From ee8b22fbec74b81521c89c162c47c390cfca1618 Mon Sep 17 00:00:00 2001 From: Aurelius84 Date: Fri, 28 Feb 2020 09:42:50 +0800 Subject: [PATCH] Add unittest with mnist model to test dygraph_to_static (#22777) * add mnist to test dygraph_to_static test=develop --- .../unittests/dygraph_to_static/test_mnist.py | 187 ++++++++++++++++++ 1 file changed, 187 insertions(+) create mode 100644 python/paddle/fluid/tests/unittests/dygraph_to_static/test_mnist.py diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_mnist.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_mnist.py new file mode 100644 index 00000000000..5dc9ce45bcf --- /dev/null +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_mnist.py @@ -0,0 +1,187 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function +from time import time +import numpy as np +import paddle +import paddle.fluid as fluid +from paddle.fluid.optimizer import AdamOptimizer +from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear + +from paddle.fluid.dygraph.jit import dygraph_to_static_output + +import unittest + + +class SimpleImgConvPool(fluid.dygraph.Layer): + def __init__(self, + num_channels, + num_filters, + filter_size, + pool_size, + pool_stride, + pool_padding=0, + pool_type='max', + global_pooling=False, + conv_stride=1, + conv_padding=0, + conv_dilation=1, + conv_groups=1, + act=None, + use_cudnn=False, + param_attr=None, + bias_attr=None): + super(SimpleImgConvPool, self).__init__() + + self._conv2d = Conv2D( + num_channels=num_channels, + num_filters=num_filters, + filter_size=filter_size, + stride=conv_stride, + padding=conv_padding, + dilation=conv_dilation, + groups=conv_groups, + param_attr=None, + bias_attr=None, + act=act, + use_cudnn=use_cudnn) + + self._pool2d = Pool2D( + pool_size=pool_size, + pool_type=pool_type, + pool_stride=pool_stride, + pool_padding=pool_padding, + global_pooling=global_pooling, + use_cudnn=use_cudnn) + + @dygraph_to_static_output + def forward(self, inputs): + x = self._conv2d(inputs) + x = self._pool2d(x) + return x + + +class MNIST(fluid.dygraph.Layer): + def __init__(self): + super(MNIST, self).__init__() + + self._simple_img_conv_pool_1 = SimpleImgConvPool( + 1, 20, 5, 2, 2, act="relu") + + self._simple_img_conv_pool_2 = SimpleImgConvPool( + 20, 50, 5, 2, 2, act="relu") + + self.pool_2_shape = 50 * 4 * 4 + SIZE = 10 + scale = (2.0 / (self.pool_2_shape**2 * SIZE))**0.5 + self._fc = Linear( + self.pool_2_shape, + 10, + param_attr=fluid.param_attr.ParamAttr( + initializer=fluid.initializer.NormalInitializer( + loc=0.0, scale=scale)), + act="softmax") + + @dygraph_to_static_output + def forward(self, inputs, label=None): + x = self.inference(inputs) + if label is not None: + acc = fluid.layers.accuracy(input=x, label=label) + loss = fluid.layers.cross_entropy(x, label) + avg_loss = fluid.layers.mean(loss) + return x, acc, avg_loss + else: + return x + + @dygraph_to_static_output + def inference(self, inputs): + x = self._simple_img_conv_pool_1(inputs) + x = self._simple_img_conv_pool_2(x) + x = fluid.layers.reshape(x, shape=[-1, self.pool_2_shape]) + x = self._fc(x) + return x + + +class TestMNIST(unittest.TestCase): + def setUp(self): + self.epoch_num = 1 + self.batch_size = 64 + self.place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda( + ) else fluid.CPUPlace() + self.train_reader = paddle.batch( + paddle.dataset.mnist.train(), + batch_size=self.batch_size, + drop_last=True) + + +class TestMNISTWithStaticMode(TestMNIST): + """ + Tests model when using `dygraph_to_static_output` to convert dygraph into static + model. It allows user to add customized code to train static model, such as `with` + and `Executor` statement. + """ + + def test_train(self): + + main_prog = fluid.Program() + with fluid.program_guard(main_prog): + mnist = MNIST() + adam = AdamOptimizer( + learning_rate=0.001, parameter_list=mnist.parameters()) + + exe = fluid.Executor(self.place) + start = time() + + img = fluid.data( + name='img', shape=[None, 1, 28, 28], dtype='float32') + label = fluid.data(name='label', shape=[None, 1], dtype='int64') + label.stop_gradient = True + + prediction, acc, avg_loss = mnist(img, label) + adam.minimize(avg_loss) + exe.run(fluid.default_startup_program()) + + for epoch in range(self.epoch_num): + for batch_id, data in enumerate(self.train_reader()): + dy_x_data = np.array([x[0].reshape(1, 28, 28) + for x in data]).astype('float32') + y_data = np.array( + [x[1] for x in data]).astype('int64').reshape(-1, 1) + + out = exe.run(main_prog, + fetch_list=[avg_loss, acc], + feed={'img': dy_x_data, + 'label': y_data}) + if batch_id % 100 == 0: + print( + "Loss at epoch {} step {}: loss: {:}, acc: {}, cost: {}" + .format(epoch, batch_id, + np.array(out[0]), + np.array(out[1]), time() - start)) + if batch_id == 300: + # The accuracy of mnist should converge over 0.9 after 300 batch. + accuracy = np.array(out[1]) + self.assertGreater( + accuracy, + 0.9, + msg="The accuracy {} of mnist should converge over 0.9 after 300 batch." + .format(accuracy)) + break + + +# TODO: TestCase with cached program is required when building program in `for` loop. + +if __name__ == "__main__": + unittest.main() -- GitLab