From e5c167dc0bd57094d16baaf9de0ee5e48e3aaa48 Mon Sep 17 00:00:00 2001 From: chengduoZH Date: Fri, 27 Oct 2017 10:15:03 +0800 Subject: [PATCH] fix unit test --- .../framework/tests/test_pool2d_cudnn_op.py | 144 ---------------- .../v2/framework/tests/test_pool2d_op.py | 157 ++++++++++++++++-- 2 files changed, 140 insertions(+), 161 deletions(-) delete mode 100644 python/paddle/v2/framework/tests/test_pool2d_cudnn_op.py diff --git a/python/paddle/v2/framework/tests/test_pool2d_cudnn_op.py b/python/paddle/v2/framework/tests/test_pool2d_cudnn_op.py deleted file mode 100644 index 8180468014b..00000000000 --- a/python/paddle/v2/framework/tests/test_pool2d_cudnn_op.py +++ /dev/null @@ -1,144 +0,0 @@ -import unittest -import numpy as np -from op_test import OpTest - - -def max_pool2D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0): - - N, C, H, W = x.shape - if global_pool == 1: - ksize = [H, W] - H_out = (H - ksize[0] + 2 * paddings[0]) / strides[0] + 1 - W_out = (W - ksize[1] + 2 * paddings[1]) / strides[1] + 1 - out = np.zeros((N, C, H_out, W_out)) - for i in xrange(H_out): - for j in xrange(W_out): - r_start = np.max((i * strides[0] - paddings[0], 0)) - r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H)) - c_start = np.max((j * strides[1] - paddings[1], 0)) - c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W)) - x_masked = x[:, :, r_start:r_end, c_start:c_end] - - out[:, :, i, j] = np.max(x_masked, axis=(2, 3)) - return out - - -def avg_pool2D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0): - - N, C, H, W = x.shape - if global_pool == 1: - ksize = [H, W] - H_out = (H - ksize[0] + 2 * paddings[0]) / strides[0] + 1 - W_out = (W - ksize[1] + 2 * paddings[1]) / strides[1] + 1 - out = np.zeros((N, C, H_out, W_out)) - for i in xrange(H_out): - for j in xrange(W_out): - r_start = np.max((i * strides[0] - paddings[0], 0)) - r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H)) - c_start = np.max((j * strides[1] - paddings[1], 0)) - c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W)) - x_masked = x[:, :, r_start:r_end, c_start:c_end] - - out[:, :, i, j] = np.sum(x_masked, axis=(2, 3)) / ( - (r_end - r_start) * (c_end - c_start)) - return out - - -class TestPool2d_cudnn_Op(OpTest): - def setUp(self): - self.initTestCase() - input = np.random.random(self.shape).astype("float32") - output = self.pool2D_forward_naive(input, self.ksize, self.strides, - self.paddings, self.global_pool) - self.inputs = {'X': input} - - self.attrs = { - 'strides': self.strides, - 'paddings': self.paddings, - 'ksize': self.ksize, - 'poolingType': self.pool_type, - 'globalPooling': self.global_pool, - } - - self.outputs = {'Out': output} - - def test_check_output(self): - self.check_output() - - def test_check_grad(self): - if self.pool_type != "max": - self.check_grad(set(['X']), 'Out', max_relative_error=0.07) - - def initTestCase(self): - self.global_pool = True - self.op_type = "pool2d_cudnn" - self.pool_type = "avg" - self.pool2D_forward_naive = avg_pool2D_forward_naive - self.shape = [2, 3, 5, 5] - self.ksize = [3, 3] - self.strides = [1, 1] - self.paddings = [0, 0] - - -class TestCase1(TestPool2d_cudnn_Op): - def initTestCase(self): - self.global_pool = False - self.op_type = "pool2d_cudnn" - self.pool_type = "avg" - self.pool2D_forward_naive = avg_pool2D_forward_naive - self.shape = [2, 3, 7, 7] - self.ksize = [3, 3] - self.strides = [1, 1] - self.paddings = [0, 0] - - -class TestCase2(TestPool2d_cudnn_Op): - def initTestCase(self): - self.global_pool = False - self.op_type = "pool2d_cudnn" - self.pool_type = "avg" - self.pool2D_forward_naive = avg_pool2D_forward_naive - self.shape = [2, 3, 7, 7] - self.ksize = [3, 3] - self.strides = [1, 1] - self.paddings = [1, 1] - - -class TestCase3(TestPool2d_cudnn_Op): - def initTestCase(self): - self.global_pool = True - self.op_type = "pool2d_cudnn" - self.pool_type = "max" - self.pool2D_forward_naive = max_pool2D_forward_naive - self.shape = [2, 3, 5, 5] - self.ksize = [3, 3] - self.strides = [1, 1] - self.paddings = [0, 0] - - -class TestCase4(TestPool2d_cudnn_Op): - def initTestCase(self): - self.global_pool = False - self.op_type = "pool2d_cudnn" - self.pool_type = "max" - self.pool2D_forward_naive = max_pool2D_forward_naive - self.shape = [2, 3, 7, 7] - self.ksize = [3, 3] - self.strides = [1, 1] - self.paddings = [0, 0] - - -class TestCase5(TestPool2d_cudnn_Op): - def initTestCase(self): - self.global_pool = False - self.op_type = "pool2d_cudnn" - self.pool_type = "max" - self.pool2D_forward_naive = max_pool2D_forward_naive - self.shape = [2, 3, 7, 7] - self.ksize = [3, 3] - self.strides = [1, 1] - self.paddings = [1, 1] - - -if __name__ == '__main__': - unittest.main() diff --git a/python/paddle/v2/framework/tests/test_pool2d_op.py b/python/paddle/v2/framework/tests/test_pool2d_op.py index 2941fda81b2..be2aa64967f 100644 --- a/python/paddle/v2/framework/tests/test_pool2d_op.py +++ b/python/paddle/v2/framework/tests/test_pool2d_op.py @@ -46,7 +46,9 @@ def avg_pool2D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0): class TestPool2d_Op(OpTest): def setUp(self): - self.initTestCase() + self.init_test_case() + self.init_op_type() + self.init_pool_type() input = np.random.random(self.shape).astype("float32") output = self.pool2D_forward_naive(input, self.ksize, self.strides, self.paddings, self.global_pool) @@ -69,76 +71,197 @@ class TestPool2d_Op(OpTest): if self.pool_type != "max": self.check_grad(set(['X']), 'Out', max_relative_error=0.07) - def initTestCase(self): + def init_test_case(self): self.global_pool = True - self.op_type = "pool2d" - self.pool_type = "avg" self.pool2D_forward_naive = avg_pool2D_forward_naive self.shape = [2, 3, 5, 5] self.ksize = [3, 3] self.strides = [1, 1] self.paddings = [0, 0] + def init_op_type(self): + self.op_type = "pool2d" + + def init_pool_type(self): + self.pool_type = "avg" + class TestCase1(TestPool2d_Op): - def initTestCase(self): + def init_test_case(self): self.global_pool = False - self.op_type = "pool2d" - self.pool_type = "avg" self.pool2D_forward_naive = avg_pool2D_forward_naive self.shape = [2, 3, 7, 7] self.ksize = [3, 3] self.strides = [1, 1] self.paddings = [0, 0] + def init_op_type(self): + self.op_type = "pool2d" + + def init_pool_type(self): + self.pool_type = "avg" + class TestCase2(TestPool2d_Op): - def initTestCase(self): + def init_test_case(self): self.global_pool = False - self.op_type = "pool2d" - self.pool_type = "avg" self.pool2D_forward_naive = avg_pool2D_forward_naive self.shape = [2, 3, 7, 7] self.ksize = [3, 3] self.strides = [1, 1] self.paddings = [1, 1] + def init_op_type(self): + self.op_type = "pool2d" + + def init_pool_type(self): + self.pool_type = "avg" + class TestCase3(TestPool2d_Op): - def initTestCase(self): + def init_test_case(self): self.global_pool = True - self.op_type = "pool2d" - self.pool_type = "max" self.pool2D_forward_naive = max_pool2D_forward_naive self.shape = [2, 3, 5, 5] self.ksize = [3, 3] self.strides = [1, 1] self.paddings = [0, 0] + def init_op_type(self): + self.op_type = "pool2d" + + def init_pool_type(self): + self.pool_type = "max" + class TestCase4(TestPool2d_Op): - def initTestCase(self): + def init_test_case(self): self.global_pool = False - self.op_type = "pool2d" - self.pool_type = "max" self.pool2D_forward_naive = max_pool2D_forward_naive self.shape = [2, 3, 7, 7] self.ksize = [3, 3] self.strides = [1, 1] self.paddings = [0, 0] + def init_op_type(self): + self.op_type = "pool2d" + + def init_pool_type(self): + self.pool_type = "max" + class TestCase5(TestPool2d_Op): - def initTestCase(self): + def init_test_case(self): self.global_pool = False + self.pool2D_forward_naive = max_pool2D_forward_naive + self.shape = [2, 3, 7, 7] + self.ksize = [3, 3] + self.strides = [1, 1] + self.paddings = [1, 1] + + def init_op_type(self): self.op_type = "pool2d" + + def init_pool_type(self): + self.pool_type = "max" + + +#--------------------test pool2d_cudnn-------------------- +class TestCaseCudnn1(TestPool2d_Op): + def init_test_case(self): + self.global_pool = True + self.pool2D_forward_naive = avg_pool2D_forward_naive + self.shape = [2, 3, 5, 5] + self.ksize = [3, 3] + self.strides = [1, 1] + self.paddings = [0, 0] + + def init_op_type(self): + self.op_type = "pool2d_cudnn" + + def init_pool_type(self): + self.pool_type = "avg" + + +class TestCaseCudnn2(TestPool2d_Op): + def init_test_case(self): + self.global_pool = False + self.pool2D_forward_naive = avg_pool2D_forward_naive + self.shape = [2, 3, 7, 7] + self.ksize = [3, 3] + self.strides = [1, 1] + self.paddings = [0, 0] + + def init_op_type(self): + self.op_type = "pool2d_cudnn" + + def init_pool_type(self): + self.pool_type = "avg" + + +class TestCaseCudnn3(TestPool2d_Op): + def init_test_case(self): + self.global_pool = False + self.pool2D_forward_naive = avg_pool2D_forward_naive + self.shape = [2, 3, 7, 7] + self.ksize = [3, 3] + self.strides = [1, 1] + self.paddings = [1, 1] + + def init_op_type(self): + self.op_type = "pool2d_cudnn" + + def init_pool_type(self): + self.pool_type = "avg" + + +class TestCaseCudnn4(TestPool2d_Op): + def init_test_case(self): + self.global_pool = True + self.pool2D_forward_naive = max_pool2D_forward_naive + self.shape = [2, 3, 5, 5] + self.ksize = [3, 3] + self.strides = [1, 1] + self.paddings = [0, 0] + + def init_op_type(self): + self.op_type = "pool2d_cudnn" + + def init_pool_type(self): + self.pool_type = "max" + + +class TestCaseCudnn5(TestPool2d_Op): + def init_test_case(self): + self.global_pool = False + self.pool2D_forward_naive = max_pool2D_forward_naive + self.shape = [2, 3, 7, 7] + self.ksize = [3, 3] + self.strides = [1, 1] + self.paddings = [0, 0] + + def init_op_type(self): + self.op_type = "pool2d_cudnn" + + def init_pool_type(self): self.pool_type = "max" + + +class TestCaseCudnn6(TestPool2d_Op): + def init_test_case(self): + self.global_pool = False self.pool2D_forward_naive = max_pool2D_forward_naive self.shape = [2, 3, 7, 7] self.ksize = [3, 3] self.strides = [1, 1] self.paddings = [1, 1] + def init_op_type(self): + self.op_type = "pool2d_cudnn" + + def init_pool_type(self): + self.pool_type = "max" + if __name__ == '__main__': unittest.main() -- GitLab