Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
f3755dd4
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f3755dd4
编写于
2月 07, 2017
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add v2-layers
上级
ccb553fe
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
131 addition
and
18 deletion
+131
-18
demo/mnist/api_train.py
demo/mnist/api_train.py
+17
-17
python/paddle/v2/__init__.py
python/paddle/v2/__init__.py
+2
-1
python/paddle/v2/layers.py
python/paddle/v2/layers.py
+112
-0
未找到文件。
demo/mnist/api_train.py
浏览文件 @
f3755dd4
...
...
@@ -6,25 +6,16 @@ passed to C++ side of Paddle.
The user api could be simpler and carefully designed.
"""
import
py_paddle.swig_paddle
as
api
from
py_paddle
import
DataProviderConverter
import
paddle.trainer.PyDataProvider2
as
dp
import
numpy
as
np
import
random
from
mnist_util
import
read_from_mnist
from
paddle.trainer_config_helpers
import
*
import
paddle.v2
import
numpy
as
np
import
paddle.trainer.PyDataProvider2
as
dp
import
paddle.v2
import
py_paddle.swig_paddle
as
api
from
paddle.trainer_config_helpers
import
*
from
py_paddle
import
DataProviderConverter
def
network_config
():
imgs
=
data_layer
(
name
=
'pixel'
,
size
=
784
)
hidden1
=
fc_layer
(
input
=
imgs
,
size
=
200
)
hidden2
=
fc_layer
(
input
=
hidden1
,
size
=
200
)
inference
=
fc_layer
(
input
=
hidden2
,
size
=
10
,
act
=
SoftmaxActivation
())
cost
=
classification_cost
(
input
=
inference
,
label
=
data_layer
(
name
=
'label'
,
size
=
10
))
outputs
(
cost
)
from
mnist_util
import
read_from_mnist
def
init_parameter
(
network
):
...
...
@@ -79,8 +70,17 @@ def main():
updater
=
optimizer
.
create_local_updater
()
assert
isinstance
(
updater
,
api
.
ParameterUpdater
)
# define network
images
=
paddle
.
v2
.
layers
.
data_layer
(
name
=
'pixel'
,
size
=
784
)
label
=
paddle
.
v2
.
layers
.
data_layer
(
name
=
'label'
,
size
=
10
)
hidden1
=
paddle
.
v2
.
layers
.
fc_layer
(
input
=
images
,
size
=
200
)
hidden2
=
paddle
.
v2
.
layers
.
fc_layer
(
input
=
hidden1
,
size
=
200
)
inference
=
paddle
.
v2
.
layers
.
fc_layer
(
input
=
hidden2
,
size
=
10
,
act
=
SoftmaxActivation
())
cost
=
paddle
.
v2
.
layers
.
classification_cost
(
input
=
inference
,
label
=
label
)
# Create Simple Gradient Machine.
model_config
=
pa
rse_network_config
(
network_config
)
model_config
=
pa
ddle
.
v2
.
layers
.
parse_network
(
cost
)
m
=
api
.
GradientMachine
.
createFromConfigProto
(
model_config
,
api
.
CREATE_MODE_NORMAL
,
optimizer
.
enable_types
())
...
...
python/paddle/v2/__init__.py
浏览文件 @
f3755dd4
...
...
@@ -13,5 +13,6 @@
# limitations under the License.
import
optimizer
import
layers
__all__
=
[
'optimizer'
]
__all__
=
[
'optimizer'
,
'layers'
]
python/paddle/v2/layers.py
0 → 100644
浏览文件 @
f3755dd4
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.trainer_config_helpers
as
conf_helps
from
paddle.trainer_config_helpers.config_parser_utils
import
\
parse_network_config
as
__parse__
from
paddle.trainer_config_helpers.default_decorators
import
wrap_name_default
import
collections
class
Layer
(
object
):
def
__init__
(
self
,
name
,
parent_layer
):
assert
isinstance
(
parent_layer
,
dict
)
assert
isinstance
(
name
,
basestring
)
self
.
name
=
name
self
.
__parent_layer__
=
parent_layer
def
to_proto
(
self
,
context
):
"""
function to set proto attribute
"""
kwargs
=
dict
()
for
param_name
in
self
.
__parent_layer__
:
if
not
isinstance
(
self
.
__parent_layer__
[
param_name
],
collections
.
Sequence
):
param_value
=
self
.
__parent_layer__
[
param_name
].
to_proto
(
context
=
context
)
else
:
param_value
=
map
(
lambda
x
:
x
.
to_proto
(
context
=
context
),
self
.
__parent_layer__
[
param_name
])
kwargs
[
param_name
]
=
param_value
if
self
.
name
not
in
context
:
context
[
self
.
name
]
=
self
.
to_proto_impl
(
**
kwargs
)
return
context
[
self
.
name
]
def
to_proto_impl
(
self
,
**
kwargs
):
raise
NotImplementedError
()
def
parse_network
(
*
outputs
):
def
__real_func__
():
context
=
dict
()
real_output
=
[
each
.
to_proto
(
context
=
context
)
for
each
in
outputs
]
conf_helps
.
outputs
(
real_output
)
return
__parse__
(
__real_func__
)
def
__convert__
(
method_name
,
name_prefix
,
parent_names
):
if
name_prefix
is
not
None
:
wrapper
=
wrap_name_default
(
name_prefix
=
name_prefix
)
else
:
wrapper
=
None
class
__Impl__
(
Layer
):
def
__init__
(
self
,
name
=
None
,
**
kwargs
):
parent_layers
=
dict
()
other_kwargs
=
dict
()
for
pname
in
parent_names
:
parent_layers
[
pname
]
=
kwargs
[
pname
]
for
key
in
kwargs
.
keys
():
if
key
not
in
parent_names
:
other_kwargs
[
key
]
=
kwargs
[
key
]
super
(
__Impl__
,
self
).
__init__
(
name
,
parent_layers
)
self
.
__other_kwargs__
=
other_kwargs
if
wrapper
is
not
None
:
__init__
=
wrapper
(
__init__
)
def
to_proto_impl
(
self
,
**
kwargs
):
args
=
dict
()
for
each
in
kwargs
:
args
[
each
]
=
kwargs
[
each
]
for
each
in
self
.
__other_kwargs__
:
args
[
each
]
=
self
.
__other_kwargs__
[
each
]
return
getattr
(
conf_helps
,
method_name
)(
name
=
self
.
name
,
**
args
)
return
__Impl__
data_layer
=
__convert__
(
'data_layer'
,
None
,
[])
fc_layer
=
__convert__
(
'fc_layer'
,
name_prefix
=
'fc'
,
parent_names
=
[
'input'
])
classification_cost
=
__convert__
(
'classification_cost'
,
name_prefix
=
'classification_cost'
,
parent_names
=
[
'input'
,
'label'
])
__all__
=
[
'data_layer'
,
'fc_layer'
,
'classification_cost'
,
'parse_network'
]
if
__name__
==
'__main__'
:
data
=
data_layer
(
name
=
'pixel'
,
size
=
784
)
hidden
=
fc_layer
(
input
=
data
,
size
=
100
,
act
=
conf_helps
.
SigmoidActivation
())
predict
=
fc_layer
(
input
=
[
hidden
,
data
],
size
=
10
,
act
=
conf_helps
.
SoftmaxActivation
())
cost
=
classification_cost
(
input
=
predict
,
label
=
data_layer
(
name
=
'label'
,
size
=
10
))
print
parse_network
(
cost
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录