Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
e74e1a22
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e74e1a22
编写于
12月 09, 2020
作者:
Z
Zhou Wei
提交者:
GitHub
12月 09, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
support deepcopy for Layer/Tensor/Paramerbase (#29387)
* support deepcopy for Layer/Tensor/Paramerbase * fix some code
上级
701c8e06
变更
9
显示空白变更内容
内联
并排
Showing
9 changed file
with
242 addition
and
27 deletion
+242
-27
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+30
-0
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+2
-0
paddle/fluid/pybind/imperative.cc
paddle/fluid/pybind/imperative.cc
+8
-0
python/paddle/fluid/dygraph/layers.py
python/paddle/fluid/dygraph/layers.py
+20
-8
python/paddle/fluid/dygraph/varbase_patch_methods.py
python/paddle/fluid/dygraph/varbase_patch_methods.py
+34
-1
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+31
-0
python/paddle/fluid/tests/unittests/test_imperative_basic.py
python/paddle/fluid/tests/unittests/test_imperative_basic.py
+23
-15
python/paddle/fluid/tests/unittests/test_parameter.py
python/paddle/fluid/tests/unittests/test_parameter.py
+31
-3
python/paddle/fluid/tests/unittests/test_var_base.py
python/paddle/fluid/tests/unittests/test_var_base.py
+63
-0
未找到文件。
paddle/fluid/imperative/layer.cc
浏览文件 @
e74e1a22
...
@@ -282,6 +282,36 @@ std::shared_ptr<VarBase> VarBase::NewVarBase(const platform::Place& dst_place,
...
@@ -282,6 +282,36 @@ std::shared_ptr<VarBase> VarBase::NewVarBase(const platform::Place& dst_place,
}
}
}
}
void
VarBase
::
CopyFrom
(
const
VarBase
&
src
,
const
bool
blocking
)
{
if
(
SharedVar
()
->
IsEmpty
())
{
VLOG
(
3
)
<<
"deep copy Variable from "
<<
src
.
Name
()
<<
" to "
<<
Name
();
SetPersistable
(
src
.
Persistable
());
SetDataType
(
src
.
DataType
());
SetType
(
src
.
Type
());
SetOverridedStopGradient
(
src
.
OverridedStopGradient
());
if
(
!
src
.
SharedVar
()
->
IsEmpty
())
{
const
platform
::
Place
&
place
=
src
.
Place
();
if
(
src
.
Var
().
IsType
<
framework
::
LoDTensor
>
())
{
auto
&
src_tensor
=
src
.
Var
().
Get
<
framework
::
LoDTensor
>
();
auto
*
dst_tensor
=
MutableVar
()
->
GetMutable
<
framework
::
LoDTensor
>
();
dst_tensor
->
set_lod
(
src_tensor
.
lod
());
framework
::
TensorCopy
(
src_tensor
,
place
,
dst_tensor
);
}
else
if
(
src
.
Var
().
IsType
<
framework
::
SelectedRows
>
())
{
auto
&
src_selected_rows
=
src
.
Var
().
Get
<
framework
::
SelectedRows
>
();
auto
*
dst_selected_rows
=
MutableVar
()
->
GetMutable
<
framework
::
SelectedRows
>
();
dst_selected_rows
->
set_height
(
src_selected_rows
.
height
());
dst_selected_rows
->
set_rows
(
src_selected_rows
.
rows
());
framework
::
TensorCopy
(
src_selected_rows
.
value
(),
place
,
dst_selected_rows
->
mutable_value
());
}
if
(
blocking
)
{
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
)
->
Wait
();
}
}
}
}
void
VarBase
::
BumpInplaceVersion
()
{
void
VarBase
::
BumpInplaceVersion
()
{
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
Var
().
IsInitialized
(),
true
,
Var
().
IsInitialized
(),
true
,
...
...
paddle/fluid/imperative/layer.h
浏览文件 @
e74e1a22
...
@@ -208,6 +208,8 @@ class VarBase {
...
@@ -208,6 +208,8 @@ class VarBase {
std
::
shared_ptr
<
VarBase
>
NewVarBase
(
const
platform
::
Place
&
dst_place
,
std
::
shared_ptr
<
VarBase
>
NewVarBase
(
const
platform
::
Place
&
dst_place
,
const
bool
blocking
)
const
;
const
bool
blocking
)
const
;
void
CopyFrom
(
const
imperative
::
VarBase
&
src
,
bool
blocking
);
void
BumpInplaceVersion
();
void
BumpInplaceVersion
();
private:
private:
...
...
paddle/fluid/pybind/imperative.cc
浏览文件 @
e74e1a22
...
@@ -526,6 +526,13 @@ void BindImperative(py::module *m_ptr) {
...
@@ -526,6 +526,13 @@ void BindImperative(py::module *m_ptr) {
py
::
class_
<
imperative
::
VarBase
,
std
::
shared_ptr
<
imperative
::
VarBase
>>
(
py
::
class_
<
imperative
::
VarBase
,
std
::
shared_ptr
<
imperative
::
VarBase
>>
(
m
,
"VarBase"
,
R"DOC()DOC"
)
m
,
"VarBase"
,
R"DOC()DOC"
)
.
def_static
(
"_alive_vars"
,
&
imperative
::
VarBase
::
AliveVarNames
)
.
def_static
(
"_alive_vars"
,
&
imperative
::
VarBase
::
AliveVarNames
)
.
def
(
"__init__"
,
[](
imperative
::
VarBase
&
self
)
{
std
::
string
name
=
imperative
::
GetCurrentTracer
()
->
GenerateUniqueName
(
"generated_tensor"
);
new
(
&
self
)
imperative
::
VarBase
(
name
);
})
.
def
(
"__init__"
,
.
def
(
"__init__"
,
[](
imperative
::
VarBase
&
self
,
framework
::
proto
::
VarType
::
Type
dtype
,
[](
imperative
::
VarBase
&
self
,
framework
::
proto
::
VarType
::
Type
dtype
,
const
std
::
vector
<
int
>
&
dims
,
const
py
::
handle
&
name
,
const
std
::
vector
<
int
>
&
dims
,
const
py
::
handle
&
name
,
...
@@ -1023,6 +1030,7 @@ void BindImperative(py::module *m_ptr) {
...
@@ -1023,6 +1030,7 @@ void BindImperative(py::module *m_ptr) {
y = x.cuda(1)
y = x.cuda(1)
print(y.place) # CUDAPlace(1)
print(y.place) # CUDAPlace(1)
)DOC"
)
)DOC"
)
.
def
(
"copy_"
,
&
imperative
::
VarBase
::
CopyFrom
)
.
def
(
"_copy_to"
,
.
def
(
"_copy_to"
,
[](
const
imperative
::
VarBase
&
self
,
const
platform
::
CPUPlace
&
place
,
[](
const
imperative
::
VarBase
&
self
,
const
platform
::
CPUPlace
&
place
,
bool
blocking
)
{
return
self
.
NewVarBase
(
place
,
blocking
);
},
bool
blocking
)
{
return
self
.
NewVarBase
(
place
,
blocking
);
},
...
...
python/paddle/fluid/dygraph/layers.py
浏览文件 @
e74e1a22
...
@@ -21,6 +21,7 @@ import re
...
@@ -21,6 +21,7 @@ import re
import
copy
import
copy
import
weakref
import
weakref
import
warnings
import
warnings
from
copy
import
deepcopy
from
.
import
parallel_helper
from
.
import
parallel_helper
from
..
import
unique_name
from
..
import
unique_name
...
@@ -1010,14 +1011,25 @@ class Layer(core.Layer):
...
@@ -1010,14 +1011,25 @@ class Layer(core.Layer):
self
.
_parameters
[
name
]
=
parameter
self
.
_parameters
[
name
]
=
parameter
return
parameter
return
parameter
def
__getstate__
(
self
):
return
self
.
__dict__
def
__setstate__
(
self
,
state
):
self
.
__dict__
.
update
(
state
)
def
__getattr__
(
self
,
name
):
def
__getattr__
(
self
,
name
):
if
'_parameters'
in
self
.
__dict__
:
_parameters
=
self
.
__dict__
[
'_parameters'
]
if
name
in
self
.
_parameters
:
if
name
in
self
.
_parameters
:
return
self
.
_parameters
[
name
]
return
self
.
_parameters
[
name
]
elif
name
in
self
.
_sub_layers
:
if
'_sub_layers'
in
self
.
__dict__
:
_sub_layers
=
self
.
__dict__
[
'_sub_layers'
]
if
name
in
self
.
_sub_layers
:
return
self
.
_sub_layers
[
name
]
return
self
.
_sub_layers
[
name
]
elif
name
in
self
.
_buffers
:
if
'_buffers'
in
self
.
__dict__
:
return
self
.
_buffers
[
name
]
_buffers
=
self
.
__dict__
[
'_buffers'
]
else
:
if
name
in
_buffers
:
return
_buffers
[
name
]
return
object
.
__getattribute__
(
self
,
name
)
return
object
.
__getattribute__
(
self
,
name
)
def
__setattr__
(
self
,
name
,
value
):
def
__setattr__
(
self
,
name
,
value
):
...
...
python/paddle/fluid/dygraph/varbase_patch_methods.py
浏览文件 @
e74e1a22
...
@@ -18,6 +18,7 @@ import numpy as np
...
@@ -18,6 +18,7 @@ import numpy as np
import
paddle
import
paddle
from
..
import
framework
from
..
import
framework
from
..
import
core
from
..
import
core
from
..
import
unique_name
from
..framework
import
Variable
,
Parameter
,
ParamBase
from
..framework
import
Variable
,
Parameter
,
ParamBase
from
.base
import
switch_to_static_graph
from
.base
import
switch_to_static_graph
from
.math_op_patch
import
monkey_patch_math_varbase
from
.math_op_patch
import
monkey_patch_math_varbase
...
@@ -263,6 +264,37 @@ def monkey_patch_varbase():
...
@@ -263,6 +264,37 @@ def monkey_patch_varbase():
from
paddle.tensor.to_string
import
to_string
from
paddle.tensor.to_string
import
to_string
return
to_string
(
self
)
return
to_string
(
self
)
def
__deepcopy__
(
self
,
memo
):
"""
Deep copy Tensor, it will always performs Tensor copy.
Examples:
.. code-block:: python
import paddle
import copy
x = paddle.to_tensor(2.)
y = copy.deepcopy(x)
print(x)
# Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
# [2.])
print(y)
# Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
# [2.])
"""
if
not
self
.
is_leaf
:
raise
RuntimeError
(
"Only Leaf Tensor support the deepcopy at the moment, non-Leaf Tensors contains graph information that does't support deepcopy"
)
new_varbase
=
core
.
VarBase
()
new_varbase
.
name
=
self
.
name
+
unique_name
.
generate
(
"_deepcopy"
)
memo
[
id
(
self
)]
=
new_varbase
new_varbase
.
copy_
(
self
,
True
)
return
new_varbase
@
property
@
property
def
block
(
self
):
def
block
(
self
):
return
framework
.
default_main_program
().
global_block
()
return
framework
.
default_main_program
().
global_block
()
...
@@ -283,7 +315,8 @@ def monkey_patch_varbase():
...
@@ -283,7 +315,8 @@ def monkey_patch_varbase():
(
"block"
,
block
),
(
"backward"
,
backward
),
(
"clear_grad"
,
clear_grad
),
(
"block"
,
block
),
(
"backward"
,
backward
),
(
"clear_grad"
,
clear_grad
),
(
"inplace_version"
,
inplace_version
),
(
"grad"
,
grad
),
(
"inplace_version"
,
inplace_version
),
(
"grad"
,
grad
),
(
"gradient"
,
gradient
),
(
"__str__"
,
__str__
),
(
"__repr__"
,
__str__
),
(
"gradient"
,
gradient
),
(
"__str__"
,
__str__
),
(
"__repr__"
,
__str__
),
(
"__module__"
,
"paddle"
),
(
"__name__"
,
"Tensor"
)):
(
"__deepcopy__"
,
__deepcopy__
),
(
"__module__"
,
"paddle"
),
(
"__name__"
,
"Tensor"
)):
setattr
(
core
.
VarBase
,
method_name
,
method
)
setattr
(
core
.
VarBase
,
method_name
,
method
)
# patch math methods for varbase
# patch math methods for varbase
...
...
python/paddle/fluid/framework.py
浏览文件 @
e74e1a22
...
@@ -23,6 +23,7 @@ import os
...
@@ -23,6 +23,7 @@ import os
import
re
import
re
import
traceback
import
traceback
import
six
import
six
import
copy
import
numpy
as
np
import
numpy
as
np
import
subprocess
import
subprocess
...
@@ -5274,6 +5275,36 @@ class ParamBase(core.VarBase):
...
@@ -5274,6 +5275,36 @@ class ParamBase(core.VarBase):
return
"Parameter containing:
\n
{tensor}"
.
format
(
return
"Parameter containing:
\n
{tensor}"
.
format
(
tensor
=
super
(
ParamBase
,
self
).
__str__
())
tensor
=
super
(
ParamBase
,
self
).
__str__
())
def
__deepcopy__
(
self
,
memo
):
"""
Deep copy parameter, it will always performs Tensor copy.
Examples:
.. code-block:: python
import paddle
import copy
linear = paddle.nn.Linear(1, 3)
linear_copy = copy.deepcopy(linear)
print(linear.weight)
# Parameter containing:
# Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
# [[-0.30929261, -0.90929240, -1.07851017]])
print(linear_copy.weight)
# Parameter containing:
# Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
# [[-0.30929261, -0.90929240, -1.07851017]])
"""
state
=
copy
.
deepcopy
(
self
.
__dict__
,
memo
)
state
[
"name"
]
=
self
.
name
+
unique_name
.
generate
(
"_deepcopy"
)
new_param
=
ParamBase
(
self
.
shape
,
self
.
dtype
,
**
state
)
memo
[
id
(
self
)]
=
new_param
new_param
.
copy_
(
self
,
True
)
return
new_param
__repr__
=
__str__
__repr__
=
__str__
...
...
python/paddle/fluid/tests/unittests/test_imperative_basic.py
浏览文件 @
e74e1a22
...
@@ -287,7 +287,6 @@ class TestImperative(unittest.TestCase):
...
@@ -287,7 +287,6 @@ class TestImperative(unittest.TestCase):
with
paddle
.
no_grad
():
with
paddle
.
no_grad
():
self
.
assertTrue
(
l1
.
weight
.
stop_gradient
is
False
)
self
.
assertTrue
(
l1
.
weight
.
stop_gradient
is
False
)
tmp
=
l1
.
weight
*
2
tmp
=
l1
.
weight
*
2
print
(
tmp
)
self
.
assertTrue
(
tmp
.
stop_gradient
)
self
.
assertTrue
(
tmp
.
stop_gradient
)
x
=
fluid
.
dygraph
.
to_variable
(
data
)
x
=
fluid
.
dygraph
.
to_variable
(
data
)
y
=
l0
(
x
)
+
tmp
y
=
l0
(
x
)
+
tmp
...
@@ -485,15 +484,15 @@ class TestImperative(unittest.TestCase):
...
@@ -485,15 +484,15 @@ class TestImperative(unittest.TestCase):
for
i
in
range
(
10
):
for
i
in
range
(
10
):
y
=
paddle
.
pow
(
x
,
4.0
)
y
=
paddle
.
pow
(
x
,
4.0
)
y
.
backward
()
y
.
backward
()
print
(
x
.
grad
)
self
.
assertEqual
(
x
.
grad
,
(
i
+
1
)
*
500
)
self
.
assertEqual
(
x
.
grad
,
(
i
+
1
)
*
500
)
x
.
clear_gradient
()
x
.
clear_gradient
()
self
.
assertEqual
(
x
.
grad
,
0.
)
self
.
assertEqual
(
x
.
grad
,
0.
)
for
i
in
range
(
5
):
for
i
in
range
(
10
):
y
=
paddle
.
pow
(
x
,
4.0
)
y
=
paddle
.
pow
(
x
,
4.0
)
y
.
backward
()
y
.
backward
()
print
(
x
.
grad
)
self
.
assertEqual
(
x
.
grad
,
(
i
+
1
)
*
500
)
self
.
assertEqual
(
x
.
grad
,
(
i
+
1
)
*
500
)
x
.
clear_grad
()
self
.
assertEqual
(
x
.
grad
,
0.
)
def
test_simple_net
(
sort_sum_gradient
):
def
test_simple_net
(
sort_sum_gradient
):
fluid
.
set_flags
({
'FLAGS_sort_sum_gradient'
:
sort_sum_gradient
})
fluid
.
set_flags
({
'FLAGS_sort_sum_gradient'
:
sort_sum_gradient
})
...
@@ -504,9 +503,18 @@ class TestImperative(unittest.TestCase):
...
@@ -504,9 +503,18 @@ class TestImperative(unittest.TestCase):
def
fun
(
x
,
y
,
z
):
def
fun
(
x
,
y
,
z
):
loss1
=
x
*
x
*
y
loss1
=
x
*
x
*
y
loss2
=
x
*
z
loss2
=
x
*
z
loss1
.
backward
(
retain_graph
=
True
)
loss2
.
backward
(
retain_graph
=
True
)
self
.
assertTrue
(
np
.
array_equal
(
x
.
grad
,
[
23.
]))
self
.
assertTrue
(
np
.
array_equal
(
y
.
grad
,
[
25.
]))
self
.
assertTrue
(
np
.
array_equal
(
z
.
grad
,
[
5.
]))
x
.
clear_grad
()
y
.
clear_grad
()
z
.
clear_grad
()
dx
=
paddle
.
grad
([
loss1
],
x
,
create_graph
=
True
)[
0
]
dx
=
paddle
.
grad
([
loss1
],
x
,
create_graph
=
True
)[
0
]
# loss = x*x*y + x*z + 2*x*y
loss
=
loss1
+
loss2
+
dx
loss
=
loss1
+
loss2
+
dx
# loss = x*x*y + x*z + 2*x*y
return
loss
return
loss
loss
=
fun
(
x
,
y
,
z
)
loss
=
fun
(
x
,
y
,
z
)
...
@@ -539,12 +547,12 @@ class TestImperative(unittest.TestCase):
...
@@ -539,12 +547,12 @@ class TestImperative(unittest.TestCase):
# generate the gradient of each step
# generate the gradient of each step
mlp2
=
MLP
(
input_size
=
input_size
)
mlp2
=
MLP
(
input_size
=
input_size
)
expected_weight1_grad
=
np
.
zeros
(
mlp2
.
_linear1
.
weight
.
shape
)
expected_weight1_grad
=
0.
expected_bias1_grad
=
np
.
zeros
(
mlp2
.
_linear1
.
bias
.
shape
)
expected_bias1_grad
=
0.
expected_weight2_grad
=
np
.
zeros
(
mlp2
.
_linear2
.
weight
.
shape
)
expected_weight2_grad
=
0.
expected_bias2_grad
=
np
.
zeros
(
mlp2
.
_linear2
.
bias
.
shape
)
expected_bias2_grad
=
0.
for
batch_id
in
range
(
24
):
for
batch_id
in
range
(
100
):
x
=
paddle
.
uniform
([
10
,
input_size
])
x
=
paddle
.
uniform
([
10
,
input_size
])
detach_x
=
x
.
detach
()
detach_x
=
x
.
detach
()
clear_loss
=
mlp2
(
detach_x
)
clear_loss
=
mlp2
(
detach_x
)
...
@@ -571,12 +579,12 @@ class TestImperative(unittest.TestCase):
...
@@ -571,12 +579,12 @@ class TestImperative(unittest.TestCase):
mlp2
.
clear_gradients
()
mlp2
.
clear_gradients
()
self
.
assertTrue
(
np
.
array_equal
(
clear_loss
.
grad
,
[
1
]))
self
.
assertTrue
(
np
.
array_equal
(
clear_loss
.
grad
,
[
1
]))
if
((
batch_id
+
1
)
%
8
)
==
0
:
if
((
batch_id
+
1
)
%
10
)
==
0
:
mlp1
.
clear_gradients
()
mlp1
.
clear_gradients
()
expected_weight1_grad
=
np
.
zeros
(
mlp2
.
_linear1
.
weight
.
shape
)
expected_weight1_grad
=
0.
expected_bias1_grad
=
np
.
zeros
(
mlp2
.
_linear1
.
bias
.
shape
)
expected_bias1_grad
=
0.
expected_weight2_grad
=
np
.
zeros
(
mlp2
.
_linear2
.
weight
.
shape
)
expected_weight2_grad
=
0.
expected_bias2_grad
=
np
.
zeros
(
mlp2
.
_linear2
.
bias
.
shape
)
expected_bias2_grad
=
0.
with
fluid
.
dygraph
.
guard
():
with
fluid
.
dygraph
.
guard
():
test_single_api
(
False
)
test_single_api
(
False
)
...
...
python/paddle/fluid/tests/unittests/test_parameter.py
浏览文件 @
e74e1a22
...
@@ -15,6 +15,9 @@
...
@@ -15,6 +15,9 @@
from
__future__
import
print_function
from
__future__
import
print_function
import
unittest
import
unittest
import
copy
import
paddle
from
paddle.fluid.dygraph
import
guard
from
paddle.fluid.framework
import
default_main_program
from
paddle.fluid.framework
import
default_main_program
import
paddle.fluid.core
as
core
import
paddle.fluid.core
as
core
from
paddle.fluid.executor
import
Executor
from
paddle.fluid.executor
import
Executor
...
@@ -26,7 +29,7 @@ main_program = default_main_program()
...
@@ -26,7 +29,7 @@ main_program = default_main_program()
class
ParameterChecks
(
unittest
.
TestCase
):
class
ParameterChecks
(
unittest
.
TestCase
):
def
check_param
(
self
):
def
check_param
eter
(
self
):
shape
=
[
784
,
100
]
shape
=
[
784
,
100
]
val
=
1.0625
val
=
1.0625
b
=
main_program
.
global_block
()
b
=
main_program
.
global_block
()
...
@@ -46,6 +49,28 @@ class ParameterChecks(unittest.TestCase):
...
@@ -46,6 +49,28 @@ class ParameterChecks(unittest.TestCase):
p
=
io
.
get_parameter_value_by_name
(
'fc.w'
,
exe
,
main_program
)
p
=
io
.
get_parameter_value_by_name
(
'fc.w'
,
exe
,
main_program
)
self
.
assertTrue
(
np
.
allclose
(
np
.
array
(
p
),
np
.
ones
(
shape
)
*
val
))
self
.
assertTrue
(
np
.
allclose
(
np
.
array
(
p
),
np
.
ones
(
shape
)
*
val
))
def
check_parambase
(
self
):
with
guard
():
linear
=
paddle
.
nn
.
Linear
(
10
,
10
)
param
=
linear
.
weight
memo
=
{}
param_copy
=
copy
.
deepcopy
(
param
,
memo
)
self
.
assertEqual
(
param_copy
.
shape
,
param
.
shape
)
self
.
assertEqual
(
param_copy
.
type
,
param
.
type
)
self
.
assertEqual
(
param_copy
.
dtype
,
param
.
dtype
)
self
.
assertEqual
(
str
(
param_copy
.
place
),
str
(
param
.
place
))
self
.
assertTrue
(
np
.
array_equal
(
param_copy
.
numpy
(),
param
.
numpy
()))
self
.
assertEqual
(
param_copy
.
optimize_attr
,
param
.
optimize_attr
)
self
.
assertEqual
(
param_copy
.
regularizer
,
param
.
regularizer
)
self
.
assertEqual
(
param_copy
.
do_model_average
,
param
.
do_model_average
)
self
.
assertEqual
(
param_copy
.
need_clip
,
param
.
need_clip
)
self
.
assertEqual
(
param_copy
.
is_distributed
,
param
.
is_distributed
)
pram_copy2
=
copy
.
deepcopy
(
param
,
memo
)
self
.
assertEqual
(
id
(
param_copy
),
id
(
pram_copy2
))
def
check_exceptions
(
self
):
def
check_exceptions
(
self
):
b
=
main_program
.
global_block
()
b
=
main_program
.
global_block
()
with
self
.
assertRaises
(
ValueError
):
with
self
.
assertRaises
(
ValueError
):
...
@@ -63,8 +88,11 @@ class ParameterChecks(unittest.TestCase):
...
@@ -63,8 +88,11 @@ class ParameterChecks(unittest.TestCase):
class
TestParameter
(
ParameterChecks
):
class
TestParameter
(
ParameterChecks
):
def
test_param
(
self
):
def
_test_parameter
(
self
):
self
.
check_param
()
self
.
check_parameter
()
def
test_parambase
(
self
):
self
.
check_parambase
()
def
test_exceptions
(
self
):
def
test_exceptions
(
self
):
self
.
check_exceptions
()
self
.
check_exceptions
()
...
...
python/paddle/fluid/tests/unittests/test_var_base.py
浏览文件 @
e74e1a22
...
@@ -17,6 +17,7 @@ from __future__ import print_function
...
@@ -17,6 +17,7 @@ from __future__ import print_function
import
unittest
import
unittest
import
numpy
as
np
import
numpy
as
np
import
six
import
six
import
copy
import
paddle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
...
@@ -264,6 +265,68 @@ class TestVarBase(unittest.TestCase):
...
@@ -264,6 +265,68 @@ class TestVarBase(unittest.TestCase):
var
.
stop_gradient
=
False
var
.
stop_gradient
=
False
self
.
assertEqual
(
var
.
stop_gradient
,
False
)
self
.
assertEqual
(
var
.
stop_gradient
,
False
)
def
test_deep_copy
(
self
):
with
fluid
.
dygraph
.
guard
():
empty_var
=
core
.
VarBase
()
empty_var_copy
=
copy
.
deepcopy
(
empty_var
)
self
.
assertEqual
(
empty_var
.
stop_gradient
,
empty_var_copy
.
stop_gradient
)
self
.
assertEqual
(
empty_var
.
persistable
,
empty_var_copy
.
persistable
)
self
.
assertEqual
(
empty_var
.
type
,
empty_var_copy
.
type
)
self
.
assertEqual
(
empty_var
.
dtype
,
empty_var_copy
.
dtype
)
x
=
paddle
.
to_tensor
([
2.
],
stop_gradient
=
False
)
y
=
paddle
.
to_tensor
([
3.
],
stop_gradient
=
False
)
z
=
x
*
y
memo
=
{}
x_copy
=
copy
.
deepcopy
(
x
,
memo
)
y_copy
=
copy
.
deepcopy
(
y
,
memo
)
self
.
assertEqual
(
x_copy
.
stop_gradient
,
y_copy
.
stop_gradient
)
self
.
assertEqual
(
x_copy
.
persistable
,
y_copy
.
persistable
)
self
.
assertEqual
(
x_copy
.
type
,
y_copy
.
type
)
self
.
assertEqual
(
x_copy
.
dtype
,
y_copy
.
dtype
)
self
.
assertTrue
(
np
.
array_equal
(
x
.
numpy
(),
x_copy
.
numpy
()))
self
.
assertTrue
(
np
.
array_equal
(
y
.
numpy
(),
y_copy
.
numpy
()))
self
.
assertNotEqual
(
id
(
x
),
id
(
x_copy
))
x_copy
[:]
=
5.
self
.
assertTrue
(
np
.
array_equal
(
x_copy
.
numpy
(),
[
5.
]))
self
.
assertTrue
(
np
.
array_equal
(
x
.
numpy
(),
[
2.
]))
with
self
.
assertRaises
(
RuntimeError
):
copy
.
deepcopy
(
z
)
x_copy2
=
copy
.
deepcopy
(
x
,
memo
)
y_copy2
=
copy
.
deepcopy
(
y
,
memo
)
self
.
assertEqual
(
id
(
x_copy
),
id
(
x_copy2
))
self
.
assertEqual
(
id
(
y_copy
),
id
(
y_copy2
))
# test copy selected rows
x
=
core
.
VarBase
(
core
.
VarDesc
.
VarType
.
FP32
,
[
3
,
100
],
"selected_rows"
,
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
,
True
)
selected_rows
=
x
.
value
().
get_selected_rows
()
selected_rows
.
get_tensor
().
set
(
np
.
random
.
rand
(
3
,
100
),
core
.
CPUPlace
())
selected_rows
.
set_height
(
10
)
selected_rows
.
set_rows
([
3
,
5
,
7
])
x_copy
=
copy
.
deepcopy
(
x
)
self
.
assertEqual
(
x_copy
.
stop_gradient
,
x
.
stop_gradient
)
self
.
assertEqual
(
x_copy
.
persistable
,
x
.
persistable
)
self
.
assertEqual
(
x_copy
.
type
,
x
.
type
)
self
.
assertEqual
(
x_copy
.
dtype
,
x
.
dtype
)
copy_selected_rows
=
x_copy
.
value
().
get_selected_rows
()
self
.
assertEqual
(
copy_selected_rows
.
height
(),
selected_rows
.
height
())
self
.
assertEqual
(
copy_selected_rows
.
rows
(),
selected_rows
.
rows
())
self
.
assertTrue
(
np
.
array_equal
(
np
.
array
(
copy_selected_rows
.
get_tensor
()),
np
.
array
(
selected_rows
.
get_tensor
())))
# test some patched methods
# test some patched methods
def
test_set_value
(
self
):
def
test_set_value
(
self
):
with
fluid
.
dygraph
.
guard
():
with
fluid
.
dygraph
.
guard
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录