Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
f1be9cf1
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f1be9cf1
编写于
7月 12, 2022
作者:
Q
qipengh
提交者:
GitHub
7月 12, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU]add sync_batch_norm op (#44176)
上级
75aaa08a
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
974 addition
and
11 deletion
+974
-11
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+4
-0
paddle/fluid/operators/mlu/mlu_baseop.cc
paddle/fluid/operators/mlu/mlu_baseop.cc
+218
-11
paddle/fluid/operators/mlu/mlu_baseop.h
paddle/fluid/operators/mlu/mlu_baseop.h
+153
-0
paddle/fluid/operators/sync_batch_norm_op_mlu.cc
paddle/fluid/operators/sync_batch_norm_op_mlu.cc
+492
-0
python/paddle/fluid/tests/unittests/mlu/CMakeLists.txt
python/paddle/fluid/tests/unittests/mlu/CMakeLists.txt
+2
-0
python/paddle/fluid/tests/unittests/mlu/sync_batch_norm_op_mlu.py
...addle/fluid/tests/unittests/mlu/sync_batch_norm_op_mlu.py
+105
-0
未找到文件。
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
f1be9cf1
...
...
@@ -149,6 +149,10 @@ if (WITH_ASCEND_CL)
op_library
(
sync_batch_norm_op
)
endif
()
if
(
WITH_MLU
)
op_library
(
sync_batch_norm_op
)
endif
()
op_library
(
lstm_op DEPS
${
OP_HEADER_DEPS
}
lstm_compute
)
op_library
(
eye_op DEPS
${
OP_HEADER_DEPS
}
)
op_library
(
recurrent_op DEPS
${
OP_HEADER_DEPS
}
)
...
...
paddle/fluid/operators/mlu/mlu_baseop.cc
浏览文件 @
f1be9cf1
...
...
@@ -259,15 +259,16 @@ MLUCnnlTensorDesc::~MLUCnnlTensorDesc() {
MLUCnnlActivationDesc
::
MLUCnnlActivationDesc
(
const
cnnlActivationMode_t
act_mode
,
const
float
ceof
)
{
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlCreateActivationDescriptor
(
&
active_desc_
));
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlSetActivationDescriptor_v4
(
active_desc_
,
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlSetActivationDescriptor_v5
(
active_desc_
,
act_mode
,
CNNL_ACTIVATION_HIGH_PRECISION
,
CNNL_NOT_PROPAGATE_NAN
,
ceof
,
1.0
f
/*sliced_dim*/
,
1.67326319217681884765625
/*selu_alpha*/
,
1.05070102214813232421875
/*selu_lambda*/
));
1.05070102214813232421875
/*selu_lambda*/
,
false
/*is_elu_mode*/
));
}
MLUCnnlActivationDesc
::
MLUCnnlActivationDesc
(
...
...
@@ -278,14 +279,15 @@ MLUCnnlActivationDesc::MLUCnnlActivationDesc(
const
float
selu_lambda
)
{
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlCreateActivationDescriptor
(
&
active_desc_
));
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlSetActivationDescriptor_v
4
(
active_desc_
,
cnnlSetActivationDescriptor_v
5
(
active_desc_
,
act_mode
,
CNNL_ACTIVATION_HIGH_PRECISION
,
CNNL_NOT_PROPAGATE_NAN
,
ceof
,
sliced_dim
,
selu_alpha
,
selu_lambda
));
selu_lambda
,
false
/*is_elu_mode*/
));
}
const
cnnlActivationDescriptor_t
MLUCnnlActivationDesc
::
get
()
const
{
...
...
@@ -2350,6 +2352,36 @@ MLURNNDesc::~MLURNNDesc() {
workspace_size
));
}
/* static */
void
MLUCnnl
::
Pow
(
const
ExecutionContext
&
ctx
,
cnnlComputationPreference_t
prefer
,
const
cnnlTensorDescriptor_t
input1_desc
,
const
void
*
input1
,
const
cnnlTensorDescriptor_t
input2_desc
,
const
void
*
input2
,
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output
)
{
cnnlHandle_t
handle
=
GetHandleFromCTX
(
ctx
);
size_t
workspace_size
;
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlGetPowWorkspaceSize
(
handle
,
input1_desc
,
input2_desc
,
output_desc
,
&
workspace_size
));
auto
&
dev_ctx
=
GetDevCtxFromCTX
(
ctx
);
Tensor
workspace
=
ctx
.
AllocateTmpTensor
<
int8_t
,
MLUDeviceContext
>
(
{
static_cast
<
int64_t
>
(
workspace_size
)},
dev_ctx
);
void
*
workspace_ptr
=
workspace
.
mutable_data
(
ctx
.
GetPlace
());
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlPow
(
handle
,
prefer
,
input1_desc
,
input1
,
input2_desc
,
input2
,
workspace_ptr
,
workspace_size
,
output_desc
,
output
));
}
/* static */
void
MLUCnnl
::
PowR
(
const
ExecutionContext
&
ctx
,
cnnlComputationPreference_t
prefer
,
const
cnnlTensorDescriptor_t
input1_desc
,
...
...
@@ -4895,5 +4927,180 @@ MLURNNDesc::~MLURNNDesc() {
grads_image
));
}
/* static */
void
MLUCnnl
::
SyncBatchNormStats
(
const
ExecutionContext
&
ctx
,
const
cnnlTensorDescriptor_t
x_desc
,
const
void
*
x
,
const
float
eps
,
const
cnnlTensorDescriptor_t
mean_desc
,
void
*
mean
,
const
cnnlTensorDescriptor_t
invstd_desc
,
void
*
invstd
)
{
cnnlHandle_t
handle
=
GetHandleFromCTX
(
ctx
);
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlSyncBatchNormStats
(
handle
,
x_desc
,
x
,
eps
,
mean_desc
,
mean
,
invstd_desc
,
invstd
));
}
/* static */
void
MLUCnnl
::
SyncBatchNormGatherStatsWithCounts
(
const
ExecutionContext
&
ctx
,
float
momentum
,
float
eps
,
const
cnnlTensorDescriptor_t
mean_all_desc
,
const
void
*
mean_all
,
const
cnnlTensorDescriptor_t
invstd_all_desc
,
const
void
*
invstd_all
,
const
cnnlTensorDescriptor_t
moving_mean_desc
,
void
*
moving_mean
,
const
cnnlTensorDescriptor_t
moving_var_desc
,
void
*
moving_var
,
const
cnnlTensorDescriptor_t
count_all_desc
,
const
void
*
count_all
,
const
cnnlTensorDescriptor_t
mean_desc
,
void
*
mean
,
const
cnnlTensorDescriptor_t
invstd_desc
,
void
*
invstd
)
{
cnnlHandle_t
handle
=
GetHandleFromCTX
(
ctx
);
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlSyncBatchNormGatherStatsWithCounts
(
handle
,
mean_all_desc
,
mean_all
,
invstd_all_desc
,
invstd_all
,
moving_mean_desc
,
moving_mean
,
moving_var_desc
,
moving_var
,
momentum
,
eps
,
count_all_desc
,
count_all
,
mean_desc
,
mean
,
invstd_desc
,
invstd
));
}
/* static */
void
MLUCnnl
::
SyncBatchNormElemt
(
const
ExecutionContext
&
ctx
,
const
cnnlTensorDescriptor_t
x_desc
,
const
void
*
x
,
const
cnnlTensorDescriptor_t
mean_desc
,
const
void
*
mean
,
const
cnnlTensorDescriptor_t
invstd_desc
,
const
void
*
invstd
,
const
cnnlTensorDescriptor_t
weight_desc
,
const
void
*
weight
,
const
cnnlTensorDescriptor_t
bias_desc
,
const
void
*
bias
,
const
cnnlTensorDescriptor_t
y_desc
,
void
*
y
)
{
cnnlHandle_t
handle
=
GetHandleFromCTX
(
ctx
);
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlSyncBatchNormElemt
(
handle
,
x_desc
,
x
,
mean_desc
,
mean
,
invstd_desc
,
invstd
,
weight_desc
,
weight
,
bias_desc
,
bias
,
y_desc
,
y
));
}
/* static */
void
MLUCnnl
::
SyncBatchnormBackwardReduce
(
const
ExecutionContext
&
ctx
,
const
cnnlTensorDescriptor_t
desc_dz
,
const
void
*
dz
,
const
cnnlTensorDescriptor_t
desc_x
,
const
void
*
x
,
const
cnnlTensorDescriptor_t
desc_mean
,
const
void
*
mean
,
const
cnnlTensorDescriptor_t
desc_invstd
,
const
void
*
invstd
,
const
cnnlTensorDescriptor_t
desc_dweight
,
void
*
dweight
,
const
cnnlTensorDescriptor_t
desc_dbias
,
void
*
dbias
,
const
cnnlTensorDescriptor_t
desc_sum_dy
,
void
*
sum_dy
,
const
cnnlTensorDescriptor_t
desc_sum_dy_xmu
,
void
*
sum_dy_xmu
,
const
bool
needs_input_grad0
,
const
bool
needs_input_grad1
,
const
bool
needs_input_grad2
)
{
cnnlHandle_t
handle
=
GetHandleFromCTX
(
ctx
);
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlSyncBatchnormBackwardReduce
(
handle
,
desc_dz
,
dz
,
desc_x
,
x
,
desc_mean
,
mean
,
desc_invstd
,
invstd
,
desc_dweight
,
dweight
,
desc_dbias
,
dbias
,
desc_sum_dy
,
sum_dy
,
desc_sum_dy_xmu
,
sum_dy_xmu
,
needs_input_grad0
,
needs_input_grad1
,
needs_input_grad2
));
}
/* static */
void
MLUCnnl
::
SyncBatchNormBackwardElemt
(
const
ExecutionContext
&
ctx
,
const
cnnlTensorDescriptor_t
diff_y_desc
,
const
void
*
diff_y
,
const
cnnlTensorDescriptor_t
x_desc
,
const
void
*
x
,
const
cnnlTensorDescriptor_t
mean_desc
,
const
void
*
mean
,
const
cnnlTensorDescriptor_t
invstd_desc
,
const
void
*
invstd
,
const
cnnlTensorDescriptor_t
weight_desc
,
const
void
*
weight
,
const
cnnlTensorDescriptor_t
sum_dy_desc
,
const
void
*
sum_dy
,
const
cnnlTensorDescriptor_t
sum_dy_xmu_desc
,
const
void
*
sum_dy_xmu
,
const
cnnlTensorDescriptor_t
count_desc
,
const
void
*
count
,
const
cnnlTensorDescriptor_t
diff_x_desc
,
void
*
diff_x
)
{
cnnlHandle_t
handle
=
GetHandleFromCTX
(
ctx
);
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlSyncBatchNormBackwardElemtV2
(
handle
,
diff_y_desc
,
diff_y
,
x_desc
,
x
,
mean_desc
,
mean
,
invstd_desc
,
invstd
,
weight_desc
,
weight
,
sum_dy_desc
,
sum_dy
,
sum_dy_xmu_desc
,
sum_dy_xmu
,
count_desc
,
count
,
diff_x_desc
,
diff_x
));
}
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/mlu/mlu_baseop.h
浏览文件 @
f1be9cf1
...
...
@@ -1276,6 +1276,15 @@ class MLUCnnl {
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output
);
static
void
Pow
(
const
ExecutionContext
&
ctx
,
cnnlComputationPreference_t
prefer
,
const
cnnlTensorDescriptor_t
input1_desc
,
const
void
*
input1
,
const
cnnlTensorDescriptor_t
input2_desc
,
const
void
*
input2
,
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output
);
static
void
PowR
(
const
ExecutionContext
&
ctx
,
cnnlComputationPreference_t
prefer
,
const
cnnlTensorDescriptor_t
input1_desc
,
...
...
@@ -2030,8 +2039,152 @@ class MLUCnnl {
const
void
*
boxes
,
const
cnnlTensorDescriptor_t
grads_image_desc
,
void
*
grads_image
);
static
void
SyncBatchNormStats
(
const
ExecutionContext
&
ctx
,
const
cnnlTensorDescriptor_t
x_desc
,
const
void
*
x
,
const
float
eps
,
const
cnnlTensorDescriptor_t
mean_desc
,
void
*
mean
,
const
cnnlTensorDescriptor_t
invstd_desc
,
void
*
invstd
);
static
void
SyncBatchNormGatherStatsWithCounts
(
const
ExecutionContext
&
ctx
,
float
momentum
,
float
eps
,
const
cnnlTensorDescriptor_t
mean_all_desc
,
const
void
*
mean_all
,
const
cnnlTensorDescriptor_t
invstd_all_desc
,
const
void
*
invstd_all
,
const
cnnlTensorDescriptor_t
moving_mean_desc
,
void
*
moving_mean
,
const
cnnlTensorDescriptor_t
moving_var_desc
,
void
*
moving_var
,
const
cnnlTensorDescriptor_t
count_all_desc
,
const
void
*
count_all
,
const
cnnlTensorDescriptor_t
mean_desc
,
void
*
mean
,
const
cnnlTensorDescriptor_t
invstd_desc
,
void
*
invstd
);
static
void
SyncBatchNormElemt
(
const
ExecutionContext
&
ctx
,
const
cnnlTensorDescriptor_t
x_desc
,
const
void
*
x
,
const
cnnlTensorDescriptor_t
mean_desc
,
const
void
*
mean
,
const
cnnlTensorDescriptor_t
invstd_desc
,
const
void
*
invstd
,
const
cnnlTensorDescriptor_t
weight_desc
,
const
void
*
weight
,
const
cnnlTensorDescriptor_t
bias_desc
,
const
void
*
bias
,
const
cnnlTensorDescriptor_t
y_desc
,
void
*
y
);
static
void
SyncBatchnormBackwardReduce
(
const
ExecutionContext
&
ctx
,
const
cnnlTensorDescriptor_t
desc_dz
,
const
void
*
dz
,
const
cnnlTensorDescriptor_t
desc_x
,
const
void
*
x
,
const
cnnlTensorDescriptor_t
desc_mean
,
const
void
*
mean
,
const
cnnlTensorDescriptor_t
desc_invstd
,
const
void
*
invstd
,
const
cnnlTensorDescriptor_t
desc_dweight
,
void
*
dweight
,
const
cnnlTensorDescriptor_t
desc_dbias
,
void
*
dbias
,
const
cnnlTensorDescriptor_t
desc_sum_dy
,
void
*
sum_dy
,
const
cnnlTensorDescriptor_t
desc_sum_dy_xmu
,
void
*
sum_dy_xmu
,
const
bool
needs_input_grad0
,
const
bool
needs_input_grad1
,
const
bool
needs_input_grad2
);
static
void
SyncBatchNormBackwardElemt
(
const
ExecutionContext
&
ctx
,
const
cnnlTensorDescriptor_t
diff_y_desc
,
const
void
*
diff_y
,
const
cnnlTensorDescriptor_t
x_desc
,
const
void
*
x
,
const
cnnlTensorDescriptor_t
mean_desc
,
const
void
*
mean
,
const
cnnlTensorDescriptor_t
invstd_desc
,
const
void
*
invstd
,
const
cnnlTensorDescriptor_t
weight_desc
,
const
void
*
weight
,
const
cnnlTensorDescriptor_t
sum_dy_desc
,
const
void
*
sum_dy
,
const
cnnlTensorDescriptor_t
sum_dy_xmu_desc
,
const
void
*
sum_dy_xmu
,
const
cnnlTensorDescriptor_t
count_desc
,
const
void
*
count
,
const
cnnlTensorDescriptor_t
diff_x_desc
,
void
*
diff_x
);
};
const
std
::
map
<
const
std
::
string
,
std
::
pair
<
std
::
vector
<
int
>
,
std
::
vector
<
int
>>>
TransPermMap
=
{
// trans_mode, (forward_perm, backward_perm)
{
"3D_NCHW2NHWC"
,
{{
0
,
2
,
1
},
{
0
,
2
,
1
}}},
{
"4D_NCHW2NHWC"
,
{{
0
,
2
,
3
,
1
},
{
0
,
3
,
1
,
2
}}},
{
"5D_NCHWD2NDHWC"
,
{{
0
,
4
,
2
,
3
,
1
},
{
0
,
4
,
2
,
3
,
1
}}},
{
"5D_NHWDC2NDHWC"
,
{{
0
,
3
,
1
,
2
,
4
},
{
0
,
2
,
3
,
4
,
1
}}}};
inline
void
SetMLUTransposePerm
(
const
framework
::
DDim
&
dims
,
const
DataLayout
&
data_layout
,
std
::
vector
<
int
>*
forward_perm
,
std
::
vector
<
int
>*
backward_perm
,
std
::
vector
<
int
>*
out_shape
)
{
const
int
dim_size
=
dims
.
size
();
PADDLE_ENFORCE_EQ
((
dim_size
>=
3
)
&&
(
dim_size
<=
5
),
true
,
platform
::
errors
::
InvalidArgument
(
"MLUTransposePerm func only support (dim_size >= 3) && "
"(dim_size <= 5), but now dim_size is %d."
,
dim_size
));
PADDLE_ENFORCE_EQ
(
(
data_layout
==
DataLayout
::
kNCHW
)
||
(
data_layout
==
DataLayout
::
kNHWC
),
true
,
platform
::
errors
::
InvalidArgument
(
"MLUTransposePerm func only support DataLayout: kNCHW or kNHWC, but "
"now data_layout is %s."
,
data_layout
));
// case 1: NCHW of Paddle != NHWC of MLU when dims==3,4
// case 2: NHWDC and NCHWD of Paddle != NDHWC of MLU when dims==5
std
::
string
map_key
=
""
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
switch
(
dim_size
)
{
case
3
:
map_key
=
"3D_NCHW2NHWC"
;
break
;
case
4
:
map_key
=
"4D_NCHW2NHWC"
;
break
;
case
5
:
map_key
=
"5D_NCHWD2NDHWC"
;
break
;
}
}
else
if
(
data_layout
==
DataLayout
::
kNHWC
&&
dim_size
==
5
)
{
map_key
=
"5D_NHWDC2NDHWC"
;
}
assert
(
map_key
!=
""
);
forward_perm
->
assign
(
TransPermMap
.
at
(
map_key
).
first
.
begin
(),
TransPermMap
.
at
(
map_key
).
first
.
end
());
backward_perm
->
assign
(
TransPermMap
.
at
(
map_key
).
second
.
begin
(),
TransPermMap
.
at
(
map_key
).
second
.
end
());
auto
in_dims
=
phi
::
vectorize
(
dims
);
for
(
size_t
i
=
0
;
i
<
in_dims
.
size
();
i
++
)
{
out_shape
->
push_back
(
in_dims
[
forward_perm
->
at
(
i
)]);
}
}
template
<
typename
T
>
inline
void
TransposeFromMLUTensor
(
const
ExecutionContext
&
ctx
,
const
std
::
vector
<
int
>
perm
,
...
...
paddle/fluid/operators/sync_batch_norm_op_mlu.cc
0 → 100644
浏览文件 @
f1be9cf1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/operators/batch_norm_op.h"
#include "paddle/fluid/platform/collective_helper.h"
#if defined(PADDLE_WITH_CNCL)
#include "paddle/fluid/platform/device/mlu/cncl_helper.h"
#endif
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
operators
{
#define GET_LAYOUT_OFFSET 2
using
Tensor
=
framework
::
Tensor
;
static
std
::
vector
<
cnnlTensorLayout_t
>
supported_input_layout
=
{
CNNL_LAYOUT_NC
,
CNNL_LAYOUT_NLC
,
CNNL_LAYOUT_NHWC
,
CNNL_LAYOUT_NDHWC
};
template
<
typename
T
>
class
SyncBatchNormMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
MPDType
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
float
momentum
=
ctx
.
Attr
<
float
>
(
"momentum"
);
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
const
bool
use_global_stats
=
ctx
.
Attr
<
bool
>
(
"use_global_stats"
);
const
bool
trainable_stats
=
ctx
.
Attr
<
bool
>
(
"trainable_statistics"
);
const
std
::
string
layout_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_layout"
);
const
DataLayout
layout
=
framework
::
StringToDataLayout
(
layout_str
);
PADDLE_ENFORCE_EQ
(
use_global_stats
,
false
,
platform
::
errors
::
InvalidArgument
(
"sync_batch_norm doesn't support "
"to set use_global_stats True. Please use batch_norm "
"in this case."
));
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
const
auto
*
mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
const
auto
*
variance
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
auto
*
mean_out
=
ctx
.
Output
<
Tensor
>
(
"MeanOut"
);
auto
*
variance_out
=
ctx
.
Output
<
Tensor
>
(
"VarianceOut"
);
auto
*
saved_mean
=
ctx
.
Output
<
Tensor
>
(
"SavedMean"
);
auto
*
saved_variance
=
ctx
.
Output
<
Tensor
>
(
"SavedVariance"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
const
auto
&
x_dims
=
x
->
dims
();
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"The Input dim size should be larger than 1."
));
PADDLE_ENFORCE_LE
(
x_dims
.
size
(),
5
,
platform
::
errors
::
InvalidArgument
(
"The Input dim size should be less than 6."
));
int
N
,
C
,
H
,
W
,
D
;
ExtractNCWHD
(
x_dims
,
layout
,
&
N
,
&
C
,
&
H
,
&
W
,
&
D
);
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
mean_out
->
mutable_data
<
MPDType
>
(
ctx
.
GetPlace
());
variance_out
->
mutable_data
<
MPDType
>
(
ctx
.
GetPlace
());
saved_mean
->
mutable_data
<
MPDType
>
(
ctx
.
GetPlace
());
saved_variance
->
mutable_data
<
MPDType
>
(
ctx
.
GetPlace
());
Tensor
trans_x
;
Tensor
trans_y
;
std
::
vector
<
int
>
forward_perm
;
std
::
vector
<
int
>
backward_perm
;
std
::
vector
<
int
>
trans_shape
;
const
bool
need_transpose
=
((
layout
==
DataLayout
::
kNCHW
&&
x_dims
.
size
()
!=
2
)
||
x_dims
.
size
()
==
5
);
if
(
need_transpose
)
{
SetMLUTransposePerm
(
x_dims
,
layout
,
&
forward_perm
,
&
backward_perm
,
&
trans_shape
);
trans_x
.
mutable_data
<
T
>
(
phi
::
make_ddim
(
trans_shape
),
ctx
.
GetPlace
());
trans_y
.
mutable_data
<
T
>
(
phi
::
make_ddim
(
trans_shape
),
ctx
.
GetPlace
());
MLUCnnlTensorDesc
desc_x
(
*
x
);
MLUCnnlTensorDesc
desc_trans_x
(
trans_shape
.
size
(),
trans_shape
.
data
(),
ToCnnlDataType
(
x
->
dtype
()));
MLUCnnl
::
Transpose
(
ctx
,
forward_perm
,
x_dims
.
size
(),
desc_x
.
get
(),
GetBasePtr
(
x
),
desc_trans_x
.
get
(),
GetBasePtr
(
&
trans_x
));
}
else
{
trans_x
=
*
x
;
trans_y
=
*
y
;
}
MLUCnnlTensorDesc
desc_trans
(
trans_x
,
supported_input_layout
[
x_dims
.
size
()
-
GET_LAYOUT_OFFSET
],
ToCnnlDataType
<
T
>
());
bool
test_mode
=
is_test
&&
(
!
trainable_stats
);
if
(
test_mode
)
{
// inference
MLUCnnlTensorDesc
desc_weight_bias_mean_var
(
*
bias
);
MLUCnnl
::
FusedBatchNorm
(
ctx
,
false
/*is_training*/
,
desc_trans
.
get
(),
GetBasePtr
(
&
trans_x
),
desc_weight_bias_mean_var
.
get
(),
GetBasePtr
(
scale
),
GetBasePtr
(
bias
),
GetBasePtr
(
mean
),
GetBasePtr
(
variance
),
epsilon
,
momentum
,
desc_trans
.
get
(),
GetBasePtr
(
&
trans_y
),
nullptr
,
nullptr
,
nullptr
,
nullptr
);
}
else
{
// training
if
(
ctx
.
HasInput
(
"MomentumTensor"
))
{
const
auto
*
mom_tensor
=
ctx
.
Input
<
Tensor
>
(
"MomentumTensor"
);
Tensor
mom_cpu
;
paddle
::
framework
::
TensorCopySync
(
*
mom_tensor
,
platform
::
CPUPlace
(),
&
mom_cpu
);
momentum
=
mom_cpu
.
data
<
float
>
()[
0
];
}
Tensor
local_mean
,
local_var
;
local_mean
.
mutable_data
<
MPDType
>
(
mean
->
dims
(),
ctx
.
GetPlace
());
local_var
.
mutable_data
<
MPDType
>
(
variance
->
dims
(),
ctx
.
GetPlace
());
MLUCnnlTensorDesc
desc_mean_var
(
*
mean_out
);
// cacl local_mean and local_var
MLUCnnl
::
SyncBatchNormStats
(
ctx
,
desc_trans
.
get
(),
GetBasePtr
(
&
trans_x
),
epsilon
,
desc_mean_var
.
get
(),
GetBasePtr
(
&
local_mean
),
desc_mean_var
.
get
(),
GetBasePtr
(
&
local_var
));
Tensor
input_count
;
input_count
.
mutable_data
<
T
>
(
phi
::
make_ddim
({
1
}),
ctx
.
GetPlace
());
FillMLUTensorWithHostValue
<
T
>
(
ctx
,
static_cast
<
T
>
(
x
->
numel
()
/
C
),
&
input_count
);
Tensor
count_all
;
Tensor
mean_all
(
mean
->
dtype
());
Tensor
invstd_all
(
variance
->
dtype
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
MLUDeviceContext
>();
auto
stream
=
dev_ctx
.
stream
();
auto
*
comm
=
dev_ctx
.
cncl_comm
();
if
(
comm
)
{
auto
*
comm
=
paddle
::
platform
::
CNCLCommContext
::
Instance
()
.
Get
(
0
,
ctx
.
GetPlace
())
->
comm
();
int
count
;
PADDLE_ENFORCE_MLU_SUCCESS
(
cnclGetCommCount
(
&
count
,
comm
));
count_all
.
mutable_data
<
T
>
(
phi
::
make_ddim
({
count
}),
ctx
.
GetPlace
());
cnclDataType_t
dtype
=
platform
::
ToCNCLDataType
(
framework
::
TransToProtoVarType
(
count_all
.
dtype
()));
PADDLE_ENFORCE_MLU_SUCCESS
(
cnclAllGather
(
GetBasePtr
(
&
input_count
),
GetBasePtr
(
&
count_all
),
1
,
dtype
,
comm
,
stream
));
mean_all
.
mutable_data
<
MPDType
>
(
phi
::
make_ddim
({
count
,
mean
->
numel
()}),
ctx
.
GetPlace
());
invstd_all
.
mutable_data
<
MPDType
>
(
phi
::
make_ddim
({
count
,
variance
->
numel
()}),
ctx
.
GetPlace
());
auto
cncl_dtype
=
platform
::
ToCNCLDataType
(
framework
::
TransToProtoVarType
(
mean_all
.
dtype
()));
PADDLE_ENFORCE_MLU_SUCCESS
(
cnclAllGather
(
GetBasePtr
(
&
local_mean
),
GetBasePtr
(
&
mean_all
),
local_mean
.
numel
(),
cncl_dtype
,
comm
,
stream
));
PADDLE_ENFORCE_MLU_SUCCESS
(
cnclAllGather
(
GetBasePtr
(
&
local_var
),
GetBasePtr
(
&
invstd_all
),
local_var
.
numel
(),
cncl_dtype
,
comm
,
stream
));
}
else
{
count_all
=
input_count
;
mean_all
.
ShareDataWith
(
local_mean
);
invstd_all
.
ShareDataWith
(
local_var
);
mean_all
.
Resize
(
phi
::
make_ddim
({
1
,
local_mean
.
numel
()}));
invstd_all
.
Resize
(
phi
::
make_ddim
({
1
,
local_var
.
numel
()}));
}
MLUCnnlTensorDesc
desc_all_mean_invstd
(
invstd_all
,
CNNL_LAYOUT_NC
,
ToCnnlDataType
<
MPDType
>
());
MLUCnnlTensorDesc
desc_moving_mean_var
(
*
mean_out
);
MLUCnnlTensorDesc
desc_saved_mean_var
(
*
saved_mean
);
MLUCnnlTensorDesc
desc_count_all
(
count_all
);
MLUCnnl
::
SyncBatchNormGatherStatsWithCounts
(
ctx
,
momentum
,
epsilon
,
desc_all_mean_invstd
.
get
(),
GetBasePtr
(
&
mean_all
),
desc_all_mean_invstd
.
get
(),
GetBasePtr
(
&
invstd_all
),
desc_moving_mean_var
.
get
(),
GetBasePtr
(
mean_out
),
desc_moving_mean_var
.
get
(),
GetBasePtr
(
variance_out
),
desc_count_all
.
get
(),
GetBasePtr
(
&
count_all
),
desc_saved_mean_var
.
get
(),
GetBasePtr
(
saved_mean
),
desc_saved_mean_var
.
get
(),
GetBasePtr
(
saved_variance
));
MLUCnnlTensorDesc
desc_other_param
(
*
saved_mean
);
MLUCnnl
::
SyncBatchNormElemt
(
ctx
,
desc_trans
.
get
(),
GetBasePtr
(
&
trans_x
),
desc_other_param
.
get
(),
GetBasePtr
(
saved_mean
),
desc_other_param
.
get
(),
GetBasePtr
(
saved_variance
),
desc_other_param
.
get
(),
GetBasePtr
(
scale
),
desc_other_param
.
get
(),
GetBasePtr
(
bias
),
desc_trans
.
get
(),
GetBasePtr
(
&
trans_y
));
}
if
(
need_transpose
)
{
MLUCnnlTensorDesc
desc_y
(
*
y
);
MLUCnnlTensorDesc
desc_trans_y
(
trans_y
);
MLUCnnl
::
Transpose
(
ctx
,
backward_perm
,
trans_y
.
dims
().
size
(),
desc_trans_y
.
get
(),
GetBasePtr
(
&
trans_y
),
desc_y
.
get
(),
GetBasePtr
(
y
));
}
}
};
template
<
typename
T
>
class
SyncBatchNormMLUGradKernel
:
public
framework
::
OpKernel
<
T
>
{
using
MPDType
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
std
::
string
layout_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_layout"
);
const
DataLayout
layout
=
framework
::
StringToDataLayout
(
layout_str
);
const
auto
*
d_y
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
// init output
auto
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_scale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
const
auto
*
saved_mean
=
ctx
.
Input
<
Tensor
>
(
"SavedMean"
);
const
auto
*
saved_inv_var
=
ctx
.
Input
<
Tensor
>
(
"SavedVariance"
);
const
Tensor
*
x
;
if
(
ctx
.
HasInput
(
"Y"
))
{
PADDLE_ENFORCE_EQ
(
true
,
false
,
platform
::
errors
::
InvalidArgument
(
"sync_batch_norm_grad doesn't support input Y"
));
}
else
{
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
}
const
auto
&
x_dims
=
x
->
dims
();
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"The Input X dim size should be larger than 1."
));
PADDLE_ENFORCE_LE
(
x_dims
.
size
(),
5
,
platform
::
errors
::
InvalidArgument
(
"The Input X dim size should be less than 6."
));
int
N
,
C
,
H
,
W
,
D
;
ExtractNCWHD
(
x_dims
,
layout
,
&
N
,
&
C
,
&
H
,
&
W
,
&
D
);
PADDLE_ENFORCE_EQ
(
scale
->
dims
()[
0
],
C
,
platform
::
errors
::
InvalidArgument
(
"Expected first dim for input parameter(scale) of "
"OP(sync_batch_norm) be (%d), but given (%d)."
,
C
,
scale
->
dims
()[
0
]));
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
if
(
d_scale
&&
d_bias
)
{
d_scale
->
mutable_data
<
MPDType
>
(
ctx
.
GetPlace
());
d_bias
->
mutable_data
<
MPDType
>
(
ctx
.
GetPlace
());
}
PADDLE_ENFORCE_EQ
(
scale
->
dims
().
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Expected rank for input parameter(scale) of "
"OP(sync_batch_norm) be (1), but given (%d)."
,
scale
->
dims
().
size
()));
Tensor
trans_x
;
Tensor
trans_dy
;
Tensor
trans_dx
;
std
::
vector
<
int
>
forward_perm
;
std
::
vector
<
int
>
backward_perm
;
std
::
vector
<
int
>
trans_shape
;
const
bool
need_transpose
=
((
layout
==
DataLayout
::
kNCHW
&&
x_dims
.
size
()
!=
2
)
||
x_dims
.
size
()
==
5
);
if
(
need_transpose
)
{
SetMLUTransposePerm
(
x_dims
,
layout
,
&
forward_perm
,
&
backward_perm
,
&
trans_shape
);
trans_x
.
mutable_data
<
T
>
(
phi
::
make_ddim
(
trans_shape
),
ctx
.
GetPlace
());
trans_dy
.
mutable_data
<
T
>
(
phi
::
make_ddim
(
trans_shape
),
ctx
.
GetPlace
());
trans_dx
.
mutable_data
<
T
>
(
phi
::
make_ddim
(
trans_shape
),
ctx
.
GetPlace
());
MLUCnnlTensorDesc
desc_x
(
*
x
);
MLUCnnlTensorDesc
desc_trans_x
(
trans_shape
.
size
(),
trans_shape
.
data
(),
ToCnnlDataType
(
x
->
dtype
()));
MLUCnnl
::
Transpose
(
ctx
,
forward_perm
,
x_dims
.
size
(),
desc_x
.
get
(),
GetBasePtr
(
x
),
desc_trans_x
.
get
(),
GetBasePtr
(
&
trans_x
));
MLUCnnl
::
Transpose
(
ctx
,
forward_perm
,
x_dims
.
size
(),
desc_x
.
get
(),
GetBasePtr
(
d_y
),
desc_trans_x
.
get
(),
GetBasePtr
(
&
trans_dy
));
}
else
{
trans_x
=
*
x
;
trans_dy
=
*
d_y
;
trans_dx
=
*
d_x
;
}
MLUCnnlTensorDesc
desc_trans
(
trans_x
,
supported_input_layout
[
x_dims
.
size
()
-
GET_LAYOUT_OFFSET
],
ToCnnlDataType
<
T
>
());
Tensor
sum_dy
,
sum_dy_xmu
;
sum_dy
.
mutable_data
<
MPDType
>
(
bias
->
dims
(),
ctx
.
GetPlace
());
sum_dy_xmu
.
mutable_data
<
MPDType
>
(
bias
->
dims
(),
ctx
.
GetPlace
());
MLUCnnlTensorDesc
desc_other_param
(
*
bias
);
MLUCnnl
::
SyncBatchnormBackwardReduce
(
ctx
,
desc_trans
.
get
(),
GetBasePtr
(
&
trans_dy
),
desc_trans
.
get
(),
GetBasePtr
(
&
trans_x
),
desc_other_param
.
get
(),
GetBasePtr
(
saved_mean
),
desc_other_param
.
get
(),
GetBasePtr
(
saved_inv_var
),
d_scale
?
desc_other_param
.
get
()
:
nullptr
,
d_scale
?
GetBasePtr
(
d_scale
)
:
nullptr
,
d_bias
?
desc_other_param
.
get
()
:
nullptr
,
d_bias
?
GetBasePtr
(
d_bias
)
:
nullptr
,
desc_other_param
.
get
(),
GetBasePtr
(
&
sum_dy
),
desc_other_param
.
get
(),
GetBasePtr
(
&
sum_dy_xmu
),
true
/*compute sum_dy, sum_dy_xmu*/
,
d_scale
?
true
:
false
/*compute d_scale*/
,
d_bias
?
true
:
false
/*compute d_bias*/
);
Tensor
numel_count
;
numel_count
.
mutable_data
<
int32_t
>
(
phi
::
make_ddim
({
1
}),
ctx
.
GetPlace
());
FillMLUTensorWithHostValue
<
int32_t
>
(
ctx
,
static_cast
<
int32_t
>
(
x
->
numel
()
/
C
),
&
numel_count
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
MLUDeviceContext
>();
auto
stream
=
dev_ctx
.
stream
();
auto
*
comm
=
dev_ctx
.
cncl_comm
();
if
(
comm
)
{
auto
*
comm
=
paddle
::
platform
::
CNCLCommContext
::
Instance
()
.
Get
(
0
,
ctx
.
GetPlace
())
->
comm
();
cnclDataType_t
dtype
=
platform
::
ToCNCLDataType
(
framework
::
TransToProtoVarType
(
numel_count
.
dtype
()));
PADDLE_ENFORCE_MLU_SUCCESS
(
cnclAllReduce
(
GetBasePtr
(
&
numel_count
),
GetBasePtr
(
&
numel_count
),
1
,
dtype
,
cnclSum
,
comm
,
stream
));
auto
cncl_dtype
=
platform
::
ToCNCLDataType
(
framework
::
TransToProtoVarType
(
sum_dy
.
dtype
()));
PADDLE_ENFORCE_MLU_SUCCESS
(
cnclAllReduce
(
GetBasePtr
(
&
sum_dy
),
GetBasePtr
(
&
sum_dy
),
sum_dy
.
numel
(),
cncl_dtype
,
cnclSum
,
comm
,
stream
));
PADDLE_ENFORCE_MLU_SUCCESS
(
cnclAllReduce
(
GetBasePtr
(
&
sum_dy_xmu
),
GetBasePtr
(
&
sum_dy_xmu
),
sum_dy_xmu
.
numel
(),
cncl_dtype
,
cnclSum
,
comm
,
stream
));
}
if
(
d_x
)
{
MLUCnnlTensorDesc
desc_count
(
numel_count
);
MLUCnnl
::
SyncBatchNormBackwardElemt
(
ctx
,
desc_trans
.
get
(),
GetBasePtr
(
&
trans_dy
),
desc_trans
.
get
(),
GetBasePtr
(
&
trans_x
),
desc_other_param
.
get
(),
GetBasePtr
(
saved_mean
),
desc_other_param
.
get
(),
GetBasePtr
(
saved_inv_var
),
desc_other_param
.
get
(),
GetBasePtr
(
scale
),
desc_other_param
.
get
(),
GetBasePtr
(
&
sum_dy
),
desc_other_param
.
get
(),
GetBasePtr
(
&
sum_dy_xmu
),
desc_count
.
get
(),
GetBasePtr
(
&
numel_count
),
desc_trans
.
get
(),
GetBasePtr
(
&
trans_dx
));
if
(
need_transpose
)
{
MLUCnnlTensorDesc
desc_dx
(
*
d_x
);
MLUCnnlTensorDesc
desc_trans_dx
(
trans_dx
);
MLUCnnl
::
Transpose
(
ctx
,
backward_perm
,
trans_dx
.
dims
().
size
(),
desc_trans_dx
.
get
(),
GetBasePtr
(
&
trans_dx
),
desc_dx
.
get
(),
GetBasePtr
(
d_x
));
}
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_MLU_KERNEL
(
sync_batch_norm
,
ops
::
SyncBatchNormMLUKernel
<
float
>
,
ops
::
SyncBatchNormMLUKernel
<
plat
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
sync_batch_norm_grad
,
ops
::
SyncBatchNormMLUGradKernel
<
float
>
,
ops
::
SyncBatchNormMLUGradKernel
<
plat
::
float16
>
);
python/paddle/fluid/tests/unittests/mlu/CMakeLists.txt
浏览文件 @
f1be9cf1
...
...
@@ -50,5 +50,7 @@ if(WITH_MLU)
set_tests_properties
(
test_collective_allgather_api_mlu PROPERTIES TIMEOUT
120
)
set_tests_properties
(
test_c_comm_init_op_mlu PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_sync_batch_norm_op_mlu_baseline PROPERTIES TIMEOUT
120
)
endif
()
endif
()
python/paddle/fluid/tests/unittests/mlu/sync_batch_norm_op_mlu.py
0 → 100644
浏览文件 @
f1be9cf1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
argparse
import
os
import
sys
sys
.
path
.
append
(
".."
)
import
signal
import
time
from
contextlib
import
closing
from
six
import
string_types
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
import
paddle.fluid.unique_name
as
nameGen
from
paddle.fluid
import
core
import
unittest
from
multiprocessing
import
Process
import
paddle.fluid.layers
as
layers
from
functools
import
reduce
from
test_sync_batch_norm_base_mlu
import
TestSyncBatchNormRunnerBase
,
runtime_main
from
paddle.fluid.tests.unittests.op_test
import
OpTest
,
_set_use_system_allocator
from
paddle.fluid.tests.unittests.test_sync_batch_norm_op
import
create_or_get_tensor
_set_use_system_allocator
(
False
)
paddle
.
enable_static
()
class
TestSyncBatchNormOpTraining
(
TestSyncBatchNormRunnerBase
):
def
__init__
(
self
):
self
.
global_ring_id
=
0
self
.
dtype
=
np
.
float32
self
.
N
=
8
self
.
C
=
16
self
.
H
=
32
self
.
W
=
32
self
.
dshape
=
[
self
.
N
,
self
.
C
,
self
.
H
,
self
.
W
]
self
.
atol
=
1e-3
def
get_model
(
self
,
main
,
startup
,
place
,
layout
,
seed
,
sync_bn
=
False
,
only_forward
=
False
):
"""Build program."""
use_cudnn
=
False
with
fluid
.
unique_name
.
guard
():
with
fluid
.
program_guard
(
main
,
startup
):
data
=
fluid
.
layers
.
data
(
name
=
'input'
,
shape
=
self
.
dshape
,
dtype
=
self
.
dtype
,
append_batch_size
=
False
)
conv
=
fluid
.
layers
.
conv2d
(
input
=
data
,
num_filters
=
32
,
filter_size
=
1
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'conv2d_weight'
),
bias_attr
=
False
,
use_cudnn
=
use_cudnn
)
bn
=
fluid
.
layers
.
batch_norm
(
conv
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'bn_scale'
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
'bn_bias'
),
moving_mean_name
=
'bn_moving_mean'
,
moving_variance_name
=
'bn_moving_variance'
,
data_layout
=
layout
,
is_test
=
only_forward
)
# if self.dtype == np.float16:
# bn = fluid.layers.cast(bn, 'float32')
sigmoid
=
fluid
.
layers
.
sigmoid
(
bn
)
out
=
fluid
.
layers
.
reduce_sum
(
sigmoid
)
# if not sync_bn:
# out = out / core.get_mlu_device_count()
if
not
only_forward
:
sgd_opt
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.0
)
sgd_opt
.
backward
(
out
)
return
[
out
,
conv
,
bn
]
if
__name__
==
"__main__"
:
# print('sync_batch_norm_op_mlu.py __main__')
runtime_main
(
TestSyncBatchNormOpTraining
,
"identity"
,
0
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录