diff --git a/demo/semantic_role_labeling/api_train_v2.py b/demo/semantic_role_labeling/api_train_v2.py index 33b966cca579f6aa6fd62354d00efa5faf21b80c..daaf0f058229a8a906d507cb411230c3aa17d882 100644 --- a/demo/semantic_role_labeling/api_train_v2.py +++ b/demo/semantic_role_labeling/api_train_v2.py @@ -1,8 +1,6 @@ import numpy import paddle.v2 as paddle -from paddle.trainer_config_helpers.atts import ParamAttr - -from mode_v2 import db_lstm +from model_v2 import db_lstm word_dict_file = './data/wordDict.txt' label_dict_file = './data/targetDict.txt' @@ -64,9 +62,8 @@ def train_reader(file_name="data/feature"): def main(): paddle.init(use_gpu=False, trainer_count=1) - label_dict_len = 500 # define network topology - output = db_lstm() + output = db_lstm(word_dict_len, label_dict_len, pred_len) target = paddle.layer.data(name='target', size=label_dict_len) crf_cost = paddle.layer.crf_layer( size=500, @@ -97,6 +94,17 @@ def main(): trainer = paddle.trainer.SGD(update_equation=optimizer) + reader_dict = { + 'word_data': 0, + 'verb_data': 1, + 'ctx_n2_data': 2, + 'ctx_n1_data': 3, + 'ctx_0_data': 4, + 'ctx_p1_data': 5, + 'ctx_p2_data': 6, + 'mark_data': 7, + 'target': 8 + } trainer.train( train_data_reader=train_reader, batch_size=32, @@ -104,8 +112,7 @@ def main(): parameters=parameters, event_handler=event_handler, num_passes=10000, - data_types=[], - reader_dict={}) + reader_dict=reader_dict) if __name__ == '__main__': diff --git a/demo/semantic_role_labeling/model_v2.py b/demo/semantic_role_labeling/model_v2.py index d4d011770dc2de11d5e599d769c45262b13ffcda..a78190a2b22aa97e89ff6789ceadf6e54fce9b68 100644 --- a/demo/semantic_role_labeling/model_v2.py +++ b/demo/semantic_role_labeling/model_v2.py @@ -1,3 +1,4 @@ +import math import paddle.v2 as paddle @@ -9,15 +10,18 @@ def db_lstm(word_dict_len, label_dict_len, pred_len): depth = 8 #8 features - word = paddle.layer.data(name='word_data', size=word_dict_len) - predicate = paddle.layer.data(name='verb_data', size=pred_len) + def d_type(size): + return paddle.data_type.integer_value_sequence(size) - ctx_n2 = paddle.layer.data(name='ctx_n2_data', size=word_dict_len) - ctx_n1 = paddle.layer.data(name='ctx_n1_data', size=word_dict_len) - ctx_0 = paddle.layer.data(name='ctx_0_data', size=word_dict_len) - ctx_p1 = paddle.layer.data(name='ctx_p1_data', size=word_dict_len) - ctx_p2 = paddle.layer.data(name='ctx_p2_data', size=word_dict_len) - mark = paddle.layer.data(name='mark_data', size=mark_dict_len) + word = paddle.layer.data(name='word_data', type=d_type(word_dict_len)) + predicate = paddle.layer.data(name='verb_data', type=d_type(pred_len)) + + ctx_n2 = paddle.layer.data(name='ctx_n2_data', type=d_type(word_dict_len)) + ctx_n1 = paddle.layer.data(name='ctx_n1_data', type=d_type(word_dict_len)) + ctx_0 = paddle.layer.data(name='ctx_0_data', type=d_type(word_dict_len)) + ctx_p1 = paddle.layer.data(name='ctx_p1_data', type=d_type(word_dict_len)) + ctx_p2 = paddle.layer.data(name='ctx_p2_data', type=d_type(word_dict_len)) + mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_len)) default_std = 1 / math.sqrt(hidden_dim) / 3.0 @@ -31,10 +35,7 @@ def db_lstm(word_dict_len, label_dict_len, pred_len): param_attr=paddle.attr.Param( name='vemb', initial_std=default_std)) mark_embedding = paddle.layer.embeding( - name='word_ctx-in_embedding', - size=mark_dim, - input=mark, - param_attr=std_0) + size=mark_dim, input=mark, param_attr=std_0) word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2] emb_layers = [