提交 dfd1eee7 编写于 作者: G Guo Sheng 提交者: Tao Luo

Add seq2seq api related code (#19820)

上级 e87cabb7
......@@ -306,6 +306,7 @@ paddle.fluid.layers.deformable_roi_pooling (ArgSpec(args=['input', 'rois', 'tran
paddle.fluid.layers.filter_by_instag (ArgSpec(args=['ins', 'ins_tag', 'filter_tag', 'is_lod'], varargs=None, keywords=None, defaults=None), ('document', '7703a2088af8de4128b143ff1164ca4a'))
paddle.fluid.layers.shard_index (ArgSpec(args=['input', 'index_num', 'nshards', 'shard_id', 'ignore_value'], varargs=None, keywords=None, defaults=(-1,)), ('document', '3c6b30e9cd57b38d4a5fa1ade887f779'))
paddle.fluid.layers.hard_swish (ArgSpec(args=['x', 'threshold', 'scale', 'offset', 'name'], varargs=None, keywords=None, defaults=(6.0, 6.0, 3.0, None)), ('document', 'bd763b9ca99239d624c3cb4626e3627a'))
paddle.fluid.layers.gather_tree (ArgSpec(args=['ids', 'parents'], varargs=None, keywords=None, defaults=None), ('document', '201b54fa7512305078c70a6610beaead'))
paddle.fluid.layers.mse_loss (ArgSpec(args=['input', 'label'], varargs=None, keywords=None, defaults=None), ('document', '88b967ef5132567396062d5d654b3064'))
paddle.fluid.layers.uniform_random (ArgSpec(args=['shape', 'dtype', 'min', 'max', 'seed'], varargs=None, keywords=None, defaults=('float32', -1.0, 1.0, 0)), ('document', '34e7c1ff0263baf9551000b6bb3bc47e'))
paddle.fluid.layers.data (ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True)), ('document', '9d7806e31bdf727c1a23b8782a09b545'))
......@@ -318,11 +319,11 @@ paddle.fluid.layers.create_tensor (ArgSpec(args=['dtype', 'name', 'persistable']
paddle.fluid.layers.create_parameter (ArgSpec(args=['shape', 'dtype', 'name', 'attr', 'is_bias', 'default_initializer'], varargs=None, keywords=None, defaults=(None, None, False, None)), ('document', '727aa63c061919bee38547fb126d9428'))
paddle.fluid.layers.create_global_var (ArgSpec(args=['shape', 'value', 'dtype', 'persistable', 'force_cpu', 'name'], varargs=None, keywords=None, defaults=(False, False, None)), ('document', 'fa7f74cfb940521cc9fdffabc83debbf'))
paddle.fluid.layers.cast (ArgSpec(args=['x', 'dtype'], varargs=None, keywords=None, defaults=None), ('document', '45df178cbd8c302f92c30ebdaaa6fa8a'))
paddle.fluid.layers.tensor_array_to_tensor (ArgSpec(args=['input', 'axis', 'name'], varargs=None, keywords=None, defaults=(1, None)), ('document', 'dd7d2f1e12a8a4225d017209866e5621'))
paddle.fluid.layers.tensor_array_to_tensor (ArgSpec(args=['input', 'axis', 'name', 'use_stack'], varargs=None, keywords=None, defaults=(1, None, False)), ('document', '4aa82374218ccf593bb8011df79c71e3'))
paddle.fluid.layers.concat (ArgSpec(args=['input', 'axis', 'name'], varargs=None, keywords=None, defaults=(0, None)), ('document', 'ec7d6e716fb29ef1e73e1e3efa5ca46b'))
paddle.fluid.layers.sums (ArgSpec(args=['input', 'out'], varargs=None, keywords=None, defaults=(None,)), ('document', '5df743d578638cd2bbb9369499b44af4'))
paddle.fluid.layers.assign (ArgSpec(args=['input', 'output'], varargs=None, keywords=None, defaults=(None,)), ('document', '8bd94aef4e123986d9a8c29f67b5532b'))
paddle.fluid.layers.fill_constant_batch_size_like (ArgSpec(args=['input', 'shape', 'dtype', 'value', 'input_dim_idx', 'output_dim_idx'], varargs=None, keywords=None, defaults=(0, 0)), ('document', '37a288e4400f6d5510e982827461c11b'))
paddle.fluid.layers.fill_constant_batch_size_like (ArgSpec(args=['input', 'shape', 'dtype', 'value', 'input_dim_idx', 'output_dim_idx', 'force_cpu'], varargs=None, keywords=None, defaults=(0, 0, False)), ('document', '2bb57637664173fee5f654e55896aec6'))
paddle.fluid.layers.fill_constant (ArgSpec(args=['shape', 'dtype', 'value', 'force_cpu', 'out'], varargs=None, keywords=None, defaults=(False, None)), ('document', '66e1e468666dd47e5b2715226cebeac0'))
paddle.fluid.layers.argmin (ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=(0,)), ('document', '53629e27597e5dfb7020aac5bc639ebb'))
paddle.fluid.layers.argmax (ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=(0,)), ('document', 'd9a89fbedbaebd5f65897ac75ee636f3'))
......@@ -467,6 +468,39 @@ paddle.fluid.layers.MultivariateNormalDiag.entropy (ArgSpec(args=['self'], varar
paddle.fluid.layers.MultivariateNormalDiag.kl_divergence (ArgSpec(args=['self', 'other'], varargs=None, keywords=None, defaults=None), ('document', 'd9190d29dbd54c81f747a6436c35f062'))
paddle.fluid.layers.MultivariateNormalDiag.log_prob (ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None), ('document', 'c0edd2e2fc76711477b32dc4da9de768'))
paddle.fluid.layers.MultivariateNormalDiag.sample (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '08a2bbcaa20ee176ee7ec3d05737a0f6'))
paddle.fluid.layers.RNNCell ('paddle.fluid.layers.rnn.RNNCell', ('document', '2c3a2d3ecb4a3cec130395e7df0bd5c9'))
paddle.fluid.layers.RNNCell.__init__
paddle.fluid.layers.RNNCell.call (ArgSpec(args=['self', 'inputs', 'states'], varargs=None, keywords='kwargs', defaults=None), ('document', '3ac714b638258c520d66f682be67b658'))
paddle.fluid.layers.RNNCell.get_initial_states (ArgSpec(args=['self', 'batch_ref', 'shape', 'dtype', 'init_value'], varargs=None, keywords=None, defaults=(None, None, 0)), ('document', '003d1b4c99128f798ac0b0eecc81c489'))
paddle.fluid.layers.GRUCell ('paddle.fluid.layers.rnn.GRUCell', ('document', '7b2902a91258c4688a879805290adc00'))
paddle.fluid.layers.GRUCell.__init__ (ArgSpec(args=['self', 'hidden_size', 'param_attr', 'bias_attr', 'gate_activation', 'activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, 'float32', 'GRUCell')), ('document', '3624a6c93b4a999d0d809eb1a66d272e'))
paddle.fluid.layers.GRUCell.call (ArgSpec(args=['self', 'inputs', 'states'], varargs=None, keywords=None, defaults=None), ('document', '6094ab09a56c732c76abb5105327ea54'))
paddle.fluid.layers.GRUCell.get_initial_states (ArgSpec(args=['self', 'batch_ref', 'shape', 'dtype', 'init_value'], varargs=None, keywords=None, defaults=(None, None, 0)), ('document', '003d1b4c99128f798ac0b0eecc81c489'))
paddle.fluid.layers.LSTMCell ('paddle.fluid.layers.rnn.LSTMCell', ('document', '5cbd87bce446ba0f50398ce2772d43e9'))
paddle.fluid.layers.LSTMCell.__init__ (ArgSpec(args=['self', 'hidden_size', 'param_attr', 'bias_attr', 'gate_activation', 'activation', 'forget_bias', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, 1.0, 'float32', 'LSTMCell')), ('document', '9015961869b436d2739a0347618028e3'))
paddle.fluid.layers.LSTMCell.call (ArgSpec(args=['self', 'inputs', 'states'], varargs=None, keywords=None, defaults=None), ('document', '9c84a477021e4a7d0a497c1e6a31be2d'))
paddle.fluid.layers.LSTMCell.get_initial_states (ArgSpec(args=['self', 'batch_ref', 'shape', 'dtype', 'init_value'], varargs=None, keywords=None, defaults=(None, None, 0)), ('document', '003d1b4c99128f798ac0b0eecc81c489'))
paddle.fluid.layers.Decoder ('paddle.fluid.layers.rnn.Decoder', ('document', '23838bd065fddca1557a6a3368d9e365'))
paddle.fluid.layers.Decoder.__init__
paddle.fluid.layers.Decoder.finalize (ArgSpec(args=['self', 'outputs', 'final_states', 'sequence_lengths'], varargs=None, keywords=None, defaults=None), ('document', 'cab7fc752a05db18e99258473f50359d'))
paddle.fluid.layers.Decoder.initialize (ArgSpec(args=['self', 'inits'], varargs=None, keywords=None, defaults=None), ('document', '68cf1846fb58056dbe5a524f1ca9dff5'))
paddle.fluid.layers.Decoder.step (ArgSpec(args=['self', 'time', 'inputs', 'states'], varargs=None, keywords=None, defaults=None), ('document', '151d0229930b9654689f86c85f7c4c3f'))
paddle.fluid.layers.BeamSearchDecoder ('paddle.fluid.layers.rnn.BeamSearchDecoder', ('document', 'd7ef0c9229bfe73e0daefcfda24a2635'))
paddle.fluid.layers.BeamSearchDecoder.OutputWrapper ('paddle.fluid.layers.rnn.OutputWrapper', ('document', 'a7141ebf1fb097fa71006cdd35bdc219'))
paddle.fluid.layers.BeamSearchDecoder.OutputWrapper.__init__
paddle.fluid.layers.BeamSearchDecoder.OutputWrapper.count T.count(value) -> integer -- return number of occurrences of value
paddle.fluid.layers.BeamSearchDecoder.OutputWrapper.index T.index(value, [start, [stop]]) -> integer -- return first index of value.
paddle.fluid.layers.BeamSearchDecoder.StateWrapper ('paddle.fluid.layers.rnn.StateWrapper', ('document', '157731f37c88ea01bc746653125a41c8'))
paddle.fluid.layers.BeamSearchDecoder.StateWrapper.__init__
paddle.fluid.layers.BeamSearchDecoder.StateWrapper.count T.count(value) -> integer -- return number of occurrences of value
paddle.fluid.layers.BeamSearchDecoder.StateWrapper.index T.index(value, [start, [stop]]) -> integer -- return first index of value.
paddle.fluid.layers.BeamSearchDecoder.__init__ (ArgSpec(args=['self', 'cell', 'start_token', 'end_token', 'beam_size', 'embedding_fn', 'output_fn'], varargs=None, keywords=None, defaults=(None, None)), ('document', '68951eaed573ec47c17a43155514b2f1'))
paddle.fluid.layers.BeamSearchDecoder.finalize (ArgSpec(args=['self', 'outputs', 'final_states', 'sequence_lengths'], varargs=None, keywords=None, defaults=None), ('document', '9a7f0a8fc5802bf860f2ac960466fb45'))
paddle.fluid.layers.BeamSearchDecoder.initialize (ArgSpec(args=['self', 'initial_cell_states'], varargs=None, keywords=None, defaults=None), ('document', '01ee508a9615e2483fe6ddcf14d5fa25'))
paddle.fluid.layers.BeamSearchDecoder.step (ArgSpec(args=['self', 'time', 'inputs', 'states'], varargs=None, keywords='kwargs', defaults=None), ('document', '35ee583c3c0fe7cceeafa289ed3374bd'))
paddle.fluid.layers.BeamSearchDecoder.tile_beam_merge_with_batch (ArgSpec(args=['x', 'beam_size'], varargs=None, keywords=None, defaults=None), ('document', 'ce7ffacba6f56f57acbf5d4dd82fe04d'))
paddle.fluid.layers.rnn (ArgSpec(args=['cell', 'inputs', 'initial_states', 'sequence_length', 'time_major', 'is_reverse'], varargs=None, keywords='kwargs', defaults=(None, None, False, False)), ('document', 'c36ade777ff43d2ba5542079b66a012b'))
paddle.fluid.layers.dynamic_decode (ArgSpec(args=['decoder', 'inits', 'max_step_num', 'output_time_major'], varargs=None, keywords='kwargs', defaults=(None, None, False)), ('document', '55b44de9d290c0c2ad8fdd635e6ab575'))
paddle.fluid.contrib.InitState ('paddle.fluid.contrib.decoder.beam_search_decoder.InitState', ('document', '3afd1f84232718e628e9e566941c5f05'))
paddle.fluid.contrib.InitState.__init__ (ArgSpec(args=['self', 'init', 'shape', 'value', 'init_boot', 'need_reorder', 'dtype'], varargs=None, keywords=None, defaults=(None, None, 0.0, None, False, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.StateCell ('paddle.fluid.contrib.decoder.beam_search_decoder.StateCell', ('document', 'ecd0066c02867d445d7b461e28220c50'))
......
......@@ -154,10 +154,12 @@ REGISTER_OPERATOR(assign, ops::AssignOp, ops::AssignGradMaker,
ops::AssignOpProtoMaker, ops::AssignOpInplaceInferer);
REGISTER_OP_CPU_KERNEL_FUNCTOR(assign, float, ops::AssignKernel, double,
ops::AssignKernel, int, ops::AssignKernel,
int64_t, ops::AssignKernel);
int64_t, ops::AssignKernel, bool,
ops::AssignKernel);
#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL_FUNCTOR(assign, float, ops::AssignKernel, double,
ops::AssignKernel, int, ops::AssignKernel,
int64_t, ops::AssignKernel);
int64_t, ops::AssignKernel, bool,
ops::AssignKernel);
#endif
......@@ -38,6 +38,11 @@ class FillConstantBatchSizeLikeOpMaker : public BatchSizeLikeOpMaker {
.SetDefault(framework::proto::VarType::FP32);
AddAttr<float>("value", "default 0. The value to be filled")
.SetDefault(0.0f);
AddAttr<bool>("force_cpu",
"(bool, default false) Force fill output variable to cpu "
"memory. Otherwise, fill output variable to the running "
"device")
.SetDefault(false);
AddComment(R"DOC(
This function creates a tensor of specified *shape*, *dtype* and batch size,
and initializes this with a constant supplied in *value*. The batch size is
......@@ -65,4 +70,6 @@ REGISTER_OP_CPU_KERNEL(
ops::FillConstantBatchSizeLikeOpKernel<paddle::platform::CPUDeviceContext,
int>,
ops::FillConstantBatchSizeLikeOpKernel<paddle::platform::CPUDeviceContext,
int64_t>);
int64_t>,
ops::FillConstantBatchSizeLikeOpKernel<paddle::platform::CPUDeviceContext,
bool>);
......@@ -25,4 +25,6 @@ REGISTER_OP_CUDA_KERNEL(
ops::FillConstantBatchSizeLikeOpKernel<paddle::platform::CUDADeviceContext,
int>,
ops::FillConstantBatchSizeLikeOpKernel<paddle::platform::CUDADeviceContext,
int64_t>);
int64_t>,
ops::FillConstantBatchSizeLikeOpKernel<paddle::platform::CUDADeviceContext,
bool>);
......@@ -23,6 +23,11 @@ template <typename DeviceContext, typename T>
class FillConstantBatchSizeLikeOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto data_type =
static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype"));
auto value = ctx.Attr<float>("value");
auto force_cpu = ctx.Attr<bool>("force_cpu");
auto* out = ctx.Output<framework::Tensor>("Out");
auto* in = ctx.Input<framework::LoDTensor>("Input");
if (in->lod().size() && ctx.Attr<int>("input_dim_idx") == 0) {
......@@ -32,12 +37,16 @@ class FillConstantBatchSizeLikeOpKernel : public framework::OpKernel<T> {
odims[output_dim_idx] = static_cast<int>(in->lod().back().size()) - 1;
out->mutable_data<T>(odims, ctx.GetPlace());
}
out->mutable_data<T>(ctx.GetPlace());
auto value = ctx.Attr<float>("value");
math::SetConstant<DeviceContext, T> setter;
setter(ctx.template device_context<DeviceContext>(), out,
static_cast<T>(value));
if (force_cpu) {
out->mutable_data(platform::CPUPlace(), data_type);
} else {
out->mutable_data(ctx.GetPlace(), data_type);
}
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
auto& dev_ctx = *pool.Get(ctx.GetPlace());
math::set_constant(dev_ctx, out, value);
}
};
......
......@@ -19,4 +19,5 @@ REGISTER_OP_CUDA_KERNEL(fill_constant, ops::FillConstantKernel<float>,
ops::FillConstantKernel<double>,
ops::FillConstantKernel<int64_t>,
ops::FillConstantKernel<int>,
ops::FillConstantKernel<bool>,
ops::FillConstantKernel<paddle::platform::float16>);
......@@ -60,8 +60,13 @@ class GatherNdOp : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
ctx.device_context());
auto* x = ctx.Input<Tensor>("X");
const auto& x_type = x->type();
return framework::OpKernelType(
x_type,
x_type == framework::proto::VarType::BOOL
? x->place() // to be consistent with compare and logical ops
: ctx.device_context().GetPlace());
}
};
......@@ -173,7 +178,7 @@ REGISTER_OPERATOR(gather_nd_grad, ops::GatherNdGradOp,
REGISTER_OP_CPU_KERNEL(gather_nd, ops::GatherNdOpKernel<float>,
ops::GatherNdOpKernel<double>,
ops::GatherNdOpKernel<int64_t>,
ops::GatherNdOpKernel<int>,
ops::GatherNdOpKernel<int>, ops::GatherNdOpKernel<bool>,
ops::GatherNdOpKernel<uint8_t>);
REGISTER_OP_CPU_KERNEL(gather_nd_grad, ops::GatherNdGradOpKernel<float>,
......
......@@ -95,6 +95,7 @@ REGISTER_OP_CUDA_KERNEL(gather_nd, ops::GatherNdOpCUDAKernel<CUDA, float>,
ops::GatherNdOpCUDAKernel<CUDA, double>,
ops::GatherNdOpCUDAKernel<CUDA, int64_t>,
ops::GatherNdOpCUDAKernel<CUDA, int>,
ops::GatherNdOpCUDAKernel<CUDA, bool>,
ops::GatherNdOpCUDAKernel<CUDA, plat::float16>);
REGISTER_OP_CUDA_KERNEL(gather_nd_grad,
......
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/gather_tree_op.h"
namespace paddle {
namespace operators {
class GatherTreeOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Ids"),
"Input(Ids) of GatherTreeOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Parents"),
"Input(Parents) of GatherTreeOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of GatherTreeOp should not be null.");
auto ids_dims = ctx->GetInputDim("Ids");
auto parents_dims = ctx->GetInputDim("Parents");
PADDLE_ENFORCE(ids_dims == parents_dims,
"The shape of Input(Parents) must be same with the shape of "
"Input(Ids).");
ctx->SetOutputDim("Out", ids_dims);
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(ctx.Input<Tensor>("Ids")->type(),
ctx.device_context());
}
};
class GatherTreeOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("Ids",
"The Tensor with shape [length, batch_size, beam_size] containing "
"the selected ids of all time steps.");
AddInput("Parents",
"The Tensor has the same shape as Ids and contains the parents "
"corresponding to selected ids when searching among beams.");
AddOutput(
"Out",
"A Tensor with shape [length, batch_size, beam_size] containing the "
"full sequences. The sequences is collected by backtracing from the "
"last time step of Ids.");
AddComment(R"DOC(
GatherTree Operator.
Backtrace from the last time step and generate the full sequences by collecting beam search
selected ids.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(gather_tree, ops::GatherTreeOp, ops::GatherTreeOpMaker);
REGISTER_OP_CPU_KERNEL(gather_tree, ops::GatherTreeOpKernel<int32_t>,
ops::GatherTreeOpKernel<int64_t>);
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/gather_tree_op.h"
namespace paddle {
namespace operators {
#define CUDA_1D_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
i += blockDim.x * gridDim.x)
template <typename T>
__global__ void GatherTree(const T *ids_data, const T *parents_data,
T *out_data, const int64_t max_length,
const int64_t batch_size, const int64_t beam_size) {
CUDA_1D_KERNEL_LOOP(i, batch_size * beam_size) {
int batch = i / beam_size;
int beam = i % beam_size;
auto idx =
(max_length - 1) * batch_size * beam_size + batch * beam_size + beam;
out_data[idx] = ids_data[idx];
auto parent = parents_data[idx];
for (int step = max_length - 2; step >= 0; step--) {
idx = step * batch_size * beam_size + batch * beam_size;
out_data[idx + beam] = ids_data[idx + parent];
parent = parents_data[idx + parent];
}
}
}
template <typename T>
class GatherTreeOpCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *ids = ctx.Input<Tensor>("Ids");
auto *parents = ctx.Input<Tensor>("Parents");
auto *out = ctx.Output<Tensor>("Out");
const auto *ids_data = ids->data<T>();
const auto *parents_data = parents->data<T>();
auto *out_data = out->mutable_data<T>(ctx.GetPlace());
auto &ids_dims = ids->dims();
int64_t max_length = ids_dims[0];
int64_t batch_size = ids_dims[1];
int64_t beam_size = ids_dims[2];
auto &dev_ctx = ctx.cuda_device_context();
const int block = 512;
int max_threads =
std::min(static_cast<int64_t>(dev_ctx.GetMaxPhysicalThreadCount()),
batch_size * beam_size);
const int grid = std::max(max_threads / block, 1);
GatherTree<<<grid, block>>>(ids_data, parents_data, out_data, max_length,
batch_size, beam_size);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(gather_tree, ops::GatherTreeOpCUDAKernel<int32_t>,
ops::GatherTreeOpCUDAKernel<int64_t>);
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class GatherTreeOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *ids = ctx.Input<Tensor>("Ids");
auto *parents = ctx.Input<Tensor>("Parents");
auto *out = ctx.Output<Tensor>("Out");
const auto *ids_data = ids->data<T>();
const auto *parents_data = parents->data<T>();
auto *out_data = out->mutable_data<T>(ctx.GetPlace());
auto &ids_dims = ids->dims();
auto max_length = ids_dims[0];
auto batch_size = ids_dims[1];
auto beam_size = ids_dims[2];
for (int batch = 0; batch < batch_size; batch++) {
for (int beam = 0; beam < beam_size; beam++) {
auto idx = (max_length - 1) * batch_size * beam_size +
batch * beam_size + beam;
out_data[idx] = ids_data[idx];
auto parent = parents_data[idx];
for (int step = max_length - 2; step >= 0; step--) {
idx = step * batch_size * beam_size + batch * beam_size;
out_data[idx + beam] = ids_data[idx + parent];
parent = parents_data[idx + parent];
}
}
}
}
};
} // namespace operators
} // namespace paddle
......@@ -14,7 +14,9 @@
#include "paddle/fluid/operators/reduce_ops/reduce_all_op.h"
REGISTER_REDUCE_OP_WITHOUT_GRAD(reduce_all);
// kernel's device type is decided by input tensor place, to be consistent with
// compare and logical ops
REGISTER_REDUCE_OP_WITHOUT_GRAD(reduce_all, UseInputPlace);
REGISTER_OP_CPU_KERNEL(reduce_all,
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
bool, ops::AllFunctor>);
......@@ -14,7 +14,9 @@
#include "paddle/fluid/operators/reduce_ops/reduce_any_op.h"
REGISTER_REDUCE_OP_WITHOUT_GRAD(reduce_any);
// kernel's device type is decided by input tensor place, to be consistent with
// compare and logical ops
REGISTER_REDUCE_OP_WITHOUT_GRAD(reduce_any, UseInputPlace);
REGISTER_OP_CPU_KERNEL(reduce_any,
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
bool, ops::AnyFunctor>);
......@@ -223,6 +223,19 @@ class ReduceOp : public framework::OperatorWithKernel {
}
};
class ReduceOpUseInputPlace : public ReduceOp {
public:
using ReduceOp::ReduceOp;
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
framework::OpKernelType kt = OperatorWithKernel::GetExpectedKernelType(ctx);
kt.place_ = ctx.Input<framework::LoDTensor>("X")->place();
return kt;
}
};
class ReduceGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
......@@ -313,11 +326,11 @@ namespace ops = paddle::operators;
paddle::framework::DefaultGradOpDescMaker<true>); \
REGISTER_OPERATOR(op_name##_grad, ops::ReduceGradOp)
#define REGISTER_REDUCE_OP_WITHOUT_GRAD(op_name) \
#define REGISTER_REDUCE_OP_WITHOUT_GRAD(op_name, ...) \
class __##op_name##Maker__ : public ops::ReduceOpMaker { \
protected: \
virtual std::string GetName() const { return #op_name; } \
virtual std::string GetOpType() const { return "Reduce " #op_name; } \
}; \
REGISTER_OPERATOR(op_name, ops::ReduceOp, __##op_name##Maker__, \
REGISTER_OPERATOR(op_name, ops::ReduceOp##__VA_ARGS__, __##op_name##Maker__, \
paddle::framework::EmptyGradOpMaker);
......@@ -120,11 +120,18 @@ class LoDTensorArray2TensorOp : public framework::OperatorBase {
out.Resize(out_dims);
LodTensorArray2LodTensorVector(scope, base_name, Input("X"), &names);
// Invoke concat Op
auto concat_op = framework::OpRegistry::CreateOp(
auto use_stack = Attr<bool>("use_stack");
// Invoke concat Op or stack Op
auto op =
use_stack
? framework::OpRegistry::CreateOp("stack", {{"X", names}},
{{"Y", {Output("Out")}}}, attrs)
: framework::OpRegistry::CreateOp(
"concat", {{"X", names}}, {{"Out", {Output("Out")}}}, attrs);
concat_op->Run(scope, place);
op->Run(scope, place);
}
};
......@@ -139,17 +146,32 @@ class LoDTensorArray2TensorOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<int>("axis",
"The axis along which the input tensors will be concatenated.")
.SetDefault(0);
AddAttr<bool>("use_stack",
"Act as concat_op or stack_op. For stack mode, all tensors "
"in the tensor array must have the same shape.")
.SetDefault(false);
AddComment(R"DOC(
tensor_array_to_tensor Operator.
Concatenate the input LoDTensorArray along dimension axis to the output Tensor.
If use concat mode, concatenate all tensors in the input LoDTensorArray along
axis into the output Tensor.
Examples:
Input = {[1,2], [3,4], [5,6]}
axis = 0
Output = [1,2,3,4,5,6]
OutputIndex = [2,2,2]
If use stack mode, stack all tensors in the input LoDTensorArray along axis into
the output Tensor.
Examples:
Input = {[1,2], [3,4], [5,6]}
axis = 0
Output = [[1,2],
[3,4],
[5,6]]
OutputIndex = [1,1,1]
OutputIndex = [2,2,2]
)DOC");
}
......@@ -157,12 +179,34 @@ Examples:
class LoDTensorArray2TensorOpInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *ctx) const override {}
void operator()(framework::InferShapeContext *ctx) const override {
// in runtime, shape is determined by RunImpl
if (ctx->IsRuntime()) return;
auto dims = ctx->GetInputDim("X");
// if the shape is empty
if (dims == framework::make_ddim({0UL})) return;
// otherwise, suppose the shape of array is the shape of tensor in the
// array, which is consistent with what tensor_array_read_write dose
auto axis = ctx->Attrs().Get<int>("axis");
auto use_stack = ctx->Attrs().Get<bool>("use_stack");
if (use_stack) {
auto dim_vec = framework::vectorize<int>(dims);
// use -1 for the stack dim size
dim_vec.insert(dim_vec.begin() + axis, -1);
dims = framework::make_ddim(dim_vec);
} else {
// use -1 for the concat dim size
dims[axis] = -1;
}
ctx->SetOutputDim("Out", dims);
}
};
class LoDTensorArray2TensorGradInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *context) const override {}
void operator()(framework::InferShapeContext *ctx) const override {
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}
};
class LoDTensorArray2TensorGradInferVarType
......@@ -204,11 +248,18 @@ class LoDTensorArray2TensorGradOp : public framework::OperatorBase {
LodTensorVectorResizeFromLodTensorArray(scope, "grad_name", Input("X"),
&grad_names);
auto concat_grad_op = framework::OpRegistry::CreateOp(
auto use_stack = Attr<bool>("use_stack");
auto grad_op =
use_stack
? framework::OpRegistry::CreateOp(
"stack_grad", {{"X", names}, {"Y@GRAD", {dout_name}}},
{{"X@GRAD", grad_names}}, attrs)
: framework::OpRegistry::CreateOp(
"concat_grad", {{"X", names}, {"Out@GRAD", {dout_name}}},
{{"X@GRAD", grad_names}}, attrs);
concat_grad_op->Run(scope, place);
grad_op->Run(scope, place);
LodTensorArrayCreateFromLodTensorArray(scope, Input("X"), dx_name);
auto &grad_inx =
......
......@@ -35,6 +35,7 @@ from .metric_op import *
from .learning_rate_scheduler import *
from .collective import *
from .distributions import *
from . import rnn
__all__ = []
__all__ += nn.__all__
......@@ -47,3 +48,6 @@ __all__ += detection.__all__
__all__ += metric_op.__all__
__all__ += learning_rate_scheduler.__all__
__all__ += distributions.__all__
__all__ += rnn.__all__
from .rnn import *
......@@ -221,6 +221,7 @@ __all__ = [
'filter_by_instag',
'shard_index',
'hard_swish',
'gather_tree',
'mse_loss',
'uniform_random',
]
......@@ -16994,6 +16995,81 @@ def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
return out
def gather_tree(ids, parents):
"""
To be used after beam search. After beam search, we get selected ids at
each time step and the corresponding parents in the search tree. Both ids
and parents have the layout :attr:`[max_time, batch_size, beam_size]`. Then
:attr:`gather_tree` is used to backtrace from the last time step and
generate the full sequences by collecting selected ids.
Here is an example:
.. code-block:: text
Given:
ids = [[[2 2]
[6 1]]
[[3 9]
[6 1]]
[[0 1]
[9 0]]]
parents = [[[0 0]
[1 1]]
[[1 0]
[1 0]]
[[0 0]
[0 1]]]
Then:
gather_tree(ids, parents)
= [[[2 2]
[1 6]]
[[3 3]
[6 1]]
[[0 1]
[9 0]]]
Args:
ids(Variable): A Tensor with shape :attr:`[length, batch_size, beam_size]`
and data type :attr:`int32` or :attr:`int64`. It contains the selected
ids of all time steps.
parents(Variable): A Tensor with the same shape and data type as :attr:`ids`,
It contains the parents corresponding to selected ids when searching
among beams.
Returns:
Variable: A Tensor with the same shape and data type as :attr:`ids`. \
It contains the full sequences. The sequences are collected from \
:attr:`ids` by backtracing according to :attr:`parents`.
Examples:
.. code-block:: python
import paddle.fluid as fluid
ids = fluid.layers.data(name='ids',
shape=[5, 2, 2],
dtype='int64',
append_batch_size=False)
parents = fluid.layers.data(name='parents',
shape=[5, 2, 2],
dtype='int64',
append_batch_size=False)
final_sequences = fluid.layers.gather_tree(ids, parents)
"""
helper = LayerHelper('gather_tree', **locals())
out = helper.create_variable_for_type_inference(dtype=ids.dtype)
helper.append_op(
type="gather_tree",
inputs={"Ids": ids,
"Parents": parents},
outputs={"Out": out})
return out
def mse_loss(input, label):
"""
This op accepts input predications and target label and returns the mean square error.
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from functools import partial, reduce
from . import nn
from . import tensor
from . import control_flow
from . import utils
from .utils import *
__all__ = [
'RNNCell',
'GRUCell',
'LSTMCell',
'Decoder',
'BeamSearchDecoder',
'rnn',
'dynamic_decode',
]
class RNNCell(object):
"""
RNNCell is the base class for abstraction representing the calculations
mapping the input and state to the output and new state. It is suitable to
and mostly used in RNN.
"""
def call(self, inputs, states, **kwargs):
"""
Every cell must implement this method to do the calculations mapping the
inputs and states to the output and new states.
To be more flexible, both inputs and states can be a tensor variable or
a nested structure (list|tuple|namedtuple|dict) of tensor variable, that
is, a (possibly nested structure of) tensor variable[s].
Parameters:
inputs: A (possibly nested structure of) tensor variable[s].
states: A (possibly nested structure of) tensor variable[s].
**kwargs: Additional keyword arguments, provided by the caller.
Returns:
tuple: outputs and new_states pair. outputs and new_states both \
can be nested structure of tensor variables. new_states must \
have the same structure with states.
"""
raise NotImplementedError("RNNCell must implent the call function.")
def __call__(self, inputs, states, **kwargs):
return self.call(inputs, states, **kwargs)
def get_initial_states(self,
batch_ref,
shape=None,
dtype=None,
init_value=0):
"""
Generate initialized states according to provided shape, data type and
value.
Parameters:
batch_ref: A (possibly nested structure of) tensor variable[s].
The first dimension of the tensor will be used as batch size to
initialize states.
shape: A (possiblely nested structure of) shape[s], where a shape is
represented as a list/tuple of integer). -1(for batch size) will
beautomatically inserted if shape is not started with it. If None,
property `state_shape` will be used. The default value is None.
dtype: A (possiblely nested structure of) data type[s]. The structure
must be same as that of `shape`, except when all tensors' in states
has the same data type, a single data type can be used. If None and
property `cell.state_shape` is not available, float32 will be used
as the data type. The default value is None.
init_value: A float value used to initialize states.
Returns:
Variable: tensor variable[s] packed in the same structure provided \
by shape, representing the initialized states.
"""
# TODO: use inputs and batch_size
batch_ref = flatten(batch_ref)[0]
def _is_shape_sequence(seq):
"""For shape, list/tuple of integer is the finest-grained objection"""
if (isinstance(seq, list) or isinstance(seq, tuple)):
if reduce(lambda flag, x: isinstance(x, int) and flag, seq,
True):
return False
# TODO: Add check for the illegal
if isinstance(seq, dict):
return True
return (isinstance(seq, collections.Sequence) and
not isinstance(seq, six.string_types))
class Shape(object):
def __init__(self, shape):
self.shape = shape if shape[0] == -1 else ([-1] + list(shape))
# nested structure of shapes
states_shapes = self.state_shape if shape is None else shape
is_sequence_ori = utils.is_sequence
utils.is_sequence = _is_shape_sequence
states_shapes = map_structure(lambda shape: Shape(shape), states_shapes)
utils.is_sequence = is_sequence_ori
# nested structure of dtypes
try:
states_dtypes = self.state_dtype if dtype is None else dtype
except NotImplementedError: # use fp32 as default
states_dtypes = "float32"
if len(flatten(states_dtypes)) == 1:
dtype = flatten(states_dtypes)[0]
states_dtypes = map_structure(lambda shape: dtype, states_shapes)
init_states = map_structure(
lambda shape, dtype: tensor.fill_constant_batch_size_like(
input=batch_ref,
shape=shape.shape,
dtype=dtype,
value=init_value), states_shapes, states_dtypes)
return init_states
@property
def state_shape(self):
"""
Used to initialize states.
A (possiblely nested structure of) shape[s], where a shape is represented
as a list/tuple of integers (-1 for batch size would be automatically
inserted into a shape if shape is not started with it).
Not necessary to be implemented if states are not initialized by
`get_initial_states` or the `shape` argument is provided when using
`get_initial_states`.
"""
raise NotImplementedError
@property
def state_dtype(self):
"""
Used to initialize states.
A (possiblely nested structure of) data types[s]. The structure must be
same as that of `shape`, except when all tensors' in states has the same
data type, a signle data type can be used.
Not necessary to be implemented if states are not initialized
by `get_initial_states` or the `dtype` argument is provided when using
`get_initial_states`.
"""
raise NotImplementedError
class GRUCell(RNNCell):
"""
Gated Recurrent Unit cell. It is a wrapper for
`fluid.contrib.layers.rnn_impl.BasicGRUUnit` to make it adapt to RNNCell.
The formula used is as follow:
.. math::
u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)
r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)
\\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}
For more details, please refer to `Learning Phrase Representations using
RNN Encoder Decoder for Statistical Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Examples:
.. code-block:: python
import paddle.fluid.layers as layers
cell = layers.GRUCell(hidden_size=256)
"""
def __init__(self,
hidden_size,
param_attr=None,
bias_attr=None,
gate_activation=None,
activation=None,
dtype="float32",
name="GRUCell"):
"""
Constructor of GRUCell.
Parameters:
hidden_size (int): The hidden size in the GRU cell.
param_attr(ParamAttr, optional): The parameter attribute for the learnable
weight matrix. Default: None.
bias_attr (ParamAttr, optional): The parameter attribute for the bias
of GRU. Default: None.
gate_activation (function, optional): The activation function for :math:`act_g`.
Default: `fluid.layers.sigmoid`.
activation (function, optional): The activation function for :math:`act_c`.
Default: `fluid.layers.tanh`.
dtype(string, optional): The data type used in this cell. Default float32.
name(string, optional) : The name scope used to identify parameters and biases.
"""
self.hidden_size = hidden_size
from .. import contrib # TODO: resolve recurrent import
self.gru_unit = contrib.layers.rnn_impl.BasicGRUUnit(
name, hidden_size, param_attr, bias_attr, gate_activation,
activation, dtype)
def call(self, inputs, states):
"""
Perform calculations of GRU.
Parameters:
inputs(Variable): A tensor with shape `[batch_size, input_size]`,
corresponding to :math:`x_t` in the formula. The data type
should be float32.
states(Variable): A tensor with shape `[batch_size, hidden_size]`.
corresponding to :math:`h_{t-1}` in the formula. The data type
should be float32.
Returns:
tuple: A tuple( :code:`(outputs, new_states)` ), where `outputs` and \
`new_states` is the same tensor shaped `[batch_size, hidden_size]`, \
corresponding to :math:`h_t` in the formula. The data type of the \
tensor is same as that of `states`.
"""
new_hidden = self.gru_unit(inputs, states)
return new_hidden, new_hidden
@property
def state_shape(self):
"""
The `state_shape` of GRUCell is a shape `[hidden_size]` (-1 for batch
size would be automatically inserted into shape). The shape corresponds
to :math:`h_{t-1}`.
"""
return [self.hidden_size]
class LSTMCell(RNNCell):
"""
Long-Short Term Memory cell. It is a wrapper for
`fluid.contrib.layers.rnn_impl.BasicLSTMUnit` to make it adapt to RNNCell.
The formula used is as follow:
.. math::
i_{t} & = act_g(W_{x_{i}}x_{t} + W_{h_{i}}h_{t-1} + b_{i})
f_{t} & = act_g(W_{x_{f}}x_{t} + W_{h_{f}}h_{t-1} + b_{f} + forget\\_bias)
c_{t} & = f_{t}c_{t-1} + i_{t} act_c (W_{x_{c}}x_{t} + W_{h_{c}}h_{t-1} + b_{c})
o_{t} & = act_g(W_{x_{o}}x_{t} + W_{h_{o}}h_{t-1} + b_{o})
h_{t} & = o_{t} act_c (c_{t})
For more details, please refer to `RECURRENT NEURAL NETWORK REGULARIZATION <http://arxiv.org/abs/1409.2329>`_
Examples:
.. code-block:: python
import paddle.fluid.layers as layers
cell = layers.LSTMCell(hidden_size=256)
"""
def __init__(self,
hidden_size,
param_attr=None,
bias_attr=None,
gate_activation=None,
activation=None,
forget_bias=1.0,
dtype="float32",
name="LSTMCell"):
"""
Constructor of LSTMCell.
Parameters:
hidden_size (int): The hidden size in the LSTM cell.
param_attr(ParamAttr, optional): The parameter attribute for the learnable
weight matrix. Default: None.
bias_attr (ParamAttr, optional): The parameter attribute for the bias
of LSTM. Default: None.
gate_activation (function, optional): The activation function for :math:`act_g`.
Default: 'fluid.layers.sigmoid'.
activation (function, optional): The activation function for :math:`act_h`.
Default: 'fluid.layers.tanh'.
forget_bias(float, optional): forget bias used when computing forget gate.
Default 1.0
dtype(string, optional): The data type used in this cell. Default float32.
name(string, optional) : The name scope used to identify parameters and biases.
"""
self.hidden_size = hidden_size
from .. import contrib # TODO: resolve recurrent import
self.lstm_unit = contrib.layers.rnn_impl.BasicLSTMUnit(
name, hidden_size, param_attr, bias_attr, gate_activation,
activation, forget_bias, dtype)
def call(self, inputs, states):
"""
Perform calculations of LSTM.
Parameters:
inputs(Variable): A tensor with shape `[batch_size, input_size]`,
corresponding to :math:`x_t` in the formula. The data type
should be float32.
states(Variable): A list of containing two tensers, each shaped
`[batch_size, hidden_size]`, corresponding to :math:`h_{t-1}, c_{t-1}`
in the formula. The data type should be float32.
Returns:
tuple: A tuple( :code:`(outputs, new_states)` ), where `outputs` is \
a tensor with shape `[batch_size, hidden_size]`, corresponding \
to :math:`h_{t}` in the formula; `new_states` is a list containing \
two tenser variables shaped `[batch_size, hidden_size]`, corresponding \
to :math:`h_{t}, c_{t}` in the formula. The data type of these \
tensors all is same as that of `states`.
"""
pre_hidden, pre_cell = states
new_hidden, new_cell = self.lstm_unit(inputs, pre_hidden, pre_cell)
return new_hidden, [new_hidden, new_cell]
@property
def state_shape(self):
"""
The `state_shape` of LSTMCell is a list with two shapes: `[[hidden_size], [hidden_size]]`
(-1 for batch size would be automatically inserted into shape). These two
shapes correspond to :math:`h_{t-1}` and :math:`c_{t-1}` separately.
"""
return [[self.hidden_size], [self.hidden_size]]
def rnn(cell,
inputs,
initial_states=None,
sequence_length=None,
time_major=False,
is_reverse=False,
**kwargs):
"""
rnn creates a recurrent neural network specified by RNNCell `cell`,
which performs :code:`cell.call()` repeatedly until reachs to the maximum
length of `inputs`.
Parameters:
cell(RNNCell): An instance of `RNNCell`.
inputs(Variable): A (possibly nested structure of) tensor variable[s].
The shape of tensor should be `[batch_size, sequence_length, ...]`
for `time_major == False` or `[sequence_length, batch_size, ...]`
for `time_major == True`. It represents the inputs to be unrolled
in RNN.
initial_states(Variable, optional): A (possibly nested structure of)
tensor variable[s], representing the initial state for RNN.
If not provided, `cell.get_initial_states` would be used to produce
the initial state. Default None.
sequence_length(Variable, optional): A tensor with shape `[batch_size]`.
It stores real length of each instance, thus enables users to extract
the last valid state when past a batch element's sequence length for
correctness. If not provided, the padddings would be treated same as
non-padding inputs. Default None.
time_major(bool, optional): Indicate the data layout of Tensor included
in `input` and `output` tensors. If `False`, the data layout would
be batch major with shape `[batch_size, sequence_length, ...]`. If
`True`, the data layout would be time major with shape
`[sequence_length, batch_size, ...]`. Default: `False`.
is_reverse(bool, optional): Indicate whether to calculate in the reverse
order of input sequences. Default: `False`.
**kwargs: Additional keyword arguments. Arguments passed to `cell.call`.
Returns:
tuple: A tuple( :code:`(final_outputs, final_states)` ) including the final \
outputs and states, both are Tensor or nested structure of Tensor. \
`final_outputs` has the same structure and data types as \
the returned `outputs` of :code:`cell.call` , and each Tenser in `final_outputs` \
stacks all time steps' counterpart in `outputs` thus has shape `[batch_size, sequence_length, ...]` \
for `time_major == False` or `[sequence_length, batch_size, ...]` for `time_major == True`. \
`final_states` is the counterpart at last time step of initial states, \
thus has the same structure with it and has tensors with same shapes \
and data types.
Examples:
.. code-block:: python
import paddle.fluid as fluid
inputs = fluid.data(name="inputs",
shape=[-1, 32, 128],
dtype="float32")
cell = fluid.layers.GRUCell(hidden_size=128)
outputs = fluid.layers.rnn(cell=cell, inputs=inputs)
"""
def _maybe_copy(state, new_state, step_mask):
# TODO: use where_op
new_state = nn.elementwise_mul(
new_state, step_mask, axis=0) - nn.elementwise_mul(
state, (step_mask - 1), axis=0)
return new_state
def _transpose_batch_time(x):
return nn.transpose(x, [1, 0] + list(range(2, len(x.shape))))
def _switch_grad(x, stop=False):
x.stop_gradient = stop
return x
if initial_states is None:
initial_states = cell.get_initial_states(batch_ref=inputs)
initial_states = map_structure(_switch_grad, initial_states)
if not time_major:
inputs = map_structure(_transpose_batch_time, inputs)
if sequence_length:
max_seq_len = nn.shape(flatten(inputs)[0])[0]
mask = nn.sequence_mask(
sequence_length,
maxlen=max_seq_len,
dtype=flatten(initial_states)[0].dtype)
mask = nn.transpose(mask, [1, 0])
if is_reverse:
inputs = map_structure(lambda x: tensor.reverse(x, axis=[0]), inputs)
mask = tensor.reverse(mask, axis=[0]) if sequence_length else None
# StaticRNN
rnn = control_flow.StaticRNN()
with rnn.step():
inputs = map_structure(rnn.step_input, inputs)
states = map_structure(rnn.memory, initial_states)
copy_states = map_structure(lambda x: x, states)
outputs, new_states = cell.call(inputs, copy_states, **kwargs)
assert_same_structure(states, new_states)
if sequence_length:
step_mask = rnn.step_input(mask)
new_states = map_structure(
partial(
_maybe_copy, step_mask=step_mask), states, new_states)
map_structure(rnn.update_memory, states, new_states)
flat_outputs = flatten(outputs)
map_structure(rnn.step_output, outputs)
map_structure(rnn.step_output, new_states)
rnn_out = rnn()
final_outputs = rnn_out[:len(flat_outputs)]
final_outputs = pack_sequence_as(outputs, final_outputs)
final_states = map_structure(lambda x: x[-1], rnn_out[len(flat_outputs):])
final_states = pack_sequence_as(new_states, final_states)
if is_reverse:
final_outputs = map_structure(lambda x: tensor.reverse(x, axis=[0]),
final_outputs)
if not time_major:
final_outputs = map_structure(_transpose_batch_time, final_outputs)
return (final_outputs, final_states)
class Decoder(object):
"""
Decoder is the base class for any decoder instance used in `dynamic_decode`.
It provides interface for output generation for one time step, which can be
used to generate sequences.
The key abstraction provided by Decoder is:
1. :code:`(initial_input, initial_state, finished) = initialize(inits)` ,
which generates the input and state for the first decoding step, and gives the
inintial status telling whether each sequence in the batch is finished.
It would be called once before the decoding iterations.
2. :code:`(output, next_state, next_input, finished) = step(time, input, state)` ,
which transforms the input and state to the output and new state, generates
input for the next decoding step, and emits the flag indicating finished status.
It is the main part for each decoding iteration.
3. :code:`(final_outputs, final_state) = finalize(outputs, final_state, sequence_lengths)` ,
which revises the outputs(stack of all time steps' output) and final state(state from the
last decoding step) to get the counterpart for special usage.
Not necessary to be implemented if no need to revise the stacked outputs and
state from the last decoding step. If implemented, it would be called after
the decoding iterations.
Decoder is more general compared to RNNCell, since the returned `next_input`
and `finished` make it can determine the input and when to finish by itself
when used in dynamic decoding. Decoder always wraps a RNNCell instance though
not necessary.
"""
def initialize(self, inits):
"""
Called once before the decoding iterations.
Parameters:
inits: Argument provided by the caller.
Returns:
tuple: A tuple( :code:(initial_inputs, initial_states, finished)` ). \
`initial_inputs` and `initial_states` both are a (possibly nested \
structure of) tensor variable[s], and `finished` is a tensor with \
bool data type.
"""
raise NotImplementedError
def step(self, time, inputs, states):
"""
Called per step of decoding.
Parameters:
time(Variable): A Tensor with shape :math:`[1]` provided by the caller.
The data type is int64.
inputs(Variable): A (possibly nested structure of) tensor variable[s].
states(Variable): A (possibly nested structure of) tensor variable[s].
Returns:
tuple: A tuple( :code:(outputs, next_states, next_inputs, finished)` ). \
`next_inputs` and `next_states` both are a (possibly nested \
structure of) tensor variable[s], and the structure, shape and \
data type must be same as the counterpart from input arguments. \
`outputs` is a (possibly nested structure of) tensor variable[s]. \
`finished` is a Tensor with bool data type.
"""
raise NotImplementedError
@property
def output_dtype(self):
"""
A (possiblely nested structure of) data type[s]. The structure must be
same as `outputs` returned by `decoder.step`.
"""
raise NotImplementedError
def finalize(self, outputs, final_states, sequence_lengths):
"""
Called once after the decoding iterations if implemented.
Parameters:
outputs(Variable): A (possibly nested structure of) tensor variable[s].
The structure and data type is same as `output_dtype`.
The tensor stacks all time steps' output thus has shape
:math:`[time\_step, batch\_size, ...]` , which is done by the caller.
final_states(Variable): A (possibly nested structure of) tensor variable[s].
It is the `next_states` returned by `decoder.step` at last decoding step,
thus has the same structrue, shape and data type with states at any time
step.
Returns:
tuple: A tuple( :code:`(final_outputs, final_states)` ). \
`final_outputs` and `final_states` both are a (possibly nested \
structure of) tensor variable[s].
"""
raise NotImplementedError
class BeamSearchDecoder(Decoder):
"""
Decoder with beam search decoding strategy. It wraps a cell to get probabilities,
and follows a beam search step to calculate scores and select candidate
token ids for each decoding step.
Please refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
for more details.
**NOTE** When decoding with beam search, the `inputs` and `states` of cell
would be tiled to `beam_size` (unsqueeze and tile), resulting to shapes like
`[batch_size * beam_size, ...]` , which is built into `BeamSearchDecoder` and
done automatically. Thus any other tensor with shape `[batch_size, ...]` used
in `cell.call` needs to be tiled manually first, which can be completed by using
:code:`BeamSearchDecoder.tile_beam_merge_with_batch` . The most common case
for this is the encoder output in attention mechanism.
Examples:
.. code-block:: python
import paddle.fluid as fluid
from paddle.fluid.layers import GRUCell, BeamSearchDecoder
trg_embeder = lambda x: fluid.embedding(
x, size=[10000, 128], param_attr=fluid.ParamAttr(name="trg_embedding"))
output_layer = lambda x: layers.fc(x,
size=10000,
num_flatten_dims=len(x.shape) - 1,
param_attr=fluid.ParamAttr(name=
"output_w"),
bias_attr=False)
decoder_cell = GRUCell(hidden_size=128)
decoder = BeamSearchDecoder(decoder_cell,
start_token=0,
end_token=1,
beam_size=4,
embedding_fn=trg_embeder,
output_fn=output_layer)
"""
def __init__(self,
cell,
start_token,
end_token,
beam_size,
embedding_fn=None,
output_fn=None):
"""
Constructor of BeamSearchDecoder.
Parameters:
cell(RNNCell): An instance of `RNNCell` or object with the same interface.
start_token(int): The start token id.
end_token(int): The end token id.
beam_size(int): The beam width used in beam search.
embedding_fn(optional): A callable to apply to selected candidate ids.
Mostly it is an embedding layer to transform ids to embeddings,
and the returned value acts as the `input` argument for `cell.call`.
**Note that fluid.embedding should be used here rather than
fluid.layers.embedding, since shape of ids is [batch_size, beam_size].
when using fluid.layers.embedding, must unsqueeze in embedding_fn.**
If not provided, the id to embedding transfomation must be built into
`cell.call`. Default None.
output_fn(optional): A callable to apply to the cell's output prior to
calculate scores and select candidate token ids. Default None.
"""
self.cell = cell
self.embedding_fn = embedding_fn
self.output_fn = output_fn
self.start_token = start_token
self.end_token = end_token
self.beam_size = beam_size
@staticmethod
def tile_beam_merge_with_batch(x, beam_size):
"""
Tile the batch dimension of a tensor. Specifically, this function takes
a tensor t shaped `[batch_size, s0, s1, ...]` composed of minibatch
entries `t[0], ..., t[batch_size - 1]` and tiles it to have a shape
`[batch_size * beam_size, s0, s1, ...]` composed of minibatch entries
`t[0], t[0], ..., t[1], t[1], ...` where each minibatch entry is repeated
`beam_size` times.
Parameters:
x(Variable): A tenosr with shape `[batch_size, ...]`. The data type
should be float32, float64, int32, int64 or bool.
beam_size(int): The beam width used in beam search.
Returns:
Variable: A tensor with shape `[batch_size * beam_size, ...]`, whose \
data type is same as `x`.
"""
x = nn.unsqueeze(x, [1]) # [batch_size, 1, ...]
expand_times = [1] * len(x.shape)
expand_times[1] = beam_size
x = nn.expand(x, expand_times) # [batch_size, beam_size, ...]
x = nn.transpose(x, list(range(2, len(x.shape))) +
[0, 1]) # [..., batch_size, beam_size]
# use 0 to copy to avoid wrong shape
x = nn.reshape(
x, shape=[0] *
(len(x.shape) - 2) + [-1]) # [..., batch_size * beam_size]
x = nn.transpose(
x, [len(x.shape) - 1] +
list(range(0, len(x.shape) - 1))) # [batch_size * beam_size, ...]
return x
def _split_batch_beams(self, x):
"""
Reshape a tensor with shape `[batch_size * beam_size, ...]` to a new
tensor with shape `[batch_size, beam_size, ...]`.
Parameters:
x(Variable): A tenosr with shape `[batch_size * beam_size, ...]`. The
data type should be float32, float64, int32, int64 or bool.
Returns:
Variable: A tensor with shape `[batch_size, beam_size, ...]`, whose \
data type is same as `x`.
"""
# TODO: avoid fake shape in compile-time like tile_beam_merge_with_batch
return nn.reshape(x, shape=(-1, self.beam_size) + x.shape[1:])
def _merge_batch_beams(self, x):
"""
Reshape a tensor with shape `[batch_size, beam_size, ...]` to a new
tensor with shape `[batch_size * beam_size, ...]`.
Parameters:
x(Variable): A tenosr with shape `[batch_size, beam_size, ...]`. The
data type should be float32, float64, int32, int64 or bool.
Returns:
Variable: A tensor with shape `[batch_size * beam_size, ...]`, whose \
data type is same as `x`.
"""
# TODO: avoid fake shape in compile-time like tile_beam_merge_with_batch
return nn.reshape(x, shape=(-1, ) + x.shape[2:])
def _expand_to_beam_size(self, x):
"""
This function takes a tensor t shaped `[batch_size, s0, s1, ...]` composed
of minibatch entries `t[0], ..., t[batch_size - 1]` and tiles it to have a
shape `[batch_size, beam_size, s0, s1, ...]` composed of minibatch entries
`t[0], t[0], ..., t[1], t[1], ...` where each minibatch entry is repeated
`beam_size` times.
Parameters:
probs(Variable): A tensor with shape `[batch_size, ...]`, representing
the log probabilities. Its data type should be float32.
finished(Variable): A tensor with shape `[batch_size, beam_size]`,
representing the finished status for all beams. Its data type
should be bool.
Returns:
Variable: A tensor with shape `[batch_size, beam_size, ...]`, whose \
data type is same as `x`.
"""
x = nn.unsqueeze(x, [1])
expand_times = [1] * len(x.shape)
expand_times[1] = self.beam_size
x = nn.expand(x, expand_times)
return x
def _mask_probs(self, probs, finished):
"""
Mask log probabilities. It forces finished beams to allocate all probability
mass to eos and unfinished beams to remain unchanged.
Parameters:
probs(Variable): A tensor with shape `[batch_size, beam_size, vocab_size]`,
representing the log probabilities. Its data type should be float32.
finished(Variable): A tensor with shape `[batch_size, beam_size]`,
representing the finished status for all beams. Its data type
should be bool.
Returns:
Variable: A tensor with the same shape and data type as `x`, \
where unfinished beams stay unchanged and finished beams are \
replaced with a tensor with all probability on the EOS token.
"""
# TODO: use where_op
finished = tensor.cast(finished, dtype=probs.dtype)
probs = nn.elementwise_mul(
nn.expand(nn.unsqueeze(finished, [2]), [1, 1, self.vocab_size]),
self.noend_mask_tensor,
axis=-1) - nn.elementwise_mul(
probs, (finished - 1), axis=0)
return probs
def _gather(self, x, indices, batch_size):
"""
Gather from the tensor `x` using `indices`.
Parameters:
x(Variable): A tensor with shape `[batch_size, beam_size, ...]`.
indices(Variable): A `int64` tensor with shape `[batch_size, beam_size]`,
representing the indices that we use to gather.
batch_size(Variable): A tensor with shape `[1]`. Its data type should
be int32 or int64.
Returns:
Variable: A tensor with the same shape and data type as `x`, \
representing the gathered tensor.
"""
# TODO: compatibility of int32 and int64
batch_size = tensor.cast(
batch_size,
indices.dtype) if batch_size.dtype != indices.dtype else batch_size
batch_pos = nn.expand(
nn.unsqueeze(
tensor.range(
0, batch_size, 1, dtype=indices.dtype), [1]),
[1, self.beam_size])
topk_coordinates = nn.stack([batch_pos, indices], axis=2)
return nn.gather_nd(x, topk_coordinates)
class OutputWrapper(
collections.namedtuple("OutputWrapper",
("scores", "predicted_ids", "parent_ids"))):
"""
The structure for the returned value `outputs` of `decoder.step`.
A namedtuple includes scores, predicted_ids, parent_ids as fields.
"""
pass
class StateWrapper(
collections.namedtuple(
"StateWrapper",
("cell_states", "log_probs", "finished", "lengths"))):
"""
The structure for the argument `states` of `decoder.step`.
A namedtuple includes cell_states, log_probs, finished, lengths as fields.
"""
pass
def initialize(self, initial_cell_states):
"""
Initialize the BeamSearchDecoder.
Parameters:
initial_cell_states(Variable): A (possibly nested structure of)
tensor variable[s]. An argument provided by the caller.
Returns:
tuple: A tuple( :code:`(initial_inputs, initial_states, finished)` ). \
`initial_inputs` is a tensor t filled by `start_token` with shape \
`[batch_size, beam_size, 1]` when `embedding_fn` is None, or the \
returned value of `embedding_fn(t)` when `embedding_fn` is provided. \
`initial_states` is a nested structure(namedtuple including cell_states, \
log_probs, finished, lengths as fields) of tensor variables, where \
`log_probs, finished, lengths` all has a tensor value shaped \
`[batch_size, beam_size]` with data type `float32, bool, int64`. \
cell_states has a value with the same structure as the input \
argument `initial_cell_states` but with tiled shape `[batch_size, beam_size, ...]`. \
`finished` is a `bool` tensor filled by False with shape `[batch_size, beam_size]`.
"""
self.kinf = 1e9
state = flatten(initial_cell_states)[0]
self.batch_size = nn.shape(state)[0]
self.start_token_tensor = tensor.fill_constant(
shape=[1], dtype="int64", value=self.start_token)
self.end_token_tensor = tensor.fill_constant(
shape=[1], dtype="int64", value=self.end_token)
init_cell_states = map_structure(self._expand_to_beam_size,
initial_cell_states)
# TODO: use fill_constant when support variable shape
init_inputs = nn.expand(
nn.unsqueeze(
nn.expand(self.start_token_tensor, [self.batch_size]), [1]),
[1, self.beam_size])
log_probs = nn.expand(
tensor.assign(
np.array(
[[0.] + [-self.kinf] * (self.beam_size - 1)],
dtype="float32")), [self.batch_size, 1])
# TODO: remove the restriction of force_cpu
init_finished = tensor.fill_constant_batch_size_like(
input=state,
shape=[-1, self.beam_size],
dtype="bool",
value=False,
force_cpu=True)
init_lengths = tensor.zeros_like(init_inputs)
init_inputs = self.embedding_fn(
init_inputs) if self.embedding_fn else init_inputs
return init_inputs, self.StateWrapper(init_cell_states, log_probs,
init_finished,
init_lengths), init_finished
def _beam_search_step(self, time, logits, next_cell_states, beam_state):
"""
Calculate scores and select candidate token ids.
Parameters:
time(Variable): An `int64` tensor with shape `[1]` provided by the caller,
representing the current time step number of decoding.
logits(Variable): A tensor with shape `[batch_size, beam_size, vocab_size]`,
representing the logits at the current time step. Its data type is float32.
next_cell_states(Variable): A (possibly nested structure of) tensor variable[s].
It has the same structure, shape and data type as the `cell_states` of
`initial_states` returned by `initialize()`. It represents the next state
from the cell.
beam_state(Variable): A structure of tensor variables.
It is same as the `initial_states` returned by `initialize()` for
the first decoding step and `beam_search_state` returned by
`initialize()` for the others.
Returns:
tuple: A tuple( :code:`(beam_search_output, beam_search_state)` ). \
`beam_search_output` is a namedtuple(including scores, predicted_ids, \
parent_ids as fields) of tensor variables, where \
`scores, predicted_ids, parent_ids` all has a tensor value shaped \
`[batch_size, beam_size]` with data type `float32, int64, int64`.
`beam_search_state` has the same structure, shape and data type \
as the input argument `beam_state`.
"""
self.vocab_size = logits.shape[-1]
self.vocab_size_tensor = tensor.fill_constant(
shape=[1], dtype="int64", value=self.vocab_size)
noend_array = [-self.kinf] * self.vocab_size
noend_array[self.end_token] = 0
self.noend_mask_tensor = tensor.assign(np.array(noend_array, "float32"))
step_log_probs = nn.log(nn.softmax(logits))
step_log_probs = self._mask_probs(step_log_probs, beam_state.finished)
log_probs = nn.elementwise_add(
x=step_log_probs, y=beam_state.log_probs, axis=0)
# TODO: length penalty
scores = log_probs
scores = nn.reshape(scores, [-1, self.beam_size * self.vocab_size])
topk_scores, topk_indices = nn.topk(input=scores, k=self.beam_size)
beam_indices = nn.elementwise_floordiv(topk_indices,
self.vocab_size_tensor)
token_indices = nn.elementwise_mod(topk_indices, self.vocab_size_tensor)
next_log_probs = self._gather(
nn.reshape(log_probs, [-1, self.beam_size * self.vocab_size]),
topk_indices, self.batch_size)
next_cell_states = map_structure(
lambda x: self._gather(x, beam_indices, self.batch_size),
next_cell_states)
next_finished = self._gather(beam_state.finished, beam_indices,
self.batch_size)
next_lengths = self._gather(beam_state.lengths, beam_indices,
self.batch_size)
next_lengths = next_lengths + tensor.cast(
nn.logical_not(next_finished), beam_state.lengths.dtype)
next_finished = control_flow.logical_or(
next_finished,
control_flow.equal(token_indices, self.end_token_tensor))
beam_search_output = self.OutputWrapper(topk_scores, token_indices,
beam_indices)
beam_search_state = self.StateWrapper(next_cell_states, next_log_probs,
next_finished, next_lengths)
return beam_search_output, beam_search_state
def step(self, time, inputs, states, **kwargs):
"""
Perform a beam search decoding step, which uses `cell` to get probabilities,
and follows a beam search step to calculate scores and select candidate
token ids.
Parameters:
time(Variable): An `int64` tensor with shape `[1]` provided by the caller,
representing the current time step number of decoding.
inputs(Variable): A tensor variable. It is same as `initial_inputs`
returned by `initialize()` for the first decoding step and
`next_inputs` returned by `step()` for the others.
states(Variable): A structure of tensor variables.
It is same as the `initial_states` returned by `initialize()` for
the first decoding step and `beam_search_state` returned by
`step()` for the others.
**kwargs: Additional keyword arguments, provided by the caller.
Returns:
tuple: A tuple( :code:`(beam_search_output, beam_search_state, next_inputs, finished)` ). \
`beam_search_state` and `next_inputs` have the same structure, \
shape and data type as the input arguments `states` and `inputs` separately. \
`beam_search_output` is a namedtuple(including scores, predicted_ids, \
parent_ids as fields) of tensor variables, where \
`scores, predicted_ids, parent_ids` all has a tensor value shaped \
`[batch_size, beam_size]` with data type `float32, int64, int64`. \
`finished` is a `bool` tensor with shape `[batch_size, beam_size]`.
"""
inputs = map_structure(self._merge_batch_beams, inputs)
cell_states = map_structure(self._merge_batch_beams, states.cell_states)
cell_outputs, next_cell_states = self.cell(inputs, cell_states,
**kwargs)
cell_outputs = map_structure(self._split_batch_beams, cell_outputs)
next_cell_states = map_structure(self._split_batch_beams,
next_cell_states)
if self.output_fn is not None:
cell_outputs = self.output_fn(cell_outputs)
beam_search_output, beam_search_state = self._beam_search_step(
time=time,
logits=cell_outputs,
next_cell_states=next_cell_states,
beam_state=states)
finished = beam_search_state.finished
sample_ids = beam_search_output.predicted_ids
next_inputs = self.embedding_fn(
sample_ids) if self.embedding_fn else sample_ids
return (beam_search_output, beam_search_state, next_inputs, finished)
def finalize(self, outputs, final_states, sequence_lengths):
"""
Use `gather_tree` to backtrace along the beam search tree and construct
the full predicted sequences.
Parameters:
outputs(Variable): A structure(namedtuple) of tensor variables,
The structure and data type is same as `output_dtype`.
The tensor stacks all time steps' output thus has shape
`[time_step, batch_size, ...]`, which is done by the caller.
final_states(Variable): A structure(namedtuple) of tensor variables.
It is the `next_states` returned by `decoder.step` at last
decoding step, thus has the same structrue, shape and data type
with states at any time step.
sequence_lengths(Variable): An `int64` tensor shaped `[batch_size, beam_size]`.
It contains sequence lengths for each beam determined during
decoding.
Returns:
tuple: A tuple( :code:`(predicted_ids, final_states)` ). \
`predicted_ids` is an `int64` tensor shaped \
`[time_step, batch_size, beam_size]`. `final_states` is the same \
as the input argument `final_states`.
"""
predicted_ids = nn.gather_tree(outputs.predicted_ids,
outputs.parent_ids)
# TODO: use FinalBeamSearchDecoderOutput as output
return predicted_ids, final_states
@property
def output_dtype(self):
"""
The nested structure of data types for beam search output. It is a namedtuple
including scores, predicted_ids, parent_ids as fields.
"""
return self.OutputWrapper(
scores="float32", predicted_ids="int64", parent_ids="int64")
def dynamic_decode(decoder,
inits=None,
max_step_num=None,
output_time_major=False,
**kwargs):
"""
Dynamic decoding performs :code:`decoder.step()` repeatedly until the returned
Tensor indicating finished status contains all True values or the number of
decoding step reachs to :attr:`max_step_num`.
:code:`decoder.initialize()` would be called once before the decoding loop.
If the `decoder` has implemented `finalize` method, :code:`decoder.finalize()`
would be called once after the decoding loop.
Parameters:
decoder(Decoder): An instance of `Decoder`.
inits(object, optional): Argument passed to `decoder.initialize`.
Default `None`.
max_step_num(int, optional): The maximum number of steps. If not provided,
decode until the decoder is fully done, or in other words, the returned
Tensor by :code:`decoder.step()` indicating finished status contains
all True). Default `None`.
output_time_major(bool, optional): Indicate the data layout of Tensor included
in the final outpus(the first returned value of this method). If
attr:`False`, the data layout would be batch major with shape
`[batch_size, seq_len, ...]`. If attr:`True`, the data layout would
be time major with shape `[seq_len, batch_size, ...]`. Default: `False`.
**kwargs: Additional keyword arguments. Arguments passed to `decoder.step`.
Returns:
tuple: A tuple( :code:`(final_outputs, final_states)` ) including the final \
outputs and states, both are Tensor or nested structure of Tensor. \
`final_outputs` has the same structure and data types as \
:code:`decoder.output_dtype` , and each Tenser in `final_outputs` \
is the stacked of all decoding steps' outputs, which might be revised \
by :code:`decoder.finalize` . `final_states` is the counterpart \
at last time step of initial states returned by :code:`decoder.initialize` , \
thus has the same structure with it and has tensors with same shapes \
and data types.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid.layers import GRUCell, BeamSearchDecoder, dynamic_decode
encoder_output = fluid.data(name="encoder_output",
shape=[-1, 32, 128],
dtype="float32")
trg_embeder = lambda x: fluid.embedding(
x, size=[10000, 128], param_attr=fluid.ParamAttr(name="trg_embedding"))
output_layer = lambda x: layers.fc(x,
size=10000,
num_flatten_dims=len(x.shape) - 1,
param_attr=fluid.ParamAttr(name=
"output_w"),
bias_attr=False)
decoder_cell = GRUCell(hidden_size=128)
decoder = BeamSearchDecoder(decoder_cell,
start_token=0,
end_token=1,
beam_size=4,
embedding_fn=trg_embeder,
output_fn=output_layer)
outputs = dynamic_decode(
decoder=decoder, inits=decoder_cell.get_initial_states(encoder_output))
"""
initial_inputs, initial_states, initial_finished = decoder.initialize(inits)
global_inputs, global_states, global_finished = (
initial_inputs, initial_states, initial_finished)
step_idx = tensor.fill_constant(shape=[1], dtype="int64", value=0)
cond = control_flow.logical_not((nn.reduce_all(initial_finished)))
if max_step_num is not None:
max_step_num = tensor.fill_constant(
shape=[1], dtype="int64", value=max_step_num)
while_op = control_flow.While(cond)
inputs = map_structure(lambda x: x, initial_inputs)
states = map_structure(lambda x: x, initial_states)
outputs_arrays = map_structure(
lambda dtype: control_flow.create_array(dtype), decoder.output_dtype)
sequence_lengths = tensor.cast(tensor.zeros_like(initial_finished), "int64")
def _maybe_copy(state, new_state, step_mask):
# TODO: use where_op
new_state = nn.elementwise_mul(
new_state, step_mask, axis=0) - nn.elementwise_mul(
state, (step_mask - 1), axis=0)
return new_state
def _transpose_batch_time(x):
return nn.transpose(x, [1, 0] + list(range(2, len(x.shape))))
# While
with while_op.block():
(outputs, next_states, next_inputs,
next_finished) = decoder.step(step_idx, inputs, states, **kwargs)
next_sequence_lengths = nn.elementwise_add(
sequence_lengths,
tensor.cast(
control_flow.logical_not(global_finished),
sequence_lengths.dtype))
map_structure(
lambda x, x_array: control_flow.array_write(
x, i=step_idx, array=x_array), outputs, outputs_arrays)
control_flow.increment(x=step_idx, value=1.0, in_place=True)
map_structure(tensor.assign, next_inputs, global_inputs)
map_structure(tensor.assign, next_states, global_states)
tensor.assign(next_finished, global_finished)
tensor.assign(next_sequence_lengths, sequence_lengths)
if max_step_num is not None:
control_flow.logical_and(
control_flow.logical_not(nn.reduce_all(next_finished)),
control_flow.less_equal(step_idx, max_step_num), cond)
else:
control_flow.logical_not(nn.reduce_all(next_finished), cond)
final_outputs = map_structure(
lambda array: tensor.tensor_array_to_tensor(
array, axis=0, use_stack=True)[0], outputs_arrays)
final_states = global_states
try:
final_outputs, final_states = decoder.finalize(
final_outputs, global_states, sequence_lengths)
except NotImplementedError:
pass
if not output_time_major:
final_outputs = map_structure(_transpose_batch_time, final_outputs)
return final_outputs, final_states
......@@ -273,50 +273,85 @@ def concat(input, axis=0, name=None):
return out
def tensor_array_to_tensor(input, axis=1, name=None):
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
"""
This OP concatenates the input LodTensorArray along the axis.
This function concatenates or stacks all tensors in the input LoDTensorArray
along the axis mentioned and returns that as the output.
For Example:
.. code-block:: text
Case 1:
Given:
input.data = {[[0.6, 0.1, 0.3],
[0.5, 0.3, 0.2]],
[[1.3],
[1.8]],
[[2.3, 2.1],
[2.5, 2.4]]}
axis = 1, use_stack = False
Then:
output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
[0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]
output_index.data = [3, 1, 2]
Case 2:
Given:
input.data = {[[0.6, 0.1],
[0.5, 0.3]],
[[0.3, 1.3],
[0.2, 1.8]],
[[2.3, 2.1],
[2.5, 2.4]]}
axis = 1, use_stack = True
Then:
output.data = [[[0.6, 0.1]
[0.3, 1.3]
[2.3, 2.1],
[[0.5, 0.3]
[0.2, 1.8]
[2.5, 2.4]]]
output_index.data = [2, 2, 2]
Args:
input(Variable): A LodTensorArray with data type float32, float64, int32,
int64.
axis(int, optional): Axis to compute indices along. The effective range
is [-R, R), where R is Rank(x). when axis<0, it works the same way
as axis+R. Default is 1.
name (str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
input(Variable): A LodTensorArray variable.
axis(int): The axis along which the tensors in attr::`input` will be
concatenated or stacked.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
use_stack(bool): Act as concat_op or stack_op. For stack mode, all
tensors in the tensor array must have the same shape.
Returns:
Variable: A LoDTensor with the same data type as input's
Variable: The input LodTensorArray items' dims along the axis.
Variable: The concatenated or stacked tensor variable.
Variable: A 1-D tensor variable with int32 data type. The data in this \
tensor contains all input including tensors' sizes along the axis.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
place = fluid.CPUPlace()
x1 = fluid.data(name="x", shape=[2,2], lod_level=0)
tmp = fluid.layers.fill_constant(shape=[2,3], dtype="float32", value=1)
x_arr = fluid.layers.create_array(dtype="float32")
c0 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
fluid.layers.array_write(x=tmp, i=c0, array=x_arr)
c1 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
fluid.layers.array_write(x=x1, i=c1, array=x_arr)
output, output_index = fluid.layers.tensor_array_to_tensor(input=x_arr, axis=1)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
feedx = fluid.LoDTensor()
feedx.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
res = exe.run(fluid.default_main_program(), feed={'x':feedx}, fetch_list=[output], return_numpy=False)
print(np.array(res[0]))
# [[ 1. 1. 1. 1.3 -2.4]
# [ 1. 1. 1. 0. 4. ]]
x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
array = fluid.layers.create_array(dtype='float32')
fluid.layers.array_write(x0, i, array)
fluid.layers.array_write(x1, i + 1, array)
output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
"""
helper = LayerHelper('tensor_array_to_tensor', **locals())
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
......@@ -326,7 +361,8 @@ def tensor_array_to_tensor(input, axis=1, name=None):
inputs={'X': input},
outputs={'Out': [out],
'OutIndex': [out_index]},
attrs={'axis': axis})
attrs={'axis': axis,
'use_stack': use_stack})
return out, out_index
......@@ -517,7 +553,8 @@ def fill_constant_batch_size_like(input,
dtype,
value,
input_dim_idx=0,
output_dim_idx=0):
output_dim_idx=0,
force_cpu=False):
"""
This OP creates a Tesnor accroding the shape and dtype, and initializes the
Tensor with the constants provided in ``value``. When the input is LoDTensor
......@@ -537,6 +574,7 @@ def fill_constant_batch_size_like(input,
The default value is 0.
output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
the value of batch_size of input Tensor. The default value is 0.
force_cpu(bool): data should be on CPU if it's true, defalut value is False.
Returns:
Variable: Tensor which will be created according to dtype.
......@@ -562,7 +600,8 @@ def fill_constant_batch_size_like(input,
'dtype': out.dtype,
'value': float(value),
'input_dim_idx': input_dim_idx,
'output_dim_idx': output_dim_idx
'output_dim_idx': output_dim_idx,
'force_cpu': force_cpu or force_init_on_cpu()
})
out.stop_gradient = True
return out
......
......@@ -13,6 +13,8 @@
# limitations under the License.
from __future__ import print_function
import collections
import six
import numpy as np
......@@ -59,3 +61,173 @@ def convert_to_list(value, n, name, dtype=np.int):
"including element " + str(single_value) + " of type" + " "
+ str(type(single_value)))
return value_list
def is_sequence(seq):
"""
Whether `seq` is an entry or nested structure
"""
if isinstance(seq, dict):
return True
return (isinstance(seq, collections.Sequence) and
not isinstance(seq, six.string_types))
def _sorted(dict_):
"""
Returns a sorted list of the dict keys, with error if keys not sortable.
"""
try:
return sorted(six.iterkeys(dict_))
except TypeError:
raise TypeError("nest only supports dicts with sortable keys.")
def _yield_value(iterable):
if isinstance(iterable, dict):
# Iterate through dictionaries in a deterministic order by sorting the
# keys. Notice this means that we ignore the original order of `OrderedDict`
# instances. This is intentional, to avoid potential bugs caused by mixing
# ordered and plain dicts (e.g., flattening a dict but using a
# corresponding `OrderedDict` to pack it back).
for key in _sorted(iterable):
yield iterable[key]
else:
for value in iterable:
yield value
def _yield_flat_nest(nest):
for n in _yield_value(nest):
if is_sequence(n):
for ni in _yield_flat_nest(n):
yield ni
else:
yield n
def flatten(nest):
"""
Traverse all entries in the nested structure and put them into an list.
"""
if is_sequence(nest):
return list(_yield_flat_nest(nest))
else:
return [nest]
def _sequence_like(instance, args):
"""
Convert the sequence `args` to the same type as `instance`.
"""
if isinstance(instance, dict):
# Pack dictionaries in a deterministic order by sorting the keys.
# Notice this means that we ignore the original order of `OrderedDict`
# instances. This is intentional, to avoid potential bugs caused by mixing
# ordered and plain dicts (e.g., flattening a dict but using a
# corresponding `OrderedDict` to pack it back).
result = dict(zip(_sorted(instance), args))
return type(instance)((key, result[key])
for key in six.iterkeys(instance))
elif (isinstance(instance, tuple) and hasattr(instance, "_fields") and
isinstance(instance._fields, collections.Sequence) and
all(isinstance(f, six.string_types) for f in instance._fields)):
# This is a namedtuple
return type(instance)(*args)
else:
# Not a namedtuple
return type(instance)(args)
def _packed_nest_with_indices(structure, flat, index):
"""
Helper function for pack_sequence_as.
"""
packed = []
for s in _yield_value(structure):
if is_sequence(s):
new_index, child = _packed_nest_with_indices(s, flat, index)
packed.append(_sequence_like(s, child))
index = new_index
else:
packed.append(flat[index])
index += 1
return index, packed
def pack_sequence_as(structure, flat_sequence):
"""
Pack a given flattened sequence into a given structure.
"""
if not is_sequence(flat_sequence):
raise TypeError("flat_sequence must be a sequence")
if not is_sequence(structure):
if len(flat_sequence) != 1:
raise ValueError(
"Structure is a scalar but len(flat_sequence) == %d > 1" %
len(flat_sequence))
return flat_sequence[0]
flat_structure = flatten(structure)
if len(flat_structure) != len(flat_sequence):
raise ValueError(
"Could not pack sequence. Structure had %d elements, but flat_sequence "
"had %d elements. Structure: %s, flat_sequence: %s." %
(len(flat_structure), len(flat_sequence), structure, flat_sequence))
_, packed = _packed_nest_with_indices(structure, flat_sequence, 0)
return _sequence_like(structure, packed)
def map_structure(func, *structure):
"""
Apply `func` to each entry in `structure` and return a new structure.
"""
flat_structure = [flatten(s) for s in structure]
entries = zip(*flat_structure)
return pack_sequence_as(structure[0], [func(*x) for x in entries])
def _recursive_assert_same_structure(nest1, nest2, check_types):
"""
Helper function for `assert_same_structure`.
"""
is_sequence_nest1 = is_sequence(nest1)
if is_sequence_nest1 != is_sequence(nest2):
raise ValueError(
"The two structures don't have the same nested structure.\n\n"
"First structure: %s\n\nSecond structure: %s." % (nest1, nest2))
if not is_sequence_nest1:
return # finished checking
if check_types:
type_nest1 = type(nest1)
type_nest2 = type(nest2)
if type_nest1 != type_nest2:
raise TypeError(
"The two structures don't have the same sequence type. First "
"structure has type %s, while second structure has type %s." %
(type_nest1, type_nest2))
if isinstance(nest1, dict):
keys1 = set(six.iterkeys(nest1))
keys2 = set(six.iterkeys(nest2))
if keys1 != keys2:
raise ValueError(
"The two dictionaries don't have the same set of keys. First "
"structure has keys {}, while second structure has keys {}."
.format(keys1, keys2))
nest1_as_sequence = [n for n in _yield_value(nest1)]
nest2_as_sequence = [n for n in _yield_value(nest2)]
for n1, n2 in zip(nest1_as_sequence, nest2_as_sequence):
_recursive_assert_same_structure(n1, n2, check_types)
def assert_same_structure(nest1, nest2, check_types=True):
"""
Confirm two nested structures with the same structure.
"""
len_nest1 = len(flatten(nest1)) if is_sequence(nest1) else 1
len_nest2 = len(flatten(nest2)) if is_sequence(nest2) else 1
if len_nest1 != len_nest2:
raise ValueError("The two structures don't have the same number of "
"elements.\n\nFirst structure (%i elements): %s\n\n"
"Second structure (%i elements): %s" %
(len_nest1, nest1, len_nest2, nest2))
_recursive_assert_same_structure(nest1, nest2, check_types)
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid as fluid
class TestGatherTreeOp(OpTest):
def setUp(self):
self.op_type = "gather_tree"
max_length, batch_size, beam_size = 5, 2, 2
ids = np.random.randint(
0, high=10, size=(max_length, batch_size, beam_size))
parents = np.random.randint(
0, high=beam_size, size=(max_length, batch_size, beam_size))
self.inputs = {"Ids": ids, "Parents": parents}
self.outputs = {'Out': self.backtrace(ids, parents)}
def test_check_output(self):
self.check_output()
@staticmethod
def backtrace(ids, parents):
out = np.zeros_like(ids)
(max_length, batch_size, beam_size) = ids.shape
for batch in range(batch_size):
for beam in range(beam_size):
out[max_length - 1, batch, beam] = ids[max_length - 1, batch,
beam]
parent = parents[max_length - 1, batch, beam]
for step in range(max_length - 2, -1, -1):
out[step, batch, beam] = ids[step, batch, parent]
parent = parents[step, batch, parent]
return out
class TestGatherTreeOpAPI(OpTest):
def test_case(self):
ids = fluid.layers.data(
name='ids', shape=[5, 2, 2], dtype='int64', append_batch_size=False)
parents = fluid.layers.data(
name='parents',
shape=[5, 2, 2],
dtype='int64',
append_batch_size=False)
final_sequences = fluid.layers.gather_tree(ids, parents)
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from paddle.fluid.executor import Executor
from paddle.fluid import framework
from paddle.fluid.layers.rnn import LSTMCell, GRUCell, RNNCell
from paddle.fluid.layers import rnn as dynamic_rnn
from paddle.fluid import contrib
from paddle.fluid.contrib.layers import basic_lstm
import paddle.fluid.layers.utils as utils
import numpy as np
class TestLSTMCell(unittest.TestCase):
def setUp(self):
self.batch_size = 4
self.input_size = 16
self.hidden_size = 16
def test_run(self):
inputs = fluid.data(
name='inputs', shape=[None, self.input_size], dtype='float32')
pre_hidden = fluid.data(
name='pre_hidden', shape=[None, self.hidden_size], dtype='float32')
pre_cell = fluid.data(
name='pre_cell', shape=[None, self.hidden_size], dtype='float32')
cell = LSTMCell(self.hidden_size)
lstm_hidden_new, lstm_states_new = cell(inputs, [pre_hidden, pre_cell])
lstm_unit = contrib.layers.rnn_impl.BasicLSTMUnit(
"basicLSTM", self.hidden_size, None, None, None, None, 1.0,
"float32")
lstm_hidden, lstm_cell = lstm_unit(inputs, pre_hidden, pre_cell)
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
exe = Executor(place)
exe.run(framework.default_startup_program())
inputs_np = np.random.uniform(
-0.1, 0.1, (self.batch_size, self.input_size)).astype('float32')
pre_hidden_np = np.random.uniform(
-0.1, 0.1, (self.batch_size, self.hidden_size)).astype('float32')
pre_cell_np = np.random.uniform(
-0.1, 0.1, (self.batch_size, self.hidden_size)).astype('float32')
param_names = [[
"LSTMCell/BasicLSTMUnit_0.w_0", "basicLSTM/BasicLSTMUnit_0.w_0"
], ["LSTMCell/BasicLSTMUnit_0.b_0", "basicLSTM/BasicLSTMUnit_0.b_0"]]
for names in param_names:
param = np.array(fluid.global_scope().find_var(names[0]).get_tensor(
))
param = np.random.uniform(
-0.1, 0.1, size=param.shape).astype('float32')
fluid.global_scope().find_var(names[0]).get_tensor().set(param,
place)
fluid.global_scope().find_var(names[1]).get_tensor().set(param,
place)
out = exe.run(feed={
'inputs': inputs_np,
'pre_hidden': pre_hidden_np,
'pre_cell': pre_cell_np
},
fetch_list=[lstm_hidden_new, lstm_hidden])
self.assertTrue(np.allclose(out[0], out[1], rtol=1e-4, atol=0))
class TestGRUCell(unittest.TestCase):
def setUp(self):
self.batch_size = 4
self.input_size = 16
self.hidden_size = 16
def test_run(self):
inputs = fluid.data(
name='inputs', shape=[None, self.input_size], dtype='float32')
pre_hidden = layers.data(
name='pre_hidden',
shape=[None, self.hidden_size],
append_batch_size=False,
dtype='float32')
cell = GRUCell(self.hidden_size)
gru_hidden_new, _ = cell(inputs, pre_hidden)
gru_unit = contrib.layers.rnn_impl.BasicGRUUnit(
"basicGRU", self.hidden_size, None, None, None, None, "float32")
gru_hidden = gru_unit(inputs, pre_hidden)
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
exe = Executor(place)
exe.run(framework.default_startup_program())
inputs_np = np.random.uniform(
-0.1, 0.1, (self.batch_size, self.input_size)).astype('float32')
pre_hidden_np = np.random.uniform(
-0.1, 0.1, (self.batch_size, self.hidden_size)).astype('float32')
param_names = [
["GRUCell/BasicGRUUnit_0.w_0", "basicGRU/BasicGRUUnit_0.w_0"],
["GRUCell/BasicGRUUnit_0.w_1", "basicGRU/BasicGRUUnit_0.w_1"],
["GRUCell/BasicGRUUnit_0.b_0", "basicGRU/BasicGRUUnit_0.b_0"],
["GRUCell/BasicGRUUnit_0.b_1", "basicGRU/BasicGRUUnit_0.b_1"]
]
for names in param_names:
param = np.array(fluid.global_scope().find_var(names[0]).get_tensor(
))
param = np.random.uniform(
-0.1, 0.1, size=param.shape).astype('float32')
fluid.global_scope().find_var(names[0]).get_tensor().set(param,
place)
fluid.global_scope().find_var(names[1]).get_tensor().set(param,
place)
out = exe.run(feed={'inputs': inputs_np,
'pre_hidden': pre_hidden_np},
fetch_list=[gru_hidden_new, gru_hidden])
self.assertTrue(np.allclose(out[0], out[1], rtol=1e-4, atol=0))
class TestRnn(unittest.TestCase):
def setUp(self):
self.batch_size = 4
self.input_size = 16
self.hidden_size = 16
self.seq_len = 4
def test_run(self):
inputs_basic_lstm = fluid.data(
name='inputs_basic_lstm',
shape=[None, None, self.input_size],
dtype='float32')
sequence_length = fluid.data(
name="sequence_length", shape=[None], dtype='int64')
inputs_dynamic_rnn = layers.transpose(inputs_basic_lstm, perm=[1, 0, 2])
cell = LSTMCell(self.hidden_size, name="LSTMCell_for_rnn")
output, final_state = dynamic_rnn(
cell=cell,
inputs=inputs_dynamic_rnn,
sequence_length=sequence_length,
is_reverse=False)
output_new = layers.transpose(output, perm=[1, 0, 2])
rnn_out, last_hidden, last_cell = basic_lstm(inputs_basic_lstm, None, None, self.hidden_size, num_layers=1, \
batch_first = False, bidirectional=False, sequence_length=sequence_length, forget_bias = 1.0)
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
exe = Executor(place)
exe.run(framework.default_startup_program())
inputs_basic_lstm_np = np.random.uniform(
-0.1, 0.1,
(self.seq_len, self.batch_size, self.input_size)).astype('float32')
sequence_length_np = np.ones(
self.batch_size, dtype='int64') * self.seq_len
inputs_np = np.random.uniform(
-0.1, 0.1, (self.batch_size, self.input_size)).astype('float32')
pre_hidden_np = np.random.uniform(
-0.1, 0.1, (self.batch_size, self.hidden_size)).astype('float32')
pre_cell_np = np.random.uniform(
-0.1, 0.1, (self.batch_size, self.hidden_size)).astype('float32')
param_names = [[
"LSTMCell_for_rnn/BasicLSTMUnit_0.w_0",
"basic_lstm_layers_0/BasicLSTMUnit_0.w_0"
], [
"LSTMCell_for_rnn/BasicLSTMUnit_0.b_0",
"basic_lstm_layers_0/BasicLSTMUnit_0.b_0"
]]
for names in param_names:
param = np.array(fluid.global_scope().find_var(names[0]).get_tensor(
))
param = np.random.uniform(
-0.1, 0.1, size=param.shape).astype('float32')
fluid.global_scope().find_var(names[0]).get_tensor().set(param,
place)
fluid.global_scope().find_var(names[1]).get_tensor().set(param,
place)
out = exe.run(feed={
'inputs_basic_lstm': inputs_basic_lstm_np,
'sequence_length': sequence_length_np,
'inputs': inputs_np,
'pre_hidden': pre_hidden_np,
'pre_cell': pre_cell_np
},
fetch_list=[output_new, rnn_out])
self.assertTrue(np.allclose(out[0], out[1], rtol=1e-4))
class TestRnnUtil(unittest.TestCase):
"""
Test cases for rnn apis' utility methods for coverage.
"""
def test_case(self):
inputs = {"key1": 1, "key2": 2}
func = lambda x: x + 1
outputs = utils.map_structure(func, inputs)
utils.assert_same_structure(inputs, outputs)
try:
inputs["key3"] = 3
utils.assert_same_structure(inputs, outputs)
except ValueError as identifier:
pass
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from paddle.fluid.executor import Executor
from paddle.fluid import framework
from paddle.fluid.layers.rnn import LSTMCell, GRUCell, RNNCell, BeamSearchDecoder, dynamic_decode
from paddle.fluid.layers import rnn as dynamic_rnn
from paddle.fluid import contrib
from paddle.fluid.contrib.layers import basic_lstm
import numpy as np
class EncoderCell(RNNCell):
def __init__(self, num_layers, hidden_size, dropout_prob=0.):
self.num_layers = num_layers
self.hidden_size = hidden_size
self.dropout_prob = dropout_prob
self.lstm_cells = []
for i in range(num_layers):
self.lstm_cells.append(LSTMCell(hidden_size))
def call(self, step_input, states):
new_states = []
for i in range(self.num_layers):
out, new_state = self.lstm_cells[i](step_input, states[i])
step_input = layers.dropout(
out, self.dropout_prob) if self.dropout_prob > 0 else out
new_states.append(new_state)
return step_input, new_states
@property
def state_shape(self):
return [cell.state_shape for cell in self.lstm_cells]
class DecoderCell(RNNCell):
def __init__(self, num_layers, hidden_size, dropout_prob=0.):
self.num_layers = num_layers
self.hidden_size = hidden_size
self.dropout_prob = dropout_prob
self.lstm_cells = []
for i in range(num_layers):
self.lstm_cells.append(LSTMCell(hidden_size))
def attention(self, hidden, encoder_output, encoder_padding_mask):
query = layers.fc(hidden,
size=encoder_output.shape[-1],
bias_attr=False)
attn_scores = layers.matmul(
layers.unsqueeze(query, [1]), encoder_output, transpose_y=True)
if encoder_padding_mask is not None:
attn_scores = layers.elementwise_add(attn_scores,
encoder_padding_mask)
attn_scores = layers.softmax(attn_scores)
attn_out = layers.squeeze(
layers.matmul(attn_scores, encoder_output), [1])
attn_out = layers.concat([attn_out, hidden], 1)
attn_out = layers.fc(attn_out, size=self.hidden_size, bias_attr=False)
return attn_out
def call(self,
step_input,
states,
encoder_output,
encoder_padding_mask=None):
lstm_states, input_feed = states
new_lstm_states = []
step_input = layers.concat([step_input, input_feed], 1)
for i in range(self.num_layers):
out, new_lstm_state = self.lstm_cells[i](step_input, lstm_states[i])
step_input = layers.dropout(
out, self.dropout_prob) if self.dropout_prob > 0 else out
new_lstm_states.append(new_lstm_state)
out = self.attention(step_input, encoder_output, encoder_padding_mask)
return out, [new_lstm_states, out]
class TestDynamicDecode(unittest.TestCase):
def setUp(self):
self.batch_size = 4
self.input_size = 16
self.hidden_size = 16
self.seq_len = 4
def test_run(self):
start_token = 0
end_token = 1
src_vocab_size = 10
trg_vocab_size = 10
num_layers = 1
hidden_size = self.hidden_size
beam_size = 8
max_length = self.seq_len
src = layers.data(name="src", shape=[-1, 1], dtype='int64')
src_len = layers.data(name="src_len", shape=[-1], dtype='int64')
trg = layers.data(name="trg", shape=[-1, 1], dtype='int64')
trg_len = layers.data(name="trg_len", shape=[-1], dtype='int64')
src_embeder = lambda x: fluid.embedding(
x,
size=[src_vocab_size, hidden_size],
param_attr=fluid.ParamAttr(name="src_embedding"))
trg_embeder = lambda x: fluid.embedding(
x,
size=[trg_vocab_size, hidden_size],
param_attr=fluid.ParamAttr(name="trg_embedding"))
# use basic_lstm
encoder_cell = EncoderCell(num_layers, hidden_size)
encoder_output, encoder_final_state = dynamic_rnn(
cell=encoder_cell,
inputs=src_embeder(src),
sequence_length=src_len,
is_reverse=False)
src_mask = layers.sequence_mask(
src_len, maxlen=layers.shape(src)[1], dtype='float32')
encoder_padding_mask = (src_mask - 1.0) * 1000000000
encoder_padding_mask = layers.unsqueeze(encoder_padding_mask, [1])
decoder_cell = DecoderCell(num_layers, hidden_size)
decoder_initial_states = [
encoder_final_state, decoder_cell.get_initial_states(
batch_ref=encoder_output, shape=[hidden_size])
]
decoder_output, _ = dynamic_rnn(
cell=decoder_cell,
inputs=trg_embeder(trg),
initial_states=decoder_initial_states,
sequence_length=None,
encoder_output=encoder_output,
encoder_padding_mask=encoder_padding_mask)
output_layer = lambda x: layers.fc(x,
size=trg_vocab_size,
num_flatten_dims=len(x.shape) - 1,
param_attr=fluid.ParamAttr(
name="output_w"),
bias_attr=False)
# inference
encoder_output = BeamSearchDecoder.tile_beam_merge_with_batch(
encoder_output, beam_size)
encoder_padding_mask = BeamSearchDecoder.tile_beam_merge_with_batch(
encoder_padding_mask, beam_size)
beam_search_decoder = BeamSearchDecoder(
decoder_cell,
start_token,
end_token,
beam_size,
embedding_fn=trg_embeder,
output_fn=output_layer)
outputs, _ = dynamic_decode(
beam_search_decoder,
inits=decoder_initial_states,
max_step_num=max_length,
encoder_output=encoder_output,
encoder_padding_mask=encoder_padding_mask)
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
exe = Executor(place)
exe.run(framework.default_startup_program())
src_np = np.random.randint(
0, src_vocab_size, (self.batch_size, max_length)).astype('int64')
src_len_np = np.ones(self.batch_size, dtype='int64') * max_length
trg_np = np.random.randint(
0, trg_vocab_size, (self.batch_size, max_length)).astype('int64')
trg_len_np = np.ones(self.batch_size, dtype='int64') * max_length
out = exe.run(feed={
'src': src_np,
'src_len': src_len_np,
'trg': trg_np,
'trg_len': trg_len_np
},
fetch_list=[outputs])
self.assertTrue(out[0].shape[0] == self.batch_size)
self.assertTrue(out[0].shape[1] <= max_length + 1)
self.assertTrue(out[0].shape[2] == beam_size)
if __name__ == '__main__':
unittest.main()
......@@ -23,6 +23,8 @@ from paddle.fluid.executor import Executor
class TestLoDTensorArrayConcat(unittest.TestCase):
"""Test case for concat mode of tensor_array_to_tensor."""
def setUp(self):
self.op_type = "tensor_array_to_tensor"
self.attrs = {"axis": 0}
......@@ -138,5 +140,82 @@ class TestLoDTensorArrayConcat(unittest.TestCase):
numpy.array(random_grad[i + 1]))
class TestLoDTensorArrayStack(unittest.TestCase):
"""Test case for stack mode of tensor_array_to_tensor."""
def setUp(self):
self.op_type = "tensor_array_to_tensor"
self.attrs = {"axis": 1, "use_stack": True}
self.inputs = [
numpy.random.rand(2, 3, 4).astype("float32"),
numpy.random.rand(2, 3, 4).astype("float32"),
numpy.random.rand(2, 3, 4).astype("float32")
]
self.outputs = [
numpy.stack(
self.inputs, axis=self.attrs["axis"]), numpy.array(
[x.shape[self.attrs["axis"]] for x in self.inputs],
dtype="int32")
]
self.input_grads = [numpy.ones_like(x) for x in self.inputs]
self.set_program()
for var in self.program.list_vars():
# to avoid scope clearing after execution
var.persistable = True
def set_program(self):
self.program = fluid.Program()
with fluid.program_guard(self.program):
self.array = array = fluid.layers.create_array(dtype='float32')
idx = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
for i, x in enumerate(self.inputs):
x = fluid.layers.assign(x)
fluid.layers.array_write(x, idx + i, array)
output, output_index = fluid.layers.tensor_array_to_tensor(
input=array, **self.attrs)
loss = fluid.layers.reduce_sum(output)
fluid.backward.append_backward(loss)
self.output_vars = [output, output_index]
def run_check(self, executor, scope):
executor.run(self.program, scope=scope)
for i, output in enumerate(self.outputs):
numpy.allclose(
numpy.array(scope.var(self.output_vars[i].name).get_tensor()),
output,
atol=0)
tensor_array_grad = scope.var(self.array.name).get_lod_tensor_array()
for i, input_grad in enumerate(self.input_grads):
numpy.allclose(
numpy.array(tensor_array_grad[i]), input_grad, atol=0)
def test_cpu(self):
scope = core.Scope()
place = core.CPUPlace()
executor = fluid.Executor(place)
self.run_check(executor, scope)
def test_gpu(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
scope = core.Scope()
executor = fluid.Executor(place)
self.run_check(executor, scope)
class TestTensorArrayToTensorAPI(unittest.TestCase):
def test_case(self):
x0 = fluid.layers.assign(numpy.random.rand(2, 3, 4).astype("float32"))
x1 = fluid.layers.assign(numpy.random.rand(2, 3, 4).astype("float32"))
i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
array = fluid.layers.create_array(dtype='float32')
fluid.layers.array_write(x0, i, array)
fluid.layers.array_write(x1, i + 1, array)
output, output_index = fluid.layers.tensor_array_to_tensor(
input=array, axis=1, use_stack=True)
output, output_index = fluid.layers.tensor_array_to_tensor(
input=array, axis=1, use_stack=False)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册