Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
ddb3868e
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ddb3868e
编写于
5月 12, 2022
作者:
F
fwenguang
提交者:
GitHub
5月 12, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU] add slice kernel (#42245)
上级
bf44034c
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
830 addition
and
2 deletion
+830
-2
paddle/fluid/operators/mlu/mlu_baseop.cc
paddle/fluid/operators/mlu/mlu_baseop.cc
+3
-2
paddle/fluid/operators/slice_op_mlu.cc
paddle/fluid/operators/slice_op_mlu.cc
+196
-0
python/paddle/fluid/tests/unittests/mlu/test_slice_op_mlu.py
python/paddle/fluid/tests/unittests/mlu/test_slice_op_mlu.py
+631
-0
未找到文件。
paddle/fluid/operators/mlu/mlu_baseop.cc
浏览文件 @
ddb3868e
...
...
@@ -688,8 +688,9 @@ MLUCnnlTrigonDesc::~MLUCnnlTrigonDesc() {
const
cnnlTensorDescriptor_t
diff_y_desc
,
void
*
back_out
)
{
cnnlHandle_t
handle
=
GetHandleFromCTX
(
ctx
);
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlSparseSoftmaxCrossEntropyWithLogits
(
handle
,
mode
,
x_desc
,
input
,
label_desc
,
label
,
y_desc
,
output
,
const
cnnlComputationPreference_t
prefer
=
CNNL_COMPUTATION_HIGH_PRECISION
;
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlSparseSoftmaxCrossEntropyWithLogits_v2
(
handle
,
prefer
,
mode
,
x_desc
,
input
,
label_desc
,
label
,
y_desc
,
output
,
diff_y_desc
,
back_out
));
}
...
...
paddle/fluid/operators/slice_op_mlu.cc
0 → 100644
浏览文件 @
ddb3868e
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/slice_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
#include "paddle/phi/kernels/funcs/slice_utils.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
SliceMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
axes
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
starts
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"starts"
);
auto
ends
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ends"
);
auto
decrease_axis
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"decrease_axis"
);
auto
infer_flags
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"infer_flags"
);
// Get the accurate attribute value of starts and ends
auto
starts_tensor_list
=
ctx
.
MultiInput
<
Tensor
>
(
"StartsTensorList"
);
if
(
ctx
.
HasInput
(
"StartsTensor"
))
{
starts
=
GetDataFromTensor
<
int
>
(
ctx
.
Input
<
Tensor
>
(
"StartsTensor"
));
}
else
if
(
starts_tensor_list
.
size
()
>
0
)
{
starts
=
GetDataFromTensorList
<
int
>
(
starts_tensor_list
);
}
auto
ends_tensor_list
=
ctx
.
MultiInput
<
Tensor
>
(
"EndsTensorList"
);
if
(
ctx
.
HasInput
(
"EndsTensor"
))
{
ends
=
GetDataFromTensor
<
int
>
(
ctx
.
Input
<
Tensor
>
(
"EndsTensor"
));
}
else
if
(
ends_tensor_list
.
size
()
>
0
)
{
ends
=
GetDataFromTensorList
<
int
>
(
ends_tensor_list
);
}
PADDLE_ENFORCE_EQ
(
starts
.
size
(),
axes
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The size of starts must be equal to the size of axes."
));
PADDLE_ENFORCE_EQ
(
ends
.
size
(),
axes
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The size of ends must be equal to the size of axes."
));
const
auto
&
in_dims
=
input
->
dims
();
auto
slice_dims
=
out
->
dims
();
bool
reset_slice_dims
=
false
;
if
(
ctx
.
HasInput
(
"StartsTensor"
)
||
ctx
.
HasInput
(
"EndsTensor"
)
||
starts_tensor_list
.
size
()
>
0
||
ends_tensor_list
.
size
()
>
0
)
{
// Infer output dims
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
++
i
)
{
// when start == -1 && end == start+1
if
(
starts
[
i
]
==
-
1
&&
ends
[
i
]
==
0
&&
infer_flags
[
i
]
==
-
1
)
{
auto
ret
=
std
::
find
(
decrease_axis
.
begin
(),
decrease_axis
.
end
(),
axes
[
i
]);
if
(
ret
!=
decrease_axis
.
end
())
{
ends
[
i
]
=
in_dims
[
axes
[
i
]];
}
}
}
phi
::
funcs
::
CheckAndUpdateSliceAttrs
(
in_dims
,
axes
,
&
starts
,
&
ends
);
slice_dims
=
phi
::
funcs
::
GetSliceDims
<
int
>
(
in_dims
,
axes
,
starts
,
ends
,
nullptr
,
nullptr
);
reset_slice_dims
=
true
;
auto
out_dims
=
phi
::
funcs
::
GetDecreasedDims
(
slice_dims
,
decrease_axis
);
out
->
Resize
(
out_dims
);
}
if
(
slice_dims
.
size
()
!=
in_dims
.
size
()
&&
!
reset_slice_dims
)
{
phi
::
funcs
::
CheckAndUpdateSliceAttrs
(
in_dims
,
axes
,
&
starts
,
&
ends
);
slice_dims
=
phi
::
funcs
::
GetSliceDims
<
int
>
(
in_dims
,
axes
,
starts
,
ends
,
nullptr
,
nullptr
);
}
int
in_dim_size
=
input
->
dims
().
size
();
if
(
static_cast
<
int
>
(
axes
.
size
())
!=
in_dim_size
)
{
std
::
vector
<
int
>
tmp_starts
(
in_dim_size
,
0
);
const
auto
&
in_dims_vec
=
phi
::
vectorize
(
input
->
dims
());
std
::
vector
<
int
>
tmp_ends
(
in_dims_vec
.
begin
(),
in_dims_vec
.
end
());
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
++
i
)
{
tmp_starts
[
axes
[
i
]]
=
starts
[
i
];
tmp_ends
[
axes
[
i
]]
=
ends
[
i
];
}
starts
.
swap
(
tmp_starts
);
ends
.
swap
(
tmp_ends
);
}
std
::
vector
<
int
>
strides
(
in_dim_size
,
1
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
input_desc
(
*
input
);
MLUCnnlTensorDesc
out_desc
(
slice_dims
.
size
(),
phi
::
vectorize
(
slice_dims
).
data
(),
ToCnnlDataType
<
T
>
());
MLUCnnl
::
StridedSlice
(
ctx
,
starts
.
data
(),
ends
.
data
(),
strides
.
data
(),
input_desc
.
get
(),
GetBasePtr
(
input
),
out_desc
.
get
(),
GetBasePtr
(
out
));
}
};
template
<
typename
T
>
class
SliceGradMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dinput
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
auto
axes
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
starts
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"starts"
);
auto
ends
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ends"
);
// Get the accurate attribute value of starts and ends
auto
starts_tensor_list
=
ctx
.
MultiInput
<
Tensor
>
(
"StartsTensorList"
);
if
(
ctx
.
HasInput
(
"StartsTensor"
))
{
starts
=
GetDataFromTensor
<
int
>
(
ctx
.
Input
<
Tensor
>
(
"StartsTensor"
));
}
else
if
(
starts_tensor_list
.
size
()
>
0
)
{
starts
=
GetDataFromTensorList
<
int
>
(
starts_tensor_list
);
}
auto
ends_tensor_list
=
ctx
.
MultiInput
<
Tensor
>
(
"EndsTensorList"
);
if
(
ctx
.
HasInput
(
"EndsTensor"
))
{
ends
=
GetDataFromTensor
<
int
>
(
ctx
.
Input
<
Tensor
>
(
"EndsTensor"
));
}
else
if
(
ends_tensor_list
.
size
()
>
0
)
{
ends
=
GetDataFromTensorList
<
int
>
(
ends_tensor_list
);
}
const
auto
&
in_dims
=
input
->
dims
();
auto
slice_dims
=
dout
->
dims
();
if
(
slice_dims
.
size
()
!=
in_dims
.
size
())
{
phi
::
funcs
::
CheckAndUpdateSliceAttrs
(
in_dims
,
axes
,
&
starts
,
&
ends
);
slice_dims
=
phi
::
funcs
::
GetSliceDims
<
int
>
(
in_dims
,
axes
,
starts
,
ends
,
nullptr
,
nullptr
);
}
int
in_dim_size
=
input
->
dims
().
size
();
if
(
static_cast
<
int
>
(
axes
.
size
())
!=
in_dim_size
)
{
std
::
vector
<
int
>
tmp_starts
(
in_dim_size
,
0
);
const
auto
&
in_dims_vec
=
phi
::
vectorize
(
input
->
dims
());
std
::
vector
<
int
>
tmp_ends
(
in_dims_vec
.
begin
(),
in_dims_vec
.
end
());
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
++
i
)
{
tmp_starts
[
axes
[
i
]]
=
starts
[
i
];
tmp_ends
[
axes
[
i
]]
=
ends
[
i
];
}
starts
.
swap
(
tmp_starts
);
ends
.
swap
(
tmp_ends
);
}
std
::
vector
<
int
>
strides
(
in_dim_size
,
1
);
dinput
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
dout_desc
(
slice_dims
.
size
(),
phi
::
vectorize
(
slice_dims
).
data
(),
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
dinput_desc
(
*
dinput
);
MLUCnnl
::
StridedSliceGrad
(
ctx
,
starts
.
data
(),
ends
.
data
(),
strides
.
data
(),
dout_desc
.
get
(),
GetBasePtr
(
dout
),
dinput_desc
.
get
(),
GetBasePtr
(
dinput
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_MLU_KERNEL
(
slice
,
ops
::
SliceMLUKernel
<
float
>
,
ops
::
SliceMLUKernel
<
int
>
,
ops
::
SliceMLUKernel
<
bool
>
,
ops
::
SliceMLUKernel
<
int64_t
>
,
ops
::
SliceMLUKernel
<
double
>
,
ops
::
SliceMLUKernel
<
paddle
::
platform
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
slice_grad
,
ops
::
SliceGradMLUKernel
<
float
>
,
ops
::
SliceGradMLUKernel
<
int
>
,
ops
::
SliceGradMLUKernel
<
bool
>
,
ops
::
SliceGradMLUKernel
<
int64_t
>
,
ops
::
SliceGradMLUKernel
<
paddle
::
platform
::
float16
>
);
python/paddle/fluid/tests/unittests/mlu/test_slice_op_mlu.py
0 → 100644
浏览文件 @
ddb3868e
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle.fluid.core
as
core
import
sys
sys
.
path
.
append
(
'..'
)
from
op_test
import
OpTest
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
import
paddle
paddle
.
enable_static
()
# Situation 1: starts(list, no tensor), ends(list, no tensor)
# 1.1 without attr(decrease)
class
TestSliceOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
set_mlu
()
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
'ends'
:
self
.
ends
,
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
3
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
1
:
3
,
0
:
3
,
2
:
4
,
:]
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
MLUPlace
(
0
)
class
TestCase1
(
TestSliceOp
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
-
3
,
0
,
2
]
self
.
ends
=
[
3
,
100
,
-
1
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
-
3
:
3
,
0
:
100
,
2
:
-
1
,
:]
class
TestCase2
(
TestSliceOp
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
-
3
,
0
,
2
]
self
.
ends
=
[
3
,
100
,
-
1
]
self
.
axes
=
[
0
,
1
,
3
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
-
3
:
3
,
0
:
100
,
:,
2
:
-
1
]
# 1.2 with attr(decrease)
class
TestSliceOp_decs_dim
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
set_mlu
()
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
'ends'
:
self
.
ends
,
'infer_flags'
:
self
.
infer_flags
,
'decrease_axis'
:
self
.
decrease_axis
,
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
decrease_axis
=
[
0
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
1
,
0
:
3
,
2
:
4
,
:]
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
MLUPlace
(
0
)
class
TestSliceOp_decs_dim_2
(
TestSliceOp_decs_dim
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
1
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
decrease_axis
=
[
0
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
1
,
0
,
2
:
4
,
:]
class
TestSliceOp_decs_dim_3
(
TestSliceOp_decs_dim
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
-
1
,
0
,
2
]
self
.
ends
=
[
1000000
,
1
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
decrease_axis
=
[
0
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
-
1
,
0
,
2
:
4
,
:]
class
TestSliceOp_decs_dim_4
(
TestSliceOp_decs_dim
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
7
]).
astype
(
"float32"
)
self
.
starts
=
[
0
,
1
,
2
,
3
]
self
.
ends
=
[
1
,
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
,
3
]
self
.
decrease_axis
=
[
0
,
1
,
2
,
3
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
0
,
1
,
2
,
3
:
4
]
class
TestSliceOp_decs_dim_5
(
TestSliceOp_decs_dim
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
-
1
]
self
.
ends
=
[
1000000
]
self
.
axes
=
[
3
]
self
.
decrease_axis
=
[
3
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[:,
:,
:,
-
1
]
class
TestSliceOp_decs_dim_6
(
TestSliceOp_decs_dim
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
0
,
1
,
2
,
3
]
self
.
ends
=
[
1
,
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
,
3
]
self
.
decrease_axis
=
[
0
,
1
,
2
,
3
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
0
,
1
,
2
,
3
:
4
]
# Situation 2: starts(list, have tensor), ends(list, no tensor)
# without attr(decrease)
class
TestSliceOp_starts_ListTensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
set_mlu
()
self
.
config
()
starts_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
starts
):
starts_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int64'
)
*
ele
))
self
.
inputs
=
{
'Input'
:
self
.
input
,
'StartsTensorList'
:
starts_tensor
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts_infer
,
'ends'
:
self
.
ends
,
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
3
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
infer_flags
=
[
-
1
,
1
,
-
1
]
self
.
out
=
self
.
input
[
1
:
3
,
0
:
3
,
2
:
4
,
:]
self
.
starts_infer
=
[
-
1
,
0
,
-
1
]
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
MLUPlace
(
0
)
# Situation 2: starts(list, have tensor), ends(list, no tensor)
# with attr(decrease)
class
TestSliceOp_decs_dim_starts_ListTensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
set_mlu
()
self
.
config
()
starts_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
starts
):
starts_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
=
{
'Input'
:
self
.
input
,
'StartsTensorList'
:
starts_tensor
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts_infer
,
'ends'
:
self
.
ends
,
'infer_flags'
:
self
.
infer_flags
,
'decrease_axis'
:
self
.
decrease_axis
,
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
decrease_axis
=
[
0
]
self
.
infer_flags
=
[
1
,
-
1
,
1
]
self
.
out
=
self
.
input
[
1
,
0
:
3
,
2
:
4
,
:]
self
.
starts_infer
=
[
1
,
-
1
,
2
]
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
MLUPlace
(
0
)
class
TestSliceOp_decs_dim_5_starts_ListTensor
(
TestSliceOp_decs_dim_starts_ListTensor
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
-
1
]
self
.
ends
=
[
1000000
]
self
.
axes
=
[
3
]
self
.
decrease_axis
=
[
3
]
self
.
infer_flags
=
[
-
1
]
self
.
out
=
self
.
input
[:,
:,
:,
-
1
]
self
.
starts_infer
=
[
-
1
]
# Situation 3: starts(tensor), ends(list, no tensor)
# with attr(decrease)
class
TestSliceOp_decs_dim_starts_OneTensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
MLUPlace
(
0
)
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
,
"StartsTensor"
:
np
.
array
(
self
.
starts
,
dtype
=
"int32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
#'starts': self.starts,
'ends'
:
self
.
ends
,
'infer_flags'
:
self
.
infer_flags
,
'decrease_axis'
:
self
.
decrease_axis
,
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
decrease_axis
=
[
0
]
self
.
infer_flags
=
[
-
1
,
-
1
,
-
1
]
self
.
out
=
self
.
input
[
1
,
0
:
3
,
2
:
4
,
:]
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
# Situation 4: starts(tensor), ends(tensor)
# without attr(decrease)
class
TestSliceOp_starts_OneTensor_ends_OneTensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
MLUPlace
(
0
)
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
,
"StartsTensor"
:
np
.
array
(
self
.
starts
,
dtype
=
"int64"
),
"EndsTensor"
:
np
.
array
(
self
.
ends
,
dtype
=
"int32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
#'starts': self.starts,
#'ends': self.ends_infer,
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
3
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
infer_flags
=
[
-
1
,
-
1
,
-
1
]
self
.
out
=
self
.
input
[
1
:
3
,
0
:
3
,
2
:
4
,
:]
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
# Situation 5: starts(tensor), ends(tensor)
# with attr(decrease)
class
TestSliceOp_decs_dim_starts_and_ends_OneTensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
MLUPlace
(
0
)
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
,
"StartsTensor"
:
np
.
array
(
self
.
starts
,
dtype
=
"int32"
),
"EndsTensor"
:
np
.
array
(
self
.
ends
,
dtype
=
"int32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
#'starts': self.starts,
#'ends': self.ends,
'infer_flags'
:
self
.
infer_flags
,
'decrease_axis'
:
self
.
decrease_axis
,
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
1
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
decrease_axis
=
[
0
,
1
]
self
.
infer_flags
=
[
-
1
,
-
1
,
-
1
]
self
.
out
=
self
.
input
[
1
,
0
,
2
:
4
,
:]
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
# Situation 6: starts(tensor), ends(list, have tensor)
# without attr(decrease)
class
TestSliceOp_starts_OneTensor_ends_ListTensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
MLUPlace
(
0
)
self
.
config
()
ends_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
ends
):
ends_tensor
.
append
((
"y"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
=
{
'Input'
:
self
.
input
,
"StartsTensor"
:
np
.
array
(
self
.
starts
,
dtype
=
"int32"
),
'EndsTensorList'
:
ends_tensor
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
#'starts': self.starts,
'ends'
:
self
.
ends_infer
,
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
3
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
infer_flags
=
[
-
1
,
-
1
,
-
1
]
self
.
out
=
self
.
input
[
1
:
3
,
0
:
3
,
2
:
4
,
:]
self
.
ends_infer
=
[
-
1
,
3
,
4
]
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
# Test float16
class
TestFP16
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
MLUPlace
(
0
)
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
'ends'
:
self
.
ends
,
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
dtype
=
"float16"
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
self
.
dtype
)
self
.
starts
=
[
-
3
,
0
,
2
]
self
.
ends
=
[
3
,
100
,
-
1
]
self
.
axes
=
[
0
,
1
,
3
]
self
.
out
=
self
.
input
[
-
3
:
3
,
0
:
100
,
:,
2
:
-
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-5
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
class
TestFP16_2
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
MLUPlace
(
0
)
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
'ends'
:
self
.
ends
,
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
dtype
=
"float16"
self
.
input
=
np
.
random
.
random
([
3
,
4
,
10
]).
astype
(
self
.
dtype
)
self
.
starts
=
[
0
]
self
.
ends
=
[
1
]
self
.
axes
=
[
1
]
self
.
out
=
self
.
input
[:,
0
:
1
,
:]
self
.
infer_flags
=
[
1
]
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-5
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
,
max_relative_error
=
0.006
,
numeric_grad_delta
=
0.5
)
class
TestSliceApiWithTensor
(
unittest
.
TestCase
):
def
test_starts_ends_is_tensor
(
self
):
with
paddle
.
fluid
.
dygraph
.
guard
():
a
=
paddle
.
rand
(
shape
=
[
4
,
5
,
6
],
dtype
=
'float32'
)
axes
=
[
0
,
1
,
2
]
starts
=
[
-
3
,
0
,
2
]
ends
=
[
3
,
2
,
4
]
a_1
=
paddle
.
slice
(
a
,
axes
=
axes
,
starts
=
paddle
.
to_tensor
(
starts
,
dtype
=
'int32'
),
ends
=
paddle
.
to_tensor
(
ends
,
dtype
=
'int32'
))
a_2
=
paddle
.
slice
(
a
,
axes
=
axes
,
starts
=
starts
,
ends
=
ends
)
self
.
assertTrue
(
np
.
array_equal
(
a_1
.
numpy
(),
a_2
.
numpy
()))
def
test_bool_tensor
(
self
):
with
paddle
.
fluid
.
dygraph
.
guard
():
array
=
(
np
.
arange
(
60
).
reshape
([
3
,
4
,
5
])
%
3
).
astype
(
'bool'
)
tt
=
paddle
.
to_tensor
(
array
)
tt
.
stop_gradient
=
False
starts
=
[
0
,
1
,
2
]
ends
=
[
3
,
5
,
4
]
axes
=
[
0
,
1
,
2
]
y_paddle
=
paddle
.
slice
(
tt
,
axes
,
starts
,
ends
)
y_np
=
tt
[
0
:
3
,
1
:
5
,
2
:
4
]
self
.
assertTrue
(
paddle
.
bool
==
y_paddle
.
dtype
)
self
.
assertTrue
(
np
.
array_equal
(
y_paddle
.
numpy
(),
y_np
))
class
TestImperativeVarBaseGetItem
(
unittest
.
TestCase
):
def
test_getitem_with_long
(
self
):
with
fluid
.
dygraph
.
guard
():
data
=
np
.
random
.
random
((
2
,
80
,
16128
)).
astype
(
'float32'
)
var
=
fluid
.
dygraph
.
to_variable
(
data
)
sliced
=
var
[:,
10
:,
:
var
.
shape
[
1
]]
# var.shape[1] is 80L here
self
.
assertEqual
(
sliced
.
shape
,
[
2
,
70
,
80
])
sliced
=
var
[:,
var
.
shape
[
0
]:,
var
.
shape
[
0
]:
var
.
shape
[
1
]]
self
.
assertEqual
(
sliced
.
shape
,
[
2
,
78
,
78
])
def
test_getitem_with_float
(
self
):
def
test_float_in_slice_item
():
with
fluid
.
dygraph
.
guard
():
data
=
np
.
random
.
random
((
2
,
80
,
16128
)).
astype
(
'float32'
)
var
=
fluid
.
dygraph
.
to_variable
(
data
)
sliced
=
var
[:,
1.1
:,
:
var
.
shape
[
1
]]
self
.
assertRaises
(
Exception
,
test_float_in_slice_item
)
def
test_float_in_index
():
with
fluid
.
dygraph
.
guard
():
data
=
np
.
random
.
random
((
2
,
80
,
16128
)).
astype
(
'float32'
)
var
=
fluid
.
dygraph
.
to_variable
(
data
)
sliced
=
var
[
1.1
]
self
.
assertRaises
(
Exception
,
test_float_in_index
)
class
TestInferShape
(
unittest
.
TestCase
):
def
test
(
self
):
x
=
paddle
.
ones
(
shape
=
[
3
,
4
,
5
])
x
.
desc
.
set_shape
([
3
,
-
1
,
5
])
self
.
assertEqual
(
x
.
shape
,
(
3
,
-
1
,
5
))
out0
=
paddle
.
slice
(
x
,
axes
=
[
1
],
starts
=
[
0
],
ends
=
[
3
])
self
.
assertEqual
(
out0
.
shape
,
(
3
,
3
,
5
))
def
test_axis_less_than_zero
(
self
):
# Using paddle.disable_static will make other unittests fail.
with
fluid
.
dygraph
.
guard
():
x_arr
=
np
.
arange
(
0
,
24
,
dtype
=
np
.
float32
).
reshape
([
2
,
3
,
4
])
x
=
paddle
.
to_tensor
(
x_arr
)
pp_slice
=
paddle
.
slice
(
x
,
[
100
,
],
[
0
],
[
1
])
np_slice
=
x_arr
[:,
:,
0
:
1
]
self
.
assertTrue
(
np
.
array_equal
(
pp_slice
,
np_slice
))
pp_slice
=
paddle
.
slice
(
x
,
(
-
100
,
),
[
0
],
[
1
])
np_slice
=
x_arr
[
0
:
1
]
self
.
assertTrue
(
np
.
array_equal
(
pp_slice
,
np_slice
))
x_arr
=
np
.
array
([],
dtype
=
np
.
float32
)
x
=
paddle
.
to_tensor
(
np
.
reshape
(
x_arr
,
(
0
,
0
,
0
)))
starts
=
paddle
.
to_tensor
(
np
.
reshape
(
np
.
array
(
[],
dtype
=
np
.
int32
),
(
0
,
)))
ends
=
paddle
.
to_tensor
(
np
.
reshape
(
np
.
array
(
[],
dtype
=
np
.
int32
),
(
0
,
)))
with
self
.
assertRaises
(
ValueError
):
paddle
.
slice
(
x
,
[
-
1000000
],
starts
,
ends
)
with
self
.
assertRaises
(
ValueError
):
paddle
.
slice
(
x
,
[
1000000
],
starts
,
ends
)
with
self
.
assertRaises
(
ValueError
):
paddle
.
slice
(
x
,
[],
starts
,
ends
)
with
self
.
assertRaises
(
ValueError
):
paddle
.
slice
(
x
,
0
,
starts
,
ends
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录