Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
e9fa7a7b
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e9fa7a7b
编写于
2月 12, 2018
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
follow comments of qingqing and code refine
上级
99c9dbf5
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
66 addition
and
83 deletion
+66
-83
python/paddle/v2/fluid/layers/detection.py
python/paddle/v2/fluid/layers/detection.py
+52
-22
python/paddle/v2/fluid/tests/test_detection.py
python/paddle/v2/fluid/tests/test_detection.py
+14
-61
未找到文件。
python/paddle/v2/fluid/layers/detection.py
浏览文件 @
e9fa7a7b
...
...
@@ -18,10 +18,9 @@ All layers just related to the detection neural network.
from
..layer_helper
import
LayerHelper
from
..param_attr
import
ParamAttr
from
..framework
import
Variable
from
..nets
import
img_conv_with_bn
from
tensor
import
concat
from
ops
import
reshape
from
nn
import
transpose
import
tensor
import
ops
import
nn
import
math
__all__
=
[
...
...
@@ -184,10 +183,10 @@ def prior_box(inputs,
name(str, optional, None): Name of the prior box layer.
Returns:
boxes(Variable): the output prior boxes of PriorBox
Op
.
boxes(Variable): the output prior boxes of PriorBox.
The layout is [num_priors, 4]. num_priors is the total
box count of each position of inputs.
Variances(Variable): the expanded variances of PriorBox
Op
.
Variances(Variable): the expanded variances of PriorBox.
The layout is [num_priors, 4]. num_priors is the total
box count of each position of inputs
...
...
@@ -250,7 +249,7 @@ def prior_box(inputs,
new_shape
=
[
-
1
,
reduce
(
lambda
x
,
y
:
x
*
y
,
input
.
shape
[
axis
:
len
(
input
.
shape
)])
]
out
=
reshape
(
x
=
input
,
shape
=
new_shape
)
out
=
ops
.
reshape
(
x
=
input
,
shape
=
new_shape
)
return
out
assert
isinstance
(
inputs
,
list
),
'inputs should be a list.'
...
...
@@ -326,8 +325,8 @@ def prior_box(inputs,
reshaped_boxes
.
append
(
_reshape_with_axis_
(
box_results
[
i
],
axis
=
3
))
reshaped_vars
.
append
(
_reshape_with_axis_
(
var_results
[
i
],
axis
=
3
))
box
=
concat
(
reshaped_boxes
)
var
=
concat
(
reshaped_vars
)
box
=
tensor
.
concat
(
reshaped_boxes
)
var
=
tensor
.
concat
(
reshaped_vars
)
return
box
,
var
...
...
@@ -345,12 +344,14 @@ def multi_box_head(inputs,
pad
=
1
,
stride
=
1
,
use_batchnorm
=
False
,
base_size
=
None
,
name
=
None
):
base_size
=
None
):
"""
**Multi Box Head**
input many Variable, and return mbox_loc, mbox_conf
Generate prior boxes' location and confidence for SSD(Single
Shot MultiBox Detector)algorithm. The details of this algorithm,
please refer the section 2.1 of SSD paper (SSD: Single Shot
MultiBox Detector)<https://arxiv.org/abs/1512.02325>`_ .
Args:
inputs(list): The list of input Variables, the format
...
...
@@ -376,12 +377,12 @@ def multi_box_head(inputs,
Returns:
mbox_loc(list):
the output prior boxes of PriorBoxOp. The layout is
[num_priors, 4]. num_priors is the total box count of each
position of inputs
.
mbox_conf(list):
the expanded variances of PriorBoxOp. The layout
is [num_priors, 4]. num_priors is the total box count of each
position of inputs
mbox_loc(list):
The predicted boxes' location of the inputs.
The layout of each element is [N, H, W, Priors]. Priors
is the number of predicted boxof each position of each input
.
mbox_conf(list):
The predicted boxes' confidence of the inputs.
The layout of each element is [N, H, W, Priors]. Priors
is the number of predicted box of each position of each input.
Examples:
.. code-block:: python
...
...
@@ -396,6 +397,35 @@ def multi_box_head(inputs,
flip=True)
"""
def
_conv_with_bn_
(
input
,
conv_num_filter
,
conv_padding
=
1
,
conv_filter_size
=
3
,
conv_stride
=
1
,
conv_act
=
None
,
param_attr
=
None
,
conv_with_batchnorm
=
False
,
conv_batchnorm_drop_rate
=
0.0
,
use_cudnn
=
True
):
conv2d
=
nn
.
conv2d
(
input
=
input
,
num_filters
=
conv_num_filter
,
filter_size
=
conv_filter_size
,
padding
=
conv_padding
,
stride
=
conv_stride
,
param_attr
=
param_attr
,
act
=
conv_act
,
use_cudnn
=
use_cudnn
)
if
conv_with_batchnorm
:
conv2d
=
nn
.
batch_norm
(
input
=
conv2d
)
drop_rate
=
conv_batchnorm_drop_rate
if
abs
(
drop_rate
)
>
1e-5
:
conv2d
=
nn
.
dropout
(
x
=
conv2d
,
dropout_prob
=
drop_rate
)
return
conv2d
if
not
(
isinstance
(
inputs
,
list
)):
raise
ValueError
(
'inputs should be a list.'
)
...
...
@@ -469,26 +499,26 @@ def multi_box_head(inputs,
if
share_location
:
num_loc_output
*=
num_classes
mbox_loc
=
img_conv_with_bn
(
mbox_loc
=
_conv_with_bn_
(
input
=
input
,
conv_num_filter
=
num_loc_output
,
conv_padding
=
pad
,
conv_stride
=
stride
,
conv_filter_size
=
kernel_size
,
conv_with_batchnorm
=
use_batchnorm
)
mbox_loc
=
transpose
(
mbox_loc
,
perm
=
[
0
,
2
,
3
,
1
])
mbox_loc
=
nn
.
transpose
(
mbox_loc
,
perm
=
[
0
,
2
,
3
,
1
])
mbox_locs
.
append
(
mbox_loc
)
# get conf_loc
num_conf_output
=
num_priors_per_location
*
num_classes
conf_loc
=
img_conv_with_bn
(
conf_loc
=
_conv_with_bn_
(
input
=
input
,
conv_num_filter
=
num_conf_output
,
conv_padding
=
pad
,
conv_stride
=
stride
,
conv_filter_size
=
kernel_size
,
conv_with_batchnorm
=
use_batchnorm
)
conf_loc
=
transpose
(
conf_loc
,
perm
=
[
0
,
2
,
3
,
1
])
conf_loc
=
nn
.
transpose
(
conf_loc
,
perm
=
[
0
,
2
,
3
,
1
])
mbox_confs
.
append
(
conf_loc
)
return
mbox_locs
,
mbox_confs
python/paddle/v2/fluid/tests/test_detection.py
浏览文件 @
e9fa7a7b
...
...
@@ -47,7 +47,7 @@ class TestBook(unittest.TestCase):
out
=
layers
.
detection_output
(
scores
=
scores
,
loc
=
loc
,
prior_box
=
pb
,
prior_box_var
=
pbv
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
#
print(str(program))
class
TestPriorBox
(
unittest
.
TestCase
):
...
...
@@ -62,36 +62,11 @@ class TestPriorBox(unittest.TestCase):
def
prior_box_output
(
self
,
data_shape
):
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
data_shape
,
dtype
=
'float32'
)
conv1
=
fluid
.
layers
.
conv2d
(
input
=
images
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv2
=
fluid
.
layers
.
conv2d
(
input
=
conv1
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv3
=
fluid
.
layers
.
conv2d
(
input
=
conv2
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv4
=
fluid
.
layers
.
conv2d
(
input
=
conv3
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv5
=
fluid
.
layers
.
conv2d
(
input
=
conv4
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv1
=
fluid
.
layers
.
conv2d
(
images
,
3
,
3
,
2
)
conv2
=
fluid
.
layers
.
conv2d
(
conv1
,
3
,
3
,
2
)
conv3
=
fluid
.
layers
.
conv2d
(
conv2
,
3
,
3
,
2
)
conv4
=
fluid
.
layers
.
conv2d
(
conv3
,
3
,
3
,
2
)
conv5
=
fluid
.
layers
.
conv2d
(
conv4
,
3
,
3
,
2
)
box
,
var
=
detection
.
prior_box
(
inputs
=
[
conv1
,
conv2
,
conv3
,
conv4
,
conv5
,
conv5
],
...
...
@@ -112,39 +87,17 @@ class TestMultiBoxHead(unittest.TestCase):
data_shape
=
[
3
,
224
,
224
]
mbox_locs
,
mbox_confs
=
self
.
multi_box_output
(
data_shape
)
for
loc
,
conf
in
zip
(
mbox_locs
,
mbox_confs
):
assert
loc
.
shape
[
1
:
3
]
==
conf
.
shape
[
1
:
3
]
def
multi_box_output
(
self
,
data_shape
):
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
data_shape
,
dtype
=
'float32'
)
conv1
=
fluid
.
layers
.
conv2d
(
input
=
images
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv2
=
fluid
.
layers
.
conv2d
(
input
=
conv1
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv3
=
fluid
.
layers
.
conv2d
(
input
=
conv2
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv4
=
fluid
.
layers
.
conv2d
(
input
=
conv3
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv5
=
fluid
.
layers
.
conv2d
(
input
=
conv4
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv1
=
fluid
.
layers
.
conv2d
(
images
,
3
,
3
,
2
)
conv2
=
fluid
.
layers
.
conv2d
(
conv1
,
3
,
3
,
2
)
conv3
=
fluid
.
layers
.
conv2d
(
conv2
,
3
,
3
,
2
)
conv4
=
fluid
.
layers
.
conv2d
(
conv3
,
3
,
3
,
2
)
conv5
=
fluid
.
layers
.
conv2d
(
conv4
,
3
,
3
,
2
)
mbox_locs
,
mbox_confs
=
detection
.
multi_box_head
(
inputs
=
[
conv1
,
conv2
,
conv3
,
conv4
,
conv5
,
conv5
],
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录