未验证 提交 eb3199fc 编写于 作者: W wuhuanzhou 提交者: GitHub

fix compilation error on rocm, test=develop (#31991)

上级 d5b5004b
......@@ -27,6 +27,14 @@ cache_third_party(extern_eigen3
if(WIN32)
add_definitions(-DEIGEN_STRONG_INLINE=inline)
elseif(LINUX)
if(WITH_ROCM)
# For HIPCC Eigen::internal::device::numeric_limits is not EIGEN_DEVICE_FUNC
# which will cause compiler error of using __host__ funciont in __host__ __device__
file(TO_NATIVE_PATH ${PADDLE_SOURCE_DIR}/patches/eigen/Meta.h native_src)
file(TO_NATIVE_PATH ${EIGEN_SOURCE_DIR}/Eigen/src/Core/util/Meta.h native_dst)
set(EIGEN_PATCH_COMMAND cp ${native_src} ${native_dst})
endif()
endif()
set(EIGEN_INCLUDE_DIR ${EIGEN_SOURCE_DIR})
......@@ -40,7 +48,7 @@ ExternalProject_Add(
PREFIX ${EIGEN_PREFIX_DIR}
SOURCE_DIR ${EIGEN_SOURCE_DIR}
UPDATE_COMMAND ""
PATCH_COMMAND ""
PATCH_COMMAND ${EIGEN_PATCH_COMMAND}
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
INSTALL_COMMAND ""
......
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_META_H
#define EIGEN_META_H
#if defined(EIGEN_GPU_COMPILE_PHASE)
#include <cfloat>
#if defined(EIGEN_CUDA_ARCH)
#include <math_constants.h>
#endif
#if defined(EIGEN_HIP_DEVICE_COMPILE)
#include "Eigen/src/Core/arch/HIP/hcc/math_constants.h"
#endif
#endif
// Recent versions of ICC require <cstdint> for pointer types below.
#define EIGEN_ICC_NEEDS_CSTDINT (EIGEN_COMP_ICC>=1600 && EIGEN_COMP_CXXVER >= 11)
// Define portable (u)int{32,64} types
#if EIGEN_HAS_CXX11 || EIGEN_ICC_NEEDS_CSTDINT
#include <cstdint>
namespace Eigen {
namespace numext {
typedef std::uint8_t uint8_t;
typedef std::int8_t int8_t;
typedef std::uint16_t uint16_t;
typedef std::int16_t int16_t;
typedef std::uint32_t uint32_t;
typedef std::int32_t int32_t;
typedef std::uint64_t uint64_t;
typedef std::int64_t int64_t;
}
}
#else
// Without c++11, all compilers able to compile Eigen also
// provide the C99 stdint.h header file.
#include <stdint.h>
namespace Eigen {
namespace numext {
typedef ::uint8_t uint8_t;
typedef ::int8_t int8_t;
typedef ::uint16_t uint16_t;
typedef ::int16_t int16_t;
typedef ::uint32_t uint32_t;
typedef ::int32_t int32_t;
typedef ::uint64_t uint64_t;
typedef ::int64_t int64_t;
}
}
#endif
namespace Eigen {
typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex;
/**
* \brief The Index type as used for the API.
* \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE.
* \sa \blank \ref TopicPreprocessorDirectives, StorageIndex.
*/
typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE Index;
namespace internal {
/** \internal
* \file Meta.h
* This file contains generic metaprogramming classes which are not specifically related to Eigen.
* \note In case you wonder, yes we're aware that Boost already provides all these features,
* we however don't want to add a dependency to Boost.
*/
// Only recent versions of ICC complain about using ptrdiff_t to hold pointers,
// and older versions do not provide *intptr_t types.
#if EIGEN_ICC_NEEDS_CSTDINT
typedef std::intptr_t IntPtr;
typedef std::uintptr_t UIntPtr;
#else
typedef std::ptrdiff_t IntPtr;
typedef std::size_t UIntPtr;
#endif
#undef EIGEN_ICC_NEEDS_CSTDINT
struct true_type { enum { value = 1 }; };
struct false_type { enum { value = 0 }; };
template<bool Condition>
struct bool_constant;
template<>
struct bool_constant<true> : true_type {};
template<>
struct bool_constant<false> : false_type {};
template<bool Condition, typename Then, typename Else>
struct conditional { typedef Then type; };
template<typename Then, typename Else>
struct conditional <false, Then, Else> { typedef Else type; };
template<typename T> struct remove_reference { typedef T type; };
template<typename T> struct remove_reference<T&> { typedef T type; };
template<typename T> struct remove_pointer { typedef T type; };
template<typename T> struct remove_pointer<T*> { typedef T type; };
template<typename T> struct remove_pointer<T*const> { typedef T type; };
template <class T> struct remove_const { typedef T type; };
template <class T> struct remove_const<const T> { typedef T type; };
template <class T> struct remove_const<const T[]> { typedef T type[]; };
template <class T, unsigned int Size> struct remove_const<const T[Size]> { typedef T type[Size]; };
template<typename T> struct remove_all { typedef T type; };
template<typename T> struct remove_all<const T> { typedef typename remove_all<T>::type type; };
template<typename T> struct remove_all<T const&> { typedef typename remove_all<T>::type type; };
template<typename T> struct remove_all<T&> { typedef typename remove_all<T>::type type; };
template<typename T> struct remove_all<T const*> { typedef typename remove_all<T>::type type; };
template<typename T> struct remove_all<T*> { typedef typename remove_all<T>::type type; };
template<typename T> struct is_arithmetic { enum { value = false }; };
template<> struct is_arithmetic<float> { enum { value = true }; };
template<> struct is_arithmetic<double> { enum { value = true }; };
template<> struct is_arithmetic<long double> { enum { value = true }; };
template<> struct is_arithmetic<bool> { enum { value = true }; };
template<> struct is_arithmetic<char> { enum { value = true }; };
template<> struct is_arithmetic<signed char> { enum { value = true }; };
template<> struct is_arithmetic<unsigned char> { enum { value = true }; };
template<> struct is_arithmetic<signed short> { enum { value = true }; };
template<> struct is_arithmetic<unsigned short>{ enum { value = true }; };
template<> struct is_arithmetic<signed int> { enum { value = true }; };
template<> struct is_arithmetic<unsigned int> { enum { value = true }; };
template<> struct is_arithmetic<signed long> { enum { value = true }; };
template<> struct is_arithmetic<unsigned long> { enum { value = true }; };
template<typename T, typename U> struct is_same { enum { value = 0 }; };
template<typename T> struct is_same<T,T> { enum { value = 1 }; };
template< class T >
struct is_void : is_same<void, typename remove_const<T>::type> {};
#if EIGEN_HAS_CXX11
template<> struct is_arithmetic<signed long long> { enum { value = true }; };
template<> struct is_arithmetic<unsigned long long> { enum { value = true }; };
using std::is_integral;
#else
template<typename T> struct is_integral { enum { value = false }; };
template<> struct is_integral<bool> { enum { value = true }; };
template<> struct is_integral<char> { enum { value = true }; };
template<> struct is_integral<signed char> { enum { value = true }; };
template<> struct is_integral<unsigned char> { enum { value = true }; };
template<> struct is_integral<signed short> { enum { value = true }; };
template<> struct is_integral<unsigned short> { enum { value = true }; };
template<> struct is_integral<signed int> { enum { value = true }; };
template<> struct is_integral<unsigned int> { enum { value = true }; };
template<> struct is_integral<signed long> { enum { value = true }; };
template<> struct is_integral<unsigned long> { enum { value = true }; };
#if EIGEN_COMP_MSVC
template<> struct is_integral<signed __int64> { enum { value = true }; };
template<> struct is_integral<unsigned __int64> { enum { value = true }; };
#endif
#endif
#if EIGEN_HAS_CXX11
using std::make_unsigned;
#else
// TODO: Possibly improve this implementation of make_unsigned.
// It is currently used only by
// template<typename Scalar> struct random_default_impl<Scalar, false, true>.
template<typename> struct make_unsigned;
template<> struct make_unsigned<char> { typedef unsigned char type; };
template<> struct make_unsigned<signed char> { typedef unsigned char type; };
template<> struct make_unsigned<unsigned char> { typedef unsigned char type; };
template<> struct make_unsigned<signed short> { typedef unsigned short type; };
template<> struct make_unsigned<unsigned short> { typedef unsigned short type; };
template<> struct make_unsigned<signed int> { typedef unsigned int type; };
template<> struct make_unsigned<unsigned int> { typedef unsigned int type; };
template<> struct make_unsigned<signed long> { typedef unsigned long type; };
template<> struct make_unsigned<unsigned long> { typedef unsigned long type; };
#if EIGEN_COMP_MSVC
template<> struct make_unsigned<signed __int64> { typedef unsigned __int64 type; };
template<> struct make_unsigned<unsigned __int64> { typedef unsigned __int64 type; };
#endif
// Some platforms define int64_t as long long even for C++03. In this case we
// are missing the definition for make_unsigned. If we just define it, we get
// duplicated definitions for platforms defining int64_t as signed long for
// C++03. We therefore add the specialization for C++03 long long for these
// platforms only.
#if EIGEN_OS_MAC
template<> struct make_unsigned<unsigned long long> { typedef unsigned long long type; };
template<> struct make_unsigned<long long> { typedef unsigned long long type; };
#endif
#endif
template <typename T> struct add_const { typedef const T type; };
template <typename T> struct add_const<T&> { typedef T& type; };
template <typename T> struct is_const { enum { value = 0 }; };
template <typename T> struct is_const<T const> { enum { value = 1 }; };
template<typename T> struct add_const_on_value_type { typedef const T type; };
template<typename T> struct add_const_on_value_type<T&> { typedef T const& type; };
template<typename T> struct add_const_on_value_type<T*> { typedef T const* type; };
template<typename T> struct add_const_on_value_type<T* const> { typedef T const* const type; };
template<typename T> struct add_const_on_value_type<T const* const> { typedef T const* const type; };
#if EIGEN_HAS_CXX11
using std::is_convertible;
#else
template<typename From, typename To>
struct is_convertible_impl
{
private:
struct any_conversion
{
template <typename T> any_conversion(const volatile T&);
template <typename T> any_conversion(T&);
};
struct yes {int a[1];};
struct no {int a[2];};
template<typename T>
static yes test(T, int);
template<typename T>
static no test(any_conversion, ...);
public:
static typename internal::remove_reference<From>::type* ms_from;
#ifdef __INTEL_COMPILER
#pragma warning push
#pragma warning ( disable : 2259 )
#endif
enum { value = sizeof(test<To>(*ms_from, 0))==sizeof(yes) };
#ifdef __INTEL_COMPILER
#pragma warning pop
#endif
};
template<typename From, typename To>
struct is_convertible
{
enum { value = is_convertible_impl<From,To>::value };
};
template<typename T>
struct is_convertible<T,T&> { enum { value = false }; };
template<typename T>
struct is_convertible<const T,const T&> { enum { value = true }; };
#endif
/** \internal Allows to enable/disable an overload
* according to a compile time condition.
*/
template<bool Condition, typename T=void> struct enable_if;
template<typename T> struct enable_if<true,T>
{ typedef T type; };
#if defined(EIGEN_GPU_COMPILE_PHASE)
#if !defined(__FLT_EPSILON__)
#define __FLT_EPSILON__ FLT_EPSILON
#define __DBL_EPSILON__ DBL_EPSILON
#endif
namespace device {
template<typename T> struct numeric_limits
{
EIGEN_DEVICE_FUNC static T epsilon() { return 0; }
EIGEN_DEVICE_FUNC static T (max)() { assert(false && "Highest not supported for this type"); }
EIGEN_DEVICE_FUNC static T (min)() { assert(false && "Lowest not supported for this type"); }
EIGEN_DEVICE_FUNC static T infinity() { assert(false && "Infinity not supported for this type"); }
EIGEN_DEVICE_FUNC static T quiet_NaN() { assert(false && "quiet_NaN not supported for this type"); }
};
template<> struct numeric_limits<float>
{
EIGEN_DEVICE_FUNC
static float epsilon() { return __FLT_EPSILON__; }
EIGEN_DEVICE_FUNC
static float (max)() {
#if defined(EIGEN_CUDA_ARCH)
return CUDART_MAX_NORMAL_F;
#else
return HIPRT_MAX_NORMAL_F;
#endif
}
EIGEN_DEVICE_FUNC
static float (min)() { return FLT_MIN; }
EIGEN_DEVICE_FUNC
static float infinity() {
#if defined(EIGEN_CUDA_ARCH)
return CUDART_INF_F;
#else
return HIPRT_INF_F;
#endif
}
EIGEN_DEVICE_FUNC
static float quiet_NaN() {
#if defined(EIGEN_CUDA_ARCH)
return CUDART_NAN_F;
#else
return HIPRT_NAN_F;
#endif
}
};
template<> struct numeric_limits<double>
{
EIGEN_DEVICE_FUNC
static double epsilon() { return __DBL_EPSILON__; }
EIGEN_DEVICE_FUNC
static double (max)() { return DBL_MAX; }
EIGEN_DEVICE_FUNC
static double (min)() { return DBL_MIN; }
EIGEN_DEVICE_FUNC
static double infinity() {
#if defined(EIGEN_CUDA_ARCH)
return CUDART_INF;
#else
return HIPRT_INF;
#endif
}
EIGEN_DEVICE_FUNC
static double quiet_NaN() {
#if defined(EIGEN_CUDA_ARCH)
return CUDART_NAN;
#else
return HIPRT_NAN;
#endif
}
};
template<> struct numeric_limits<int>
{
EIGEN_DEVICE_FUNC
static int epsilon() { return 0; }
EIGEN_DEVICE_FUNC
static int (max)() { return INT_MAX; }
EIGEN_DEVICE_FUNC
static int (min)() { return INT_MIN; }
};
template<> struct numeric_limits<unsigned int>
{
EIGEN_DEVICE_FUNC
static unsigned int epsilon() { return 0; }
EIGEN_DEVICE_FUNC
static unsigned int (max)() { return UINT_MAX; }
EIGEN_DEVICE_FUNC
static unsigned int (min)() { return 0; }
};
template<> struct numeric_limits<long>
{
EIGEN_DEVICE_FUNC
static long epsilon() { return 0; }
EIGEN_DEVICE_FUNC
static long (max)() { return LONG_MAX; }
EIGEN_DEVICE_FUNC
static long (min)() { return LONG_MIN; }
};
template<> struct numeric_limits<unsigned long>
{
EIGEN_DEVICE_FUNC
static unsigned long epsilon() { return 0; }
EIGEN_DEVICE_FUNC
static unsigned long (max)() { return ULONG_MAX; }
EIGEN_DEVICE_FUNC
static unsigned long (min)() { return 0; }
};
template<> struct numeric_limits<long long>
{
EIGEN_DEVICE_FUNC
static long long epsilon() { return 0; }
EIGEN_DEVICE_FUNC
static long long (max)() { return LLONG_MAX; }
EIGEN_DEVICE_FUNC
static long long (min)() { return LLONG_MIN; }
};
template<> struct numeric_limits<unsigned long long>
{
EIGEN_DEVICE_FUNC
static unsigned long long epsilon() { return 0; }
EIGEN_DEVICE_FUNC
static unsigned long long (max)() { return ULLONG_MAX; }
EIGEN_DEVICE_FUNC
static unsigned long long (min)() { return 0; }
};
template<> struct numeric_limits<bool>
{
EIGEN_DEVICE_FUNC
static bool epsilon() { return false; }
EIGEN_DEVICE_FUNC
static bool (max)() { return true; }
EIGEN_DEVICE_FUNC
static bool (min)() { return false; }
};
}
#endif
/** \internal
* A base class do disable default copy ctor and copy assignment operator.
*/
class noncopyable
{
EIGEN_DEVICE_FUNC noncopyable(const noncopyable&);
EIGEN_DEVICE_FUNC const noncopyable& operator=(const noncopyable&);
protected:
EIGEN_DEVICE_FUNC noncopyable() {}
EIGEN_DEVICE_FUNC ~noncopyable() {}
};
/** \internal
* Provides access to the number of elements in the object of as a compile-time constant expression.
* It "returns" Eigen::Dynamic if the size cannot be resolved at compile-time (default).
*
* Similar to std::tuple_size, but more general.
*
* It currently supports:
* - any types T defining T::SizeAtCompileTime
* - plain C arrays as T[N]
* - std::array (c++11)
* - some internal types such as SingleRange and AllRange
*
* The second template parameter eases SFINAE-based specializations.
*/
template<typename T, typename EnableIf = void> struct array_size {
enum { value = Dynamic };
};
template<typename T> struct array_size<T,typename internal::enable_if<((T::SizeAtCompileTime&0)==0)>::type> {
enum { value = T::SizeAtCompileTime };
};
template<typename T, int N> struct array_size<const T (&)[N]> {
enum { value = N };
};
template<typename T, int N> struct array_size<T (&)[N]> {
enum { value = N };
};
#if EIGEN_HAS_CXX11
template<typename T, std::size_t N> struct array_size<const std::array<T,N> > {
enum { value = N };
};
template<typename T, std::size_t N> struct array_size<std::array<T,N> > {
enum { value = N };
};
#endif
/** \internal
* Analogue of the std::size free function.
* It returns the size of the container or view \a x of type \c T
*
* It currently supports:
* - any types T defining a member T::size() const
* - plain C arrays as T[N]
*
*/
template<typename T>
Index size(const T& x) { return x.size(); }
template<typename T,std::size_t N>
Index size(const T (&) [N]) { return N; }
/** \internal
* Convenient struct to get the result type of a nullary, unary, binary, or
* ternary functor.
*
* Pre C++11:
* Supports both a Func::result_type member and templated
* Func::result<Func(ArgTypes...)>::type member.
*
* If none of these members is provided, then the type of the first
* argument is returned.
*
* Post C++11:
* This uses std::result_of. However, note the `type` member removes
* const and converts references/pointers to their corresponding value type.
*/
#if EIGEN_HAS_STD_INVOKE_RESULT
template<typename T> struct result_of;
template<typename F, typename... ArgTypes>
struct result_of<F(ArgTypes...)> {
typedef typename std::invoke_result<F, ArgTypes...>::type type1;
typedef typename remove_all<type1>::type type;
};
#elif EIGEN_HAS_STD_RESULT_OF
template<typename T> struct result_of {
typedef typename std::result_of<T>::type type1;
typedef typename remove_all<type1>::type type;
};
#else
template<typename T> struct result_of { };
struct has_none {int a[1];};
struct has_std_result_type {int a[2];};
struct has_tr1_result {int a[3];};
template<typename Func, int SizeOf>
struct nullary_result_of_select {};
template<typename Func>
struct nullary_result_of_select<Func, sizeof(has_std_result_type)> {typedef typename Func::result_type type;};
template<typename Func>
struct nullary_result_of_select<Func, sizeof(has_tr1_result)> {typedef typename Func::template result<Func()>::type type;};
template<typename Func>
struct result_of<Func()> {
template<typename T>
static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
template<typename T>
static has_tr1_result testFunctor(T const *, typename T::template result<T()>::type const * = 0);
static has_none testFunctor(...);
// note that the following indirection is needed for gcc-3.3
enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
typedef typename nullary_result_of_select<Func, FunctorType>::type type;
};
template<typename Func, typename ArgType, int SizeOf=sizeof(has_none)>
struct unary_result_of_select {typedef typename internal::remove_all<ArgType>::type type;};
template<typename Func, typename ArgType>
struct unary_result_of_select<Func, ArgType, sizeof(has_std_result_type)> {typedef typename Func::result_type type;};
template<typename Func, typename ArgType>
struct unary_result_of_select<Func, ArgType, sizeof(has_tr1_result)> {typedef typename Func::template result<Func(ArgType)>::type type;};
template<typename Func, typename ArgType>
struct result_of<Func(ArgType)> {
template<typename T>
static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
template<typename T>
static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType)>::type const * = 0);
static has_none testFunctor(...);
// note that the following indirection is needed for gcc-3.3
enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
typedef typename unary_result_of_select<Func, ArgType, FunctorType>::type type;
};
template<typename Func, typename ArgType0, typename ArgType1, int SizeOf=sizeof(has_none)>
struct binary_result_of_select {typedef typename internal::remove_all<ArgType0>::type type;};
template<typename Func, typename ArgType0, typename ArgType1>
struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_std_result_type)>
{typedef typename Func::result_type type;};
template<typename Func, typename ArgType0, typename ArgType1>
struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_tr1_result)>
{typedef typename Func::template result<Func(ArgType0,ArgType1)>::type type;};
template<typename Func, typename ArgType0, typename ArgType1>
struct result_of<Func(ArgType0,ArgType1)> {
template<typename T>
static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
template<typename T>
static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1)>::type const * = 0);
static has_none testFunctor(...);
// note that the following indirection is needed for gcc-3.3
enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
typedef typename binary_result_of_select<Func, ArgType0, ArgType1, FunctorType>::type type;
};
template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2, int SizeOf=sizeof(has_none)>
struct ternary_result_of_select {typedef typename internal::remove_all<ArgType0>::type type;};
template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2>
struct ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, sizeof(has_std_result_type)>
{typedef typename Func::result_type type;};
template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2>
struct ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, sizeof(has_tr1_result)>
{typedef typename Func::template result<Func(ArgType0,ArgType1,ArgType2)>::type type;};
template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2>
struct result_of<Func(ArgType0,ArgType1,ArgType2)> {
template<typename T>
static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
template<typename T>
static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1,ArgType2)>::type const * = 0);
static has_none testFunctor(...);
// note that the following indirection is needed for gcc-3.3
enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
typedef typename ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, FunctorType>::type type;
};
#endif
#if EIGEN_HAS_STD_INVOKE_RESULT
template<typename F, typename... ArgTypes>
struct invoke_result {
typedef typename std::invoke_result<F, ArgTypes...>::type type1;
typedef typename remove_all<type1>::type type;
};
#elif EIGEN_HAS_CXX11
template<typename F, typename... ArgTypes>
struct invoke_result {
typedef typename result_of<F(ArgTypes...)>::type type1;
typedef typename remove_all<type1>::type type;
};
#else
template<typename F, typename ArgType0 = void, typename ArgType1 = void, typename ArgType2 = void>
struct invoke_result {
typedef typename result_of<F(ArgType0, ArgType1, ArgType2)>::type type1;
typedef typename remove_all<type1>::type type;
};
template<typename F>
struct invoke_result<F, void, void, void> {
typedef typename result_of<F()>::type type1;
typedef typename remove_all<type1>::type type;
};
template<typename F, typename ArgType0>
struct invoke_result<F, ArgType0, void, void> {
typedef typename result_of<F(ArgType0)>::type type1;
typedef typename remove_all<type1>::type type;
};
template<typename F, typename ArgType0, typename ArgType1>
struct invoke_result<F, ArgType0, ArgType1, void> {
typedef typename result_of<F(ArgType0, ArgType1)>::type type1;
typedef typename remove_all<type1>::type type;
};
#endif
struct meta_yes { char a[1]; };
struct meta_no { char a[2]; };
// Check whether T::ReturnType does exist
template <typename T>
struct has_ReturnType
{
template <typename C> static meta_yes testFunctor(C const *, typename C::ReturnType const * = 0);
template <typename C> static meta_no testFunctor(...);
enum { value = sizeof(testFunctor<T>(static_cast<T*>(0))) == sizeof(meta_yes) };
};
template<typename T> const T* return_ptr();
template <typename T, typename IndexType=Index>
struct has_nullary_operator
{
template <typename C> static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr<C>()->operator()())>0)>::type * = 0);
static meta_no testFunctor(...);
enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) };
};
template <typename T, typename IndexType=Index>
struct has_unary_operator
{
template <typename C> static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr<C>()->operator()(IndexType(0)))>0)>::type * = 0);
static meta_no testFunctor(...);
enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) };
};
template <typename T, typename IndexType=Index>
struct has_binary_operator
{
template <typename C> static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr<C>()->operator()(IndexType(0),IndexType(0)))>0)>::type * = 0);
static meta_no testFunctor(...);
enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) };
};
/** \internal In short, it computes int(sqrt(\a Y)) with \a Y an integer.
* Usage example: \code meta_sqrt<1023>::ret \endcode
*/
template<int Y,
int InfX = 0,
int SupX = ((Y==1) ? 1 : Y/2),
bool Done = ((SupX-InfX)<=1 ? true : ((SupX*SupX <= Y) && ((SupX+1)*(SupX+1) > Y))) >
// use ?: instead of || just to shut up a stupid gcc 4.3 warning
class meta_sqrt
{
enum {
MidX = (InfX+SupX)/2,
TakeInf = MidX*MidX > Y ? 1 : 0,
NewInf = int(TakeInf) ? InfX : int(MidX),
NewSup = int(TakeInf) ? int(MidX) : SupX
};
public:
enum { ret = meta_sqrt<Y,NewInf,NewSup>::ret };
};
template<int Y, int InfX, int SupX>
class meta_sqrt<Y, InfX, SupX, true> { public: enum { ret = (SupX*SupX <= Y) ? SupX : InfX }; };
/** \internal Computes the least common multiple of two positive integer A and B
* at compile-time. It implements a naive algorithm testing all multiples of A.
* It thus works better if A>=B.
*/
template<int A, int B, int K=1, bool Done = ((A*K)%B)==0>
struct meta_least_common_multiple
{
enum { ret = meta_least_common_multiple<A,B,K+1>::ret };
};
template<int A, int B, int K>
struct meta_least_common_multiple<A,B,K,true>
{
enum { ret = A*K };
};
/** \internal determines whether the product of two numeric types is allowed and what the return type is */
template<typename T, typename U> struct scalar_product_traits
{
enum { Defined = 0 };
};
// FIXME quick workaround around current limitation of result_of
// template<typename Scalar, typename ArgType0, typename ArgType1>
// struct result_of<scalar_product_op<Scalar>(ArgType0,ArgType1)> {
// typedef typename scalar_product_traits<typename remove_all<ArgType0>::type, typename remove_all<ArgType1>::type>::ReturnType type;
// };
/** \internal Obtains a POD type suitable to use as storage for an object of a size
* of at most Len bytes, aligned as specified by \c Align.
*/
template<unsigned Len, unsigned Align>
struct aligned_storage {
struct type {
EIGEN_ALIGN_TO_BOUNDARY(Align) unsigned char data[Len];
};
};
} // end namespace internal
namespace numext {
#if defined(EIGEN_GPU_COMPILE_PHASE)
template<typename T> EIGEN_DEVICE_FUNC void swap(T &a, T &b) { T tmp = b; b = a; a = tmp; }
#else
template<typename T> EIGEN_STRONG_INLINE void swap(T &a, T &b) { std::swap(a,b); }
#endif
#if defined(EIGEN_GPU_COMPILE_PHASE)
using internal::device::numeric_limits;
#else
using std::numeric_limits;
#endif
// Integer division with rounding up.
// T is assumed to be an integer type with a>=0, and b>0
template<typename T>
EIGEN_DEVICE_FUNC
T div_ceil(const T &a, const T &b)
{
return (a+b-1) / b;
}
// The aim of the following functions is to bypass -Wfloat-equal warnings
// when we really want a strict equality comparison on floating points.
template<typename X, typename Y> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
bool equal_strict(const X& x,const Y& y) { return x == y; }
#if !defined(EIGEN_GPU_COMPILE_PHASE) || (!defined(EIGEN_CUDA_ARCH) && defined(EIGEN_CONSTEXPR_ARE_DEVICE_FUNC))
template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
bool equal_strict(const float& x,const float& y) { return std::equal_to<float>()(x,y); }
template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
bool equal_strict(const double& x,const double& y) { return std::equal_to<double>()(x,y); }
#endif
template<typename X, typename Y> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
bool not_equal_strict(const X& x,const Y& y) { return x != y; }
#if !defined(EIGEN_GPU_COMPILE_PHASE) || (!defined(EIGEN_CUDA_ARCH) && defined(EIGEN_CONSTEXPR_ARE_DEVICE_FUNC))
template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
bool not_equal_strict(const float& x,const float& y) { return std::not_equal_to<float>()(x,y); }
template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
bool not_equal_strict(const double& x,const double& y) { return std::not_equal_to<double>()(x,y); }
#endif
} // end namespace numext
} // end namespace Eigen
#endif // EIGEN_META_H
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册