diff --git a/paddle/fluid/pybind/pybind.cc b/paddle/fluid/pybind/pybind.cc index 958174420570e29aa4d48bc145353f4883f83d1a..1ea9c7c65d5f5c9e4a18091d9461e5cbd1c2a779 100644 --- a/paddle/fluid/pybind/pybind.cc +++ b/paddle/fluid/pybind/pybind.cc @@ -3786,86 +3786,142 @@ All parameter, weight, gradient are variables in Paddle. #ifdef PADDLE_WITH_IPU py::class_>(m, "IpuBackend") - .def(py::init(&platform::ipu::IpuBackend::GetNewInstance)) - .def("clear", &platform::ipu::IpuBackend::Clear) + std::unique_ptr>( + m, "IpuBackend") + // manage IpuBackend in C++ + .def("get_instance", + []() { + return std::unique_ptr( + platform::ipu::IpuBackend::GetInstance()); + }, + py::return_value_policy::reference) + .def("detach", &platform::ipu::IpuBackend::Detach) + .def("reset", &platform::ipu::IpuBackend::Reset) .def("set_scope", &platform::ipu::IpuBackend::SetScope) - .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy); - - py::class_ ipu_strategy(m, "IpuStrategy"); - ipu_strategy.def(py::init()) - .def_property( - "num_ipus", - [](const platform::ipu::IpuStrategy &self) { return self.num_ipus; }, - [](platform::ipu::IpuStrategy &self, int num_ipus) { - self.num_ipus = num_ipus; - }) - .def_property( - "accumulationFactor", - [](const platform::ipu::IpuStrategy &self) { - return self.popart_options_.accumulationFactor; - }, - [](platform::ipu::IpuStrategy &self, int accumulationFactor) { - self.popart_options_.accumulationFactor = accumulationFactor; - }) - .def_property("batches_per_step", - [](const platform::ipu::IpuStrategy &self) { - return self.batches_per_step; - }, - [](platform::ipu::IpuStrategy &self, int batches_per_step) { - self.batches_per_step = batches_per_step; - }) - .def_property("is_training", - [](const platform::ipu::IpuStrategy &self) { - return self.is_training; - }, - [](platform::ipu::IpuStrategy &self, bool is_training) { - self.is_training = is_training; - }) - .def_property( - "enable_pipelining", - [](const platform::ipu::IpuStrategy &self) { - return self.popart_options_.enablePipelining; - }, - [](platform::ipu::IpuStrategy &self, bool enable_pipelining) { - self.popart_options_.enablePipelining = enable_pipelining; - }) - .def_property( - "enable_manual_shard", - [](const platform::ipu::IpuStrategy &self) { - return self.popart_options_.virtualGraphMode == - platform::ipu::VirtualGraphMode::Manual; - }, - [](platform::ipu::IpuStrategy &self, bool enable_ipu_shard) { - if (enable_ipu_shard) { - self.popart_options_.virtualGraphMode = - platform::ipu::VirtualGraphMode::Manual; - } else { - self.popart_options_.virtualGraphMode = - platform::ipu::VirtualGraphMode::Off; - } - }) - .def_property("need_avg_shard", - [](const platform::ipu::IpuStrategy &self) { - return self.need_avg_shard; - }, - [](platform::ipu::IpuStrategy &self, bool need_avg_shard) { - self.need_avg_shard = need_avg_shard; - }) - .def_property("batch_size", - [](const platform::ipu::IpuStrategy &self) { - return self.batch_size; - }, - [](platform::ipu::IpuStrategy &self, int batch_size) { - self.batch_size = batch_size; - }) - .def_property("enable_fp16", - [](const platform::ipu::IpuStrategy &self) { - return self.enable_fp16; - }, - [](platform::ipu::IpuStrategy &self, bool enable_fp16) { - self.enable_fp16 = enable_fp16; - }); + .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy) + .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto); + + py::class_(m, "IpuStrategy") + .def(py::init()) + .def("set_options", + [](platform::ipu::IpuStrategy &self, const py::dict &opt) { + for (auto element : opt) { + auto option_name = element.first.cast(); + VLOG(10) << "Set option: " << option_name; + if (py::isinstance(element.second)) { + self.AddBoolOption(option_name, element.second.cast()); + } else if (py::isinstance(element.second)) { + self.AddDoubleOption(option_name, + element.second.cast()); + } else if (py::isinstance(element.second)) { + self.AddUint64Option(option_name, + element.second.cast()); + } else if (py::isinstance(element.second)) { + self.AddStringOption(option_name, + element.second.cast()); + } else if (py::isinstance(element.second) || + py::isinstance(element.second)) { + for (auto option : element.second.cast()) { + std::string option_val; + if (py::isinstance(option)) { + option_val = option.cast(); + } else if (py::isinstance(option)) { + option_val = std::to_string(option.cast()); + } else { + PADDLE_THROW(platform::errors::Unimplemented( + "Failed to convert type: %s when set IpuStrategy " + "option: %s", + option.get_type(), option_name)); + } + self.InsertStringOption(option_name, option_val); + } + } else if (py::isinstance(element.second)) { + if (option_name.rfind("location_", 0) == 0) { + for (auto option : element.second.cast()) { + self.SetTensorLocation( + option_name, option.first.cast(), + option.second.cast()); + } + } else if (option_name == "custom_op") { + std::string paddle_op; + std::string popart_op; + std::string domain; + int version = -1; + for (auto option : element.second.cast()) { + std::string option_key = option.first.cast(); + if (option_key == "paddle_op") { + paddle_op = option.second.cast(); + } else if (option_key == "popart_op") { + popart_op = option.second.cast(); + } else if (option_key == "domain") { + domain = option.second.cast(); + } else if (option_key == "version") { + version = option.second.cast(); + } else { + PADDLE_THROW(platform::errors::InvalidArgument( + "Invalid argument, key must be one of paddle_op, " + "popart_op, domain or version, but revecived %s", + option_key)); + } + } + self.AddCustomOp(paddle_op, popart_op, domain, version); + } else { + for (auto option : element.second.cast()) { + std::string option_key = option.first.cast(); + std::string option_val; + if (py::isinstance(option.second)) { + option_val = option.second.cast(); + } else if (py::isinstance(option.second)) { + option_val = + std::to_string(option.second.cast()); + } else { + PADDLE_THROW(platform::errors::Unimplemented( + "Failed to convert value type: %s when set " + "IpuStrategy option: %s", + option.second.get_type(), option_key)); + } + self.InsertStringPairOption(option_name, option_key, + option_val); + } + } + } else { + PADDLE_THROW(platform::errors::InvalidArgument( + "Invalid IpuStrategy option value type: %s, please check " + "input value for option: %s", + element.second.get_type(), option_name)); + } + } + }) + .def("get_option", + [](platform::ipu::IpuStrategy &self, const std::string &name) { + py::dict res; + auto option_type = self.GetOptionType(name); + res["name"] = name; + res["type"] = option_type; + if (option_type == "vector") { + auto value = self.GetVectorOption(name); + res["value"] = value; + } else if (option_type == "map") { + auto value = self.GetMapOption(name); + res["value"] = value; + } else { + auto value_s = self.GetOption(name); + res["value_s"] = value_s; + if (option_type == "bool") { + res["value"] = static_cast(std::stoi(value_s)); + } else if (option_type == "uint64") { + res["value"] = std::stoul(value_s); + } else if (option_type == "double") { + res["value"] = std::stod(value_s); + } else if (option_type == "string") { + res["value"] = value_s; + } + } + return res; + }) + .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern) + .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern) + .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled); #endif BindFleetWrapper(&m); diff --git a/paddle/fluid/pybind/tensor_py.h b/paddle/fluid/pybind/tensor_py.h index 531cc03f26714a6041c1e2c205640b9ea06c440c..49bacc1cd6d852a33d1d14e50d857039821d5303 100644 --- a/paddle/fluid/pybind/tensor_py.h +++ b/paddle/fluid/pybind/tensor_py.h @@ -350,8 +350,14 @@ void SetTensorFromPyArrayT( auto type = framework::ToDataType(std::type_index(typeid(T))); self->ResetHolderWithType(holder, framework::TransToPtenDataType(type)); } else { - auto dst = self->mutable_data(place); - std::memcpy(dst, array.data(), array.nbytes()); + // IPU does not store Tensor data, Tensor will be created on CPU + if (!self->initialized()) { + auto dst = self->mutable_data(place); + std::memcpy(dst, array.data(), array.nbytes()); + } else { + auto dst = self->mutable_data(self->place()); + std::memcpy(dst, array.data(), array.nbytes()); + } } #else PADDLE_THROW(platform::errors::PermissionDenied( diff --git a/python/paddle/fluid/compiler.py b/python/paddle/fluid/compiler.py index 7e3dfde5d4f6758bba028c2ad76763e9ad732750..b8a696057e7800d9f7d3298762945462861e6b4b 100644 --- a/python/paddle/fluid/compiler.py +++ b/python/paddle/fluid/compiler.py @@ -502,9 +502,6 @@ class IpuStrategy(object): """ Help users precisely control the graph building in :code:`paddle.static.IpuCompiledProgram` . - Args: - None. - Returns: The IpuStrategy instance. @@ -517,23 +514,36 @@ class IpuStrategy(object): import paddle.static as static paddle.enable_static() + ipu_strategy = static.IpuStrategy() """ def __init__(self): if core.is_compiled_with_ipu(): self._ipu_strategy = core.IpuStrategy() + default_options = { + 'location_optimizer': { + 'on_chip': 0, + 'use_replicated_tensor_sharding': 1, + }, # set optimizer location + 'accumulation_and_replication_reduction_type': + 1, # popart::ReductionType::Mean + 'mean_accumulation_and_replication_reduction_strategy': + 1, # popart::MeanReductionStrategy::Post + } + self._ipu_strategy.set_options(default_options) + self.has_custom_ops = False + self.custom_op_names = [] else: raise RuntimeError( "Can not use IpuStrategy in non IPU compiled environment, please re-compile with WITH_IPU=ON." ) - def SetGraphConfig(self, - num_ipus=1, - is_training=True, - batch_size=1, - enable_manual_shard=False, - need_avg_shard=False): + def set_graph_config(self, + num_ipus=1, + is_training=True, + batch_size=1, + enable_manual_shard=False): """ Set graph configuration to the IpuStrategy instance. @@ -544,8 +554,6 @@ class IpuStrategy(object): if the batch-size in the graph is dynamic. Default 1, which means the batch-size would be set 1, if the batch-size is dynamice. enable_manual_shard (bool, optional): Enable graph sharding or not. Only if num_ipus > 1, enable_manual_shard is able to be set True. Default False, which means disabled. - need_avg_shard (bool, optional): Enable auto graph sharding or not. Only if num_ipus > 1 and enable_manual_shard=True, need_avg_shard is able to be set Trues. - Default False, which means disabled. Returns: None. @@ -559,32 +567,29 @@ class IpuStrategy(object): import paddle.static as static paddle.enable_static() + ipu_strategy = static.IpuStrategy() - ipu_strategy.SetGraphConfig(num_ipus=1, + ipu_strategy.set_graph_config(num_ipus=1, is_training=True, batch_size=1, - enable_manual_shard=False, - need_avg_shard=False) + enable_manual_shard=False) """ - - self._ipu_strategy.num_ipus = num_ipus - self._ipu_strategy.is_training = is_training - self._ipu_strategy.batch_size = batch_size - self._ipu_strategy.enable_manual_shard = enable_manual_shard - if self._ipu_strategy.num_ipus == 1 and self._ipu_strategy.enable_manual_shard: + if num_ipus == 1 and enable_manual_shard: raise RuntimeError( "Only if num_ipus > 1, enable_manual_shard is able to be set True." ) - self._ipu_strategy.need_avg_shard = need_avg_shard - if self._ipu_strategy.enable_manual_shard != True and self._ipu_strategy.need_avg_shard: - raise RuntimeError( - "Only if enable_manual_shard=True, need_avg_shard is able to be set True." - ) - - def SetPipeliningConfig(self, - enable_pipelining=False, - batches_per_step=1, - accumulationFactor=1): + options = { + 'num_ipus': num_ipus, + 'is_training': is_training, + 'micro_batch_size': batch_size, + 'enable_manual_shard': enable_manual_shard, + } + self.set_options(options) + + def set_pipelining_config(self, + enable_pipelining=False, + batches_per_step=1, + accumulation_factor=1): """ Set pipelining configuration to the IpuStrategy instance. Used to optimize the throughput performance. @@ -593,7 +598,7 @@ class IpuStrategy(object): Default False, which means disabled. batches_per_step (int, optional): Set the batches per run in data pipelining mode. Only if enable_pipelining=True, batches_per_step is able to be set > 1. Default 1, which means no data pipelining. - accumulationFactor (int, optional): Specify the number of micro-batches to accumulate + accumulation_factor (int, optional): Specify the number of micro-batches to accumulate before applying the varUpdate. Default 1, which means disable the accumulation. Returns: @@ -610,23 +615,23 @@ class IpuStrategy(object): paddle.enable_static() ipu_strategy = static.IpuStrategy() - ipu_strategy.SetPipeliningConfig(enable_pipelining=False, - batches_per_step=1, - accumulationFactor=1) + ipu_strategy.set_pipelining_config(enable_pipelining=False, + batches_per_step=1, + accumulation_factor=1) """ - self._ipu_strategy.enable_pipelining = enable_pipelining - if self._ipu_strategy.enable_manual_shard != True and self._ipu_strategy.enable_pipelining: + enable_manual_shard = self.get_option('enable_manual_shard') + if not enable_manual_shard and enable_pipelining: raise RuntimeError( "Only if enable_manual_shard=True, enable_pipelining is able to be set True." ) - self._ipu_strategy.batches_per_step = batches_per_step - if self._ipu_strategy.enable_pipelining != True and self._ipu_strategy.batches_per_step > 1: - raise RuntimeError( - "Only if enable_pipelining=True, batches_per_step is able to be set > 1." - ) - self._ipu_strategy.accumulationFactor = accumulationFactor - - def SetHalfConfig(self, enable_fp16=False): + options = { + 'enable_pipelining': enable_pipelining, + 'batches_per_step': batches_per_step, + 'accumulation_factor': accumulation_factor, + } + self.set_options(options) + + def set_precision_config(self, enable_fp16=False): """ Set half computation configuration to the IpuStrategy instance. Used to optimize the performance. @@ -647,73 +652,135 @@ class IpuStrategy(object): paddle.enable_static() ipu_strategy = static.IpuStrategy() - ipu_strategy.SetHalfConfig(enable_fp16=False) + ipu_strategy.set_precision_config(enable_fp16=False) + """ + options = {'enable_fp16': enable_fp16, } + self.set_options(options) + + def add_custom_op(self, + paddle_op, + popart_op=None, + domain='custom.ops', + version=1): """ + Add a mapping to use popart custom ops running on the IPU. - self._ipu_strategy.enable_fp16 = enable_fp16 + Args: + paddle_op(str): the name of custom op in paddle. - @property - def num_ipus(self): - """ - Get the number of IPU devices from IpuStrategy instance. - """ - return self._ipu_strategy.num_ipus + popart_op(str): the name of custom op in popart. - @property - def is_training(self): - """ - Get the boolean of training or inference from IpuStrategy instance. - """ - return self._ipu_strategy.is_training + domain(str): domain name of custom op in popart. - @property - def batch_size(self): + version(int): version of custom op in popart. + + Returns: + None. + + Examples: + .. code-block:: python + + # required: ipu + + import paddle + import paddle.static as static + + paddle.enable_static() + + ipu_strategy = static.IpuStrategy() + ipu_strategy.add_custom_op('paddle_relu', 'popart_relu') """ - Get the batch_size used in dynamic batch_size graph from IpuStrategy instance. + if popart_op is None: + popart_op = paddle_op + custom_op = { + 'paddle_op': paddle_op, + 'popart_op': popart_op, + 'domain': domain, + 'version': version, + } + self.set_options({'custom_op': custom_op}) + self.custom_op_names.append(paddle_op) + if not self.has_custom_ops: + self.has_custom_ops = True + + def set_options(self, options): """ - return self._ipu_strategy.batch_size + Set options from dict. - @property - def enable_manual_shard(self): - """ - Get the boolean of enable manual shard or not from IpuStrategy instance. + Args: + options(dict): dict of options. + + Returns: + None. + + Examples: + .. code-block:: python + + # required: ipu + + import paddle + import paddle.static as static + + paddle.enable_static() + + ipu_strategy = static.IpuStrategy() + options = {'num_ipus':1, 'enable_fp16': True} + ipu_strategy.set_options(options) """ - return self._ipu_strategy.enable_manual_shard + self._ipu_strategy.set_options(options) - @property - def need_avg_shard(self): + def get_option(self, option): """ - Get the boolean of need average shard or not from IpuStrategy instance. + Get option. + + Args: + option(str): name of option. + + Returns: + option value. + + Examples: + .. code-block:: python + + # required: ipu + + import paddle + import paddle.static as static + + paddle.enable_static() + + ipu_strategy = static.IpuStrategy() + num_ipus = ipu_strategy.get_option('num_ipus') """ - return self._ipu_strategy.need_avg_shard + return self._ipu_strategy.get_option(option)['value'] @property - def enable_pipelining(self): + def num_ipus(self): """ - Get the boolean of enable pipelining or not from IpuStrategy instance. + Get the number of IPU devices from IpuStrategy instance. """ - return self._ipu_strategy.enable_pipelining + return self.get_option('num_ipus') @property - def batches_per_step(self): + def is_training(self): """ - Get the number of batch_size per run in the pipelining mode from IpuStrategy instance. + Get the boolean of training or inference from IpuStrategy instance. """ - return self._ipu_strategy.batches_per_step + return self.get_option('is_training') @property - def accumulationFactor(self): + def enable_pipelining(self): """ - Get the number of micro-batches to accumulate before applying the varUpdate from IpuStrategy instance. + Get the boolean of enable pipelining or not from IpuStrategy instance. """ - return self._ipu_strategy.accumulationFactor + return self.get_option('enable_pipelining') @property def enable_fp16(self): """ Get the boolean of float16 mode or not from IpuStrategy instance. """ - return self._ipu_strategy.enable_fp16 + return self.get_option('enable_fp16') class IpuCompiledProgram(object): @@ -750,9 +817,9 @@ class IpuCompiledProgram(object): main_prog = static.default_main_program() ipu_strategy = static.IpuStrategy() - ipu_strategy.SetGraphConfig(num_ipus=1, is_training=True, batch_size=1) - ipu_strategy.SetPipeliningConfig(enable_pipelining=False, batches_per_step=1, accumulationFactor=1) - ipu_strategy.SetHalfConfig(enable_fp16=False) + ipu_strategy.set_graph_config(num_ipus=1, is_training=True, batch_size=1) + ipu_strategy.set_pipelining_config(enable_pipelining=False, batches_per_step=1, accumulation_factor=1) + ipu_strategy.set_precision_config(enable_fp16=False) ipu_compiled_program = static.IpuCompiledProgram( main_prog, @@ -766,14 +833,12 @@ class IpuCompiledProgram(object): ) if program is None: - program = default_main_program() + program = framework.default_main_program() if not isinstance(program, framework.Program): raise TypeError( "The type of program is wrong, expected Program, but got %s" % type(program)) - # import here to avoiding confused - import paddle self._program = program self._compiled = False @@ -781,23 +846,21 @@ class IpuCompiledProgram(object): if scope is not None: self._scope = scope else: + # import here to avoiding confused + import paddle self._scope = paddle.static.global_scope() if ipu_strategy is not None: - self._ipu_strategy = ipu_strategy._ipu_strategy + self._ipu_strategy = ipu_strategy else: - self._ipu_strategy = core.IpuStrategy() + self._ipu_strategy = IpuStrategy() - self._backend = core.IpuBackend() - self._backend.set_scope(self._scope) - self._backend.set_ipu_strategy(self._ipu_strategy) - self._graph_passes = [ - "optimizer_extract_pass", "optimizer_state_align_pass", - "forward_graph_extract_pass", "infer_shape_pass", "avg_shard_pass", - "popart_canonicalization_pass" - ] - global ipu_compiler_ref - ipu_compiler_ref = self + if ipu_strategy.has_custom_ops: + self._custom_op_names = set(ipu_strategy.custom_op_names) + else: + self._custom_op_names = () + + self._backend = core.IpuBackend.get_instance() def compile(self, feed_list, fetch_list): """ @@ -828,20 +891,23 @@ class IpuCompiledProgram(object): main_prog = static.default_main_program() ipu_strategy = static.IpuStrategy() - ipu_strategy.SetGraphConfig(num_ipus=1, is_training=True, batch_size=1) - ipu_strategy.SetPipeliningConfig(enable_pipelining=False, batches_per_step=1, accumulationFactor=1) - ipu_strategy.SetHalfConfig(enable_fp16=False) + ipu_strategy.set_graph_config(num_ipus=1, is_training=True, batch_size=1) + ipu_strategy.set_pipelining_config(enable_pipelining=False, batches_per_step=1, accumulation_factor=1) + ipu_strategy.set_precision_config(enable_fp16=False) program = static.IpuCompiledProgram( main_prog, ipu_strategy=ipu_strategy).compile([a.name], [b.name]) """ + self._backend.set_scope(self._scope) + self._backend.set_ipu_strategy(self._ipu_strategy._ipu_strategy) + # feed and fetch doesn't have corresponding popart op, so we rm both here global_block = self._program.global_block() need_to_remove_op_index = [] for i, op in enumerate(global_block.ops): op.desc.set_is_target(False) - if op.type == "feed" or op.type == "fetch": + if op.type == 'feed' or op.type == 'fetch': need_to_remove_op_index.append(i) for index in need_to_remove_op_index[::-1]: @@ -854,26 +920,45 @@ class IpuCompiledProgram(object): self._program.desc.flush() self._graph = core.Graph(self._program.desc) - for pass_name in self._graph_passes: - graph_pass = core.get_pass(pass_name) - if pass_name == "infer_shape_pass": - graph_pass.set("feed_list", feed_list) - graph_pass.apply(self._graph) - - ipu_inplace_pass = core.get_pass("ipu_inplace_pass") - ipu_inplace_pass.set("feed_list", feed_list) - ipu_inplace_pass.set("fetch_list", fetch_list) - ipu_inplace_pass.apply(self._graph) - - ipu_graph_builder_pass = core.get_pass("ipu_graph_builder_pass") - ipu_graph_builder_pass.set("feed_list", feed_list) - ipu_graph_builder_pass.set("fetch_list", fetch_list) - ipu_graph_builder_pass.apply(self._graph) - - ipu_runtime_replacer_pass = core.get_pass("ipu_runtime_replacer_pass") - ipu_runtime_replacer_pass.set("feed_list", feed_list) - ipu_runtime_replacer_pass.set("fetch_list", fetch_list) - ipu_runtime_replacer_pass.apply(self._graph) + if self._ipu_strategy.is_training: + passes = [ + 'optimizer_extract_pass', + 'optimizer_state_align_pass', + ] + for pass_name in passes: + a_pass = core.get_pass(pass_name) + a_pass.apply(self._graph) + + passes = [ + 'forward_graph_extract_pass', + 'infer_shape_pass', + 'avg_shard_pass', + 'delete_scale_op_pass', + ] + for pass_name in passes: + a_pass = core.get_pass(pass_name) + if pass_name == 'infer_shape_pass': + a_pass.set('feed_list', feed_list) + a_pass.apply(self._graph) + + a_pass = core.get_pass('popart_canonicalization_pass') + if self._custom_op_names: + a_pass.set('custom_ops', self._custom_op_names) + a_pass.apply(self._graph) + + a_pass = core.get_pass("transfer_cast_op_pass") + a_pass.apply(self._graph) + + passes = [ + 'ipu_inplace_pass', + 'ipu_graph_builder_pass', + 'ipu_runtime_replacer_pass', + ] + for pass_name in passes: + a_pass = core.get_pass(pass_name) + a_pass.set('feed_list', feed_list) + a_pass.set('fetch_list', fetch_list) + a_pass.apply(self._graph) convert_pass = core.get_pass('graph_to_program_pass') desc = core.ProgramDesc() @@ -904,9 +989,3 @@ class IpuCompiledProgram(object): program.org_program = self._program return program - - def clean(self): - self._backend.clear() - - def __del__(self): - self.clean() diff --git a/python/paddle/fluid/executor.py b/python/paddle/fluid/executor.py index 447d6457e0a3cd7451f654905931052d3217c1e9..e372727b0f0b6a338cd43ac81001bb32ffd03ecc 100644 --- a/python/paddle/fluid/executor.py +++ b/python/paddle/fluid/executor.py @@ -1583,9 +1583,6 @@ class Executor(object): lr_sheduler = program.lr_sheduler lr_value = lr_sheduler() lr_var = program.global_block().vars[lr_sheduler._var_name] - if core.is_compiled_with_ipu(): - if hasattr(program.lr_sheduler, 'lr_var'): - lr_var = program.lr_sheduler.lr_var data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype)) tensor = core.get_variable_tensor(scope, lr_sheduler._var_name) tensor.set(data, self.place)