From f485a9bc501e743b5284132a6c06ad8bc365b065 Mon Sep 17 00:00:00 2001 From: qiaolongfei Date: Fri, 11 Aug 2017 13:44:39 +0800 Subject: [PATCH] add auto gradient check design doc --- doc/design/auto_gradient_check.md | 146 ++++++++++++++++++ .../v2/framework/tests/gradient_checker.py | 16 +- 2 files changed, 161 insertions(+), 1 deletion(-) create mode 100644 doc/design/auto_gradient_check.md diff --git a/doc/design/auto_gradient_check.md b/doc/design/auto_gradient_check.md new file mode 100644 index 00000000000..0303d6fbc0f --- /dev/null +++ b/doc/design/auto_gradient_check.md @@ -0,0 +1,146 @@ +## auto gradient check Design + +## Backgraound: +- Operator forward computing is easy to check if the result is right because it has a clear definition. **But** backpropagation is a notoriously difficult algorithm to debug and get right: + - **Firstly** you should get the right backpropagation formula according to the forward computation. + - **Secondly** you should implement it right in CPP. + - **Thirdly** it's difficult to prepare test data. + +- Auto gradient check gets a numeric gradient by forward Operator and use it as a reference of the backward Operator's result. It has several advantages: + - **Firstly** numeric gradient checker only need forward operator. + - **Secondly** user only need to prepare the input data for forward Operator. + +## mathematical theory +The following two document from stanford has a detailed explanation of how to get numeric gradient and why it's useful. + +- [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization) +- [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96) + + +## Numeric Gradient Implementation +### Interface +```python +def get_numeric_gradient(op, + input_values, + output_name, + input_to_check, + delta=0.005, + local_scope=None): + """ + Get Numeric Gradient for an operator's input. + + :param op: C++ operator instance, could be an network + :param input_values: The input variables. Should be an dictionary, key is + variable name. Value is numpy array. + :param output_name: The final output variable name. + :param input_to_check: The input variable need to get gradient. + :param delta: The perturbation value for numeric gradient method. The + smaller delta is, the more accurate result will get. But if that delta is + too small, it could occur numerical stability problem. + :param local_scope: The local scope used for get_numeric_gradient. + :return: The gradient array in numpy format. + """ +``` + +### Explaination: + +1. Why need `output_name` + - One Operator may have multiple Output, you can get independent gradient from each Output. So user should set one output to calculate. + +1. Why need `input_to_check` + - One operator may have multiple inputs. Gradient Op can calculate the gradient of these Inputs at the same time. But Numeric Gradient needs to calculate them one by one. So `get_numeric_gradient` is designed to calculate the gradient for one input. If you need to compute multiple inputs, you can call `get_numeric_gradient` multiple times. + + +### Core algorithm implement + + +```python + # we only compute gradient of one element each time. + # we use a for loop to compute the gradient of every element. + for i in xrange(tensor_size): + # get one input element throw it's index i. + origin = tensor_to_check.get_float_element(i) + + # add delta to it, run op and then get the sum of the result tensor. + x_pos = origin + delta + tensor_to_check.set_float_element(i, x_pos) + y_pos = get_output() + + # plus delta to this element, run op and get the sum of the result tensor. + x_neg = origin - delta + tensor_to_check.set_float_element(i, x_neg) + y_neg = get_output() + + # restore old value + tensor_to_check.set_float_element(i, origin) + + # compute the gradient of this element and store it into a numpy array. + gradient_flat[i] = (y_pos - y_neg) / delta / 2 + + # reshape the gradient result to the shape of the source tensor. + return gradient_flat.reshape(tensor_to_check.get_dims()) +``` + +## auto check framework design + +Each Operator Kernel has three kinds of Gradient: + +- 1. Numeric Gradient +- 2. CPU Operator Gradient +- 3. GPU Operator Gradient(if supported) + +Numeric Gradient Only relies on forward Operator. So we use Numeric Gradient as the reference value. + +- **Firstly** calculate the numeric gradient. +- **Secondly** calculate CPU kernel Gradient with the backward Operator and compare it with the numeric gradient. +- **Thirdly** calculate GPU kernel Gradient with the backward Operator and compare it with the numeric gradient.(if support GPU) + +#### auto check python Interface + +```python + def check_grad(self, + forward_op, + input_vars, + inputs_to_check, + output_name, + no_grad_set=None, + only_cpu=False, + max_relative_error=0.005): + """ + :param forward_op: used to create backward_op + :param input_vars: numpy value of input variable. The following + computation will use these variables. + :param inputs_to_check: inputs var names that should check gradient. + :param output_name: output name that used to + :param max_relative_error: The relative tolerance parameter. + :param no_grad_set: used when create backward ops + :param only_cpu: only compute and check gradient on cpu kernel. + :return: + """ +``` + +### How two check two numpy array is close enough? +if `abs_numeric_grad` is nearly zero, then use abs error for numeric_grad, not relative + +```python +numeric_grad = ... +operator_grad = numpy.array(scope.find_var(grad_var_name(name)).get_tensor()) + +abs_numeric_grad = numpy.abs(numeric_grad) +# if abs_numeric_grad is nearly zero, then use abs error for numeric_grad, not relative +# error. +abs_numeric_grad[abs_numeric_grad < 1e-3] = 1 + +diff_mat = numpy.abs(abs_numeric_grad - operator_grad) / abs_numeric_grad +max_diff = numpy.max(diff_mat) +``` + + +#### Notes: +1,The Input data for auto gradient checker should be reasonable to avoid numeric problem. + + +#### refs: + +- [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization) +- [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96) diff --git a/python/paddle/v2/framework/tests/gradient_checker.py b/python/paddle/v2/framework/tests/gradient_checker.py index aacc5e88fee..015e832e825 100644 --- a/python/paddle/v2/framework/tests/gradient_checker.py +++ b/python/paddle/v2/framework/tests/gradient_checker.py @@ -73,21 +73,35 @@ def get_numeric_gradient(op, def product(dim): return reduce(lambda a, b: a * b, dim, 1) + # get the input tensor that we want to get it's numeric gradient. tensor_to_check = local_scope.find_var(input_to_check).get_tensor() tensor_size = product(tensor_to_check.get_dims()) + # prepare a numpy array to store the gradient. gradient_flat = numpy.zeros(shape=(tensor_size, ), dtype='float32') + + # we only compute gradient of one element each time. + # we use a for loop to compute the gradient of every element. for i in xrange(tensor_size): + # get one input element throw it's index i. origin = tensor_to_check.get_float_element(i) + + # add delta to it, run op and then get the sum of the result tensor. x_pos = origin + delta tensor_to_check.set_float_element(i, x_pos) y_pos = get_output() + # plus delta to this element, run op and get the sum of the result tensor. x_neg = origin - delta tensor_to_check.set_float_element(i, x_neg) y_neg = get_output() - tensor_to_check.set_float_element(i, origin) # restore old value + # restore old value + tensor_to_check.set_float_element(i, origin) + + # compute the gradient of this element and store it into a numpy array. gradient_flat[i] = (y_pos - y_neg) / delta / 2 + + # reshape the gradient result to the shape of the source tensor. return gradient_flat.reshape(tensor_to_check.get_dims()) -- GitLab