From dfc8d3c1c172362afe4cf8fd7ad317cec435ee13 Mon Sep 17 00:00:00 2001 From: chengduoZH Date: Tue, 26 Sep 2017 14:25:35 +0800 Subject: [PATCH] Fix (According to the review) --- paddle/operators/math/CMakeLists.txt | 2 - paddle/operators/math/pool_test_maxPool2d.cc | 154 ------------------ paddle/operators/math/pool_test_maxPool3d.cc | 157 ------------------- paddle/operators/math/pooling.cc | 129 +++++++-------- paddle/operators/math/pooling.cu | 144 ++++++++--------- paddle/operators/math/pooling.h | 35 ++--- paddle/operators/pool_op.cc | 46 +++--- paddle/operators/pool_op.cu | 21 +-- paddle/operators/pool_op.h | 73 ++++----- 9 files changed, 216 insertions(+), 545 deletions(-) delete mode 100644 paddle/operators/math/pool_test_maxPool2d.cc delete mode 100644 paddle/operators/math/pool_test_maxPool3d.cc diff --git a/paddle/operators/math/CMakeLists.txt b/paddle/operators/math/CMakeLists.txt index 1233a9ea324..185708cdaab 100644 --- a/paddle/operators/math/CMakeLists.txt +++ b/paddle/operators/math/CMakeLists.txt @@ -7,5 +7,3 @@ endif() nv_test(math_function_test SRCS math_function_test.cc DEPS math_function tensor) cc_test(im2col_test SRCS im2col_test.cc DEPS math_function tensor) -cc_test(pool_test_maxPool2d_test SRCS pool_test_maxPool2d.cc DEPS math_function tensor) -cc_test(pool_test_maxPool3d_test SRCS pool_test_maxPool3d.cc DEPS math_function tensor) diff --git a/paddle/operators/math/pool_test_maxPool2d.cc b/paddle/operators/math/pool_test_maxPool2d.cc deleted file mode 100644 index 63b6b5657be..00000000000 --- a/paddle/operators/math/pool_test_maxPool2d.cc +++ /dev/null @@ -1,154 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. */ - -#include -#include "paddle/operators/math/pooling.h" - -#include "paddle/memory/memcpy.h" -#include "paddle/platform/enforce.h" - -#include -#include - -#ifndef PADDLE_ONLY_CPU - -template -void testPool2d(paddle::platform::DeviceContext& context, PoolType pool_process, - PoolGradType poolGrad_process, paddle::framework::Tensor& input, - paddle::framework::Tensor& input_grad, - paddle::framework::Tensor& output, - paddle::framework::Tensor& output_grad, std::vector& ksize, - std::vector& strides, std::vector& paddings) { - paddle::operators::math::Pool2dForwardFunctor - pool2d_forward; - - pool2d_forward(context, input, output, ksize, strides, paddings, - pool_process); - - int times = 50; - clock_t start, finish; - double totaltime; - - // Pool2dBackwardFunctor - start = clock(); - for (int i = 0; i < times; ++i) { - paddle::operators::math::Pool2dBackwardFunctor - pool2d_backward; - pool2d_backward(context, input, input_grad, output, output_grad, ksize, - strides, paddings, poolGrad_process); - - PADDLE_ENFORCE(cudaStreamSynchronize(0), - "cudaStreamSynchronize failed in pool2d_backward CopyFrom"); - } - finish = clock(); - totaltime = (double)(finish - start) / CLOCKS_PER_SEC; - totaltime /= times; - std::cout << "\nPool3dBackwardFunctor: " << totaltime << "s" << std::endl; - - // MaxPool3dBackwardFunctor - start = clock(); - for (int j = 0; j < times; ++j) { - paddle::operators::math::MaxPool2dBackwardFunctor< - paddle::platform::GPUPlace, float> - maxpool2d_backward; - maxpool2d_backward(context, input, input_grad, output, output_grad, ksize, - strides, paddings); - PADDLE_ENFORCE( - cudaStreamSynchronize(0), - "cudaStreamSynchronize failed in maxpool2d_backward CopyFrom"); - } - finish = clock(); - totaltime = (double)(finish - start) / CLOCKS_PER_SEC; - totaltime /= times; - std::cout << "\nMaxPool3dBackwardFunctor: " << totaltime << "s" << std::endl; -} - -void test2dPool() { - using paddle::platform::DeviceContext; - using paddle::platform::CUDADeviceContext; - using paddle::platform::GPUPlace; - - paddle::framework::Tensor input_tmp; - paddle::framework::Tensor output_tmp; - paddle::framework::Tensor input; - paddle::framework::Tensor input_grad; - paddle::framework::Tensor output; - paddle::framework::Tensor output_grad; - - int batch = 32; - int channel = 32; - int input_height = 128; - int input_width = 128; - int in_len = batch * channel * input_height * input_width; - std::vector ksize({3, 3}); - std::vector strides({1, 1}); - std::vector paddings({0, 0}); - - int output_height = - (input_height - ksize[0] + 2 * paddings[0]) / strides[0] + 1; - int output_width = - (input_width - ksize[1] + 2 * paddings[1]) / strides[1] + 1; - int output_len = output_height * output_width; - - input_tmp.mutable_data({batch, channel, input_height, input_width}, - paddle::platform::CPUPlace()); - output_tmp.mutable_data({batch, channel, output_height, output_width}, - paddle::platform::CPUPlace()); - - float* arr = new float[in_len]; - auto* place = new paddle::platform::GPUPlace(); - - float* input_ptr = input_tmp.data(); - for (int i = 0; i < in_len; ++i) arr[i] = i; // rand() / double(RAND_MAX/2); - memcpy(input_ptr, arr, in_len * sizeof(float)); - input.CopyFrom(input_tmp, *place); - - input_ptr = input_tmp.data(); - for (int i = 0; i < in_len; ++i) arr[i] = 0; - memcpy(input_ptr, arr, in_len * sizeof(float)); - input_grad.CopyFrom(input_tmp, *place); - - // output - input_ptr = output_tmp.data(); - for (int i = 0; i < output_len; ++i) - arr[i] = 0; // rand() / double(RAND_MAX/2); - memcpy(input_ptr, arr, output_len * sizeof(float)); - output.CopyFrom(input_tmp, *place); - - // output - input_ptr = output_tmp.data(); - for (int i = 0; i < output_len; ++i) - arr[i] = 1; // rand() / double(RAND_MAX/2); - memcpy(input_ptr, arr, output_len * sizeof(float)); - output_grad.CopyFrom(input_tmp, *place); - - paddle::platform::DeviceContext* context = - new paddle::platform::CUDADeviceContext(paddle::platform::GPUPlace()); - paddle::operators::math::pool::maxPool pool_process; - paddle::operators::math::pool::maxPoolGrad poolGrad_process; - - testPool2d, - paddle::operators::math::pool::maxPoolGrad>( - *context, pool_process, poolGrad_process, input, input_grad, output, - output_grad, ksize, strides, paddings); -} - -int main() { - // testPool3d(); - test2dPool(); - // testPool3d(); -} -#endif \ No newline at end of file diff --git a/paddle/operators/math/pool_test_maxPool3d.cc b/paddle/operators/math/pool_test_maxPool3d.cc deleted file mode 100644 index ce572164c4f..00000000000 --- a/paddle/operators/math/pool_test_maxPool3d.cc +++ /dev/null @@ -1,157 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. */ - -#include -#include "paddle/operators/math/pooling.h" - -#include "paddle/memory/memcpy.h" -#include "paddle/platform/enforce.h" - -#include -#include - -#ifndef PADDLE_ONLY_CPU - -template -void testPool3d(paddle::platform::DeviceContext& context, PoolType pool_process, - PoolGradType poolGrad_process, paddle::framework::Tensor& input, - paddle::framework::Tensor& input_grad, - paddle::framework::Tensor& output, - paddle::framework::Tensor& output_grad, std::vector& ksize, - std::vector& strides, std::vector& paddings) { - paddle::operators::math::Pool3dForwardFunctor - pool3d_forward; - pool3d_forward(context, input, output, ksize, strides, paddings, - pool_process); - - int times = 50; - clock_t start, finish; - double totaltime; - - // Pool3dBackwardFunctor - start = clock(); - for (int i = 0; i < times; ++i) { - paddle::operators::math::Pool3dBackwardFunctor - pool3d_backward; - pool3d_backward(context, input, input_grad, output, output_grad, ksize, - strides, paddings, poolGrad_process); - PADDLE_ENFORCE(cudaStreamSynchronize(0), - "cudaStreamSynchronize failed in pool3d_backward CopyFrom"); - } - finish = clock(); - totaltime = (double)(finish - start) / CLOCKS_PER_SEC; - totaltime /= times; - std::cout << "\nPool3dBackwardFunctor: " << totaltime << "s" << std::endl; - - // MaxPool3dBackwardFunctor - start = clock(); - for (int j = 0; j < times; ++j) { - paddle::operators::math::MaxPool3dBackwardFunctor< - paddle::platform::GPUPlace, float> - maxpool3d_backward; - maxpool3d_backward(context, input, input_grad, output, output_grad, ksize, - strides, paddings); - PADDLE_ENFORCE( - cudaStreamSynchronize(0), - "cudaStreamSynchronize failed in maxpool3d_backward CopyFrom"); - } - finish = clock(); - totaltime = (double)(finish - start) / CLOCKS_PER_SEC; - totaltime /= times; - std::cout << "\nMaxPool3dBackwardFunctor: " << totaltime << "s" << std::endl; -} - -void test3dPool() { - using paddle::platform::DeviceContext; - using paddle::platform::CUDADeviceContext; - using paddle::platform::GPUPlace; - - paddle::framework::Tensor input_tmp; - paddle::framework::Tensor output_tmp; - paddle::framework::Tensor input; - paddle::framework::Tensor input_grad; - paddle::framework::Tensor output; - paddle::framework::Tensor output_grad; - - int batch = 32; - int channel = 4; - int input_depth = 4; - int input_height = 128; - int input_width = 128; - int in_len = batch * channel * input_depth * input_height * input_width; - std::vector ksize({3, 3, 3}); - std::vector strides({2, 2, 2}); - std::vector paddings({1, 1, 1}); - - int output_depth = - (input_depth - ksize[0] + 2 * paddings[0]) / strides[0] + 1; - int output_height = - (input_height - ksize[1] + 2 * paddings[1]) / strides[1] + 1; - int output_width = - (input_width - ksize[2] + 2 * paddings[2]) / strides[2] + 1; - - int output_len = output_depth * output_height * output_width; - - input_tmp.mutable_data( - {batch, channel, input_depth, input_height, input_width}, - paddle::platform::CPUPlace()); - output_tmp.mutable_data( - {batch, channel, output_depth, output_height, output_width}, - paddle::platform::CPUPlace()); - - float* arr = new float[in_len]; - auto* place = new paddle::platform::GPUPlace(); - - // input - float* input_ptr = input_tmp.data(); - for (int i = 0; i < in_len; ++i) arr[i] = i; // rand() / double(RAND_MAX/2); - memcpy(input_ptr, arr, in_len * sizeof(float)); - input.CopyFrom(input_tmp, *place); - - // input_grad - input_ptr = input_tmp.data(); - for (int i = 0; i < in_len; ++i) arr[i] = 0; - memcpy(input_ptr, arr, in_len * sizeof(float)); - input_grad.CopyFrom(input_tmp, *place); - - // output - input_ptr = output_tmp.data(); - for (int i = 0; i < output_len; ++i) - arr[i] = 0; // rand() / double(RAND_MAX/2); - memcpy(input_ptr, arr, output_len * sizeof(float)); - output.CopyFrom(input_tmp, *place); - - // output_grad - input_ptr = output_tmp.data(); - for (int i = 0; i < output_len; ++i) - arr[i] = 1; // rand() / double(RAND_MAX/2); - memcpy(input_ptr, arr, output_len * sizeof(float)); - output_grad.CopyFrom(input_tmp, *place); - - paddle::platform::DeviceContext* context = - new paddle::platform::CUDADeviceContext(paddle::platform::GPUPlace()); - paddle::operators::math::pool::maxPool pool_process; - - paddle::operators::math::pool::maxPoolGrad poolGrad_process; - - testPool3d, - paddle::operators::math::pool::maxPoolGrad>( - *context, pool_process, poolGrad_process, input, input_grad, output, - output_grad, ksize, strides, paddings); -} - -int main() { test3dPool(); } -#endif \ No newline at end of file diff --git a/paddle/operators/math/pooling.cc b/paddle/operators/math/pooling.cc index cb1f9d72857..1918c8b1691 100644 --- a/paddle/operators/math/pooling.cc +++ b/paddle/operators/math/pooling.cc @@ -19,12 +19,12 @@ namespace operators { namespace math { template -class Pool2dForwardFunctor { +class Pool2dFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& input, framework::Tensor& output, std::vector& ksize, std::vector& strides, - std::vector& paddings, PoolProcess pool_process) { + std::vector& paddings, PoolProcess pool_compute) { const int batch_size = input.dims()[0]; const int input_height = input.dims()[2]; const int input_width = input.dims()[3]; @@ -54,14 +54,14 @@ class Pool2dForwardFunctor { int wstart = pw * stride_width - padding_width; int wend = std::min(wstart + ksize_width, input_width); wstart = std::max(wstart, 0); - T ele = pool_process.initial(); + T ele = pool_compute.initial(); for (int h = hstart; h < hend; ++h) { for (int w = wstart; w < wend; ++w) { - pool_process.process(ele, input_data[h * input_width + w]); + pool_compute.compute(ele, input_data[h * input_width + w]); } } int pool_size = (hend - hstart) * (wend - wstart); - pool_process.finalize(ele, (static_cast(pool_size))); + pool_compute.finalize(ele, (static_cast(pool_size))); output_data[ph * output_width + pw] = ele; } } @@ -73,14 +73,14 @@ class Pool2dForwardFunctor { }; template -class Pool2dBackwardFunctor { +class Pool2dGradFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& input, framework::Tensor& input_grad, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, std::vector& strides, std::vector& paddings, - PoolProcess pool_process) { + PoolProcess pool_compute) { const int batch_size = input.dims()[0]; const int input_height = input.dims()[2]; const int input_width = input.dims()[3]; @@ -115,12 +115,11 @@ class Pool2dBackwardFunctor { float scale = 1.0 / pool_size; for (int h = hstart; h < hend; ++h) { for (int w = wstart; w < wend; ++w) { - pool_process.gradProcess( - input_data[h * input_width + w], - output_data[ph * output_width + pw], - output_grad_data[ph * output_width + pw], - input_grad_data[h * input_width + w], - static_cast(scale)); + pool_compute.compute(input_data[h * input_width + w], + output_data[ph * output_width + pw], + output_grad_data[ph * output_width + pw], + input_grad_data[h * input_width + w], + static_cast(scale)); } } } @@ -135,7 +134,7 @@ class Pool2dBackwardFunctor { }; template -class MaxPool2dBackwardFunctor { +class MaxPool2dGradFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& input, framework::Tensor& input_grad, @@ -195,37 +194,33 @@ class MaxPool2dBackwardFunctor { } }; -template class MaxPool2dBackwardFunctor; -// template class MaxPool2dBackwardFunctor; - -template class Pool2dForwardFunctor< - platform::CPUPlace, paddle::operators::math::pool::maxPool, float>; -template class Pool2dForwardFunctor< - platform::CPUPlace, paddle::operators::math::pool::avgPool, float>; -template class Pool2dBackwardFunctor< - platform::CPUPlace, paddle::operators::math::pool::maxPoolGrad, - float>; -template class Pool2dBackwardFunctor< - platform::CPUPlace, paddle::operators::math::pool::avgPoolGrad, - float>; -template class Pool2dForwardFunctor< - platform::CPUPlace, paddle::operators::math::pool::maxPool, double>; -template class Pool2dForwardFunctor< - platform::CPUPlace, paddle::operators::math::pool::avgPool, double>; -template class Pool2dBackwardFunctor< - platform::CPUPlace, paddle::operators::math::pool::maxPoolGrad, - double>; -template class Pool2dBackwardFunctor< - platform::CPUPlace, paddle::operators::math::pool::avgPoolGrad, - double>; +template class MaxPool2dGradFunctor; +// template class MaxPool2dGradFunctor; + +template class Pool2dFunctor, float>; +template class Pool2dFunctor, float>; +template class Pool2dGradFunctor< + platform::CPUPlace, paddle::operators::math::maxPoolGrad, float>; +template class Pool2dGradFunctor< + platform::CPUPlace, paddle::operators::math::avgPoolGrad, float>; +template class Pool2dFunctor, double>; +template class Pool2dFunctor, double>; +template class Pool2dGradFunctor< + platform::CPUPlace, paddle::operators::math::maxPoolGrad, double>; +template class Pool2dGradFunctor< + platform::CPUPlace, paddle::operators::math::avgPoolGrad, double>; template -class Pool3dForwardFunctor { +class Pool3dFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& input, framework::Tensor& output, std::vector& ksize, std::vector& strides, - std::vector& paddings, PoolProcess pool_process) { + std::vector& paddings, PoolProcess pool_compute) { const int batch_size = input.dims()[0]; const int input_depth = input.dims()[2]; const int input_height = input.dims()[3]; @@ -265,11 +260,11 @@ class Pool3dForwardFunctor { int wend = std::min(wstart + ksize_width, input_width); wstart = std::max(wstart, 0); int output_idx = (pd * output_height + ph) * output_width + pw; - T ele = pool_process.initial(); + T ele = pool_compute.initial(); for (int d = dstart; d < dend; ++d) { for (int h = hstart; h < hend; ++h) { for (int w = wstart; w < wend; ++w) { - pool_process.process( + pool_compute.compute( ele, input_data[(d * input_height + h) * input_width + w]); } @@ -277,7 +272,7 @@ class Pool3dForwardFunctor { } int pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart); - pool_process.finalize(ele, static_cast(pool_size)); + pool_compute.finalize(ele, static_cast(pool_size)); output_data[output_idx] = ele; } } @@ -290,14 +285,14 @@ class Pool3dForwardFunctor { }; template -class Pool3dBackwardFunctor { +class Pool3dGradFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& input, framework::Tensor& input_grad, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, std::vector& strides, std::vector& paddings, - PoolProcess pool_process) { + PoolProcess pool_compute) { const int batch_size = input.dims()[0]; const int input_depth = input.dims()[2]; const int input_height = input.dims()[3]; @@ -348,7 +343,7 @@ class Pool3dBackwardFunctor { int input_idx = (d * input_height + h) * input_width + w; int output_idx = (pd * output_height + ph) * output_width + pw; - pool_process.gradProcess( + pool_compute.compute( input_data[input_idx], output_data[output_idx], output_grad_data[output_idx], input_grad_data[input_idx], static_cast(scale)); @@ -368,7 +363,7 @@ class Pool3dBackwardFunctor { }; template -class MaxPool3dBackwardFunctor { +class MaxPool3dGradFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& input, framework::Tensor& input_grad, @@ -442,29 +437,25 @@ class MaxPool3dBackwardFunctor { } }; -template class MaxPool3dBackwardFunctor; -// template class MaxPool3dBackwardFunctor; - -template class Pool3dForwardFunctor< - platform::CPUPlace, paddle::operators::math::pool::maxPool, float>; -template class Pool3dForwardFunctor< - platform::CPUPlace, paddle::operators::math::pool::avgPool, float>; -template class Pool3dBackwardFunctor< - platform::CPUPlace, paddle::operators::math::pool::maxPoolGrad, - float>; -template class Pool3dBackwardFunctor< - platform::CPUPlace, paddle::operators::math::pool::avgPoolGrad, - float>; -template class Pool3dForwardFunctor< - platform::CPUPlace, paddle::operators::math::pool::maxPool, double>; -template class Pool3dForwardFunctor< - platform::CPUPlace, paddle::operators::math::pool::avgPool, double>; -template class Pool3dBackwardFunctor< - platform::CPUPlace, paddle::operators::math::pool::maxPoolGrad, - double>; -template class Pool3dBackwardFunctor< - platform::CPUPlace, paddle::operators::math::pool::avgPoolGrad, - double>; +template class MaxPool3dGradFunctor; +// template class MaxPool3dGradFunctor; + +template class Pool3dFunctor, float>; +template class Pool3dFunctor, float>; +template class Pool3dGradFunctor< + platform::CPUPlace, paddle::operators::math::maxPoolGrad, float>; +template class Pool3dGradFunctor< + platform::CPUPlace, paddle::operators::math::avgPoolGrad, float>; +template class Pool3dFunctor, double>; +template class Pool3dFunctor, double>; +template class Pool3dGradFunctor< + platform::CPUPlace, paddle::operators::math::maxPoolGrad, double>; +template class Pool3dGradFunctor< + platform::CPUPlace, paddle::operators::math::avgPoolGrad, double>; } // namespace math } // namespace operators } // namespace paddle diff --git a/paddle/operators/math/pooling.cu b/paddle/operators/math/pooling.cu index f41d80f77f6..4164920035f 100644 --- a/paddle/operators/math/pooling.cu +++ b/paddle/operators/math/pooling.cu @@ -25,7 +25,7 @@ __global__ void KernelPool2dForward( const int input_height, const int input_width, const int output_height, const int output_width, const int ksize_height, const int ksize_width, const int stride_height, const int stride_width, const int padding_height, - const int padding_width, PoolProcess pool_process) { + const int padding_width, PoolProcess pool_compute) { int index = blockIdx.x * blockDim.x + threadIdx.x; if (index < nthreads) { int pw = index % output_width; @@ -42,14 +42,14 @@ __global__ void KernelPool2dForward( wstart = max(wstart, 0); input_data += (batch_idx * channels + c) * input_height * input_width; - T ele = pool_process.initial(); + T ele = pool_compute.initial(); for (int h = hstart; h < hend; ++h) { for (int w = wstart; w < wend; ++w) { - pool_process.process(ele, input_data[h * input_width + w]); + pool_compute.compute(ele, input_data[h * input_width + w]); } } int pool_size = (hend - hstart) * (wend - wstart); - pool_process.finalize(ele, (static_cast(pool_size))); + pool_compute.finalize(ele, (static_cast(pool_size))); output_data[index] = ele; } } @@ -61,7 +61,7 @@ __global__ void KernelPool2dBackward( const int input_height, const int input_width, const int output_height, const int output_width, const int ksize_height, const int ksize_width, const int stride_height, const int stride_width, const int padding_height, - const int padding_width, PoolProcess pool_process) { + const int padding_width, PoolProcess pool_compute) { int index = blockIdx.x * blockDim.x + threadIdx.x; if (index < nthreads) { int offsetW = index % input_width + padding_width; @@ -93,9 +93,9 @@ __global__ void KernelPool2dBackward( wstart = max(wstart, 0); int pool_size = (hend - hstart) * (wend - wstart); int output_sub_idx = ph * output_width + pw; - pool_process.gradProcess(input, output_data[output_sub_idx], - output_grad[output_sub_idx], gradient, - static_cast(1.0 / pool_size)); + pool_compute.compute(input, output_data[output_sub_idx], + output_grad[output_sub_idx], gradient, + static_cast(1.0 / pool_size)); } } input_grad[index] = gradient; @@ -148,12 +148,12 @@ __global__ void KernelMaxPool2dBackward( } template -class Pool2dForwardFunctor { +class Pool2dFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& input, framework::Tensor& output, std::vector& ksize, std::vector& strides, - std::vector& paddings, PoolProcess pool_process) { + std::vector& paddings, PoolProcess pool_compute) { const int batch_size = input.dims()[0]; const int input_channels = input.dims()[1]; const int input_height = input.dims()[2]; @@ -184,19 +184,19 @@ class Pool2dForwardFunctor { input_height, input_width, output_height, output_width, ksize_height, ksize_width, stride_height, stride_width, padding_height, - padding_width, pool_process); + padding_width, pool_compute); } }; template -class Pool2dBackwardFunctor { +class Pool2dGradFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& input, framework::Tensor& input_grad, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, std::vector& strides, std::vector& paddings, - PoolProcess pool_process) { + PoolProcess pool_compute) { const int batch_size = input.dims()[0]; const int input_channels = input.dims()[1]; const int input_height = input.dims()[2]; @@ -228,12 +228,12 @@ class Pool2dBackwardFunctor { nthreads, input_data, output_data, output_grad_data, input_grad_data, input_channels, input_height, input_width, output_height, output_width, ksize_height, ksize_width, stride_height, stride_width, padding_height, - padding_width, pool_process); + padding_width, pool_compute); } }; template -class MaxPool2dBackwardFunctor { +class MaxPool2dGradFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& input, framework::Tensor& input_grad, @@ -275,29 +275,25 @@ class MaxPool2dBackwardFunctor { } }; -template class MaxPool2dBackwardFunctor; -// template class MaxPool2dBackwardFunctor; - -template class Pool2dForwardFunctor< - platform::GPUPlace, paddle::operators::math::pool::maxPool, float>; -template class Pool2dForwardFunctor< - platform::GPUPlace, paddle::operators::math::pool::avgPool, float>; -template class Pool2dBackwardFunctor< - platform::GPUPlace, paddle::operators::math::pool::maxPoolGrad, - float>; -template class Pool2dBackwardFunctor< - platform::GPUPlace, paddle::operators::math::pool::avgPoolGrad, - float>; -template class Pool2dForwardFunctor< - platform::GPUPlace, paddle::operators::math::pool::maxPool, double>; -template class Pool2dForwardFunctor< - platform::GPUPlace, paddle::operators::math::pool::avgPool, double>; -template class Pool2dBackwardFunctor< - platform::GPUPlace, paddle::operators::math::pool::maxPoolGrad, - double>; -template class Pool2dBackwardFunctor< - platform::GPUPlace, paddle::operators::math::pool::avgPoolGrad, - double>; +template class MaxPool2dGradFunctor; +// template class MaxPool2dGradFunctor; + +template class Pool2dFunctor, float>; +template class Pool2dFunctor, float>; +template class Pool2dGradFunctor< + platform::GPUPlace, paddle::operators::math::maxPoolGrad, float>; +template class Pool2dGradFunctor< + platform::GPUPlace, paddle::operators::math::avgPoolGrad, float>; +template class Pool2dFunctor, double>; +template class Pool2dFunctor, double>; +template class Pool2dGradFunctor< + platform::GPUPlace, paddle::operators::math::maxPoolGrad, double>; +template class Pool2dGradFunctor< + platform::GPUPlace, paddle::operators::math::avgPoolGrad, double>; template __global__ void KernelPool3DForward( @@ -307,7 +303,7 @@ __global__ void KernelPool3DForward( const int ksize_depth, const int ksize_height, const int ksize_width, const int stride_depth, const int stride_height, const int stride_width, const int padding_depth, const int padding_height, const int padding_width, - PoolProcess pool_process) { + PoolProcess pool_compute) { for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < (nthreads); index += blockDim.x * gridDim.x) { int pw = index % output_width; @@ -325,19 +321,19 @@ __global__ void KernelPool3DForward( dstart = max(dstart, 0); hstart = max(hstart, 0); wstart = max(wstart, 0); - T ele = pool_process.initial(); + T ele = pool_compute.initial(); input_data += (batch_idx * channels + c) * input_depth * input_height * input_width; for (int d = dstart; d < dend; ++d) { for (int h = hstart; h < hend; ++h) { for (int w = wstart; w < wend; ++w) { - pool_process.process( + pool_compute.compute( ele, input_data[(d * input_height + h) * input_width + w]); } } } int pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart); - pool_process.finalize(ele, static_cast(pool_size)); + pool_compute.finalize(ele, static_cast(pool_size)); output_data[index] = ele; } } @@ -351,7 +347,7 @@ __global__ void KernelPool3DBackward( const int ksize_depth, const int ksize_height, const int ksize_width, const int stride_depth, const int stride_height, const int stride_width, const int padding_depth, const int padding_height, const int padding_width, - PoolProcess pool_process) { + PoolProcess pool_compute) { for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < (nthreads); index += blockDim.x * gridDim.x) { int offsetW = index % input_width + padding_width; @@ -396,9 +392,9 @@ __global__ void KernelPool3DBackward( wstart = max(wstart, 0); int pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart); int output_sub_idx = (pd * output_height + ph) * output_width + pw; - pool_process.gradProcess(input, output_data[output_sub_idx], - output_grad[output_sub_idx], gradient, - static_cast(1.0 / pool_size)); + pool_compute.compute(input, output_data[output_sub_idx], + output_grad[output_sub_idx], gradient, + static_cast(1.0 / pool_size)); } } } @@ -459,12 +455,12 @@ __global__ void KernelMaxPool3DBackward( } template -class Pool3dForwardFunctor { +class Pool3dFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& input, framework::Tensor& output, std::vector& ksize, std::vector& strides, - std::vector& paddings, PoolProcess pool_process) { + std::vector& paddings, PoolProcess pool_compute) { const int batch_size = input.dims()[0]; const int input_channels = input.dims()[1]; const int input_depth = input.dims()[2]; @@ -502,19 +498,19 @@ class Pool3dForwardFunctor { input_height, input_width, output_depth, output_height, output_width, ksize_depth, ksize_height, ksize_width, stride_depth, stride_height, stride_width, padding_depth, padding_height, padding_width, - pool_process); + pool_compute); } }; template -class Pool3dBackwardFunctor { +class Pool3dGradFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& input, framework::Tensor& input_grad, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, std::vector& strides, std::vector& paddings, - PoolProcess pool_process) { + PoolProcess pool_compute) { const int batch_size = input.dims()[0]; const int input_channels = input.dims()[1]; const int input_depth = input.dims()[2]; @@ -554,12 +550,12 @@ class Pool3dBackwardFunctor { input_channels, input_depth, input_height, input_width, output_depth, output_height, output_width, ksize_depth, ksize_height, ksize_width, stride_depth, stride_height, stride_width, padding_depth, - padding_height, padding_width, pool_process); + padding_height, padding_width, pool_compute); } }; template -class MaxPool3dBackwardFunctor { +class MaxPool3dGradFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& input, framework::Tensor& input_grad, @@ -608,29 +604,25 @@ class MaxPool3dBackwardFunctor { } }; -template class MaxPool3dBackwardFunctor; -// template class MaxPool3dBackwardFunctor; - -template class Pool3dForwardFunctor< - platform::GPUPlace, paddle::operators::math::pool::maxPool, float>; -template class Pool3dForwardFunctor< - platform::GPUPlace, paddle::operators::math::pool::avgPool, float>; -template class Pool3dBackwardFunctor< - platform::GPUPlace, paddle::operators::math::pool::maxPoolGrad, - float>; -template class Pool3dBackwardFunctor< - platform::GPUPlace, paddle::operators::math::pool::avgPoolGrad, - float>; -template class Pool3dForwardFunctor< - platform::GPUPlace, paddle::operators::math::pool::maxPool, double>; -template class Pool3dForwardFunctor< - platform::GPUPlace, paddle::operators::math::pool::avgPool, double>; -template class Pool3dBackwardFunctor< - platform::GPUPlace, paddle::operators::math::pool::maxPoolGrad, - double>; -template class Pool3dBackwardFunctor< - platform::GPUPlace, paddle::operators::math::pool::avgPoolGrad, - double>; +template class MaxPool3dGradFunctor; +// template class MaxPool3dGradFunctor; + +template class Pool3dFunctor, float>; +template class Pool3dFunctor, float>; +template class Pool3dGradFunctor< + platform::GPUPlace, paddle::operators::math::maxPoolGrad, float>; +template class Pool3dGradFunctor< + platform::GPUPlace, paddle::operators::math::avgPoolGrad, float>; +template class Pool3dFunctor, double>; +template class Pool3dFunctor, double>; +template class Pool3dGradFunctor< + platform::GPUPlace, paddle::operators::math::maxPoolGrad, double>; +template class Pool3dGradFunctor< + platform::GPUPlace, paddle::operators::math::avgPoolGrad, double>; } // namespace math } // namespace operators diff --git a/paddle/operators/math/pooling.h b/paddle/operators/math/pooling.h index 2e05a5968a8..cf0ab7ecae8 100644 --- a/paddle/operators/math/pooling.h +++ b/paddle/operators/math/pooling.h @@ -21,17 +21,15 @@ limitations under the License. */ namespace paddle { namespace operators { namespace math { - ////////////////////// #define FLT_MAX __FLT_MAX__ ///////////////////// -namespace pool { template class maxPool { public: DEVICE inline T initial() { return static_cast(-FLT_MAX); } - DEVICE inline void process(T& y, const T& x) { y = y > x ? y : x; } + DEVICE inline void compute(T& y, const T& x) { y = y > x ? y : x; } DEVICE inline void finalize(T& y, const T& poo_size) {} }; @@ -39,14 +37,14 @@ template class avgPool { public: DEVICE inline T initial() { return static_cast(0); } - DEVICE inline void process(T& y, const T& x) { y += x; } + DEVICE inline void compute(T& y, const T& x) { y += x; } DEVICE inline void finalize(T& y, const T& poo_size) { y /= poo_size; } }; template class maxPoolGrad { public: - DEVICE inline void gradProcess(const T& x, const T& y, const T& dy, T& dx, - T scale) { + DEVICE inline void compute(const T& x, const T& y, const T& dy, T& dx, + T scale) { dx += dy * (x == y); } }; @@ -54,35 +52,34 @@ class maxPoolGrad { template class avgPoolGrad { public: - DEVICE inline void gradProcess(const T& x, const T& y, const T& dy, T& dx, - T scale) { + DEVICE inline void compute(const T& x, const T& y, const T& dy, T& dx, + T scale) { dx += (scale * dy); } }; -} // namespace pool template -class Pool2dForwardFunctor { +class Pool2dFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& input, framework::Tensor& output, std::vector& ksize, std::vector& strides, - std::vector& paddings, PoolProcess pool_process); + std::vector& paddings, PoolProcess pool_compute); }; template -class Pool2dBackwardFunctor { +class Pool2dGradFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& input, framework::Tensor& input_grad, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, std::vector& strides, std::vector& paddings, - PoolProcess pool_process); + PoolProcess pool_compute); }; template -class MaxPool2dBackwardFunctor { +class MaxPool2dGradFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& input, framework::Tensor& input_grad, @@ -92,27 +89,27 @@ class MaxPool2dBackwardFunctor { }; template -class Pool3dForwardFunctor { +class Pool3dFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& input, framework::Tensor& output, std::vector& ksize, std::vector& strides, - std::vector& paddings, PoolProcess pool_process); + std::vector& paddings, PoolProcess pool_compute); }; template -class Pool3dBackwardFunctor { +class Pool3dGradFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& input, framework::Tensor& input_grad, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, std::vector& strides, std::vector& paddings, - PoolProcess pool_process); + PoolProcess pool_compute); }; template -class MaxPool3dBackwardFunctor { +class MaxPool3dGradFunctor { public: void operator()(const platform::DeviceContext& context, const framework::Tensor& input, framework::Tensor& input_grad, diff --git a/paddle/operators/pool_op.cc b/paddle/operators/pool_op.cc index 9c1b7ea41dd..a5e731cc668 100644 --- a/paddle/operators/pool_op.cc +++ b/paddle/operators/pool_op.cc @@ -17,7 +17,7 @@ limitations under the License. */ namespace paddle { namespace operators { -int outputSize_pool(int input_size, int filter_size, int padding, int stride) { +int OutputSizePool(int input_size, int filter_size, int padding, int stride) { int output_size = (input_size - filter_size + 2 * padding) / stride + 1; return output_size; } @@ -33,7 +33,7 @@ class PoolOp : public framework::OperatorWithKernel { PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"), "Out(Output) of Pooling should not be null."); - auto in_X = ctx.Input("X"); + auto in_x = ctx.Input("X"); auto out = ctx.Output("Out"); int global_pooling = Attr("globalPooling"); std::string pooling_type = Attr("poolingType"); @@ -43,30 +43,25 @@ class PoolOp : public framework::OperatorWithKernel { PADDLE_ENFORCE(pooling_type == "max" || pooling_type == "avg", "pooling_type should be 'max' or 'avg'"); - PADDLE_ENFORCE(in_X->dims().size() == 4 || in_X->dims().size() == 5, + PADDLE_ENFORCE(in_x->dims().size() == 4 || in_x->dims().size() == 5, "Pooling intput should be 4-D or 5-D"); + PADDLE_ENFORCE(ksize.size() == 2 || ksize.size() == 3, + "Pooling size should be 2 elements. or 3 elements."); + PADDLE_ENFORCE_EQ(ksize.size(), strides.size(), + "strides size and pooling size should be the same."); + PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(), + "paddings size and pooling size should be the same."); if (global_pooling == 1) { - ksize.resize(static_cast(in_X->dims().size()) - 2); + ksize.resize(static_cast(in_x->dims().size()) - 2); for (size_t i = 0; i < ksize.size(); ++i) - ksize[i] = static_cast(in_X->dims()[i + 2]); + ksize[i] = static_cast(in_x->dims()[i + 2]); } - if (ksize.size() == 2) { - PADDLE_ENFORCE_EQ(strides.size(), 2, - "Pool2DOp strides size should be 2 elements."); - PADDLE_ENFORCE_EQ(paddings.size(), 2, - "Pool2DOp paddings size should be 2 elements"); - } else { - PADDLE_ENFORCE_EQ(strides.size(), 3, - "Pool3DOp strides should be 3 elements."); - PADDLE_ENFORCE_EQ(paddings.size(), 3, - "Pool3DOp paddings should be 3 elements."); - } - std::vector output_shape({in_X->dims()[0], in_X->dims()[1]}); + std::vector output_shape({in_x->dims()[0], in_x->dims()[1]}); for (size_t i = 0; i < ksize.size(); ++i) { - output_shape.push_back(outputSize_pool(in_X->dims()[i + 2], ksize[i], - paddings[i], strides[i])); + output_shape.push_back(OutputSizePool(in_x->dims()[i + 2], ksize[i], + paddings[i], strides[i])); } out->Resize(framework::make_ddim(output_shape)); } @@ -78,9 +73,16 @@ class PoolOpGrad : public framework::OperatorWithKernel { protected: void InferShape(const framework::InferShapeContext &ctx) const override { + PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), + "X(Input) of Pooling should not be null."); + PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Out"), + "Out(Output) of Pooling should not be null."); + PADDLE_ENFORCE_NOT_NULL(ctx.Output(framework::GradVarName("X")), + "Input@Grad of Pooling should not be null."); + auto in = ctx.Input("X"); auto d_in = ctx.Output(framework::GradVarName("X")); - if (d_in) d_in->Resize(in->dims()); + d_in->Resize(in->dims()); } }; @@ -92,7 +94,7 @@ class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker { "X", "The input tensor of pooling operator. " "The format of input tensor is NCHW. Where N is batch size, C is the " - "number of channels, H and W is the height and width of image."); + "number of channels, H and W is the height and width of feature."); AddOutput("Out", "The output tensor of pooling operator." "The format of output tensor is also NCHW."); @@ -166,7 +168,7 @@ class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker { "The format of input tensor is NCDHW. Where N is batch size, C is " "the " "number of channels, D, H and W is the depth, height and width of " - "image."); + "feature."); AddOutput("Out", "The output tensor of pooling operator." "The format of output tensor is also NCDHW."); diff --git a/paddle/operators/pool_op.cu b/paddle/operators/pool_op.cu index b011d20da51..0e3b80868f7 100644 --- a/paddle/operators/pool_op.cu +++ b/paddle/operators/pool_op.cu @@ -1,15 +1,16 @@ -/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - http://www.apache.org/licenses/LICENSE-2.0 +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/pool_op.h" diff --git a/paddle/operators/pool_op.h b/paddle/operators/pool_op.h index 763103d884b..94712822050 100644 --- a/paddle/operators/pool_op.h +++ b/paddle/operators/pool_op.h @@ -28,7 +28,7 @@ template class PoolKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - const Tensor* in_X = context.Input("X"); + const Tensor* in_x = context.Input("X"); Tensor* out = context.Output("Out"); int global_pooling = context.Attr("globalPooling"); @@ -38,43 +38,43 @@ class PoolKernel : public framework::OpKernel { std::vector paddings = context.Attr>("paddings"); if (global_pooling == 1) { for (size_t i = 0; i < ksize.size(); ++i) { - ksize[i] = in_X->dims()[i + 2]; + ksize[i] = static_cast(in_x->dims()[i + 2]); } } switch (ksize.size()) { case 2: { if (pooling_type == "max") { - paddle::operators::math::Pool2dForwardFunctor< - Place, paddle::operators::math::pool::maxPool, T> + paddle::operators::math::Pool2dFunctor< + Place, paddle::operators::math::maxPool, T> pool2d_forward; - paddle::operators::math::pool::maxPool pool_process; - pool2d_forward(context.device_context(), *in_X, *out, ksize, strides, + paddle::operators::math::maxPool pool_process; + pool2d_forward(context.device_context(), *in_x, *out, ksize, strides, paddings, pool_process); } else if (pooling_type == "avg") { - paddle::operators::math::Pool2dForwardFunctor< - Place, paddle::operators::math::pool::avgPool, T> + paddle::operators::math::Pool2dFunctor< + Place, paddle::operators::math::avgPool, T> pool2d_forward; - paddle::operators::math::pool::avgPool pool_process; - pool2d_forward(context.device_context(), *in_X, *out, ksize, strides, + paddle::operators::math::avgPool pool_process; + pool2d_forward(context.device_context(), *in_x, *out, ksize, strides, paddings, pool_process); } } break; case 3: { if (pooling_type == "max") { - paddle::operators::math::Pool3dForwardFunctor< - Place, paddle::operators::math::pool::maxPool, T> + paddle::operators::math::Pool3dFunctor< + Place, paddle::operators::math::maxPool, T> pool3d_forward; - paddle::operators::math::pool::maxPool pool_process; - pool3d_forward(context.device_context(), *in_X, *out, ksize, strides, + paddle::operators::math::maxPool pool_process; + pool3d_forward(context.device_context(), *in_x, *out, ksize, strides, paddings, pool_process); } else if (pooling_type == "avg") { - paddle::operators::math::Pool3dForwardFunctor< - Place, paddle::operators::math::pool::avgPool, T> + paddle::operators::math::Pool3dFunctor< + Place, paddle::operators::math::avgPool, T> pool3d_forward; - paddle::operators::math::pool::avgPool pool_process; - pool3d_forward(context.device_context(), *in_X, *out, ksize, strides, + paddle::operators::math::avgPool pool_process; + pool3d_forward(context.device_context(), *in_x, *out, ksize, strides, paddings, pool_process); } } break; @@ -86,11 +86,11 @@ template class PoolGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - const Tensor* in_X = context.Input("X"); + const Tensor* in_x = context.Input("X"); const Tensor* out = context.Input("Out"); const Tensor* out_grad = context.Input(framework::GradVarName("Out")); - Tensor* in_X_grad = context.Output(framework::GradVarName("X")); + Tensor* in_x_grad = context.Output(framework::GradVarName("X")); int global_pooling = context.Attr("globalPooling"); std::string pooling_type = context.Attr("poolingType"); @@ -99,43 +99,44 @@ class PoolGradKernel : public framework::OpKernel { std::vector paddings = context.Attr>("paddings"); if (global_pooling == 1) { - for (size_t i = 0; i < ksize.size(); ++i) ksize[i] = in_X->dims()[i + 2]; + for (size_t i = 0; i < ksize.size(); ++i) + ksize[i] = static_cast(in_x->dims()[i + 2]); } - if (in_X_grad) { - in_X_grad->mutable_data(context.GetPlace()); - auto temp = framework::EigenVector::Flatten(*in_X_grad); + if (in_x_grad) { + in_x_grad->mutable_data(context.GetPlace()); + auto temp = framework::EigenVector::Flatten(*in_x_grad); temp.device(context.GetEigenDevice()) = temp.constant(static_cast(0)); switch (ksize.size()) { case 2: { if (pooling_type == "max") { - paddle::operators::math::MaxPool2dBackwardFunctor + paddle::operators::math::MaxPool2dGradFunctor pool2d_backward; - pool2d_backward(context.device_context(), *in_X, *in_X_grad, *out, + pool2d_backward(context.device_context(), *in_x, *in_x_grad, *out, *out_grad, ksize, strides, paddings); } else if (pooling_type == "avg") { - paddle::operators::math::Pool2dBackwardFunctor< - Place, paddle::operators::math::pool::avgPoolGrad, T> + paddle::operators::math::Pool2dGradFunctor< + Place, paddle::operators::math::avgPoolGrad, T> pool2d_backward; - paddle::operators::math::pool::avgPoolGrad pool_process; - pool2d_backward(context.device_context(), *in_X, *in_X_grad, *out, + paddle::operators::math::avgPoolGrad pool_process; + pool2d_backward(context.device_context(), *in_x, *in_x_grad, *out, *out_grad, ksize, strides, paddings, pool_process); } } break; case 3: { if (pooling_type == "max") { - paddle::operators::math::MaxPool3dBackwardFunctor + paddle::operators::math::MaxPool3dGradFunctor pool3d_backward; - pool3d_backward(context.device_context(), *in_X, *in_X_grad, *out, + pool3d_backward(context.device_context(), *in_x, *in_x_grad, *out, *out_grad, ksize, strides, paddings); } else if (pooling_type == "avg") { - paddle::operators::math::Pool3dBackwardFunctor< - Place, paddle::operators::math::pool::avgPoolGrad, T> + paddle::operators::math::Pool3dGradFunctor< + Place, paddle::operators::math::avgPoolGrad, T> pool3d_backward; - paddle::operators::math::pool::avgPoolGrad pool_process; - pool3d_backward(context.device_context(), *in_X, *in_X_grad, *out, + paddle::operators::math::avgPoolGrad pool_process; + pool3d_backward(context.device_context(), *in_x, *in_x_grad, *out, *out_grad, ksize, strides, paddings, pool_process); } } break; -- GitLab