Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
f276006f
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f276006f
编写于
8月 15, 2018
作者:
F
fengjiayi
提交者:
GitHub
8月 15, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #12694 from JiayiFeng/dev_op_tensor_support
Make cross_entropy_op supporting tensor
上级
a197737c
d6b5302b
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
184 addition
and
58 deletion
+184
-58
paddle/fluid/framework/tensor.cc
paddle/fluid/framework/tensor.cc
+1
-0
paddle/fluid/framework/tensor_impl.h
paddle/fluid/framework/tensor_impl.h
+8
-0
paddle/fluid/operators/cross_entropy_op.cc
paddle/fluid/operators/cross_entropy_op.cc
+52
-37
paddle/fluid/operators/cross_entropy_op.h
paddle/fluid/operators/cross_entropy_op.h
+11
-3
paddle/fluid/operators/softmax_op.h
paddle/fluid/operators/softmax_op.h
+10
-18
python/paddle/fluid/tests/unittests/test_cross_entropy_op.py
python/paddle/fluid/tests/unittests/test_cross_entropy_op.py
+102
-0
未找到文件。
paddle/fluid/framework/tensor.cc
浏览文件 @
f276006f
...
@@ -112,5 +112,6 @@ Tensor& Tensor::Resize(const DDim& dims) {
...
@@ -112,5 +112,6 @@ Tensor& Tensor::Resize(const DDim& dims) {
const
DDim
&
Tensor
::
dims
()
const
{
return
dims_
;
}
const
DDim
&
Tensor
::
dims
()
const
{
return
dims_
;
}
int64_t
Tensor
::
numel
()
const
{
return
product
(
dims_
);
}
int64_t
Tensor
::
numel
()
const
{
return
product
(
dims_
);
}
}
// namespace framework
}
// namespace framework
}
// namespace paddle
}
// namespace paddle
paddle/fluid/framework/tensor_impl.h
浏览文件 @
f276006f
...
@@ -59,6 +59,14 @@ inline T* Tensor::mutable_data(platform::Place place) {
...
@@ -59,6 +59,14 @@ inline T* Tensor::mutable_data(platform::Place place) {
}
}
inline
Tensor
ReshapeToMatrix
(
const
Tensor
&
src
,
int
num_col_dims
)
{
inline
Tensor
ReshapeToMatrix
(
const
Tensor
&
src
,
int
num_col_dims
)
{
int
rank
=
src
.
dims
().
size
();
PADDLE_ENFORCE_GE
(
rank
,
2
,
"'ReshapeToMatrix()' is only used for flatten high rank "
"tensors to matrixs. Can not be used in reshaping vectors."
);
if
(
rank
==
2
)
{
return
src
;
}
Tensor
res
;
Tensor
res
;
res
.
ShareDataWith
(
src
);
res
.
ShareDataWith
(
src
);
res
.
Resize
(
flatten_to_2d
(
src
.
dims
(),
num_col_dims
));
res
.
Resize
(
flatten_to_2d
(
src
.
dims
(),
num_col_dims
));
...
...
paddle/fluid/operators/cross_entropy_op.cc
浏览文件 @
f276006f
...
@@ -28,23 +28,26 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
...
@@ -28,23 +28,26 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2UL
,
"Input(X)'s rank should be 2."
);
int
rank
=
x_dims
.
size
();
PADDLE_ENFORCE_EQ
(
label_dims
.
size
(),
2UL
,
PADDLE_ENFORCE_EQ
(
rank
,
label_dims
.
size
(),
"Input(Label)'s rank should be 2."
);
"Input(X) and Input(Label) shall have the same rank."
);
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
label_dims
[
0
],
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
0
,
rank
-
1
),
"The 1st dimension of Input(X) and Input(Label) should "
framework
::
slice_ddim
(
label_dims
,
0
,
rank
-
1
),
"be equal."
);
"Input(X) and Input(Label) shall have the same shape "
"except the last dimension."
);
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"soft_label"
))
{
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"soft_label"
))
{
PADDLE_ENFORCE_EQ
(
x_dims
[
1
],
label_dims
[
1
],
PADDLE_ENFORCE_EQ
(
x_dims
[
rank
-
1
],
label_dims
[
rank
-
1
],
"If Attr(soft_label) == true, the
2nd
dimension of "
"If Attr(soft_label) == true, the
last
dimension of "
"Input(X) and Input(Label) should be equal."
);
"Input(X) and Input(Label) should be equal."
);
}
else
{
}
else
{
PADDLE_ENFORCE_EQ
(
label_dims
[
1
],
1UL
,
PADDLE_ENFORCE_EQ
(
label_dims
[
rank
-
1
],
1UL
,
"If Attr(softLabel) == false, the
2nd
dimension of "
"If Attr(softLabel) == false, the
last
dimension of "
"Input(Label) should be 1."
);
"Input(Label) should be 1."
);
}
}
ctx
->
SetOutputDim
(
"Y"
,
{
x_dims
[
0
],
1
});
auto
y_dims
=
x_dims
;
y_dims
[
rank
-
1
]
=
1
;
ctx
->
SetOutputDim
(
"Y"
,
y_dims
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Y"
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Y"
);
}
}
...
@@ -74,24 +77,28 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
...
@@ -74,24 +77,28 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
auto
dy_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Y"
));
auto
dy_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Y"
));
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"Input(X)'s rank should be 2."
);
int
rank
=
x_dims
.
size
();
PADDLE_ENFORCE_EQ
(
dy_dims
.
size
(),
2
,
"Input(Y@Grad)'s rank should be 2."
);
PADDLE_ENFORCE_EQ
(
dy_dims
.
size
(),
rank
,
PADDLE_ENFORCE_EQ
(
label_dims
.
size
(),
2
,
"Input(Label)'s rank should be 2."
);
"Input(Y@Grad) and Input(X) should have the same rank."
);
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
label_dims
[
0
],
PADDLE_ENFORCE_EQ
(
label_dims
.
size
(),
rank
,
"The 1st dimension of Input(X) and Input(Label) should "
"Input(Label) and Input(X) should have the same rank."
);
"be equal."
);
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
0
,
rank
-
1
),
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
dy_dims
[
0
],
framework
::
slice_ddim
(
label_dims
,
0
,
rank
-
1
),
"The 1st dimension of Input(X) and Input(Y@Grad) should "
"The Input(X) and Input(Label) should have the same "
"be equal."
);
"shape except the last dimension."
);
PADDLE_ENFORCE_EQ
(
dy_dims
[
1
],
1
,
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
0
,
rank
-
1
),
"The 2nd dimension of Input(Y@Grad) should be 1."
);
framework
::
slice_ddim
(
dy_dims
,
0
,
rank
-
1
),
"The Input(X) and Input(Y@Grad) should have the same "
"shape except the last dimension."
);
PADDLE_ENFORCE_EQ
(
dy_dims
[
rank
-
1
],
1
,
"The last dimension of Input(Y@Grad) should be 1."
);
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"soft_label"
))
{
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"soft_label"
))
{
PADDLE_ENFORCE_EQ
(
x_dims
[
1
],
label_dims
[
1
],
PADDLE_ENFORCE_EQ
(
x_dims
[
rank
-
1
],
label_dims
[
rank
-
1
],
"When Attr(soft_label) == true, the
2nd
dimension of "
"When Attr(soft_label) == true, the
last
dimension of "
"Input(X) and Input(Label) should be equal."
);
"Input(X) and Input(Label) should be equal."
);
}
else
{
}
else
{
PADDLE_ENFORCE_EQ
(
label_dims
[
1
],
1
,
PADDLE_ENFORCE_EQ
(
label_dims
[
rank
-
1
],
1
,
"When Attr(soft_label) == false, the
2nd
dimension of "
"When Attr(soft_label) == false, the
last
dimension of "
"Input(Label) should be 1."
);
"Input(Label) should be 1."
);
}
}
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
...
@@ -113,18 +120,20 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -113,18 +120,20 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
public:
public:
void
Make
()
override
{
void
Make
()
override
{
AddInput
(
"X"
,
AddInput
(
"X"
,
"(Tensor, default Tensor<float>), a 2-D tensor with shape [N x D],"
"(Tensor, default Tensor<float>), a tensor whose last dimension "
" where N is the batch size and D is the number of classes. "
"size is equal to the number of classes. This input is a "
"This input is a probability computed by the previous operator, "
"probability computed by the previous operator, which is almost "
"which is almost always the result of a softmax operator."
);
"always the result of a softmax operator."
);
AddInput
(
"Label"
,
AddInput
(
"(Tensor), the ground truth which is a 2-D tensor. When "
"Label"
,
"soft_label is set to false, Label is a Tensor<int64> with shape "
"(Tensor), the tensor which represents the ground truth. It has the "
"[N x 1]. When soft_label is set to true, Label is a "
"same shape with 'X' except the last dimension. When soft_label is set "
"Tensor<float/double> with shape [N x D]."
);
"to false, the last dimension size is 1; when soft_label is set to "
"true, the last dimension size is equal to the number of classes."
);
AddOutput
(
"Y"
,
AddOutput
(
"Y"
,
"(Tensor, default Tensor<float>), a 2-D tensor with shape "
"(Tensor, default Tensor<float>), a tensor whose shape is same "
"[N x 1]. The cross entropy loss."
);
"with 'X' except that the last dimension size is 1. It "
"represents the cross entropy loss."
);
AddAttr
<
bool
>
(
"soft_label"
,
AddAttr
<
bool
>
(
"soft_label"
,
"(bool, default false), a flag indicating whether to "
"(bool, default false), a flag indicating whether to "
"interpretate the given labels as soft labels."
)
"interpretate the given labels as soft labels."
)
...
@@ -132,6 +141,12 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -132,6 +141,12 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
AddComment
(
R"DOC(
CrossEntropy Operator.
CrossEntropy Operator.
The input 'X' and 'Label' will first be logically flattened to 2-D matrixs.
The matrix's second dimension(row length) is as same as the original last
dimension, and the first dimension(column length) is the product of all other
original dimensions. Then the softmax computation will take palce on each raw
of flattened matrixs.
It supports both standard cross-entropy and soft-label cross-entropy loss
It supports both standard cross-entropy and soft-label cross-entropy loss
computation.
computation.
1) One-hot cross-entropy:
1) One-hot cross-entropy:
...
...
paddle/fluid/operators/cross_entropy_op.h
浏览文件 @
f276006f
...
@@ -33,8 +33,13 @@ class CrossEntropyOpKernel : public framework::OpKernel<T> {
...
@@ -33,8 +33,13 @@ class CrossEntropyOpKernel : public framework::OpKernel<T> {
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
rank
=
x
->
dims
().
size
();
Tensor
x_2d
=
framework
::
ReshapeToMatrix
(
*
x
,
rank
-
1
);
Tensor
labels_2d
=
framework
::
ReshapeToMatrix
(
*
labels
,
rank
-
1
);
Tensor
y_2d
=
framework
::
ReshapeToMatrix
(
*
y
,
rank
-
1
);
math
::
CrossEntropyFunctor
<
DeviceContext
,
T
>
()(
math
::
CrossEntropyFunctor
<
DeviceContext
,
T
>
()(
ctx
.
template
device_context
<
DeviceContext
>(),
y
,
x
,
labels
,
ctx
.
template
device_context
<
DeviceContext
>(),
&
y_2d
,
&
x_2d
,
&
labels_2d
,
ctx
.
Attr
<
bool
>
(
"soft_label"
));
ctx
.
Attr
<
bool
>
(
"soft_label"
));
}
}
};
};
...
@@ -98,9 +103,12 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel<T> {
...
@@ -98,9 +103,12 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel<T> {
auto
*
dy
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
dy
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
*
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dx_data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
dx_data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int64_t
class_num
=
x
->
dims
()[
1
];
// Following computation only depends on the last dimension size. So it's
// unnecessary to convert tensors to 2-D views.
int
rank
=
x
->
dims
().
size
();
int64_t
class_num
=
x
->
dims
()[
rank
-
1
];
if
(
ctx
.
Attr
<
bool
>
(
"soft_label"
))
{
if
(
ctx
.
Attr
<
bool
>
(
"soft_label"
))
{
XeSoftlabelGradFunctor
<
T
>
functor
(
dx_data
,
dy
->
data
<
T
>
(),
x
->
data
<
T
>
(),
XeSoftlabelGradFunctor
<
T
>
functor
(
dx_data
,
dy
->
data
<
T
>
(),
x
->
data
<
T
>
(),
label
->
data
<
T
>
(),
label
->
data
<
T
>
(),
...
...
paddle/fluid/operators/softmax_op.h
浏览文件 @
f276006f
...
@@ -31,16 +31,12 @@ class SoftmaxKernel : public framework::OpKernel<T> {
...
@@ -31,16 +31,12 @@ class SoftmaxKernel : public framework::OpKernel<T> {
// allocate memory on device.
// allocate memory on device.
Out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
Out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dims
=
X
->
dims
();
int
rank
=
X
->
dims
().
size
();
auto
flattened_dims
=
framework
::
flatten_to_2d
(
dims
,
dims
.
size
()
-
1
);
Tensor
X_2d
=
framework
::
ReshapeToMatrix
(
*
X
,
rank
-
1
);
framework
::
LoDTensor
flattened_x
;
Tensor
Out_2d
=
framework
::
ReshapeToMatrix
(
*
Out
,
rank
-
1
);
framework
::
LoDTensor
flattened_out
;
flattened_x
.
ShareDataWith
(
*
X
).
Resize
(
flattened_dims
);
flattened_out
.
ShareDataWith
(
*
Out
).
Resize
(
flattened_dims
);
math
::
SoftmaxFunctor
<
DeviceContext
,
T
>
()(
math
::
SoftmaxFunctor
<
DeviceContext
,
T
>
()(
context
.
template
device_context
<
DeviceContext
>(),
&
flattened_x
,
context
.
template
device_context
<
DeviceContext
>(),
&
X_2d
,
&
Out_2d
);
&
flattened_out
);
}
}
};
};
...
@@ -55,18 +51,14 @@ class SoftmaxGradKernel : public framework::OpKernel<T> {
...
@@ -55,18 +51,14 @@ class SoftmaxGradKernel : public framework::OpKernel<T> {
// allocate memory on device.
// allocate memory on device.
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dims
=
Out
->
dims
();
int
rank
=
Out
->
dims
().
size
();
auto
flattened_dims
=
framework
::
flatten_to_2d
(
dims
,
dims
.
size
()
-
1
);
Tensor
Out_2d
=
framework
::
ReshapeToMatrix
(
*
Out
,
rank
-
1
);
framework
::
LoDTensor
flattened_out
;
Tensor
dOut_2d
=
framework
::
ReshapeToMatrix
(
*
dOut
,
rank
-
1
);
framework
::
LoDTensor
flattened_d_out
;
Tensor
dX_2d
=
framework
::
ReshapeToMatrix
(
*
dX
,
rank
-
1
);
framework
::
LoDTensor
flattened_d_x
;
flattened_out
.
ShareDataWith
(
*
Out
).
Resize
(
flattened_dims
);
flattened_d_out
.
ShareDataWith
(
*
dOut
).
Resize
(
flattened_dims
);
flattened_d_x
.
ShareDataWith
(
*
dX
).
Resize
(
flattened_dims
);
math
::
SoftmaxGradFunctor
<
DeviceContext
,
T
>
()(
math
::
SoftmaxGradFunctor
<
DeviceContext
,
T
>
()(
context
.
template
device_context
<
DeviceContext
>(),
&
flattened_out
,
context
.
template
device_context
<
DeviceContext
>(),
&
Out_2d
,
&
dOut_2d
,
&
flattened_d_out
,
&
flattened_d_x
);
&
dX_2d
);
}
}
};
};
...
...
python/paddle/fluid/tests/unittests/test_cross_entropy_op.py
浏览文件 @
f276006f
...
@@ -105,5 +105,107 @@ class TestCrossEntropyOp3(OpTest):
...
@@ -105,5 +105,107 @@ class TestCrossEntropyOp3(OpTest):
[
"X"
],
"Y"
,
max_relative_error
=
0.05
,
numeric_grad_delta
=
0.001
)
[
"X"
],
"Y"
,
max_relative_error
=
0.05
,
numeric_grad_delta
=
0.001
)
class
TestCrossEntropyOp4
(
OpTest
):
"""Test high rank tensor cross-entropy with discrete one-hot labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
shape
=
[
10
,
2
,
4
]
ins_num
=
np
.
prod
(
np
.
array
(
shape
))
class_num
=
10
X_2d
=
randomize_probability
(
ins_num
,
class_num
,
dtype
=
'float64'
)
label_2d
=
np
.
random
.
randint
(
0
,
class_num
,
(
ins_num
,
1
),
dtype
=
"int64"
)
cross_entropy_2d
=
np
.
asmatrix
(
[[
-
np
.
log
(
X_2d
[
i
][
label_2d
[
i
][
0
]])]
for
i
in
range
(
X_2d
.
shape
[
0
])],
dtype
=
"float64"
)
X
=
X_2d
.
reshape
(
shape
+
[
class_num
])
label
=
label_2d
.
reshape
(
shape
+
[
1
])
cross_entropy
=
np
.
array
(
cross_entropy_2d
).
reshape
(
shape
+
[
1
])
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
"soft_label"
:
False
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Y"
,
numeric_grad_delta
=
0.001
)
class
TestCrossEntropyOp5
(
OpTest
):
"""Test high rank tensor cross-entropy with vectorized soft labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
shape
=
[
4
,
3
]
ins_num
=
np
.
prod
(
np
.
array
(
shape
))
class_num
=
37
X_2d
=
randomize_probability
(
ins_num
,
class_num
)
label_2d
=
np
.
random
.
uniform
(
0.1
,
1.0
,
[
ins_num
,
class_num
]).
astype
(
"float32"
)
label_2d
/=
label_2d
.
sum
(
axis
=
1
,
keepdims
=
True
)
cross_entropy_2d
=
(
-
label_2d
*
np
.
log
(
X_2d
)).
sum
(
axis
=
1
,
keepdims
=
True
).
astype
(
"float32"
)
X
=
X_2d
.
reshape
(
shape
+
[
class_num
])
label
=
label_2d
.
reshape
(
shape
+
[
class_num
])
cross_entropy
=
np
.
array
(
cross_entropy_2d
).
reshape
(
shape
+
[
1
])
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
"soft_label"
:
True
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
(
[
"X"
],
"Y"
,
max_relative_error
=
0.05
,
numeric_grad_delta
=
0.001
)
class
TestCrossEntropyOp6
(
OpTest
):
"""Test high rank tensor cross-entropy with vectorized one-hot representation of labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
shape
=
[
4
,
3
,
2
]
ins_num
=
np
.
prod
(
np
.
array
(
shape
))
class_num
=
17
X_2d
=
randomize_probability
(
ins_num
,
class_num
)
label_index_2d
=
np
.
random
.
randint
(
0
,
class_num
,
(
ins_num
),
dtype
=
"int32"
)
label_2d
=
np
.
zeros
(
X_2d
.
shape
)
label_2d
[
np
.
arange
(
ins_num
),
label_index_2d
]
=
1
cross_entropy_2d
=
np
.
asmatrix
(
[[
-
np
.
log
(
X_2d
[
i
][
label_index_2d
[
i
]])]
for
i
in
range
(
X_2d
.
shape
[
0
])],
dtype
=
"float32"
)
X
=
X_2d
.
reshape
(
shape
+
[
class_num
])
label
=
label_2d
.
reshape
(
shape
+
[
class_num
])
cross_entropy
=
np
.
array
(
cross_entropy_2d
).
reshape
(
shape
+
[
1
])
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
.
astype
(
np
.
float32
)}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
"soft_label"
:
True
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
(
[
"X"
],
"Y"
,
max_relative_error
=
0.05
,
numeric_grad_delta
=
0.001
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录