未验证 提交 d7493df2 编写于 作者: L Li Min 提交者: GitHub

[NPU] Support npu op reciprocal and reciprocal grad (#34531)

上级 2d0f3d9b
...@@ -397,6 +397,40 @@ class HardSigmoidGradNPUKernel : public framework::OpKernel<T> { ...@@ -397,6 +397,40 @@ class HardSigmoidGradNPUKernel : public framework::OpKernel<T> {
} }
}; };
template <typename DeviceContext, typename T>
class ReciprocalNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* out = ctx.Output<Tensor>("Out");
auto place = ctx.GetPlace();
out->mutable_data<T>(place);
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
const auto& runner = NpuOpRunner("Reciprocal", {*x}, {*out}, {});
runner.Run(stream);
}
};
template <typename DeviceContext, typename T>
class ReciprocalGradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* out = ctx.Input<Tensor>("Out");
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto place = ctx.GetPlace();
dx->mutable_data<T>(place);
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
const auto& runner_dx =
NpuOpRunner("ReciprocalGrad", {*out, *dout}, {*dx}, {});
runner_dx.Run(stream);
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -483,3 +517,17 @@ REGISTER_OP_NPU_KERNEL( ...@@ -483,3 +517,17 @@ REGISTER_OP_NPU_KERNEL(
ops::HardSigmoidGradNPUKernel<paddle::platform::NPUDeviceContext, float>, ops::HardSigmoidGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::HardSigmoidGradNPUKernel<paddle::platform::NPUDeviceContext, ops::HardSigmoidGradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>); paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
reciprocal,
ops::ReciprocalNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::ReciprocalNPUKernel<paddle::platform::NPUDeviceContext, double>,
ops::ReciprocalNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
reciprocal_grad,
ops::ReciprocalGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::ReciprocalGradNPUKernel<paddle::platform::NPUDeviceContext, double>,
ops::ReciprocalGradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
...@@ -91,13 +91,10 @@ class MeanGradNPUKernel : public framework::OpKernel<T> { ...@@ -91,13 +91,10 @@ class MeanGradNPUKernel : public framework::OpKernel<T> {
namespace ops = paddle::operators; namespace ops = paddle::operators;
namespace plat = paddle::platform; namespace plat = paddle::platform;
REGISTER_OP_NPU_KERNEL( REGISTER_OP_NPU_KERNEL(
mean, ops::MeanNPUKernel<paddle::platform::NPUDeviceContext, int>, mean, ops::MeanNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::MeanNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::MeanNPUKernel<paddle::platform::NPUDeviceContext, double>,
ops::MeanNPUKernel<paddle::platform::NPUDeviceContext, plat::float16>) ops::MeanNPUKernel<paddle::platform::NPUDeviceContext, plat::float16>)
REGISTER_OP_NPU_KERNEL( REGISTER_OP_NPU_KERNEL(
mean_grad, ops::MeanGradNPUKernel<paddle::platform::NPUDeviceContext, int>, mean_grad,
ops::MeanGradNPUKernel<paddle::platform::NPUDeviceContext, float>, ops::MeanGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::MeanGradNPUKernel<paddle::platform::NPUDeviceContext, double>,
ops::MeanGradNPUKernel<paddle::platform::NPUDeviceContext, plat::float16>) ops::MeanGradNPUKernel<paddle::platform::NPUDeviceContext, plat::float16>)
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function, division
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest, skip_check_grad_ci
import paddle
paddle.enable_static()
class TestNPUReciprocal(OpTest):
def setUp(self):
self.op_type = "reciprocal"
self.set_npu()
self.init_dtype()
np.random.seed(1024)
x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
out = np.reciprocal(x)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.outputs = {'Out': out}
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad_with_place(
self.place, ['X'], 'Out', max_relative_error=0.01)
def set_npu(self):
self.__class__.use_npu = True
self.place = paddle.NPUPlace(0)
def init_dtype(self):
self.dtype = np.float32
class TestNPUReciprocalFp64(TestNPUReciprocal):
def set_npu(self):
self.__class__.use_npu = True
self.place = paddle.NPUPlace(0)
def init_dtype(self):
self.dtype = np.float64
@skip_check_grad_ci(
reason="The backward test is not supported for float16 type on NPU.")
class TestNPUReciprocalFp16(TestNPUReciprocal):
def set_npu(self):
self.__class__.use_npu = True
self.place = paddle.NPUPlace(0)
self.__class__.no_need_check_grad = True
def init_dtype(self):
self.dtype = np.float16
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册