From f3a23b68401e3206ebb18d5696cf339ec17ae1f7 Mon Sep 17 00:00:00 2001
From: tensor-tang <jian.j.tang@intel.com>
Date: Tue, 12 Sep 2017 13:15:31 +0800
Subject: [PATCH] add MKLDNNConvLayer

---
 paddle/gserver/layers/MKLDNNConvLayer.cpp | 402 ++++++++++++++++++++++
 paddle/gserver/layers/MKLDNNConvLayer.h   | 157 +++++++++
 2 files changed, 559 insertions(+)
 create mode 100644 paddle/gserver/layers/MKLDNNConvLayer.cpp
 create mode 100644 paddle/gserver/layers/MKLDNNConvLayer.h

diff --git a/paddle/gserver/layers/MKLDNNConvLayer.cpp b/paddle/gserver/layers/MKLDNNConvLayer.cpp
new file mode 100644
index 00000000000..617874defe7
--- /dev/null
+++ b/paddle/gserver/layers/MKLDNNConvLayer.cpp
@@ -0,0 +1,402 @@
+/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#include "MKLDNNConvLayer.h"
+#include "paddle/math/MathUtils.h"
+#include "paddle/utils/Logging.h"
+
+using namespace mkldnn;  // NOLINT
+typedef memory::format format;
+typedef convolution_forward conv_fwd;
+typedef convolution_backward_weights conv_bwdWgt;
+typedef convolution_backward_data conv_bwdData;
+
+namespace paddle {
+
+REGISTER_LAYER(mkldnn_conv, MKLDNNConvLayer);
+
+bool MKLDNNConvLayer::init(const LayerMap& layerMap,
+                           const ParameterMap& parameterMap) {
+  if (!MKLDNNLayer::init(layerMap, parameterMap)) {
+    return false;
+  }
+  CHECK_EQ(inputLayers_.size(), 1) << "Only support one input layer yet";
+  CHECK_EQ(inputLayers_.size(), parameters_.size());
+  CHECK(config_.shared_biases()) << "Only support shared biases yet";
+
+  oc_ = config_.num_filters();
+  const ConvConfig& conf = config_.inputs(0).conv_conf();
+  ic_ = conf.channels();
+  fw_ = conf.filter_size();
+  fh_ = conf.filter_size_y();
+  pw_ = conf.padding();
+  ph_ = conf.padding_y();
+  dw_ = conf.dilation();
+  dh_ = conf.dilation_y();
+  sw_ = conf.stride();
+  sh_ = conf.stride_y();
+  gp_ = conf.groups();
+  oh_ = conf.has_output_y() ? conf.output_y() : conf.output_x();
+  ow_ = conf.output_x();
+  ih_ = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size();
+  iw_ = conf.img_size();
+  caffeMode_ = conf.caffe_mode();
+  CHECK(caffeMode_) << "Only support caffe mode yet";
+  CHECK(dh_ == 1 && dw_ == 1) << "Only support dilation 1 yet";
+  // check group setting
+  CHECK_EQ((oc_ / gp_) * gp_, oc_) << "group is indivisible for oc";
+  CHECK_EQ((ic_ / gp_) * gp_, ic_) << "group is indivisible for ic";
+
+  // create weight
+  size_t height = oc_ / gp_;
+  size_t width = ic_ * fh_ * fw_;
+  CHECK_EQ(parameters_[0]->getSize(), height * width);
+  weight_ =
+      std::unique_ptr<Weight>(new Weight(height, width, parameters_[0], 0));
+
+  // create biases
+  if (biasParameter_.get() != NULL) {
+    biases_ = std::unique_ptr<Weight>(new Weight(1, oc_, biasParameter_));
+  }
+  return true;
+}
+
+void MKLDNNConvLayer::convertWeightsFromPaddle() {
+  if (hasInitedWgt_) {
+    return;
+  }
+
+  CHECK(wgtVal_) << "should have been initialized";
+  // the paddle weight format is oihw or goihw
+  auto targetDim = wgtVal_->getDims();
+  auto srcFmt = (gp_ == 1) ? memory::format::oihw : memory::format::goihw;
+  wgtVal_->reorderDataFrom(wgtVal_, srcFmt, targetDim);
+  hasInitedWgt_ = true;
+}
+
+void MKLDNNConvLayer::convertWeightsToPaddle() {
+  CHECK(wgtVal_) << "should have been initialized";
+  auto targetDim = wgtVal_->getDims();
+  auto dstFmt = (gp_ == 1) ? memory::format::oihw : memory::format::goihw;
+  wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim);
+}
+
+void MKLDNNConvLayer::reshape(
+    int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) {
+  reshapeInput(bs, ih, iw);
+
+  // cal output sizes
+  // oc can not be changed
+  int fh = (fh_ - 1) * dh_ + 1;
+  int fw = (fw_ - 1) * dw_ + 1;
+  oh = outputSize(ih, fh, ph_, sh_, caffeMode_);
+  ow = outputSize(iw, fw, pw_, sw_, caffeMode_);
+
+  reshapeOutput(oh, ow);
+  resizeOutput(bs, oc * oh * ow);
+
+  printSizeInfo();
+}
+
+void MKLDNNConvLayer::resetFwd(std::vector<primitive>& pipeline,
+                               MKLDNNMatrixPtr& in,
+                               MKLDNNMatrixPtr& wgt,
+                               MKLDNNMatrixPtr& bias,
+                               MKLDNNMatrixPtr& out) {
+  pipeline.clear();
+  bool hasBias = biases_ && biases_->getW();
+  biasVal_ = nullptr;
+
+  // dims for conv
+  memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_};
+  memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
+  memory::dims wgtDims =
+      (gp_ == 1) ? memory::dims{oc_, ic_, fh_, fw_}
+                 : memory::dims{gp_, oc_ / gp_, ic_ / gp_, fh_, fw_};
+  memory::dims biasDims = memory::dims{oc_};
+  memory::dims strides = {sh_, sw_};
+  // note: mkldnn dilation start from 0
+  memory::dims dilations = {dh_ - 1, dw_ - 1};
+  memory::dims padding = {ph_, pw_};
+  memory::dims padR = getPaddingR();
+
+  // create forward handle
+  prop_kind pk =
+      passType_ == PASS_TEST ? prop_kind::forward : prop_kind::forward_training;
+  algorithm algo = algorithm::convolution_direct;
+  padding_kind padKind = padding_kind::zero;
+  conv_fwd::desc fwdDesc =
+      hasBias ? conv_fwd::desc(pk,
+                               algo,
+                               MKLDNNMatrix::createMemoryDesc(inDims),
+                               MKLDNNMatrix::createMemoryDesc(wgtDims),
+                               MKLDNNMatrix::createMemoryDesc(biasDims),
+                               MKLDNNMatrix::createMemoryDesc(outDims),
+                               strides,
+                               dilations,
+                               padding,
+                               padR,
+                               padKind)
+              : conv_fwd::desc(pk,
+                               algo,
+                               MKLDNNMatrix::createMemoryDesc(inDims),
+                               MKLDNNMatrix::createMemoryDesc(wgtDims),
+                               MKLDNNMatrix::createMemoryDesc(outDims),
+                               strides,
+                               dilations,
+                               padding,
+                               padR,
+                               padKind);
+  fwdPD_.reset(new conv_fwd::primitive_desc(fwdDesc, engine_));
+
+  // create mkldnn matrix
+  const MatrixPtr& wgtVal = weight_->getW();
+  const MatrixPtr& inVal = inputLayers_[0]->getOutput().value;
+  const MatrixPtr& outVal = output_.value;
+  wgt = MKLDNNMatrix::create(wgtVal, fwdPD_->weights_primitive_desc());
+  in = MKLDNNMatrix::create(inVal, fwdPD_->src_primitive_desc());
+  out = MKLDNNMatrix::create(outVal, fwdPD_->dst_primitive_desc());
+  VLOG(MKLDNN_FMTS) << "Weight value format: " << wgtVal_->getFormat();
+  if (hasBias) {
+    const MatrixPtr& biasVal = biases_->getW();
+    bias = MKLDNNMatrix::create(biasVal, biasDims, format::x, engine_);
+    CHECK(bias->getPrimitiveDesc() == fwdPD_->bias_primitive_desc())
+        << "bias primitive desc should always be equal";
+  }
+
+  // add reorder if input value do not match
+  if (inputIsOnlyMKLDNN()) {
+    MKLDNNMatrixPtr dnnIn = std::dynamic_pointer_cast<MKLDNNMatrix>(inVal);
+    CHECK(dnnIn) << "Input should be MKLDNNMatrix";
+    if (dnnIn->getPrimitiveDesc() != in->getPrimitiveDesc()) {
+      CHECK_EQ(dnnIn->getFormat(), format::nc);
+      CHECK(ih_ == 1 && iw_ == 1);
+      dnnIn = MKLDNNMatrix::create(inVal, inDims, format::nchw, engine_);
+      CHECK(dnnIn->getPrimitiveDesc() == in->getPrimitiveDesc());
+    }
+    in = dnnIn;
+  } else {
+    const MatrixPtr& cpuIn = getInputValue(0, CPU_DEVICE);
+    cpuInVal_ = MKLDNNMatrix::create(cpuIn, inDims, format::nchw, engine_);
+    if (cpuInVal_->getPrimitiveDesc() != in->getPrimitiveDesc()) {
+      // create new mkldnn matrix
+      in = MKLDNNMatrix::create(nullptr, fwdPD_->src_primitive_desc());
+      cvtInVal_ = MKLDNNMatrix::createReorder(cpuInVal_, in);
+      CHECK(cvtInVal_);
+      pipeline.push_back(*cvtInVal_);
+    } else {
+      in = cpuInVal_;
+    }
+  }
+
+  // add fwd handle
+  if (hasBias) {
+    fwd_.reset(new conv_fwd(*fwdPD_, *in, *wgt, *bias, *out));
+  } else {
+    fwd_.reset(new conv_fwd(*fwdPD_, *in, *wgt, *out));
+  }
+  pipeline.push_back(*fwd_);
+
+  // change original output value from cpu matrix to mkldnn matrix
+  output_.value = std::dynamic_pointer_cast<Matrix>(out);
+  // add reorder if output value has cpu device and pd do not match
+  if (!outputIsOnlyMKLDNN()) {
+    const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).value;
+    cpuOutVal_ = MKLDNNMatrix::create(cpuOut, outDims, format::nchw, engine_);
+    if (cpuOutVal_->getPrimitiveDesc() != out->getPrimitiveDesc()) {
+      cvtOutVal_ = MKLDNNMatrix::createReorder(out, cpuOutVal_);
+      CHECK(cvtOutVal_);
+      pipeline.push_back(*cvtOutVal_);
+    } else {
+      // share data
+      cpuOut->setData(out->getData());
+      cpuOutVal_ = out;
+    }
+  }
+
+  printValueFormatFlow();
+}
+
+void MKLDNNConvLayer::resetBwd(std::vector<primitive>& pipeline,
+                               MKLDNNMatrixPtr& in,
+                               MKLDNNMatrixPtr& wgt,
+                               MKLDNNMatrixPtr& bias,
+                               MKLDNNMatrixPtr& out) {
+  pipeline.clear();
+  bool hasBias = biases_ && biases_->getWGrad();
+
+  /// backward weight
+  CHECK(inVal_) << "Should have input value";
+  CHECK(outVal_) << "Should have output value";
+  CHECK(wgtVal_) << "Should have weight value";
+  memory::dims wgtDims =
+      (gp_ == 1) ? memory::dims{oc_, ic_, fh_, fw_}
+                 : memory::dims{gp_, oc_ / gp_, ic_ / gp_, fh_, fw_};
+  memory::dims strides = {sh_, sw_};
+  memory::dims dilations = {dh_ - 1, dw_ - 1};
+  memory::dims padding = {ph_, pw_};
+  memory::dims padR = getPaddingR();
+
+  // create backward handle
+  algorithm algo = algorithm::convolution_direct;
+  padding_kind padKind = padding_kind::zero;
+  auto bwdWgtDesc =
+      hasBias ? conv_bwdWgt::desc(algo,
+                                  inVal_->getMemoryDesc(),
+                                  MKLDNNMatrix::createMemoryDesc(wgtDims),
+                                  biasVal_->getMemoryDesc(),
+                                  outVal_->getMemoryDesc(),
+                                  strides,
+                                  padding,
+                                  padR,
+                                  padKind)
+              : conv_bwdWgt::desc(algo,
+                                  inVal_->getMemoryDesc(),
+                                  MKLDNNMatrix::createMemoryDesc(wgtDims),
+                                  outVal_->getMemoryDesc(),
+                                  strides,
+                                  padding,
+                                  padR,
+                                  padKind);
+
+  auto bwdWgtPD = conv_bwdWgt::primitive_desc(bwdWgtDesc, engine_, *fwdPD_);
+  CHECK(bwdWgtPD.src_primitive_desc() == inVal_->getPrimitiveDesc())
+      << "primitive desc of in value should equal";
+  CHECK(bwdWgtPD.diff_dst_primitive_desc() == outVal_->getPrimitiveDesc())
+      << "primitive desc of out grad should equal the out value";
+  CHECK(bwdWgtPD.diff_weights_primitive_desc() == wgtVal_->getPrimitiveDesc())
+      << "primitive desc of weight grad should equal the weight value";
+
+  // create mkldnn matrix
+  const MatrixPtr& wgtGrad = weight_->getWGrad();
+  const MatrixPtr& outGrad = output_.grad;
+  wgt = MKLDNNMatrix::create(wgtGrad, bwdWgtPD.diff_weights_primitive_desc());
+  out = MKLDNNMatrix::create(outGrad, bwdWgtPD.diff_dst_primitive_desc());
+  CHECK(wgt->getPrimitiveDesc() == wgtVal_->getPrimitiveDesc())
+      << "primitive desc of weight grad and value should be equal";
+  CHECK(out->getPrimitiveDesc() == outVal_->getPrimitiveDesc())
+      << "primitive desc of out grad and value should be equal";
+  VLOG(MKLDNN_FMTS) << "Backward weight, weight grad format: "
+                    << wgt->getFormat();
+  if (hasBias) {
+    const MatrixPtr& biasGrad = biases_->getWGrad();
+    bias = MKLDNNMatrix::create(biasGrad, bwdWgtPD.diff_bias_primitive_desc());
+    CHECK(bias->getPrimitiveDesc() == biasVal_->getPrimitiveDesc())
+        << "primitive desc of bias grad should equal the bias value";
+  }
+
+  // TODO(TJ): merge outgrad
+  // add reorder if has user output grad
+  if (!outputIsOnlyMKLDNN()) {
+    const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad;
+    memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
+    // same PrimitiveDesc with cpuInVal_
+    CHECK(cpuOutVal_);
+    cpuOutGrad_ = MKLDNNMatrix::create(cpuOut, cpuOutVal_->getPrimitiveDesc());
+    if (cpuOutGrad_->getPrimitiveDesc() == out->getPrimitiveDesc()) {
+      outGrad->setData(cpuOut->getData());
+      out = cpuOutGrad_;
+    } else {
+      cvtOutGrad_ = MKLDNNMatrix::createReorder(cpuOutGrad_, out);
+      CHECK(cvtOutGrad_);
+      pipeline.push_back(*cvtOutGrad_);
+    }
+  }
+
+  // add bwdWgt handle
+  if (hasBias) {
+    bwdWgt_.reset(new conv_bwdWgt(bwdWgtPD, *inVal_, *out, *wgt, *bias));
+  } else {
+    bwdWgt_.reset(new conv_bwdWgt(bwdWgtPD, *inVal_, *out, *wgt));
+  }
+  pipeline.push_back(*bwdWgt_);
+
+  /// backward data
+  const MatrixPtr& inGrad = inputLayers_[0]->getOutput().grad;
+  if (inGrad == nullptr) {
+    return;
+  }
+
+  auto bwdDataDesc = conv_bwdData::desc(algo,
+                                        inVal_->getMemoryDesc(),
+                                        MKLDNNMatrix::createMemoryDesc(wgtDims),
+                                        out->getMemoryDesc(),
+                                        strides,
+                                        padding,
+                                        padR,
+                                        padKind);
+  auto bwdDataPD = conv_bwdData::primitive_desc(bwdDataDesc, engine_, *fwdPD_);
+  CHECK(bwdDataPD.diff_src_primitive_desc() == inVal_->getPrimitiveDesc())
+      << "primitive desc of in grad should equal the in value";
+  CHECK(bwdDataPD.diff_dst_primitive_desc() == out->getPrimitiveDesc())
+      << "primitive desc of out grad should equal";
+
+  // create mkldnn matrix inGrad_ and reorder if necessary
+  // TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done
+  in = MKLDNNMatrix::create(inGrad, bwdDataPD.diff_src_primitive_desc());
+  cvtInGrad_ = nullptr;
+  if (!inputIsOnlyMKLDNN()) {
+    const MatrixPtr& cpuIn = getInputGrad(0, CPU_DEVICE);
+    // same PrimitiveDesc with cpuInVal_
+    CHECK(cpuInVal_);
+    cpuInGrad_ = MKLDNNMatrix::create(cpuIn, cpuInVal_->getPrimitiveDesc());
+    if (cpuInGrad_->getPrimitiveDesc() != in->getPrimitiveDesc()) {
+      const MatrixPtr& dnnIn = getInputGrad(0, MKLDNN_DEVICE);
+      in = MKLDNNMatrix::create(dnnIn, in->getPrimitiveDesc());
+      cvtInGrad_ = MKLDNNMatrix::createReorder(in, cpuInGrad_);
+      CHECK(cvtInGrad_);
+    } else {
+      in = cpuInGrad_;
+    }
+  }
+
+  // create new weight value for backward data, and reorder if necessary
+  // since the primitive_desc would be different with wgtVal_
+  if (bwdDataPD.weights_primitive_desc() != wgtVal_->getPrimitiveDesc()) {
+    wgtValBwdData_ =
+        MKLDNNMatrix::create(nullptr, bwdDataPD.weights_primitive_desc());
+    cvtWgtVal_ = MKLDNNMatrix::createReorder(wgtVal_, wgtValBwdData_);
+    CHECK(cvtWgtVal_);
+    pipeline.push_back(*cvtWgtVal_);
+  } else {
+    wgtValBwdData_ = wgtVal_;
+  }
+  VLOG(MKLDNN_FMTS) << "Backward data, weight value format: "
+                    << wgtValBwdData_->getFormat();
+
+  // add bwdData handle
+  CHECK(wgtValBwdData_) << "Should have weight memory";
+  bwdData_.reset(new conv_bwdData(bwdDataPD, *out, *wgtValBwdData_, *in));
+  pipeline.push_back(*bwdData_);
+
+  // add ingrad reorder after bwdData
+  if (cvtInGrad_) {
+    pipeline.push_back(*cvtInGrad_);
+  }
+
+  printGradFormatFlow();
+}
+
+void MKLDNNConvLayer::updateInputData() {
+  cpuInVal_->setData(getInputValue(0, CPU_DEVICE)->getData());
+}
+
+void MKLDNNConvLayer::updateWeights(const UpdateCallback& callback) {
+  weight_->getParameterPtr()->incUpdate(callback);
+  if (biases_ && biases_->getWGrad()) {
+    biases_->getParameterPtr()->incUpdate(callback);
+  }
+}
+
+}  // namespace paddle
diff --git a/paddle/gserver/layers/MKLDNNConvLayer.h b/paddle/gserver/layers/MKLDNNConvLayer.h
new file mode 100644
index 00000000000..58891ff5e1f
--- /dev/null
+++ b/paddle/gserver/layers/MKLDNNConvLayer.h
@@ -0,0 +1,157 @@
+/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#pragma once
+
+#include "MKLDNNLayer.h"
+#include "mkldnn.hpp"
+
+namespace paddle {
+
+/**
+ * @brief A subclass of MKLDNNLayer conv layer.
+ *
+ * The config file api is mkldnn_conv
+ */
+class MKLDNNConvLayer : public MKLDNNLayer {
+protected:
+  // padding height and width
+  int ph_, pw_;
+  // stride height and width
+  int sh_, sw_;
+  // dilation height and width
+  int dh_, dw_;
+  // filter(kenerl) height and width
+  int fh_, fw_;
+  // group number
+  int gp_;
+
+  // in backward data the format is different with wgtVal_
+  MKLDNNMatrixPtr wgtValBwdData_;
+  std::shared_ptr<mkldnn::reorder> cvtWgtVal_;
+
+  // save forward primitive_desc use for backward
+  std::shared_ptr<mkldnn::convolution_forward::primitive_desc> fwdPD_;
+
+  // MKLDNNMatrixPtr with cpu device for conversion between MKLDNN device
+  MKLDNNMatrixPtr cpuInVal_;
+  MKLDNNMatrixPtr cpuInGrad_;
+  MKLDNNMatrixPtr cpuOutVal_;
+  MKLDNNMatrixPtr cpuOutGrad_;
+  std::shared_ptr<mkldnn::reorder> cvtInVal_;
+  std::shared_ptr<mkldnn::reorder> cvtInGrad_;
+  std::shared_ptr<mkldnn::reorder> cvtOutVal_;
+  std::shared_ptr<mkldnn::reorder> cvtOutGrad_;
+
+  // if has already init the weight
+  bool hasInitedWgt_;
+
+  // True by default. This impact the calculation of output size.
+  // For example:
+  // - input(+padding): 0123456789
+  // - imageSize(+padding) = 10;
+  // - filterSize = 3;
+  // - stride = 2;
+  // - caffeMode_ is true:
+  // - output: (012), (234), (456), (678)
+  // - outputSize = 4;
+  // - caffeMode_ is false:
+  // - output: (012), (234), (456), (678), (9)
+  // - outputSize = 5;
+  bool caffeMode_;
+
+  // weight and bias
+  std::unique_ptr<Weight> weight_;
+  std::unique_ptr<Weight> biases_;
+
+public:
+  explicit MKLDNNConvLayer(const LayerConfig& config)
+      : MKLDNNLayer(config), hasInitedWgt_(false), caffeMode_(true) {}
+
+  ~MKLDNNConvLayer() {}
+
+  bool init(const LayerMap& layerMap,
+            const ParameterMap& parameterMap) override;
+
+  void reshape(
+      int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) override;
+
+  void resetFwd(std::vector<mkldnn::primitive>& pipeline,
+                MKLDNNMatrixPtr& in,
+                MKLDNNMatrixPtr& wgt,
+                MKLDNNMatrixPtr& bias,
+                MKLDNNMatrixPtr& out) override;
+
+  void resetBwd(std::vector<mkldnn::primitive>& pipeline,
+                MKLDNNMatrixPtr& in,
+                MKLDNNMatrixPtr& wgt,
+                MKLDNNMatrixPtr& bias,
+                MKLDNNMatrixPtr& out) override;
+
+  void updateInputData() override;
+
+  void updateWeights(const UpdateCallback& callback) override;
+
+  void convertWeightsFromPaddle() override;
+
+  void convertWeightsToPaddle() override;
+
+protected:
+  void printSizeInfo() override {
+    MKLDNNLayer::printSizeInfo();
+    VLOG(MKLDNN_SIZES) << getName() << ": fh: " << fh_ << ", fw: " << fw_
+                       << ": ph: " << ph_ << ", pw: " << pw_ << ", sh: " << sh_
+                       << ", sw: " << sw_ << ", dh: " << dh_ << ", dw: " << dw_;
+  }
+
+  void printValueFormatFlow() override {
+    if (cpuInVal_) {
+      VLOG(MKLDNN_FMTS) << cpuInVal_->getFormat() << " >>>";
+    }
+    MKLDNNLayer::printValueFormatFlow();
+    if (cpuOutVal_) {
+      VLOG(MKLDNN_FMTS) << " >>> " << cpuOutVal_->getFormat();
+    }
+  }
+  void printGradFormatFlow() override {
+    if (cpuInGrad_) {
+      VLOG(MKLDNN_FMTS) << cpuInGrad_->getFormat() << " <<<";
+    }
+    MKLDNNLayer::printGradFormatFlow();
+    if (cpuOutGrad_) {
+      VLOG(MKLDNN_FMTS) << " <<< " << cpuOutGrad_->getFormat();
+    }
+  }
+
+  /**
+   * get padding_r according to
+   * https://github.com/01org/mkl-dnn/blob/master/tests/gtests/
+   * test_convolution_forward_common.hpp
+   * @note: mkldnn dilation start from 0 while paddle start from 1
+   */
+  mkldnn::memory::dims getPaddingR() const {
+    mkldnn::memory::dims padR = {ph_, pw_};
+    for (int i = 0; i < 2; ++i) {
+      if ((ih_ - ((fh_ - 1) * dh_ + 1) + ph_ + padR[0]) / sh_ + 1 != oh_) {
+        ++padR[0];
+      }
+      if ((iw_ - ((fw_ - 1) * dw_ + 1) + pw_ + padR[1]) / sw_ + 1 != ow_) {
+        ++padR[1];
+      }
+    }
+    return padR;
+  }
+};
+
+}  // namespace paddle
-- 
GitLab