提交 d83187db 编写于 作者: T tensor-tang

enable lac analysis test

上级 d9c3123a
......@@ -105,6 +105,18 @@ if (NOT EXISTS ${LAC_INSTALL_DIR} AND WITH_TESTING)
endif()
inference_analysis_test(test_analyzer_lac SRCS analyzer_lac_tester.cc
EXTRA_DEPS paddle_inference_api paddle_fluid_api
EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis
analysis_predictor
# ir
fc_fuse_pass
fc_lstm_fuse_pass
seq_concat_fc_fuse_pass
graph_viz_pass
infer_clean_graph_pass
graph_pattern_detector
infer_clean_graph_pass
attention_lstm_fuse_pass
paddle_inference_api
pass
ARGS --infer_model=${LAC_INSTALL_DIR}/model
--infer_data=${LAC_INSTALL_DIR}/data.txt)
......@@ -11,8 +11,8 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/analysis/analyzer.h"
#include <google/protobuf/text_format.h>
#include <gtest/gtest.h>
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
......@@ -102,6 +102,7 @@ struct DataRecord {
return data;
}
};
void GetOneBatch(std::vector<PaddleTensor> *input_slots, DataRecord *data,
int batch_size) {
auto one_batch = data->NextBatch();
......@@ -114,12 +115,14 @@ void GetOneBatch(std::vector<PaddleTensor> *input_slots, DataRecord *data,
PADDLE_ENFORCE_EQ(batch_size, static_cast<int>(one_batch.lod.size() - 1));
input_slots->assign({input_tensor});
}
static void PrintTime(const double latency, const int bs, const int repeat) {
LOG(INFO) << "===========profile result===========";
LOG(INFO) << "batch_size: " << bs << ", repeat: " << repeat
<< ", avg latency: " << latency / repeat << "ms";
LOG(INFO) << "=====================================";
}
void BenchAllData(const std::string &model_path, const std::string &data_file,
const int batch_size, const int repeat) {
NativeConfig config;
......@@ -147,36 +150,64 @@ void BenchAllData(const std::string &model_path, const std::string &data_file,
}
PrintTime(sum, batch_size, repeat);
}
const int64_t lac_ref_data[] = {24, 25, 25, 25, 38, 30, 31, 14, 15, 44, 24, 25,
25, 25, 25, 25, 44, 24, 25, 25, 25, 36, 42, 43,
44, 14, 15, 44, 14, 15, 44, 14, 15, 44, 38, 39,
14, 15, 44, 22, 23, 23, 23, 23, 23, 23, 23};
void TestLACPrediction(const std::string &model_path,
const std::string &data_file, const int batch_size,
const int repeat, bool test_all_data) {
if (test_all_data) {
BenchAllData(model_path, data_file, batch_size, repeat);
return;
}
const int repeat, bool test_all_data,
bool use_analysis = false) {
NativeConfig config;
config.model_dir = model_path;
config.use_gpu = false;
config.device = 0;
config.specify_input_name = true;
std::vector<PaddleTensor> input_slots, outputs_slots;
std::vector<PaddleTensor> input_slots, outputs_slots, ref_outputs_slots;
DataRecord data(data_file, batch_size);
GetOneBatch(&input_slots, &data, batch_size);
auto predictor =
std::unique_ptr<PaddlePredictor> predictor;
if (use_analysis) {
predictor =
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kAnalysis>(
config);
} else {
predictor =
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
}
for (int i = 0; i < FLAGS_burning; i++) {
predictor->Run(input_slots, &outputs_slots);
}
Timer timer;
if (test_all_data) {
double sum = 0;
for (int i = 0; i < repeat; i++) {
for (size_t bid = 0; bid < data.batched_datas.size(); ++bid) {
GetOneBatch(&input_slots, &data, batch_size);
timer.tic();
predictor->Run(input_slots, &outputs_slots);
sum += timer.toc();
}
}
PrintTime(sum, batch_size, repeat);
return;
}
timer.tic();
for (int i = 0; i < repeat; i++) {
predictor->Run(input_slots, &outputs_slots);
}
PrintTime(timer.toc(), batch_size, repeat);
// check result
if (use_analysis) {
// run once for comparion as reference
auto ref_predictor =
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
ref_predictor->Run(input_slots, &ref_outputs_slots);
}
EXPECT_EQ(outputs_slots.size(), 1UL);
auto &out = outputs_slots[0];
size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
......@@ -188,12 +219,33 @@ void TestLACPrediction(const std::string &model_path,
for (size_t i = 0; i < batch1_size; ++i) {
EXPECT_EQ(pdata[i], lac_ref_data[i]);
}
if (use_analysis) {
EXPECT_EQ(ref_outputs_slots.size(), outputs_slots.size());
auto &ref_out = ref_outputs_slots[0];
size_t ref_size =
std::accumulate(ref_out.shape.begin(), ref_out.shape.end(), 1,
[](int a, int b) { return a * b; });
EXPECT_EQ(size, ref_size);
int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
for (size_t i = 0; i < size; ++i) {
EXPECT_EQ(pdata_ref[i], pdata[i]);
}
}
}
TEST(Analyzer_LAC, native) {
LOG(INFO) << "LAC with native";
TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size,
FLAGS_repeat, FLAGS_test_all_data);
}
TEST(Analyzer_LAC, analysis) {
LOG(INFO) << "LAC with analysis";
TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size,
FLAGS_repeat, FLAGS_test_all_data, true);
}
} // namespace analysis
} // namespace inference
} // namespace paddle
......@@ -47,7 +47,7 @@ function(inference_api_test TARGET_NAME)
endfunction(inference_api_test)
cc_library(paddle_inference_api SRCS api.cc api_impl.cc helper.cc DEPS lod_tensor)
cc_library(analysis_predictor SRCS analysis_predictor.cc DEPS paddle_inference_api)
cc_library(analysis_predictor SRCS analysis_predictor.cc DEPS paddle_inference_api analysis)
cc_test(test_paddle_inference_api
SRCS api_tester.cc
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册