From e039410eb74d24dced7c9e9108e717f0c4a0b7e4 Mon Sep 17 00:00:00 2001 From: hedaoyuan Date: Thu, 8 Jun 2017 12:07:58 +0800 Subject: [PATCH] Remove the code of ExpandConvTransLayer. --- paddle/gserver/layers/ExpandConvBaseLayer.cpp | 193 ------------------ paddle/gserver/layers/ExpandConvBaseLayer.h | 28 --- .../gserver/layers/ExpandConvTransLayer.cpp | 90 -------- paddle/gserver/layers/ExpandConvTransLayer.h | 44 ---- paddle/gserver/tests/test_BatchNorm.cpp | 1 - paddle/gserver/tests/test_ConvTrans.cpp | 1 - paddle/gserver/tests/test_ConvUnify.cpp | 1 - 7 files changed, 358 deletions(-) delete mode 100644 paddle/gserver/layers/ExpandConvTransLayer.cpp delete mode 100644 paddle/gserver/layers/ExpandConvTransLayer.h diff --git a/paddle/gserver/layers/ExpandConvBaseLayer.cpp b/paddle/gserver/layers/ExpandConvBaseLayer.cpp index fdcf994cdb4..77736e78f93 100644 --- a/paddle/gserver/layers/ExpandConvBaseLayer.cpp +++ b/paddle/gserver/layers/ExpandConvBaseLayer.cpp @@ -22,26 +22,8 @@ bool ExpandConvBaseLayer::init(const LayerMap &layerMap, /* Initialize the basic convolutional parent class */ ConvBaseLayer::init(layerMap, parameterMap); - /* The class fields channels_ and numFilters_ are the same as in the config - * i.e., channels_ is the for the input and numFilters_ is for the output - * - * But in order for the variables in convTrans having the same semantic - * meaning as in conv, we need to swap channels_ and numFilters here for - * convTrans, and in other functions too. - * */ - - /* Initialize the projection */ for (auto &inputConfig : config_.inputs()) { const ConvConfig &conf = inputConfig.conv_conf(); - int numFilters = isDeconv_ ? conf.channels() : numFilters_; - subM_.push_back(numFilters / conf.groups()); - subN_.push_back(conf.output_x() * - (conf.has_output_y() ? conf.output_y() : conf.output_x())); - int channel = isDeconv_ ? numFilters_ : conf.channels(); - subK_.push_back( - channel * conf.filter_size() * - (conf.has_filter_size_y() ? conf.filter_size_y() : conf.filter_size()) / - conf.groups()); /* Consistent caffe mode for multiple input */ caffeMode_ = conf.caffe_mode(); } @@ -54,17 +36,9 @@ bool ExpandConvBaseLayer::init(const LayerMap &layerMap, size_t ExpandConvBaseLayer::getOutputSize() { CHECK_NE(inputLayers_.size(), 0UL); size_t layerSize = ConvBaseLayer::calOutputSize(); - subN_.clear(); - for (size_t i = 0; i < inputLayers_.size(); i++) { - subN_.push_back(outputH_[i] * outputW_[i]); - } return layerSize; } -void ExpandConvBaseLayer::resetExpandInput(size_t height, size_t width) { - Matrix::resizeOrCreate(expandInput_, height, width, false, useGpu_); -} - void ExpandConvBaseLayer::addSharedBias() { size_t mapW = getOutputSize() / numFilters_; size_t mapH = getOutputValue()->getElementCnt() / mapW; @@ -101,173 +75,6 @@ void ExpandConvBaseLayer::addUnsharedBias() { outValue->addBias(*bias, 1.0f); } -void ExpandConvBaseLayer::expandOneFrame(MatrixPtr image, - size_t startIdx, - int inIdx) { - int channel = isDeconv_ ? numFilters_ : channels_[inIdx]; - - resetExpandInput(subK_[inIdx] * groups_[inIdx], subN_[inIdx]); - - CHECK_EQ(image->getWidth(), - static_cast(imgSizeH_[inIdx] * imgSizeW_[inIdx] * channel)); - - real *imgData = image->getData() + startIdx * image->getWidth(); - MatrixPtr imageTmp = - Matrix::create(imgData, - 1, - imgSizeH_[inIdx] * imgSizeW_[inIdx] * channel, - false, - useGpu_); - expandInput_->convExpand(*imageTmp, - imgSizeH_[inIdx], - imgSizeW_[inIdx], - channel, - filterSizeY_[inIdx], - filterSize_[inIdx], - strideY_[inIdx], - stride_[inIdx], - paddingY_[inIdx], - padding_[inIdx], - outputH_[inIdx], - outputW_[inIdx]); - imageTmp->clear(); -} - -void ExpandConvBaseLayer::expandFwdOnce(MatrixPtr image, - MatrixPtr out, - int inIdx, - int startIdx) { - int subM = subM_[inIdx]; - int subN = subN_[inIdx]; - int subK = subK_[inIdx]; - - expandOneFrame(image, startIdx, inIdx); - - int numFilters = isDeconv_ ? channels_[inIdx] : numFilters_; - - real *outData = out->getData() + startIdx * subN * numFilters; - - real *wgtData = weights_[inIdx]->getW()->getData(); - real *expInData = expandInput_->getData(); - for (int g = 0; g < groups_[inIdx]; ++g) { - MatrixPtr A = - Matrix::create(wgtData, subM, subK, false, useGpu_); // mark transpose - MatrixPtr B = Matrix::create(expInData, subK, subN, false, useGpu_); - MatrixPtr C = Matrix::create(outData, subM, subN, false, useGpu_); - C->mul(*A, *B, 1, 1); - - A->clear(); - B->clear(); - C->clear(); - wgtData += subK * subM; - expInData += subK * subN; - outData += subM * subN; - } -} - -void ExpandConvBaseLayer::bpropActs(MatrixPtr out, - MatrixPtr image, - int inpIdx) { - int channel = isDeconv_ ? numFilters_ : channels_[inpIdx]; - - int subM = subM_[inpIdx]; - int subN = subN_[inpIdx]; - int subK = subK_[inpIdx]; - size_t batchSize = image->getHeight(); - - /* reset the expand-grad memory */ - resetExpandInput(subK * groups_[inpIdx], subN); - - real *localGradData = out->getData(); - real *tgtGradData = image->getData(); - for (size_t n = 0; n < batchSize; n++) { - real *wgtData = weights_[inpIdx]->getW()->getData(); - real *expandInData = expandInput_->getData(); - - for (int g = 0; g < groups_[inpIdx]; g++) { - // create temporary matrix - MatrixPtr C = Matrix::create(expandInData, subK, subN, false, useGpu_); - MatrixPtr B = Matrix::create(localGradData, subM, subN, false, useGpu_); - MatrixPtr A = Matrix::create(wgtData, subM, subK, true, useGpu_); - C->mul(*A, *B); // mul - - // clear the temporary matrix - A->clear(); - B->clear(); - C->clear(); - - expandInData += subK * subN; - localGradData += subM * subN; - wgtData += subK * subM; - } - - // shrink one frame outGrad - MatrixPtr oneGradTmp = Matrix::create( - expandInput_->getData(), subK * groups_[inpIdx], subN, false, useGpu_); - MatrixPtr vTmp = - Matrix::create(tgtGradData, - 1, - imgSizeH_[inpIdx] * imgSizeW_[inpIdx] * channel, - false, - useGpu_); - vTmp->convShrink(*oneGradTmp, - imgSizeH_[inpIdx], - imgSizeW_[inpIdx], - channel, - filterSizeY_[inpIdx], - filterSize_[inpIdx], - strideY_[inpIdx], - stride_[inpIdx], - paddingY_[inpIdx], - padding_[inpIdx], - outputH_[inpIdx], - outputW_[inpIdx], - 1.0f, - 1.0f); - vTmp->clear(); - oneGradTmp->clear(); - - // move the data-pointer - tgtGradData += imgSizeH_[inpIdx] * imgSizeW_[inpIdx] * channel; - } -} - -void ExpandConvBaseLayer::bpropWeights(MatrixPtr image, - MatrixPtr out, - int inpIdx) { - MatrixPtr weightGrad = weights_[inpIdx]->getWGrad(); - - int subM = subM_[inpIdx]; - int subN = subN_[inpIdx]; - int subK = subK_[inpIdx]; - size_t batchSize = image->getHeight(); - resetExpandInput(subK * groups_[inpIdx], subN); - - real *gradData = out->getData(); - - for (size_t n = 0; n < batchSize; n++) { // frame by frame - // expand - expandOneFrame(image, n, inpIdx); - real *wGradData = weightGrad->getData(); - real *expandInData = expandInput_->getData(); - - // expand-mul one-group by one - for (int g = 0; g < groups_[inpIdx]; g++) { - MatrixPtr A = Matrix::create(expandInData, subK, subN, true, useGpu_); - MatrixPtr B = Matrix::create(gradData, subM, subN, false, useGpu_); - MatrixPtr C = Matrix::create(wGradData, subM, subK, false, useGpu_); - C->mul(*B, *A, 1, 1); - - A->clear(); - B->clear(); - C->clear(); - gradData += subM * subN; - wGradData += subK * subM; - expandInData += subK * subN; - } - } -} - void ExpandConvBaseLayer::bpropSharedBias(MatrixPtr biases, MatrixPtr v) { size_t mapW = getOutputSize() / numFilters_; size_t mapH = v->getElementCnt() / mapW; diff --git a/paddle/gserver/layers/ExpandConvBaseLayer.h b/paddle/gserver/layers/ExpandConvBaseLayer.h index aabcdfc392d..01c699d2344 100644 --- a/paddle/gserver/layers/ExpandConvBaseLayer.h +++ b/paddle/gserver/layers/ExpandConvBaseLayer.h @@ -26,19 +26,6 @@ namespace paddle { */ class ExpandConvBaseLayer : public ConvBaseLayer { protected: - /// For expand convolution. - /// subM_ = numFilters_ / groups_. - IntV subM_; - /// subN_ = outputH_ * outputW_. - IntV subN_; - /// subK_ = channels_ * filterPixels_ * groups_. - IntV subK_; - - /*The expandInput_ and transOutValue_ are used for CPU expand conv calc - * Expand one sample at a time. shape: - * (numChannels * filterPixels_, outputSizeH * outputSizeW) - * */ - MatrixPtr expandInput_; /// The transpose of output, which is an auxiliary matrix. MatrixPtr transOutValue_; @@ -52,10 +39,6 @@ public: const ParameterMap& parameterMap) override; size_t getOutputSize(); - /** - * Create or resize expandInput_. - */ - void resetExpandInput(size_t height, size_t width); /** * Add shared bias. @@ -66,20 +49,9 @@ public: * Add unshared bias. */ void addUnsharedBias(); - /** - * Expand one input sample. - */ - void expandOneFrame(MatrixPtr image, size_t startIdx, int inIdx); - - /** - * Expand one input sample and perform matrix multiplication. - */ - void expandFwdOnce(MatrixPtr image, MatrixPtr out, int inIdx, int startIdx); void bpropSharedBias(MatrixPtr biases, MatrixPtr v); void bpropBiases(MatrixPtr v); - void bpropWeights(MatrixPtr image, MatrixPtr out, int inpIdx); - void bpropActs(MatrixPtr image, MatrixPtr out, int inpIdx); }; } // namespace paddle diff --git a/paddle/gserver/layers/ExpandConvTransLayer.cpp b/paddle/gserver/layers/ExpandConvTransLayer.cpp deleted file mode 100644 index b80a01e3287..00000000000 --- a/paddle/gserver/layers/ExpandConvTransLayer.cpp +++ /dev/null @@ -1,90 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#include "ExpandConvTransLayer.h" -#include "paddle/utils/Logging.h" -#include "paddle/utils/Stat.h" - -/* The implementation of the convTransLayer is basically a swap of forward and - * backward of the original convLayer. - * The variable naming follows the convention of the convLayer. - * */ - -namespace paddle { - -// REGISTER_LAYER(exconvt, ExpandConvTransLayer); - -bool ExpandConvTransLayer::init(const LayerMap &layerMap, - const ParameterMap ¶meterMap) { - /* Initialize the basic convolutional parent class */ - ExpandConvBaseLayer::init(layerMap, parameterMap); - - return true; -} - -void ExpandConvTransLayer::forward(PassType passType) { - Layer::forward(passType); - - /* malloc memory for the output_ if necessary */ - int batchSize = inputLayers_[0]->getOutputValue()->getHeight(); - resetOutput(batchSize, getOutputSize()); - - MatrixPtr output = nullptr; - for (size_t i = 0; i < inputLayers_.size(); ++i) { - LayerPtr prevLayer = getPrev(i); - output = prevLayer->getOutputValue(); - REGISTER_TIMER_INFO("shrinkFwd", getName().c_str()); - bpropActs(output, getOutputValue(), i); - } - - /* add the bias-vector */ - if (biases_.get()) { - if (sharedBiases_) { - addSharedBias(); - } else { - addUnsharedBias(); - } - } - - /* activation */ - forwardActivation(); -} - -void ExpandConvTransLayer::backward(const UpdateCallback &callback) { - backwardActivation(); - - MatrixPtr imageGrad = getOutputGrad(); - if (biases_ && biases_->getWGrad()) { - bpropBiases(imageGrad); - /* Increasing the number of gradient */ - biases_->getParameterPtr()->incUpdate(callback); - } - - for (size_t i = 0; i < inputLayers_.size(); ++i) { - /* First, calculate the input layers error */ - for (size_t off = 0; off < imageGrad->getHeight(); off++) { - if (getPrev(i)->getOutputGrad()) { - expandFwdOnce(imageGrad, getPrev(i)->getOutputGrad(), i, off); - } - } - if (weights_[i]->getWGrad()) { - /* Then, calculate the W-gradient for the current layer */ - bpropWeights(imageGrad, getPrev(i)->getOutputValue(), i); - /* Increasing the number of gradient */ - weights_[i]->getParameterPtr()->incUpdate(callback); - } - } -} - -} // namespace paddle diff --git a/paddle/gserver/layers/ExpandConvTransLayer.h b/paddle/gserver/layers/ExpandConvTransLayer.h deleted file mode 100644 index 00b8f241889..00000000000 --- a/paddle/gserver/layers/ExpandConvTransLayer.h +++ /dev/null @@ -1,44 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#pragma once - -#include -#include "ExpandConvBaseLayer.h" -#include "paddle/math/Matrix.h" - -namespace paddle { - -/** - * @brief A subclass of convolution layer. - * This layer expands input and use matrix multiplication to - * calculate convolution transpose (deconv) operation. - * - * The config file api is img_conv_layer with flag trans=True. - */ -class ExpandConvTransLayer : public ExpandConvBaseLayer { -public: - explicit ExpandConvTransLayer(const LayerConfig& config) - : ExpandConvBaseLayer(config) {} - - ~ExpandConvTransLayer() {} - - bool init(const LayerMap& layerMap, - const ParameterMap& parameterMap) override; - - void forward(PassType passType) override; - void backward(const UpdateCallback& callback) override; -}; - -} // namespace paddle diff --git a/paddle/gserver/tests/test_BatchNorm.cpp b/paddle/gserver/tests/test_BatchNorm.cpp index d07299bfe3c..83fcfed46cd 100644 --- a/paddle/gserver/tests/test_BatchNorm.cpp +++ b/paddle/gserver/tests/test_BatchNorm.cpp @@ -17,7 +17,6 @@ limitations under the License. */ #include #include "ModelConfig.pb.h" #include "paddle/gserver/layers/DataLayer.h" -#include "paddle/gserver/layers/ExpandConvTransLayer.h" #include "paddle/trainer/Trainer.h" #include "paddle/utils/GlobalConstants.h" diff --git a/paddle/gserver/tests/test_ConvTrans.cpp b/paddle/gserver/tests/test_ConvTrans.cpp index 40bb1e2d73c..6035a866b4e 100644 --- a/paddle/gserver/tests/test_ConvTrans.cpp +++ b/paddle/gserver/tests/test_ConvTrans.cpp @@ -17,7 +17,6 @@ limitations under the License. */ #include #include "ModelConfig.pb.h" #include "paddle/gserver/layers/DataLayer.h" -#include "paddle/gserver/layers/ExpandConvTransLayer.h" #include "paddle/math/MathUtils.h" #include "paddle/trainer/Trainer.h" #include "paddle/utils/GlobalConstants.h" diff --git a/paddle/gserver/tests/test_ConvUnify.cpp b/paddle/gserver/tests/test_ConvUnify.cpp index 54b72375b74..e7325e0cc3b 100644 --- a/paddle/gserver/tests/test_ConvUnify.cpp +++ b/paddle/gserver/tests/test_ConvUnify.cpp @@ -17,7 +17,6 @@ limitations under the License. */ #include #include "ModelConfig.pb.h" #include "paddle/gserver/layers/DataLayer.h" -#include "paddle/gserver/layers/ExpandConvTransLayer.h" #include "paddle/math/MathUtils.h" #include "paddle/trainer/Trainer.h" #include "paddle/utils/GlobalConstants.h" -- GitLab