker
"
:
6
,
"
\
u7528
\
u6237
\
u540d
\
u4e3a
"
:
6
,
"
\
u7528
\
u6237
\
u5728dataprovider
\
u4e2d
\
u9700
\
u8981
\
u5b9e
\
u73b0
\
u5982
\
u4f55
\
u8bbf
\
u95ee
\
u5176
\
u4e2d
\
u6bcf
\
u4e00
\
u4e2a
\
u6587
\
u4ef6
"
:
19
,
"
\
u7528
\
u6237
\
u5b9a
\
u4e49
\
u7684
\
u53c2
\
u6570
\
u4f7f
\
u7528args
\
u5728
\
u8bad
\
u7ec3
\
u914d
\
u7f6e
\
u4e2d
\
u8bbe
\
u7f6e
"
:
20
,
"
\
u7528
\
u6237
\
u63a5
\
u53e3
"
:
11
,
"
\
u7528
\
u6237
\
u9700
\
u8981
\
u5148
\
u5c06paddlepaddle
\
u5b89
\
u88c5
\
u5305
\
u4e0b
\
u8f7d
\
u5230
\
u672c
\
u5730
"
:
7
,
"
\
u7528
\
u6765
\
u505a
\
u9884
\
u6d4b
\
u548c
\
u7b80
\
u5355
\
u7684
\
u5b9a
\
u5236
\
u5316
"
:
6
,
"
\
u7528
\
u8fc7
\
u4e00
\
u6b21
\
u7684
\
u65f6
\
u5019
"
:
20
,
"
\
u7531
\
u4e8e
\
u6570
\
u636e
\
u662f
\
u4e24
\
u6761
"
:
23
,
"
\
u7531
\
u4e8edocker
\
u662f
\
u57fa
\
u4e8e
\
u5bb9
\
u5668
\
u7684
\
u8f7b
\
u91cf
\
u5316
\
u865a
\
u62df
\
u65b9
\
u6848
"
:
6
,
"
\
u7531
\
u4e8epaddlepaddle
\
u7684docker
\
u955c
\
u50cf
\
u5e76
\
u4e0d
\
u5305
\
u542b
\
u4efb
\
u4f55
\
u9884
\
u5b9a
\
u4e49
\
u7684
\
u8fd0
\
u884c
\
u547d
\
u4ee4
"
:
6
,
"
\
u7531
\
u6613
\
u5230
\
u96be
\
u5c55
\
u793a4
\
u79cd
\
u4e0d
\
u540c
\
u7684
\
u7f51
\
u7edc
\
u914d
\
u7f6e
"
:
10
,
"
\
u7684
"
:
10
,
"
\
u7684
\
u540d
\
u5b57
"
:
20
,
"
\
u7684
\
u5b89
\
u88c5
\
u6587
\
u6863
"
:
6
,
"
\
u7684
\
u60c5
\
u51b5
\
u4e0b
\
u8d8a
\
u5927
\
u8d8a
\
u597d
"
:
20
,
"
\
u7684
\
u6587
\
u6863
"
:
20
,
"
\
u7684
\
u65f6
\
u5019
\
u5982
\
u679c
\
u62a5
\
u4e00
\
u4e9b
\
u4f9d
\
u8d56
\
u672a
\
u627e
\
u5230
\
u7684
\
u9519
\
u8bef
\
u662f
\
u6b63
\
u5e38
\
u7684
"
:
7
,
"
\
u7684
\
u662f
"
:
20
,
"
\
u7684
\
u673a
\
u5668
\
u4e0a
\
u8fdb
\
u884c
"
:
0
,
"
\
u7684
\
u7f51
\
u6865
\
u6765
\
u8fdb
\
u884c
\
u7f51
\
u7edc
\
u901a
\
u4fe1
"
:
6
,
"
\
u7684demo
\
u5b66
\
u4e60
\
u5982
\
u4f55
\
u8fdb
\
u884c
\
u591a
\
u673a
\
u8bad
\
u7ec3
"
:
10
,
"
\
u7684docker
\
u53ef
\
u80fd
\
u7f3a
\
u4e4f
"
:
0
,
"
\
u7684matrix
"
:
23
,
"
\
u7684python
\
u5305
\
u662fpaddlepaddle
\
u7684
\
u8bad
\
u7ec3
\
u4e3b
\
u8981
\
u7a0b
\
u5e8f
"
:
6
,
"
\
u7684python
\
u5305
\
u6765
\
u505a
\
u914d
\
u7f6e
\
u6587
\
u4ef6
\
u89e3
\
u6790
\
u7b49
\
u5de5
\
u4f5c
"
:
6
,
"
\
u7684python
\
u9884
\
u6d4b
\
u8fc7
\
u7a0b
"
:
10
,
"
\
u76ee
\
u5f55
"
:
10
,
"
\
u76ee
\
u5f55
\
u4e0b
"
:
0
,
"
\
u76f4
\
u63a5
\
u63d0
\
u53d6
\
u51fa
\
u795e
\
u7ecf
\
u7f51
\
u7edcoutput
\
u5c42
\
u7684
\
u8f93
\
u51fa
\
u7ed3
\
u679c
"
:
23
,
"
\
u76f8
\
u5173
\
u547d
\
u4ee4
\
u4e3a
"
:
6
,
"
\
u76f8
\
u5173
\
u7684
\
u6982
"
:
20
,
"
\
u76f8
\
u5bf9
\
u4e8epaddlepaddle
\
u7a0b
\
u5e8f
\
u8fd0
\
u884c
\
u65f6
\
u7684
\
u8def
\
u5f84
"
:
19
,
"
\
u77e5
\
u9053
\
u5982
\
u4f55
\
u4ece
"
:
20
,
"
\
u793a
"
:
10
,
"
\
u7a0b
\
u5e8f
\
u6216
\
u8005
\
u81ea
\
u5b9a
\
u4e49
\
u4e00
\
u4e2a
\
u542b
\
u6709
\
u542f
\
u52a8
\
u811a
\
u672c
\
u7684imag
"
:
6
,
"
\
u7aef
\
u81ea
\
u5b9a
\
u4e49
\
u4e00
\
u4e2a
"
:
19
,
"
\
u7b2c
\
u4e00
\
u4e2a
\
u53c2
\
u6570
\
u662f
"
:
20
,
"
\
u7b2c
\
u4e00
\
u4e2apass
\
u4f1a
\
u4ecepython
\
u7aef
\
u8bfb
\
u53d6
\
u6570
\
u636e
"
:
20
,
"
\
u7b2c
\
u4e00
\
u6bb5
\
u6570
\
u636e
\
u4e3a
\
u8fd9
\
u5f20
\
u56fe
\
u7247
\
u7684label
"
:
20
,
"
\
u7b2c
\
u4e8c
\
u4e2a
\
u53c2
\
u6570
\
u662ffilenam
"
:
20
,
"
\
u7b2c
\
u4e8c
\
u6bb5
\
u6570
\
u636e
\
u4e3a
\
u8fd9
\
u4e2a
\
u56fe
\
u7247
\
u7684
\
u50cf
\
u7d20
\
u503c
"
:
20
,
"
\
u7b80
\
u5355
\
u4f18
\
u5316
"
:
0
,
"
\
u7b80
\
u5355
\
u7684
\
u4f7f
\
u7528
"
:
19
,
"
\
u7b80
\
u5355
\
u7684
\
u4f7f
\
u7528
\
u573a
\
u666f
"
:
19
,
"
\
u7b80
\
u5355
\
u7684
\
u4f7f
\
u7528
\
u6837
\
u4f8b
\
u4e3a
"
:
0
,
"
\
u7b80
\
u5355
\
u7684
\
u542b
\
u6709ssh
\
u7684dockerfile
\
u5982
\
u4e0b
"
:
6
,
"
\
u7b80
\
u5355
\
u7684pydataprovider
\
u6837
\
u4f8b
\
u5c31
\
u8bf4
\
u660e
\
u5b8c
\
u6bd5
\
u4e86
"
:
20
,
"
\
u7c7b
\
u522bid
"
:
10
,
"
\
u7c7b
\
u522bid
\
u7684
\
u6570
\
u636e
\
u7c7b
\
u578b
"
:
10
,
"
\
u7c7b
\
u578b
\
u6765
\
u8bbe
\
u7f6e
"
:
20
,
"
\
u7eb5
\
u5411
\
u5305
\
u62ec
\
u56db
\
u4e2a
\
u7248
\
u672c
"
:
6
,
"
\
u7ec3
"
:
13
,
"
\
u7ed3
\
u4e0a
\
u8ff0
\
u7f51
\
u7edc
\
u7ed3
\
u6784
\
u5728amazon
"
:
10
,
"
\
u7ee7
\
u7eed
\
u8bad
\
u7ec3
"
:
20
,
"
\
u7ef4
\
u5ea6
\
u4e3aword
"
:
10
,
"
\
u7ef4
\
u5ea6
\
u662f
\
u7c7b
\
u522b
\
u4e2a
\
u6570
"
:
10
,
"
\
u7ef4
\
u5ea6
\
u662f
\
u8bcd
\
u5178
\
u5927
\
u5c0f
"
:
10
,
"
\
u7f13
\
u5b58
\
u8bad
\
u7ec3
\
u6570
\
u636e
\
u5230
\
u5185
\
u5b58
"
:
20
,
"
\
u7f16
\
u8bd1
\
u53c2
\
u6570
\
u9009
\
u9879
\
u6587
\
u4ef6
"
:
18
,
"
\
u7f16
\
u8bd1
\
u73af
\
u5883
\
u548c
\
u6e90
\
u4ee3
\
u7801
"
:
6
,
"
\
u7f16
\
u8bd1
\
u9009
\
u9879
"
:
1
,
"
\
u7f16
\
u8bd1
\
u9009
\
u9879
\
u4e3b
\
u8981
\
u63a8
\
u8350
\
u9ad8
\
u7ea7
\
u7528
\
u6237
\
u67e5
\
u770b
"
:
5
,
"
\
u7f16
\
u8bd1
\
u9009
\
u9879
\
u5217
\
u8868
\
u5982
\
u4e0b
"
:
1
,
"
\
u7f16
\
u8bd1paddlepaddle
\
u7684gpu
\
u7248
\
u672c
\
u5e76
\
u4e0d
\
u9700
\
u8981
\
u4e00
\
u5b9a
\
u5728
\
u5177
\
u6709gpu
"
:
0
,
"
\
u7f51
\
u7edc
\
u540d
\
u79f0
"
:
10
,
"
\
u7f51
\
u7edc
\
u914d
\
u7f6e
"
:
10
,
"
\
u7f6e
\
u8fd9
\
u4e9b
\
u53d8
\
u91cf
"
:
1
,
"
\
u800c
"
:
6
,
"
\
u800c
\
u4e09
\
u79cd
\
u5e8f
\
u5217
\
u6a21
\
u5f0f
\
u4e3a
"
:
20
,
"
\
u800c
\
u4e0d
\
u4f7f
\
u7528docker
"
:
6
,
"
\
u800c
\
u4e0d
\
u7528
\
u5173
\
u5fc3
\
u6570
\
u636e
\
u5982
\
u4f55
\
u4f20
\
u8f93
\
u7ed9paddlepaddl
"
:
20
,
"
\
u800c
\
u4e14
\
u9884
\
u6d4b
\
u7f51
\
u7edc
\
u901a
\
u5e38
\
u76f4
\
u63a5
\
u8f93
\
u51fa
\
u6700
\
u540e
\
u4e00
\
u5c42
\
u7684
\
u7ed3
\
u679c
\
u800c
\
u4e0d
\
u662f
\
u50cf
\
u8bad
\
u7ec3
\
u65f6
\
u4e00
\
u6837
\
u4ee5cost
"
:
23
,
"
\
u800c
\
u5728
"
:[
1
,
20
],
"
\
u800c
\
u5982
\
u679c
\
u6309
\
u987a
\
u5e8f
\
u8c03
\
u7528
\
u8fd9
\
u4e9bgenerator
\
u5c31
\
u4e0d
\
u4f1a
\
u51fa
\
u73b0
\
u8fd9
\
u4e2a
\
u95ee
\
u9898
"
:
20
,
"
\
u800c
\
u662f
\
u5c06
\
u6837
\
u672c
\
u7684
\
u5730
\
u5740
\
u653e
\
u5165
\
u53e6
\
u4e00
\
u4e2a
\
u6587
\
u672c
"
:
20
,
"
\
u800c
\
u6ca1
\
u6709
\
u6d4b
\
u8bd5
\
u6570
\
u636e
"
:
20
,
"
\
u800c
\
u7279
\
u5f81
\
u5373
\
u4e3a
"
:
20
,
"
\
u800c
\
u8fd9
\
u4e2a
\
u4e00
\
u822c
\
u8bf4
\
u660epaddlepaddle
\
u5df2
\
u7ecf
\
u5b89
\
u88c5
\
u5b8c
\
u6bd5
\
u4e86
"
:
7
,
"
\
u800c
\
u8fd9
\
u4e2a
\
u53d8
\
u91cf
\
u63a8
\
u8350
\
u5927
\
u4e8e
\
u8bad
\
u7ec3
\
u7684batch
"
:
20
,
"
\
u800c
\
u8fd9
\
u4e2acontext
\
u53ef
\
u80fd
\
u4f1a
\
u975e
\
u5e38
"
:
20
,
"
\
u800c
\
u975e
\
u9759
\
u6001
\
u52a0
\
u8f7dcuda
\
u52a8
\
u6001
\
u5e93
"
:
1
,
"
\
u800cgpu
\
u7684
\
u9a71
\
u52a8
\
u548c
\
u8bbe
\
u5907
\
u5168
\
u90e8
\
u6620
\
u5c04
\
u5230
\
u4e86
\
u5bb9
\
u5668
\
u5185
"
:
6
,
"
\
u800cpaddlepaddle
\
u8fdb
\
u7a0b
\
u5e2e
\
u52a9
\
u7528
\
u6237
\
u505a
\
u4e86
"
:
20
,
"
\
u811a
\
u672c
"
:
6
,
"
\
u811a
\
u672c
\
u53ef
\
u4ee5
\
u542f
\
u52a8paddlepaddle
\
u7684
\
u8bad
\
u7ec3
\
u8fdb
\
u7a0b
\
u548cpserv
"
:
6
,
"
\
u811a
\
u672c
\
u548c
"
:
6
,
"
\
u811a
\
u672c
\
u7c7b
\
u4f3c
\
u4e8e
"
:
6
,
"
\
u81ea
\
u5b9a
\
u4e49
\
u4e00
\
u4e2adataprovid
"
:
19
,
"
\
u81f3
\
u5c11
\
u5177
\
u67093
"
:
6
,
"
\
u81f3
\
u6b64
"
:[
6
,
20
],
"
\
u83b7
\
u53d6
\
u5229
\
u7528one
"
:
10
,
"
\
u83b7
\
u53d6
\
u6bcf
\
u4e2a
\
u5355
\
u8bcd
\
u5de6
\
u53f3
\
u5404k
\
u4e2a
\
u8fd1
\
u90bb
"
:
10
,
"
\
u83b7
\
u53d6
\
u8be5
\
u6761
\
u6837
\
u672c
\
u7c7b
\
u522bid
"
:
10
,
"
\
u8868
\
u793a
\
u6574
\
u6570
\
u6807
\
u7b7e
"
:
20
,
"
\
u8868
\
u793a
\
u662f
\
u5426
\
u5141
\
u8bb8paddle
\
u6682
\
u5b58
\
u7565
\
u5fae
\
u591a
\
u4f59pool_size
\
u7684
\
u6570
\
u636e
"
:
20
,
"
\
u8868
\
u793a
\
u7a00
\
u758f
\
u7684
\
u5411
\
u91cf
"
:
20
,
"
\
u8868
\
u793a
\
u7a00
\
u758f
\
u7684
\
u96f6
\
u4e00
\
u5411
\
u91cf
"
:
20
,
"
\
u8868
\
u793a
\
u7a20
\
u5bc6
\
u7684
\
u6d6e
\
u70b9
\
u6570
\
u5411
\
u91cf
"
:
20
,
"
\
u8868
\
u793a
\
u8fc7
\
u4e8620
\
u4e2abatch
"
:
10
,
"
\
u8868
\
u793a
\
u8fc7
\
u4e862560
\
u4e2a
\
u6837
\
u672c
"
:
10
,
"
\
u8868
\
u793a
\
u8fd9
\
u4e2adataprovider
\
u662f
\
u8bad
\
u7ec3
\
u7528
\
u7684dataprovider
\
u6216
\
u8005
\
u6d4b
\
u8bd5
\
u7528
\
u7684
"
:
20
,
"
\
u89e3
\
u51b3
\
u529e
\
u6cd5
\
u662f
\
u5c06cuda
"
:
7
,
"
\
u89e3
\
u51b3
\
u65b9
\
u6cd5
\
u5f88
\
u7b80
\
u5355
"
:
7
,
"
\
u89e3
\
u6790
\
u8bad
\
u7ec3
\
u65f6
\
u7684
\
u914d
\
u7f6e
\
u6587
\
u4ef6
"
:
23
,
"
\
u89e3
\
u91ca
"
:
10
,
"
\
u8ba9
\
u795e
\
u7ecf
\
u7f51
\
u7edc
\
u53ef
\
u4ee5
\
u8fdb
\
u884c
\
u8bad
\
u7ec3
"
:
19
,
"
\
u8bad
\
u7ec3
"
:
6
,
"
\
u8bad
\
u7ec3
\
u6570
\
u636e
\
u975e
\
u5e38
\
u591a
\
u7684
\
u60c5
\
u51b5
\
u4e0b
"
:
20
,
"
\
u8bad
\
u7ec3
\
u6587
\
u4ef6
\
u5217
\
u8868
"
:
19
,
"
\
u8bad
\
u7ec3
\
u65f6
\
u6240
\
u9700
\
u8bbe
\
u7f6e
\
u7684
\
u4e3b
\
u8981
\
u53c2
\
u6570
\
u5982
\
u4e0b
"
:
10
,
"
\
u8bad
\
u7ec3
\
u7684
\
u65f6
\
u5019
\
u9ed8
\
u8ba4shuffl
"
:
20
,
"
\
u8bad
\
u7ec3
\
u811a
\
u672c
"
:
10
,
"
\
u8bad
\
u7ec3
\
u811a
\
u672c
\
u5728
"
:
10
,
"
\
u8bad
\
u7ec3
\
u8f6e
\
u6b21
"
:
10
,
"
\
u8bb2
\
u6570
\
u636e
\
u53d1
\
u9001
\
u7ed9paddlepaddl
"
:
20
,
"
\
u8bbe
\
u7f6e
\
u4e0b
\
u5217
\
u7f16
\
u8bd1
\
u9009
\
u9879
\
u65f6
"
:
1
,
"
\
u8bbe
\
u7f6e
\
u6210
"
:
20
,
"
\
u8bbe
\
u7f6e
\
u6210
\
u4e86
\
u5e8f
\
u5217
"
:
20
,
"
\
u8bbe
\
u7f6e
\
u6210true
\
u7684
\
u8bdd
"
:
20
,
"
\
u8bbe
\
u7f6e
\
u8f93
\
u5165
\
u7c7b
\
u578b
"
:
20
,
"
\
u8bc4
\
u4f30
\
u4ea7
\
u54c1
\
u7684
\
u8d28
\
u91cf
"
:
10
,
"
\
u8bcd
\
u6027
\
u6807
\
u6ce8
"
:
9
,
"
\
u8be5
\
u5c42
\
u795e
\
u7ecf
\
u5143
\
u4e2a
\
u6570
"
:
10
,
"
\
u8be5
\
u6570
\
u636e
"
:
20
,
"
\
u8be5
\
u6784
\
u5efa
\
u811a
\
u672c
\
u5145
\
u5206
\
u8003
\
u8651
\
u4e86
\
u7f51
\
u7edc
\
u4e0d
\
u7a33
\
u5b9a
\
u7684
\
u60c5
\
u51b5
"
:
0
,
"
\
u8be5
\
u6a21
\
u578b
\
u4f9d
\
u7136
\
u662f
\
u4f7f
\
u7528
\
u903b
\
u8f91
\
u56de
\
u5f52
\
u5206
\
u7c7b
\
u7f51
\
u7edc
\
u7684
\
u6846
\
u67b6
"
:
10
,
"
\
u8be5
\
u76ee
\
u5f55
\
u4e0b
\
u6709
\
u4e24
\
u4e2a
\
u6587
\
u4ef6
"
:
0
,
"
\
u8be5
\
u811a
\
u672c
\
u7684
\
u4f7f
\
u7528
\
u65b9
\
u6cd5
\
u662f
"
:
0
,
"
\
u8be5image
\
u57fa
\
u4e8eubuntu
"
:
0
,
"
\
u8be5image
\
u7684
\
u6784
\
u5efa
\
u5728dock
"
:
0
,
"
\
u8be6
\
u60c5
\
u8bf7
\
u53c2
\
u8003
"
:
23
,
"
\
u8be6
\
u7ec6
\
u7684
\
u53c2
\
u6570
\
u89e3
\
u91ca
\
u5982
\
u4e0b
\
u9762
\
u8868
\
u683c
"
:
10
,
"
\
u8be6
\
u7ec6
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
\
u8bf7
\
u53c2
\
u8003
"
:
23
,
"
\
u8be6
\
u7ec6
\
u7684cmake
\
u4f7f
\
u7528
\
u65b9
\
u6cd5
\
u53ef
\
u4ee5
\
u53c2
\
u8003
"
:
1
,
"
\
u8bf4
\
u660e
"
:
1
,
"
\
u8bf4
\
u660e
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
"
:
7
,
"
\
u8bf7
\
u53c2
\
u8003
"
:[
6
,
20
],
"
\
u8bf7
\
u53c2
\
u8003
\
u4e0b
\
u8282refer
"
:
20
,
"
\
u8bf7
\
u53c2
\
u8003
\
u4e0b
\
u8ff0
\
u6587
\
u7ae0
"
:
19
,
"
\
u8bf7
\
u5b89
\
u88c5cuda
"
:
7
,
"
\
u8bfb
\
u5165
\
u89e3
\
u6790
\
u8bad
\
u7ec3
\
u914d
\
u7f6e
"
:
23
,
"
\
u8bfb
\
u53d6
\
u6570
\
u636e
"
:
20
,
"
\
u8c03
\
u7528
"
:
1
,
"
\
u8c03
\
u7528
\
u4e00
\
u6b21
"
:
20
,
"
\
u8c03
\
u7528
\
u7b2c
\
u4e8c
\
u6b21
\
u7684
\
u65f6
\
u5019
"
:
20
,
"
\
u8d1f
\
u6837
\
u672c
"
:
10
,
"
\
u8d1f
\
u8d23
\
u591a
\
u673a
\
u8bad
\
u7ec3
\
u4e2d
\
u7684
\
u53c2
\
u6570
\
u805a
\
u5408
\
u5de5
\
u4f5c
"
:
13
,
"
\
u8d1f
\
u9762
\
u60c5
\
u7eea
\
u4e24
\
u7c7b
"
:
20
,
"
\
u8def
\
u5f84
\
u53d8
\
u91cf
\
u4e3a
"
:
1
,
"
\
u8f93
\
u5165n
\
u4e2a
\
u5355
\
u8bcd
"
:
10
,
"
\
u8f93
\
u51fa
\
u4e3an
\
u4e2aword
"
:
10
,
"
\
u8fd0
\
u884c
"
:[
6
,
7
],
"
\
u8fd0
\
u884c
\
u4f7f
\
u7528
\
u7684cudnn
\
u5c3d
\
u91cf
\
u662f
\
u540c
\
u4e00
\
u4e2a
\
u7248
\
u672c
"
:
1
,
"
\
u8fd0
\
u884c
\
u8fd9
\
u4e2acontain
"
:
6
,
"
\
u8fd0
\
u884cpaddlepaddle
\
u7684gpu
\
u7248
\
u672c
\
u4e00
\
u5b9a
\
u8981
\
u5728
\
u5177
\
u6709cuda
\
u7684
\
u673a
\
u5668
\
u4e0a
\
u8fd0
\
u884c
"
:
0
,
"
\
u8fd4
\
u56de0
"
:
20
,
"
\
u8fd4
\
u56de
\
u4e00
\
u4e2alist
\
u6216
\
u8005tupl
"
:
20
,
"
\
u8fd4
\
u56de
\
u6570
\
u636e
\
u5728paddlepaddle
\
u4e2d
\
u662f
\
u4ec5
\
u4ec5
\
u8fd4
\
u56de
\
u4e00
\
u6761
\
u5b8c
\
u6574
\
u7684
\
u8bad
\
u7ec3
\
u6837
\
u672c
"
:
20
,
"
\
u8fd4
\
u56de
\
u7684
\
u987a
\
u5e8f
\
u9700
\
u8981
\
u548c
"
:
20
,
"
\
u8fd4
\
u56debatch_size
\
u7684
\
u5927
\
u5c0f
"
:
20
,
"
\
u8fd9
"
:
10
,
"
\
u8fd93
\
u4e2a
\
u5b50
\
u6b65
\
u9aa4
\
u53ef
\
u914d
\
u7f6e
\
u4e3a
"
:
10
,
"
\
u8fd9
\
u4e2a
\
u4e5f
\
u662fpaddlepaddle
\
u6240
\
u80fd
\
u591f
\
u4fdd
\
u8bc1
\
u7684shuffle
\
u7c92
\
u5ea6
"
:
20
,
"
\
u8fd9
\
u4e2a
\
u51fd
\
u6570
\
u4ee5
\
u4e00
\
u6761
\
u6570
\
u636e
\
u4e3a
\
u53c2
\
u6570
"
:
20
,
"
\
u8fd9
\
u4e2a
\
u51fd
\
u6570
\
u4f1a
\
u5728
"
:
20
,
"
\
u8fd9
\
u4e2a
\
u51fd
\
u6570
\
u5728
\
u521d
\
u59cb
\
u5316
\
u7684
\
u65f6
\
u5019
\
u4f1a
\
u88ab
\
u8c03
\
u7528
"
:
20
,
"
\
u8fd9
\
u4e2a
\
u51fd
\
u6570
\
u7684
\
u53c2
\
u6570
\
u662f
"
:
20
,
"
\
u8fd9
\
u4e2a
\
u521d
\
u59cb
\
u5316
\
u51fd
\
u6570
\
u5177
\
u6709
\
u5982
\
u4e0b
\
u53c2
\
u6570
"
:
20
,
"
\
u8fd9
\
u4e2a
\
u53c2
\
u6570
\
u5728
\
u8fd9
\
u4e2a
\
u6837
\
u4f8b
\
u91cc
\
u6ca1
\
u6709
\
u4f7f
\
u7528
"
:
20
,
"
\
u8fd9
\
u4e2a
\
u53c2
\
u6570
\
u88abpaddlepaddle
\
u8fdb
\
u7a0b
\
u4f20
\
u5165
"
:
20
,
"
\
u8fd9
\
u4e2a
\
u548c
\
u5728
"
:
20
,
"
\
u8fd9
\
u4e2a
\
u58f0
\
u660e
\
u57fa
\
u672c
\
u4e0a
\
u548cmnist
\
u7684
\
u6837
\
u4f8b
\
u4e00
\
u81f4
"
:
20
,
"
\
u8fd9
\
u4e2a
\
u5b57
\
u5178
\
u53ef
\
u4ee5
\
u5728
"
:
20
,
"
\
u8fd9
\
u4e2a
\
u5bf9
\
u5e94
\
u5173
\
u7cfb
\
u53ef
\
u80fd
\
u4e0d
\
u6b63
\
u786e
"
:
20
,
"
\
u8fd9
\
u4e2a
\
u5bf9
\
u8c61
\
u548cprocess
\
u7684
\
u7b2c
\
u4e00
\
u4e2a
\
u53c2
\
u6570
\
u4e00
\
u81f4
"
:
20
,
"
\
u8fd9
\
u4e2a
\
u5de5
\
u5177
\
u7c7b
\
u63a5
\
u6536
\
u548cpydataprovider2
\
u4e00
\
u6837
\
u7684
\
u8f93
\
u5165
\
u6570
\
u636e
"
:
23
,
"
\
u8fd9
\
u4e2a
\
u5e8f
\
u5217
\
u6a21
\
u578b
\
u6bd4
\
u8f83
\
u590d
\
u6742
"
:
20
,
"
\
u8fd9
\
u4e2a
\
u63a5
\
u53e3
\
u5e76
\
u4e0d
\
u7528
\
u6237
\
u53cb
\
u597d
"
:
23
,
"
\
u8fd9
\
u4e2a
\
u663e
\
u793a
\
u5668
\
u5f88
\
u68d2
"
:
10
,
"
\
u8fd9
\
u4e2a
\
u672c
\
u8eab
\
u4e0d
\
u662f
\
u4e00
\
u4e2a
\
u5f88
"
:
20
,
"
\
u8fd9
\
u4e2a
\
u6a21
\
u5757
\
u4e2d
\
u7684
"
:
20
,
"
\
u8fd9
\
u4e2a
\
u8bbe
\
u7f6e
\
u4e3a
"
:
20
,
"
\
u8fd9
\
u4e2a
\
u8f6f
\
u4ef6
\
u5305
\
u6587
\
u6863
\
u76f8
\
u5bf9
\
u5b8c
\
u5584
"
:
23
,
"
\
u8fd9
\
u4e2a
\
u95ee
\
u9898
\
u662fpydataprovider
\
u8bfb
\
u6570
\
u636e
\
u65f6
\
u5019
\
u7684
\
u903b
\
u8f91
\
u95ee
\
u9898
"
:
20
,
"
\
u8fd9
\
u4e9b
\
u53c2
\
u6570
\
u5305
\
u62ecpaddle
\
u5b9a
\
u4e49
\
u7684
\
u53c2
\
u6570
"
:
20
,
"
\
u8fd9
\
u4e9b
\
u53d8
"
:
1
,
"
\
u8fd9
\
u4e9b
\
u53d8
\
u91cf
\
u53ea
\
u5728
\
u7b2c
\
u4e00
\
u6b21cmake
\
u7684
\
u65f6
\
u5019
\
u6709
\
u6548
"
:
1
,
"
\
u8fd9
\
u4e9b
\
u53d8
\
u91cf
\
u5747
\
u53ef
\
u4ee5
\
u4f7f
\
u7528
"
:
1
,
"
\
u8fd9
\
u4e9b
\
u6d41
\
u7a0b
\
u4e2d
\
u7684
\
u6570
\
u636e
\
u4e0b
\
u8f7d
"
:
10
,
"
\
u8fd9
\
u6837
\
u505a
\
u53ef
\
u4ee5
\
u907f
\
u514d
\
u5f88
\
u591a
\
u6b7b
\
u9501
\
u95ee
\
u9898
"
:
20
,
"
\
u8fd9
\
u884c
\
u7684
\
u4f5c
\
u7528
\
u662f
\
u8bbe
\
u7f6edataprovider
\
u7684
\
u4e00
\
u4e9b
\
u5c5e
\
u6027
"
:
20
,
"
\
u8fd9
\
u91cc
"
:
20
,
"
\
u8fd9
\
u91cc
\
u4e3e
\
u4f8b
\
u7684
\
u6570
\
u636e
\
u662f
\
u82f1
\
u6587
\
u60c5
\
u611f
\
u5206
\
u7c7b
\
u7684
\
u6570
\
u636e
"
:
20
,
"
\
u8fd9
\
u91cc
\
u4ee5
"
:
10
,
"
\
u8fd9
\
u91cc
\
u4ee5mnist
\
u624b
\
u5199
\
u8bc6
\
u522b
\
u4e3a
\
u4f8b
"
:
20
,
"
\
u8fd9
\
u91cc
\
u53ef
\
u4ee5
\
u53c2
\
u8003paddle
\
u7684
"
:
18
,
"
\
u8fd9
\
u91cc
\
u6211
\
u4eec
\
u4f7f
\
u7528
\
u7b80
\
u5355
\
u7684
\
u6587
\
u672c
\
u6587
\
u4ef6
\
u8868
\
u793amnist
\
u56fe
\
u7247
"
:
20
,
"
\
u8fd9
\
u91cc
\
u6307
\
u5b9a
\
u8bcd
\
u5178
"
:
10
,
"
\
u8fd9
\
u91cc
\
u6ca1
\
u6709
\
u4ecb
\
u7ecd
\
u591a
\
u673a
\
u5206
\
u5e03
\
u5f0f
\
u8bad
\
u7ec3
"
:
10
,
"
\
u8fd9
\
u91cc
\
u7684
"
:
20
,
"
\
u8fd9
\
u91cc
\
u7684
\
u8f93
\
u5165
\
u7279
\
u5f81
\
u662f
\
u8bcdid
\
u7684
\
u5e8f
\
u5217
"
:
20
,
"
\
u8fd9
\
u91cc
\
u8981
\
u6ce8
\
u610f
\
u9884
\
u6d4b
\
u6570
\
u636e
\
u901a
\
u5e38
"
:
23
,
"
\
u8fd9
\
u91cc
\
u8bbe
\
u7f6e
\
u7684
\
u662f
\
u8fd4
\
u56de
\
u4e00
\
u4e2a
"
:
20
,
"
\
u8fd9
\
u91cc
\
u8bf4
\
u660e
\
u4e86
\
u8bad
\
u7ec3
\
u6570
\
u636e
\
u662f
"
:
20
,
"
\
u8fd9
\
u91cc
\
u91c7
\
u7528adam
\
u4f18
\
u5316
\
u65b9
\
u6cd5
"
:
10
,
"
\
u8fdb
\
u5165
\
u8be5
\
u6e90
\
u7801
\
u76ee
\
u5f55
"
:
0
,
"
\
u8fdb
\
u5165docker
"
:
6
,
"
\
u8fdc
\
u7a0b
\
u8bbf
\
u95ee
"
:
6
,
"
\
u8fde
\
u63a5
\
u8bf7
\
u53c2
\
u8003
"
:
10
,
"
\
u9009
\
u62e9
\
u666e
\
u901acpu
\
u7248
\
u672c
\
u7684devel
\
u7248
\
u672c
\
u7684imag
"
:
6
,
"
\
u9009
\
u9879
"
:
1
,
"
\
u901a
\
u8fc7
\
u7f16
\
u8bd1
\
u65f6
\
u6307
\
u5b9a
\
u8def
\
u5f84
\
u6765
\
u5b9e
\
u73b0
\
u5f15
\
u7528
\
u5404
\
u79cdbla
"
:
1
,
"
\
u903b
\
u8f91
\
u56de
\
u5f52
"
:
10
,
"
\
u90a3
\
u4e48
"
:
20
,
"
\
u90a3
\
u4e48
\
u5728
\
u8bad
\
u7ec3
\
u8fc7
\
u7a0b
\
u4e2d
"
:
19
,
"
\
u90a3
\
u4e48
\
u5bf9
\
u5e94
\
u7684dataprovider
\
u65e2
\
u4e3a
"
:
20
,
"
\
u90a3
\
u4e48
\
u8fd9
\
u4e2a
\
u4e0b
\
u8f7d
\
u7ebf
\
u7a0b
\
u5c06
\
u4f1a
\
u5173
\
u95ed
"
:
0
,
"
\
u90a3
\
u4e48paddlepaddle
\
u4f1a
\
u7c97
\
u7565
\
u7684
\
u6839
\
u636elayer
\
u7684
\
u58f0
\
u660e
\
u987a
\
u5e8f
"
:
20
,
"
\
u90fd
\
u4f20
\
u9012
\
u7ed9process
\
u51fd
\
u6570
"
:
20
,
"
\
u914d
\
u7f6e
\
u4e86
"
:
20
,
"
\
u914d
\
u7f6e
\
u53c2
\
u6570
\
u914d
\
u7f6e
\
u7ed9dataprovider
\
u7684
"
:
20
,
"
\
u914d
\
u7f6e
\
u6587
\
u4ef6
"
:
10
,
"
\
u91cc
\
u4f1a
\
u7ee7
\
u7eed
\
u5b89
\
u88c5
"
:
7
,
"
\
u91cc
\
u63d0
\
u4f9b
\
u4e86
\
u6570
\
u636e
\
u4e0b
\
u8f7d
\
u811a
\
u672c
"
:
10
,
"
\
u91cc
\
u9762
\
u8bfb
\
u53d6
"
:
20
,
"
\
u91cf
\
u4e5f
\
u53ef
\
u4ee5
\
u901a
\
u8fc7
\
u8c03
\
u7528cmake
\
u547d
\
u4ee4
\
u524d
\
u901a
\
u8fc7
\
u73af
\
u5883
\
u53d8
\
u91cf
\
u6307
\
u5b9a
"
:
1
,
"
\
u9488
\
u5bf9
\
u672c
\
u95ee
\
u9898
"
:
10
,
"
\
u94fe
\
u63a5
\
u4f55
\
u79cdblas
\
u7b49
\
u7b49
"
:
1
,
"
\
u9519
\
u8bef
\
u7387
"
:
10
,
"
\
u95f4
\
u9694
"
:
20
,
"
\
u9664
\
u4e86
"
:
20
,
"
\
u9664
\
u8fc7data
\
u5c42
"
:
10
,
"
\
u9700
\
u8981
\
u53c2
\
u8003
"
:
6
,
"
\
u9700
\
u8981
\
u652f
\
u6301avx
\
u6307
\
u4ee4
\
u96c6
\
u7684cpu
"
:
6
,
"
\
u9700
\
u8981
\
u6ce8
\
u610f
"
:
20
,
"
\
u9700
\
u8981
\
u6ce8
\
u610f
\
u7684
\
u662f
"
:[
1
,
7
],
"
\
u9884
\
u6d4b
\
u6570
\
u636e
\
u6307
\
u5b9atest
"
:
10
,
"
\
u9884
\
u6d4b
\
u7ed3
\
u679c
\
u4ee5
\
u6587
\
u672c
\
u7684
\
u5f62
\
u5f0f
\
u4fdd
\
u5b58
\
u5728
"
:
10
,
"
\
u9884
\
u6d4b
\
u811a
\
u672c
"
:
10
,
"
\
u9884
\
u6d4bid
"
:
10
,
"
\
u989d
\
u5916
\
u7684
\
u53c2
\
u6570
"
:
10
,
"
\
u9996
\
u5148
\
u5217
\
u4e3e
\
u903b
\
u8f91
\
u56de
\
u5f52
\
u7f51
\
u7edc
"
:
10
,
"
\
u9996
\
u5148
\
u6211
\
u4eec
\
u5c06
\
u8fd9
\
u4e2a
\
u6570
\
u636e
\
u6587
\
u4ef6
"
:
20
,
"
\
u9996
\
u5148
\
u8bf7
\
u53c2
\
u8003
"
:
10
,
"
\
u9aa43
"
:
10
,
"
\
u9ed8
\
u8ba4
\
u4e00
\
u4e2apass
\
u4fdd
\
u5b58
\
u4e00
\
u6b21
\
u6a21
\
u578b
"
:
10
,
"
\
u9ed8
\
u8ba4
\
u503c
"
:
1
,
"
\
u9ed8
\
u8ba4
\
u5355
\
u4f4d
\
u662fbyte
"
:
0
,
"
\
u9ed8
\
u8ba4
\
u60c5
\
u51b5
\
u4e0b
\
u4e00
\
u6761
\
u6570
\
u636e
"
:
20
,
"
adamax
\
u7b49
"
:
10
,
"
amazon
\
u7535
\
u5b50
\
u4ea7
\
u54c1
\
u8bc4
\
u8bba
\
u6570
\
u636e
"
:
10
,
"
api
\
u9884
\
u6d4b
"
:
10
,
"
argument
\
u4f20
\
u5165
"
:
20
,
"
argument
\
u5f62
\
u5f0f
\
u4f20
\
u5165
"
:
20
,
"
atlas
\
u5e93
\
u7684
\
u8def
\
u5f84
"
:
1
,
"
batches
\
u8bbe
\
u7f6e
\
u6bcf
\
u9694
\
u591a
\
u5c11batch
\
u4fdd
\
u5b58
\
u4e00
\
u6b21
\
u6a21
\
u578b
"
:
10
,
"
bool
\
u53c2
\
u6570
"
:
20
,
"
case
"
:[
10
,
22
],
"
cd
\
u5230
\
u542b
\
u6709dockerfile
\
u7684
\
u8def
\
u5f84
\
u4e2d
"
:
6
,
"
check
\
u662ffalse
\
u7684
\
u8bdd
"
:
20
,
"
cmake
\
u53ef
\
u4ee5
\
u5c06cmake
\
u9879
\
u76ee
\
u6587
\
u4ef6
"
:
1
,
"
cmake
\
u662f
\
u4e00
\
u4e2a
\
u8de8
\
u5e73
\
u53f0
\
u7684
\
u7f16
\
u8bd1
\
u811a
\
u672c
"
:
1
,
"
cmake
\
u7684
\
u5b98
\
u65b9
\
u6587
\
u6863
"
:
1
,
"
cmake
\
u7f16
\
u8bd1
\
u65f6
\
u4f1a
\
u9996
\
u5148
\
u5728
\
u7cfb
\
u7edf
\
u8def
\
u5f84
"
:
1
,
"
container
\
u540e
"
:
6
,
"
cpu
\
u7248
\
u672c
"
:
6
,
"
cuda
\
u76f8
\
u5173
\
u7684driver
\
u548c
\
u8bbe
\
u5907
\
u6620
\
u5c04
\
u8fdbcontainer
\
u4e2d
"
:
6
,
"
d
\
u547d
\
u4ee4
\
u5373
\
u53ef
"
:
1
,
"
d
\
u547d
\
u4ee4
\
u6307
\
u5b9a
"
:
1
,
"
dataprovider
\
u521b
\
u5efa
\
u7684
\
u65f6
\
u5019
\
u6267
\
u884c
"
:
20
,
"
dataprovider
\
u53ef
\
u4ee5
\
u662f
"
:
20
,
"
dataprovider
\
u63d0
\
u4f9b
\
u4e86
\
u4e24
\
u79cd
\
u7b80
\
u5355
\
u7684cache
\
u7b56
\
u7565
"
:
20
,
"
dataprovider
\
u7684
\
u5177
\
u4f53
\
u7528
\
u6cd5
\
u548c
\
u5982
\
u4f55
\
u5b9e
\
u73b0
\
u4e00
\
u4e2a
\
u65b0
\
u7684dataprovid
"
:
19
,
"
devel
\
u548cdemo
"
:
6
,
"
dim
\
u7684
\
u65b0
\
u7684
\
u5411
\
u91cf
"
:
10
,
"
dim
\
u7ef4
\
u5ea6
\
u5411
\
u91cf
"
:
10
,
"
docker
\
u662f
\
u4e00
\
u4e2a
\
u57fa
\
u4e8e
\
u5bb9
\
u5668
\
u7684
\
u8f7b
\
u91cf
\
u7ea7
\
u865a
\
u62df
\
u73af
\
u5883
"
:
6
,
"
docker
\
u7684
\
u5b98
\
u65b9
\
u6587
\
u6863
"
:
6
,
"
dockerfile
\
u548cbuild
"
:
0
,
"
dockerfile
\
u662fdock
"
:
0
,
"
dockerfile
\
u7684
\
u6587
\
u6863
"
:
6
,
"
dockerfile
\
u7684
\
u6700
\
u4f73
\
u5b9e
\
u8df5
"
:
6
,
"
driver
\
u6dfb
\
u52a0
\
u5230ld_library_path
\
u4e2d
"
:
7
,
"
elec
\
u6d4b
\
u8bd5
\
u96c6
"
:
10
,
"
embedding
\
u6a21
\
u578b
\
u9700
\
u8981
\
u7a0d
\
u5fae
\
u6539
\
u53d8
\
u6570
\
u636e
\
u63d0
\
u4f9b
\
u7684
\
u811a
\
u672c
"
:
10
,
"
export
"
:[
1
,
6
,
7
],
"
f
\
u4ee3
\
u8868
\
u4e00
\
u4e2a
\
u6d6e
\
u70b9
\
u6570
"
:
20
,
"
float
"
:
20
,
"
generator
\
u4fbf
\
u4f1a
\
u5b58
\
u4e0b
\
u5f53
\
u524d
\
u7684
\
u4e0a
\
u4e0b
\
u6587
"
:
20
,
"
generator
\
u7684
\
u4e0a
\
u4e0b
\
u6587
\
u4e2d
\
u5c3d
\
u91cf
\
u7559
"
:
20
,
"
generator
\
u81f3
\
u5c11
\
u8c03
\
u7528
\
u4e24
\
u6b21
\
u624d
\
u4f1a
\
u77e5
\
u9053
\
u662f
\
u5426
\
u505c
\
u6b62
"
:
20
,
"
gpu
\
u53cc
\
u7f13
\
u5b58
"
:
20
,
"
gpu
\
u7248
\
u672c
"
:
6
,
"
gpu
\
u7248
\
u672c
\
u4e8c
\
u8fdb
\
u5236
"
:
1
,
"
gru
\
u6a21
\
u578b
"
:
10
,
"
gru
\
u6a21
\
u578b
\
u914d
\
u7f6e
"
:
10
,
"
i
\
u4ee3
\
u8868
\
u4e00
\
u4e2a
\
u6574
\
u6570
"
:
20
,
"
id
\
u4e3a0
\
u7684
\
u6982
\
u7387
"
:
10
,
"
id
\
u4e3a1
\
u7684
\
u6982
\
u7387
"
:
10
,
"
image
\
u6784
\
u5efa
\
u6e90
\
u7801
\
u653e
\
u7f6e
\
u5728
"
:
0
,
"
image
\
u7684
\
u4e3b
\
u8981
\
u63cf
\
u8ff0
\
u6587
\
u4ef6
"
:
0
,
"
image
\
u7684
\
u4e3b
\
u8981
\
u6784
\
u5efa
\
u6b65
\
u9aa4
"
:
0
,
"
image
\
u7684
\
u6784
\
u5efa
\
u6b65
\
u9aa4
"
:
0
,
"
import
"
:[
10
,
20
,
23
],
"
include
\
u4e0b
\
u9700
\
u8981
\
u5305
\
u542bcbla
"
:
1
,
"
include
\
u4e0b
\
u9700
\
u8981
\
u5305
\
u542bmkl
"
:
1
,
"
init_hook
\
u53ef
\
u4ee5
\
u4f20
\
u5165
\
u4e00
\
u4e2a
\
u51fd
\
u6570
"
:
20
,
"
int
"
:[
10
,
20
],
"
key
\
u662fdata_layer
\
u7684
\
u540d
\
u5b57
"
:
20
,
"
layer
\
u4f5c
\
u4e3a
\
u8f93
\
u51fa
"
:
23
,
"
layer
\
u6587
\
u6863
"
:
10
,
"
ld_library_path
\
u7b49
\
u7b49
"
:
7
,
"
ld_library_path
\
u91cc
\
u9762
\
u627e
\
u4e0d
\
u5230
\
u8fd9
\
u4e9b
\
u52a8
\
u6001
"
:
7
,
"
lib
\
u4e0b
\
u9700
\
u8981
\
u5305
\
u542bcblas
\
u548catlas
\
u4e24
\
u4e2a
\
u5e93
"
:
1
,
"
lib
\
u4e0b
\
u9700
\
u8981
\
u5305
\
u542bcblas
\
u5e93
"
:
1
,
"
lib
\
u4e0b
\
u9700
\
u8981
\
u5305
\
u542bopenblas
\
u5e93
"
:
1
,
"
lib
\
u76ee
\
u5f55
\
u4e0b
\
u9700
\
u8981
\
u5305
\
u542b
"
:
1
,
"
list
\
u4e0d
\
u8bbe
\
u7f6e
"
:
19
,
"
list
\
u4e2d
"
:[
19
,
20
],
"
list
\
u4e2d
\
u7684
\
u4e00
\
u884c
"
:
20
,
"
list
\
u4e2d
\
u7684
\
u6bcf
\
u4e00
\
u884c
"
:
20
,
"
list
\
u4e3a
\
u7eaf
\
u6587
\
u672c
\
u6587
\
u4ef6
"
:
19
,
"
list
\
u4e5f
\
u53ef
\
u4ee5
\
u653e
\
u7f6ehdfs
\
u6587
\
u4ef6
\
u8def
\
u5f84
"
:
19
,
"
list
\
u5199
\
u5165
\
u90a3
\
u4e2a
\
u6587
\
u672c
\
u6587
\
u4ef6
\
u7684
\
u5730
\
u5740
"
:
20
,
"
list
\
u5373
\
u4e3a
"
:
20
,
"
list
\
u548ctest
"
:
19
,
"
list
\
u5747
\
u4e3a
\
u672c
\
u5730
\
u7684
\
u4e24
\
u4e2a
\
u6587
\
u4ef6
"
:
19
,
"
list
\
u6307
\
u5b9a
\
u7684
\
u6570
\
u636e
"
:
10
,
"
list
\
u7684
\
u4f4d
\
u7f6e
"
:
10
,
"
list
\
u82e5
\
u5e72
\
u6570
\
u636e
\
u6587
\
u4ef6
\
u8def
\
u5f84
\
u7684
\
u67d0
\
u4e00
\
u4e2a
\
u8def
\
u5f84
"
:
20
,
"
lstm
\
u6a21
\
u578b
\
u7b49
"
:
10
,
"
lstm
\
u6a21
\
u578b
\
u914d
\
u7f6e
"
:
10
,
"
make
\
u548cmak
"
:
2
,
"
mkl
\
u7684
\
u8def
\
u5f84
"
:
1
,
"
mkl_sequential
\
u548cmkl_intel_lp64
\
u4e09
\
u4e2a
\
u5e93
"
:
1
,
"
mnist
\
u662f
\
u4e00
\
u4e2a
\
u5305
\
u542b
\
u6709
"
:
20
,
"
movielens
\
u6570
\
u636e
\
u96c6
"
:
9
,
"
movielens
\
u8bc4
\
u5206
\
u56de
\
u5f52
"
:
9
,
"
name
\
u90fd
\
u662f
"
:
6
,
"
osx
\
u6216
\
u8005
\
u662fwindows
\
u673a
\
u5668
"
:
6
,
"
osx
\
u7684
\
u5b89
\
u88c5
\
u6587
\
u6863
"
:
6
,
"
paddle
\
u5b9a
\
u4e49
\
u7684
\
u53c2
\
u6570
\
u5305
\
u62ec
"
:
20
,
"
paddle
\
u7684
"
:
7
,
"
paddlepaddle
\
u4f7f
\
u7528
\
u8fd0
\
u884c
\
u65f6
\
u52a8
\
u6001
\
u8fde
\
u63a5cuda
\
u7684so
"
:
7
,
"
paddlepaddle
\
u4fdd
\
u7559
\
u6dfb
\
u52a0
\
u53c2
\
u6570
\
u7684
\
u6743
\
u529b
"
:
20
,
"
paddlepaddle
\
u53ef
\
u4ee5
\
u4f7f
\
u7528
"
:
1
,
"
paddlepaddle
\
u53ef
\
u4ee5
\
u8bfb
\
u53d6python
\
u5199
\
u7684
\
u4f20
\
u8f93
\
u6570
\
u636e
\
u811a
\
u672c
"
:
10
,
"
paddlepaddle
\
u5728
\
u8fd0
\
u884c
\
u65f6
\
u627e
\
u4e0d
\
u5230
\
u5bf9
\
u5e94
\
u7684config
\
u6587
\
u4ef6
"
:
7
,
"
paddlepaddle
\
u5c06train
"
:
20
,
"
paddlepaddle
\
u63a8
\
u8350
\
u4f7f
\
u7528docker
\
u8fdb
\
u884cpaddlepaddle
\
u7684
\
u90e8
\
u7f72
\
u548c
"
:
6
,
"
paddlepaddle
\
u63d0
\
u4f9b
\
u4e86docker
\
u7684
\
u4f7f
\
u7528
\
u955c
\
u50cf
"
:
6
,
"
paddlepaddle
\
u63d0
\
u4f9b
\
u6570
\
u4e2a
\
u9884
\
u7f16
\
u8bd1
\
u7684
\
u4e8c
\
u8fdb
\
u5236
\
u6765
\
u8fdb
\
u884c
\
u5b89
\
u88c5
"
:
5
,
"
paddlepaddle
\
u63d0
\
u4f9b
\
u7684
\
u955c
\
u50cf
\
u5e76
\
u4e0d
\
u5305
\
u542b
\
u4efb
\
u4f55
\
u547d
\
u4ee4
\
u8fd0
\
u884c
"
:
6
,
"
paddlepaddle
\
u7684
\
u6570
\
u636e
\
u5305
\
u62ec
\
u56db
\
u79cd
\
u4e3b
\
u8981
\
u7c7b
\
u578b
"
:
20
,
"
paddlepaddle
\
u7684
\
u7f16
\
u8bd1
\
u9009
\
u9879
\
u53ef
\
u4ee5
\
u5728
\
u8c03
\
u7528cmake
\
u7684
\
u65f6
\
u5019
\
u8bbe
\
u7f6e
"
:
1
,
"
paddlepaddle
\
u7684
\
u7f16
\
u8bd1
\
u9009
\
u9879
\
u662f
\
u53ef
\
u4ee5
\
u63a7
\
u5236paddlepaddle
\
u751f
\
u6210cpu
"
:
1
,
"
paddlepaddle
\
u7684dock
"
:
0
,
"
paddlepaddle
\
u7684python
\
u9884
\
u6d4b
\
u63a5
\
u53e3
"
:
22
,
"
paddlepaddle
\
u7684ubuntu
\
u5b89
\
u88c5
\
u5305
\
u5206
\
u4e3a
\
u56db
\
u4e2a
\
u7248
\
u672c
"
:
7
,
"
paddlepaddle
\
u76ee
\
u524d
\
u4f7f
\
u7528swig
\
u5bf9
\
u5176
\
u5e38
\
u7528
\
u7684
\
u9884
\
u6d4b
\
u63a5
\
u53e3
\
u8fdb
\
u884c
\
u4e86
\
u5c01
\
u88c5
"
:
23
,
"
paddlepaddle
\
u76ee
\
u524d
\
u652f
\
u6301
\
u4f7f
\
u7528deb
\
u5305
\
u5b89
\
u88c5
"
:
7
,
"
paddlepaddle
\
u8fd0
\
u884c
\
u65f6
\
u5982
\
u679c
\
u6ca1
\
u6709
\
u5bfb
\
u627e
\
u5230cuda
\
u7684driv
"
:
7
,
"
paddlepaddle
\
u9700
\
u8981
\
u7528
\
u6237
\
u5728
\
u7f51
\
u7edc
\
u914d
\
u7f6e
"
:
19
,
"
period
\
u8bbe
\
u7f6e
\
u6253
\
u5370
\
u53c2
\
u6570
\
u4fe1
\
u606f
\
u7b49
"
:
10
,
"
process
\
u51fd
\
u6570
"
:
20
,
"
process
\
u51fd
\
u6570
\
u662f
\
u5b9e
\
u73b0
\
u6570
\
u636e
\
u8f93
\
u5165
\
u7684
\
u4e3b
\
u51fd
\
u6570
"
:
20
,
"
process
\
u51fd
\
u6570
\
u8c03
\
u7528
\
u591a
\
u6b21
"
:
20
,
"
pserver
\
u4e3apaddlepaddle
\
u7684paramet
"
:
13
,
"
pserver
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
"
:
13
,
"
pserver
\
u7ec4
\
u5408
\
u4f7f
\
u7528
"
:
13
,
"
py
\
u6587
\
u4ef6
\
u7ed9
\
u51fa
\
u4e86
\
u5b8c
\
u6574
\
u4f8b
\
u5b50
"
:
10
,
"
pydataprovider2
\
u4f1a
\
u5c3d
\
u91cf
\
u4f7f
\
u7528
\
u5185
\
u5b58
"
:
20
,
"
pydataprovider2
\
u6587
\
u6863
"
:
23
,
"
pydataprovider2
\
u7684
\
u4f7f
\
u7528
"
:
19
,
"
pydataprovider
\
u662fpaddlepaddle
\
u4f7f
\
u7528python
\
u63d0
\
u4f9b
\
u6570
\
u636e
\
u7684
\
u63a8
\
u8350
\
u63a5
\
u53e3
"
:
20
,
"
python
\
u5305
"
:
6
,
"
python
\
u53ef
\
u4ee5
\
u89e3
\
u9664
\
u6389
\
u5185
\
u90e8
\
u53d8
\
u91cf
\
u7684
\
u5f15
\
u7528
"
:
20
,
"
python
\
u7684
"
:
6
,
"
python
\
u7684swig
\
u63a5
\
u53e3
\
u53ef
\
u4ee5
\
u65b9
\
u4fbf
\
u8fdb
\
u884c
\
u9884
\
u6d4b
\
u548c
\
u5b9a
\
u5236
\
u5316
\
u8bad
\
u7ec3
"
:
1
,
"
return
"
:[
10
,
20
],
"
rnn
\
u914d
\
u7f6e
"
:
11
,
"
server
\
u8fdb
\
u7a0b
"
:
13
,
"
sh
\
u662fdocker
"
:
0
,
"
shuffle
\
u8bad
\
u7ec3
\
u6570
\
u636e
"
:
20
,
"
softmax
\
u8f93
\
u51fa
"
:
10
,
"
string
\
u7684
\
u683c
\
u5f0f
\
u6253
\
u5370
\
u51fa
\
u6765
"
:
13
,
"
swig_paddle
\
u63a5
\
u53d7
\
u7684
\
u539f
\
u59cb
\
u6570
\
u636e
\
u662fc
"
:
23
,
"
tag
\
u5206
\
u522b
\
u4e3a
"
:
6
,
"
train
\
u5373
\
u4e3apaddlepaddle
\
u7684
\
u8bad
\
u7ec3
\
u8fdb
\
u7a0b
"
:
13
,
"
train
\
u5b8c
\
u6210
\
u5355
\
u673a
\
u591a
\
u663e
\
u5361
\
u591a
\
u7ebf
\
u7a0b
\
u7684
\
u8bad
"
:
13
,
"
train
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
"
:
13
,
"
ubuntu
\
u7684deb
\
u5b89
\
u88c5
\
u5305
\
u7b49
"
:
5
,
"
v2
\
u4e4b
\
u540e
\
u7684
\
u4efb
\
u4f55
\
u4e00
\
u4e2acudnn
\
u7248
\
u672c
\
u6765
\
u7f16
\
u8bd1
\
u8fd0
\
u884c
"
:
1
,
"
value
\
u5373
\
u4e3asoftmax
\
u5c42
\
u7684
\
u8f93
\
u51fa
"
:
23
,
"
value
\
u662f
\
u7279
\
u5f81
\
u503c
"
:
20
,
"
var
"
:
6
,
"
vector
\
u8868
\
u793a
\
u7684
\
u6bcf
\
u4e2a
\
u5355
\
u8bcd
"
:
10
,
"
version
\
u53ef
\
u4ee5
\
u6253
\
u5370
\
u51fapaddle
\
u7684
\
u7248
\
u672c
\
u4fe1
\
u606f
\
u548c
\
u7f16
\
u8bd1
\
u7684
\
u9009
\
u9879
"
:
18
,
"
version
\
u53ef
\
u4ee5
\
u6253
\
u5370
\
u51fapaddlepaddle
\
u7684
\
u7248
\
u672c
\
u548c
\
u7f16
\
u8bd1
\
u65f6
\
u4fe1
\
u606f
"
:
13
,
"
version
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
"
:
13
,
"
yield
\
u6587
\
u672c
\
u4fe1
\
u606f
\
u548c
\
u7c7b
\
u522bid
"
:
10
,
__main__
:
23
,
__name__
:
23
,
abov
:
20
,
act
:
10
,
act_typ
:
10
,
activ
:
10
,
adadelta
:
10
,
adagrad
:
10
,
adam
:
10
,
adamoptim
:
10
,
afi
:
20
,
all
:
20
,
allow
:
10
,
alreadi
:
7
,
also
:
10
,
append
:
20
,
apt
:[
6
,
7
],
arg
:[
0
,
10
,
20
],
around
:
20
,
arrai
:
23
,
assert
:
23
,
atla
:
1
,
atlas_root
:
1
,
avg
:
10
,
avgcost
:
10
,
avgpool
:
10
,
avx
:
6
,
bag
:
10
,
baidu
:[
6
,
7
],
batch
:
10
,
batch_siz
:
10
,
binari
:
10
,
bla
:
1
,
bool
:
10
,
both
:
10
,
bow
:
10
,
build
:[
0
,
6
],
cach
:[
10
,
19
],
cache_pass_in_mem
:[
10
,
20
],
cachetyp
:[
10
,
20
],
calc_batch_s
:
20
,
call
:
10
,
can
:
10
,
can_over_batch_s
:
20
,
cat
:
6
,
categori
:
10
,
check
:[
7
,
20
],
check_fail_continu
:
20
,
chines
:
9
,
chpasswd
:
6
,
classif
:
10
,
classification_cost
:
10
,
classification_error_evalu
:
10
,
close
:
20
,
cmake
:
1
,
cmd
:
6
,
cnn
:
10
,
code
:[
0
,
20
,
23
],
com
:[
6
,
7
],
comment
:
10
,
compil
:[
7
,
18
],
conf
:
23
,
config
:[
7
,
10
],
config_arg
:
10
,
config_pars
:
23
,
connect
:
10
,
contain
:[
10
,
20
],
context
:
20
,
context_len
:
10
,
context_start
:
10
,
convert
:[
10
,
20
,
23
],
couldn
:
7
,
cpp
:[
7
,
10
],
cpu
:[
6
,
7
,
20
],
cpuinfo
:
6
,
createfromconfigproto
:
23
,
cross
:
10
,
cuda_so
:
6
,
cudastat
:
7
,
cudasuccess
:
7
,
cudnn
:
1
,
cudnn_root
:
1
,
cudnnv5
:
1
,
current
:[
10
,
20
],
currentcost
:
10
,
currentev
:
10
,
dalla
:
20
,
data
:
7
,
data_config
:
23
,
data_initialz
:
10
,
data_lay
:[
10
,
20
],
dataprovid
:
10
,
dataprovider_bow
:
10
,
dataprovider_emb
:
10
,
dataproviderconvert
:
23
,
dataset
:
10
,
deb
:
7
,
debian
:
7
,
decor
:
20
,
def
:[
10
,
20
,
23
],
defin
:[
10
,
20
],
define_py_data_sources2
:[
10
,
20
],
delar
:
10
,
demo
:[
6
,
10
],
dense_vector
:[
20
,
23
],
describ
:
10
,
descript
:
22
,
detail
:
22
,
dev
:
6
,
devel
:
6
,
devic
:
6
,
devices
:
6
,
dict
:[
10
,
20
],
dict_fil
:
10
,
dictionai
:
10
,
dictionari
:[
10
,
20
],
dictrionari
:
10
,
differ
:
10
,
dim
:
10
,
dimens
:
10
,
dir
:
10
,
doc
:
23
,
documentari
:
20
,
dpkg
:
7
,
driver
:
7
,
dso_handl
:
7
,
dtype
:
23
,
dump_config
:
13
,
dure
:[
10
,
20
],
dynam
:
20
,
each
:[
10
,
20
],
each_pixel_str
:
20
,
each_word
:
20
,
echo
:
6
,
either
:
10
,
els
:[
6
,
10
],
emb
:
10
,
embed
:
9
,
embedding_lay
:
10
,
entropi
:
10
,
enumer
:
10
,
error
:[
7
,
10
],
etc
:
6
,
eval
:
10
,
exampl
:
10
,
expose
:
6
,
f0831
:
7
,
fail
:
7
,
fals
:
10
,
fc_layer
:
10
,
featur
:[
10
,
20
],
festiv
:
20
,
file
:[
10
,
20
],
file_list
:
20
,
file_nam
:
10
,
filenam
:
20
,
fill
:
10
,
find
:
7
,
first
:
10
,
float32
:
23
,
fly
:
10
,
forwardtest
:
23
,
framework
:
10
,
from
:[
6
,
10
,
20
,
23
],
fulli
:
10
,
func
:
20
,
gdebi
:
7
,
gener
:[
10
,
20
],
get
:[
6
,
7
,
10
,
20
],
get_config_arg
:
10
,
get_data
:
10
,
github
:
7
,
give
:
20
,
given
:
10
,
globe
:
20
,
gpu
:[
6
,
7
],
gradient_clipping_threshold
:
10
,
gradientmachin
:
23
,
grep
:
6
,
gru
:
10
,
gru_siz
:
10
,
help
:
23
,
hint
:
23
,
hl_cuda_devic
:
7
,
hl_dso_load
:
7
,
host
:
6
,
hot
:
10
,
hous
:
20
,
http
:
7
,
ignor
:
20
,
imag
:
6
,
imagenet
:
9
,
img
:
20
,
inarg
:
23
,
includ
:
10
,
init
:
10
,
init_hook
:[
10
,
19
],
init_model_path
:
10
,
initi
:[
10
,
20
],
initpaddl
:
23
,
input
:[
10
,
20
],
input_typ
:[
10
,
19
],
instal
:
2
,
insuffici
:
7
,
integ
:[
10
,
20
],
integer_sequ
:
20
,
integer_valu
:[
10
,
20
],
integer_value_sequ
:
10
,
invok
:
20
,
is_predict
:
10
,
is_train
:
20
,
isinst
:
23
,
iterat
:
20
,
job
:
10
,
kernel
:
6
,
kwarg
:[
10
,
20
],
l2regular
:
10
,
label
:[
10
,
20
],
label_dim
:
10
,
lake
:
20
,
later
:
10
,
latest
:[
0
,
6
],
layer
:
10
,
ld_library_path
:
7
,
learning_method
:
10
,
learning_r
:
10
,
len
:[
10
,
20
],
lib64
:[
6
,
7
],
lib
:
1
,
libcuda
:
6
,
libnvidia
:
6
,
librari
:
7
,
list
:[
10
,
19
,
20
],
load_data_arg
:
23
,
loadparamet
:
23
,
local
:[
1
,
7
],
log_period
:
10
,
logger
:
20
,
look
:[
10
,
20
],
loss
:
10
,
lowest_dl_speed
:
0
,
lstm
:
10
,
lstm_size
:
10
,
mac
:
6
,
main
:
23
,
maintainer
:
6
,
make
:[
7
,
20
],
make_diagram
:
13
,
maxid
:
10
,
maxid_lay
:
10
,
mean
:
10
,
memori
:
10
,
merge_model
:
13
,
method
:
20
,
min_pool_s
:
20
,
mkdir
:
6
,
mkl
:
1
,
mkl_core
:
1
,
mkl_root
:
1
,
mnist
:
20
,
mnist_model
:
23
,
mnist_provid
:
20
,
mnist_train
:
20
,
model_config
:
23
,
modul
:[
10
,
20
],
momentum
:
10
,
movi
:
20
,
must
:
7
,
name
:[
6
,
10
,
20
],
necessari
:
10
,
need
:
10
,
neg
:[
10
,
20
],
net
:
6
,
next
:
20
,
no_cache
:
20
,
no_sequence
:
20
,
noavx
:[
6
,
7
],
none
:[
10
,
20
,
23
],
normal
:
6
,
note
:
7
,
nullptr
:
7
,
num
:
10
,
num_pass
:
10
,
nvidia
:
6
,
obj
:[
10
,
20
],
object
:[
10
,
20
],
off
:[
0
,
1
,
7
,
18
],
omit
:
10
,
on_init
:
20
,
onli
:
10
,
open
:[
10
,
20
],
openbla
:
1
,
openblas_root
:
1
,
openssh
:
6
,
opt
:
1
,
other
:
10
,
outlin
:
22
,
output
:
10
,
outsid
:
20
,
paddl
:[
0
,
6
,
7
,
10
,
13
],
paddle_gpu
:
0
,
paddle_ssh
:
6
,
paddle_ssh_machin
:
6
,
paddledev
:
6
,
paddlepaddl
:[
6
,
7
,
18
,
23
],
paramet
:
10
,
parse_config
:
23
,
pass
:[
10
,
20
],
path
:[
7
,
10
],
period
:
10
,
permitrootlogin
:
6
,
pixel
:
20
,
pixels_float
:
20
,
pixels_str
:
20
,
place
:
20
,
pleas
:
7
,
pool_siz
:
20
,
pooling_lay
:
10
,
pooling_typ
:
10
,
posit
:[
10
,
20
],
pred
:
10
,
predict_output_dir
:
10
,
predict_sampl
:
23
,
preprocess
:
10
,
print
:
23
,
proc
:
6
,
process
:[
10
,
20
],
process_pr
:
10
,
properli
:
10
,
pull
:
6
,
put
:
10
,
py_paddl
:[
6
,
23
],
pydataprovid
:
19
,
pydataprovider2
:[
10
,
20
,
23
],
pydataproviderwrapp
:
10
,
python
:
10
,
quick_start
:
10
,
rang
:
10
,
rank
:
10
,
rare
:
20
,
read
:[
10
,
20
],
real_process
:
20
,
refer
:
19
,
reference_cblas_root
:
1
,
reffer
:
1
,
regular
:
10
,
releas
:
7
,
repres
:
10
,
represent
:
10
,
resnet
:
9
,
result
:[
10
,
20
],
rmsprop
:
10
,
roce
:
6
,
root
:
6
,
run
:
6
,
runtim
:[
7
,
20
],
same
:[
10
,
20
],
sampl
:[
10
,
20
],
save
:[
10
,
20
],
save_dir
:
10
,
saw
:
20
,
sbin
:
6
,
script
:
0
,
second
:
10
,
sed
:
6
,
see
:
10
,
sentenc
:
20
,
sentiment
:
20
,
sentimental_provid
:
20
,
separ
:
10
,
seq_typ
:
20
,
sequel
:
20
,
sequence
:
20
,
sequence_conv_pool
:
10
,
sequencetyp
:
20
,
server
:
6
,
set
:[
10
,
20
],
setup
:
10
,
should_shuffl
:
20
,
simple_gru
:
10
,
simple_lstm
:
10
,
size
:[
10
,
20
],
softmax
:
10
,
softmaxactiv
:
10
,
sourc
:
10
,
spars
:
10
,
sparse_binary_vector
:[
10
,
20
],
sparse_float_vector
:
20
,
specifi
:[
7
,
10
],
split
:[
10
,
20
],
src_root
:
23
,
ssh
:
6
,
sshd
:
6
,
sshd_config
:
6
,
stat
:
10
,
stop
:
6
,
store
:
10
,
string
:
20
,
strip
:
10
,
structur
:
10
,
stun
:
20
,
sub_sequence
:
20
,
sudo
:
7
,
support
:
6
,
sure
:
7
,
swig_paddl
:
23
,
tag
:
0
,
take
:
20
,
tbd
:
21
,
team
:
6
,
test
:[
10
,
19
],
test_data
:
23
,
test_list
:[
10
,
20
],
text
:[
10
,
20
],
text_conv
:
10
,
them
:
10
,
thi
:[
10
,
20
],
thing
:
20
,
tmp
:
20
,
train
:
7
,
train_list
:[
10
,
20
],
trainer
:[
10
,
20
,
23
],
trainer_config
:[
10
,
19
,
20
,
23
],
trainer_config_help
:[
10
,
20
],
trainerintern
:
10
,
trainermain
:
7
,
travel
:
20
,
trn
:
10
,
tst
:
10
,
two
:
10
,
txt
:[
10
,
20
],
type
:[
10
,
20
],
unk_idx
:
10
,
updat
:
6
,
use
:[
10
,
22
],
use_dynamic_ord
:
20
,
use_gpu
:[
10
,
23
],
usepam
:
6
,
user
:
10
,
usr
:[
1
,
6
,
7
],
valid
:
7
,
valu
:[
10
,
20
,
23
],
version
:[
6
,
7
],
via
:
7
,
want
:
20
,
what
:
10
,
when
:
20
,
which
:
10
,
whole
:
20
,
wilder
:
20
,
window
:
6
,
with_avx
:[
1
,
7
,
18
],
with_doc
:
1
,
with_doc_cn
:
1
,
with_doubl
:[
7
,
18
],
with_double
:
1
,
with_dso
:
1
,
with_gflag
:[
7
,
18
],
with_gflags
:
1
,
with_glog
:[
1
,
7
,
18
],
with_gpu
:[
0
,
1
,
7
,
18
],
with_metric_learn
:[
7
,
18
],
with_predict_sdk
:[
7
,
18
],
with_python
:[
1
,
7
,
18
],
with_rdma
:[
1
,
7
,
18
],
with_style_check
:
1
,
with_swig_py
:
1
,
with_testing
:
1
,
with_tim
:[
7
,
18
],
with_timer
:
1
,
without
:
6
,
wonder
:
20
,
word
:
9
,
word_dict
:
10
,
word_dim
:
10
,
word_id
:
20
,
word_vector
:
10
,
xarg
:
6
,
yield
:[
10
,
20
],
you
:[
7
,
20
],
your_host_machine
:
6
},
titles
:[
"
\
u6784
\
u5efaPaddlePaddle Docker Image
"
,
"
\
u8bbe
\
u7f6ePaddlePaddle
\
u7684
\
u7f16
\
u8bd1
\
u9009
\
u9879
"
,
"
\
u4f7f
\
u7528cmake
\
u7f16
\
u8bd1PaddlePaddle
"
,
"
\
u5b89
\
u88c5
\
u7f16
\
u8bd1PaddlePaddle
\
u9700
\
u8981
\
u7684
\
u4f9d
\
u8d56
"
,
"
make
\
u548cmake install
"
,
"
\
u7f16
\
u8bd1
\
u4e0e
\
u5b89
\
u88c5
"
,
"
\
u5b89
\
u88c5PaddlePaddle
\
u7684Docker
\
u955c
\
u50cf
"
,
"
\
u4f7f
\
u7528deb
\
u5305
\
u5728Ubuntu
\
u4e0a
\
u5b89
\
u88c5PaddlePaddle
"
,
"
\
u96c6
\
u7fa4
\
u8bad
\
u7ec3
"
,
"
\
u4f7f
\
u7528
\
u793a
\
u4f8b
"
,
"
PaddlePaddle
\
u5feb
\
u901f
\
u5165
\
u95e8
\
u6559
\
u7a0b
"
,
"
PaddlePaddle
\
u6587
\
u6863
"
,
"
<no title>
"
,
"
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
"
,
"
<no title>
"
,
"
<no title>
"
,
"
paddle pserver
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
"
,
"
paddle train
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
"
,
"
paddle version
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
"
,
"
PaddlePaddle
\
u7684
\
u6570
\
u636e
\
u63d0
\
u4f9b(DataProvider)
\
u4ecb
\
u7ecd
"
,
"
PyDataProvider2
\
u7684
\
u4f7f
\
u7528
"
,
"
\
u81ea
\
u5b9a
\
u4e49
\
u4e00
\
u4e2aDataProvider
"
,
"
\
u7528
\
u6237
\
u63a5
\
u53e3
"
,
"
PaddlePaddle
\
u7684Python
\
u9884
\
u6d4b
\
u63a5
\
u53e3
"
],
titleterms
:{
"
\
u4e0b
\
u8f7d
\
u548c
\
u8fd0
\
u884cdocker
\
u955c
\
u50cf
"
:
6
,
"
\
u4ecb
\
u7ecd
"
:
19
,
"
\
u4f18
\
u5316
\
u7b97
\
u6cd5
"
:
10
,
"
\
u4f7f
\
u7528
\
u6307
\
u5357
"
:
11
,
"
\
u4f7f
\
u7528
\
u6982
\
u8ff0
"
:
10
,
"
\
u4f7f
\
u7528
\
u793a
\
u4f8b
"
:
9
,
"
\
u4f7f
\
u7528
\
u811a
\
u672c
\
u6784
\
u5efapaddlepaddl
"
:
0
,
"
\
u4f7f
\
u7528cmake
\
u7f16
\
u8bd1paddlepaddl
"
:
2
,
"
\
u4f7f
\
u7528deb
\
u5305
\
u5728ubuntu
\
u4e0a
\
u5b89
\
u88c5paddlepaddl
"
:
7
,
"
\
u5185
\
u5b58
\
u4e0d
\
u591f
\
u7528
\
u7684
\
u60c5
\
u51b5
"
:
20
,
"
\
u5377
\
u79ef
\
u6a21
\
u578b
"
:
10
,
"
\
u53c2
\
u8003
"
:
20
,
"
\
u53ef
\
u80fd
\
u7684
\
u5185
\
u5b58
\
u6cc4
\
u9732
\
u95ee
\
u9898
"
:
20
,
"
\
u53ef
\
u80fd
\
u9047
\
u5230
\
u7684
\
u95ee
\
u9898
"
:
7
,
"
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
"
:[
10
,
13
,
22
],
"
\
u56fe
\
u50cf
"
:
9
,
"
\
u5b89
\
u88c5
"
:[
5
,
10
],
"
\
u5b89
\
u88c5
\
u7f16
\
u8bd1paddlepaddle
\
u9700
\
u8981
\
u7684
\
u4f9d
\
u8d56
"
:
3
,
"
\
u5b89
\
u88c5paddlepaddle
\
u7684docker
\
u955c
\
u50cf
"
:
6
,
"
\
u5e38
\
u7528
\
u6a21
\
u578b
"
:
9
,
"
\
u5e8f
\
u5217
\
u6a21
\
u578b
\
u6570
\
u636e
\
u63d0
\
u4f9b
"
:
20
,
"
\
u5f00
\
u53d1
\
u6307
\
u5357
"
:
11
,
"
\
u6027
\
u80fd
\
u95ee
\
u9898
"
:
6
,
"
\
u603b
\
u4f53
\
u6548
\
u679c
\
u603b
\
u7ed3
"
:
10
,
"
\
u63a8
\
u8350
"
:
9
,
"
\
u6570
\
u636e
\
u5411
\
u6a21
\
u578b
\
u4f20
\
u9001
"
:
10
,
"
\
u6570
\
u636e
\
u63d0
\
u4f9b
"
:
22
,
"
\
u6570
\
u636e
\
u683c
\
u5f0f
\
u51c6
\
u5907
"
:
10
,
"
\
u65f6
\
u5e8f
\
u6a21
\
u578b
"
:
10
,
"
\
u6784
\
u5efapaddlepaddl
"
:
0
,
"
\
u6ce8
\
u610f
\
u4e8b
\
u9879
"
:[
6
,
20
],
"
\
u7528
\
u6237
\
u63a5
\
u53e3
"
:
22
,
"
\
u7b80
\
u5355
\
u7684
\
u4f7f
\
u7528
\
u573a
\
u666f
"
:
20
,
"
\
u7b97
\
u6cd5
\
u6559
\
u7a0b
"
:
11
,
"
\
u7f16
\
u8bd1
"
:
5
,
"
\
u7f16
\
u8bd1
\
u4e0e
\
u5b89
\
u88c5
"
:
5
,
"
\
u7f51
\
u7edc
\
u7ed3
\
u6784
"
:
10
,
"
\
u81ea
\
u5b9a
\
u4e49
\
u4e00
\
u4e2adataprovid
"
:
21
,
"
\
u81ea
\
u7136
\
u8bed
\
u8a00
\
u5904
\
u7406
"
:
9
,
"
\
u8bad
\
u7ec3
\
u6a21
\
u578b
"
:
10
,
"
\
u8bbe
\
u7f6epaddlepaddle
\
u7684
\
u7f16
\
u8bd1
\
u9009
\
u9879
"
:
1
,
"
\
u8bcd
\
u5411
\
u91cf
\
u6a21
\
u578b
"
:
10
,
"
\
u8f93
\
u51fa
\
u65e5
\
u5fd7
"
:
10
,
"
\
u8fdc
\
u7a0b
\
u8bbf
\
u95ee
\
u95ee
\
u9898
\
u548c
\
u4e8c
\
u6b21
\
u5f00
\
u53d1
"
:
6
,
"
\
u903b
\
u8f91
\
u56de
\
u5f52
\
u6a21
\
u578b
"
:
10
,
"
\
u914d
\
u7f6e
\
u4e2d
\
u7684
\
u6570
\
u636e
\
u52a0
\
u8f7d
\
u5b9a
\
u4e49
"
:
10
,
"
\
u9644
\
u5f55
"
:
10
,
"
\
u96c6
\
u7fa4
\
u8bad
\
u7ec3
"
:
8
,
"
\
u9884
\
u6d4b
"
:[
10
,
22
],
"
blas
\
u76f8
\
u5173
\
u7684
\
u7f16
\
u8bd1
\
u9009
\
u9879
"
:
1
,
"
bool
\
u578b
\
u7684
\
u7f16
\
u8bd1
\
u9009
\
u9879
"
:
1
,
"
config
\
u6587
\
u4ef6
\
u627e
\
u4e0d
\
u5230
"
:
7
,
"
cudnn
\
u76f8
\
u5173
\
u7684
\
u7f16
\
u8bd1
\
u9009
\
u9879
"
:
1
,
"
driver
\
u627e
\
u4e0d
\
u5230
"
:
7
,
"
make
\
u548cmak
"
:
4
,
"
paddlepaddle
\
u5feb
\
u901f
\
u5165
\
u95e8
\
u6559
\
u7a0b
"
:
10
,
"
paddlepaddle
\
u63d0
\
u4f9b
\
u7684docker
\
u955c
\
u50cf
\
u7248
\
u672c
"
:
6
,
"
paddlepaddle
\
u6587
\
u6863
"
:
11
,
"
paddlepaddle
\
u7684
\
u6570
\
u636e
\
u63d0
\
u4f9b
"
:
19
,
"
paddlepaddle
\
u7684
\
u7f16
\
u8bd1
\
u9009
\
u9879
"
:
1
,
"
paddlepaddle
\
u7684bool
\
u578b
\
u7f16
\
u8bd1
\
u9009
\
u9879
"
:
1
,
"
paddlepaddle
\
u7684cblas
\
u7f16
\
u8bd1
\
u9009
\
u9879
"
:
1
,
"
paddlepaddle
\
u7684python
\
u9884
\
u6d4b
\
u63a5
\
u53e3
"
:
23
,
"
pserver
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
"
:
16
,
"
pydataprovider2
\
u7684
\
u4f7f
\
u7528
"
:
20
,
"
python
\
u6570
\
u636e
\
u52a0
\
u8f7d
\
u811a
\
u672c
"
:
10
,
"
so
\
u627e
\
u4e0d
\
u5230
"
:
7
,
"
train
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
"
:
17
,
"
version
\
u7684
\
u547d
\
u4ee4
\
u884c
\
u53c2
\
u6570
"
:
18
,
algorithm
:
10
,
appendix
:
10
,
architectur
:
10
,
argument
:
10
,
cach
:
20
,
command
:
10
,
configur
:
10
,
convolut
:
10
,
cuda
:[
1
,
7
],
data
:
10
,
dataprovid
:
19
,
docker
:
0
,
image
:
0
,
init_hook
:
20
,
input_typ
:
20
,
instal
:
4
,
install
:
10
,
libcudart
:
7
,
libcudnn
:
7
,
line
:
10
,
log
:
10
,
logist
:
10
,
model
:
10
,
network
:
10
,
optimiz
:
10
,
overview
:
10
,
paddl
:[
16
,
17
,
18
],
predict
:
10
,
prepar
:
10
,
provid
:[
10
,
20
],
refer
:
20
,
regress
:
10
,
script
:
10
,
sequenc
:
10
,
summari
:
10
,
time
:
10
,
train
:
10
,
transfer
:
10
,
vector
:
10
,
word
:
10
}})
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录