提交 db33ff12 编写于 作者: H hedaoyuan

Refine the GemmConvGradKernel.

上级 67db9d35
......@@ -68,7 +68,7 @@ class GemmConvKernel : public framework::OpKernel {
framework::DDim input_shape = {input->dims()[1], input->dims()[2],
input->dims()[3]};
framework::DDim filter_matrix_shape = {
output_channels, framework::product(filter.dims()) / output_channels};
filter.dims()[0], framework::product(filter.dims()) / filter.dims()[0]};
filter.Resize(filter_matrix_shape);
framework::DDim output_matrix_shape = {output_channels,
......@@ -99,24 +99,28 @@ class GemmConvGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* input = context.Input<Tensor>("Input");
Tensor* filter = const_cast<Tensor*>(context.Input<Tensor>("Filter"));
const Tensor* output_grad =
context.Input<Tensor>(framework::GradVarName("Output"));
Tensor* input_grad =
context.Output<Tensor>(framework::GradVarName("Input"));
Tensor* filter_grad =
Tensor* filter_grad_ =
context.Output<Tensor>(framework::GradVarName("Filter"));
input_grad->mutable_data<T>(context.GetPlace());
filter_grad->mutable_data<T>(context.GetPlace());
filter_grad_->mutable_data<T>(context.GetPlace());
// The filter and filter_grad will be reshaped in the calculations,
// so here use an assignment operation,
// that avoids modifying the variable in the Scope.
Tensor filter = *context.Input<Tensor>("Filter");
Tensor filter_grad = *filter_grad_;
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
auto filter_dims = filter->dims();
int batch_size = input->dims()[0];
int input_channels = input->dims()[1];
int filter_height = filter->dims()[filter->dims().size() - 2];
int filter_width = filter->dims()[filter->dims().size() - 1];
int filter_height = filter.dims()[filter.dims().size() - 2];
int filter_width = filter.dims()[filter.dims().size() - 1];
int output_height = output_grad->dims()[2];
int output_width = output_grad->dims()[3];
......@@ -126,64 +130,65 @@ class GemmConvGradKernel : public framework::OpKernel {
paddle::operators::math::Im2ColFunctor<
paddle::operators::math::ColFormat::kCFO, Place, T>
im2col;
Tensor col;
// use col_shape in the im2col and col2im calculation
framework::DDim col_shape = {input_channels, filter_height, filter_width,
output_height, output_width};
// use col_matrix_shape in the gemm calculation
framework::DDim col_matrix_shape = {
input_channels * filter_height * filter_width,
output_height * output_width};
Tensor col;
col.mutable_data<float>(col_shape, context.GetPlace());
auto* device_context =
const_cast<platform::DeviceContext*>(context.device_context_);
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
Tensor col_matrix = col;
col_matrix.Resize(col_matrix_shape);
framework::DDim input_shape = {input->dims()[1], input->dims()[2],
input->dims()[3]};
framework::DDim filter_matrix_shape = {
filter->dims()[0],
filter->dims()[1] * filter->dims()[2] * filter->dims()[3]};
framework::DDim col_matrix_shape = {
input_channels * filter_height * filter_width,
output_height * output_width};
framework::DDim output_matrix_shape = {
output_grad->dims()[1],
output_grad->dims()[2] * output_grad->dims()[3]};
filter->Resize(filter_matrix_shape);
filter_grad->Resize(filter_matrix_shape);
auto t1 = framework::EigenVector<T>::Flatten(*filter_grad);
framework::DDim filter_matrix_shape = {
filter.dims()[0], framework::product(filter.dims()) / filter.dims()[0]};
filter.Resize(filter_matrix_shape);
filter_grad.Resize(filter_matrix_shape);
auto t1 = framework::EigenVector<T>::Flatten(filter_grad);
t1.device(context.GetEigenDevice<Place>()) = t1.constant(static_cast<T>(0));
auto t2 = framework::EigenVector<T>::Flatten(*input_grad);
t2.device(context.GetEigenDevice<Place>()) = t2.constant(static_cast<T>(0));
auto* device_context =
const_cast<platform::DeviceContext*>(context.device_context_);
// convolution backward input operator: gemm + col2im
// convolution backward weight operator: im2col + gemm
for (int i = 0; i < batch_size; i++) {
// gemm
Tensor out_slice = output_grad->Slice<T>(i, i + 1);
out_slice.Resize(output_matrix_shape);
col.Resize(col_matrix_shape);
math::matmul<Place, T>(*filter, true, out_slice, false, T(1.0), &col,
T(0.0), device_context);
math::matmul<Place, T>(filter, true, out_slice, false, T(1.0),
&col_matrix, T(0.0), device_context);
// col2im
Tensor in_grad_slice = input_grad->Slice<T>(i, i + 1);
in_grad_slice.Resize(input_shape);
col.Resize(col_shape);
col2im(in_grad_slice, col, strides[0], strides[1], paddings[0],
paddings[1], device_context);
// im2col
Tensor in_slice = input->Slice<T>(i, i + 1);
in_slice.Resize(input_shape);
col.Resize(col_shape);
im2col(in_slice, col, strides[0], strides[1], paddings[0], paddings[1],
device_context);
// gemm
col.Resize(col_matrix_shape);
math::matmul<Place, T>(out_slice, false, col, true, T(1.0), filter_grad,
T(1.0), device_context);
math::matmul<Place, T>(out_slice, false, col_matrix, true, T(1.0),
&filter_grad, T(1.0), device_context);
}
filter->Resize(filter_dims);
filter_grad->Resize(filter_dims);
}
};
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册