提交 d4b9928c 编写于 作者: M minqiyang

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into imperative_mnist

test=develop
......@@ -126,16 +126,12 @@ if(ANDROID OR IOS)
add_definitions(-DPADDLE_MOBILE_INFERENCE)
endif()
if (APPLE OR WIN32)
if (APPLE)
set(WITH_MKL OFF CACHE STRING
"Disable MKL for building on mac and windows" FORCE)
"Disable MKL for building on mac" FORCE)
endif()
if (WIN32)
set(WITH_DSO OFF CACHE STRING
"Disable DSO when compiling for Windows" FORCE)
set(WITH_MKL OFF CACHE STRING
"Disable MKL when compiling for Windows" FORCE)
set(WITH_DISTRIBUTE OFF CACHE STRING
"Disable DISTRIBUTE when compiling for Windows" FORCE)
set(WITH_C_API OFF CACHE STRING
......
......@@ -44,9 +44,9 @@ if(WIN32)
set(CUDNN_LIB_NAME "cudnn.lib" "cudnn64_7.dll")
endif(WIN32)
if(Apple)
if(APPLE)
set(CUDNN_LIB_NAME "libcudnn.dylib" "libcudnn.so")
endif(Apple)
endif(APPLE)
find_library(CUDNN_LIBRARY NAMES ${CUDNN_LIB_NAME} # libcudnn_static.a
PATHS ${CUDNN_CHECK_LIBRARY_DIRS} ${CUDNN_INCLUDE_DIR} ${__libpath_hist}
......
......@@ -23,15 +23,14 @@ SET(MKLDNN_SOURCES_DIR ${THIRD_PARTY_PATH}/mkldnn)
SET(MKLDNN_INSTALL_DIR ${THIRD_PARTY_PATH}/install/mkldnn)
SET(MKLDNN_INC_DIR "${MKLDNN_INSTALL_DIR}/include" CACHE PATH "mkldnn include directory." FORCE)
IF(WIN32 OR APPLE)
IF(APPLE)
MESSAGE(WARNING
"Windows or Mac is not supported with MKLDNN in Paddle yet."
"Mac is not supported with MKLDNN in Paddle yet."
"Force WITH_MKLDNN=OFF")
SET(WITH_MKLDNN OFF CACHE STRING "Disable MKLDNN in Windows and MacOS" FORCE)
SET(WITH_MKLDNN OFF CACHE STRING "Disable MKLDNN in MacOS" FORCE)
return()
ENDIF()
SET(MKLDNN_LIB "${MKLDNN_INSTALL_DIR}/lib/libmkldnn.so" CACHE FILEPATH "mkldnn library." FORCE)
MESSAGE(STATUS "Set ${MKLDNN_INSTALL_DIR}/lib to runtime path")
SET(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE)
SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${MKLDNN_INSTALL_DIR}/lib")
......@@ -44,10 +43,14 @@ IF(${CBLAS_PROVIDER} STREQUAL "MKLML")
ELSE()
MESSAGE(FATAL_ERROR "Should enable MKLML when build MKLDNN")
ENDIF()
SET(MKLDNN_FLAG "-Wno-error=strict-overflow -Wno-error=unused-result -Wno-error=array-bounds")
SET(MKLDNN_FLAG "${MKLDNN_FLAG} -Wno-unused-result -Wno-unused-value")
SET(MKLDNN_CFLAG "${CMAKE_C_FLAGS} ${MKLDNN_FLAG}")
SET(MKLDNN_CXXFLAG "${CMAKE_CXX_FLAGS} ${MKLDNN_FLAG}")
IF(NOT WIN32)
SET(MKLDNN_FLAG "-Wno-error=strict-overflow -Wno-error=unused-result -Wno-error=array-bounds")
SET(MKLDNN_FLAG "${MKLDNN_FLAG} -Wno-unused-result -Wno-unused-value")
SET(MKLDNN_CFLAG "${CMAKE_C_FLAGS} ${MKLDNN_FLAG}")
SET(MKLDNN_CXXFLAG "${CMAKE_CXX_FLAGS} ${MKLDNN_FLAG}")
ENDIF(NOT WIN32)
ExternalProject_Add(
${MKLDNN_PROJECT}
${EXTERNAL_PROJECT_LOG_ARGS}
......@@ -58,8 +61,15 @@ ExternalProject_Add(
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
CMAKE_ARGS -DCMAKE_CXX_FLAGS_RELEASE=${CMAKE_CXX_FLAGS_RELEASE}
CMAKE_ARGS -DCMAKE_CXX_FLAGS_DEBUG=${CMAKE_CXX_FLAGS_DEBUG}
CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
CMAKE_ARGS -DCMAKE_C_FLAGS_DEBUG=${CMAKE_C_FLAGS_DEBUG}
CMAKE_ARGS -DCMAKE_C_FLAGS_RELEASE=${CMAKE_C_FLAGS_RELEASE}
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${MKLDNN_INSTALL_DIR}
CMAKE_ARGS -DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE}
CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON
CMAKE_ARGS -DMKLROOT=${MKLML_ROOT}
CMAKE_ARGS -DCMAKE_C_FLAGS=${MKLDNN_CFLAG}
CMAKE_ARGS -DCMAKE_CXX_FLAGS=${MKLDNN_CXXFLAG}
......@@ -67,6 +77,11 @@ ExternalProject_Add(
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${MKLDNN_INSTALL_DIR}
-DMKLROOT:PATH=${MKLML_ROOT}
)
if(WIN32)
SET(MKLDNN_LIB "${MKLDNN_INSTALL_DIR}/lib/mkldnn.lib" CACHE FILEPATH "mkldnn library." FORCE)
else(WIN32)
SET(MKLDNN_LIB "${MKLDNN_INSTALL_DIR}/lib/libmkldnn.so" CACHE FILEPATH "mkldnn library." FORCE)
endif(WIN32)
ADD_LIBRARY(shared_mkldnn SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET shared_mkldnn PROPERTY IMPORTED_LOCATION ${MKLDNN_LIB})
......@@ -85,10 +100,14 @@ ADD_DEPENDENCIES(mkldnn ${MKLDNN_PROJECT})
# copy the real so.0 lib to install dir
# it can be directly contained in wheel or capi
SET(MKLDNN_SHARED_LIB ${MKLDNN_INSTALL_DIR}/libmkldnn.so.0)
ADD_CUSTOM_COMMAND(OUTPUT ${MKLDNN_SHARED_LIB}
COMMAND cp ${MKLDNN_LIB} ${MKLDNN_SHARED_LIB}
DEPENDS mkldnn)
if(WIN32)
SET(MKLDNN_SHARED_LIB ${MKLDNN_INSTALL_DIR}/lib/mkldnn.dll)
else(WIN32)
SET(MKLDNN_SHARED_LIB ${MKLDNN_INSTALL_DIR}/libmkldnn.so.0)
ADD_CUSTOM_COMMAND(OUTPUT ${MKLDNN_SHARED_LIB}
COMMAND ${CMAKE_COMMAND} -E copy ${MKLDNN_LIB} ${MKLDNN_SHARED_LIB}
DEPENDS mkldnn)
endif(WIN32)
ADD_CUSTOM_TARGET(mkldnn_shared_lib ALL DEPENDS ${MKLDNN_SHARED_LIB})
IF(WITH_C_API)
......
......@@ -16,56 +16,67 @@ IF(NOT ${WITH_MKLML})
return()
ENDIF(NOT ${WITH_MKLML})
IF(WIN32 OR APPLE)
IF(APPLE)
MESSAGE(WARNING
"Windows or Mac is not supported with MKLML in Paddle yet."
"Mac is not supported with MKLML in Paddle yet."
"Force WITH_MKLML=OFF")
SET(WITH_MKLML OFF CACHE STRING "Disable MKLML package in Windows and MacOS" FORCE)
return()
ENDIF()
INCLUDE(ExternalProject)
SET(MKLML_PROJECT "extern_mklml")
IF((NOT DEFINED MKLML_VER) OR (NOT DEFINED MKLML_URL))
MESSAGE(STATUS "use pre defined download url")
SET(MKLML_VER "mklml_lnx_2019.0.20180710" CACHE STRING "" FORCE)
SET(MKLML_URL "http://paddlepaddledeps.cdn.bcebos.com/${MKLML_VER}.tgz" CACHE STRING "" FORCE)
ENDIF()
MESSAGE(STATUS "MKLML_VER: ${MKLML_VER}, MKLML_URL: ${MKLML_URL}")
SET(MKLML_SOURCE_DIR "${THIRD_PARTY_PATH}/mklml")
SET(MKLML_DOWNLOAD_DIR "${MKLML_SOURCE_DIR}/src/${MKLML_PROJECT}")
SET(MKLML_DST_DIR "mklml")
SET(MKLML_INSTALL_ROOT "${THIRD_PARTY_PATH}/install")
SET(MKLML_INSTALL_DIR ${MKLML_INSTALL_ROOT}/${MKLML_DST_DIR})
SET(MKLML_ROOT ${MKLML_INSTALL_DIR})
SET(MKLML_INC_DIR ${MKLML_ROOT}/include)
SET(MKLML_LIB_DIR ${MKLML_ROOT}/lib)
SET(MKLML_LIB ${MKLML_LIB_DIR}/libmklml_intel.so)
SET(MKLML_IOMP_LIB ${MKLML_LIB_DIR}/libiomp5.so)
if(WIN32)
SET(MKLML_LIB ${MKLML_LIB_DIR}/mklml.lib)
SET(MKLML_IOMP_LIB ${MKLML_LIB_DIR}/libiomp5md.lib)
SET(MKLML_SHARED_LIB ${MKLML_LIB_DIR}/mklml.dll)
SET(MKLML_SHARED_IOMP_LIB ${MKLML_LIB_DIR}/libiomp5md.dll)
else()
SET(MKLML_LIB ${MKLML_LIB_DIR}/libmklml_intel.so)
SET(MKLML_IOMP_LIB ${MKLML_LIB_DIR}/libiomp5.so)
SET(MKLML_SHARED_LIB ${MKLML_LIB_DIR}/libmklml_intel.so)
SET(MKLML_SHARED_IOMP_LIB ${MKLML_LIB_DIR}/libiomp5.so)
endif()
SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${MKLML_ROOT}/lib")
INCLUDE_DIRECTORIES(${MKLML_INC_DIR})
IF((NOT DEFINED MKLML_VER) OR (NOT DEFINED MKLML_URL))
MESSAGE(STATUS "use pre defined download url")
if(WIN32)
SET(MKLML_VER "mklml_win_2019.0.20180710" CACHE STRING "" FORCE)
SET(MKLML_URL "https://paddlepaddledeps.cdn.bcebos.com/${MKLML_VER}.zip" CACHE STRING "" FORCE)
else()
SET(MKLML_VER "mklml_lnx_2019.0.20180710" CACHE STRING "" FORCE)
SET(MKLML_URL "http://paddlepaddledeps.cdn.bcebos.com/${MKLML_VER}.tgz" CACHE STRING "" FORCE)
ENDIF()
endif()
FILE(WRITE ${MKLML_DOWNLOAD_DIR}/CMakeLists.txt
"PROJECT(MKLML)\n"
"cmake_minimum_required(VERSION 3.0)\n"
"install(DIRECTORY ${MKLML_VER}/include ${MKLML_VER}/lib \n"
" DESTINATION ${MKLML_DST_DIR})\n")
SET(MKLML_PROJECT "extern_mklml")
MESSAGE(STATUS "MKLML_VER: ${MKLML_VER}, MKLML_URL: ${MKLML_URL}")
SET(MKLML_SOURCE_DIR "${THIRD_PARTY_PATH}/mklml")
SET(MKLML_DOWNLOAD_DIR "${MKLML_SOURCE_DIR}/src/${MKLML_PROJECT}")
ExternalProject_Add(
${MKLML_PROJECT}
${EXTERNAL_PROJECT_LOG_ARGS}
PREFIX ${MKLML_SOURCE_DIR}
PREFIX ${MKLML_SOURCE_DIR}
URL ${MKLML_URL}
DOWNLOAD_DIR ${MKLML_DOWNLOAD_DIR}
DOWNLOAD_COMMAND wget --no-check-certificate ${MKLML_URL} -c -q -O ${MKLML_VER}.tgz
&& tar zxf ${MKLML_VER}.tgz
DOWNLOAD_NO_PROGRESS 1
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${MKLML_INSTALL_ROOT}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${MKLML_INSTALL_ROOT}
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
UPDATE_COMMAND ""
INSTALL_COMMAND
${CMAKE_COMMAND} -E copy_directory ${MKLML_DOWNLOAD_DIR}/include ${MKLML_INC_DIR} &&
${CMAKE_COMMAND} -E copy_directory ${MKLML_DOWNLOAD_DIR}/lib ${MKLML_LIB_DIR}
)
INCLUDE_DIRECTORIES(${MKLML_INC_DIR})
ADD_LIBRARY(mklml SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET mklml PROPERTY IMPORTED_LOCATION ${MKLML_LIB})
ADD_DEPENDENCIES(mklml ${MKLML_PROJECT})
......
......@@ -267,7 +267,11 @@ function(cc_library TARGET_NAME)
list(APPEND cc_library_DEPS dynload_mklml)
endif()
add_dependencies(${TARGET_NAME} mklml)
target_link_libraries(${TARGET_NAME} "-L${MKLML_LIB_DIR} -liomp5 -Wl,--as-needed")
if(WIN32)
target_link_libraries(${TARGET_NAME} ${MKLML_IOMP_LIB})
else(WIN32)
target_link_libraries(${TARGET_NAME} "-L${MKLML_LIB_DIR} -liomp5 -Wl,--as-needed")
endif(WIN32)
endif()
# remove link to python, see notes at:
# https://github.com/pybind/pybind11/blob/master/docs/compiling.rst#building-manually
......
......@@ -115,20 +115,20 @@ if (NOT PROTOBUF_FOUND OR WIN32)
)
endif ()
if (NOT CBLAS_FOUND)
set(dst_dir "${FLUID_INSTALL_DIR}/third_party/install/openblas")
copy(openblas_lib
SRCS ${CBLAS_INSTALL_DIR}/lib ${CBLAS_INSTALL_DIR}/include
DSTS ${dst_dir} ${dst_dir}
DEPS extern_openblas
)
elseif (WITH_MKLML)
if (WITH_MKLML)
set(dst_dir "${FLUID_INSTALL_DIR}/third_party/install/mklml")
copy(mklml_lib
SRCS ${MKLML_LIB} ${MKLML_IOMP_LIB} ${MKLML_INC_DIR}
DSTS ${dst_dir}/lib ${dst_dir}/lib ${dst_dir}
DEPS mklml
)
elseif (NOT CBLAS_FOUND OR WIN32)
set(dst_dir "${FLUID_INSTALL_DIR}/third_party/install/openblas")
copy(openblas_lib
SRCS ${CBLAS_INSTALL_DIR}/lib ${CBLAS_INSTALL_DIR}/include
DSTS ${dst_dir} ${dst_dir}
DEPS extern_openblas
)
endif ()
if (WITH_MKLDNN)
......
......@@ -57,46 +57,43 @@ int main()
return 0;
}" SSE3_FOUND)
# disable AVX by default on windows
if(NOT WIN32)
# Check AVX
set(CMAKE_REQUIRED_FLAGS ${AVX_FLAG})
set(AVX_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE)
CHECK_CXX_SOURCE_RUNS("
#include <immintrin.h>
int main()
{
__m256 a = _mm256_set_ps (-1.0f, 2.0f, -3.0f, 4.0f, -1.0f, 2.0f, -3.0f, 4.0f);
__m256 b = _mm256_set_ps (1.0f, 2.0f, 3.0f, 4.0f, 1.0f, 2.0f, 3.0f, 4.0f);
__m256 result = _mm256_add_ps (a, b);
return 0;
}" AVX_FOUND)
# Check AVX
set(CMAKE_REQUIRED_FLAGS ${AVX_FLAG})
set(AVX_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE)
CHECK_CXX_SOURCE_RUNS("
#include <immintrin.h>
int main()
{
__m256 a = _mm256_set_ps (-1.0f, 2.0f, -3.0f, 4.0f, -1.0f, 2.0f, -3.0f, 4.0f);
__m256 b = _mm256_set_ps (1.0f, 2.0f, 3.0f, 4.0f, 1.0f, 2.0f, 3.0f, 4.0f);
__m256 result = _mm256_add_ps (a, b);
return 0;
}" AVX_FOUND)
# Check AVX 2
set(CMAKE_REQUIRED_FLAGS ${AVX2_FLAG})
set(AVX2_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE)
CHECK_CXX_SOURCE_RUNS("
#include <immintrin.h>
int main()
{
__m256i a = _mm256_set_epi32 (-1, 2, -3, 4, -1, 2, -3, 4);
__m256i result = _mm256_abs_epi32 (a);
return 0;
}" AVX2_FOUND)
# Check AVX 2
set(CMAKE_REQUIRED_FLAGS ${AVX2_FLAG})
set(AVX2_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE)
CHECK_CXX_SOURCE_RUNS("
#include <immintrin.h>
int main()
{
__m256i a = _mm256_set_epi32 (-1, 2, -3, 4, -1, 2, -3, 4);
__m256i result = _mm256_abs_epi32 (a);
return 0;
}" AVX2_FOUND)
# Check AVX512F
set(CMAKE_REQUIRED_FLAGS ${AVX512F_FLAG})
set(AVX512F_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE)
CHECK_CXX_SOURCE_RUNS("
#include <immintrin.h>
int main()
{
__m512i a = _mm512_set_epi32 (-1, 2, -3, 4, -1, 2, -3, 4,
13, -5, 6, -7, 9, 2, -6, 3);
__m512i result = _mm512_abs_epi32 (a);
return 0;
}" AVX512F_FOUND)
endif(NOT WIN32)
# Check AVX512F
set(CMAKE_REQUIRED_FLAGS ${AVX512F_FLAG})
set(AVX512F_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE)
CHECK_CXX_SOURCE_RUNS("
#include <immintrin.h>
int main()
{
__m512i a = _mm512_set_epi32 (-1, 2, -3, 4, -1, 2, -3, 4,
13, -5, 6, -7, 9, 2, -6, 3);
__m512i result = _mm512_abs_epi32 (a);
return 0;
}" AVX512F_FOUND)
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_RETAINED})
mark_as_advanced(MMX_FOUND SSE2_FOUND SSE3_FOUND AVX_FOUND AVX2_FOUND AVX512F_FOUND)
......@@ -60,7 +60,7 @@ class Float16Transpiler:
raise TypeError("place should be as CPUPlace/CUDAPlace type")
if scope is None:
scope = global_scope()
if not isinstance(scope, core.Scope):
if not isinstance(scope, core._Scope):
raise TypeError("scope should be as Scope type or None")
self.scope = scope
......
......@@ -208,6 +208,7 @@ paddle.fluid.layers.bilinear_tensor_product ArgSpec(args=['x', 'y', 'size', 'act
paddle.fluid.layers.merge_selected_rows ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.get_tensor_from_selected_rows ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.lstm ArgSpec(args=['input', 'init_h', 'init_c', 'max_len', 'hidden_size', 'num_layers', 'dropout_prob', 'is_bidirec', 'is_test', 'name', 'default_initializer', 'seed'], varargs=None, keywords=None, defaults=(0.0, False, False, None, None, -1))
paddle.fluid.layers.py_func ArgSpec(args=['func', 'x', 'out', 'backward_func', 'skip_vars_in_backward_input'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.psroi_pool ArgSpec(args=['input', 'rois', 'output_channels', 'spatial_scale', 'pooled_height', 'pooled_width', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.huber_loss ArgSpec(args=['input', 'label', 'delta'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
......@@ -350,6 +351,23 @@ paddle.fluid.contrib.QuantizeTranspiler.__init__ ArgSpec(args=['self', 'weight_b
paddle.fluid.contrib.QuantizeTranspiler.convert_to_int8 ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.QuantizeTranspiler.freeze_program ArgSpec(args=['self', 'program', 'place', 'fuse_bn', 'scope'], varargs=None, keywords=None, defaults=(False, None))
paddle.fluid.contrib.QuantizeTranspiler.training_transpile ArgSpec(args=['self', 'program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.contrib.build_compressor ArgSpec(args=['place', 'data_reader', 'data_feeder', 'scope', 'metrics', 'epoch', 'config'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None))
paddle.fluid.contrib.CompressPass.__init__ ArgSpec(args=['self', 'place', 'data_reader', 'data_feeder', 'scope', 'metrics', 'epoch', 'program_exe'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None))
paddle.fluid.contrib.CompressPass.add_strategy ArgSpec(args=['self', 'strategy'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.CompressPass.apply ArgSpec(args=['self', 'graph'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.ImitationGraph.__init__ ArgSpec(args=['self', 'program'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.ImitationGraph.all_parameters ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.SensitivePruneStrategy.__init__ ArgSpec(args=['self', 'pruner', 'start_epoch', 'end_epoch', 'delta_rate', 'acc_loss_threshold', 'sensitivities'], varargs=None, keywords=None, defaults=(None, 0, 10, 0.2, 0.2, None))
paddle.fluid.contrib.SensitivePruneStrategy.on_batch_begin ArgSpec(args=['self', 'context'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.SensitivePruneStrategy.on_batch_end ArgSpec(args=['self', 'context'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.SensitivePruneStrategy.on_compress_begin ArgSpec(args=['self', 'context'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.SensitivePruneStrategy.on_compress_end ArgSpec(args=['self', 'context'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.SensitivePruneStrategy.on_epoch_begin ArgSpec(args=['self', 'context'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.SensitivePruneStrategy.on_epoch_end ArgSpec(args=['self', 'context'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.MagnitudePruner.__init__ ArgSpec(args=['self', 'threshold'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.MagnitudePruner.prune ArgSpec(args=['self', 'param', 'threshold'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.RatioPruner.__init__ ArgSpec(args=['self', 'ratios'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.RatioPruner.prune ArgSpec(args=['self', 'param', 'ratio'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.load_persistables_for_increment ArgSpec(args=['dirname', 'executor', 'program', 'lookup_table_var', 'lookup_table_var_path'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.load_persistables_for_inference ArgSpec(args=['dirname', 'executor', 'program', 'lookup_table_var_name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.convert_dist_to_sparse_program ArgSpec(args=['program'], varargs=None, keywords=None, defaults=None)
......@@ -446,11 +464,7 @@ paddle.fluid.unique_name.switch ArgSpec(args=['new_generator'], varargs=None, ke
paddle.fluid.unique_name.guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.recordio_writer.convert_reader_to_recordio_file ArgSpec(args=['filename', 'reader_creator', 'feeder', 'compressor', 'max_num_records', 'feed_order'], varargs=None, keywords=None, defaults=(Compressor.Snappy, 1000, None))
paddle.fluid.recordio_writer.convert_reader_to_recordio_files ArgSpec(args=['filename', 'batch_per_file', 'reader_creator', 'feeder', 'compressor', 'max_num_records', 'feed_order'], varargs=None, keywords=None, defaults=(Compressor.Snappy, 1000, None))
paddle.fluid.Scope.__init__ __init__(self: paddle.fluid.core.Scope) -> None
paddle.fluid.Scope.drop_kids drop_kids(self: paddle.fluid.core.Scope) -> None
paddle.fluid.Scope.find_var find_var(self: paddle.fluid.core.Scope, arg0: unicode) -> paddle.fluid.core.Variable
paddle.fluid.Scope.new_scope new_scope(self: paddle.fluid.core.Scope) -> paddle.fluid.core.Scope
paddle.fluid.Scope.var var(self: paddle.fluid.core.Scope, arg0: unicode) -> paddle.fluid.core.Variable
paddle.fluid.Scope Scope() -> paddle.fluid.core._Scope
paddle.reader.map_readers ArgSpec(args=['func'], varargs='readers', keywords=None, defaults=None)
paddle.reader.buffered ArgSpec(args=['reader', 'size'], varargs=None, keywords=None, defaults=None)
paddle.reader.compose ArgSpec(args=[], varargs='readers', keywords='kwargs', defaults=None)
......
......@@ -7,27 +7,17 @@ function(windows_symbolic TARGET)
cmake_parse_arguments(windows_symbolic "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
set(final_path ${CMAKE_CURRENT_SOURCE_DIR}/${windows_symbolic_PATH})
foreach(src ${windows_symbolic_SRCS})
get_filename_component(src ${src} NAME_WE)
if (NOT EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${src}.cc OR NOT EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${src}.cu)
message(FATAL " ${src}.cc and ${src}.cu must exsits, and ${src}.cu must be symbolic file.")
endif()
#only copy the xx.cu to.xx.cu when the content are modified
set(copy_flag 1)
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/.${src}.cu)
file(READ ${CMAKE_CURRENT_SOURCE_DIR}/${src}.cc SOURCE_STR)
file(READ ${CMAKE_CURRENT_SOURCE_DIR}/.${src}.cu TARGET_STR)
if (SOURCE_STR STREQUAL TARGET_STR)
set(copy_flag 0)
endif()
endif()
if (copy_flag)
add_custom_command(OUTPUT .${src}.cu
COMMAND ${CMAKE_COMMAND} -E remove ${CMAKE_CURRENT_SOURCE_DIR}/.${src}.cu
COMMAND ${CMAKE_COMMAND} -E copy "${CMAKE_CURRENT_SOURCE_DIR}/${src}.cc" "${CMAKE_CURRENT_SOURCE_DIR}/.${src}.cu"
COMMENT "create hidden file of ${src}.cu")
endif(copy_flag)
add_custom_target(${TARGET} ALL DEPENDS .${src}.cu)
get_filename_component(src ${src} NAME_WE)
if (NOT EXISTS ${final_path}/${src}.cc OR NOT EXISTS ${final_path}/${src}.cu)
message(FATAL " ${src}.cc and ${src}.cu must exsits, and ${src}.cu must be symbolic file.")
endif()
file(GENERATE OUTPUT ${final_path}/.${src}.cu INPUT ${final_path}/${src}.cc)
add_custom_command(OUTPUT ${final_path}/.${src}.cu
COMMAND ${CMAKE_COMMAND} -E copy_if_different "${final_path}/${src}.cc" "${final_path}/.${src}.cu"
COMMENT "create hidden file of ${src}.cu")
add_custom_target(${TARGET} ALL DEPENDS .${src}.cu)
endforeach()
endfunction()
......@@ -48,10 +38,10 @@ if(WITH_GPU)
nv_library(tensor SRCS tensor.cc .tensor_util.cu DEPS place memory data_type device_context)
add_dependencies(tensor tensor_util)
else()
nv_library(tensor SRCS tensor.cc tensor_util.cu DEPS place memory data_type device_context)
nv_library(tensor SRCS tensor.cc tensor_util.cu DEPS place memory data_type device_context )
endif(WIN32)
else()
cc_library(tensor SRCS tensor.cc tensor_util.cc DEPS place memory data_type device_context)
cc_library(tensor SRCS tensor.cc tensor_util.cc DEPS place memory data_type device_context )
endif()
cc_test(tensor_test SRCS tensor_test.cc DEPS tensor)
......@@ -84,6 +74,7 @@ cc_library(threadpool SRCS threadpool.cc DEPS enforce)
cc_test(threadpool_test SRCS threadpool_test.cc DEPS threadpool)
cc_library(scope SRCS scope.cc DEPS glog threadpool)
cc_library(scope_pool SRCS scope_pool.cc DEPS scope)
cc_test(scope_test SRCS scope_test.cc DEPS scope)
cc_library(data_device_transform SRCS data_device_transform.cc DEPS tensor)
......
......@@ -165,7 +165,7 @@ template <typename T>
class GreaterThanChecker {
public:
explicit GreaterThanChecker(T lower_bound) : lower_bound_(lower_bound) {}
void operator()(T& value) const {
void operator()(const T& value) const {
PADDLE_ENFORCE(value > lower_bound_, "larger_than check fails.");
}
......@@ -177,7 +177,7 @@ template <typename T>
class EqualGreaterThanChecker {
public:
explicit EqualGreaterThanChecker(T lower_bound) : lower_bound_(lower_bound) {}
void operator()(T& value) const {
void operator()(const T& value) const {
PADDLE_ENFORCE_GE(value, lower_bound_, "equal_larger_than check fails.");
}
......@@ -193,7 +193,7 @@ class DefaultValueSetter {
public:
explicit DefaultValueSetter(T default_value)
: default_value_(default_value) {}
void operator()(T& value) const { value = default_value_; } // NOLINT
void operator()(T* value) const { *value = default_value_; }
private:
T default_value_;
......@@ -203,7 +203,7 @@ template <typename T>
class EnumInContainer {
public:
explicit EnumInContainer(const std::unordered_set<T>& c) : container_(c) {}
void operator()(T& val) const {
void operator()(const T& val) const {
PADDLE_ENFORCE(container_.find(val) != container_.end(),
"Value %s is not in enum container %s", val,
ContainerDebugString());
......@@ -232,7 +232,8 @@ class EnumInContainer {
// an attribute can have more than one limits
template <typename T>
class TypedAttrChecker {
typedef std::function<void(T&)> ValueChecker;
typedef std::function<void(T*)> DefaultValueChecker;
typedef std::function<void(const T&)> ValueChecker;
public:
explicit TypedAttrChecker(const std::string& attr_name)
......@@ -268,17 +269,17 @@ class TypedAttrChecker {
return *this;
}
void operator()(AttributeMap& attr_map) const { // NOLINT
if (!attr_map.count(attr_name_)) {
void operator()(AttributeMap* attr_map) const {
if (!attr_map->count(attr_name_)) {
// user do not set this attr
PADDLE_ENFORCE(!default_value_setter_.empty(),
"Attribute '%s' is required!", attr_name_);
// default_value_setter_ has no more than one element
T val;
(default_value_setter_[0])(val);
attr_map[attr_name_] = val;
(default_value_setter_[0])(&val);
(*attr_map)[attr_name_] = val;
}
Attribute& attr = attr_map.at(attr_name_);
Attribute& attr = attr_map->at(attr_name_);
ExtractAttribute<T> extract_attr(attr_name_);
T* attr_value = extract_attr(attr);
for (const auto& checker : value_checkers_) {
......@@ -289,12 +290,12 @@ class TypedAttrChecker {
private:
std::string attr_name_;
std::vector<ValueChecker> value_checkers_;
std::vector<ValueChecker> default_value_setter_;
std::vector<DefaultValueChecker> default_value_setter_;
};
// check whether op's all attributes fit their own limits
class OpAttrChecker {
typedef std::function<void(AttributeMap&)> AttrChecker;
typedef std::function<void(AttributeMap*)> AttrChecker;
public:
template <typename T>
......@@ -304,7 +305,7 @@ class OpAttrChecker {
return *(checker.target<TypedAttrChecker<T>>());
}
void Check(AttributeMap& attr_map) const { // NOLINT
void Check(AttributeMap* attr_map) const {
for (const auto& checker : attr_checkers_) {
checker(attr_map);
}
......
......@@ -120,6 +120,7 @@ FeedFetchList FastThreadedSSAGraphExecutor::Run(
ClearFetchOp(graph_.get(), &fetch_ops);
return fetches;
}
void FastThreadedSSAGraphExecutor::RunOpAsync(
std::unordered_map<OpHandleBase *, std::atomic<int>> *op_deps,
OpHandleBase *op,
......
......@@ -355,7 +355,9 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
BuildStrategy::GradientScaleStrategy::kCustomized) {
// TODO(paddle-dev): Why is there no input for this op_handle?
auto loss_grad_name = node->Op()->OutputArgumentNames()[0];
CreateScaleLossGradOp(&result, loss_grad_name, node->outputs[0]);
auto out_dtype = all_vars_.at(loss_grad_name)->GetDataType();
CreateScaleLossGradOp(&result, loss_grad_name, node->outputs[0],
out_dtype);
}
// This assumes the backward generating code will ensure IsScaleLossOp
// is true only for the op that scale the final scalar loss.
......@@ -658,13 +660,13 @@ int MultiDevSSAGraphBuilder::GetVarDeviceID(
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(
ir::Graph *result, const std::string &loss_grad_name,
ir::Node *out_var_node) const {
ir::Node *out_var_node, proto::VarType::Type dtype) const {
for (size_t i = 0; i < places_.size(); ++i) {
// Insert ScaleCost OpHandle
auto *dev_ctx = platform::DeviceContextPool::Instance().Get(places_[i]);
auto *op_handle = new ScaleLossGradOpHandle(
result->CreateEmptyNode("scale_loss_grad", ir::Node::Type::kOperation),
local_scopes_.size(), local_scopes_[i], places_[i], dev_ctx);
local_scopes_.size(), local_scopes_[i], places_[i], dev_ctx, dtype);
result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
// FIXME: Currently ScaleLossGradOp only use device_count as scale
......
......@@ -68,7 +68,8 @@ class MultiDevSSAGraphBuilder : public ir::Pass {
void CreateScaleLossGradOp(ir::Graph *result,
const std::string &loss_grad_name,
ir::Node *out_var_node) const;
ir::Node *out_var_node,
proto::VarType::Type dtype) const;
VarHandle *CreateReduceOp(ir::Graph *result, const std::string &og,
int dst_dev_id) const;
......
......@@ -22,39 +22,66 @@ namespace details {
ScaleLossGradOpHandle::ScaleLossGradOpHandle(ir::Node *node, size_t num_dev,
Scope *scope,
platform::Place place,
platform::DeviceContext *dev_ctx)
platform::DeviceContext *dev_ctx,
proto::VarType::Type dtype)
: OpHandleBase(node),
coeff_(static_cast<float>(1.0 / num_dev)),
scope_(scope),
place_(place) {
place_(place),
out_dtype_(dtype) {
this->SetDeviceContext(place_, dev_ctx);
}
ScaleLossGradOpHandle::~ScaleLossGradOpHandle() {}
struct ScaleLossGradFunctor {
float coeff_;
Tensor *out_;
platform::Place place_;
OpHandleBase *op_handle_;
proto::VarType::Type out_dtype_;
platform::DeviceContext *ctx_;
ScaleLossGradFunctor(float coeff, Tensor *out, platform::Place place,
OpHandleBase *op_handle, proto::VarType::Type dtype,
platform::DeviceContext *ctx)
: coeff_(coeff), out_(out), place_(place), out_dtype_(dtype), ctx_(ctx) {}
template <typename OutT>
void apply() const {
auto *out_data = out_->mutable_data<OutT>(place_);
if (platform::is_cpu_place(place_)) {
*out_data = static_cast<OutT>(coeff_);
} else {
#ifdef PADDLE_WITH_CUDA
OutT cast_coeff = static_cast<OutT>(coeff_);
auto stream = static_cast<platform::CUDADeviceContext *>(ctx_)->stream();
memory::Copy(boost::get<platform::CUDAPlace>(place_), out_data,
platform::CPUPlace(), &cast_coeff, SizeOfType(out_dtype_),
stream);
VLOG(10) << place_ << "RUN Scale loss grad op";
#endif
}
}
};
void ScaleLossGradOpHandle::RunImpl() {
// Doesn't wait any event
std::string var_name = static_cast<VarHandle *>(this->outputs_[0])->name_;
auto &local_scope = *scope_->FindVar(kLocalExecScopeName)->Get<Scope *>();
float *tmp = local_scope.FindVar(var_name)
->GetMutable<LoDTensor>()
->mutable_data<float>(make_ddim({1}), place_);
auto *tensor = local_scope.FindVar(var_name)->GetMutable<LoDTensor>();
tensor->Resize(make_ddim({1}));
if (platform::is_cpu_place(place_)) {
*tmp = coeff_;
} else {
#ifdef PADDLE_WITH_CUDA
this->RunAndRecordEvent([&] {
auto stream = static_cast<platform::CUDADeviceContext *>(
this->dev_ctxes_.at(place_))
->stream();
memory::Copy(boost::get<platform::CUDAPlace>(place_), tmp,
platform::CPUPlace(), &coeff_, sizeof(float), stream);
VLOG(10) << place_ << "RUN Scale loss grad op";
});
ScaleLossGradFunctor func(coeff_, tensor, place_, this, out_dtype_,
this->dev_ctxes_.at(place_));
this->RunAndRecordEvent([&] { framework::VisitDataType(out_dtype_, func); });
#else
ScaleLossGradFunctor func(coeff_, tensor, place_, this, out_dtype_, nullptr);
framework::VisitDataType(out_dtype_, func);
#endif
}
}
std::string ScaleLossGradOpHandle::Name() const { return "Scale LossGrad"; }
......
......@@ -26,8 +26,8 @@ namespace details {
struct ScaleLossGradOpHandle : public OpHandleBase {
ScaleLossGradOpHandle(ir::Node *node, size_t num_dev, Scope *scope,
platform::Place place,
platform::DeviceContext *context);
platform::Place place, platform::DeviceContext *context,
proto::VarType::Type dtype);
~ScaleLossGradOpHandle() final;
......@@ -40,6 +40,7 @@ struct ScaleLossGradOpHandle : public OpHandleBase {
float coeff_;
Scope *scope_;
platform::Place place_;
proto::VarType::Type out_dtype_;
};
} // namespace details
......
......@@ -40,18 +40,20 @@ framework::proto::OpDesc PrepareOpDesc(
const std::string& output) {
auto proto = base_desc;
framework::OpDesc desc(proto, nullptr);
desc.SetType("conv2d_fusion");
desc.SetInput("Bias", {bias});
desc.SetInput("ResidualData", {bias1});
desc.SetAttr("activation", activation);
desc.SetOutput("Output", {output});
desc.SetAttr("is_test", true);
desc.SetAttr("use_cudnn", false);
desc.Flush();
return *desc.Proto();
}
std::unique_ptr<ir::Graph> ConvElementwiseAdd2ActFusePass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
const std::string pattern_name = "conv_elementwise_add_act_fuse";
const std::string pattern_name = "conv_elementwise_add2_act_fuse";
FusePassBase::Init(pattern_name, graph.get());
GraphPatternDetector gpd;
......@@ -76,22 +78,23 @@ std::unique_ptr<ir::Graph> ConvElementwiseAdd2ActFusePass::ApplyImpl(
framework::OpDesc new_op_desc(new_op_proto, nullptr);
// Create a new node for the fused op.
graph->CreateOpNode(&new_op_desc);
auto* new_conv_op = graph->CreateOpNode(&new_op_desc);
// Link inputs and outputs.
PADDLE_ENFORCE(subgraph.count(x));
auto* conv_in_node = subgraph.at(x);
IR_NODE_LINK_TO(conv_in_node, conv_op); // Input
IR_NODE_LINK_TO(conv_filter, conv_op); // Filter
IR_NODE_LINK_TO(conv_op, conv_out); // Output
IR_NODE_LINK_TO(elementwise_add_in_y, conv_op); // Bias
IR_NODE_LINK_TO(elementwise_add_in_y_1, conv_op); // Bias
IR_NODE_LINK_TO(conv_in_node, new_conv_op); // Input
IR_NODE_LINK_TO(conv_filter, new_conv_op); // Filter
IR_NODE_LINK_TO(elementwise_add_in_y, new_conv_op); // Bias
IR_NODE_LINK_TO(elementwise_add_in_y_1, new_conv_op); // Bias
IR_NODE_LINK_TO(new_conv_op, act_out); // Output
// Delete the unneeded nodes.
GraphSafeRemoveNodes(graph.get(),
{conv_op, elementwise_add_op, elementwise_add_op_1,
elementwise_add_out});
GraphSafeRemoveNodes(
graph.get(),
{conv_op, conv_out, elementwise_add_op, elementwise_add_op_1,
elementwise_add_out, elementwise_add_out_1, act_op});
};
gpd(graph.get(), handler);
return graph;
......
......@@ -1101,9 +1101,7 @@ PDNode *patterns::ElementwiseAdd::operator()(PDNode *x_var, PDNode *y_var) {
return out_var;
}
std::unordered_set<std::string> conv_act_set({"identity", "sigmoid", "relu",
"relu6", "relux", "tanh",
"band_pass"});
std::unordered_set<std::string> conv_act_set({"identity", "relu"});
PDNode *patterns::ConvElementwiseaddAct::operator()(PDNode *conv_in) {
conv_in->AsInput();
......@@ -1169,13 +1167,13 @@ PDNode *patterns::ConvElementwiseadd2Act::operator()(PDNode *conv_in) {
->AsInput();
auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr())
->assert_is_op_output("elementwise_add")
->assert_is_op_input("elementwise_add", "X")
->assert_is_op_input("elementwise_add", "Y")
->AsIntermediate();
auto elementwise_add_op_1 = pattern->NewNode(elementwise_add_op_1_repr())
->assert_is_op("elementwise_add");
auto elementwise_add_in_y_1 = pattern->NewNode(elementwise_add_in_y_1_repr())
->assert_is_op_input("elementwise_add", "Y")
->assert_is_op_input("elementwise_add", "X")
->AsInput();
auto elementwise_add_out_1 = pattern->NewNode(elementwise_add_out_1_repr())
->assert_is_op_output("elementwise_add")
......@@ -1203,8 +1201,8 @@ PDNode *patterns::ConvElementwiseadd2Act::operator()(PDNode *conv_in) {
conv_op->LinksFrom({conv_in, conv_filter}).LinksTo({conv_out});
elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y})
.LinksTo({elementwise_add_out});
elementwise_add_op_1->LinksFrom(
{elementwise_add_out, elementwise_add_in_y_1});
elementwise_add_op_1->LinksFrom({elementwise_add_out, elementwise_add_in_y_1})
.LinksTo({elementwise_add_out_1});
act_op->LinksFrom({elementwise_add_out_1}).LinksTo({act_out});
return act_out;
}
......
......@@ -157,13 +157,8 @@ bool CheckLoD(const LoD &in, int tensor_height) {
if (level.size() < 2) return false;
// check: the first offset(the begin offset) of each level should be 0.
if (level.front() != 0) return false;
// check: all the offsets in a level should be ascending(no same items
// allows).
if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) {
if (a < b) return true;
return false;
})) {
LOG(INFO) << "ascending error";
// check: all the offsets in a level should be ascending(allow same items)
if (!std::is_sorted(level.begin(), level.end())) {
return false;
}
}
......
......@@ -217,6 +217,11 @@ TEST(LoD, CheckLoD) {
// check with underlying tensor storage.
ASSERT_TRUE(CheckLoD(relative_lod, 5));
ASSERT_FALSE(CheckLoD(relative_lod, 9));
// check whether lod is ascending-sorted (allow same items)
ASSERT_TRUE(CheckLoD({{0, 1, 2, 3, 4, 5}}, 5));
ASSERT_TRUE(CheckLoD({{0, 1, 3, 3, 4, 5}}, 5));
ASSERT_FALSE(CheckLoD({{0, 1, 3, 2, 5}}, 5));
}
TEST(LoD, CheckAbsLoD) {
......
......@@ -215,8 +215,8 @@ class Vector {
auto stream = dev_ctx->stream();
void *src = gpu_->ptr();
void *dst = cpu_.data();
memory::Copy(platform::CPUPlace(), dst, CUDAPlace().get(), src,
gpu_->size(), stream);
paddle::memory::Copy(platform::CPUPlace(), dst, CUDAPlace().get(), src,
gpu_->size(), stream);
dev_ctx->Wait();
}
......@@ -261,8 +261,8 @@ class Vector {
auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
platform::DeviceContextPool::Instance().Get(place));
auto stream = dev_ctx->stream();
memory::Copy(CUDAPlace().get(), dst, platform::CPUPlace(), src,
gpu_->size(), stream);
paddle::memory::Copy(CUDAPlace().get(), dst, platform::CPUPlace(), src,
gpu_->size(), stream);
}
void ImmutableCPU() const {
......@@ -284,7 +284,7 @@ class Vector {
bool IsInCPU() const { return flag_ & kDataInCPU; }
mutable std::vector<T> cpu_;
mutable memory::AllocationPtr gpu_;
mutable paddle::memory::AllocationPtr gpu_;
mutable int flag_;
mutable std::mutex mtx_;
......
......@@ -31,10 +31,12 @@ std::map<std::string,
std::shared_ptr<std::unordered_map<
std::string, std::shared_ptr<ngraph::Node>>>)>>
NgraphBridge::NG_NODE_MAP = {
{"fill_constant", paddle::operators::ngraphs::BuildFillConstantNode},
{"mul", paddle::operators::ngraphs::BuildMulNode},
{"mul_grad", paddle::operators::ngraphs::BuildMulGradNode},
{"relu", paddle::operators::ngraphs::BuildUnaryNode<ngraph::op::Relu>},
{"tanh", paddle::operators::ngraphs::BuildUnaryNode<ngraph::op::Tanh>}};
{"tanh", paddle::operators::ngraphs::BuildUnaryNode<ngraph::op::Tanh>},
{"top_k", paddle::operators::ngraphs::BuildTopKNode}};
void NgraphBridge::BuildNgNode(const std::shared_ptr<OperatorBase>& op) {
auto& op_type = op->Type();
......
......@@ -643,7 +643,7 @@ void OpDesc::CheckAttrs() {
// not by users.
return;
}
checker->Check(attrs_);
checker->Check(&attrs_);
}
void OpDesc::InferShape(const BlockDesc &block) const {
......
......@@ -123,6 +123,8 @@ class OpDesc {
BlockDesc *Block() { return this->block_; }
const BlockDesc *Block() const { return this->block_; }
private:
template <typename MapType>
static std::vector<typename MapType::key_type> MapKeys(const MapType &map) {
......
......@@ -24,7 +24,7 @@ std::unique_ptr<OperatorBase> OpRegistry::CreateOp(
const VariableNameMap& outputs, AttributeMap attrs) {
auto& info = OpInfoMap::Instance().Get(type);
if (info.Checker() != nullptr) {
info.Checker()->Check(attrs);
info.Checker()->Check(&attrs);
}
auto op = info.Creator()(type, inputs, outputs, attrs);
return std::unique_ptr<OperatorBase>(op);
......
......@@ -23,7 +23,8 @@ limitations under the License. */
#include <unordered_map>
#include <unordered_set>
#include "glog/logging.h" // For VLOG()
#define GLOG_NO_ABBREVIATED_SEVERITIES // msvc conflict logging with windows.h
#include "glog/logging.h" // For VLOG()
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/details/op_registry.h"
#include "paddle/fluid/framework/framework.pb.h"
......
......@@ -181,11 +181,7 @@ void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
}
bool OperatorBase::HasInputs(const std::string& name) const {
if (inputs_.find(name) != inputs_.end()) {
return true;
} else {
return false;
}
return inputs_.find(name) != inputs_.end();
}
std::string OperatorBase::Input(const std::string& name) const {
......@@ -476,6 +472,28 @@ const Tensor* ExecutionContext::LegacyInput<Tensor>(
template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
const std::string& name) const {
auto it = ctx_.inputs.find(name);
if (it == ctx_.inputs.end()) {
return {};
}
const std::vector<Variable*>& vars = it->second;
std::vector<const Tensor*> res;
res.reserve(vars.size());
std::transform(vars.begin(), vars.end(), std::back_inserter(res),
[&](Variable* var) -> const Tensor* {
if (var == nullptr) return nullptr;
PADDLE_ENFORCE(
var->IsType<LoDTensor>(),
"should be LoDTensor, but the received type is %s",
var->Type().name());
return &(var->Get<LoDTensor>());
});
return res;
}
template <>
const std::vector<const Tensor*> ExecutionContext::LegacyMultiInput<Tensor>(
const std::string& name) const {
auto names = op().Inputs(name);
std::vector<const Tensor*> res;
res.reserve(names.size());
......@@ -1039,8 +1057,8 @@ proto::VarType::Type OperatorWithKernel::IndicateDataType(
t = &(var->Get<SelectedRows>().value());
}
if (t != nullptr) {
PADDLE_ENFORCE(t->IsInitialized(), "Input %s is not initialized: %s",
ipt_name, DebugString());
PADDLE_ENFORCE(t->IsInitialized(), "Input %s is not initialized",
ipt_name);
int tmp = static_cast<int>(t->type());
PADDLE_ENFORCE(
tmp == data_type || data_type == -1,
......
......@@ -49,6 +49,8 @@ constexpr char kTempVarName[] = "@TEMP@";
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
constexpr char kGradVarSuffix[] = "@GRAD";
constexpr size_t kGradVarSuffixSize = 5U;
/// Variables with this suffix are supposed to be filled up with zeros.
constexpr char kZeroVarSuffix[] = "@ZERO";
......@@ -60,7 +62,11 @@ constexpr char kNewGradSuffix[] = "@NEWGRAD@";
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;
inline std::string GradVarName(const std::string& var_name) {
return var_name + kGradVarSuffix;
std::string result;
result.reserve(var_name.size() + kGradVarSuffixSize);
result += var_name;
result += kGradVarSuffix;
return result;
}
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
......@@ -110,8 +116,8 @@ class OperatorBase {
bool HasAttr(const std::string& name) const { return attrs_.count(name); }
template <typename T>
inline const T& Attr(const std::string& name) const {
PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
name);
PADDLE_ENFORCE(attrs_.find(name) != attrs_.end(),
"%s should be in AttributeMap", name);
return boost::get<T>(attrs_.at(name));
}
const AttributeMap& Attrs() const { return attrs_; }
......@@ -197,8 +203,31 @@ class ExecutionContext {
const std::vector<const Variable*> MultiInputVar(
const std::string& name) const {
auto names = op_.Inputs(name);
auto it = ctx_.inputs.find(name);
if (it == ctx_.inputs.end()) {
return {};
}
std::vector<const Variable*> res;
res.reserve(it->second.size());
std::transform(it->second.begin(), it->second.end(),
std::back_inserter(res),
[this](Variable* var) { return var; });
return res;
}
std::vector<Variable*> MultiOutputVar(const std::string& name) const {
auto names = op_.Outputs(name);
auto it = ctx_.outputs.find(name);
if (it == ctx_.outputs.end()) {
return {};
}
return it->second;
}
const std::vector<Variable*> LegacyMultiInputVar(
const std::string& name) const {
auto names = op_.Inputs(name);
std::vector<Variable*> res;
res.reserve(names.size());
std::transform(names.begin(), names.end(), std::back_inserter(res),
[this](const std::string& name) {
......@@ -208,7 +237,7 @@ class ExecutionContext {
return res;
}
std::vector<Variable*> MultiOutputVar(const std::string& name) const {
std::vector<Variable*> LegacyMultiOutputVar(const std::string& name) const {
auto names = op_.Outputs(name);
std::vector<Variable*> res;
res.reserve(names.size());
......@@ -250,6 +279,38 @@ class ExecutionContext {
template <typename T>
const std::vector<const T*> MultiInput(const std::string& name) const {
auto it = ctx_.inputs.find(name);
if (it == ctx_.inputs.end()) {
return {};
}
const std::vector<Variable*>& vars = it->second;
std::vector<const T*> res;
res.reserve(vars.size());
std::transform(vars.begin(), vars.end(), std::back_inserter(res),
[&](Variable* var) -> const T* {
return var == nullptr ? nullptr : &var->Get<T>();
});
return res;
}
template <typename T>
std::vector<T*> MultiOutput(const std::string& name) const {
auto it = ctx_.outputs.find(name);
if (it == ctx_.outputs.end()) {
return {};
}
const std::vector<Variable*>& vars = it->second;
std::vector<T*> res;
res.reserve(vars.size());
std::transform(vars.begin(), vars.end(), std::back_inserter(res),
[&](Variable* var) -> T* {
return var == nullptr ? nullptr : var->GetMutable<T>();
});
return res;
}
template <typename T>
const std::vector<const T*> LegacyMultiInput(const std::string& name) const {
auto names = op_.Inputs(name);
std::vector<const T*> res;
res.reserve(names.size());
......@@ -262,7 +323,7 @@ class ExecutionContext {
}
template <typename T>
std::vector<T*> MultiOutput(const std::string& name) const {
std::vector<T*> LegacyMultiOutput(const std::string& name) const {
auto names = op_.Outputs(name);
std::vector<T*> res;
res.reserve(names.size());
......@@ -321,6 +382,10 @@ template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
const std::string& name) const;
template <>
const std::vector<const Tensor*> ExecutionContext::LegacyMultiInput<Tensor>(
const std::string& name) const;
template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/scope_pool.h"
#include "paddle/fluid/framework/threadpool.h"
namespace paddle {
namespace framework {
ScopePool &ScopePool::Instance() { // NOLINT
static ScopePool pool;
return pool;
}
void ScopePool::DeleteScope(Scope *scope) { delete scope; }
void ScopePool::Insert(std::unique_ptr<Scope> &&s) {
std::lock_guard<std::mutex> guard(mtx_);
scopes_.insert(s.release());
}
void ScopePool::Remove(Scope *s) {
size_t has_scope;
{
std::lock_guard<std::mutex> guard(mtx_);
has_scope = scopes_.erase(s);
}
PADDLE_ENFORCE(has_scope > 0, "Delete non-existing global scope");
DeleteScope(s);
}
ScopePool::~ScopePool() { Clear(); }
void ScopePool::Clear() {
std::lock_guard<std::mutex> guard(mtx_);
for (auto *s : scopes_) {
DeleteScope(s);
}
scopes_.clear();
}
} // namespace framework
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <mutex> // NOLINT
#include <unordered_set>
#include "paddle/fluid/framework/scope.h"
namespace paddle {
namespace framework {
class ScopePool {
public:
static ScopePool &Instance(); // NOLINT
void Insert(std::unique_ptr<Scope> &&s);
void Remove(Scope *s);
void Clear();
~ScopePool();
private:
ScopePool() = default;
static void DeleteScope(Scope *scope);
std::unordered_set<Scope *> scopes_;
std::mutex mtx_;
};
} // namespace framework
} // namespace paddle
......@@ -25,6 +25,8 @@ limitations under the License. */
namespace paddle {
namespace framework {
class OperatorBase;
using InferShapeVarPtr = boost::variant<VarDesc *, Variable *>;
class InferShapeContext {
......
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/var_type.h"
namespace paddle {
namespace framework {
......@@ -27,6 +28,8 @@ void Tensor::check_memory_size() const {
"or maybe the required data-type mismatches the data already stored.");
}
Tensor::Tensor(const proto::VarType::Type& dtype) : type_(dtype), offset_(0) {}
size_t Tensor::memory_size() const {
return holder_ == nullptr ? 0UL : holder_->size() - offset_;
}
......@@ -101,5 +104,12 @@ const DDim& Tensor::dims() const { return dims_; }
int64_t Tensor::numel() const { return product(dims_); }
void Tensor::ResetHolder(std::shared_ptr<memory::Allocation> holder) {
if (holder_) {
PADDLE_ENFORCE_EQ(numel() * SizeOfType(type()), holder->size());
}
holder_ = holder;
}
} // namespace framework
} // namespace paddle
......@@ -69,6 +69,8 @@ class Tensor {
public:
Tensor() : type_(proto::VarType::FP32), offset_(0) {}
explicit Tensor(const proto::VarType::Type&);
/*! Return a pointer to mutable memory block. */
template <typename T>
T* data();
......@@ -162,6 +164,8 @@ class Tensor {
return std::move(holder_);
}
void ResetHolder(std::shared_ptr<memory::Allocation> holder);
private:
/*! holds the memory block if allocated. */
std::shared_ptr<memory::Allocation> holder_;
......
......@@ -19,6 +19,7 @@ limitations under the License. */
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/temporary_allocator.h"
namespace paddle {
namespace framework {
......@@ -151,5 +152,26 @@ void TensorToVector(const Tensor& src, std::vector<T>* dst) {
src_ptr, size);
}
template <typename T>
paddle::framework::Tensor GetTensor(
memory::allocation::AllocationPtr temp_allocation_ptr,
const framework::DDim& dim) {
auto& deleter = temp_allocation_ptr.get_deleter();
auto* allocation_ptr = temp_allocation_ptr.release();
auto shared_allocation =
std::shared_ptr<memory::allocation::Allocation>(allocation_ptr, deleter);
PADDLE_ENFORCE(
dynamic_cast<platform::TemporaryAllocation*>(allocation_ptr) != nullptr,
"The AllocationPtr must be TemporaryAllocation.");
PADDLE_ENFORCE_EQ(allocation_ptr->size(),
framework::product(dim) * sizeof(T));
paddle::framework::Tensor temp_tensor(
framework::ToDataType(std::type_index(typeid(T))));
temp_tensor.Resize(dim);
temp_tensor.ResetHolder(std::move(shared_allocation));
return temp_tensor;
}
} // namespace framework
} // namespace paddle
......@@ -69,17 +69,17 @@ void TestWord2vecPrediction(const std::string& model_path) {
std::vector<PaddleTensor> outputs;
CHECK(predictor->Run(slots, &outputs));
PADDLE_ENFORCE(outputs.size(), 1UL);
PADDLE_ENFORCE_EQ(outputs.size(), 1UL);
// Check the output buffer size and result of each tid.
PADDLE_ENFORCE(outputs.front().data.length(), 33168UL);
PADDLE_ENFORCE_EQ(outputs.front().data.length(), 33168UL);
float result[5] = {0.00129761, 0.00151112, 0.000423564, 0.00108815,
0.000932706};
const size_t num_elements = outputs.front().data.length() / sizeof(float);
// The outputs' buffers are in CPU memory.
for (size_t i = 0; i < std::min(static_cast<size_t>(5UL), num_elements);
i++) {
LOG(INFO) << "data: "
<< static_cast<float*>(outputs.front().data.data())[i];
LOG(INFO) << "data: " << static_cast<float*>(outputs.front().data.data())[i]
<< " result: " << result[i];
PADDLE_ENFORCE(static_cast<float*>(outputs.front().data.data())[i],
result[i]);
}
......
......@@ -231,11 +231,14 @@ bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
inputs[i].data.length());
} else {
#ifdef PADDLE_WITH_CUDA
platform::DeviceContextPool &pool =
platform::DeviceContextPool::Instance();
auto *dev_ctx =
static_cast<const platform::CUDADeviceContext *>(pool.Get(place_));
auto dst_gpu_place = boost::get<platform::CUDAPlace>(place_);
memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
platform::CPUPlace(), inputs[i].data.data(),
inputs[i].data.length(),
0); // stream 0 for sync copy
inputs[i].data.length(), dev_ctx->stream());
#else
PADDLE_THROW("Not compile with CUDA, should not reach here.");
#endif
......
......@@ -208,11 +208,14 @@ bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
inputs[i].data.length());
} else {
#ifdef PADDLE_WITH_CUDA
platform::DeviceContextPool &pool =
platform::DeviceContextPool::Instance();
auto *dev_ctx =
static_cast<const platform::CUDADeviceContext *>(pool.Get(place_));
auto dst_gpu_place = boost::get<platform::CUDAPlace>(place_);
memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
platform::CPUPlace(), inputs[i].data.data(),
inputs[i].data.length(),
0); // stream 0 for sync copy
inputs[i].data.length(), dev_ctx->stream());
#else
PADDLE_THROW("Not compile with CUDA, should not reach here.");
#endif
......
......@@ -89,12 +89,21 @@ endif()
if(WITH_MKL)
include_directories("${PADDLE_LIB}/third_party/install/mklml/include")
set(MATH_LIB ${PADDLE_LIB}/third_party/install/mklml/lib/libmklml_intel${CMAKE_SHARED_LIBRARY_SUFFIX}
${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5${CMAKE_SHARED_LIBRARY_SUFFIX})
if(NOT WIN32)
set(MATH_LIB ${PADDLE_LIB}/third_party/install/mklml/lib/libmklml_intel${CMAKE_SHARED_LIBRARY_SUFFIX}
${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5${CMAKE_SHARED_LIBRARY_SUFFIX})
else(WIN32)
set(MATH_LIB ${PADDLE_LIB}/third_party/install/mklml/lib/libmklml${CMAKE_SHARED_LIBRARY_SUFFIX}
${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5md${CMAKE_SHARED_LIBRARY_SUFFIX})
endif(WIN32)
set(MKLDNN_PATH "${PADDLE_LIB}/third_party/install/mkldnn")
if(EXISTS ${MKLDNN_PATH})
include_directories("${MKLDNN_PATH}/include")
set(MKLDNN_LIB ${MKLDNN_PATH}/lib/libmkldnn.so.0)
if(WIN32)
set(MKLDNN_LIB ${MKLDNN_PATH}/lib/mkldnn.lib)
else(WIN32)
set(MKLDNN_LIB ${MKLDNN_PATH}/lib/libmkldnn.so.0)
endif(WIN32)
endif()
else()
set(MATH_LIB ${PADDLE_LIB}/third_party/install/openblas/lib/libopenblas${CMAKE_STATIC_LIBRARY_SUFFIX})
......
......@@ -75,6 +75,11 @@ set(LAC_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/lac")
download_model_and_data(${LAC_INSTALL_DIR} "lac_model.tar.gz" "lac_data.txt.tar.gz")
inference_analysis_api_test(test_analyzer_lac ${LAC_INSTALL_DIR} analyzer_lac_tester.cc)
# MM DNN
set(MM_DNN_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/mm_dnn")
download_model_and_data(${MM_DNN_INSTALL_DIR} "MM_DNN_model.tar.gz" "MM_DNN_data.txt.tar.gz")
inference_analysis_api_test(test_analyzer_mm_dnn ${MM_DNN_INSTALL_DIR} analyzer_mm_dnn_tester.cc)
# text_classification
set(TEXT_CLASSIFICATION_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/text_classification")
download_model_and_data(${TEXT_CLASSIFICATION_INSTALL_DIR} "text-classification-Senta.tar.gz" "text_classification_data.txt.tar.gz")
......@@ -103,6 +108,10 @@ inference_analysis_api_test_with_refer_result(test_analyzer_mobilenet_transpose
inference_analysis_api_test_with_fake_data(test_analyzer_resnet50
"${INFERENCE_DEMO_INSTALL_DIR}/resnet50" analyzer_resnet50_tester.cc "resnet50_model.tar.gz")
# seq_pool1
inference_analysis_api_test_with_fake_data(test_analyzer_seq_pool1
"${INFERENCE_DEMO_INSTALL_DIR}/seq_pool1" analyzer_seq_pool1_tester.cc "seq_pool1.tar.gz")
# mobilenet with depthwise_conv op
inference_analysis_api_test_with_fake_data(test_analyzer_mobilenet_depthwise_conv
"${INFERENCE_DEMO_INSTALL_DIR}/mobilenet_depthwise_conv" analyzer_resnet50_tester.cc "mobilenet_model.tar.gz")
......
......@@ -254,5 +254,16 @@ TEST(Analyzer_dam, compare) { compare(); }
TEST(Analyzer_dam, compare_mkldnn) { compare(true /* use_mkldnn */); }
#endif
// Compare Deterministic result
TEST(Analyzer_dam, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all);
}
} // namespace inference
} // namespace paddle
......@@ -180,6 +180,17 @@ TEST(Analyzer_LAC, compare) {
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}
// Compare Deterministic result
TEST(Analyzer_LAC, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all);
}
} // namespace analysis
} // namespace inference
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace paddle {
namespace inference {
using contrib::AnalysisConfig;
struct DataRecord {
std::vector<std::vector<int64_t>> query_data_all, title_data_all;
std::vector<size_t> lod1, lod2;
size_t batch_iter{0};
size_t batch_size{1};
size_t num_samples; // total number of samples
DataRecord() = default;
explicit DataRecord(const std::string &path, int batch_size = 1)
: batch_size(batch_size) {
Load(path);
}
DataRecord NextBatch() {
DataRecord data;
size_t batch_end = batch_iter + batch_size;
// NOTE skip the final batch, if no enough data is provided.
if (batch_end <= query_data_all.size()) {
data.query_data_all.assign(query_data_all.begin() + batch_iter,
query_data_all.begin() + batch_end);
data.title_data_all.assign(title_data_all.begin() + batch_iter,
title_data_all.begin() + batch_end);
// Prepare LoDs
data.lod1.push_back(0);
data.lod2.push_back(0);
CHECK(!data.query_data_all.empty());
CHECK(!data.title_data_all.empty());
CHECK_EQ(data.query_data_all.size(), data.title_data_all.size());
for (size_t j = 0; j < data.query_data_all.size(); j++) {
// calculate lod
data.lod1.push_back(data.lod1.back() + data.query_data_all[j].size());
data.lod2.push_back(data.lod2.back() + data.title_data_all[j].size());
}
}
batch_iter += batch_size;
return data;
}
void Load(const std::string &path) {
std::ifstream file(path);
std::string line;
int num_lines = 0;
while (std::getline(file, line)) {
num_lines++;
std::vector<std::string> data;
split(line, '\t', &data);
// load query data
std::vector<int64_t> query_data;
split_to_int64(data[0], ' ', &query_data);
// load title data
std::vector<int64_t> title_data;
split_to_int64(data[1], ' ', &title_data);
query_data_all.push_back(std::move(query_data));
title_data_all.push_back(std::move(title_data));
}
num_samples = num_lines;
}
};
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
int batch_size) {
PaddleTensor lod_query_tensor, lod_title_tensor;
lod_query_tensor.name = "left";
lod_title_tensor.name = "right";
auto one_batch = data->NextBatch();
int size1 = one_batch.lod1[one_batch.lod1.size() - 1]; // token batch size
int size2 = one_batch.lod2[one_batch.lod2.size() - 1]; // token batch size
lod_query_tensor.shape.assign({size1, 1});
lod_query_tensor.lod.assign({one_batch.lod1});
lod_title_tensor.shape.assign({size2, 1});
lod_title_tensor.lod.assign({one_batch.lod2});
// assign data
TensorAssignData<int64_t>(&lod_query_tensor, one_batch.query_data_all);
TensorAssignData<int64_t>(&lod_title_tensor, one_batch.title_data_all);
// Set inputs.
input_slots->assign({lod_query_tensor, lod_title_tensor});
for (auto &tensor : *input_slots) {
tensor.dtype = PaddleDType::INT64;
}
}
void SetConfig(contrib::AnalysisConfig *cfg) {
cfg->model_dir = FLAGS_infer_model;
cfg->use_gpu = false;
cfg->device = 0;
cfg->specify_input_name = true;
cfg->enable_ir_optim = true;
}
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
std::vector<PaddleTensor> input_slots;
int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size;
for (int bid = 0; bid < epoch; ++bid) {
PrepareInputs(&input_slots, &data, FLAGS_batch_size);
(*inputs).emplace_back(input_slots);
}
}
// Easy for profiling independently.
TEST(Analyzer_MM_DNN, profile) {
contrib::AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<PaddleTensor> outputs;
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all, &outputs, FLAGS_num_threads);
if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
PADDLE_ENFORCE_EQ(outputs.size(), 2UL);
for (auto &output : outputs) {
size_t size = GetSize(output);
PADDLE_ENFORCE_GT(size, 0);
float *result = static_cast<float *>(output.data.data());
// output is probability, which is in (-1, 1).
for (size_t i = 0; i < size; i++) {
EXPECT_GT(result[i], -1);
EXPECT_LT(result[i], 1);
}
}
}
}
// Check the fuse status
TEST(Analyzer_MM_DNN, fuse_statis) {
contrib::AnalysisConfig cfg;
SetConfig(&cfg);
int num_ops;
auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
auto fuse_statis = GetFuseStatis(
static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
}
// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_MM_DNN, compare) {
contrib::AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareNativeAndAnalysis(
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}
// Compare Deterministic result
TEST(Analyzer_MM_DNN, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all);
}
} // namespace inference
} // namespace paddle
......@@ -179,5 +179,16 @@ TEST(Analyzer_Chinese_ner, compare) {
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}
// Compare Deterministic result
TEST(Analyzer_Chinese_ner, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all);
}
} // namespace inference
} // namespace paddle
......@@ -85,6 +85,17 @@ TEST(Analyzer_resnet50, compare) { compare(); }
TEST(Analyzer_resnet50, compare_mkldnn) { compare(true /* use_mkldnn */); }
#endif
// Compare Deterministic result
TEST(Analyzer_resnet50, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all);
}
} // namespace analysis
} // namespace inference
} // namespace paddle
......@@ -265,6 +265,17 @@ TEST(Analyzer_rnn1, compare) {
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}
// Compare Deterministic result
TEST(Analyzer_rnn1, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all);
}
// Test Multi-Thread.
TEST(Analyzer_rnn1, multi_thread) {
contrib::AnalysisConfig cfg;
......
......@@ -158,5 +158,16 @@ TEST(Analyzer_rnn2, compare) {
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}
// Compare Deterministic result
TEST(Analyzer_rnn2, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all);
}
} // namespace inference
} // namespace paddle
......@@ -204,5 +204,16 @@ TEST(Analyzer_seq_conv1, compare) {
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}
// Compare Deterministic result
TEST(Analyzer_seq_conv1, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all);
}
} // namespace inference
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fstream>
#include <iostream>
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace paddle {
namespace inference {
namespace analysis {
void SetConfig(AnalysisConfig *cfg) {
cfg->param_file = FLAGS_infer_model + "/params";
cfg->prog_file = FLAGS_infer_model + "/model";
cfg->use_gpu = false;
cfg->device = 0;
cfg->enable_ir_optim = true;
cfg->specify_input_name = true;
cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads);
}
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
std::vector<std::string> feed_names = {
"slot10000_embed", "slot10001_embed", "slot10004_embed",
"slot10005_embed", "slot10008_embed", "slot10009_embed",
"slot10012_embed", "slot10013_embed", "slot10108_embed",
"slot13324_embed", "slot13325_embed", "slot13326_embed",
"slot13327_embed", "slot13328_embed", "slot13329_embed",
"slot13330_embed", "slot13331_embed", "slot15501_embed",
"slot15502_embed", "slot15503_embed", "slot15504_embed",
"slot15505_embed", "slot15506_embed", "slot15507_embed",
"slot15508_embed", "slot15516_embed", "slot15519_embed",
"slot15523_embed", "slot15531_embed", "slot15533_embed",
"slot15548_embed", "slot15564_embed", "slot15565_embed",
"slot15566_embed", "slot15570_embed", "slot15571_embed",
"slot15572_embed", "slot15573_embed", "slot15574_embed",
"slot15575_embed", "slot15576_embed", "slot15577_embed",
"slot15579_embed", "slot15581_embed", "slot15582_embed",
"slot15583_embed", "slot15584_embed", "slot5016_embed",
"slot5021_embed", "slot6002_embed", "slot6003_embed",
"slot6004_embed", "slot6005_embed", "slot6006_embed",
"slot6007_embed", "slot6008_embed", "slot6009_embed",
"slot6011_embed", "slot6014_embed", "slot6015_embed",
"slot6023_embed", "slot6024_embed", "slot6025_embed",
"slot6027_embed", "slot6029_embed", "slot6031_embed",
"slot6034_embed", "slot6035_embed", "slot6036_embed",
"slot6037_embed", "slot6039_embed", "slot6048_embed",
"slot6050_embed", "slot6058_embed", "slot6059_embed",
"slot6060_embed", "slot6066_embed", "slot6067_embed",
"slot6068_embed", "slot6069_embed", "slot6070_embed",
"slot6071_embed", "slot6072_embed", "slot6073_embed",
"slot6182_embed", "slot6183_embed", "slot6184_embed",
"slot6185_embed", "slot6186_embed", "slot6188_embed",
"slot6189_embed", "slot6190_embed", "slot6201_embed",
"slot6202_embed", "slot6203_embed", "slot6247_embed",
"slot6248_embed", "slot6250_embed", "slot6251_embed",
"slot6807_embed", "slot6808_embed", "slot6809_embed",
"slot6810_embed", "slot6811_embed", "slot6812_embed",
"slot6813_embed", "slot6814_embed", "slot6815_embed",
"slot6816_embed", "slot6817_embed", "slot6818_embed",
"slot6819_embed", "slot6820_embed", "slot6822_embed",
"slot6823_embed", "slot6826_embed", "slot7002_embed",
"slot7003_embed", "slot7004_embed", "slot7005_embed",
"slot7006_embed", "slot7008_embed", "slot7009_embed",
"slot7010_embed", "slot7011_embed", "slot7013_embed",
"slot7014_embed", "slot7015_embed", "slot7016_embed",
"slot7017_embed", "slot7019_embed", "slot7100_embed",
"slot7506_embed", "slot7507_embed", "slot7514_embed",
"slot7515_embed", "slot7516_embed"};
SetFakeImageInput(inputs, FLAGS_infer_model, true, "model", "params",
&feed_names);
}
// Easy for profiling independently.
void profile(bool use_mkldnn = false) {
AnalysisConfig cfg;
SetConfig(&cfg);
if (use_mkldnn) {
cfg.EnableMKLDNN();
}
std::vector<PaddleTensor> outputs;
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all, &outputs, FLAGS_num_threads);
}
TEST(Analyzer_seq_pool1, profile) { profile(); }
// Check the fuse status
TEST(Analyzer_seq_pool1, fuse_statis) {
AnalysisConfig cfg;
SetConfig(&cfg);
int num_ops;
auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
auto fuse_statis = GetFuseStatis(
static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
LOG(INFO) << "num_ops: " << num_ops;
EXPECT_EQ(num_ops, 314);
}
} // namespace analysis
} // namespace inference
} // namespace paddle
......@@ -106,6 +106,17 @@ TEST(Analyzer_Text_Classification, compare) {
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}
// Compare Deterministic result
TEST(Analyzer_Text_Classification, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all);
}
TEST(Analyzer_Text_Classification, compare_against_embedding_fc_lstm_fused) {
AnalysisConfig cfg;
SetConfig(&cfg);
......
......@@ -145,6 +145,17 @@ TEST(Analyzer_vis, compare) { compare(); }
TEST(Analyzer_vis, compare_mkldnn) { compare(true /* use_mkldnn */); }
#endif
// Compare Deterministic result
TEST(Analyzer_vis, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all);
}
} // namespace analysis
} // namespace inference
} // namespace paddle
......@@ -45,6 +45,7 @@ DEFINE_bool(use_analysis, true,
"Running the inference program in analysis mode.");
DEFINE_bool(record_benchmark, false,
"Record benchmark after profiling the model");
DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
DECLARE_bool(profile);
DECLARE_int32(paddle_num_threads);
......@@ -85,7 +86,7 @@ void CompareResult(const std::vector<PaddleTensor> &outputs,
float *pdata = static_cast<float *>(out.data.data());
float *pdata_ref = static_cast<float *>(ref_out.data.data());
for (size_t j = 0; j < size; ++j) {
EXPECT_NEAR(pdata_ref[j], pdata[j], 1e-3);
EXPECT_NEAR(pdata_ref[j], pdata[j], FLAGS_accuracy);
}
break;
}
......@@ -131,7 +132,8 @@ std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
const std::string &dirname, bool is_combined = true,
std::string model_filename = "model",
std::string params_filename = "params") {
std::string params_filename = "params",
const std::vector<std::string> *feed_names = nullptr) {
// Set fake_image_data
PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
......@@ -145,26 +147,32 @@ void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
os << "}\n";
}
LOG(INFO) << os.str();
int dim1 = feed_target_shapes[0][1];
int dim2 = feed_target_shapes[0][2];
int dim3 = feed_target_shapes[0][3];
PaddleTensor input;
std::vector<int> shape({FLAGS_batch_size, dim1, dim2, dim3});
input.shape = shape;
input.dtype = PaddleDType::FLOAT32;
// fill input data, for profile easily, do not use random data here.
size_t size = FLAGS_batch_size * dim1 * dim2 * dim3;
input.data.Resize(size * sizeof(float));
float *input_data = static_cast<float *>(input.data.data());
for (size_t i = 0; i < size; i++) {
*(input_data + i) = static_cast<float>(i) / size;
if (feed_names) {
PADDLE_ENFORCE_EQ(feed_names->size(), feed_target_shapes.size());
}
std::vector<PaddleTensor> input_slots(feed_target_shapes.size());
for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
const auto &feed_shape = feed_target_shapes[i];
auto &input = input_slots[i];
std::vector<int> shape({FLAGS_batch_size});
for (size_t s = 1; s < feed_shape.size(); ++s) {
shape.push_back(static_cast<int>(feed_shape[s]));
}
if (feed_names) {
input.name = (*feed_names)[i];
}
input.shape = shape;
input.dtype = PaddleDType::FLOAT32;
size_t len = std::accumulate(shape.begin(), shape.end(), 1,
[](int a, int b) { return a * b; });
input.data.Resize(len * sizeof(float));
input.lod.assign({{0, static_cast<size_t>(FLAGS_batch_size)}});
float *input_data = static_cast<float *>(input.data.data());
// fill input data, for profile easily, do not use random data here.
for (size_t j = 0; j < len; ++j) {
*(input_data + j) = static_cast<float>(j) / len;
}
}
std::vector<PaddleTensor> input_slots;
input_slots.assign({input});
(*inputs).emplace_back(input_slots);
}
......@@ -283,6 +291,26 @@ void TestPrediction(const PaddlePredictor::Config *config,
}
}
void CompareDeterministic(
const PaddlePredictor::Config *config,
const std::vector<std::vector<PaddleTensor>> &inputs) {
int batch_size = FLAGS_batch_size;
int num_times = FLAGS_repeat;
auto predictor = CreateTestPredictor(config, FLAGS_use_analysis);
// warmup run
std::vector<PaddleTensor> warmup_outputs, outputs;
predictor->Run(inputs[0], &warmup_outputs, batch_size);
// run num_times to Compare Deterministic Result.
for (int i = 0; i < num_times; i++) {
for (size_t j = 0; j < inputs.size(); j++) {
predictor->Run(inputs[j], &outputs, batch_size);
CompareResult(outputs, warmup_outputs);
}
}
}
void CompareNativeAndAnalysis(
const PaddlePredictor::Config *config,
const std::vector<std::vector<PaddleTensor>> &inputs) {
......
......@@ -3,14 +3,16 @@ set(INFERENCE_DEMO_INSTALL_DIR "${THIRD_PARTY_PATH}/inference_demo" CACHE STRING
"A path setting inference demo download directories.")
function (inference_download install_dir url filename)
message(STATUS "Download inference test stuff from ${url}/${filename}")
execute_process(COMMAND bash -c "mkdir -p ${install_dir}")
execute_process(COMMAND bash -c "cd ${install_dir} && wget -q ${url}/${filename}")
file(DOWNLOAD "${url}/${filename}" "${install_dir}/${filename}")
message(STATUS "finish downloading ${filename}")
endfunction()
function (inference_download_and_uncompress install_dir url filename)
inference_download(${install_dir} ${url} ${filename})
execute_process(COMMAND bash -c "cd ${install_dir} && tar xzf ${filename}")
execute_process(
COMMAND ${CMAKE_COMMAND} -E tar xzf ${install_dir}/${filename}
WORKING_DIRECTORY ${install_dir}
)
endfunction()
set(WORD2VEC_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/word2vec")
......
......@@ -16,6 +16,7 @@ add_subdirectory(metrics)
add_subdirectory(optimizers)
add_subdirectory(reduce_ops)
add_subdirectory(sequence_ops)
add_subdirectory(jit)
if(WITH_DISTRIBUTE)
add_subdirectory(distributed)
......@@ -42,11 +43,10 @@ if (WITH_DISTRIBUTE)
SET(OP_PREFETCH_DEPS ${OP_PREFETCH_DEPS} parameter_prefetch)
endif()
register_operators(EXCLUDES warpctc_op conv_fusion_op DEPS ${OP_HEADER_DEPS} ${OP_PREFETCH_DEPS})
register_operators(EXCLUDES py_func_op warpctc_op conv_fusion_op DEPS ${OP_HEADER_DEPS} ${OP_PREFETCH_DEPS})
# warpctc_op needs cudnn 7 above
if (WITH_GPU AND NOT WIN32)
if (WITH_GPU)
if (${CUDNN_MAJOR_VERSION} VERSION_LESS 7)
op_library(warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale SRCS warpctc_op.cc warpctc_op.cu.cc)
else()
......@@ -65,7 +65,7 @@ set(COMMON_OP_DEPS ${OP_HEADER_DEPS})
set(COMMON_OP_DEPS ${COMMON_OP_DEPS} selected_rows_functor selected_rows lod_tensor maxouting unpooling pooling lod_rank_table context_project sequence_pooling executor)
set(COMMON_OP_DEPS ${COMMON_OP_DEPS} dynload_warpctc)
set(COMMON_OP_DEPS ${COMMON_OP_DEPS} sequence_padding sequence_scale cos_sim_functor memory jit_kernel concat_and_split cross_entropy softmax vol2col im2col sampler)
set(COMMON_OP_DEPS ${COMMON_OP_DEPS} sequence_padding sequence_scale cos_sim_functor memory jit_kernel_helper concat_and_split cross_entropy softmax vol2col im2col sampler)
set(COMMON_OP_DEPS ${COMMON_OP_DEPS} sequence2batch lstm_compute matrix_bit_code gru_compute activation_functions)
if (WITH_GPU)
set(COMMON_OP_DEPS ${COMMON_OP_DEPS} depthwise_conv prelu)
......@@ -92,4 +92,8 @@ cc_test(save_load_op_test SRCS save_load_op_test.cc DEPS save_op load_op)
cc_test(save_load_combine_op_test SRCS save_load_combine_op_test.cc DEPS save_combine_op load_combine_op)
nv_test(dropout_op_test SRCS dropout_op_test.cc DEPS dropout_op tensor)
if (WITH_PYTHON)
cc_library(py_func_op SRCS py_func_op.cc DEPS op_registry python pybind)
endif()
set(GLOB_OP_LIB ${OP_LIBRARY} CACHE INTERNAL "Global OP library")
......@@ -22,7 +22,7 @@ DECLARE_bool(cudnn_exhaustive_search);
namespace paddle {
namespace operators {
#if CUDNN_VERSION >= 7001
#if CUDNN_VERSION >= 7100
using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
......@@ -204,7 +204,7 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
} // namespace operators
} // namespace paddle
#if CUDNN_VERSION >= 7001
#if CUDNN_VERSION >= 7100
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(conv2d_fusion, ops::CUDNNConvFusionOpKernel<float>,
ops::CUDNNConvFusionOpKernel<double>);
......
......@@ -18,6 +18,7 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/depthwise_conv.h"
#include "paddle/fluid/operators/math/im2col.h"
......@@ -123,6 +124,8 @@ class GemmConvKernel : public framework::OpKernel<T> {
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
auto& dev_ctx = context.template device_context<DeviceContext>();
const int batch_size = static_cast<int>(input->dims()[0]);
// filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
......@@ -155,13 +158,16 @@ class GemmConvKernel : public framework::OpKernel<T> {
// to call the matrix multiplication interface.
Tensor col_matrix;
if (is_expand) {
col.mutable_data<T>(col_shape, context.GetPlace());
auto tmp_allocation_ptr =
platform::DeviceTemporaryAllocator::Instance().Get(dev_ctx).Allocate(
framework::product(col_shape) * sizeof(T));
col = framework::GetTensor<T>(std::move(tmp_allocation_ptr), col_shape);
col_matrix.ShareDataWith(col);
col_matrix.Resize(col_matrix_shape);
}
framework::DDim input_shape = framework::slice_ddim(
input->dims(), 1, static_cast<int>(input->dims().size()));
framework::DDim input_shape =
framework::slice_ddim(input->dims(), 1, input->dims().size());
framework::DDim filter_matrix_shape = {filter.dims()[0],
filter.numel() / filter.dims()[0]};
......@@ -178,7 +184,6 @@ class GemmConvKernel : public framework::OpKernel<T> {
math::Vol2ColFunctor<DeviceContext, T> vol2col;
math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
auto& dev_ctx = context.template device_context<DeviceContext>();
auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
for (int i = 0; i < batch_size; i++) {
Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
......@@ -237,6 +242,8 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
const int batch_size = static_cast<int>(input->dims()[0]);
auto& dev_ctx = context.template device_context<DeviceContext>();
// filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
// output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
......@@ -262,8 +269,8 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
framework::DDim col_matrix_shape =
framework::flatten_to_2d(col_shape, data_dim + 1);
framework::DDim input_shape = framework::slice_ddim(
input->dims(), 1, static_cast<int>(input->dims().size()));
framework::DDim input_shape =
framework::slice_ddim(input->dims(), 1, input->dims().size());
framework::DDim filter_matrix_shape = {filter.dims()[0],
filter.numel() / filter.dims()[0]};
......@@ -286,13 +293,15 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
// to call the matrix multiplication interface.
Tensor col_matrix;
if (is_expand) {
col.mutable_data<T>(col_shape, context.GetPlace());
auto tmp_allocation_ptr =
platform::DeviceTemporaryAllocator::Instance().Get(dev_ctx).Allocate(
framework::product(col_shape) * sizeof(T));
col = framework::GetTensor<T>(std::move(tmp_allocation_ptr), col_shape);
col_matrix.ShareDataWith(col);
col_matrix.Resize(col_matrix_shape);
}
math::SetConstant<DeviceContext, T> set_zero;
auto& dev_ctx = context.template device_context<DeviceContext>();
auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
if (input_grad) {
......
......@@ -16,7 +16,7 @@ limitations under the License. */
#include <limits>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/jit_kernel.h"
#include "paddle/fluid/operators/jit/kernels.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace paddle {
......@@ -82,10 +82,9 @@ class CRFDecodingOpKernel : public framework::OpKernel<T> {
Tensor track;
int* track_value =
track.mutable_data<int>(emission_dims, platform::CPUPlace());
const auto& ker = math::jitkernel::KernelPool::Instance()
.template Get<math::jitkernel::CRFDecodeKernel<T>>(
static_cast<int>(tag_num));
ker->Compute(static_cast<int>(seq_len), x, w, alpha_value, track_value);
auto ker = jit::Get<jit::kCRFDecoding, jit::CRFDecodingTuples<T>,
platform::CPUPlace>(tag_num);
ker(static_cast<int>(seq_len), x, w, alpha_value, track_value, tag_num);
T max_score = -std::numeric_limits<T>::max();
int max_i = 0;
for (size_t i = 0; i < tag_num; ++i) {
......
......@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <array>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "mkldnn.hpp"
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/dequantize_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
namespace paddle {
namespace operators {
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using platform::to_void_cast;
using Tensor = framework::Tensor;
using framework::DataLayout;
using mkldnn::stream;
using platform::GetMKLDNNFormat;
template <typename T>
class DeQuantOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<Tensor>("Input");
auto scale_data = ctx.Attr<float>("Scale");
auto* output = ctx.Output<Tensor>("Output");
auto& dev_ctx =
ctx.template device_context<platform::MKLDNNDeviceContext>();
const auto& engine = dev_ctx.GetEngine();
const T* input_data = input->data<T>();
float* output_data = output->mutable_data<float>(ctx.GetPlace());
std::vector<float> reorder_scale = {1.0f / scale_data};
std::vector<primitive> pipeline;
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
mkldnn::memory::data_type src_dt =
paddle::framework::ToMKLDNNDataType(input->type());
mkldnn::memory::format src_fmt = input->format();
mkldnn::primitive_attr attri;
int mask = 0;
attri.set_output_scales(mask, reorder_scale);
auto src_md = platform::MKLDNNMemDesc({src_tz}, src_dt, src_fmt);
auto src_pd = mkldnn::memory::primitive_desc(src_md, engine);
auto src_memory =
std::make_shared<mkldnn::memory>(src_pd, to_void_cast<T>(input_data));
std::shared_ptr<primitive::at> src_memory_p =
std::shared_ptr<primitive::at>(new primitive::at(*src_memory));
auto dst_md = platform::MKLDNNMemDesc({dst_tz}, memory::data_type::f32,
memory::format::nchw);
auto dst_pd = mkldnn::memory::primitive_desc(dst_md, engine);
auto dst_memory = mkldnn::memory(dst_pd, to_void_cast<float>(output_data));
auto reorder_pd = std::shared_ptr<reorder::primitive_desc>(
new reorder::primitive_desc(src_pd, dst_pd, attri));
auto reorder_p = std::shared_ptr<reorder>(
new reorder(*reorder_pd, *src_memory_p, dst_memory));
pipeline.push_back(*reorder_p);
stream(stream::kind::eager).submit(pipeline).wait();
output->set_format(GetMKLDNNFormat(dst_memory));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_KERNEL(dequantize, MKLDNN, ::paddle::platform::CPUPlace,
ops::DeQuantOpKernel<uint8_t>, ops::DeQuantOpKernel<int8_t>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/dequantize_op.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle {
namespace operators {
framework::OpKernelType DeQuantOp::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
framework::LibraryType library_ = framework::LibraryType::kMKLDNN;
framework::DataLayout layout_ = framework::DataLayout::kMKLDNN;
return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
ctx.GetPlace(), layout_, library_);
}
void DeQuantOpMaker::Make() {
AddInput("Input", "input data");
AddOutput("Output", "output data");
AddAttr<float>("Scale", "scale data").SetDefault({1.0f});
AddComment(R"DOC(This op will dequantize data from INT8 to FP32)DOC");
}
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(dequantize, ops::DeQuantOp, ops::DeQuantOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using framework::OpKernelType;
using framework::Tensor;
class DeQuantOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
ctx->SetOutputDim("Output", ctx->GetInputDim("Input"));
ctx->ShareLoD("Input", /*->*/ "Output");
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override;
};
class DeQuantOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override;
};
class DeQuantGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {}
};
} // namespace operators
} // namespace paddle
......@@ -25,7 +25,7 @@ namespace detail {
*/
template <typename T, typename... ARGS>
inline T& Ref(T* ptr, ARGS&&... args) {
PADDLE_ENFORCE(ptr != nullptr, args...);
PADDLE_ENFORCE(ptr != nullptr, ::paddle::string::Sprintf(args...));
return *ptr;
}
......
......@@ -142,12 +142,13 @@ class DensityPriorBoxOpCUDAKernel : public framework::OpKernel<T> {
vars->mutable_data<T>(ctx.GetPlace());
framework::Tensor d_temp;
framework::TensorCopySync(h_temp, ctx.GetPlace(), &d_temp);
framework::TensorCopy(h_temp, ctx.GetPlace(), &d_temp);
// At least use 32 threads, at most 512 threads.
// blockx is multiple of 32.
int blockx = std::min(
static_cast<long>(((feature_width * num_priors + 31) >> 5) << 5), 512L);
static_cast<int64_t>(((feature_width * num_priors + 31) >> 5) << 5),
512L);
int gridx = (feature_width * num_priors + blockx - 1) / blockx;
dim3 threads(blockx, 1);
dim3 grids(gridx, feature_height);
......
......@@ -84,7 +84,9 @@ class ProtoEncodeHelper {
~ProtoEncodeHelper() {
#define REPLACE_ENFORCE_GLOG 1
// Make sure callers didn't do operations that went over max_size promised
paddle::platform::throw_on_error(p_ <= limit_);
if (paddle::platform::is_error(p_ <= limit_)) {
paddle::platform::throw_on_error(p_ <= limit_);
}
#undef REPLACE_ENFORCE_GLOG
}
......
......@@ -33,7 +33,7 @@ register_operators(EXCLUDES gen_nccl_id_op DEPS ${DISTRIBUTE_DEPS})
if(WITH_GPU AND NOT WIN32)
set(DISTRIBUTE_DEPS ${DISTRIBUTE_DEPS} nccl_common)
op_library(gen_nccl_id_op ${DISTRIBUTE_DEPS} nccl_common)
op_library(gen_nccl_id_op DEPS ${DISTRIBUTE_DEPS} nccl_common)
endif()
set(OPERATOR_DEPS ${OPERATOR_DEPS} ${DISTRIBUTE_DEPS} PARENT_SCOPE)
......
......@@ -12,18 +12,23 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_div_op.h"
#include "paddle/fluid/platform/float16.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
elementwise_div,
ops::ElementwiseDivKernel<paddle::platform::CUDADeviceContext, float>,
ops::ElementwiseDivKernel<paddle::platform::CUDADeviceContext,
paddle::platform::float16>,
ops::ElementwiseDivKernel<paddle::platform::CUDADeviceContext, double>,
ops::ElementwiseDivKernel<paddle::platform::CUDADeviceContext, int>,
ops::ElementwiseDivKernel<paddle::platform::CUDADeviceContext, int64_t>);
REGISTER_OP_CUDA_KERNEL(
elementwise_div_grad,
ops::ElementwiseDivGradKernel<paddle::platform::CUDADeviceContext, float>,
ops::ElementwiseDivGradKernel<paddle::platform::CUDADeviceContext,
paddle::platform::float16>,
ops::ElementwiseDivGradKernel<paddle::platform::CUDADeviceContext, double>,
ops::ElementwiseDivGradKernel<paddle::platform::CUDADeviceContext, int>,
ops::ElementwiseDivGradKernel<paddle::platform::CUDADeviceContext,
......
......@@ -16,11 +16,14 @@ limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/jit/kernels.h"
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/operators/math/jit_kernel.h"
#ifdef PADDLE_WITH_XBYAK
#include "xbyak/xbyak.h"
#include "xbyak/xbyak_util.h"
#endif
namespace paddle {
namespace operators {
......@@ -81,8 +84,7 @@ class ElementwiseMulMKLDNNKernel : public framework::OpKernel<T> {
UpdateDataFormat(ctx, const_cast<Tensor*>(x), "x_data_format");
UpdateDataFormat(ctx, const_cast<Tensor*>(y), "y_data_format");
Xbyak::util::Cpu cpu;
const bool is_avx512_enabled = cpu.has(Xbyak::util::Cpu::tAVX512F);
const bool is_avx512_enabled = platform::MayIUse(platform::avx512f);
const bool are_dims_divisable = !(x_int_dims[1] % 16);
const bool is_x_format_correct = x->format() == memory::format::nChw16c;
const bool is_y_format_correct = y->format() == memory::format::nc;
......@@ -108,10 +110,8 @@ class ElementwiseMulMKLDNNKernel : public framework::OpKernel<T> {
constexpr int simd_width = 16;
int C = c / simd_width;
const auto& multiply =
math::jitkernel::KernelPool::Instance()
.template Get<math::jitkernel::EltwiseMulnChw16cNCKernel<T>>(n);
auto multiply = jit::Get<jit::kNCHW16CMulNC, jit::NCHW16CMulNCTuples<T>,
platform::CPUPlace>(0);
#pragma omp parallel for collapse(2)
for (int ni = 0; ni < n; ni++) {
for (int ci = 0; ci < C; ci++) {
......@@ -122,7 +122,7 @@ class ElementwiseMulMKLDNNKernel : public framework::OpKernel<T> {
auto ptr_z =
z_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
multiply->Compute(ptr_x, ptr_y, ptr_z, h, w);
multiply(ptr_x, ptr_y, ptr_z, h, w);
}
}
}
......
......@@ -12,19 +12,21 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
#include "paddle/fluid/platform/float16.h"
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(
elementwise_mul,
ops::ElementwiseMulKernel<paddle::platform::CUDADeviceContext, float>,
ops::ElementwiseMulKernel<paddle::platform::CUDADeviceContext, double>,
ops::ElementwiseMulKernel<paddle::platform::CUDADeviceContext, int>,
ops::ElementwiseMulKernel<paddle::platform::CUDADeviceContext, int64_t>);
elementwise_mul, ops::ElementwiseMulKernel<plat::CUDADeviceContext, float>,
ops::ElementwiseMulKernel<plat::CUDADeviceContext, double>,
ops::ElementwiseMulKernel<plat::CUDADeviceContext, int>,
ops::ElementwiseMulKernel<plat::CUDADeviceContext, int64_t>,
ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::float16>);
REGISTER_OP_CUDA_KERNEL(
elementwise_mul_grad,
ops::ElementwiseMulGradKernel<paddle::platform::CUDADeviceContext, float>,
ops::ElementwiseMulGradKernel<paddle::platform::CUDADeviceContext, double>,
ops::ElementwiseMulGradKernel<paddle::platform::CUDADeviceContext, int>,
ops::ElementwiseMulGradKernel<paddle::platform::CUDADeviceContext,
int64_t>);
ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, float>,
ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, double>,
ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, int>,
ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, int64_t>,
ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, plat::float16>);
......@@ -14,6 +14,7 @@ limitations under the License. */
#include "paddle/fluid/operators/fill_zeros_like_op.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/float16.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
......@@ -22,4 +23,6 @@ REGISTER_OP_CUDA_KERNEL(
ops::FillZerosLikeKernel<paddle::platform::CUDADeviceContext, int64_t>,
ops::FillZerosLikeKernel<paddle::platform::CUDADeviceContext, float>,
ops::FillZerosLikeKernel<paddle::platform::CUDADeviceContext, double>,
ops::FillZerosLikeKernel<paddle::platform::CUDADeviceContext,
paddle::platform::float16>,
ops::FillZerosLikeKernel<paddle::platform::CUDADeviceContext, bool>);
......@@ -15,9 +15,9 @@ limitations under the License. */
#include "paddle/fluid/operators/fused/fusion_gru_op.h"
#include <cstring> // for memcpy
#include <string>
#include "paddle/fluid/operators/jit/kernels.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/operators/math/jit_kernel.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
namespace paddle {
......@@ -182,27 +182,29 @@ class FusionGRUKernel : public framework::OpKernel<T> {
const int total_T = x_dims[0]; \
const int D3 = wh_dims[1]
#define INIT_OTHER_DEFINES \
auto* h0 = ctx.Input<Tensor>("H0"); \
auto* wx = ctx.Input<Tensor>("WeightX"); \
auto* bias = ctx.Input<Tensor>("Bias"); \
auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
bool is_reverse = ctx.Attr<bool>("is_reverse"); \
const int M = x_dims[1]; \
const int D = wh_dims[0]; \
const int D2 = D * 2; \
const math::jitkernel::gru_attr_t attr( \
D, ctx.Attr<std::string>("gate_activation"), \
ctx.Attr<std::string>("activation")); \
math::jitkernel::gru_t one_step; \
const auto& ker = \
math::jitkernel::KernelPool::Instance() \
.template Get<math::jitkernel::GRUKernel<T>, \
const math::jitkernel::gru_attr_t&>(attr); \
const T* x_data = x->data<T>(); \
const T* wx_data = wx->data<T>(); \
const T* wh_data = wh->data<T>(); \
auto place = ctx.GetPlace(); \
#define INIT_OTHER_DEFINES \
auto* h0 = ctx.Input<Tensor>("H0"); \
auto* wx = ctx.Input<Tensor>("WeightX"); \
auto* bias = ctx.Input<Tensor>("Bias"); \
auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
bool is_reverse = ctx.Attr<bool>("is_reverse"); \
const int M = x_dims[1]; \
const int D = wh_dims[0]; \
const int D2 = D * 2; \
const jit::gru_attr_t attr( \
D, jit::to_kerneltype(ctx.Attr<std::string>("gate_activation")), \
jit::to_kerneltype(ctx.Attr<std::string>("activation"))); \
jit::gru_t one_step; \
auto ComputeH1 = \
jit::Get<jit::kGRUH1, jit::GRUTuples<T>, platform::CPUPlace>(attr); \
auto ComputeHtPart1 = \
jit::Get<jit::kGRUHtPart1, jit::GRUTuples<T>, platform::CPUPlace>(attr); \
auto ComputeHtPart2 = \
jit::Get<jit::kGRUHtPart2, jit::GRUTuples<T>, platform::CPUPlace>(attr); \
const T* x_data = x->data<T>(); \
const T* wx_data = wx->data<T>(); \
const T* wh_data = wh->data<T>(); \
auto place = ctx.GetPlace(); \
T* xx_data = xx->mutable_data<T>(place)
void SeqCompute(const framework::ExecutionContext& ctx) const {
......@@ -241,7 +243,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
} else {
one_step.gates = xx_data;
one_step.ht = hidden_out_data;
ker->ComputeH1(&one_step, &attr);
ComputeH1(&one_step, &attr);
prev_hidden_data = hidden_out_data;
tstart = 1;
move_step();
......@@ -254,12 +256,12 @@ class FusionGRUKernel : public framework::OpKernel<T> {
one_step.gates = xx_data;
one_step.ht_1 = prev_hidden_data;
one_step.ht = hidden_out_data;
ker->ComputeHtPart1(&one_step, &attr);
ComputeHtPart1(&one_step, &attr);
// gemm rt * Ws
blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D, D, static_cast<T>(1),
hidden_out_data, D, wh_state_data, D, static_cast<T>(1),
xx_data + D2, D3);
ker->ComputeHtPart2(&one_step, &attr);
ComputeHtPart2(&one_step, &attr);
// save prev
prev_hidden_data = hidden_out_data;
move_step();
......@@ -323,7 +325,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
for (int i = 0; i < max_bs; ++i) {
one_step.gates = cur_in_data;
one_step.ht = cur_out_data;
ker->ComputeH1(&one_step, &attr);
ComputeH1(&one_step, &attr);
// add offset
cur_in_data += D3;
cur_out_data += D;
......@@ -351,7 +353,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
one_step.gates = cur_batched_data;
one_step.ht_1 = cur_prev_hidden_data;
one_step.ht = cur_out_data;
ker->ComputeHtPart1(&one_step, &attr);
ComputeHtPart1(&one_step, &attr);
cur_batched_data += D3;
cur_prev_hidden_data += D;
......@@ -369,7 +371,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
one_step.gates = cur_batched_data;
one_step.ht_1 = cur_prev_hidden_data;
one_step.ht = cur_out_data;
ker->ComputeHtPart2(&one_step, &attr);
ComputeHtPart2(&one_step, &attr);
cur_batched_data += D3;
cur_prev_hidden_data += D;
cur_out_data += D;
......
......@@ -14,9 +14,9 @@ limitations under the License. */
#include "paddle/fluid/operators/fused/fusion_lstm_op.h"
#include <string>
#include "paddle/fluid/operators/jit/kernels.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/operators/math/jit_kernel.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
namespace paddle {
......@@ -235,31 +235,32 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
const int D = wh_dims[0]; \
const int D4 = wh_dims[1]
#define INIT_OTHER_DEFINES \
const T* x_data = x->data<T>(); \
const T* wx_data = wx->data<T>(); \
const T* wh_data = wh->data<T>(); \
/* diagonal weight*/ \
const T* wp_data = bias->data<T>() + D4; \
/* for peephole only*/ \
T* checked_cell_data = nullptr; \
auto place = ctx.GetPlace(); \
if (use_peepholes) { \
/* w_ic * Ct-1, w_fc * Ct-1 ; w_oc * Ct => ih*/ \
auto* checked_cell = ctx.Output<Tensor>("CheckedCell"); \
checked_cell_data = checked_cell->mutable_data<T>(place); \
} \
const math::jitkernel::lstm_attr_t attr( \
D, ctx.Attr<std::string>("gate_activation"), \
ctx.Attr<std::string>("candidate_activation"), \
ctx.Attr<std::string>("cell_activation"), use_peepholes); \
math::jitkernel::lstm_t one_step; \
one_step.wp = wp_data; \
one_step.checked = checked_cell_data; \
const auto& ker = \
math::jitkernel::KernelPool::Instance() \
.template Get<math::jitkernel::LSTMKernel<T>, \
const math::jitkernel::lstm_attr_t&>(attr)
#define INIT_OTHER_DEFINES \
const T* x_data = x->data<T>(); \
const T* wx_data = wx->data<T>(); \
const T* wh_data = wh->data<T>(); \
/* diagonal weight*/ \
const T* wp_data = bias->data<T>() + D4; \
/* for peephole only*/ \
T* checked_cell_data = nullptr; \
auto place = ctx.GetPlace(); \
if (use_peepholes) { \
/* w_ic * Ct-1, w_fc * Ct-1 ; w_oc * Ct => ih*/ \
auto* checked_cell = ctx.Output<Tensor>("CheckedCell"); \
checked_cell_data = checked_cell->mutable_data<T>(place); \
} \
const jit::lstm_attr_t attr( \
D, jit::to_kerneltype(ctx.Attr<std::string>("gate_activation")), \
jit::to_kerneltype(ctx.Attr<std::string>("candidate_activation")), \
jit::to_kerneltype(ctx.Attr<std::string>("cell_activation")), \
use_peepholes); \
jit::lstm_t one_step; \
one_step.wp = wp_data; \
one_step.checked = checked_cell_data; \
auto ComputeC1H1 = \
jit::Get<jit::kLSTMC1H1, jit::LSTMTuples<T>, platform::CPUPlace>(attr); \
auto ComputeCtHt = \
jit::Get<jit::kLSTMCtHt, jit::LSTMTuples<T>, platform::CPUPlace>(attr)
// Wh GEMM
#define GEMM_WH_ADDON(bs, prev, out) \
......@@ -305,7 +306,7 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
one_step.gates = xx_data;
one_step.ct = c_out_data;
one_step.ht = h_out_data;
ker->ComputeC1H1(&one_step, &attr);
ComputeC1H1(&one_step, &attr);
tstart = 1;
// move one step
prev_h_data = h_out_data;
......@@ -321,7 +322,7 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
one_step.ct_1 = prev_c_data;
one_step.ct = c_out_data;
one_step.ht = h_out_data;
ker->ComputeCtHt(&one_step, &attr);
ComputeCtHt(&one_step, &attr);
// move one step
prev_h_data = h_out_data;
prev_c_data = c_out_data;
......@@ -401,7 +402,7 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
one_step.gates = cur_in_data;
one_step.ct = cur_c_out_data;
one_step.ht = cur_h_out_data;
ker->ComputeC1H1(&one_step, &attr);
ComputeC1H1(&one_step, &attr);
cur_in_data += D4;
cur_c_out_data += D;
......@@ -431,7 +432,7 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
one_step.ct_1 = cur_prev_c_data;
one_step.ct = cur_c_out_data;
one_step.ht = cur_h_out_data;
ker->ComputeCtHt(&one_step, &attr);
ComputeCtHt(&one_step, &attr);
// move one batch
cur_in_data += D4;
......
set(jit_file ${PADDLE_BINARY_DIR}/paddle/fluid/operators/jit/kernels.h)
file(WRITE ${jit_file} "// Generated by the paddle/fluid/operators/jit/CMakeLists.txt. DO NOT EDIT!\n\n")
file(APPEND ${jit_file} "\#pragma once\n")
file(APPEND ${jit_file} "\#include \"paddle/fluid/operators/jit/helper.h\"\n")
file(APPEND ${jit_file} "\#include \"paddle/fluid/operators/jit/registry.h\"\n\n")
set(JIT_KERNEL_DEPS cpu_info cblas gflags enforce place)
file(GLOB jit_kernel_cc_srcs RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "*.cc")
list(REMOVE_ITEM jit_kernel_cc_srcs test.cc benchmark.cc)
cc_library(jit_kernel_base SRCS ${jit_kernel_cc_srcs} DEPS ${JIT_KERNEL_DEPS})
# refer must go first
add_subdirectory(refer)
add_subdirectory(more)
if(WITH_XBYAK)
add_subdirectory(gen)
endif()
cc_library(jit_kernel_helper SRCS ${jit_kernel_cc_srcs} DEPS ${JIT_KERNEL_DEPS})
cc_test(jit_kernel_test SRCS test.cc DEPS jit_kernel_helper)
if(NOT WIN32)
cc_binary(jit_kernel_benchmark SRCS benchmark.cc DEPS jit_kernel_helper device_tracer)
endif()
# JIT Kernel
JIT(Just In Time) Kernel contains actually generated code and some other implemenations with the same logic.
Each implementations has its own condition to use, defined in `UseMe`.
They are combined together to get the best performance of one single independent function.
They could be some very simple functions like vector multiply, or some complicated functions like LSTM.
And they can be composed with some other exited jit kernels to build up a complex function.
Currently it's only supported on CPU yet.
## Contents
```txt
PaddlePaddle/Paddle/paddle/fluid/
├── ...
└── operators/
├── .../
└── jit/
├── ...
├── gen/
│ └── ...
|── more/
│ ├── ...
│ ├── mkl/
│ │ └── ...
│ ├── mkldnn/
│ │ └── ...
│ ├── mix/
│ │ └── ...
│ ├── intrinsic/
│ │ └── ...
│ └── openblas/
│ └── ...
└── refer/
└── ...
```
All basical definations of jit kernels are addressed in `paddle/fluid/operators/jit` including these three key folders `refer`, `gen`, `more`. There is only one unique name for each kernel while may have seraval implementations with same functionality.
- `refer`: Each kernel must have one reference implementation on CPU, and it should only focus on the correctness and should not depends on any third-party libraries.
- `gen`: The code generated should be kept here. They should be designed focusing on the best performance, which depends on Xbyak.
- `more`: All other implementations should be kept in this folder with one directory corresponding to one library kind or method kind, such as mkl, mkldnn, openblas or intrinsic code. Each implementation should have it advantage.
## How to use
One simple function `jit::Get`, which is very easy to use, is supported to get the kernel.
It can automatically return the expected function with best performance under the given attributes.
All kernels are inlcuded in `paddle/fluid/operators/jit/kernels.h`, you can only include this one header to get all the registered kernels.
## Solid Test
- Unit Test
All functions should be compared with the corresponding reference functions, including data tyep `float` and `double`.
- Benchmark
All functions should be tested, and make sure the `jit::Get` function obtain the best performance with all attributes.
# How to add new kernel
## Required
1. Add `your_key` at `KernelType`.
2. Add reference function of `your_key`.
Note:
- this should be run on CPU and do not depend on any third-party.
- Add `USE_JITKERNEL_REFER(your_key)` in `refer/CmakeLists.txt` to make sure this code can be used.
3. Add unit test in `test.cc`, and verfiy at least `float` and `double`.
Test more data type for some special functions if necessary, for example `int8`.
4. Add functions in `benchmark.cc` to test all function of same `KernelType`. Make sure `jit::Get` always get the best one.
## Optional
Add more implementations of `your_kery` for performance enhancement.
1. Add functions based on generated code in `gen`. It should be derived from `JitCode` and should have corepsonding creator from `JitCodeCreator` which will be registered on the `your_key`.
Note: Add new `KernelTuples` if necessary,your can refer to `XYZNTuples`.
Specialie method `JitCodeKey` when add new attribute type。
2. Add more functions in `more`,you can use any third party you wish, like mkl, mkldnn or intrinsic code to reach the best performance.
# JIT Kernel
结合函数模板和JIT生成需要的kernel函数。
这里的kernel是比Operator中kernel更小级别的算子单元,更侧重的是在不同硬件上的性能。可以有多重第三方库的实现,每种实现有自己的`UseMe`函数负责什么条件下可以被调用。
这里实现的函数可以非常细粒度的函数方法,比如Vector MUL, 也可以是一个复杂的逻辑比如LSTM等。复杂的逻辑也可以由自己的底层函数拼接而成。
目前仅支持CPU上的高性能计算。
## 目录结构
```txt
PaddlePaddle/Paddle/paddle/fluid/
├── ...
└── operators/
├── .../
└── jit/
├── ...
├── gen/
│ └── ...
|── more/
│ ├── ...
│ ├── mkl/
│ │ └── ...
│ ├── mkldnn/
│ │ └── ...
│ ├── mix/
│ │ └── ...
│ ├── intrinsic/
│ │ └── ...
│ └── openblas/
│ └── ...
└── refer/
└── ...
```
基本类的定义都放在根目录下,根目录下包括gen,more和refer三个目录。每个目录下都是一种或者多种实现,每种kernel算子都需要有reference的实现,用作单元测试的基准,其他的实现都是可选的。
- gen: 代表使用jit生成的code,需要依赖xbyak库。该实现最关心的就是性能。
- refer: 代表reference的实现,每种kernel算子都需要有在CPU上的reference的实现,他主要关心的算法逻辑的正确性。
- more: 下面可以放入跟多实现,可以包括mkl,mkldnn,intrinsic,openblas等,也可以是自身已有的kernel组合。
## 动态获取
提供一个`jit::Get`方法,根据kernel类别获取,每种实现都有自己的使用范围,根据范围动态和当前条件选择需要的kernel函数。
## 测试
- 逻辑测试
所有实现都要与refer的code对比,需要满足精度要求, 包括float和double的数据类型
- 性能测试
所有实现的性能对比,并且与最终的`jit::Get`方法对比,该方法拿到的性能需要在各种条件下都是最好的。
# 如何添加新的算子
-`KernelType` 中添加 `your_key` .
- 实现Reference 的逻辑,这个是必须是在CPU上的实现,并且不能依赖任何第三方库。实现后在`refer/CmakeLists.txt`中添加`USE_JITKERNEL_REFER(your_key)`来使用该kernel.
- (optional) 实现更多的算法在`more`目录下,可以依赖mkl,intrinsic或者mkldnn等第三方库。
- (optional) 实现基于Xbyak的生成code,在`gen`目下。 jitcode需要实现自己的`JitCodeCreator`,并注册在与refer相同的`KernelType`上。
- 必要时可以添加新的`KernelTuples`,可以参考`XYZNTuples`,新加的Attr类型需要特例化`JitCodeKey`方法。
-`test.cc`中添加unit test,至少需要测试`float``double`两种数据类型,如有必要需要支持额外的数据类型,比如`int8`的相关函数。
-`benchmark.cc`中添加相应的性能对比,同一种kernel需要对比所有实现,并且确保`jit::Get`得到的实现一直是速度最快的。
# 优点
- 统一的Get方法,接口简单。
- 同一套逻辑可以有多套实现,可以依赖多套第三方库,互不影响。
- 目录结构清晰,不会在某个文件中有多个宏定义,导致的可读性差问题。
- 优化方便,可以直接针对某种属性针对性优化,并不影响其他属性下的性能。
- 可以支持多种平台,包括Linux,Mac 和 Windows,至少可以保证每种平台都可以正常work。后期也可以针对不同平台有针对的优化。框架层面可以使用统一接口,不必关心底层实现。
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include <iostream>
#include <random>
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "paddle/fluid/operators/jit/kernels.h"
#include "paddle/fluid/platform/device_tracer.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/port.h"
DEFINE_int32(burning, 10, "Burning times.");
DEFINE_int32(repeat, 3000, "Repeat times.");
DEFINE_int32(max_size, 1000, "The Max size would be tested.");
template <typename T>
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
const T upper = static_cast<T>(20.f), unsigned int seed = 100) {
std::mt19937 rng(seed);
std::uniform_real_distribution<double> uniform_dist(0, 1);
for (int i = 0; i < n; ++i) {
a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
}
}
std::vector<int> TestSizes() {
std::vector<int> s;
for (int i = 1; i <= FLAGS_max_size; ++i) {
s.push_back(i);
}
return s;
}
template <typename KernelTuples, typename... Args>
struct BenchFunc {
// return this function avg time
double operator()(const typename KernelTuples::func_type tgt, Args... args) {
for (int i = 0; i < FLAGS_burning; ++i) {
tgt(args...);
}
auto start = paddle::platform::PosixInNsec() / 1e-3;
for (int i = 0; i < FLAGS_repeat; ++i) {
tgt(args...);
}
auto end = paddle::platform::PosixInNsec() / 1e-3;
return static_cast<double>(end - start) / FLAGS_repeat;
}
};
namespace jit = paddle::operators::jit;
template <jit::KernelType KT, typename KernelTuples, typename PlaceType,
typename... Args>
void BenchAllImpls(const typename KernelTuples::attr_type& attr, Args... args) {
BenchFunc<KernelTuples, Args...> benchmark;
std::vector<std::pair<std::string, double>> infos;
// test refer
auto refer = jit::GetRefer<KT, KernelTuples>();
if (!refer) {
LOG(FATAL) << "Refer can not be empty!";
}
infos.push_back(std::make_pair("Refer", benchmark(refer, args...)));
// test jitcode
auto jitcode = jit::GetJitCode<KT, KernelTuples, PlaceType>(attr);
if (jitcode) {
infos.push_back(std::make_pair("JitCode", benchmark(jitcode, args...)));
}
// test all impls in more
jit::KernelKey kkey(KT, PlaceType());
auto& pool = jit::KernelPool().Instance().AllKernels();
auto iter = pool.find(kkey);
if (iter != pool.end()) {
auto& impls = iter->second;
for (auto& impl : impls) {
auto i = dynamic_cast<const jit::KernelMore<KernelTuples>*>(impl.get());
if (i && i->UseMe(attr)) {
auto more = i->GetFunc();
infos.push_back(
std::make_pair(i->ImplType(), benchmark(more, args...)));
}
}
}
// Test result from Get function
auto tgt = jit::Get<KT, KernelTuples, PlaceType>(attr);
if (!tgt) {
LOG(FATAL) << "Target can not be empty!";
}
infos.push_back(std::make_pair("Target", benchmark(tgt, args...)));
// print
std::ostringstream loginfos;
loginfos << "Kernel Type " << jit::to_string(KT) << ": " << attr << ": ";
for (auto pair : infos) {
loginfos << pair.first << " takes " << pair.second << " us; ";
}
LOG(INFO) << loginfos.str();
}
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void BenchXYZNKernel() {
for (int d : TestSizes()) {
std::vector<T> x(d), y(d), z(d);
RandomVec<T>(d, x.data());
RandomVec<T>(d, y.data());
BenchAllImpls<KT, jit::XYZNTuples<T>, PlaceType>(d, x.data(), y.data(),
z.data(), d);
}
}
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void BenchAXYNKernel() {
for (int d : TestSizes()) {
const T a = static_cast<T>(3);
std::vector<T> x(d), y(d);
RandomVec<T>(d, x.data());
BenchAllImpls<KT, jit::AXYNTuples<T>, PlaceType>(d, &a, x.data(), y.data(),
d);
}
}
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void BenchXYNKernel() {
for (int d : TestSizes()) {
std::vector<T> x(d), y(d);
RandomVec<T>(d, x.data());
BenchAllImpls<KT, jit::XYNTuples<T>, PlaceType>(d, x.data(), y.data(), d);
}
}
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void BenchLSTMKernel() {
for (bool use_peephole : {true, false}) {
for (int d : TestSizes()) {
const jit::lstm_attr_t attr(d, jit::kVSigmoid, jit::kVTanh, jit::kVTanh,
use_peephole);
std::vector<T> x(4 * d), ct_1(d), ct(d), ht(d), wp(3 * d), checked(2 * d);
RandomVec<T>(4 * d, x.data(), -2.f, 2.f);
RandomVec<T>(3 * d, wp.data(), -2.f, 2.f);
RandomVec<T>(d, ct_1.data(), -2.f, 2.f);
const T* ct_1_data = ct_1.data();
const T* wp_data = wp.data();
T* x_data = x.data();
T* checked_data = checked.data();
T* ct_data = ct.data();
T* ht_data = ht.data();
jit::lstm_t step;
step.gates = x_data;
step.ct_1 = ct_1_data;
step.ct = ct_data;
step.ht = ht_data;
if (use_peephole) {
step.wp = wp_data;
step.checked = checked_data;
}
BenchAllImpls<KT, jit::LSTMTuples<T>, PlaceType>(attr, &step, &attr);
}
}
}
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void BenchGRUKernel() {
for (int d : TestSizes()) {
const jit::gru_attr_t attr(d, jit::kVSigmoid, jit::kVTanh);
std::vector<T> x(3 * d), ht_1(d), ht(d);
RandomVec<T>(3 * d, x.data(), -2.f, 2.f);
RandomVec<T>(d, ht_1.data(), -2.f, 2.f);
const T* ht_1_data = ht_1.data();
T* x_data = x.data();
T* ht_data = ht.data();
jit::gru_t step;
step.gates = x_data;
step.ht_1 = ht_1_data;
step.ht = ht_data;
BenchAllImpls<KT, jit::GRUTuples<T>, PlaceType>(attr, &step, &attr);
}
}
// Benchmark all jit kernels including jitcode, mkl and refer.
// To use this tool, run command: ./benchmark [options...]
// Options:
// --burning: the burning time before count
// --repeat: the repeat times
// --max_size: the max size would be tested
int main(int argc, char* argv[]) {
gflags::ParseCommandLineFlags(&argc, &argv, true);
google::InitGoogleLogging(argv[0]);
LOG(INFO) << "Burning " << FLAGS_burning << " times, Repeat " << FLAGS_repeat
<< " times.";
using T = float;
using PlaceType = paddle::platform::CPUPlace;
// xyzn
BenchXYZNKernel<jit::kVMul, T, PlaceType>();
BenchXYZNKernel<jit::kVAdd, T, PlaceType>();
BenchXYZNKernel<jit::kVAddRelu, T, PlaceType>();
BenchXYZNKernel<jit::kVSub, T, PlaceType>();
// axyn
BenchAXYNKernel<jit::kVScal, T, PlaceType>();
BenchAXYNKernel<jit::kVAddBias, T, PlaceType>();
// xyn
BenchXYNKernel<jit::kVRelu, T, PlaceType>();
BenchXYNKernel<jit::kVIdentity, T, PlaceType>();
BenchXYNKernel<jit::kVExp, T, PlaceType>();
BenchXYNKernel<jit::kVSigmoid, T, PlaceType>();
BenchXYNKernel<jit::kVTanh, T, PlaceType>();
// lstm and peephole
BenchLSTMKernel<jit::kLSTMCtHt, T, PlaceType>();
BenchLSTMKernel<jit::kLSTMC1H1, T, PlaceType>();
// gru functions
BenchGRUKernel<jit::kGRUH1, T, PlaceType>();
BenchGRUKernel<jit::kGRUHtPart1, T, PlaceType>();
BenchGRUKernel<jit::kGRUHtPart2, T, PlaceType>();
}
file(GLOB jitcode_cc_srcs RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "*.cc")
cc_library(jit_kernel_jitcode SRCS ${jitcode_cc_srcs} DEPS jit_kernel_base xbyak)
set(JIT_KERNEL_DEPS ${JIT_KERNEL_DEPS} xbyak jit_kernel_jitcode PARENT_SCOPE)
function(USE_JITKERNEL_GEN TARGET)
file(APPEND ${jit_file} "USE_JITKERNEL_GEN(${TARGET});\n")
endfunction()
# use gen jitcode kernel by name
USE_JITKERNEL_GEN(kVMul)
USE_JITKERNEL_GEN(kVAdd)
#USE_JITKERNEL_GEN(kVSub) # TODO(TJ): enable me
USE_JITKERNEL_GEN(kVAddRelu)
USE_JITKERNEL_GEN(kVScal)
USE_JITKERNEL_GEN(kVAddBias)
USE_JITKERNEL_GEN(kVRelu)
USE_JITKERNEL_GEN(kVIdentity)
USE_JITKERNEL_GEN(kVExp)
USE_JITKERNEL_GEN(kVSigmoid)
USE_JITKERNEL_GEN(kVTanh)
USE_JITKERNEL_GEN(kLSTMCtHt)
USE_JITKERNEL_GEN(kLSTMC1H1)
USE_JITKERNEL_GEN(kGRUH1)
USE_JITKERNEL_GEN(kGRUHtPart1)
USE_JITKERNEL_GEN(kGRUHtPart2)
USE_JITKERNEL_GEN(kNCHW16CMulNC)
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/jit/gen/act.h"
#include "paddle/fluid/operators/jit/registry.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace paddle {
namespace operators {
namespace jit {
namespace gen {
const float ALIGN32_BEG exp_float_consts[] ALIGN32_END = {
REPEAT_8TIMES(1.f),
REPEAT_8TIMES(2.f),
REPEAT_8TIMES(0.5f),
REPEAT_8TIMES(EXP_HIG),
REPEAT_8TIMES(EXP_LOW),
REPEAT_8TIMES(CEPHES_LOG2EF),
REPEAT_8TIMES(CEPHES_EXP_C1),
REPEAT_8TIMES(CEPHES_EXP_C2),
REPEAT_8TIMES(CEPHES_EXP_P0),
REPEAT_8TIMES(CEPHES_EXP_P1),
REPEAT_8TIMES(CEPHES_EXP_P2),
REPEAT_8TIMES(CEPHES_EXP_P3),
REPEAT_8TIMES(CEPHES_EXP_P4),
REPEAT_8TIMES(CEPHES_EXP_P5),
REPEAT_8TIMES(EXP_MAX_INPUT),
REPEAT_8TIMES(SIGMOID_THRESHOLD_MAX),
REPEAT_8TIMES(SIGMOID_THRESHOLD_MIN)};
const int ALIGN32_BEG exp_int_0x7f[] ALIGN32_END = {REPEAT_8TIMES(0x7f)};
int ALIGN32_BEG g_tmp_mem[16] ALIGN32_END = {0};
void VActJitCode::genCode() {
int offset = 0;
for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
vmovups(ymm_src, ptr[param1 + offset]);
act<ymm_t>(ymm_dst, ymm_src, type_);
vmovups(ptr[param2 + offset], ymm_dst);
offset += sizeof(float) * YMM_FLOAT_BLOCK;
}
int rest = num_ % YMM_FLOAT_BLOCK;
while (rest > 0) {
int block = XMM_FLOAT_BLOCK;
if (rest >= 4) {
block = 4;
vmovups(xmm_src, ptr[param1 + offset]);
} else if (rest >= 2) {
block = 2;
vmovq(xmm_src, ptr[param1 + offset]);
} else {
block = 1;
vmovss(xmm_src, ptr[param1 + offset]);
}
act<xmm_t>(xmm_dst, xmm_src, type_);
if (rest >= 4) {
vmovups(ptr[param2 + offset], xmm_dst);
} else if (rest >= 2) {
vmovq(ptr[param2 + offset], xmm_dst);
} else {
vmovss(ptr[param2 + offset], xmm_dst);
}
offset += sizeof(float) * block;
rest -= block;
}
ret();
}
#define DECLARE_ACT_CREATOR(name) \
class name##Creator : public JitCodeCreator<int> { \
public: \
bool UseMe(const int& attr) const override { \
return platform::MayIUse(platform::avx); \
} \
size_t CodeSize(const int& d) const override; \
std::unique_ptr<GenBase> CreateJitCode(const int& attr) const override { \
return make_unique<name##JitCode>(attr, CodeSize(attr)); \
} \
}
DECLARE_ACT_CREATOR(VRelu);
DECLARE_ACT_CREATOR(VIdentity);
DECLARE_ACT_CREATOR(VExp);
DECLARE_ACT_CREATOR(VSigmoid);
DECLARE_ACT_CREATOR(VTanh);
// TODO(TJ): tuning use me
size_t VReluCreator::CodeSize(const int& d) const {
return 96 /* init size */ +
(d / YMM_FLOAT_BLOCK + 3) * 4 /* instructions */ *
8 /* average bytes for each instruction */;
}
size_t VIdentityCreator::CodeSize(const int& d) const {
return 96 + (d / YMM_FLOAT_BLOCK + 3) * 4 * 8;
}
size_t VExpCreator::CodeSize(const int& d) const {
return 96 + (d / YMM_FLOAT_BLOCK + 3) * 70 * 8;
}
size_t VSigmoidCreator::CodeSize(const int& d) const {
return 96 + (d / YMM_FLOAT_BLOCK + 3) * 82 * 8;
}
size_t VTanhCreator::CodeSize(const int& d) const {
return 96 + (d / YMM_FLOAT_BLOCK + 3) * 84 * 8;
}
#undef DECLARE_ACT_CREATOR
} // namespace gen
} // namespace jit
} // namespace operators
} // namespace paddle
namespace gen = paddle::operators::jit::gen;
REGISTER_JITKERNEL_GEN(kVRelu, gen::VReluCreator);
REGISTER_JITKERNEL_GEN(kVIdentity, gen::VIdentityCreator);
REGISTER_JITKERNEL_GEN(kVExp, gen::VExpCreator);
REGISTER_JITKERNEL_GEN(kVSigmoid, gen::VSigmoidCreator);
REGISTER_JITKERNEL_GEN(kVTanh, gen::VTanhCreator);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/operators/math/jit_gen.h"
#include "paddle/fluid/operators/math/jit_kernel_impl.h"
#include "paddle/fluid/platform/cpu_info.h"
#include "glog/logging.h"
#include "paddle/fluid/operators/jit/gen/jitcode.h"
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace jit {
namespace gen {
using reg64_t = const Xbyak::Reg64;
using reg32_t = const Xbyak::Reg32;
using xmm_t = const Xbyak::Xmm;
using ymm_t = const Xbyak::Ymm;
using zmm_t = const Xbyak::Zmm;
using Label = Xbyak::Label;
typedef enum {
mul = 0,
add,
sub,
relu,
exp,
sigmoid,
tanh,
identity
} operand_type;
extern const float exp_float_consts[];
extern const int exp_int_0x7f[];
extern int g_tmp_mem[];
......@@ -79,94 +59,15 @@ extern int g_tmp_mem[];
#define OFFSET_SIGMOID_MAX 15 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_SIGMOID_MIN 16 * YMM_FLOAT_BLOCK * sizeof(float)
// function: vec = Operand(vec(or scalar), vec(or scalar)) (maybe with relu)
class VXXJitCode : public JitCode {
public:
const char* name() const override {
std::string base = "VXXJitCode";
if (scalar_index_ == 1) {
base += "_Scalar";
} else {
base += "_Vec";
}
if (type_ == operand_type::mul) {
base += "_Mul";
} else if (type_ == operand_type::add) {
base += "_Add";
}
if (scalar_index_ == 2) {
base += "_Scalar";
} else {
base += "_Vec";
}
base += (with_relu_ ? "_Relu" : "");
return base.c_str();
}
explicit VXXJitCode(int d, operand_type type, int scalar_index,
bool with_relu, size_t code_size = 256 * 1024,
void* code_ptr = nullptr)
: JitCode(code_size, code_ptr),
num_(d),
type_(type),
scalar_index_(scalar_index),
with_relu_(with_relu) {}
static bool init(int d, int scalar_index = 0);
void generate() override;
private:
int num_;
operand_type type_;
int scalar_index_;
bool with_relu_;
reg64_t param1{abi_param1};
reg64_t param2{abi_param2};
reg64_t param3{abi_param3};
xmm_t xmm_src1 = xmm_t(0);
xmm_t xmm_src2 = xmm_t(1);
xmm_t xmm_dst = xmm_t(2);
xmm_t xmm_zero = xmm_t(3);
ymm_t ymm_src1 = ymm_t(0);
ymm_t ymm_src2 = ymm_t(1);
ymm_t ymm_dst = ymm_t(2);
ymm_t ymm_zero = ymm_t(3);
};
class VActJitCode : public JitCode {
class VActFunc : public JitCode {
public:
const char* name() const override {
std::string base = "VActJitCode";
switch (type_) {
case operand_type::relu:
base += "_Relu";
break;
case operand_type::exp:
base += "_Exp";
break;
case operand_type::sigmoid:
base += "_Sigmoid";
break;
case operand_type::tanh:
base += "_Tanh";
break;
case operand_type::identity:
base += "_Identity";
break;
default:
break;
}
return base.c_str();
}
explicit VActJitCode(int d, operand_type type, size_t code_size = 256 * 1024,
void* code_ptr = nullptr)
: JitCode(code_size, code_ptr), num_(d), type_(type) {}
static bool init(int d, operand_type type);
void generate() override;
explicit VActFunc(size_t code_size, void* code_ptr)
: JitCode(code_size, code_ptr) {}
virtual const char* name() const = 0;
virtual void genCode() = 0;
protected:
// compute relu with ymm, xmm
// compute RELU with ymm, xmm
template <typename JMM>
void relu_jmm(JMM& dst, JMM& src, int zero_idx = 15) { // NOLINT
JMM zero = JMM(zero_idx);
......@@ -174,7 +75,7 @@ class VActJitCode : public JitCode {
vmaxps(dst, src, zero);
}
// compute exp with ymm, xmm
// compute EXP with ymm, xmm
template <typename JMM>
void exp_jmm(JMM& dst, JMM& src, int src_idx = 11, int fx_idx = 12, // NOLINT
int fy_idx = 13, int mask_idx = 14, int tmp_idx = 15) {
......@@ -258,7 +159,7 @@ class VActJitCode : public JitCode {
pop(reg_ptr_global);
}
// compute sigmoid with ymm, xmm
// compute SIGMOID with ymm, xmm
template <typename JMM>
void sigmoid_jmm(JMM& dst, JMM& src, int src_idx = 11, // NOLINT
int fx_idx = 12, int fy_idx = 13, int mask_idx = 14,
......@@ -283,7 +184,7 @@ class VActJitCode : public JitCode {
pop(reg_ptr_global);
}
// compute tanh with ymm, xmm
// compute TANH with ymm, xmm
template <typename JMM>
void tanh_jmm(JMM& dst, JMM& src, int src_idx = 11, // NOLINT
int fx_idx = 12, int fy_idx = 13, int mask_idx = 14,
......@@ -310,223 +211,109 @@ class VActJitCode : public JitCode {
pop(reg_ptr_global);
}
// compute IDENTITY with ymm, xmm
template <typename JMM>
void identity_jmm(JMM& dst, JMM& src, int zero_idx) { // NOLINT
JMM zero = JMM(zero_idx);
vxorps(zero, zero, zero);
vaddps(dst, src, zero);
// TODO(TJ): use below
// dst.setIdx(src.getIdx());
}
template <typename JMM>
void act(JMM& dst, JMM& src, operand_type type) { // NOLINT
// use 11~15
switch (type) {
case operand_type::relu:
case operand_type::RELU:
relu_jmm<JMM>(dst, src, 15);
break;
case operand_type::exp:
case operand_type::EXP:
exp_jmm<JMM>(dst, src, 11, 12, 13, 14, 15);
break;
case operand_type::sigmoid:
case operand_type::SIGMOID:
sigmoid_jmm<JMM>(dst, src, 11, 12, 13, 14, 15);
break;
case operand_type::tanh:
case operand_type::TANH:
tanh_jmm<JMM>(dst, src, 11, 12, 13, 14, 15);
break;
case operand_type::identity:
case operand_type::IDENTITY:
identity_jmm<JMM>(dst, src, 15);
break;
default:
// throw error
LOG(FATAL) << "Do not support this operand type: " << type;
break;
}
}
protected:
int num_;
operand_type type_;
reg64_t param1{abi_param1};
reg64_t param2{abi_param2};
xmm_t xmm_src = xmm_t(0);
ymm_t ymm_src = ymm_t(0);
xmm_t xmm_dst = xmm_t(1);
ymm_t ymm_dst = ymm_t(1);
};
class LSTMJitCode : public VActJitCode {
class VActJitCode : public VActFunc {
public:
const char* name() const override {
std::string base = "LSTMJitCode";
if (use_peephole_) {
base += "_Peephole";
}
if (compute_c1h1_) {
base += "_C1H1";
explicit VActJitCode(int d, operand_type type, size_t code_size,
void* code_ptr = nullptr)
: VActFunc(code_size, code_ptr), num_(d), type_(type) {
if (!(type_ == operand_type::RELU || type_ == operand_type::EXP ||
type_ == operand_type::SIGMOID || type_ == operand_type::TANH ||
type_ == operand_type::IDENTITY)) {
LOG(FATAL) << "Do not support this operand type: " << type_;
}
auto AddTypeStr = [&](operand_type type) {
switch (type) {
case operand_type::relu:
base += "_Relu";
break;
case operand_type::exp:
base += "_Exp";
break;
case operand_type::sigmoid:
base += "_Sigmoid";
break;
case operand_type::tanh:
base += "_Tanh";
break;
case operand_type::identity:
base += "_Identity";
break;
default:
break;
}
};
AddTypeStr(act_gate_);
AddTypeStr(act_cand_);
AddTypeStr(act_cell_);
return base.c_str();
}
explicit LSTMJitCode(bool compute_c1h1, const lstm_attr_t& attr,
size_t code_size = 256 * 1024, void* code_ptr = nullptr)
: VActJitCode(attr.d, operand_type::sigmoid /* this is bugy*/, code_size,
code_ptr),
compute_c1h1_(compute_c1h1) {
auto typeExchange = [](const std::string& type) -> gen::operand_type {
if (type == "sigmoid") {
return operand_type::sigmoid;
} else if (type == "relu") {
return operand_type::relu;
} else if (type == "tanh") {
return operand_type::tanh;
} else if (type == "identity" || type == "") {
return operand_type::identity;
} // else throw error
return operand_type::identity;
};
num_ = attr.d;
use_peephole_ = attr.use_peephole;
act_gate_ = typeExchange(attr.act_gate);
act_cand_ = typeExchange(attr.act_cand);
act_cell_ = typeExchange(attr.act_cell);
this->genCode();
}
static bool init(int d);
void generate() override;
protected:
int num_;
bool compute_c1h1_;
bool use_peephole_;
operand_type act_gate_;
operand_type act_cand_;
operand_type act_cell_;
reg64_t param1{abi_param1};
};
class GRUJitCode : public VActJitCode {
public:
const char* name() const override {
std::string base = "GRUJitCode";
if (id_ == 0) {
base += "_H1";
} else if (id_ == 1) {
base += "_HtPart1";
} else if (id_ == 2) {
base += "_HtPart2";
std::string base = "VActJitCode";
switch (type_) {
case operand_type::RELU:
base += "_Relu";
break;
case operand_type::EXP:
base += "_Exp";
break;
case operand_type::SIGMOID:
base += "_Sigmoid";
break;
case operand_type::TANH:
base += "_Tanh";
break;
case operand_type::IDENTITY:
base += "_Identity";
break;
default:
break;
}
auto AddTypeStr = [&](operand_type type) {
switch (type) {
case operand_type::relu:
base += "_Relu";
break;
case operand_type::exp:
base += "_Exp";
break;
case operand_type::sigmoid:
base += "_Sigmoid";
break;
case operand_type::tanh:
base += "_Tanh";
break;
case operand_type::identity:
base += "_Identity";
break;
default:
break;
}
};
AddTypeStr(act_gate_);
AddTypeStr(act_cand_);
return base.c_str();
}
explicit GRUJitCode(int id, const gru_attr_t& attr,
size_t code_size = 256 * 1024, void* code_ptr = nullptr)
: VActJitCode(attr.d, operand_type::sigmoid /* this is bugy*/, code_size,
code_ptr),
id_(id) {
auto typeExchange = [](const std::string& type) -> gen::operand_type {
if (type == "sigmoid") {
return operand_type::sigmoid;
} else if (type == "relu") {
return operand_type::relu;
} else if (type == "tanh") {
return operand_type::tanh;
} else if (type == "identity" || type == "") {
return operand_type::identity;
} // else throw error
return operand_type::identity;
};
num_ = attr.d;
act_gate_ = typeExchange(attr.act_gate);
act_cand_ = typeExchange(attr.act_cand);
}
static bool init(int d);
void generate() override;
void genCode() override;
protected:
int id_;
int num_;
operand_type act_gate_;
operand_type act_cand_;
operand_type type_;
reg64_t param1{abi_param1};
};
reg64_t param2{abi_param2};
#ifdef PADDLE_WITH_MKLDNN
struct EltwiseMulnChw16cNC : public Xbyak::CodeGenerator {
explicit EltwiseMulnChw16cNC(size_t code_size = 256 * 1024)
: Xbyak::CodeGenerator(code_size) {
// RDI is ptr x_input
// RSI is ptr y_input
// RDX is ptr output
// RCX is height
// r8 is width
xmm_t xmm_src = xmm_t(0);
ymm_t ymm_src = ymm_t(0);
push(rbx);
xmm_t xmm_dst = xmm_t(1);
ymm_t ymm_dst = ymm_t(1);
};
xor_(rax, rax);
xor_(r10, r10);
vmovups(zmm3, ptr[rsi]);
#define DECLARE_ACT_JITCODE(name, op_type) \
class name##JitCode : public VActJitCode { \
public: \
explicit name##JitCode(int d, size_t code_size, void* code_ptr = nullptr) \
: VActJitCode(d, op_type, code_size, code_ptr) {} \
};
L("h_loop");
xor_(rbx, rbx);
L("w_loop");
vmovups(zmm2, ptr[rdi + rax]);
vmulps(zmm1, zmm2, zmm3);
vmovups(ptr[rdx + rax], zmm1);
add(rax, 64);
inc(rbx);
cmp(r8, rbx);
jnz("w_loop");
inc(r10);
cmp(r10, rcx);
jnz("h_loop");
DECLARE_ACT_JITCODE(VRelu, operand_type::RELU);
DECLARE_ACT_JITCODE(VIdentity, operand_type::IDENTITY);
DECLARE_ACT_JITCODE(VExp, operand_type::EXP);
DECLARE_ACT_JITCODE(VSigmoid, operand_type::SIGMOID);
DECLARE_ACT_JITCODE(VTanh, operand_type::TANH);
pop(rbx);
ret();
}
};
#endif
#undef DECLARE_ACT_JITCODE
} // namespace gen
} // namespace jitkernel
} // namespace math
} // namespace jit
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/jit/gen/blas.h"
#include "paddle/fluid/operators/jit/registry.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace paddle {
namespace operators {
namespace jit {
namespace gen {
void VXXJitCode::genCode() {
// do not need push stack, and do not need save avx512reg if do not use avx512
int offset = 0;
if (with_relu_) {
vxorps(ymm_zero, ymm_zero, ymm_zero);
}
if (scalar_index_ == 1) {
vbroadcastss(ymm_src1, ptr[param1]);
} else if (scalar_index_ == 2) {
vbroadcastss(ymm_src2, ptr[param2]);
}
for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
if (scalar_index_ != 1) {
vmovups(ymm_src1, ptr[param1 + offset]);
}
if (scalar_index_ != 2) {
vmovups(ymm_src2, ptr[param2 + offset]);
}
if (type_ == operand_type::MUL) {
vmulps(ymm_dst, ymm_src1, ymm_src2);
} else if (type_ == operand_type::ADD) {
vaddps(ymm_dst, ymm_src1, ymm_src2);
}
if (with_relu_) {
vmaxps(ymm_dst, ymm_zero, ymm_dst);
}
vmovups(ptr[param3 + offset], ymm_dst);
offset += sizeof(float) * YMM_FLOAT_BLOCK;
}
int rest = num_ % YMM_FLOAT_BLOCK;
while (rest > 0) {
int block = XMM_FLOAT_BLOCK;
if (rest >= 4) {
block = 4;
if (scalar_index_ != 1) {
vmovups(xmm_src1, ptr[param1 + offset]);
}
if (scalar_index_ != 2) {
vmovups(xmm_src2, ptr[param2 + offset]);
}
} else if (rest >= 2) {
block = 2;
if (scalar_index_ != 1) {
vmovq(xmm_src1, ptr[param1 + offset]);
}
if (scalar_index_ != 2) {
vmovq(xmm_src2, ptr[param2 + offset]);
}
} else {
block = 1;
if (scalar_index_ != 1) {
vmovss(xmm_src1, ptr[param1 + offset]);
}
if (scalar_index_ != 2) {
vmovss(xmm_src2, ptr[param2 + offset]);
}
}
switch (type_) {
case operand_type::MUL:
vmulps(xmm_dst, xmm_src1, xmm_src2);
break;
case operand_type::ADD:
vaddps(xmm_dst, xmm_src1, xmm_src2);
break;
default:
break;
}
if (with_relu_) {
vmaxps(xmm_dst, xmm_zero, xmm_dst);
}
if (rest >= 4) {
vmovups(ptr[param3 + offset], xmm_dst);
} else if (rest >= 2) {
vmovq(ptr[param3 + offset], xmm_dst);
} else {
vmovss(ptr[param3 + offset], xmm_dst);
}
offset += sizeof(float) * block;
rest -= block;
}
ret();
}
void NCHW16CMulNCJitCode::genCode() {
// RDI is ptr x_input
// RSI is ptr y_input
// RDX is ptr output
// RCX is height
// r8 is width
push(rbx);
xor_(rax, rax);
xor_(r10, r10);
vmovups(zmm3, ptr[rsi]);
L("h_loop");
xor_(rbx, rbx);
L("w_loop");
vmovups(zmm2, ptr[rdi + rax]);
vmulps(zmm1, zmm2, zmm3);
vmovups(ptr[rdx + rax], zmm1);
add(rax, 64);
inc(rbx);
cmp(r8, rbx);
jnz("w_loop");
inc(r10);
cmp(r10, rcx);
jnz("h_loop");
pop(rbx);
ret();
}
class NCHW16CMulNCCreator : public JitCodeCreator<int> {
public:
bool UseMe(const int& attr) const override {
return platform::MayIUse(platform::avx512f);
}
size_t CodeSize(const int& d) const override { return 256 * 1024; }
std::unique_ptr<GenBase> CreateJitCode(const int& attr) const override {
return make_unique<NCHW16CMulNCJitCode>(attr, CodeSize(attr));
}
};
#define DECLARE_BLAS_CREATOR(name) \
class name##Creator : public JitCodeCreator<int> { \
public: \
bool UseMe(const int& attr) const override { \
return platform::MayIUse(platform::avx); \
} \
size_t CodeSize(const int& d) const override { \
return 96 + d / YMM_FLOAT_BLOCK * 4 * 8; \
} \
std::unique_ptr<GenBase> CreateJitCode(const int& attr) const override { \
return make_unique<name##JitCode>(attr, CodeSize(attr)); \
} \
}
DECLARE_BLAS_CREATOR(VMul);
DECLARE_BLAS_CREATOR(VAdd);
DECLARE_BLAS_CREATOR(VSub);
DECLARE_BLAS_CREATOR(VAddRelu);
DECLARE_BLAS_CREATOR(VScal);
DECLARE_BLAS_CREATOR(VAddBias);
#undef DECLARE_BLAS_CREATOR
} // namespace gen
} // namespace jit
} // namespace operators
} // namespace paddle
namespace gen = paddle::operators::jit::gen;
REGISTER_JITKERNEL_GEN(kVMul, gen::VMulCreator);
REGISTER_JITKERNEL_GEN(kVAdd, gen::VAddCreator);
// TODO(TJ): enable sub
// REGISTER_JITKERNEL_GEN(kVSub, gen::VSubCreator);
REGISTER_JITKERNEL_GEN(kVAddRelu, gen::VAddReluCreator);
REGISTER_JITKERNEL_GEN(kVScal, gen::VScalCreator);
REGISTER_JITKERNEL_GEN(kVAddBias, gen::VAddBiasCreator);
REGISTER_JITKERNEL_GEN(kNCHW16CMulNC, gen::NCHW16CMulNCCreator);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <string>
#include "glog/logging.h"
#include "paddle/fluid/operators/jit/gen/jitcode.h"
namespace paddle {
namespace operators {
namespace jit {
namespace gen {
// function: vec = Operand(vec(or scalar), vec(or scalar)) (maybe with relu)
class VXXJitCode : public JitCode {
public:
explicit VXXJitCode(int d, operand_type type, int scalar_index,
bool with_relu, size_t code_size = 256 * 1024,
void* code_ptr = nullptr)
: JitCode(code_size, code_ptr),
num_(d),
type_(type),
scalar_index_(scalar_index),
with_relu_(with_relu) {
if (!(type_ == operand_type::MUL || type_ == operand_type::ADD)) {
LOG(FATAL) << "Do not support this operand type: " << type_;
}
this->genCode();
}
virtual const char* name() const {
std::string base = "VXXJitCode";
if (scalar_index_ == 1) {
base += "_Scalar";
} else {
base += "_Vec";
}
if (type_ == operand_type::MUL) {
base += "_Mul";
} else if (type_ == operand_type::ADD) {
base += "_Add";
}
if (scalar_index_ == 2) {
base += "_Scalar";
} else {
base += "_Vec";
}
base += (with_relu_ ? "_Relu" : "");
return base.c_str();
}
void genCode() override;
private:
int num_;
operand_type type_;
int scalar_index_;
bool with_relu_;
reg64_t param1{abi_param1};
reg64_t param2{abi_param2};
reg64_t param3{abi_param3};
xmm_t xmm_src1 = xmm_t(0);
xmm_t xmm_src2 = xmm_t(1);
xmm_t xmm_dst = xmm_t(2);
xmm_t xmm_zero = xmm_t(3);
ymm_t ymm_src1 = ymm_t(0);
ymm_t ymm_src2 = ymm_t(1);
ymm_t ymm_dst = ymm_t(2);
ymm_t ymm_zero = ymm_t(3);
};
#define DECLARE_BLAS_JITCODE(name, op_type, scalar_idx, with_relu) \
class name##JitCode : public VXXJitCode { \
public: \
explicit name##JitCode(int d, size_t code_size, void* code_ptr = nullptr) \
: VXXJitCode(d, op_type, scalar_idx, with_relu, code_size, code_ptr) { \
} \
};
DECLARE_BLAS_JITCODE(VMul, operand_type::MUL, 0, false);
DECLARE_BLAS_JITCODE(VAdd, operand_type::ADD, 0, false);
DECLARE_BLAS_JITCODE(VSub, operand_type::SUB, 0, false);
DECLARE_BLAS_JITCODE(VAddRelu, operand_type::ADD, 0, true);
DECLARE_BLAS_JITCODE(VScal, operand_type::MUL, 1, false);
DECLARE_BLAS_JITCODE(VAddBias, operand_type::ADD, 1, false);
#undef DECLARE_BLAS_JITCODE
// nChw16c = nChw16c .* NC
class NCHW16CMulNCJitCode : public JitCode {
public:
DECLARE_JIT_CODE(NCHW16CMulNCJitCode);
explicit NCHW16CMulNCJitCode(int d /*unused*/, size_t code_size,
void* code_ptr = nullptr)
: JitCode(code_size, code_ptr) {
this->genCode();
}
void genCode() override;
};
} // namespace gen
} // namespace jit
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/jit/gen/gru.h"
#include <stddef.h> // offsetof
#include "paddle/fluid/operators/jit/registry.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace paddle {
namespace operators {
namespace jit {
namespace gen {
void GRUJitCode::genCode() {
reg64_t reg_ptr_gates = rax;
reg64_t reg_ptr_ht_1 = r9;
reg64_t reg_ptr_ht = r10;
mov(reg_ptr_gates, ptr[param1 + offsetof(gru_t, gates)]);
mov(reg_ptr_ht_1, ptr[param1 + offsetof(gru_t, ht_1)]);
mov(reg_ptr_ht, ptr[param1 + offsetof(gru_t, ht)]);
ymm_t ymm_one = ymm_t(0);
if (id_ == 2) {
reg64_t reg_ptr_tmp = r11;
mov(reg_ptr_tmp, reinterpret_cast<size_t>(exp_float_consts));
vmovaps(ymm_one, ptr[reg_ptr_tmp + OFFSET_EXP_ONE]);
}
int offset = 0;
int d = num_ * sizeof(float);
for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
ymm_t ymm_u = ymm_t(1);
ymm_t ymm_r = ymm_t(2);
ymm_t ymm_s = ymm_t(3);
ymm_t ymm_ht_1 = ymm_t(4);
// W: {W_update, W_reset; W_state}
if (id_ == 0 || id_ == 2) {
vmovups(ymm_u, ptr[reg_ptr_gates + offset]);
vmovups(ymm_s, ptr[reg_ptr_gates + offset + 2 * d]);
}
if (id_ == 1) {
vmovups(ymm_r, ptr[reg_ptr_gates + offset + d]);
}
if (id_ == 1 || id_ == 2) {
vmovups(ymm_ht_1, ptr[reg_ptr_ht_1 + offset]);
}
if (id_ == 0) {
// ht = act_gate(u) * act_cand(s)
act<ymm_t>(ymm_u, ymm_u, act_gate_);
act<ymm_t>(ymm_s, ymm_s, act_cand_);
vmulps(ymm_s, ymm_s, ymm_u);
vmovups(ptr[reg_ptr_ht + offset], ymm_s);
} else if (id_ == 1) {
// ht = act_gate(r) * ht_1
act<ymm_t>(ymm_r, ymm_r, act_gate_);
vmulps(ymm_r, ymm_r, ymm_ht_1);
vmovups(ptr[reg_ptr_ht + offset], ymm_r);
} else if (id_ == 2) {
// ht = act_gate(u) * act_cand(s) + (1-act_gate(u)) * ht_1
ymm_t ymm_one_inner = ymm_t(ymm_one.getIdx());
act<ymm_t>(ymm_u, ymm_u, act_gate_);
act<ymm_t>(ymm_s, ymm_s, act_cand_);
vmulps(ymm_s, ymm_s, ymm_u);
vsubps(ymm_u, ymm_one_inner, ymm_u);
vmulps(ymm_u, ymm_ht_1, ymm_u);
vaddps(ymm_u, ymm_s, ymm_u);
vmovups(ptr[reg_ptr_ht + offset], ymm_u);
}
offset += sizeof(float) * YMM_FLOAT_BLOCK;
}
ret();
}
#define DECLARE_GRU_CREATOR(name) \
class name##Creator : public JitCodeCreator<gru_attr_t> { \
public: \
/* TODO(TJ): enable more */ \
bool UseMe(const gru_attr_t& attr) const override { \
return platform::MayIUse(platform::avx) && attr.d % 8 == 0; \
} \
size_t CodeSize(const gru_attr_t& attr) const override { \
return 96 + attr.d / YMM_FLOAT_BLOCK * 96 * 2 * 8; \
} \
std::unique_ptr<GenBase> CreateJitCode( \
const gru_attr_t& attr) const override { \
return make_unique<name##JitCode>(attr, CodeSize(attr)); \
} \
}
DECLARE_GRU_CREATOR(GRUH1);
DECLARE_GRU_CREATOR(GRUHtPart1);
DECLARE_GRU_CREATOR(GRUHtPart2);
#undef DECLARE_GRU_CREATOR
} // namespace gen
} // namespace jit
} // namespace operators
} // namespace paddle
namespace gen = paddle::operators::jit::gen;
REGISTER_JITKERNEL_GEN(kGRUH1, gen::GRUH1Creator);
REGISTER_JITKERNEL_GEN(kGRUHtPart1, gen::GRUHtPart1Creator);
REGISTER_JITKERNEL_GEN(kGRUHtPart2, gen::GRUHtPart2Creator);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <string>
#include "glog/logging.h"
#include "paddle/fluid/operators/jit/gen/act.h"
#include "paddle/fluid/operators/jit/gen/jitcode.h"
namespace paddle {
namespace operators {
namespace jit {
namespace gen {
class GRUJitCode : public VActFunc {
public:
explicit GRUJitCode(int id, const gru_attr_t& attr, size_t code_size,
void* code_ptr = nullptr)
: VActFunc(code_size, code_ptr), id_(id), num_(attr.d) {
auto typeExchange = [](KernelType type) -> gen::operand_type {
if (type == KernelType::kVSigmoid) {
return operand_type::SIGMOID;
} else if (type == KernelType::kVRelu) {
return operand_type::RELU;
} else if (type == KernelType::kVTanh) {
return operand_type::TANH;
} else if (type == KernelType::kVIdentity) {
return operand_type::IDENTITY;
} else {
LOG(FATAL) << "Do not support this jit::KernelType: " << type;
}
return operand_type::IDENTITY;
};
act_gate_ = typeExchange(attr.act_gate);
act_cand_ = typeExchange(attr.act_cand);
this->genCode();
}
const char* name() const override {
std::string base = "GRUJitCode";
if (id_ == 0) {
base += "_H1";
} else if (id_ == 1) {
base += "_HtPart1";
} else if (id_ == 2) {
base += "_HtPart2";
}
auto AddTypeStr = [&](operand_type type) {
switch (type) {
case operand_type::RELU:
base += "_Relu";
break;
case operand_type::EXP:
base += "_Exp";
break;
case operand_type::SIGMOID:
base += "_Sigmoid";
break;
case operand_type::TANH:
base += "_Tanh";
break;
case operand_type::IDENTITY:
base += "_Identity";
break;
default:
break;
}
};
AddTypeStr(act_gate_);
AddTypeStr(act_cand_);
return base.c_str();
}
void genCode() override;
protected:
int id_;
int num_;
operand_type act_gate_;
operand_type act_cand_;
reg64_t param1{abi_param1};
};
#define DECLARE_GRU_JITCODE(name, id) \
class name##JitCode : public GRUJitCode { \
public: \
explicit name##JitCode(const gru_attr_t& attr, size_t code_size, \
void* code_ptr = nullptr) \
: GRUJitCode(id, attr, code_size, code_ptr) {} \
};
DECLARE_GRU_JITCODE(GRUH1, 0);
DECLARE_GRU_JITCODE(GRUHtPart1, 1);
DECLARE_GRU_JITCODE(GRUHtPart2, 2);
#undef DECLARE_GRU_JITCODE
} // namespace gen
} // namespace jit
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <type_traits>
#include "paddle/fluid/operators/jit/gen_base.h"
#include "paddle/fluid/platform/cpu_info.h"
#define XBYAK_USE_MMAP_ALLOCATOR
#include "xbyak/xbyak.h"
#include "xbyak/xbyak_util.h"
namespace paddle {
namespace operators {
namespace jit {
namespace gen {
// Application Binary Interface
constexpr Xbyak::Operand::Code abi_param1(Xbyak::Operand::RDI),
abi_param2(Xbyak::Operand::RSI), abi_param3(Xbyak::Operand::RDX),
abi_param4(Xbyak::Operand::RCX);
constexpr Xbyak::Operand::Code g_abi_regs[] = {
Xbyak::Operand::RBX, Xbyak::Operand::RBP, Xbyak::Operand::R12,
Xbyak::Operand::R13, Xbyak::Operand::R14, Xbyak::Operand::R15};
constexpr int num_g_abi_regs = sizeof(g_abi_regs) / sizeof(g_abi_regs[0]);
using reg64_t = const Xbyak::Reg64;
using reg32_t = const Xbyak::Reg32;
using xmm_t = const Xbyak::Xmm;
using ymm_t = const Xbyak::Ymm;
using zmm_t = const Xbyak::Zmm;
using Label = Xbyak::Label;
typedef enum {
MUL = 0,
ADD,
SUB,
RELU,
EXP,
SIGMOID,
TANH,
IDENTITY
} operand_type;
#define DECLARE_JIT_CODE(codename) \
const char* name() const override { return #codename; }
class JitCode : public GenBase, public Xbyak::CodeGenerator {
public:
explicit JitCode(size_t code_size, void* code_ptr = nullptr)
: Xbyak::CodeGenerator(
(code_size % 4096 != 0 ? (code_size / 4096 + 1) * 4096 : code_size),
code_ptr) {}
virtual const char* name() const = 0;
virtual void genCode() = 0;
size_t getSize() const override { return CodeGenerator::getSize(); }
const unsigned char* getCodeInternal() override {
const Xbyak::uint8* code = CodeGenerator::getCode();
return code;
}
protected:
Xbyak::Reg64 param1{abi_param1};
const int EVEX_max_8b_offt = 0x200;
const Xbyak::Reg64 reg_EVEX_max_8b_offt = rbp;
virtual void preCode() {
for (int i = 0; i < num_g_abi_regs; ++i) {
push(Xbyak::Reg64(g_abi_regs[i]));
}
if (platform::MayIUse(platform::avx512f)) {
mov(reg_EVEX_max_8b_offt, 2 * EVEX_max_8b_offt);
}
}
virtual void postCode() {
for (int i = 0; i < num_g_abi_regs; ++i) {
pop(Xbyak::Reg64(g_abi_regs[num_g_abi_regs - 1 - i]));
}
ret();
}
void L(const char* label) { Xbyak::CodeGenerator::L(label); }
void L(const Xbyak::Label& label) { Xbyak::CodeGenerator::L(label); }
// Enhanced vector extension
Xbyak::Address EVEX_compress_addr(Xbyak::Reg64 base, int offt,
bool bcast = false) {
int scale = 0;
// Learn from https://github.com/intel/mkl-dnn
if (EVEX_max_8b_offt <= offt && offt < 3 * EVEX_max_8b_offt) {
offt = offt - 2 * EVEX_max_8b_offt;
scale = 1;
} else if (3 * EVEX_max_8b_offt <= offt && offt < 5 * EVEX_max_8b_offt) {
offt = offt - 4 * EVEX_max_8b_offt;
scale = 2;
}
auto re = Xbyak::RegExp() + base + offt;
if (scale) {
re = re + reg_EVEX_max_8b_offt * scale;
}
if (bcast) {
return zword_b[re];
} else {
return zword[re];
}
}
};
} // namespace gen
} // namespace jit
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/jit/gen/lstm.h"
#include <stddef.h> // offsetof
#include "paddle/fluid/operators/jit/registry.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace paddle {
namespace operators {
namespace jit {
namespace gen {
void LSTMJitCode::genCode() {
if (use_peephole_) {
preCode();
}
reg64_t reg_ptr_gates = rax;
reg64_t reg_ptr_ct_1 = r9;
reg64_t reg_ptr_ct = r10;
reg64_t reg_ptr_ht = r11;
reg64_t reg_ptr_wp = r12;
mov(reg_ptr_gates, ptr[param1 + offsetof(lstm_t, gates)]);
mov(reg_ptr_ct_1, ptr[param1 + offsetof(lstm_t, ct_1)]);
mov(reg_ptr_ct, ptr[param1 + offsetof(lstm_t, ct)]);
mov(reg_ptr_ht, ptr[param1 + offsetof(lstm_t, ht)]);
if (use_peephole_) {
mov(reg_ptr_wp, ptr[param1 + offsetof(lstm_t, wp)]);
}
int offset = 0;
int d = num_ * sizeof(float);
for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
/* gates: W_ch, W_ih, W_fh, W_oh */
ymm_t ymm_c = ymm_t(0);
ymm_t ymm_i = ymm_t(1);
ymm_t ymm_f = ymm_t(2);
ymm_t ymm_o = ymm_t(3);
ymm_t ymm_ct_1 = ymm_t(4);
ymm_t ymm_wp0 = ymm_t(5);
ymm_t ymm_wp1 = ymm_t(6);
ymm_t ymm_wp2 = ymm_t(7);
vmovups(ymm_c, ptr[reg_ptr_gates + offset]);
vmovups(ymm_i, ptr[reg_ptr_gates + offset + d]);
vmovups(ymm_f, ptr[reg_ptr_gates + offset + 2 * d]);
vmovups(ymm_o, ptr[reg_ptr_gates + offset + 3 * d]);
if (!compute_c1h1_) {
vmovups(ymm_ct_1, ptr[reg_ptr_ct_1 + offset]);
}
if (use_peephole_) {
vmovups(ymm_wp0, ptr[reg_ptr_wp + offset]);
vmovups(ymm_wp1, ptr[reg_ptr_wp + offset + d]);
vmovups(ymm_wp2, ptr[reg_ptr_wp + offset + 2 * d]);
}
/* C_t = act_cand(c) * act_gate(i) + C_t-1 * act_gate(f) */
// act_cand(c)
act<ymm_t>(ymm_c, ymm_c, act_cand_);
// act_gate(i) or act_gate(ct_1 * wp0 + i)
if (!compute_c1h1_ && use_peephole_) {
vmulps(ymm_wp0, ymm_ct_1, ymm_wp0);
vaddps(ymm_i, ymm_i, ymm_wp0);
}
act<ymm_t>(ymm_i, ymm_i, act_gate_);
vmulps(ymm_c, ymm_c, ymm_i);
if (!compute_c1h1_) {
// act_gate(f) or act_gate(ct_1 * wp1 + f)
if (use_peephole_) {
vmulps(ymm_wp1, ymm_ct_1, ymm_wp1);
vaddps(ymm_f, ymm_f, ymm_wp1);
}
act<ymm_t>(ymm_f, ymm_f, act_gate_);
// ct
vmulps(ymm_f, ymm_f, ymm_ct_1);
vaddps(ymm_f, ymm_f, ymm_c);
}
/* H_t = act_cell(C_t) * act_gate(o) */
// act_cell(C_t)
ymm_t ymm_ct = compute_c1h1_ ? ymm_c : ymm_f;
ymm_t ymm_tmp = ymm_i;
act<ymm_t>(ymm_tmp, ymm_ct, act_cell_);
// act_gate(o) or act_gate(ct * wp2 + o)
if (use_peephole_) {
vmulps(ymm_wp2, ymm_ct, ymm_wp2);
vaddps(ymm_o, ymm_o, ymm_wp2);
}
act<ymm_t>(ymm_o, ymm_o, act_gate_);
// ht
vmulps(ymm_o, ymm_o, ymm_tmp);
// save ct and ht
vmovups(ptr[reg_ptr_ct + offset], ymm_ct);
vmovups(ptr[reg_ptr_ht + offset], ymm_o);
offset += sizeof(float) * YMM_FLOAT_BLOCK;
}
if (use_peephole_) {
postCode();
} else {
ret();
}
}
#define DECLARE_LSTM_CREATOR(name) \
class name##Creator : public JitCodeCreator<lstm_attr_t> { \
public: \
/* TODO(TJ): enable more */ \
bool UseMe(const lstm_attr_t& attr) const override { \
return platform::MayIUse(platform::avx) && attr.d % 8 == 0; \
} \
size_t CodeSize(const lstm_attr_t& attr) const override { \
return 96 + attr.d / YMM_FLOAT_BLOCK * 90 * 4 * 8; \
} \
std::unique_ptr<GenBase> CreateJitCode( \
const lstm_attr_t& attr) const override { \
return make_unique<name##JitCode>(attr, CodeSize(attr)); \
} \
}
DECLARE_LSTM_CREATOR(LSTMCtHt);
DECLARE_LSTM_CREATOR(LSTMC1H1);
#undef DECLARE_LSTM_CREATOR
} // namespace gen
} // namespace jit
} // namespace operators
} // namespace paddle
namespace gen = paddle::operators::jit::gen;
REGISTER_JITKERNEL_GEN(kLSTMCtHt, gen::LSTMCtHtCreator);
REGISTER_JITKERNEL_GEN(kLSTMC1H1, gen::LSTMC1H1Creator);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <string>
#include "glog/logging.h"
#include "paddle/fluid/operators/jit/gen/act.h"
#include "paddle/fluid/operators/jit/gen/jitcode.h"
namespace paddle {
namespace operators {
namespace jit {
namespace gen {
class LSTMJitCode : public VActFunc {
public:
explicit LSTMJitCode(bool compute_c1h1, const lstm_attr_t& attr,
size_t code_size, void* code_ptr = nullptr)
: VActFunc(code_size, code_ptr),
num_(attr.d),
compute_c1h1_(compute_c1h1),
use_peephole_(attr.use_peephole) {
auto typeExchange = [](KernelType type) -> gen::operand_type {
if (type == KernelType::kVSigmoid) {
return operand_type::SIGMOID;
} else if (type == KernelType::kVRelu) {
return operand_type::RELU;
} else if (type == KernelType::kVTanh) {
return operand_type::TANH;
} else if (type == KernelType::kVIdentity) {
return operand_type::IDENTITY;
} else {
LOG(FATAL) << "Do not support this jit::KernelType: " << type;
}
return operand_type::IDENTITY;
};
act_gate_ = typeExchange(attr.act_gate);
act_cand_ = typeExchange(attr.act_cand);
act_cell_ = typeExchange(attr.act_cell);
this->genCode();
}
const char* name() const override {
std::string base = "LSTMJitCode";
if (use_peephole_) {
base += "_Peephole";
}
if (compute_c1h1_) {
base += "_C1H1";
}
auto AddTypeStr = [&](operand_type type) {
switch (type) {
case operand_type::RELU:
base += "_Relu";
break;
case operand_type::EXP:
base += "_Exp";
break;
case operand_type::SIGMOID:
base += "_Sigmoid";
break;
case operand_type::TANH:
base += "_Tanh";
break;
case operand_type::IDENTITY:
base += "_Identity";
break;
default:
break;
}
};
AddTypeStr(act_gate_);
AddTypeStr(act_cand_);
AddTypeStr(act_cell_);
return base.c_str();
}
void genCode() override;
protected:
int num_;
bool compute_c1h1_;
bool use_peephole_;
operand_type act_gate_;
operand_type act_cand_;
operand_type act_cell_;
reg64_t param1{abi_param1};
};
#define DECLARE_LSTM_JITCODE(name, compute_c1h1) \
class name##JitCode : public LSTMJitCode { \
public: \
explicit name##JitCode(const lstm_attr_t& attr, size_t code_size, \
void* code_ptr = nullptr) \
: LSTMJitCode(compute_c1h1, attr, code_size, code_ptr) {} \
};
DECLARE_LSTM_JITCODE(LSTMCtHt, false);
DECLARE_LSTM_JITCODE(LSTMC1H1, true);
#undef DECLARE_LSTM_JITCODE
} // namespace gen
} // namespace jit
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/jit/gen_base.h"
#include <fstream>
#include <iostream>
#include <sstream>
DEFINE_bool(dump_jitcode, false, "Whether to dump the jitcode to file");
namespace paddle {
namespace operators {
namespace jit {
// refer do not need useme, it would be the last one.
void GenBase::dumpCode(const unsigned char* code) const {
if (code) {
static int counter = 0;
std::ostringstream filename;
filename << "paddle_jitcode_" << name() << "." << counter << ".bin";
counter++;
std::ofstream fout(filename.str(), std::ios::out);
if (fout.is_open()) {
fout.write(reinterpret_cast<const char*>(code), this->getSize());
fout.close();
}
}
}
} // namespace jit
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <gflags/gflags.h>
#include <memory> // for unique_ptr
#include "paddle/fluid/operators/jit/kernel_base.h"
DECLARE_bool(dump_jitcode);
namespace paddle {
namespace operators {
namespace jit {
class GenBase : public Kernel {
public:
virtual ~GenBase() = default;
virtual const char* name() const = 0;
virtual size_t getSize() const = 0;
virtual const unsigned char* getCodeInternal() = 0;
template <typename Func>
Func getCode() {
const unsigned char* code = this->getCodeInternal();
if (FLAGS_dump_jitcode) {
this->dumpCode(code);
}
// Note: failed to cast with reinterpret_cast<const Func> on Mac clang,
// then workaround with const_cast. Any better idea is appreciated.
return reinterpret_cast<Func>(const_cast<unsigned char*>(code));
}
protected:
void dumpCode(const unsigned char* code) const;
};
// Creator is used to creat the jitcode and save in pool.
// Every JitCode should have one creator.
class GenCreator {
public:
virtual ~GenCreator() = default;
};
template <typename Attr>
class JitCodeCreator : public GenCreator {
public:
virtual ~JitCodeCreator() = default;
// condition when this jit code can be used.
virtual bool UseMe(const Attr& attr) const = 0;
// estimate this code size
virtual size_t CodeSize(const Attr& attr) const = 0;
// create this code
virtual std::unique_ptr<GenBase> CreateJitCode(const Attr& attr) const = 0;
};
} // namespace jit
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/jit/helper.h"
#include <algorithm> // tolower
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace operators {
namespace jit {
#define ONE_CASE(key) \
case key: \
return #key
const char* to_string(KernelType kt) {
switch (kt) {
ONE_CASE(kVMul);
ONE_CASE(kVAdd);
ONE_CASE(kVAddRelu);
ONE_CASE(kVSub);
ONE_CASE(kVScal);
ONE_CASE(kVAddBias);
ONE_CASE(kVRelu);
ONE_CASE(kVIdentity);
ONE_CASE(kVExp);
ONE_CASE(kVSigmoid);
ONE_CASE(kVTanh);
ONE_CASE(kLSTMCtHt);
ONE_CASE(kLSTMC1H1);
ONE_CASE(kGRUH1);
ONE_CASE(kGRUHtPart1);
ONE_CASE(kGRUHtPart2);
ONE_CASE(kCRFDecoding);
ONE_CASE(kLayerNorm);
ONE_CASE(kNCHW16CMulNC);
default:
PADDLE_THROW("Not support type: %d, or forget to add it.", kt);
return "NOT JITKernel";
}
return nullptr;
}
#undef ONE_CASE
KernelType to_kerneltype(const std::string& act) {
std::string lower = act;
std::transform(lower.begin(), lower.end(), lower.begin(), ::tolower);
if (lower == "relu" || lower == "vrelu") {
return kVRelu;
} else if (lower == "identity" || lower == "videntity" || lower == "") {
return kVIdentity;
} else if (lower == "exp" || lower == "vexp") {
return kVExp;
} else if (lower == "sigmoid" || lower == "vsigmoid") {
return kVSigmoid;
} else if (lower == "tanh" || lower == "vtanh") {
return kVTanh;
}
PADDLE_THROW("Not support type: %s, or forget to add this case", act);
return kNone;
}
} // namespace jit
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <iostream>
#include <string>
#include <vector>
#include "paddle/fluid/operators/jit/gen_base.h"
#include "paddle/fluid/operators/jit/kernel_base.h"
#include "paddle/fluid/operators/jit/kernel_key.h"
#include "paddle/fluid/operators/jit/kernel_pool.h"
#include "paddle/fluid/platform/place.h"
namespace paddle {
namespace operators {
namespace jit {
template <KernelType KT, typename KernelTuples, typename PlaceType>
inline typename std::enable_if<
std::is_same<typename KernelTuples::data_type, float>::value &&
std::is_same<PlaceType, platform::CPUPlace>::value,
typename KernelTuples::func_type>::type
GetJitCode(const typename KernelTuples::attr_type& attr) {
using Func = typename KernelTuples::func_type;
using Attr = typename KernelTuples::attr_type;
size_t key = JitCodeKey<Attr>(attr);
auto& codes = JitCodePool<KT>().Instance();
if (codes.Has(key)) {
return codes.AllKernels().at(key)->template getCode<Func>();
}
// creator is not related with attr, so can use KernelKey as key
KernelKey kkey(KT, PlaceType());
// pool: (KernelKey(type, place), vector<GenCreatorPtr>)
auto& creator_map = JitCodeCreatorPool().Instance().AllCreators();
auto iter = creator_map.find(kkey);
if (iter != creator_map.end()) {
auto& creators = iter->second;
for (auto& cur : creators) {
auto i = dynamic_cast<const JitCodeCreator<Attr>*>(cur.get());
if (i && i->UseMe(attr)) {
auto p = i->CreateJitCode(attr);
if (p) {
auto f = p->template getCode<Func>();
codes.Insert(key, std::move(p));
return f;
}
}
}
}
return nullptr;
}
template <KernelType KT, typename KernelTuples, typename PlaceType>
inline typename std::enable_if<
!std::is_same<typename KernelTuples::data_type, float>::value ||
!std::is_same<PlaceType, platform::CPUPlace>::value,
typename KernelTuples::func_type>::type
GetJitCode(const typename KernelTuples::attr_type& attr) {
return nullptr;
}
// Refer code do not related with attr, which is just for cast
// Refer is always on CPUPlace
template <KernelType KT, typename KernelTuples>
inline typename KernelTuples::func_type GetRefer() {
auto& ref_pool = ReferKernelPool().Instance().AllKernels();
KernelKey kkey(KT, platform::CPUPlace());
auto ref_iter = ref_pool.find(kkey);
PADDLE_ENFORCE(ref_iter != ref_pool.end(),
"Every Kernel should have reference function.");
auto& ref_impls = ref_iter->second;
for (auto& impl : ref_impls) {
auto i = dynamic_cast<const ReferKernel<KernelTuples>*>(impl.get());
if (i) {
return i->GetFunc();
}
}
return nullptr;
}
template <KernelType KT, typename KernelTuples,
typename PlaceType = platform::CPUPlace>
typename KernelTuples::func_type Get(
const typename KernelTuples::attr_type& attr) {
auto jitfunc = GetJitCode<KT, KernelTuples, PlaceType>(attr);
if (jitfunc) {
return jitfunc;
}
// pool: (KernelKey(type, place), vector<KernelPtr>)
KernelKey kkey(KT, PlaceType());
auto& pool = KernelPool().Instance().AllKernels();
auto iter = pool.find(kkey);
if (iter != pool.end()) {
auto& impls = iter->second;
for (auto& impl : impls) {
auto i = dynamic_cast<const KernelMore<KernelTuples>*>(impl.get());
if (i && i->UseMe(attr)) {
return i->GetFunc();
}
}
}
// The last implementation should be reference function on CPUPlace.
return GetRefer<KT, KernelTuples>();
}
const char* to_string(KernelType kt);
KernelType to_kerneltype(const std::string& act);
inline std::ostream& operator<<(std::ostream& os, const lstm_attr_t& attr) {
os << "dim_size[" << attr.d << "],act_gate[" << to_string(attr.act_gate)
<< "],act_cand[" << to_string(attr.act_cand) << "],act_cell["
<< to_string(attr.act_cell) << "],use_peephole["
<< (attr.use_peephole ? "True" : "False") << "]";
return os;
}
inline std::ostream& operator<<(std::ostream& os, const gru_attr_t& attr) {
os << "dim_size[" << attr.d << "],act_gate[" << to_string(attr.act_gate)
<< "],act_cand[" << to_string(attr.act_cand) << "]";
return os;
}
} // namespace jit
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include "paddle/fluid/operators/jit/macro.h"
#include "paddle/fluid/platform/macros.h"
namespace paddle {
namespace operators {
namespace jit {
typedef enum {
kNone = 0,
kVMul = 1,
kVAdd = 2,
kVAddRelu,
kVSub,
kVScal,
kVAddBias,
kVRelu,
kVIdentity,
kVExp,
kVSigmoid,
kVTanh,
kLSTMCtHt,
kLSTMC1H1,
kGRUH1,
kGRUHtPart1,
kGRUHtPart2,
kCRFDecoding,
kLayerNorm,
kNCHW16CMulNC,
} KernelType;
template <typename T>
struct XYZNTuples {
typedef T data_type;
typedef int attr_type;
typedef void (*func_type)(const T*, const T*, T*, int);
};
template <typename T>
struct AXYNTuples : public XYZNTuples<T> {};
template <typename T>
struct XYNTuples {
typedef T data_type;
typedef int attr_type;
typedef void (*func_type)(const T*, T*, int);
};
typedef struct {
void* gates; // gates: x_ch, x_ih, x_fh, x_oh
const void* ct_1;
void* ct;
void* ht;
/* weight_peephole and checked data are only used in peephole*/
const void* wp{nullptr}; // W_ic, W_fc, W_oc
void* checked{nullptr}; // size: 2 * d
} lstm_t;
typedef struct {
void* gates; // gates: {x_update, x_reset; x_state}
const void* ht_1;
void* ht;
} gru_t;
struct rnn_attr_s {
int d;
KernelType act_gate, act_cand;
rnn_attr_s() = default;
explicit rnn_attr_s(int _d, KernelType _act_gate, KernelType _act_cand)
: d(_d), act_gate(_act_gate), act_cand(_act_cand) {}
};
struct lstm_attr_s : public rnn_attr_s {
bool use_peephole;
KernelType act_cell;
lstm_attr_s() = default;
explicit lstm_attr_s(int _d, KernelType _act_gate, KernelType _act_cand,
KernelType _act_cell, bool _use_peephole = false)
: rnn_attr_s(_d, _act_gate, _act_cand),
use_peephole(_use_peephole),
act_cell(_act_cell) {}
};
typedef struct rnn_attr_s gru_attr_t;
typedef struct lstm_attr_s lstm_attr_t;
template <typename T>
struct LSTMTuples {
typedef T data_type;
typedef lstm_attr_t attr_type;
typedef void (*func_type)(lstm_t*, const lstm_attr_t*);
};
template <typename T>
struct GRUTuples {
typedef T data_type;
typedef gru_attr_t attr_type;
typedef void (*func_type)(gru_t*, const gru_attr_t*);
};
template <typename T>
struct CRFDecodingTuples {
typedef T data_type;
typedef int attr_type;
typedef void (*func_type)(const int, const T*, const T*, T*, int*, int);
};
template <typename T>
struct LayerNormTuples {
typedef T data_type;
typedef int attr_type;
typedef void (*func_type)(T*, T*, T*, T*, const T*, const T*, int,
const float, int);
};
// nChw16c = nChw16c .* NC
template <typename T>
struct NCHW16CMulNCTuples {
typedef T data_type;
typedef int attr_type;
typedef void (*func_type)(const T*, const T*, T*, int, int);
};
// Just for adding to kernel pool without template
class Kernel {
public:
Kernel() = default;
virtual ~Kernel() = default;
DISABLE_COPY_AND_ASSIGN(Kernel);
};
template <typename KernelTuples>
class KernelMore : public Kernel {
public:
using T = typename KernelTuples::data_type;
using Func = typename KernelTuples::func_type;
using Attr = typename KernelTuples::attr_type;
virtual Func GetFunc() const { return func; }
virtual bool UseMe(const Attr& attr) const = 0;
virtual const char* ImplType() const = 0;
protected:
Func func{nullptr};
};
template <typename KernelTuples>
class ReferKernel : public KernelMore<KernelTuples> {
public:
// Refer code can always be used
bool UseMe(const typename KernelTuples::attr_type& attr) const override {
return true;
}
const char* ImplType() const override { return "Refer"; }
};
} // namespace jit
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/jit/kernel_key.h"
namespace paddle {
namespace operators {
namespace jit {
template <>
size_t JitCodeKey<int>(const int& d) {
return d;
}
constexpr int act_type_shift = 3; // suppot 2^3 act types
template <>
size_t JitCodeKey<lstm_attr_t>(const lstm_attr_t& attr) {
size_t key = attr.d;
int gate_key = static_cast<int>(attr.act_gate) << 1;
int cand_key = static_cast<int>(attr.act_cand) << (1 + act_type_shift);
int cell_key = static_cast<int>(attr.act_cell) << (1 + act_type_shift * 2);
return (key << (1 + act_type_shift * 3)) + gate_key + cand_key + cell_key +
attr.use_peephole;
}
template <>
size_t JitCodeKey<gru_attr_t>(const gru_attr_t& attr) {
size_t key = attr.d;
return (key << (act_type_shift * 2)) + static_cast<int>(attr.act_gate) +
(static_cast<int>(attr.act_cand) << act_type_shift);
}
} // namespace jit
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include "paddle/fluid/operators/jit/kernel_base.h"
#include "paddle/fluid/platform/place.h"
namespace paddle {
namespace operators {
namespace jit {
struct KernelKey {
struct Hash {
size_t operator()(const KernelKey& key) const {
int place = key.place_.which(); // less than 2^8
int type = static_cast<int>(key.type_) << 8; // less than 2^(32-8)
std::hash<int> hasher;
return hasher(place + type);
}
};
KernelType type_;
platform::Place place_;
KernelKey(KernelType type, platform::Place place)
: type_(type), place_(place) {}
size_t hash_key() const { return Hash()(*this); }
bool operator==(const KernelKey& o) const {
return platform::places_are_same_class(place_, o.place_) &&
type_ == o.type_;
}
bool operator!=(const KernelKey& o) const { return !(*this == o); }
};
// Every JitCode should have a method to get the key from attribution
template <typename Attr>
size_t JitCodeKey(const Attr& attr);
} // namespace jit
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/jit/kernel_pool.h"
#include <memory> // for shared_ptr
#include <string>
#include <unordered_map>
namespace paddle {
namespace operators {
namespace jit {
JitCodeCreatorPool& JitCodeCreatorPool::Instance() {
static JitCodeCreatorPool g_creator_pool;
return g_creator_pool;
}
KernelPool& KernelPool::Instance() {
static KernelPool g_kernel_pool;
return g_kernel_pool;
}
ReferKernelPool& ReferKernelPool::Instance() {
static ReferKernelPool g_refer_kernel_pool;
return g_refer_kernel_pool;
}
} // namespace jit
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <memory> // for unique_ptr
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/operators/jit/gen_base.h"
#include "paddle/fluid/operators/jit/kernel_base.h"
#include "paddle/fluid/operators/jit/kernel_key.h"
#include "paddle/fluid/platform/place.h"
namespace paddle {
namespace operators {
namespace jit {
template <KernelType KT>
class JitCodePool {
typedef std::unique_ptr<GenBase> GenBasePtr;
typedef std::unordered_map<size_t, GenBasePtr> JitCodeMap;
public:
JitCodePool() = default;
static JitCodePool& Instance() {
static thread_local JitCodePool<KT> g_jit_codes;
return g_jit_codes;
}
const JitCodeMap& AllKernels() { return codes_; }
bool Has(size_t key) const { return codes_.find(key) != codes_.end(); }
void Insert(size_t key, GenBasePtr value) {
codes_.emplace(key, std::move(value));
}
private:
JitCodeMap codes_;
DISABLE_COPY_AND_ASSIGN(JitCodePool);
};
class JitCodeCreatorPool {
typedef std::unique_ptr<const GenCreator> GenCreatorPtr;
typedef std::unordered_map<KernelKey, std::vector<GenCreatorPtr>,
KernelKey::Hash>
GenCreatorPtrMap;
public:
JitCodeCreatorPool() = default;
static JitCodeCreatorPool& Instance();
GenCreatorPtrMap& AllCreators() { return creators_; }
void Insert(const KernelKey& key, GenCreatorPtr value) {
if (creators_.find(key) == creators_.end()) {
creators_.emplace(key, std::vector<GenCreatorPtr>());
}
creators_.at(key).emplace_back(std::move(value));
}
private:
GenCreatorPtrMap creators_;
DISABLE_COPY_AND_ASSIGN(JitCodeCreatorPool);
};
typedef std::unique_ptr<const Kernel> KernelPtr;
typedef std::unordered_map<KernelKey, std::vector<KernelPtr>, KernelKey::Hash>
KernelMap;
class KernelPool {
public:
static KernelPool& Instance();
KernelPool() = default;
KernelMap& AllKernels() { return pool_; }
void Insert(const KernelKey& key, KernelPtr value) {
if (pool_.find(key) == pool_.end()) {
pool_.emplace(key, std::vector<KernelPtr>());
}
pool_.at(key).emplace_back(std::move(value));
}
private:
KernelMap pool_;
DISABLE_COPY_AND_ASSIGN(KernelPool);
};
// Every kernel should have refer code and it should be used in unit tests,
// so refer kernels should have it's independent kernel pool
class ReferKernelPool {
public:
static ReferKernelPool& Instance();
ReferKernelPool() = default;
KernelMap& AllKernels() { return pool_; }
void Insert(const KernelKey& key, KernelPtr value) {
if (pool_.find(key) == pool_.end()) {
pool_.emplace(key, std::vector<KernelPtr>());
}
pool_.at(key).emplace_back(std::move(value));
}
private:
KernelMap pool_;
DISABLE_COPY_AND_ASSIGN(ReferKernelPool);
};
} // namespace jit
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <type_traits>
namespace paddle {
namespace operators {
namespace jit {
#define SIGMOID_THRESHOLD_MIN -40.0
#define SIGMOID_THRESHOLD_MAX 13.0
#define EXP_MAX_INPUT 40.0
#define XMM_FLOAT_BLOCK 4
#define YMM_FLOAT_BLOCK 8
#define ZMM_FLOAT_BLOCK 16
} // namespace jit
} // namespace operators
} // namespace paddle
function(USE_JITKERNEL_MORE TARGET TYPE)
file(APPEND ${jit_file} "USE_JITKERNEL_MORE(${TARGET} ${TYPE});\n")
endfunction()
if(WITH_MKLML)
add_subdirectory(mkl)
endif()
if(WITH_AVX)
add_subdirectory(intrinsic)
endif()
# mix should be last
add_subdirectory(mix)
set(JIT_KERNEL_DEPS ${JIT_KERNEL_DEPS} PARENT_SCOPE)
file(GLOB jit_kernel_cc_intrinsic RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "*.cc")
cc_library(jit_kernel_intrinsic SRCS ${jit_kernel_cc_intrinsic} DEPS jit_kernel_base)
set(JIT_KERNEL_DEPS ${JIT_KERNEL_DEPS} jit_kernel_intrinsic PARENT_SCOPE)
# use mkl kernels by name and type
USE_JITKERNEL_MORE(kCRFDecoding, intrinsic)
USE_JITKERNEL_MORE(kLayerNorm, intrinsic)
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/jit/more/intrinsic/crf_decoding.h"
#include <limits>
#include "paddle/fluid/operators/jit/registry.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace paddle {
namespace operators {
namespace jit {
namespace more {
namespace intrinsic {
// Note: intrinsic code is not runtime build.
// For example, if you build code on AVX, and run on AVX512 it can only use AVX
void CRFDecoding(const int seq_len, const float* x, const float* w,
float* alpha, int* track, int tag_num) {
#ifdef __AVX512F__
const int step_size = ZMM_FLOAT_BLOCK;
#else
const int step_size = YMM_FLOAT_BLOCK;
#endif
const int end = tag_num / step_size;
const int rest = tag_num % step_size;
/* Setup the alpha initial value.*/
int i_offset = 0;
int last_offset = rest - step_size;
for (int i = 0; i <= end; ++i) {
#ifdef __AVX512F__
// Declare the variable for the content of weights, input and alpha values.
__m512 w_content, x_content, alpha_content;
// Load the relevant data into the variables from un-aligned address.
w_content = _mm512_loadu_ps(w + i_offset);
x_content = _mm512_loadu_ps(x + i_offset);
alpha_content = _mm512_add_ps(w_content, x_content);
// Save the alpha value.
_mm512_storeu_ps(alpha_value + i_offset, alpha_content);
#else
// AVX or AVX2
// weights, input and alpha values.
__m256 w_content, x_content, alpha_content;
// Load the relevant data into the variables from un-aligned address.
w_content = _mm256_loadu_ps(w + i_offset);
x_content = _mm256_loadu_ps(x + i_offset);
alpha_content = _mm256_add_ps(w_content, x_content);
_mm256_storeu_ps(alpha + i_offset, alpha_content);
#endif
i_offset += step_size;
if (i == end - 1) {
if (rest > 0) {
i_offset += last_offset;
} else {
break;
}
}
}
// Use the column-major strategy to get the location of maximum score.
int seq_offset = 0;
constexpr int state_trans_base_idx = 2;
for (int k = 1; k < seq_len; ++k) {
int j_offset = 0;
for (int j = 0; j <= end; ++j) {
/* Initialize the variables of maximum score and location.*/
#ifdef __AVX512F__
__m512 max_score = _mm512_set1_ps(-std::numeric_limits<float>::max());
__m512i max_j = _mm512_setzero_si512();
#else
__m256 max_score = _mm256_set1_ps(-std::numeric_limits<float>::max());
__m256i max_j = _mm256_set1_epi32(0);
#endif
/* Calculate the offset of transition_weights.*/
int trans_offset = state_trans_base_idx * tag_num + j_offset;
for (int i = 0; i < tag_num; ++i) {
/* Initalize the content of alpha variable with related offset.*/
#ifdef __AVX512F__
__m512 alpha_content = _mm512_set1_ps(*(alpha + seq_offset + i));
/* Obtain the content of weights from un-aligned address.*/
__m512 w_content = _mm512_loadu_ps(w + trans_offset);
__m512 score_v = _mm512_add_ps(alpha_content, w_content);
__mmask16 mask = _mm512_cmp_ps_mask(score_v, max_score, _CMP_GT_OS);
/* AVX512 instructions.*/
max_j = _mm512_mask_set1_epi32(max_j, mask, i);
/* Update the max_score value.*/
max_score = _mm512_max_ps(max_score, score_v);
#else
__m256 alpha_content = _mm256_broadcast_ss(alpha + seq_offset + i);
/* Obtain the content of weights from un-aligned address.*/
__m256 w_content = _mm256_loadu_ps(w + trans_offset);
__m256 score_v = _mm256_add_ps(alpha_content, w_content);
__m256 mask = _mm256_cmp_ps(score_v, max_score, _CMP_GT_OS);
/* According to the mask value, update the index of the max_score.*/
#ifdef __AVX2__
max_j = _mm256_or_si256(
_mm256_andnot_si256((__m256i)mask, max_j),
_mm256_and_si256((__m256i)mask, _mm256_set1_epi32(i)));
#else
__m128i lo_max_j = _mm256_extractf128_si256(max_j, 0);
__m128i hi_max_j = _mm256_extractf128_si256(max_j, 1);
__m128i lo_mask =
_mm256_extractf128_si256(*(__m256i*)&mask, 0); // NOLINT
__m128i hi_mask =
_mm256_extractf128_si256(*(__m256i*)&mask, 1); // NOLINT
lo_max_j = _mm_andnot_si128(lo_mask, lo_max_j);
hi_max_j = _mm_andnot_si128(hi_mask, hi_max_j);
lo_mask = _mm_and_si128(lo_mask, _mm_set1_epi32(i));
hi_mask = _mm_and_si128(hi_mask, _mm_set1_epi32(i));
lo_max_j = _mm_or_si128(lo_mask, lo_max_j);
hi_max_j = _mm_or_si128(hi_mask, hi_max_j);
max_j = _mm256_insertf128_si256(max_j, lo_max_j, 0);
max_j = _mm256_insertf128_si256(max_j, hi_max_j, 1);
#endif
/* Update the max_score value.*/
max_score = _mm256_max_ps(max_score, score_v);
#endif
trans_offset += tag_num;
}
/* Update the alpha and track values. */
#ifdef __AVX512F__
__m512 x_content =
_mm512_loadu_ps(x + seq_offset + this->num_ + j_offset);
max_score = _mm512_add_ps(max_score, x_content);
_mm512_storeu_ps(alpha + seq_offset + this->num_ + j_offset, max_score);
_mm512_storeu_si512(reinterpret_cast<__m512i*>(track + seq_offset +
this->num_ + j_offset),
max_j);
#else
__m256 x_content = _mm256_loadu_ps(x + seq_offset + tag_num + j_offset);
max_score = _mm256_add_ps(max_score, x_content);
_mm256_storeu_ps(alpha + seq_offset + tag_num + j_offset, max_score);
_mm256_storeu_si256(
reinterpret_cast<__m256i*>(track + seq_offset + tag_num + j_offset),
max_j);
#endif
/* Calculate the offset of next step*/
j_offset += step_size;
if (j == end - 1) {
if (rest > 0) {
j_offset += last_offset;
} else {
break;
}
}
}
seq_offset += tag_num;
}
}
bool CRFDecodingKernel::UseMe(const int& d) const {
#ifdef __AVX512F__
constexpr int block = ZMM_FLOAT_BLOCK;
#else
constexpr int block = YMM_FLOAT_BLOCK;
#endif
return platform::MayIUse(platform::avx) && d >= block;
}
} // namespace intrinsic
} // namespace more
} // namespace jit
} // namespace operators
} // namespace paddle
namespace intrinsic = paddle::operators::jit::more::intrinsic;
REGISTER_JITKERNEL_MORE(kCRFDecoding, intrinsic, intrinsic::CRFDecodingKernel);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <type_traits>
#include "paddle/fluid/operators/jit/kernel_base.h"
namespace paddle {
namespace operators {
namespace jit {
namespace more {
namespace intrinsic {
void CRFDecoding(const int seq_len, const float* x, const float* w,
float* alpha, int* track, int tag_num);
class CRFDecodingKernel : public KernelMore<CRFDecodingTuples<float>> {
public:
CRFDecodingKernel() { this->func = CRFDecoding; }
bool UseMe(
const typename CRFDecodingTuples<float>::attr_type&) const override;
const char* ImplType() const override { return "Intrinsic"; }
};
} // namespace intrinsic
} // namespace more
} // namespace jit
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/jit/more/intrinsic/layer_norm.h"
#include <limits>
#include "paddle/fluid/operators/jit/registry.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace paddle {
namespace operators {
namespace jit {
namespace more {
namespace intrinsic {
void LayerNorm(float* x, float* out, float* mean, float* var,
const float* scale, const float* bias, int height,
const float epsilon, int right) {
__m256 sum;
__m256 mean_vec, var_vec;
__m128 hi, lo;
__m256 tmp;
size_t offset;
size_t j;
int block = YMM_FLOAT_BLOCK;
const int rest = right % block;
const int end = right - rest;
__m256 reverse_num_vec =
_mm256_div_ps(_mm256_set1_ps(1.0), _mm256_set1_ps(right));
__m256 epsilon_vec = _mm256_set1_ps(epsilon);
int rest_mask =
((-1) & (~((~0U) >> (sizeof(int) * 8 - (block - rest))))) & 0x0ff;
__m256i mask_vec = _mm256_set_epi32(
rest_mask & 0x80 ? 0xffffffff : 0, rest_mask & 0x40 ? 0xffffffff : 0,
rest_mask & 0x20 ? 0xffffffff : 0, rest_mask & 0x10 ? 0xffffffff : 0,
rest_mask & 0x8 ? 0xffffffff : 0, rest_mask & 0x4 ? 0xffffffff : 0,
rest_mask & 0x2 ? 0xffffffff : 0, rest_mask & 0x1 ? 0xffffffff : 0);
for (int i = 0; i < height; ++i) {
offset = i * right;
/* get mean */
sum = _mm256_setzero_ps();
for (j = offset; j < end + offset; j += block) {
sum = _mm256_add_ps(sum, _mm256_loadu_ps((const float*)x + j));
}
if (rest != 0) {
j = offset + right - block;
tmp = _mm256_loadu_ps((const float*)x + j);
tmp = _mm256_blendv_ps(_mm256_setzero_ps(), tmp,
*(__m256*)&mask_vec); // NOLINT
sum = _mm256_add_ps(sum, tmp);
}
hi = _mm256_extractf128_ps(sum, 1);
lo = _mm256_extractf128_ps(sum, 0);
sum = _mm256_add_ps(
sum, _mm256_insertf128_ps(
_mm256_insertf128_ps(_mm256_setzero_ps(), hi, 0), lo, 1));
sum = _mm256_hadd_ps(sum, sum);
sum = _mm256_hadd_ps(sum, sum);
mean_vec = _mm256_mul_ps(sum, reverse_num_vec);
mean[i] = *reinterpret_cast<float*>(&mean_vec);
/* get variance */
sum = _mm256_setzero_ps();
for (j = offset; j < end + offset; j += block) {
tmp = _mm256_sub_ps(_mm256_loadu_ps((const float*)x + j), mean_vec);
tmp = _mm256_mul_ps(tmp, tmp);
sum = _mm256_add_ps(sum, tmp);
}
if (rest != 0) {
j = offset + right - block;
tmp = _mm256_sub_ps(_mm256_loadu_ps((const float*)x + j), mean_vec);
tmp = _mm256_mul_ps(tmp, tmp);
tmp = _mm256_blendv_ps(_mm256_setzero_ps(), tmp,
*(__m256*)&mask_vec); // NOLINT
sum = _mm256_add_ps(sum, tmp);
}
hi = _mm256_extractf128_ps(sum, 1);
lo = _mm256_extractf128_ps(sum, 0);
sum = _mm256_add_ps(
sum, _mm256_insertf128_ps(
_mm256_insertf128_ps(_mm256_setzero_ps(), hi, 0), lo, 1));
sum = _mm256_hadd_ps(sum, sum);
sum = _mm256_hadd_ps(sum, sum);
var_vec = _mm256_mul_ps(sum, reverse_num_vec);
var[i] = *reinterpret_cast<float*>(&var_vec);
/* get x_norm and calculate output*/
for (j = offset; j < end + offset; j += block) {
tmp = _mm256_sub_ps(_mm256_loadu_ps((const float*)x + j), mean_vec);
tmp = _mm256_div_ps(tmp,
_mm256_sqrt_ps(_mm256_add_ps(var_vec, epsilon_vec)));
_mm256_storeu_ps(reinterpret_cast<float*>(out) + j, tmp);
}
if (rest != 0) {
j = offset + right - block;
tmp = _mm256_sub_ps(_mm256_loadu_ps((const float*)x + j), mean_vec);
tmp = _mm256_div_ps(tmp,
_mm256_sqrt_ps(_mm256_add_ps(var_vec, epsilon_vec)));
_mm256_storeu_ps(reinterpret_cast<float*>(out) + j, tmp);
}
if (scale) {
if (rest != 0) {
j = offset + right - block;
tmp = _mm256_loadu_ps((const float*)out + j);
}
for (j = offset; j < end + offset; j += block) {
_mm256_storeu_ps(
reinterpret_cast<float*>(out) + j,
_mm256_mul_ps(_mm256_loadu_ps((const float*)out + j),
_mm256_loadu_ps((const float*)scale + j - offset)));
}
if (rest != 0) {
j = offset + right - block;
_mm256_storeu_ps(
reinterpret_cast<float*>(out) + j,
_mm256_mul_ps(tmp,
_mm256_loadu_ps((const float*)scale + j - offset)));
}
}
if (bias) {
if (rest != 0) {
j = offset + right - block;
tmp = _mm256_loadu_ps((const float*)out + j);
}
for (j = offset; j < end + offset; j += block) {
_mm256_storeu_ps(
reinterpret_cast<float*>(out) + j,
_mm256_add_ps(_mm256_loadu_ps((const float*)out + j),
_mm256_loadu_ps((const float*)bias + j - offset)));
}
if (rest != 0) {
j = offset + right - block;
_mm256_storeu_ps(reinterpret_cast<float*>(out) + j,
_mm256_add_ps(tmp, _mm256_loadu_ps((const float*)bias +
j - offset)));
}
}
}
}
bool LayerNormKernel::UseMe(const int& d) const {
return platform::MayIUse(platform::avx) && d >= YMM_FLOAT_BLOCK;
}
} // namespace intrinsic
} // namespace more
} // namespace jit
} // namespace operators
} // namespace paddle
namespace intrinsic = paddle::operators::jit::more::intrinsic;
REGISTER_JITKERNEL_MORE(kLayerNorm, intrinsic, intrinsic::LayerNormKernel);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <type_traits>
#include "paddle/fluid/operators/jit/kernel_base.h"
namespace paddle {
namespace operators {
namespace jit {
namespace more {
namespace intrinsic {
void LayerNorm(float* x, float* out, float* mean, float* var,
const float* scale, const float* bias, int height,
const float epsilon, int right);
class LayerNormKernel : public KernelMore<LayerNormTuples<float>> {
public:
LayerNormKernel() { this->func = LayerNorm; }
bool UseMe(const typename LayerNormTuples<float>::attr_type&) const override;
const char* ImplType() const override { return "Intrinsic"; }
};
} // namespace intrinsic
} // namespace more
} // namespace jit
} // namespace operators
} // namespace paddle
file(GLOB jit_kernel_mix_cc RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "*.cc")
cc_library(jit_kernel_mix SRCS ${jit_kernel_mix_cc} DEPS jit_kernel_base)
set(JIT_KERNEL_DEPS ${JIT_KERNEL_DEPS} jit_kernel_mix PARENT_SCOPE)
USE_JITKERNEL_MORE(kVSigmoid, mix)
USE_JITKERNEL_MORE(kVTanh, mix)
USE_JITKERNEL_MORE(kLSTMCtHt, mix)
USE_JITKERNEL_MORE(kLSTMC1H1, mix)
USE_JITKERNEL_MORE(kGRUH1, mix)
USE_JITKERNEL_MORE(kGRUHtPart1, mix)
USE_JITKERNEL_MORE(kGRUHtPart2, mix)
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/jit/more/mix/mix.h"
#include "paddle/fluid/operators/jit/kernels.h"
#include "paddle/fluid/operators/jit/registry.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace paddle {
namespace operators {
namespace jit {
namespace more {
namespace mix {
void VSigmoid(const T* x, T* y, int n) {
const float min = SIGMOID_THRESHOLD_MIN;
const float max = SIGMOID_THRESHOLD_MAX;
for (int i = 0; i < n; ++i) {
y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
y[i] = static_cast<T>(0) - y[i];
}
auto compute = Get<KernelType::kVExp, XYNTuples<T>, platform::CPUPlace>(n);
compute(y, y, n);
for (int i = 0; i < n; ++i) {
y[i] = static_cast<T>(1) / (static_cast<T>(1) + y[i]);
}
}
void VTanh(const T* x, T* y, int n) {
const T a = 2, b = -1;
auto compute_scal = Get<kVScal, AXYNTuples<T>, platform::CPUPlace>(n);
auto compute_addbias = Get<kVAddBias, AXYNTuples<T>, platform::CPUPlace>(n);
auto compute_sigmoid = Get<kVSigmoid, XYNTuples<T>, platform::CPUPlace>(n);
compute_scal(&a, x, y, n);
compute_sigmoid(y, y, n);
compute_scal(&a, y, y, n);
compute_addbias(&b, y, y, n);
}
void (*getActFunc(KernelType type, int d))(const T*, T*, int) { // NOLINT
if (type == kVSigmoid) {
return Get<kVSigmoid, XYNTuples<T>, platform::CPUPlace>(d);
} else if (type == kVRelu) {
return Get<kVRelu, XYNTuples<T>, platform::CPUPlace>(d);
} else if (type == kVTanh) {
return Get<kVTanh, XYNTuples<T>, platform::CPUPlace>(d);
} else if (type == kVIdentity) {
return Get<kVIdentity, XYNTuples<T>, platform::CPUPlace>(d);
}
PADDLE_THROW("Not support type: %s", type);
return nullptr;
}
void LSTMCtHt(lstm_t* step, const lstm_attr_t* attr) {
T* gates = reinterpret_cast<T*>(step->gates);
const T* ct_1 = reinterpret_cast<const T*>(step->ct_1);
T* ct = reinterpret_cast<T*>(step->ct);
T* ht = reinterpret_cast<T*>(step->ht);
const T* wp = reinterpret_cast<const T*>(step->wp);
T* checked = reinterpret_cast<T*>(step->checked);
const int d = attr->d;
const int d2 = d * 2;
const int d3 = d * 3;
auto vmul_d = Get<kVMul, XYZNTuples<T>, platform::CPUPlace>(d);
auto vadd_d = Get<kVAdd, XYZNTuples<T>, platform::CPUPlace>(d);
auto vadd_d2 = Get<kVAdd, XYZNTuples<T>, platform::CPUPlace>(d2);
auto act_gate_d = getActFunc(attr->act_gate, d);
auto act_gate_d2 = getActFunc(attr->act_gate, d2);
auto act_gate_d3 = getActFunc(attr->act_gate, d3);
auto act_cand_d = getActFunc(attr->act_cand, d);
auto act_cell_d = getActFunc(attr->act_cell, d);
if (attr->use_peephole) {
vmul_d(wp, ct_1, checked, d);
vmul_d(wp + d, ct_1, checked + d, d);
vadd_d2(checked, gates + d, gates + d, d2);
act_gate_d2(gates + d, gates + d, d2);
} else {
act_gate_d3(gates + d, gates + d, d3);
}
// C_t = C_t-1 * fgated + cand_gated * igated
act_cand_d(gates, gates, d);
vmul_d(gates, gates + d, gates + d, d);
vmul_d(ct_1, gates + d2, gates + d2, d);
vadd_d(gates + d, gates + d2, ct, d);
if (attr->use_peephole) {
// get ogated
vmul_d(wp + d2, ct, gates + d, d);
vadd_d(gates + d, gates + d3, gates + d3, d);
act_gate_d(gates + d3, gates + d3, d);
}
// H_t = act_cell(C_t) * ogated
act_cell_d(ct, gates + d2, d);
vmul_d(gates + d2, gates + d3, ht, d);
}
void LSTMC1H1(lstm_t* step, const lstm_attr_t* attr) {
T* gates = reinterpret_cast<T*>(step->gates);
T* ct = reinterpret_cast<T*>(step->ct);
T* ht = reinterpret_cast<T*>(step->ht);
int d = attr->d;
int d2 = d * 2;
int d3 = d * 3;
auto vmul_d = Get<kVMul, XYZNTuples<T>, platform::CPUPlace>(d);
auto vadd_d = Get<kVAdd, XYZNTuples<T>, platform::CPUPlace>(d);
auto act_gate_d = getActFunc(attr->act_gate, d);
auto act_cand_d = getActFunc(attr->act_cand, d);
auto act_cell_d = getActFunc(attr->act_cell, d);
/* C_t = igated * cgated*/
act_gate_d(gates + d, gates + d, d);
act_cand_d(gates, gates, d);
vmul_d(gates, gates + d, ct, d);
if (attr->use_peephole) {
// get outgated, put W_oc * C_t on igated
const T* wp = reinterpret_cast<const T*>(step->wp);
vmul_d(wp + d2, ct, gates + d, d);
vadd_d(gates + d, gates + d3, gates + d3, d);
}
/* H_t = act_cell(C_t) * ogated */
act_gate_d(gates + d3, gates + d3, d);
act_cell_d(ct, gates + d2, d);
vmul_d(gates + d2, gates + d3, ht, d);
}
// compute h1 without h0
void GRUH1(gru_t* step, const gru_attr_t* attr) {
T* gates = reinterpret_cast<T*>(step->gates);
T* ht = reinterpret_cast<T*>(step->ht);
int d = attr->d;
int d2 = d * 2;
auto act_gate = getActFunc(attr->act_gate, d);
auto act_cand = getActFunc(attr->act_cand, d);
auto vmul_d = Get<kVMul, XYZNTuples<T>, platform::CPUPlace>(d);
act_gate(gates, gates, d);
act_cand(gates + d2, gates + d2, d);
vmul_d(gates, gates + d2, ht, d);
}
// compute the first part of GRU: ht = act_gate(r) * ht_1
void GRUHtPart1(gru_t* step, const gru_attr_t* attr) {
// W: {W_update, W_reset; W_state}
T* gates = reinterpret_cast<T*>(step->gates);
T* ht = reinterpret_cast<T*>(step->ht);
const T* ht_1 = reinterpret_cast<const T*>(step->ht_1);
auto act_gate = getActFunc(attr->act_gate, attr->d);
auto vmul_d = Get<kVMul, XYZNTuples<T>, platform::CPUPlace>(attr->d);
act_gate(gates + attr->d, gates + attr->d, attr->d);
vmul_d(ht_1, gates + attr->d, ht, attr->d);
}
// compute the second part of GRU:
// ht = act_gate(u) * act_cand(s) + (1-act_gate(u)) * ht_1
void GRUHtPart2(gru_t* step, const gru_attr_t* attr) {
T* gates = reinterpret_cast<T*>(step->gates);
T* ht = reinterpret_cast<T*>(step->ht);
const T* ht_1 = reinterpret_cast<const T*>(step->ht_1);
int d = attr->d;
auto act_gate = getActFunc(attr->act_gate, d);
auto act_cand = getActFunc(attr->act_cand, d);
T* y = gates + d * 2;
act_gate(gates, gates, d);
act_cand(y, y, d);
// out = zt*ht~ + (1-zt)*ht_1
for (int i = 0; i < d; ++i) {
ht[i] = gates[i] * y[i] + (static_cast<T>(1) - gates[i]) * ht_1[i];
}
}
// TODO(TJ): tuning me
bool VSigmoidKernel::UseMe(const int& d) const { return true; }
bool VTanhKernel::UseMe(const int& d) const { return true; }
bool LSTMCtHtKernel::UseMe(const lstm_attr_t& attr) const { return true; }
bool LSTMC1H1Kernel::UseMe(const lstm_attr_t& attr) const { return true; }
bool GRUH1Kernel::UseMe(const gru_attr_t& attr) const { return true; }
bool GRUHtPart1Kernel::UseMe(const gru_attr_t& attr) const { return true; }
bool GRUHtPart2Kernel::UseMe(const gru_attr_t& attr) const { return true; }
} // namespace mix
} // namespace more
} // namespace jit
} // namespace operators
} // namespace paddle
namespace mix = paddle::operators::jit::more::mix;
#define REGISTER_MORE_KERNEL(key, func) \
REGISTER_JITKERNEL_MORE(key, mix, mix::func##Kernel)
REGISTER_MORE_KERNEL(kVSigmoid, VSigmoid);
REGISTER_MORE_KERNEL(kVTanh, VTanh);
REGISTER_MORE_KERNEL(kLSTMCtHt, LSTMCtHt);
REGISTER_MORE_KERNEL(kLSTMC1H1, LSTMC1H1);
REGISTER_MORE_KERNEL(kGRUH1, GRUH1);
REGISTER_MORE_KERNEL(kGRUHtPart1, GRUHtPart1);
REGISTER_MORE_KERNEL(kGRUHtPart2, GRUHtPart2);
#undef REGISTER_MORE_KERNEL
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <type_traits>
#include "paddle/fluid/operators/jit/kernel_base.h"
namespace paddle {
namespace operators {
namespace jit {
namespace more {
namespace mix {
using T = float;
void VSigmoid(const T* x, T* y, int n);
void VTanh(const T* x, T* y, int n);
void LSTMCtHt(lstm_t* step, const lstm_attr_t* attr);
void LSTMC1H1(lstm_t* step, const lstm_attr_t* attr);
void GRUH1(gru_t* step, const gru_attr_t* attr);
void GRUHtPart1(gru_t* step, const gru_attr_t* attr);
void GRUHtPart2(gru_t* step, const gru_attr_t* attr);
#define DECLARE_MORE_KERNEL(name, tuples) \
class name##Kernel : public KernelMore<tuples<T>> { \
public: \
name##Kernel() { this->func = name; } \
bool UseMe(const typename tuples<T>::attr_type&) const override; \
const char* ImplType() const override { return "Mixed"; } \
}
// XYN
DECLARE_MORE_KERNEL(VSigmoid, XYNTuples);
DECLARE_MORE_KERNEL(VTanh, XYNTuples);
DECLARE_MORE_KERNEL(LSTMCtHt, LSTMTuples);
DECLARE_MORE_KERNEL(LSTMC1H1, LSTMTuples);
DECLARE_MORE_KERNEL(GRUH1, GRUTuples);
DECLARE_MORE_KERNEL(GRUHtPart1, GRUTuples);
DECLARE_MORE_KERNEL(GRUHtPart2, GRUTuples);
#undef DECLARE_MORE_KERNEL
} // namespace mix
} // namespace more
} // namespace jit
} // namespace operators
} // namespace paddle
cc_library(jit_kernel_mkl SRCS mkl.cc DEPS jit_kernel_base dynload_mklml)
set(JIT_KERNEL_DEPS ${JIT_KERNEL_DEPS} dynload_mklml jit_kernel_mkl PARENT_SCOPE)
# use mkl kernels by name and type
USE_JITKERNEL_MORE(kVMul, mkl)
USE_JITKERNEL_MORE(kVAdd, mkl)
USE_JITKERNEL_MORE(kVScal, mkl)
USE_JITKERNEL_MORE(kVExp, mkl)
USE_JITKERNEL_MORE(kVSigmoid, mkl)
USE_JITKERNEL_MORE(kVTanh, mkl)
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/jit/more/mkl/mkl.h"
#include "paddle/fluid/operators/jit/refer/refer.h"
#include "paddle/fluid/operators/jit/registry.h"
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/dynload/mklml.h"
namespace paddle {
namespace operators {
namespace jit {
namespace more {
namespace mkl {
template <>
void VMul<float>(const float* x, const float* y, float* z, int n) {
platform::dynload::vsMul(n, x, y, z);
}
template <>
void VMul<double>(const double* x, const double* y, double* z, int n) {
platform::dynload::vdMul(n, x, y, z);
}
template <>
void VAdd<float>(const float* x, const float* y, float* z, int n) {
platform::dynload::vsAdd(n, x, y, z);
}
template <>
void VAdd<double>(const double* x, const double* y, double* z, int n) {
platform::dynload::vdAdd(n, x, y, z);
}
template <>
void VScal<float>(const float* a, const float* x, float* y, int n) {
if (x == y) {
platform::dynload::cblas_sscal(n, *a, y, 1);
} else {
refer::VScal<float>(a, x, y, n);
}
}
template <>
void VScal<double>(const double* a, const double* x, double* y, int n) {
if (x == y) {
platform::dynload::cblas_dscal(n, *a, y, 1);
} else {
refer::VScal<double>(a, x, y, n);
}
}
template <>
void VExp<float>(const float* x, float* y, int n) {
platform::dynload::vsExp(n, x, y);
}
template <>
void VExp<double>(const double* x, double* y, int n) {
platform::dynload::vdExp(n, x, y);
}
// TODO(TJ): tuning me carefully on AVX, AVX2 and AVX512
template <>
bool VMulKernel<float>::UseMe(const int& d) const {
return platform::MayIUse(platform::avx512f) && d > 512;
}
template <>
bool VAddKernel<float>::UseMe(const int& d) const {
return platform::MayIUse(platform::avx512f) && d > 512;
}
template <>
bool VScalKernel<float>::UseMe(const int& d) const {
return platform::MayIUse(platform::avx512f) && d > 512;
}
template <>
bool VExpKernel<float>::UseMe(const int& d) const {
return d > 7;
}
template <>
bool VSigmoidKernel<float>::UseMe(const int& d) const {
return d > 7;
}
template <>
bool VTanhKernel<float>::UseMe(const int& d) const {
return d > 7;
}
#define AWALYS_USE_ME_WITH_DOUBLE(func) \
template <> \
bool func##Kernel<double>::UseMe(const int& d) const { \
return true; \
}
AWALYS_USE_ME_WITH_DOUBLE(VMul);
AWALYS_USE_ME_WITH_DOUBLE(VAdd);
AWALYS_USE_ME_WITH_DOUBLE(VScal);
AWALYS_USE_ME_WITH_DOUBLE(VExp);
AWALYS_USE_ME_WITH_DOUBLE(VSigmoid);
AWALYS_USE_ME_WITH_DOUBLE(VTanh);
#undef AWALYS_USE_ME_WITH_DOUBLE
} // namespace mkl
} // namespace more
} // namespace jit
} // namespace operators
} // namespace paddle
namespace mkl = paddle::operators::jit::more::mkl;
#define REGISTER_MKL_KERNEL(key, func) \
REGISTER_JITKERNEL_MORE(key, mkl, mkl::func##Kernel<float>, \
mkl::func##Kernel<double>)
REGISTER_MKL_KERNEL(kVMul, VMul);
REGISTER_MKL_KERNEL(kVAdd, VAdd);
REGISTER_MKL_KERNEL(kVScal, VScal);
REGISTER_MKL_KERNEL(kVExp, VExp);
REGISTER_MKL_KERNEL(kVSigmoid, VSigmoid);
REGISTER_MKL_KERNEL(kVTanh, VTanh);
#undef REGISTER_MKL_KERNEL
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <type_traits>
#include "paddle/fluid/operators/jit/kernel_base.h"
namespace paddle {
namespace operators {
namespace jit {
namespace more {
namespace mkl {
template <typename T>
void VMul(const T* x, const T* y, T* z, int n);
template <typename T>
void VAdd(const T* x, const T* y, T* z, int n);
template <typename T>
void VScal(const T* a, const T* x, T* y, int n);
template <typename T>
void VExp(const T* x, T* y, int n);
template <typename T>
void VSigmoid(const T* x, T* y, int n) {
const T min = SIGMOID_THRESHOLD_MIN;
const T max = SIGMOID_THRESHOLD_MAX;
for (int i = 0; i < n; ++i) {
y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
y[i] = static_cast<T>(0) - y[i];
}
VExp(y, y, n);
for (int i = 0; i < n; ++i) {
y[i] = static_cast<T>(1) / (static_cast<T>(1) + y[i]);
}
}
template <typename T>
void VTanh(const T* x, T* y, int n) {
for (int i = 0; i < n; ++i) {
y[i] = static_cast<T>(2) * x[i];
}
VSigmoid(y, y, n);
for (int i = 0; i < n; ++i) {
y[i] = static_cast<T>(2) * y[i] - static_cast<T>(1);
}
}
#define DECLARE_MKL_KERNEL(name, tuples) \
template <typename T> \
class name##Kernel : public KernelMore<tuples<T>> { \
public: \
name##Kernel() { this->func = name<T>; } \
bool UseMe(const typename tuples<T>::attr_type&) const override; \
const char* ImplType() const override { return "MKL"; } \
}
// XYZN
DECLARE_MKL_KERNEL(VMul, XYZNTuples);
DECLARE_MKL_KERNEL(VAdd, XYZNTuples);
// AXYN
DECLARE_MKL_KERNEL(VScal, AXYNTuples);
// XYN
DECLARE_MKL_KERNEL(VExp, XYNTuples);
DECLARE_MKL_KERNEL(VSigmoid, XYNTuples);
DECLARE_MKL_KERNEL(VTanh, XYNTuples);
#undef DECLARE_MKL_KERNEL
} // namespace mkl
} // namespace more
} // namespace jit
} // namespace operators
} // namespace paddle
cc_library(jit_kernel_refer SRCS refer.cc DEPS jit_kernel_base)
set(JIT_KERNEL_DEPS ${JIT_KERNEL_DEPS} jit_kernel_refer PARENT_SCOPE)
function(USE_JITKERNEL_REFER TARGET)
file(APPEND ${jit_file} "USE_JITKERNEL_REFER(${TARGET});\n")
endfunction()
# use refer kernel by name
USE_JITKERNEL_REFER(kVMul)
USE_JITKERNEL_REFER(kVAdd)
USE_JITKERNEL_REFER(kVAddRelu)
USE_JITKERNEL_REFER(kVSub)
USE_JITKERNEL_REFER(kVScal)
USE_JITKERNEL_REFER(kVAddBias)
USE_JITKERNEL_REFER(kVRelu)
USE_JITKERNEL_REFER(kVIdentity)
USE_JITKERNEL_REFER(kVExp)
USE_JITKERNEL_REFER(kVSigmoid)
USE_JITKERNEL_REFER(kVTanh)
USE_JITKERNEL_REFER(kLSTMCtHt)
USE_JITKERNEL_REFER(kLSTMC1H1)
USE_JITKERNEL_REFER(kGRUH1)
USE_JITKERNEL_REFER(kGRUHtPart1)
USE_JITKERNEL_REFER(kGRUHtPart2)
USE_JITKERNEL_REFER(kCRFDecoding)
USE_JITKERNEL_REFER(kLayerNorm)
USE_JITKERNEL_REFER(kNCHW16CMulNC)
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/jit/refer/refer.h"
#include "paddle/fluid/operators/jit/registry.h"
namespace refer = paddle::operators::jit::refer;
#define REGISTER_REFER_KERNEL(key, func) \
REGISTER_JITKERNEL_REFER(key, refer::func##Kernel<float>, \
refer::func##Kernel<double>)
REGISTER_REFER_KERNEL(kVMul, VMul);
REGISTER_REFER_KERNEL(kVAdd, VAdd);
REGISTER_REFER_KERNEL(kVAddRelu, VAddRelu);
REGISTER_REFER_KERNEL(kVSub, VSub);
REGISTER_REFER_KERNEL(kVScal, VScal);
REGISTER_REFER_KERNEL(kVAddBias, VAddBias);
REGISTER_REFER_KERNEL(kVRelu, VRelu);
REGISTER_REFER_KERNEL(kVIdentity, VIdentity);
REGISTER_REFER_KERNEL(kVExp, VExp);
REGISTER_REFER_KERNEL(kVSigmoid, VSigmoid);
REGISTER_REFER_KERNEL(kVTanh, VTanh);
REGISTER_REFER_KERNEL(kLSTMCtHt, LSTMCtHt);
REGISTER_REFER_KERNEL(kLSTMC1H1, LSTMC1H1);
REGISTER_REFER_KERNEL(kGRUH1, GRUH1);
REGISTER_REFER_KERNEL(kGRUHtPart1, GRUHtPart1);
REGISTER_REFER_KERNEL(kGRUHtPart2, GRUHtPart2);
REGISTER_REFER_KERNEL(kCRFDecoding, CRFDecoding);
REGISTER_REFER_KERNEL(kLayerNorm, LayerNorm);
REGISTER_REFER_KERNEL(kNCHW16CMulNC, NCHW16CMulNC);
#undef REGISTER_REFER_KERNEL
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <cmath>
#include <string>
#include "paddle/fluid/operators/math/jit_kernel_impl.h"
#include <limits>
#include "paddle/fluid/operators/jit/helper.h"
#include "paddle/fluid/operators/jit/kernel_base.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace jit {
namespace refer {
/* Refer code only focus on correctness */
// Refer code only focus on correctness
template <typename T>
void VMul(const T* x, const T* y, T* z, int n) {
for (int i = 0; i < n; ++i) {
......@@ -47,6 +48,13 @@ void VAddRelu(const T* x, const T* y, T* z, int n) {
}
}
template <typename T>
void VSub(const T* x, const T* y, T* z, int n) {
for (int i = 0; i < n; ++i) {
z[i] = x[i] - y[i];
}
}
template <typename T>
void VScal(const T* a, const T* x, T* y, int n) {
for (int i = 0; i < n; ++i) {
......@@ -69,7 +77,11 @@ void VRelu(const T* x, T* y, int n) {
}
template <typename T>
inline void VIdentity(const T* x, T* y, int n) {}
inline void VIdentity(const T* x, T* y, int n) {
for (int i = 0; i < n; ++i) {
y[i] = x[i];
}
}
template <typename T>
void VExp(const T* x, T* y, int n) {
......@@ -102,20 +114,22 @@ void VTanh(const T* x, T* y, int n) {
}
template <typename T>
void (*getActFunc(const std::string& type))(const T*, T*, int) { // NOLINT
if (type == "sigmoid") {
void (*getActFunc(KernelType type))(const T*, T*, int) { // NOLINT
if (type == kVSigmoid) {
return VSigmoid<T>;
} else if (type == "relu") {
} else if (type == kVRelu) {
return VRelu<T>;
} else if (type == "tanh") {
} else if (type == kVTanh) {
return VTanh<T>;
} else if (type == "identity" || type == "") {
} else if (type == kVIdentity) {
return VIdentity<T>;
}
PADDLE_THROW("Not support type: %s", type);
return nullptr;
}
// TODO(TJ): add refer gemm and make LSTM kernels combine as same GRU kernels
// compute ct and ht
template <typename T>
void LSTMCtHt(lstm_t* step, const lstm_attr_t* attr) {
......@@ -231,8 +245,134 @@ void GRUHtPart2(gru_t* step, const gru_attr_t* attr) {
}
}
template <typename T>
void CRFDecoding(const int seq_len, const T* x, const T* w, T* alpha,
int* track, int right) {
constexpr int state_trans_base_idx = 2;
for (int i = 0; i < right; ++i) {
alpha[i] = w[i] + x[i];
}
for (int k = 1; k < seq_len; ++k) {
for (int i = 0; i < right; ++i) {
T max_score = -std::numeric_limits<T>::max();
int max_j = 0;
for (int j = 0; j < right; ++j) {
T score = alpha[(k - 1) * right + j] +
w[(j + state_trans_base_idx) * right + i];
if (score > max_score) {
max_score = score;
max_j = j;
}
}
alpha[k * right + i] = max_score + x[k * right + i];
track[k * right + i] = max_j;
}
}
}
template <typename T>
void LayerNorm(T* x, T* out, T* mean, T* var, const T* scale, const T* bias,
int height, const float epsilon, int right) {
// get mean
for (int i = 0; i < height; i++) {
T sum = 0.0;
int offset = i * right;
for (int j = 0; j < right; j++) {
sum += x[offset + j];
}
mean[i] = sum / right;
}
// get variance
for (int i = 0; i < height; i++) {
T sum = 0.0;
int offset = i * right;
for (int j = 0; j < right; j++) {
sum += (x[offset + j] - mean[i]) * (x[offset + j] - mean[i]);
}
var[i] = sum / right;
}
for (int i = 0; i < height; i++) {
int offset = i * right;
T sqrt_var = std::sqrt(var[i] + (T)epsilon);
for (int j = 0; j < right; j++) {
out[offset + j] = (x[offset + j] - mean[i]) / sqrt_var;
}
}
if (scale) {
for (int i = 0; i < height; i++) {
int offset = i * right;
for (int j = 0; j < right; j++) {
out[offset + j] *= scale[j];
}
}
}
if (bias) {
for (int i = 0; i < height; i++) {
int offset = i * right;
for (int j = 0; j < right; j++) {
out[offset + j] += bias[j];
}
}
}
}
template <typename T>
void NCHW16CMulNC(const T* x, const T* y, T* z, int height, int width) {
int offset = 0;
for (int h = 0; h < height; ++h) {
for (int w = 0; w < width; ++w) {
for (int i = 0; i < 16; ++i) {
z[i + offset] = y[i] * x[i + offset];
}
offset += ZMM_FLOAT_BLOCK;
}
}
}
#define DECLARE_REFER_KERNEL(name, tuples) \
template <typename T> \
class name##Kernel : public ReferKernel<tuples<T>> { \
public: \
name##Kernel() { this->func = name<T>; } \
}
// const T* x, const T* y, T* z, int n
DECLARE_REFER_KERNEL(VMul, XYZNTuples);
DECLARE_REFER_KERNEL(VAdd, XYZNTuples);
DECLARE_REFER_KERNEL(VAddRelu, XYZNTuples);
DECLARE_REFER_KERNEL(VSub, XYZNTuples);
// const T* a, const T* x, T* y, int n
DECLARE_REFER_KERNEL(VScal, AXYNTuples);
DECLARE_REFER_KERNEL(VAddBias, AXYNTuples);
// const T* x, T* y, int n
DECLARE_REFER_KERNEL(VRelu, XYNTuples);
DECLARE_REFER_KERNEL(VIdentity, XYNTuples);
DECLARE_REFER_KERNEL(VExp, XYNTuples);
DECLARE_REFER_KERNEL(VSigmoid, XYNTuples);
DECLARE_REFER_KERNEL(VTanh, XYNTuples);
// lstm_t*, const lstm_attr_t*
DECLARE_REFER_KERNEL(LSTMCtHt, LSTMTuples);
DECLARE_REFER_KERNEL(LSTMC1H1, LSTMTuples);
// gru_t*, const gru_attr_t*
DECLARE_REFER_KERNEL(GRUH1, GRUTuples);
DECLARE_REFER_KERNEL(GRUHtPart1, GRUTuples);
DECLARE_REFER_KERNEL(GRUHtPart2, GRUTuples);
DECLARE_REFER_KERNEL(CRFDecoding, CRFDecodingTuples);
DECLARE_REFER_KERNEL(LayerNorm, LayerNormTuples);
DECLARE_REFER_KERNEL(NCHW16CMulNC, NCHW16CMulNCTuples);
#undef DECLARE_REFER_KERNEL
} // namespace refer
} // namespace jitkernel
} // namespace math
} // namespace jit
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <memory>
#include <tuple>
#include <type_traits>
#include "paddle/fluid/operators/jit/kernel_base.h"
#include "paddle/fluid/operators/jit/kernel_pool.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/variant.h" // for UNUSED
namespace paddle {
namespace operators {
namespace jit {
// make_unique is supported since c++14
template <typename T, typename... Args>
inline std::unique_ptr<T> make_unique(Args&&... args) {
static_assert(!std::is_array<T>::value, "T must not be array");
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}
template <typename Pool, typename PlaceType, bool IsEnd, size_t I,
typename... KernelImpls>
struct JitKernelRegistrarFunctor;
template <typename Pool, typename PlaceType, size_t I, typename... KernelImpls>
struct JitKernelRegistrarFunctor<Pool, PlaceType, true, I, KernelImpls...> {
void operator()(KernelType kt) const {}
};
template <typename Pool, typename PlaceType, size_t I, typename... KernelImpls>
struct JitKernelRegistrarFunctor<Pool, PlaceType, false, I, KernelImpls...> {
using KERNEL_IMPL_TYPE =
typename std::tuple_element<I, std::tuple<KernelImpls...>>::type;
void operator()(KernelType kt) const {
KernelKey kkey(kt, PlaceType());
Pool().Instance().Insert(kkey,
std::move(make_unique<const KERNEL_IMPL_TYPE>()));
constexpr auto size = std::tuple_size<std::tuple<KernelImpls...>>::value;
JitKernelRegistrarFunctor<Pool, PlaceType, I + 1 == size, I + 1,
KernelImpls...>
func;
func(kt);
}
};
template <typename Pool, typename PlaceType, typename... KernelImpls>
class JitKernelRegistrar {
public:
explicit JitKernelRegistrar(KernelType kt) {
JitKernelRegistrarFunctor<Pool, PlaceType, false, 0, KernelImpls...> func;
func(kt);
}
void Touch() {}
};
#define STATIC_ASSERT_JITKERNEL_GLOBAL_NAMESPACE(uniq_name, msg) \
struct __test_global_namespace_##uniq_name##__ {}; \
static_assert(std::is_same<::__test_global_namespace_##uniq_name##__, \
__test_global_namespace_##uniq_name##__>::value, \
msg)
// Refer always on CPUPlace
#define REGISTER_JITKERNEL_REFER(kernel_type, ...) \
STATIC_ASSERT_JITKERNEL_GLOBAL_NAMESPACE( \
__reg_jitkernel_##kernel_type##_refer_CPUPlace, \
"REGISTER_KERNEL_REFER must be called in global namespace"); \
static ::paddle::operators::jit::JitKernelRegistrar< \
::paddle::operators::jit::ReferKernelPool, ::paddle::platform::CPUPlace, \
__VA_ARGS__> \
__jit_kernel_registrar_##kernel_type##_refer_CPUPlace_( \
::paddle::operators::jit::KernelType::kernel_type); \
int TouchJitKernelReg_##kernel_type##_refer_CPUPlace_() { \
__jit_kernel_registrar_##kernel_type##_refer_CPUPlace_.Touch(); \
return 0; \
}
// kernel_type: should be in paddle::operators::jit::KernelType
// place_type: should be one of CPUPlace and GPUPlace in paddle::platform
#define REGISTER_KERNEL_MORE(kernel_type, impl_type, place_type, ...) \
STATIC_ASSERT_JITKERNEL_GLOBAL_NAMESPACE( \
__reg_jitkernel_##kernel_type##_##impl_type##_##place_type, \
"REGISTER_KERNEL_MORE must be called in global namespace"); \
extern int TouchJitKernelReg_##kernel_type##_refer_CPUPlace_(); \
static int __assert_##kernel_type##_##impl_type##_##place_type##_has_refer_ \
UNUSED = TouchJitKernelReg_##kernel_type##_refer_CPUPlace_(); \
static ::paddle::operators::jit::JitKernelRegistrar< \
::paddle::operators::jit::KernelPool, ::paddle::platform::place_type, \
__VA_ARGS__> \
__jit_kernel_registrar_##kernel_type##_##impl_type##_##place_type##_( \
::paddle::operators::jit::KernelType::kernel_type); \
int TouchJitKernelReg_##kernel_type##_##impl_type##_##place_type##_() { \
__jit_kernel_registrar_##kernel_type##_##impl_type##_##place_type##_ \
.Touch(); \
return 0; \
}
#define REGISTER_JITKERNEL_MORE(kernel_type, impl_type, ...) \
REGISTER_KERNEL_MORE(kernel_type, impl_type, CPUPlace, __VA_ARGS__)
#define REGISTER_GPUKERNEL_MORE(kernel_type, impl_type, ...) \
REGISTER_KERNEL_MORE(kernel_type, impl_type, GPUPlace, __VA_ARGS__)
#define REGISTER_JITKERNEL_GEN(kernel_type, ...) \
STATIC_ASSERT_JITKERNEL_GLOBAL_NAMESPACE( \
__reg_jitkernel_gen_##kernel_type##_CPUPlace_, \
"REGISTER_JITKERNEL_GEN must be called in global namespace"); \
extern int TouchJitKernelReg_##kernel_type##_refer_CPUPlace_(); \
static int __assert_gen_##kernel_type##_has_refer_ UNUSED = \
TouchJitKernelReg_##kernel_type##_refer_CPUPlace_(); \
static ::paddle::operators::jit::JitKernelRegistrar< \
::paddle::operators::jit::JitCodeCreatorPool, \
::paddle::platform::CPUPlace, __VA_ARGS__> \
__jit_kernel_registrar_gen_##kernel_type##_CPUPlace_( \
::paddle::operators::jit::KernelType::kernel_type); \
int TouchJitKernelReg_gen_##kernel_type##_CPUPlace_() { \
__jit_kernel_registrar_gen_##kernel_type##_CPUPlace_.Touch(); \
return 0; \
}
#define USE_JITKERNEL_GEN(kernel_type) \
STATIC_ASSERT_JITKERNEL_GLOBAL_NAMESPACE( \
__reg_jitkernel_gen_##kernel_type##_CPUPlace_, \
"USE_JITKERNEL_GEN must be called in global namespace"); \
extern int TouchJitKernelReg_gen_##kernel_type##_CPUPlace_(); \
static int use_jitkernel_gen_##kernel_type##_CPUPlace_ UNUSED = \
TouchJitKernelReg_gen_##kernel_type##_CPUPlace_()
#define USE_JITKERNEL_REFER(kernel_type) \
STATIC_ASSERT_JITKERNEL_GLOBAL_NAMESPACE( \
__reg_jitkernel_##kernel_type##_refer_CPUPlace_, \
"USE_JITKERNEL_REFER must be called in global namespace"); \
extern int TouchJitKernelReg_##kernel_type##_refer_CPUPlace_(); \
static int use_jitkernel_##kernel_type##_refer_CPUPlace_ UNUSED = \
TouchJitKernelReg_##kernel_type##_refer_CPUPlace_()
#define USE_KERNEL_MORE(kernel_type, impl_type, place_type) \
STATIC_ASSERT_JITKERNEL_GLOBAL_NAMESPACE( \
__reg_jitkernel_##kernel_type##_##impl_type##_##place_type##_, \
"USE_JITKERNEL_MORE must be called in global namespace"); \
extern int \
TouchJitKernelReg_##kernel_type##_##impl_type##_##place_type##_(); \
static int use_jitkernel_##kernel_type##_##impl_type##_##place_type##_ \
UNUSED = \
TouchJitKernelReg_##kernel_type##_##impl_type##_##place_type##_()
#define USE_JITKERNEL_MORE(kernel_type, impl_type) \
USE_KERNEL_MORE(kernel_type, impl_type, CPUPlace)
} // namespace jit
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include <random>
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
#include "paddle/fluid/operators/jit/kernels.h"
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/place.h"
template <typename T>
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
const T upper = static_cast<T>(20.f)) {
static unsigned int seed = 100;
std::mt19937 rng(seed++);
std::uniform_real_distribution<double> uniform_dist(0, 1);
for (int i = 0; i < n; ++i) {
a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
}
}
template <typename T>
void ExpectEQ(const T* target, const T* refer, int n) {
if (std::is_floating_point<T>::value) {
for (int i = 0; i < n; ++i) {
EXPECT_NEAR(target[i], refer[i], 1e-5);
}
} else {
for (int i = 0; i < n; ++i) {
EXPECT_EQ(target[i], refer[i]);
}
}
}
std::vector<int> TestSizes() {
std::vector<int> s;
for (int i = 1; i < 32; ++i) {
s.push_back(i);
}
// test some large size
s.push_back(100);
s.push_back(1000);
s.push_back(2000);
return s;
}
namespace jit = paddle::operators::jit;
template <typename KernelTuples, typename... Args>
struct TestFuncWithRefer {
void operator()(const typename KernelTuples::func_type tgt, Args... args) {}
};
template <typename T>
struct TestFuncWithRefer<jit::XYZNTuples<T>, std::vector<T>, std::vector<T>,
std::vector<T>> {
void operator()(const typename jit::XYZNTuples<T>::func_type tgt,
const std::vector<T>& x, const std::vector<T>& y,
const std::vector<T>& zref) {
EXPECT_TRUE(tgt != nullptr);
EXPECT_EQ(zref.size(), x.size());
EXPECT_EQ(zref.size(), y.size());
const T* x_data = x.data();
const T* y_data = y.data();
const T* zref_data = zref.data();
const int d = zref.size();
std::vector<T> ztgt(d);
T* ztgt_data = ztgt.data();
// test normal
tgt(x_data, y_data, ztgt_data, d);
ExpectEQ<T>(ztgt_data, zref_data, d);
// test inplace x
std::copy(x.begin(), x.end(), ztgt.begin());
tgt(ztgt_data, y_data, ztgt_data, d);
ExpectEQ<T>(ztgt_data, zref_data, d);
// test inplace y
std::copy(y.begin(), y.end(), ztgt.begin());
tgt(x_data, ztgt_data, ztgt_data, d);
ExpectEQ<T>(ztgt_data, zref_data, d);
}
};
template <typename T>
struct TestFuncWithRefer<jit::AXYNTuples<T>, T, std::vector<T>,
std::vector<T>> {
void operator()(const typename jit::AXYNTuples<T>::func_type tgt, const T a,
const std::vector<T>& x, const std::vector<T>& yref) {
EXPECT_TRUE(tgt != nullptr);
EXPECT_EQ(yref.size(), x.size());
const T* x_data = x.data();
const T* yref_data = yref.data();
const int d = yref.size();
std::vector<T> ytgt(d);
T* ytgt_data = ytgt.data();
// test normal
tgt(&a, x_data, ytgt_data, d);
ExpectEQ<T>(ytgt_data, yref_data, d);
// test inplace x
std::copy(x.begin(), x.end(), ytgt.begin());
tgt(&a, ytgt_data, ytgt_data, d);
ExpectEQ<T>(ytgt_data, yref_data, d);
}
};
template <typename T>
struct TestFuncWithRefer<jit::XYNTuples<T>, std::vector<T>, std::vector<T>> {
void operator()(const typename jit::XYNTuples<T>::func_type tgt,
const std::vector<T>& x, const std::vector<T>& yref) {
EXPECT_TRUE(tgt != nullptr);
EXPECT_EQ(yref.size(), x.size());
const T* x_data = x.data();
const T* yref_data = yref.data();
const int d = yref.size();
std::vector<T> ytgt(d);
T* ytgt_data = ytgt.data();
// test normal
tgt(x_data, ytgt_data, d);
ExpectEQ<T>(ytgt_data, yref_data, d);
// test inplace x
std::copy(x.begin(), x.end(), ytgt.begin());
tgt(ytgt_data, ytgt_data, d);
ExpectEQ<T>(ytgt_data, yref_data, d);
}
};
template <typename T>
struct TestFuncWithRefer<jit::LSTMTuples<T>, std::vector<T>, std::vector<T>,
std::vector<T>, std::vector<T>, std::vector<T>> {
void operator()(const typename jit::LSTMTuples<T>::func_type tgt,
const std::vector<T>& xsrc, const std::vector<T>& wp,
const std::vector<T>& ct_1, const std::vector<T>& ct_ref,
const std::vector<T>& ht_ref,
const typename jit::LSTMTuples<T>::attr_type& attr) {
EXPECT_TRUE(tgt != nullptr);
EXPECT_EQ(ct_ref.size(), ht_ref.size());
EXPECT_EQ(ct_1.size(), ht_ref.size());
EXPECT_EQ(xsrc.size(), 4 * ht_ref.size());
EXPECT_EQ(wp.size(), 3 * ht_ref.size());
// x could be changed after compute, so copy to save src
int d = ht_ref.size();
std::vector<T> x(xsrc.size()), ct(ct_ref.size()), ht(ht_ref.size());
std::vector<T> checked(2 * d);
std::copy(xsrc.begin(), xsrc.end(), x.begin());
const T* ct_1_data = ct_1.data();
const T* wp_data = wp.data();
const T* ct_ref_data = ct_ref.data();
const T* ht_ref_data = ht_ref.data();
T* x_data = x.data();
T* ct_data = ct.data();
T* ht_data = ht.data();
T* checked_data = checked.data();
paddle::operators::jit::lstm_t step;
step.gates = x_data;
step.ct_1 = ct_1_data;
step.ct = ct_data;
step.ht = ht_data;
if (attr.use_peephole) {
step.wp = wp_data;
step.checked = checked_data;
}
tgt(&step, &attr);
ExpectEQ<T>(ct_data, ct_ref_data, d);
ExpectEQ<T>(ht_data, ht_ref_data, d);
}
};
template <typename T>
struct TestFuncWithRefer<jit::GRUTuples<T>, std::vector<T>, std::vector<T>,
std::vector<T>> {
void operator()(const typename jit::GRUTuples<T>::func_type tgt,
const std::vector<T>& xsrc, const std::vector<T>& ht_1,
const std::vector<T>& ht_ref,
const typename jit::GRUTuples<T>::attr_type& attr) {
EXPECT_TRUE(tgt != nullptr);
EXPECT_EQ(ht_1.size(), ht_ref.size());
EXPECT_EQ(xsrc.size(), 3 * ht_ref.size());
// x could be changed after compute, so copy to save src
int d = ht_ref.size();
std::vector<T> x(xsrc.size()), ht(ht_ref.size());
std::copy(xsrc.begin(), xsrc.end(), x.begin());
const T* ht_1_data = ht_1.data();
const T* ht_ref_data = ht_ref.data();
T* x_data = x.data();
T* ht_data = ht.data();
paddle::operators::jit::gru_t step;
step.gates = x_data;
step.ht_1 = ht_1_data;
step.ht = ht_data;
tgt(&step, &attr);
ExpectEQ<T>(ht_data, ht_ref_data, d);
}
};
template <paddle::operators::jit::KernelType KT, typename KernelTuples,
typename PlaceType, typename... Args>
void TestAllImpls(const typename KernelTuples::attr_type& attr, Args... args) {
TestFuncWithRefer<KernelTuples, Args...> test;
// test jitcode
auto jitcode = jit::GetJitCode<KT, KernelTuples, PlaceType>(attr);
if (jitcode) {
VLOG(10) << "Test Jitcode Kernel ";
test(jitcode, args...);
}
// test all impls in more
jit::KernelKey kkey(KT, PlaceType());
auto& pool = jit::KernelPool().Instance().AllKernels();
auto iter = pool.find(kkey);
if (iter != pool.end()) {
auto& impls = iter->second;
for (auto& impl : impls) {
auto i = dynamic_cast<const jit::KernelMore<KernelTuples>*>(impl.get());
if (i && i->UseMe(attr)) {
auto more = i->GetFunc();
VLOG(10) << "Test More Kernel : " << i->ImplType();
test(more, args...);
}
}
}
// test result from Get function
// VLOG(10) << "Test Get function ";
auto tgt = jit::Get<KT, KernelTuples, PlaceType>(attr);
test(tgt, args...);
}
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void TestXYZNKernel() {
namespace jit = paddle::operators::jit;
VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
for (int d : TestSizes()) {
auto ref = jit::GetRefer<KT, jit::XYZNTuples<T>>();
EXPECT_TRUE(ref != nullptr);
std::vector<T> x(d), y(d), zref(d);
RandomVec<T>(d, x.data());
RandomVec<T>(d, y.data());
std::vector<T> xinp(d), yinp(d); // inplace test
std::copy(x.begin(), x.end(), xinp.begin());
std::copy(y.begin(), y.end(), yinp.begin());
const T* x_data = x.data();
const T* y_data = y.data();
T* zref_data = zref.data();
T* xinp_data = xinp.data();
T* yinp_data = yinp.data();
// test refer code inplace
ref(x_data, y_data, zref_data, d);
ref(x_data, yinp_data, yinp_data, d);
ref(xinp_data, y_data, xinp_data, d);
ExpectEQ<T>(xinp_data, zref_data, d);
ExpectEQ<T>(yinp_data, zref_data, d);
TestAllImpls<KT, jit::XYZNTuples<T>, PlaceType, std::vector<T>,
std::vector<T>, std::vector<T>>(d, x, y, zref);
}
}
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void TestAXYNKernel() {
namespace jit = paddle::operators::jit;
VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
for (int d : TestSizes()) {
auto ref = jit::GetRefer<KT, jit::AXYNTuples<T>>();
EXPECT_TRUE(ref != nullptr);
const T a = static_cast<T>(3);
std::vector<T> x(d), yref(d);
std::vector<T> xinp(d); // inplace test
RandomVec<T>(d, x.data());
std::copy(x.begin(), x.end(), xinp.begin());
const T* x_data = x.data();
T* yref_data = yref.data();
T* xinp_data = xinp.data();
// test refer code inplace
ref(&a, x_data, yref_data, d);
ref(&a, xinp_data, xinp_data, d);
ExpectEQ<T>(xinp_data, yref_data, d);
TestAllImpls<KT, jit::AXYNTuples<T>, PlaceType, T, std::vector<T>,
std::vector<T>>(d, a, x, yref);
}
}
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void TestXYNKernel() {
namespace jit = paddle::operators::jit;
VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
for (int d : TestSizes()) {
auto ref = jit::GetRefer<KT, jit::XYNTuples<T>>();
EXPECT_TRUE(ref != nullptr);
std::vector<T> x(d), yref(d);
std::vector<T> xinp(d); // inplace test
RandomVec<T>(d, x.data(), -2.f, 2.f);
std::copy(x.begin(), x.end(), xinp.begin());
const T* x_data = x.data();
T* yref_data = yref.data();
T* xinp_data = xinp.data();
// test refer code inplace
ref(x_data, yref_data, d);
ref(xinp_data, xinp_data, d);
ExpectEQ<T>(xinp_data, yref_data, d);
TestAllImpls<KT, jit::XYNTuples<T>, PlaceType, std::vector<T>,
std::vector<T>>(d, x, yref);
}
}
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void TestLSTMKernel() {
namespace jit = paddle::operators::jit;
VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
std::vector<std::string> all_acts = {"sigmoid", "tanh", "relu", "identity"};
for (int d : TestSizes()) {
for (bool use_peephole : {true, false}) {
for (auto& act_gate : all_acts) {
for (auto& act_cand : all_acts) {
for (auto& act_cell : all_acts) {
const jit::lstm_attr_t attr(
d, jit::to_kerneltype(act_gate), jit::to_kerneltype(act_cand),
jit::to_kerneltype(act_cell), use_peephole);
auto ref = jit::GetRefer<KT, jit::LSTMTuples<T>>();
EXPECT_TRUE(ref != nullptr);
std::vector<T> xsrc(4 * d), wp(3 * d), ct_1(d);
std::vector<T> ct_ref(d), ht_ref(d), checked(2 * d);
RandomVec<T>(4 * d, xsrc.data(), -2.f, 2.f);
RandomVec<T>(3 * d, wp.data(), -2.f, 2.f);
RandomVec<T>(d, ct_1.data(), -2.f, 2.f);
// x could be changed after compute, so copy to save src
std::vector<T> x(xsrc.size());
std::copy(xsrc.begin(), xsrc.end(), x.begin());
const T* ct_1_data = ct_1.data();
const T* wp_data = wp.data();
T* x_data = x.data();
T* checked_data = checked.data();
T* ct_ref_data = ct_ref.data();
T* ht_ref_data = ht_ref.data();
jit::lstm_t step;
step.gates = x_data;
step.ct_1 = ct_1_data;
step.ct = ct_ref_data;
step.ht = ht_ref_data;
if (use_peephole) {
step.wp = wp_data;
step.checked = checked_data;
}
ref(&step, &attr);
VLOG(10) << attr;
TestAllImpls<KT, jit::LSTMTuples<T>, PlaceType, std::vector<T>,
std::vector<T>, std::vector<T>, std::vector<T>,
std::vector<T>>(attr, xsrc, wp, ct_1, ct_ref, ht_ref,
attr);
}
}
}
}
}
}
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void TestGRUKernel() {
namespace jit = paddle::operators::jit;
VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
std::vector<std::string> all_acts = {"sigmoid", "tanh", "relu", "identity"};
for (int d : TestSizes()) {
for (auto& act_gate : all_acts) {
for (auto& act_cand : all_acts) {
const jit::gru_attr_t attr(d, jit::to_kerneltype(act_gate),
jit::to_kerneltype(act_cand));
auto ref = jit::GetRefer<KT, jit::GRUTuples<T>>();
EXPECT_TRUE(ref != nullptr);
std::vector<T> xsrc(3 * d), ht_1(d), ht_ref(d);
RandomVec<T>(3 * d, xsrc.data(), -2.f, 2.f);
RandomVec<T>(d, ht_1.data(), -2.f, 2.f);
// x could be changed after compute, so copy to save src
std::vector<T> x(xsrc.size());
std::copy(xsrc.begin(), xsrc.end(), x.begin());
const T* ht_1_data = ht_1.data();
T* x_data = x.data();
T* ht_ref_data = ht_ref.data();
jit::gru_t step;
step.gates = x_data;
step.ht_1 = ht_1_data;
step.ht = ht_ref_data;
ref(&step, &attr);
VLOG(10) << attr;
TestAllImpls<KT, jit::GRUTuples<T>, PlaceType, std::vector<T>,
std::vector<T>, std::vector<T>>(attr, xsrc, ht_1, ht_ref,
attr);
}
}
}
}
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void TestNCHW16CMulNCKernel() {
VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
const int n = 3, c = 16 * 4, h = 10, w = 10;
auto ref = jit::GetRefer<KT, jit::NCHW16CMulNCTuples<T>>();
EXPECT_TRUE(ref != nullptr);
int sz = n * c * h * w;
std::vector<T> x(sz), y(n * c), zref(sz);
std::vector<T> ztgt(sz), zjit(sz);
RandomVec<T>(sz, x.data(), -2.f, 2.f);
RandomVec<T>(n * c, y.data(), -2.f, 2.f);
const T* x_data = x.data();
const T* y_data = y.data();
T* zref_data = zref.data();
T* ztgt_data = ztgt.data();
T* zjit_data = zjit.data();
constexpr int simd_width = ZMM_FLOAT_BLOCK;
int C = c / simd_width;
auto tgt = jit::Get<KT, jit::NCHW16CMulNCTuples<T>, PlaceType>(0);
auto jitcode = jit::GetJitCode<KT, jit::NCHW16CMulNCTuples<T>, PlaceType>(0);
EXPECT_TRUE(tgt != nullptr);
if (std::is_same<T, float>::value &&
paddle::platform::MayIUse(paddle::platform::avx512f)) {
EXPECT_TRUE(jitcode != nullptr);
}
for (int ni = 0; ni < n; ni++) {
for (int ci = 0; ci < C; ci++) {
auto ptr_x =
x_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
auto ptr_y = y_data + ni * C * simd_width + ci * simd_width;
auto ptr_zref =
zref_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
auto ptr_ztgt =
ztgt_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
ref(ptr_x, ptr_y, ptr_zref, h, w);
tgt(ptr_x, ptr_y, ptr_ztgt, h, w);
if (jitcode) {
auto ptr_zjit =
zjit_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
jitcode(ptr_x, ptr_y, ptr_zjit, h, w);
}
}
}
ExpectEQ<T>(ztgt_data, zref_data, sz);
if (jitcode) {
ExpectEQ<T>(zjit_data, zref_data, sz);
}
}
// XYZNTuple
TEST(JITKernel, kVMul) {
namespace jit = paddle::operators::jit;
TestXYZNKernel<jit::kVMul, float, paddle::platform::CPUPlace>();
TestXYZNKernel<jit::kVMul, double, paddle::platform::CPUPlace>();
}
TEST(JITKernel, kVAdd) {
namespace jit = paddle::operators::jit;
TestXYZNKernel<jit::kVAdd, float, paddle::platform::CPUPlace>();
TestXYZNKernel<jit::kVAdd, double, paddle::platform::CPUPlace>();
}
TEST(JITKernel, kVAddRelu) {
namespace jit = paddle::operators::jit;
TestXYZNKernel<jit::kVAddRelu, float, paddle::platform::CPUPlace>();
TestXYZNKernel<jit::kVAddRelu, double, paddle::platform::CPUPlace>();
}
TEST(JITKernel, kVSub) {
namespace jit = paddle::operators::jit;
TestXYZNKernel<jit::kVSub, float, paddle::platform::CPUPlace>();
TestXYZNKernel<jit::kVSub, double, paddle::platform::CPUPlace>();
}
// AXYNTuples
TEST(JITKernel, kVScal) {
namespace jit = paddle::operators::jit;
TestAXYNKernel<jit::kVScal, float, paddle::platform::CPUPlace>();
TestAXYNKernel<jit::kVScal, double, paddle::platform::CPUPlace>();
}
TEST(JITKernel, kVAddBias) {
namespace jit = paddle::operators::jit;
TestAXYNKernel<jit::kVAddBias, float, paddle::platform::CPUPlace>();
TestAXYNKernel<jit::kVAddBias, double, paddle::platform::CPUPlace>();
}
// XYNTuples
TEST(JITKernel, kVRelu) {
namespace jit = paddle::operators::jit;
TestXYNKernel<jit::kVRelu, float, paddle::platform::CPUPlace>();
TestXYNKernel<jit::kVRelu, double, paddle::platform::CPUPlace>();
}
TEST(JITKernel, kVIdentity) {
namespace jit = paddle::operators::jit;
TestXYNKernel<jit::kVIdentity, float, paddle::platform::CPUPlace>();
TestXYNKernel<jit::kVIdentity, double, paddle::platform::CPUPlace>();
}
TEST(JITKernel, kVExp) {
namespace jit = paddle::operators::jit;
TestXYNKernel<jit::kVExp, float, paddle::platform::CPUPlace>();
TestXYNKernel<jit::kVExp, double, paddle::platform::CPUPlace>();
}
TEST(JITKernel, kVSigmoid) {
namespace jit = paddle::operators::jit;
TestXYNKernel<jit::kVSigmoid, float, paddle::platform::CPUPlace>();
TestXYNKernel<jit::kVSigmoid, double, paddle::platform::CPUPlace>();
}
TEST(JITKernel, kVTanh) {
namespace jit = paddle::operators::jit;
TestXYNKernel<jit::kVTanh, float, paddle::platform::CPUPlace>();
TestXYNKernel<jit::kVTanh, double, paddle::platform::CPUPlace>();
}
// LSTM
TEST(JITKernel, kLSTMCtHt) {
namespace jit = paddle::operators::jit;
TestLSTMKernel<jit::kLSTMCtHt, float, paddle::platform::CPUPlace>();
TestLSTMKernel<jit::kLSTMCtHt, double, paddle::platform::CPUPlace>();
}
TEST(JITKernel, kLSTMC1H1) {
namespace jit = paddle::operators::jit;
TestLSTMKernel<jit::kLSTMC1H1, float, paddle::platform::CPUPlace>();
TestLSTMKernel<jit::kLSTMC1H1, double, paddle::platform::CPUPlace>();
}
// GRU
TEST(JITKernel, kGRUH1) {
namespace jit = paddle::operators::jit;
TestGRUKernel<jit::kGRUH1, float, paddle::platform::CPUPlace>();
TestGRUKernel<jit::kGRUH1, double, paddle::platform::CPUPlace>();
}
TEST(JITKernel, kGRUHtPart1) {
namespace jit = paddle::operators::jit;
TestGRUKernel<jit::kGRUHtPart1, float, paddle::platform::CPUPlace>();
TestGRUKernel<jit::kGRUHtPart1, double, paddle::platform::CPUPlace>();
}
TEST(JITKernel, kGRUHtPart2) {
namespace jit = paddle::operators::jit;
TestGRUKernel<jit::kGRUHtPart2, float, paddle::platform::CPUPlace>();
TestGRUKernel<jit::kGRUHtPart2, double, paddle::platform::CPUPlace>();
}
TEST(JITKernel, kNCHW16CMulNC) {
namespace jit = paddle::operators::jit;
TestNCHW16CMulNCKernel<jit::kNCHW16CMulNC, float,
paddle::platform::CPUPlace>();
TestNCHW16CMulNCKernel<jit::kNCHW16CMulNC, double,
paddle::platform::CPUPlace>();
}
// TODO(yihua/TJ): add crf decoding and layer norm unit tests
TEST(JITKernel, pool) {
// TODO(TJ): add some test
}
......@@ -19,7 +19,7 @@ limitations under the License. */
#include "paddle/fluid/operators/math/blas.h"
#if !defined(PADDLE_WITH_CUDA) && !defined(_WIN32) && !defined(__APPLE__) && \
!defined(__OSX__)
#include "paddle/fluid/operators/math/jit_kernel.h"
#include "paddle/fluid/operators/jit/kernels.h"
#endif
#include "paddle/fluid/operators/math/math_function.h"
......@@ -229,12 +229,12 @@ class LayerNormKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE_EQ(scale->numel(), right);
PADDLE_ENFORCE_EQ(bias->numel(), right);
const auto& ker = math::jitkernel::KernelPool::Instance()
.template Get<math::jitkernel::LayerNormKernel<T>>(
static_cast<int>(right));
ker->Compute(x.data<T>(), out.data<T>(), mean->data<T>(), var->data<T>(),
scale->data<T>(), bias->data<T>(), static_cast<int>(left),
static_cast<const float>(epsilon));
auto ker =
jit::Get<jit::kLayerNorm, jit::LayerNormTuples<T>, platform::CPUPlace>(
right);
ker(x.data<T>(), out.data<T>(), mean->data<T>(), var->data<T>(),
scale->data<T>(), bias->data<T>(), static_cast<int>(left),
static_cast<const float>(epsilon), right);
#endif
}
};
......
......@@ -50,8 +50,8 @@ template <typename T>
class LRNMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(std::is_same<T, float>::value,
"MKLDNN LRN must use float data.");
const bool is_float_type = std::is_same<T, float>::value;
PADDLE_ENFORCE(is_float_type, "MKLDNN LRN must use float data.");
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
"MKLDNN LRN must use CPUPlace.");
......@@ -132,8 +132,8 @@ template <typename T>
class LRNMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(std::is_same<T, float>::value,
"MKLDNN LRN must use float data.");
const bool is_float_type = std::is_same<T, float>::value;
PADDLE_ENFORCE(is_float_type, "MKLDNN LRN must use float data.");
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
"MKLDNN LRN must use CPUPlace.");
PADDLE_ENFORCE(
......
......@@ -73,12 +73,3 @@ if(WITH_GPU)
endif()
cc_test(concat_test SRCS concat_test.cc DEPS concat_and_split)
cc_test(cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info)
set(JIT_KERNEL_SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_rnn.cc jit_kernel_crf_decode.cc jit_kernel_layer_norm.cc)
set(JIT_KERNEL_DEPS cpu_info cblas gflags enforce)
if(WITH_XBYAK)
list(APPEND JIT_KERNEL_SRCS jit_gen.cc jit_code.cc)
list(APPEND JIT_KERNEL_DEPS xbyak)
endif()
cc_library(jit_kernel SRCS ${JIT_KERNEL_SRCS} DEPS ${JIT_KERNEL_DEPS})
cc_test(jit_kernel_test SRCS jit_kernel_test.cc DEPS jit_kernel)
......@@ -131,9 +131,9 @@ class ConcatFunctor<platform::CUDADeviceContext, T> {
int in_col = input[0].numel() / in_row;
int out_row = in_row, out_col = 0;
framework::Vector<int16_t> inputs_data(in_num * sizeof(T*) / 2);
framework::Vector<int> inputs_col(in_num + 1);
T** inputs_ptr = reinterpret_cast<T**>(inputs_data.data());
std::vector<const T*> inputs_data;
std::vector<int> inputs_col(in_num + 1);
inputs_data.reserve(in_num);
inputs_col[0] = 0;
bool sameShape = true;
......@@ -144,12 +144,9 @@ class ConcatFunctor<platform::CUDADeviceContext, T> {
}
out_col += t_cols;
inputs_col[i + 1] = out_col;
inputs_ptr[i] = const_cast<T*>(input[i].data<T>());
inputs_data.emplace_back(input[i].data<T>());
}
T** dev_ins_data =
reinterpret_cast<T**>(inputs_data.CUDAMutableData(context.GetPlace()));
// computation
// set the thread block and grid according to CurrentDeviceId
const int kThreadsPerBlock = 1024;
......@@ -169,18 +166,32 @@ class ConcatFunctor<platform::CUDADeviceContext, T> {
std::min(max_blocks / grid_cols, std::max(out_row / block_rows, 1));
dim3 grid_size = dim3(grid_cols, grid_rows, 1);
auto tmp_dev_ins_data =
platform::DeviceTemporaryAllocator::Instance().Get(context).Allocate(
inputs_data.size() * sizeof(T*));
memory::Copy(boost::get<platform::CUDAPlace>(context.GetPlace()),
tmp_dev_ins_data->ptr(), platform::CPUPlace(),
static_cast<void*>(inputs_data.data()),
inputs_data.size() * sizeof(T*), context.stream());
T** dev_ins_data = reinterpret_cast<T**>(tmp_dev_ins_data->ptr());
if (sameShape) {
ConcatKernel<<<grid_size, block_size, 0, context.stream()>>>(
dev_ins_data, in_col, out_row, out_col, output->data<T>());
} else {
const int* dev_ins_col_data = inputs_col.CUDAData(context.GetPlace());
auto tmp_dev_ins_col_data =
platform::DeviceTemporaryAllocator::Instance().Get(context).Allocate(
inputs_col.size() * sizeof(int));
memory::Copy(boost::get<platform::CUDAPlace>(context.GetPlace()),
tmp_dev_ins_col_data->ptr(), platform::CPUPlace(),
static_cast<void*>(inputs_col.data()),
inputs_col.size() * sizeof(int), context.stream());
int* dev_ins_col_data = static_cast<int*>(tmp_dev_ins_col_data->ptr());
ConcatKernel<<<grid_size, block_size, 0, context.stream()>>>(
dev_ins_data, dev_ins_col_data, static_cast<int>(inputs_col.size()),
out_row, out_col, output->data<T>());
}
// Wait() must be called because `inputs_data` may be destructed before
// kernel ends
context.Wait();
}
};
......@@ -207,9 +218,8 @@ class SplitFunctor<platform::CUDADeviceContext, T> {
int in_col = 0, in_row = out_row;
bool sameShape = true;
framework::Vector<int16_t> outputs_data(o_num * sizeof(T*) / 2);
framework::Vector<int> outputs_cols(o_num + 1);
T** outputs_ptr = reinterpret_cast<T**>(outputs_data.data());
std::vector<T*> outputs_data(o_num);
std::vector<int> outputs_cols(o_num + 1);
outputs_cols[0] = 0;
for (int i = 0; i < o_num; ++i) {
......@@ -220,15 +230,12 @@ class SplitFunctor<platform::CUDADeviceContext, T> {
in_col += t_col;
outputs_cols[i + 1] = in_col;
if (outputs->at(i) != nullptr) {
outputs_ptr[i] = outputs->at(i)->data<T>();
outputs_data[i] = outputs->at(i)->data<T>();
} else {
outputs_ptr[i] = nullptr;
outputs_data[i] = nullptr;
}
}
T** dev_out_gpu_data =
reinterpret_cast<T**>(outputs_data.CUDAMutableData(context.GetPlace()));
// computation
const int kThreadsPerBlock = 1024;
int block_cols = kThreadsPerBlock;
......@@ -247,18 +254,33 @@ class SplitFunctor<platform::CUDADeviceContext, T> {
std::min(max_blocks / grid_cols, std::max(out_row / block_rows, 1));
dim3 grid_size = dim3(grid_cols, grid_rows, 1);
auto tmp_dev_outs_data =
platform::DeviceTemporaryAllocator::Instance().Get(context).Allocate(
outputs_data.size() * sizeof(T*));
memory::Copy(boost::get<platform::CUDAPlace>(context.GetPlace()),
tmp_dev_outs_data->ptr(), platform::CPUPlace(),
reinterpret_cast<void*>(outputs_data.data()),
outputs_data.size() * sizeof(T*), context.stream());
T** dev_out_gpu_data = reinterpret_cast<T**>(tmp_dev_outs_data->ptr());
if (sameShape) {
SplitKernel<<<grid_size, block_size, 0, context.stream()>>>(
input.data<T>(), in_row, in_col, out0_col, dev_out_gpu_data);
} else {
const int* dev_outs_col_data = outputs_cols.CUDAData(context.GetPlace());
auto tmp_dev_ins_col_data =
platform::DeviceTemporaryAllocator::Instance().Get(context).Allocate(
outputs_cols.size() * sizeof(int));
memory::Copy(boost::get<platform::CUDAPlace>(context.GetPlace()),
tmp_dev_ins_col_data->ptr(), platform::CPUPlace(),
reinterpret_cast<void*>(outputs_cols.data()),
outputs_cols.size() * sizeof(int), context.stream());
int* dev_outs_col_data =
reinterpret_cast<int*>(tmp_dev_ins_col_data->ptr());
SplitKernel<<<grid_size, block_size, 0, context.stream()>>>(
input.data<T>(), in_row, in_col, dev_outs_col_data,
static_cast<int>(outputs_cols.size()), dev_out_gpu_data);
}
// Wait() must be called because `outputs_data` may be destructed before
// kernel ends
context.Wait();
}
};
......
......@@ -17,6 +17,12 @@ limitations under the License. */
#include "paddle/fluid/operators/math/detail/activation_functions.h"
#include "paddle/fluid/operators/math/lstm_compute.h"
#if defined(_WIN32)
#if defined(__AVX2__) || defined(__AVX__)
inline __m256 operator+=(__m256 a, __m256 b) { return _mm256_add_ps(a, b); }
#endif
#endif
namespace paddle {
namespace operators {
namespace math {
......
......@@ -14,8 +14,8 @@ limitations under the License. */
#pragma once
#include "paddle/fluid/operators/jit/kernels.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/jit_kernel.h"
namespace paddle {
namespace operators {
......@@ -30,22 +30,21 @@ inline void FCCompute(const BlasT<DeviceContext, T>& blas, const int M,
return;
}
if (relu) {
const auto& vaddrelu = jitkernel::KernelPool::Instance()
.template Get<jitkernel::VAddReluKernel<T>>(N);
auto compute =
jit::Get<jit::kVAddRelu, jit::XYZNTuples<T>, platform::CPUPlace>(N);
for (int i = 0; i < M; i++) {
T* dst = Y + i * N;
vaddrelu->Compute(B, dst, dst, N);
compute(B, dst, dst, N);
}
} else {
const auto& vadd = jitkernel::KernelPool::Instance()
.template Get<jitkernel::VAddKernel<T>>(N);
auto compute =
jit::Get<jit::kVAdd, jit::XYZNTuples<T>, platform::CPUPlace>(N);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
for (int i = 0; i < M; i++) {
T* dst = Y + i * N;
vadd->Compute(B, dst, dst, N);
compute(B, dst, dst, N);
}
}
}
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/jit_code.h"
#include <stddef.h> // offsetof
#include "paddle/fluid/operators/math/jit_kernel.h" // TODO(TJ): remove me
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace gen {
using namespace platform; // NOLINT
bool VXXJitCode::init(int d, int scalar_index) {
// It's not necessary to use avx512 since it would slow down the frequency
// and this kernel is not compute bound.
return MayIUse(avx) && scalar_index >= 0 && scalar_index <= 2;
}
void VXXJitCode::generate() {
// do not need push stack, and do not need save avx512reg if do not use avx512
int offset = 0;
if (with_relu_) {
vxorps(ymm_zero, ymm_zero, ymm_zero);
}
if (scalar_index_ == 1) {
vbroadcastss(ymm_src1, ptr[param1]);
} else if (scalar_index_ == 2) {
vbroadcastss(ymm_src2, ptr[param2]);
}
for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
if (scalar_index_ != 1) {
vmovups(ymm_src1, ptr[param1 + offset]);
}
if (scalar_index_ != 2) {
vmovups(ymm_src2, ptr[param2 + offset]);
}
if (type_ == operand_type::mul) {
vmulps(ymm_dst, ymm_src1, ymm_src2);
} else if (type_ == operand_type::add) {
vaddps(ymm_dst, ymm_src1, ymm_src2);
}
if (with_relu_) {
vmaxps(ymm_dst, ymm_zero, ymm_dst);
}
vmovups(ptr[param3 + offset], ymm_dst);
offset += sizeof(float) * YMM_FLOAT_BLOCK;
}
int rest = num_ % YMM_FLOAT_BLOCK;
while (rest > 0) {
int block = XMM_FLOAT_BLOCK;
if (rest >= 4) {
block = 4;
if (scalar_index_ != 1) {
vmovups(xmm_src1, ptr[param1 + offset]);
}
if (scalar_index_ != 2) {
vmovups(xmm_src2, ptr[param2 + offset]);
}
} else if (rest >= 2) {
block = 2;
if (scalar_index_ != 1) {
vmovq(xmm_src1, ptr[param1 + offset]);
}
if (scalar_index_ != 2) {
vmovq(xmm_src2, ptr[param2 + offset]);
}
} else {
block = 1;
if (scalar_index_ != 1) {
vmovss(xmm_src1, ptr[param1 + offset]);
}
if (scalar_index_ != 2) {
vmovss(xmm_src2, ptr[param2 + offset]);
}
}
switch (type_) {
case operand_type::mul:
vmulps(xmm_dst, xmm_src1, xmm_src2);
break;
case operand_type::add:
vaddps(xmm_dst, xmm_src1, xmm_src2);
break;
default:
break;
}
if (with_relu_) {
vmaxps(xmm_dst, xmm_zero, xmm_dst);
}
if (rest >= 4) {
vmovups(ptr[param3 + offset], xmm_dst);
} else if (rest >= 2) {
vmovq(ptr[param3 + offset], xmm_dst);
} else {
vmovss(ptr[param3 + offset], xmm_dst);
}
offset += sizeof(float) * block;
rest -= block;
}
ret();
}
const float ALIGN32_BEG exp_float_consts[] ALIGN32_END = {
REPEAT_8TIMES(1.f),
REPEAT_8TIMES(2.f),
REPEAT_8TIMES(0.5f),
REPEAT_8TIMES(EXP_HIG),
REPEAT_8TIMES(EXP_LOW),
REPEAT_8TIMES(CEPHES_LOG2EF),
REPEAT_8TIMES(CEPHES_EXP_C1),
REPEAT_8TIMES(CEPHES_EXP_C2),
REPEAT_8TIMES(CEPHES_EXP_P0),
REPEAT_8TIMES(CEPHES_EXP_P1),
REPEAT_8TIMES(CEPHES_EXP_P2),
REPEAT_8TIMES(CEPHES_EXP_P3),
REPEAT_8TIMES(CEPHES_EXP_P4),
REPEAT_8TIMES(CEPHES_EXP_P5),
REPEAT_8TIMES(EXP_MAX_INPUT),
REPEAT_8TIMES(SIGMOID_THRESHOLD_MAX),
REPEAT_8TIMES(SIGMOID_THRESHOLD_MIN)};
const int ALIGN32_BEG exp_int_0x7f[] ALIGN32_END = {REPEAT_8TIMES(0x7f)};
int ALIGN32_BEG g_tmp_mem[16] ALIGN32_END = {0};
bool VActJitCode::init(int d, operand_type type) {
// TODO(TJ): implement avx512, avx_exp is slower than mkl when d >= 256
return MayIUse(avx);
}
void VActJitCode::generate() {
int offset = 0;
for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
vmovups(ymm_src, ptr[param1 + offset]);
act<ymm_t>(ymm_dst, ymm_src, type_);
vmovups(ptr[param2 + offset], ymm_dst);
offset += sizeof(float) * YMM_FLOAT_BLOCK;
}
int rest = num_ % YMM_FLOAT_BLOCK;
while (rest > 0) {
int block = XMM_FLOAT_BLOCK;
if (rest >= 4) {
block = 4;
vmovups(xmm_src, ptr[param1 + offset]);
} else if (rest >= 2) {
block = 2;
vmovq(xmm_src, ptr[param1 + offset]);
} else {
block = 1;
vmovss(xmm_src, ptr[param1 + offset]);
}
act<xmm_t>(xmm_dst, xmm_src, type_);
if (rest >= 4) {
vmovups(ptr[param2 + offset], xmm_dst);
} else if (rest >= 2) {
vmovq(ptr[param2 + offset], xmm_dst);
} else {
vmovss(ptr[param2 + offset], xmm_dst);
}
offset += sizeof(float) * block;
rest -= block;
}
ret();
}
bool LSTMJitCode::init(int d) { return MayIUse(avx) && d % 8 == 0; }
void LSTMJitCode::generate() {
if (use_peephole_) {
preCode();
}
reg64_t reg_ptr_gates = rax;
reg64_t reg_ptr_ct_1 = r9;
reg64_t reg_ptr_ct = r10;
reg64_t reg_ptr_ht = r11;
reg64_t reg_ptr_wp = r12;
mov(reg_ptr_gates, ptr[param1 + offsetof(lstm_t, gates)]);
mov(reg_ptr_ct_1, ptr[param1 + offsetof(lstm_t, ct_1)]);
mov(reg_ptr_ct, ptr[param1 + offsetof(lstm_t, ct)]);
mov(reg_ptr_ht, ptr[param1 + offsetof(lstm_t, ht)]);
if (use_peephole_) {
mov(reg_ptr_wp, ptr[param1 + offsetof(lstm_t, wp)]);
}
int offset = 0;
int d = num_ * sizeof(float);
for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
/* gates: W_ch, W_ih, W_fh, W_oh */
ymm_t ymm_c = ymm_t(0);
ymm_t ymm_i = ymm_t(1);
ymm_t ymm_f = ymm_t(2);
ymm_t ymm_o = ymm_t(3);
ymm_t ymm_ct_1 = ymm_t(4);
ymm_t ymm_wp0 = ymm_t(5);
ymm_t ymm_wp1 = ymm_t(6);
ymm_t ymm_wp2 = ymm_t(7);
vmovups(ymm_c, ptr[reg_ptr_gates + offset]);
vmovups(ymm_i, ptr[reg_ptr_gates + offset + d]);
vmovups(ymm_f, ptr[reg_ptr_gates + offset + 2 * d]);
vmovups(ymm_o, ptr[reg_ptr_gates + offset + 3 * d]);
if (!compute_c1h1_) {
vmovups(ymm_ct_1, ptr[reg_ptr_ct_1 + offset]);
}
if (use_peephole_) {
vmovups(ymm_wp0, ptr[reg_ptr_wp + offset]);
vmovups(ymm_wp1, ptr[reg_ptr_wp + offset + d]);
vmovups(ymm_wp2, ptr[reg_ptr_wp + offset + 2 * d]);
}
/* C_t = act_cand(c) * act_gate(i) + C_t-1 * act_gate(f) */
// act_cand(c)
act<ymm_t>(ymm_c, ymm_c, act_cand_);
// act_gate(i) or act_gate(ct_1 * wp0 + i)
if (!compute_c1h1_ && use_peephole_) {
vmulps(ymm_wp0, ymm_ct_1, ymm_wp0);
vaddps(ymm_i, ymm_i, ymm_wp0);
}
act<ymm_t>(ymm_i, ymm_i, act_gate_);
vmulps(ymm_c, ymm_c, ymm_i);
if (!compute_c1h1_) {
// act_gate(f) or act_gate(ct_1 * wp1 + f)
if (use_peephole_) {
vmulps(ymm_wp1, ymm_ct_1, ymm_wp1);
vaddps(ymm_f, ymm_f, ymm_wp1);
}
act<ymm_t>(ymm_f, ymm_f, act_gate_);
// ct
vmulps(ymm_f, ymm_f, ymm_ct_1);
vaddps(ymm_f, ymm_f, ymm_c);
}
/* H_t = act_cell(C_t) * act_gate(o) */
// act_cell(C_t)
ymm_t ymm_ct = compute_c1h1_ ? ymm_c : ymm_f;
ymm_t ymm_tmp = ymm_i;
act<ymm_t>(ymm_tmp, ymm_ct, act_cell_);
// act_gate(o) or act_gate(ct * wp2 + o)
if (use_peephole_) {
vmulps(ymm_wp2, ymm_ct, ymm_wp2);
vaddps(ymm_o, ymm_o, ymm_wp2);
}
act<ymm_t>(ymm_o, ymm_o, act_gate_);
// ht
vmulps(ymm_o, ymm_o, ymm_tmp);
// save ct and ht
vmovups(ptr[reg_ptr_ct + offset], ymm_ct);
vmovups(ptr[reg_ptr_ht + offset], ymm_o);
offset += sizeof(float) * YMM_FLOAT_BLOCK;
}
if (use_peephole_) {
postCode();
} else {
ret();
}
}
bool GRUJitCode::init(int d) { return MayIUse(avx) && d % 8 == 0; }
void GRUJitCode::generate() {
reg64_t reg_ptr_gates = rax;
reg64_t reg_ptr_ht_1 = r9;
reg64_t reg_ptr_ht = r10;
mov(reg_ptr_gates, ptr[param1 + offsetof(gru_t, gates)]);
mov(reg_ptr_ht_1, ptr[param1 + offsetof(gru_t, ht_1)]);
mov(reg_ptr_ht, ptr[param1 + offsetof(gru_t, ht)]);
ymm_t ymm_one = ymm_t(0);
if (id_ == 2) {
reg64_t reg_ptr_tmp = r11;
mov(reg_ptr_tmp, reinterpret_cast<size_t>(exp_float_consts));
vmovaps(ymm_one, ptr[reg_ptr_tmp + OFFSET_EXP_ONE]);
}
int offset = 0;
int d = num_ * sizeof(float);
for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
ymm_t ymm_u = ymm_t(1);
ymm_t ymm_r = ymm_t(2);
ymm_t ymm_s = ymm_t(3);
ymm_t ymm_ht_1 = ymm_t(4);
// W: {W_update, W_reset; W_state}
if (id_ == 0 || id_ == 2) {
vmovups(ymm_u, ptr[reg_ptr_gates + offset]);
vmovups(ymm_s, ptr[reg_ptr_gates + offset + 2 * d]);
}
if (id_ == 1) {
vmovups(ymm_r, ptr[reg_ptr_gates + offset + d]);
}
if (id_ == 1 || id_ == 2) {
vmovups(ymm_ht_1, ptr[reg_ptr_ht_1 + offset]);
}
if (id_ == 0) {
// ht = act_gate(u) * act_cand(s)
act<ymm_t>(ymm_u, ymm_u, act_gate_);
act<ymm_t>(ymm_s, ymm_s, act_cand_);
vmulps(ymm_s, ymm_s, ymm_u);
vmovups(ptr[reg_ptr_ht + offset], ymm_s);
} else if (id_ == 1) {
// ht = act_gate(r) * ht_1
act<ymm_t>(ymm_r, ymm_r, act_gate_);
vmulps(ymm_r, ymm_r, ymm_ht_1);
vmovups(ptr[reg_ptr_ht + offset], ymm_r);
} else if (id_ == 2) {
// ht = act_gate(u) * act_cand(s) + (1-act_gate(u)) * ht_1
ymm_t ymm_one_inner = ymm_t(ymm_one.getIdx());
act<ymm_t>(ymm_u, ymm_u, act_gate_);
act<ymm_t>(ymm_s, ymm_s, act_cand_);
vmulps(ymm_s, ymm_s, ymm_u);
vsubps(ymm_u, ymm_one_inner, ymm_u);
vmulps(ymm_u, ymm_ht_1, ymm_u);
vaddps(ymm_u, ymm_s, ymm_u);
vmovups(ptr[reg_ptr_ht + offset], ymm_u);
}
offset += sizeof(float) * YMM_FLOAT_BLOCK;
}
ret();
}
} // namespace gen
} // namespace jitkernel
} // namespace math
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/jit_gen.h"
#include <fstream>
#include <iostream>
#include <sstream>
#include "paddle/fluid/platform/cpu_info.h"
DEFINE_bool(dump_jitcode, false, "Whether to dump the jitcode to file");
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace gen {
constexpr Xbyak::Operand::Code g_abi_regs[] = {
Xbyak::Operand::RBX, Xbyak::Operand::RBP, Xbyak::Operand::R12,
Xbyak::Operand::R13, Xbyak::Operand::R14, Xbyak::Operand::R15};
constexpr int num_g_abi_regs = sizeof(g_abi_regs) / sizeof(g_abi_regs[0]);
void JitCode::preCode() {
for (int i = 0; i < num_g_abi_regs; ++i) {
push(Xbyak::Reg64(g_abi_regs[i]));
}
if (platform::MayIUse(platform::avx512f)) {
mov(reg_EVEX_max_8b_offt, 2 * EVEX_max_8b_offt);
}
}
void JitCode::postCode() {
for (int i = 0; i < num_g_abi_regs; ++i) {
pop(Xbyak::Reg64(g_abi_regs[num_g_abi_regs - 1 - i]));
}
ret();
}
void JitCode::dumpCode(const Xbyak::uint8 *code) const {
if (code) {
static int counter = 0;
std::ostringstream filename;
filename << "paddle_jitcode_" << name() << "." << counter << ".bin";
counter++;
std::ofstream fout(filename.str(), std::ios::out);
if (fout.is_open()) {
fout.write(reinterpret_cast<const char *>(code), getSize());
fout.close();
}
}
}
Xbyak::Address JitCode::EVEX_compress_addr(Xbyak::Reg64 base, int offt,
bool bcast) {
int scale = 0;
if (EVEX_max_8b_offt <= offt && offt < 3 * EVEX_max_8b_offt) {
offt = offt - 2 * EVEX_max_8b_offt;
scale = 1;
} else if (3 * EVEX_max_8b_offt <= offt && offt < 5 * EVEX_max_8b_offt) {
offt = offt - 4 * EVEX_max_8b_offt;
scale = 2;
}
auto re = Xbyak::RegExp() + base + offt;
if (scale) {
re = re + reg_EVEX_max_8b_offt * scale;
}
if (bcast) {
return zword_b[re];
} else {
return zword[re];
}
}
} // namespace gen
} // namespace jitkernel
} // namespace math
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <gflags/gflags.h>
#include <type_traits>
#include "paddle/fluid/platform/macros.h"
#define XBYAK_USE_MMAP_ALLOCATOR
#include "xbyak/xbyak.h"
#include "xbyak/xbyak_util.h"
DECLARE_bool(dump_jitcode);
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace gen {
#define DECLARE_JIT_CODE(codename) \
const char *name() const override { return #codename; }
// Application Binary Interface
constexpr Xbyak::Operand::Code abi_param1(Xbyak::Operand::RDI),
abi_param2(Xbyak::Operand::RSI), abi_param3(Xbyak::Operand::RDX),
abi_param4(Xbyak::Operand::RCX), abi_not_param1(Xbyak::Operand::RCX);
class JitCode : public Xbyak::CodeGenerator {
public:
explicit JitCode(size_t code_size = 256 * 1024, void *code_ptr = nullptr)
: Xbyak::CodeGenerator(code_size, code_ptr) {}
virtual ~JitCode() {}
virtual const char *name() const = 0;
virtual void generate() = 0;
template <typename FUNC>
const FUNC getCode() {
this->generate();
const Xbyak::uint8 *code = CodeGenerator::getCode();
if (FLAGS_dump_jitcode) {
this->dumpCode(code);
}
return reinterpret_cast<const FUNC>(code);
}
DISABLE_COPY_AND_ASSIGN(JitCode);
protected:
Xbyak::Reg64 param1{abi_param1};
const int EVEX_max_8b_offt = 0x200;
const Xbyak::Reg64 reg_EVEX_max_8b_offt = rbp;
void preCode();
void postCode();
void dumpCode(const Xbyak::uint8 *code) const;
void L(const char *label) { Xbyak::CodeGenerator::L(label); }
void L(const Xbyak::Label &label) { Xbyak::CodeGenerator::L(label); }
// Enhanced vector extension
Xbyak::Address EVEX_compress_addr(Xbyak::Reg64 base, int offt,
bool bcast = false);
};
} // namespace gen
} // namespace jitkernel
} // namespace math
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <functional>
#include <memory> // for shared_ptr
#include <string>
#include <unordered_map>
#include "paddle/fluid/operators/math/jit_kernel_impl.h"
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/macros.h"
// Note: Only support on CPU yet.
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
// TODO(TJ): remove me
typedef enum { kLT8, kEQ8, kGT8LT16, kEQ16, kGT16 } jit_block;
class Kernel {
public:
Kernel() = default;
virtual ~Kernel() = default;
// TODO(TJ): below members should be deprecated.
int num_{0};
int end_{0};
int rest_{0};
DISABLE_COPY_AND_ASSIGN(Kernel);
};
class KernelPool {
public:
static KernelPool &Instance();
template <typename Ker, typename... ARGS>
std::shared_ptr<const Ker> Get(ARGS... args);
std::shared_ptr<const Kernel> Get(const std::string &key) const;
private:
KernelPool() = default;
std::unordered_map<std::string, std::shared_ptr<const Kernel>> kers_;
DISABLE_COPY_AND_ASSIGN(KernelPool);
};
template <typename T>
class VMulKernel : public Kernel {
public:
void (*Compute)(const T *, const T *, T *, int);
};
template <typename T>
class VAddKernel : public Kernel {
public:
void (*Compute)(const T *, const T *, T *, int);
};
template <typename T>
class VAddReluKernel : public Kernel {
public:
void (*Compute)(const T *, const T *, T *, int);
};
template <typename T>
class VScalKernel : public Kernel {
public:
// y = a.*x
void (*Compute)(const T *, const T *, T *, int);
};
template <typename T>
class VAddBiasKernel : public Kernel {
public:
// y = a.+x
void (*Compute)(const T *, const T *, T *, int);
};
#ifdef PADDLE_WITH_MKLDNN
template <typename T>
class EltwiseMulnChw16cNCKernel : public Kernel {
public:
// nChw16c = nChw16c .* NC
void (*Compute)(const float *, const float *, float *, int, int);
};
#endif
template <typename T>
class VActKernel : public Kernel {
public:
void (*Compute)(const T *, T *, int);
};
template <typename T>
class VReluKernel : public VActKernel<T> {};
template <typename T>
class VIdentityKernel : public VActKernel<T> {};
template <typename T>
class VExpKernel : public VActKernel<T> {};
template <typename T>
class VSigmoidKernel : public VActKernel<T> {};
template <typename T>
class VTanhKernel : public VActKernel<T> {};
template <typename T>
class LSTMKernel : public Kernel {
public:
// compute c1 and h1 without c0 or h0
void (*ComputeC1H1)(lstm_t *, const lstm_attr_t *);
void (*ComputeCtHt)(lstm_t *, const lstm_attr_t *);
};
template <typename T>
class GRUKernel : public Kernel {
public:
// compute h1 without h0
void (*ComputeH1)(gru_t *, const gru_attr_t *);
void (*ComputeHtPart1)(gru_t *, const gru_attr_t *);
void (*ComputeHtPart2)(gru_t *, const gru_attr_t *);
};
template <typename T>
class CRFDecodeKernel : public Kernel {
public:
virtual void Compute(const int seq_len, const T *x, const T *w, T *alpha,
int *track) const = 0;
};
template <typename T>
class LayerNormKernel : public Kernel {
public:
virtual void Compute(T *x, T *out, T *mean, T *var, const T *scale,
const T *bias, int height,
const float epsilon) const = 0;
};
} // namespace jitkernel
} // namespace math
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
#include "paddle/fluid/operators/math/jit_kernel_refer.h"
#include "paddle/fluid/platform/enforce.h"
#ifdef PADDLE_WITH_XBYAK
#include "paddle/fluid/operators/math/jit_code.h"
#endif
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
#ifdef PADDLE_WITH_MKLML
template <typename T>
void VMulMKL(const T* x, const T* y, T* z, int n);
template <>
void VMulMKL<float>(const float* x, const float* y, float* z, int n) {
platform::dynload::vsMul(n, x, y, z);
}
template <>
void VMulMKL<double>(const double* x, const double* y, double* z, int n) {
platform::dynload::vdMul(n, x, y, z);
}
template <typename T>
void VAddMKL(const T* x, const T* y, T* z, int n);
template <>
void VAddMKL<float>(const float* x, const float* y, float* z, int n) {
platform::dynload::vsAdd(n, x, y, z);
}
template <>
void VAddMKL<double>(const double* x, const double* y, double* z, int n) {
platform::dynload::vdAdd(n, x, y, z);
}
template <typename T>
void VScalMKL(const T* a, const T* x, T* y, int n);
template <>
void VScalMKL<float>(const float* a, const float* x, float* y, int n) {
if (x == y) {
platform::dynload::cblas_sscal(n, *a, y, 1);
} else {
refer::VScal<float>(a, x, y, n);
}
}
template <>
void VScalMKL<double>(const double* a, const double* x, double* y, int n) {
if (x == y) {
platform::dynload::cblas_dscal(n, *a, y, 1);
} else {
refer::VScal<double>(a, x, y, n);
}
}
#endif
/* VMUL JitKernel */
template <typename T>
class VMulKernelImpl : public VMulKernel<T> {
public:
JITKERNEL_DECLARE_STATIC_FUNC;
explicit VMulKernelImpl(int d) : VMulKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
if (useJIT(d)) {
// roughly estimate the size of code
size_t sz = 96 + d / YMM_FLOAT_BLOCK * 4 * 8;
jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::mul, 0, false,
sz > 4096 ? sz : 4096));
this->Compute =
jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
return;
}
#endif
#ifdef PADDLE_WITH_MKLML
if (useMKL(d)) {
this->Compute = VMulMKL<T>;
return;
}
#endif
this->Compute = refer::VMul<T>;
}
#ifdef PADDLE_WITH_XBYAK
private:
std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
#endif
};
#ifdef PADDLE_WITH_XBYAK
template <>
bool VMulKernelImpl<float>::useJIT(int d) {
return gen::VXXJitCode::init(d);
}
#endif
#ifdef PADDLE_WITH_MKLML
template <>
bool VMulKernelImpl<float>::useMKL(int d) {
return platform::MayIUse(platform::avx512f) && d > 512;
}
template <>
bool VMulKernelImpl<double>::useMKL(int d) {
return true;
}
#endif
/* VAdd JitKernel */
template <typename T>
class VAddKernelImpl : public VAddKernel<T> {
public:
JITKERNEL_DECLARE_STATIC_FUNC;
explicit VAddKernelImpl(int d) : VAddKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
if (useJIT(d)) {
size_t sz = 96 + d / YMM_FLOAT_BLOCK * 4 * 8;
jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::add, 0, false,
sz > 4096 ? sz : 4096));
this->Compute =
jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
return;
}
#endif
#ifdef PADDLE_WITH_MKLML
if (useMKL(d)) {
this->Compute = VAddMKL<T>;
return;
}
#endif
this->Compute = refer::VAdd<T>;
}
#ifdef PADDLE_WITH_XBYAK
private:
std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
#endif
};
#ifdef PADDLE_WITH_XBYAK
template <>
bool VAddKernelImpl<float>::useJIT(int d) {
return gen::VXXJitCode::init(d);
}
#endif
#ifdef PADDLE_WITH_MKLML
template <>
bool VAddKernelImpl<float>::useMKL(int d) {
return d > 512;
}
template <>
bool VAddKernelImpl<double>::useMKL(int d) {
return true;
}
#endif
#ifdef PADDLE_WITH_MKLDNN
/* EltwiseMul for nChw16c & NC inputs JitKernel */
template <typename T>
class EltwiseMulnChw16cNCKernelImpl
: public math::jitkernel::EltwiseMulnChw16cNCKernel<T> {
public:
JITKERNEL_DECLARE_STATIC_FUNC;
explicit EltwiseMulnChw16cNCKernelImpl(int d)
: EltwiseMulnChw16cNCKernel<T>() {
using mul_func_t = void (*)(const float*, const float*, float*, int, int);
#ifdef PADDLE_WITH_XBYAK
if (useJIT(d)) {
// roughly estimate the size of code
size_t sz = 96 + d / YMM_FLOAT_BLOCK * 4 * 8;
sz = sz > 4096 ? sz : 4096;
jitcode_.reset(new gen::EltwiseMulnChw16cNC(sz));
this->Compute = (mul_func_t)jitcode_->getCode();
return;
}
#endif
PADDLE_THROW(
"This kernel shouldn't be used in Non-Xbyak, Non-MKL-DNN "
"environemnt");
}
#ifdef PADDLE_WITH_XBYAK
private:
std::unique_ptr<gen::EltwiseMulnChw16cNC> jitcode_{nullptr};
};
template <>
bool EltwiseMulnChw16cNCKernelImpl<float>::useJIT(int d) {
return true;
}
#endif
#endif
/* VAddRelu JitKernel */
template <typename T>
class VAddReluKernelImpl : public VAddReluKernel<T> {
public:
JITKERNEL_DECLARE_STATIC_FUNC;
explicit VAddReluKernelImpl(int d) : VAddReluKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
if (useJIT(d)) {
size_t sz = 96 + d / YMM_FLOAT_BLOCK * 4 * 8;
jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::add, 0, true,
sz > 4096 ? sz : 4096));
this->Compute =
jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
return;
}
#endif
this->Compute = refer::VAddRelu<T>;
}
#ifdef PADDLE_WITH_XBYAK
private:
std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
#endif
};
#ifdef PADDLE_WITH_XBYAK
template <>
bool VAddReluKernelImpl<float>::useJIT(int d) {
return gen::VXXJitCode::init(d);
}
#endif
/* VScal JitKernel */
template <typename T>
class VScalKernelImpl : public VScalKernel<T> {
public:
JITKERNEL_DECLARE_STATIC_FUNC;
explicit VScalKernelImpl(int d) : VScalKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
if (useJIT(d)) {
size_t sz = 96 + d / YMM_FLOAT_BLOCK * 4 * 8;
jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::mul, 1, false,
sz > 4096 ? sz : 4096));
this->Compute =
jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
return;
}
#endif
#ifdef PADDLE_WITH_MKLML
if (useMKL(d)) {
this->Compute = VScalMKL<T>;
return;
}
#endif
this->Compute = refer::VScal<T>;
}
#ifdef PADDLE_WITH_XBYAK
private:
std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
#endif
};
#ifdef PADDLE_WITH_XBYAK
template <>
bool VScalKernelImpl<float>::useJIT(int d) {
return gen::VXXJitCode::init(d, 1);
}
#endif
#ifdef PADDLE_WITH_MKLML
template <>
bool VScalKernelImpl<float>::useMKL(int d) {
return d > 512;
}
template <>
bool VScalKernelImpl<double>::useMKL(int d) {
return true;
}
#endif
/* VAddBias JitKernel */
template <typename T>
class VAddBiasKernelImpl : public VAddBiasKernel<T> {
public:
JITKERNEL_DECLARE_STATIC_FUNC;
explicit VAddBiasKernelImpl(int d) : VAddBiasKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
if (useJIT(d)) {
size_t sz = 96 + d / YMM_FLOAT_BLOCK * 4 * 8;
jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::add, 1, false,
sz > 4096 ? sz : 4096));
this->Compute =
jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
return;
}
#endif
this->Compute = refer::VAddBias<T>;
}
#ifdef PADDLE_WITH_XBYAK
private:
std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
#endif
};
#ifdef PADDLE_WITH_XBYAK
template <>
bool VAddBiasKernelImpl<float>::useJIT(int d) {
return gen::VXXJitCode::init(d, 1);
}
#endif
/* VRelu JitKernel */
template <typename T>
class VReluKernelImpl : public VReluKernel<T> {
public:
JITKERNEL_DECLARE_STATIC_FUNC;
explicit VReluKernelImpl(int d) : VReluKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
if (useJIT(d)) {
size_t sz = 96 /* init size */ +
d / YMM_FLOAT_BLOCK * 4 /* instructions */ *
8 /* average bytes for each instruction */;
jitcode_.reset(new gen::VActJitCode(d, gen::operand_type::relu,
sz > 4096 ? sz : 4096));
this->Compute = jitcode_->getCode<void (*)(const T*, T*, int)>();
return;
}
#endif
this->Compute = refer::VRelu<T>;
}
#ifdef PADDLE_WITH_XBYAK
private:
std::unique_ptr<gen::VActJitCode> jitcode_{nullptr};
#endif
};
#ifdef PADDLE_WITH_XBYAK
template <>
bool VReluKernelImpl<float>::useJIT(int d) {
return gen::VActJitCode::init(d, gen::operand_type::relu);
}
#endif
/* An empty JitKernel */
template <typename T>
class VIdentityKernelImpl : public VIdentityKernel<T> {
public:
JITKERNEL_DECLARE_STATIC_FUNC;
explicit VIdentityKernelImpl(int d) : VIdentityKernel<T>() {
this->Compute = refer::VIdentity<T>;
}
};
REGISTER_JITKERNEL(vmul, VMulKernel);
REGISTER_JITKERNEL(vadd, VAddKernel);
REGISTER_JITKERNEL(vaddrelu, VAddReluKernel);
REGISTER_JITKERNEL(vscal, VScalKernel);
REGISTER_JITKERNEL(vaddbias, VAddBiasKernel);
REGISTER_JITKERNEL(vrelu, VReluKernel);
REGISTER_JITKERNEL(videntity, VIdentityKernel);
#ifdef PADDLE_WITH_MKLDNN
REGISTER_JITKERNEL(eltwise_mul_nchw16c, EltwiseMulnChw16cNCKernel);
#endif
} // namespace jitkernel
} // namespace math
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/jit_kernel.h"
#include <limits>
#include <string>
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
/* CRF Decode JitKernel */
template <typename T, platform::cpu_isa_t isa, jit_block>
class CRFDecodeKernelImpl : public CRFDecodeKernel<T> {
public:
explicit CRFDecodeKernelImpl(int tag_num) : CRFDecodeKernel<T>() {
this->num_ = tag_num;
}
void Compute(const int seq_len, const T* x, const T* w, T* alpha,
int* track) const override {
constexpr int state_trans_base_idx = 2;
for (int i = 0; i < this->num_; ++i) {
alpha[i] = w[i] + x[i];
}
for (int k = 1; k < seq_len; ++k) {
for (int i = 0; i < this->num_; ++i) {
T max_score = -std::numeric_limits<T>::max();
int max_j = 0;
for (int j = 0; j < this->num_; ++j) {
T score = alpha[(k - 1) * this->num_ + j] +
w[(j + state_trans_base_idx) * this->num_ + i];
if (score > max_score) {
max_score = score;
max_j = j;
}
}
alpha[k * this->num_ + i] = max_score + x[k * this->num_ + i];
track[k * this->num_ + i] = max_j;
}
}
}
};
#define INIT_ALPHA(step_size) \
/* Setup the alpha initial value.*/ \
int i_offset = 0; \
int last_offset = this->rest_ - step_size; \
for (int i = 0; i <= this->end_; ++i) { \
/* weights, input and alpha values. */ \
__m256 w_content, x_content, alpha_content; \
/* Load the relevant data into the variables from un-aligned address.*/ \
w_content = _mm256_loadu_ps(w + i_offset); \
x_content = _mm256_loadu_ps(x + i_offset); \
alpha_content = _mm256_add_ps(w_content, x_content); \
_mm256_storeu_ps(alpha + i_offset, alpha_content); \
i_offset += step_size; \
if (i == this->end_ - 1) { \
if (this->rest_ > 0) { \
i_offset += last_offset; \
} else { \
break; \
} \
} \
}
#define UPDATE_ALPHA(step_size) \
/* Update the alpha and track values. */ \
__m256 x_content = _mm256_loadu_ps(x + seq_offset + this->num_ + j_offset); \
max_score = _mm256_add_ps(max_score, x_content); \
_mm256_storeu_ps(alpha + seq_offset + this->num_ + j_offset, max_score); \
_mm256_storeu_si256( \
reinterpret_cast<__m256i*>(track + seq_offset + this->num_ + j_offset), \
max_j); \
/* Calculate the offset of next step*/ \
j_offset += step_size; \
if (j == this->end_ - 1) { \
if (this->rest_ > 0) { \
j_offset += last_offset; \
} else { \
break; \
} \
}
#define INTRIAVX_FLOAT(block) \
template <> \
CRFDecodeKernelImpl<float, platform::avx, block>::CRFDecodeKernelImpl( \
int tag_num) \
: CRFDecodeKernel<float>() { \
this->num_ = tag_num; \
this->end_ = this->num_ / YMM_FLOAT_BLOCK; \
this->rest_ = this->num_ % YMM_FLOAT_BLOCK; \
} \
template <> \
void CRFDecodeKernelImpl<float, platform::avx, block>::Compute( \
const int seq_len, const float* x, const float* w, float* alpha, \
int* track) const { \
INIT_ALPHA(YMM_FLOAT_BLOCK) \
/* Use the column-major strategy to get the location of maximum score.*/ \
int seq_offset = 0; \
constexpr int state_trans_base_idx = 2; \
for (int k = 1; k < seq_len; ++k) { \
int j_offset = 0; \
for (int j = 0; j <= this->end_; ++j) { \
/* Initialize the variables of maximum score and location.*/ \
__m256 max_score = _mm256_set1_ps(-std::numeric_limits<float>::max()); \
__m256i max_j = _mm256_set1_epi32(0); \
/* Calculate the offset of transition_weights.*/ \
int trans_offset = state_trans_base_idx * this->num_ + j_offset; \
for (int i = 0; i < this->num_; ++i) { \
/* Initalize the content of alpha variable with related offset.*/ \
__m256 alpha_content = _mm256_broadcast_ss(alpha + seq_offset + i); \
/* Obtain the content of weights from un-aligned address.*/ \
__m256 w_content = _mm256_loadu_ps(w + trans_offset); \
__m256 score_v = _mm256_add_ps(alpha_content, w_content); \
__m256 mask = _mm256_cmp_ps(score_v, max_score, _CMP_GT_OS); \
/* According to the mask value, update the index of the max_score.*/ \
/* AVX instructions.*/ \
__m128i lo_max_j = _mm256_extractf128_si256(max_j, 0); \
__m128i hi_max_j = _mm256_extractf128_si256(max_j, 1); \
__m128i lo_mask = _mm256_extractf128_si256(*(__m256i*)&mask, 0); \
__m128i hi_mask = _mm256_extractf128_si256(*(__m256i*)&mask, 1); \
lo_max_j = _mm_andnot_si128(lo_mask, lo_max_j); \
hi_max_j = _mm_andnot_si128(hi_mask, hi_max_j); \
lo_mask = _mm_and_si128(lo_mask, _mm_set1_epi32(i)); \
hi_mask = _mm_and_si128(hi_mask, _mm_set1_epi32(i)); \
lo_max_j = _mm_or_si128(lo_mask, lo_max_j); \
hi_max_j = _mm_or_si128(hi_mask, hi_max_j); \
max_j = _mm256_insertf128_si256(max_j, lo_max_j, 0); \
max_j = _mm256_insertf128_si256(max_j, hi_max_j, 1); \
/* AVX done*/ \
/* Update the max_score value.*/ \
max_score = _mm256_max_ps(max_score, score_v); \
trans_offset += this->num_; \
} \
UPDATE_ALPHA(YMM_FLOAT_BLOCK) \
} \
seq_offset += this->num_; \
} \
}
#define INTRIAVX2_FLOAT(isa, block) \
template <> \
CRFDecodeKernelImpl<float, isa, block>::CRFDecodeKernelImpl(int tag_num) \
: CRFDecodeKernel<float>() { \
this->num_ = tag_num; \
this->end_ = this->num_ / YMM_FLOAT_BLOCK; \
this->rest_ = this->num_ % YMM_FLOAT_BLOCK; \
} \
template <> \
void CRFDecodeKernelImpl<float, isa, block>::Compute( \
const int seq_len, const float* x, const float* w, float* alpha, \
int* track) const { \
INIT_ALPHA(YMM_FLOAT_BLOCK) \
/* Use the column-major strategy to get the location of maximum score.*/ \
int seq_offset = 0; \
constexpr int state_trans_base_idx = 2; \
for (int k = 1; k < seq_len; ++k) { \
int j_offset = 0; \
for (int j = 0; j <= this->end_; ++j) { \
/* Initialize the variables of maximum score and location.*/ \
__m256 max_score = _mm256_set1_ps(-std::numeric_limits<float>::max()); \
__m256i max_j = _mm256_set1_epi32(0); \
/* Calculate the offset of transition_weights.*/ \
int trans_offset = state_trans_base_idx * this->num_ + j_offset; \
for (int i = 0; i < this->num_; ++i) { \
/* Initalize the content of alpha variable with related offset.*/ \
__m256 alpha_content = _mm256_broadcast_ss(alpha + seq_offset + i); \
/* Obtain the content of weights from un-aligned address.*/ \
__m256 w_content = _mm256_loadu_ps(w + trans_offset); \
__m256 score_v = _mm256_add_ps(alpha_content, w_content); \
__m256 mask = _mm256_cmp_ps(score_v, max_score, _CMP_GT_OS); \
/* According to the mask value, update the index of the max_score.*/ \
/* AVX2 instructions.*/ \
max_j = _mm256_or_si256( \
_mm256_andnot_si256((__m256i)mask, max_j), \
_mm256_and_si256((__m256i)mask, _mm256_set1_epi32(i))); \
/* Update the max_score value.*/ \
max_score = _mm256_max_ps(max_score, score_v); \
trans_offset += this->num_; \
} \
UPDATE_ALPHA(YMM_FLOAT_BLOCK) \
} \
seq_offset += this->num_; \
} \
}
#define INTRIAVX512_FLOAT(block) \
template <> \
CRFDecodeKernelImpl<float, platform::avx512f, block>::CRFDecodeKernelImpl( \
int tag_num) \
: CRFDecodeKernel<float>() { \
this->num_ = tag_num; \
this->end_ = this->num_ / ZMM_FLOAT_BLOCK; \
this->rest_ = this->num_ % ZMM_FLOAT_BLOCK; \
} \
template <> \
void CRFDecodeKernelImpl<float, platform::avx512f, block>::Compute( \
const int seq_len, const float* x, const float* w, float* alpha, \
int* track) const { \
INIT_ALPHA(ZMM_FLOAT_BLOCK) \
/* Use the column-major strategy to get the location of maximum score.*/ \
int seq_offset = 0; \
constexpr int state_trans_base_idx = 2; \
for (int k = 1; k < seq_len; ++k) { \
int j_offset = 0; \
for (int j = 0; j <= this->end_; ++j) { \
/* Initialize the variables of maximum score and location.*/ \
__m512 max_score = _mm512_set1_ps(-std::numeric_limits<float>::max()); \
__m512i max_j = _mm512_setzero_si512(); \
/* Calculate the offset of transition_weights.*/ \
int trans_offset = state_trans_base_idx * this->num_ + j_offset; \
for (int i = 0; i < this->num_; ++i) { \
/* Initalize the content of alpha variable with related offset.*/ \
__m512 alpha_content = _mm512_set1_ps(*(alpha + seq_offset + i)); \
/* Obtain the content of weights from un-aligned address.*/ \
__m512 w_content = _mm512_loadu_ps(w + trans_offset); \
__m512 score_v = _mm512_add_ps(alpha_content, w_content); \
__mmask16 mask = _mm512_cmp_ps_mask(score_v, max_score, _CMP_GT_OS); \
/* AVX512 instructions.*/ \
max_j = _mm512_mask_set1_epi32(max_j, mask, i); \
/* Update the max_score value.*/ \
max_score = _mm512_max_ps(max_score, score_v); \
trans_offset += this->num_; \
} \
/* Update the alpha and track values.*/ \
__m512 x_content = \
_mm512_loadu_ps(x + seq_offset + this->num_ + j_offset); \
max_score = _mm512_add_ps(max_score, x_content); \
_mm512_storeu_ps(alpha + seq_offset + this->num_ + j_offset, \
max_score); \
_mm512_storeu_si512(reinterpret_cast<__m512i*>(track + seq_offset + \
this->num_ + j_offset), \
max_j); \
/* Calculate the offset of next step*/ \
j_offset += ZMM_FLOAT_BLOCK; \
if (j == this->end_ - 1) { \
if (this->rest_ > 0) { \
j_offset += last_offset; \
} else { \
break; \
} \
} \
} \
seq_offset += this->num_; \
} \
}
#ifdef __AVX__
INTRIAVX_FLOAT(kEQ8);
INTRIAVX_FLOAT(kGT8LT16);
INTRIAVX_FLOAT(kEQ16);
INTRIAVX_FLOAT(kGT16);
#endif
#ifdef __AVX2__
INTRIAVX2_FLOAT(platform::avx2, kEQ8);
INTRIAVX2_FLOAT(platform::avx2, kGT8LT16);
INTRIAVX2_FLOAT(platform::avx2, kEQ16);
INTRIAVX2_FLOAT(platform::avx2, kGT16);
#endif
#ifdef __AVX512F__
INTRIAVX2_FLOAT(platform::avx512f, kEQ8);
INTRIAVX2_FLOAT(platform::avx512f, kGT8LT16);
INTRIAVX512_FLOAT(kEQ16);
INTRIAVX512_FLOAT(kGT16);
#endif
#undef INTRIAVX512_FLOAT
#undef INTRIAVX2_FLOAT
#undef INTRIAVX_FLOAT
#undef INIT_ALPHA
#undef UPDATE_ALPHA
REGISTER_JITKERNEL_DEPRECATED(crf_decode, CRFDecodeKernel);
} // namespace jitkernel
} // namespace math
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
#include "paddle/fluid/operators/math/jit_kernel_refer.h"
#ifdef PADDLE_WITH_XBYAK
#include "paddle/fluid/operators/math/jit_code.h"
#endif
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
#ifdef PADDLE_WITH_MKLML
// try to use MKL to speedup
template <typename T>
void VExpMKL(const T* x, T* y, int n);
template <>
void VExpMKL<float>(const float* x, float* y, int n) {
platform::dynload::vsExp(n, x, y);
}
template <>
void VExpMKL<double>(const double* x, double* y, int n) {
platform::dynload::vdExp(n, x, y);
}
template <typename T>
void VSigmoidMKL(const T* x, T* y, int n) {
const T min = SIGMOID_THRESHOLD_MIN;
const T max = SIGMOID_THRESHOLD_MAX;
for (int i = 0; i < n; ++i) {
y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
y[i] = static_cast<T>(0) - y[i];
}
VExpMKL(y, y, n);
for (int i = 0; i < n; ++i) {
y[i] = static_cast<T>(1) / (static_cast<T>(1) + y[i]);
}
}
template <typename T>
void VTanhMKL(const T* x, T* y, int n) {
for (int i = 0; i < n; ++i) {
y[i] = static_cast<T>(2) * x[i];
}
VSigmoidMKL(y, y, n);
for (int i = 0; i < n; ++i) {
y[i] = static_cast<T>(2) * y[i] - static_cast<T>(1);
}
}
#endif
/* VExp JitKernel */
template <typename T>
class VExpKernelImpl : public VExpKernel<T> {
public:
JITKERNEL_DECLARE_STATIC_FUNC;
explicit VExpKernelImpl(int d) : VExpKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
if (useJIT(d)) {
size_t sz = 96 + d / YMM_FLOAT_BLOCK * 70 * 8;
jitcode_.reset(new gen::VActJitCode(d, gen::operand_type::exp,
sz > 4096 ? sz : 4096));
this->Compute = jitcode_->getCode<void (*)(const T*, T*, int)>();
return;
}
#endif
#ifdef PADDLE_WITH_MKLML
if (useMKL(d)) {
this->Compute = VExpMKL<T>;
return;
}
#endif
this->Compute = refer::VExp<T>;
}
#ifdef PADDLE_WITH_XBYAK
private:
std::unique_ptr<gen::VActJitCode> jitcode_{nullptr};
#endif
};
#ifdef PADDLE_WITH_XBYAK
template <>
bool VExpKernelImpl<float>::useJIT(int d) {
return gen::VActJitCode::init(d, gen::operand_type::exp);
}
#endif
#ifdef PADDLE_WITH_MKLML
template <>
bool VExpKernelImpl<float>::useMKL(int d) {
return d > 512;
}
template <>
bool VExpKernelImpl<double>::useMKL(int d) {
return true;
}
#endif
/* VSigmoid JitKernel */
template <typename T>
class VSigmoidKernelImpl : public VSigmoidKernel<T> {
public:
JITKERNEL_DECLARE_STATIC_FUNC;
explicit VSigmoidKernelImpl(int d) : VSigmoidKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
if (useJIT(d)) {
size_t sz = 96 + d / YMM_FLOAT_BLOCK * 82 * 8;
jitcode_.reset(new gen::VActJitCode(d, gen::operand_type::sigmoid,
sz > 4096 ? sz : 4096));
this->Compute = jitcode_->getCode<void (*)(const T*, T*, int)>();
return;
}
#endif
#ifdef PADDLE_WITH_MKLML
// strictly it's a better impl with MKL, then is refer
if (useMKL(d)) {
this->Compute = VSigmoidMKL<T>;
return;
}
#endif
this->Compute = refer::VSigmoid<T>;
}
#ifdef PADDLE_WITH_XBYAK
private:
std::unique_ptr<gen::VActJitCode> jitcode_{nullptr};
#endif
};
#ifdef PADDLE_WITH_XBYAK
template <>
bool VSigmoidKernelImpl<float>::useJIT(int d) {
return gen::VActJitCode::init(d, gen::operand_type::sigmoid);
}
#endif
#ifdef PADDLE_WITH_MKLML
template <>
bool VSigmoidKernelImpl<float>::useMKL(int d) {
return d > 512;
}
template <>
bool VSigmoidKernelImpl<double>::useMKL(int d) {
return true;
}
#endif
/* VTanh JitKernel */
template <typename T>
class VTanhKernelImpl : public VTanhKernel<T> {
public:
JITKERNEL_DECLARE_STATIC_FUNC;
explicit VTanhKernelImpl(int d) : VTanhKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
if (useJIT(d)) {
size_t sz = 96 + d / YMM_FLOAT_BLOCK * 84 * 8;
jitcode_.reset(new gen::VActJitCode(d, gen::operand_type::tanh,
sz > 4096 ? sz : 4096));
this->Compute = jitcode_->getCode<void (*)(const T*, T*, int)>();
return;
}
#endif
#ifdef PADDLE_WITH_MKLML
// strictly it's a better impl with MKL, then is refer
if (useMKL(d)) {
this->Compute = VTanhMKL<T>;
return;
}
#endif
this->Compute = refer::VTanh<T>;
}
#ifdef PADDLE_WITH_XBYAK
private:
std::unique_ptr<gen::VActJitCode> jitcode_{nullptr};
#endif
};
#ifdef PADDLE_WITH_XBYAK
template <>
bool VTanhKernelImpl<float>::useJIT(int d) {
return gen::VActJitCode::init(d, gen::operand_type::tanh);
}
#endif
#ifdef PADDLE_WITH_MKLML
template <>
bool VTanhKernelImpl<float>::useMKL(int d) {
return d > 512;
}
template <>
bool VTanhKernelImpl<double>::useMKL(int d) {
return true;
}
#endif
REGISTER_JITKERNEL(vexp, VExpKernel);
REGISTER_JITKERNEL(vsigmoid, VSigmoidKernel);
REGISTER_JITKERNEL(vtanh, VTanhKernel);
} // namespace jitkernel
} // namespace math
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <type_traits>
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
#define SIGMOID_THRESHOLD_MIN -40.0
#define SIGMOID_THRESHOLD_MAX 13.0
#define EXP_MAX_INPUT 40.0
#define XMM_FLOAT_BLOCK 4
#define YMM_FLOAT_BLOCK 8
#define ZMM_FLOAT_BLOCK 16
typedef struct {
void* gates; // gates: W_ch, W_ih, W_fh, W_oh
const void* ct_1;
void* ct;
void* ht;
/* weight_peephole and checked data are only used in peephole*/
const void* wp{nullptr};
void* checked{nullptr};
} lstm_t;
typedef struct {
void* gates; // gates: {W_update, W_reset; W_state}
const void* ht_1;
void* ht;
} gru_t;
struct rnn_attr_s {
int d;
std::string act_gate, act_cand;
rnn_attr_s() = default;
rnn_attr_s(int _d, const std::string& _act_gate, const std::string& _act_cand)
: d(_d), act_gate(_act_gate), act_cand(_act_cand) {}
};
struct lstm_attr_s : public rnn_attr_s {
bool use_peephole;
std::string act_cell;
lstm_attr_s() = default;
lstm_attr_s(int _d, const std::string& _act_gate,
const std::string& _act_cand, const std::string& _act_cell,
bool _use_peephole = false)
: rnn_attr_s(_d, _act_gate, _act_cand),
use_peephole(_use_peephole),
act_cell(_act_cell) {}
};
typedef struct rnn_attr_s gru_attr_t;
typedef struct lstm_attr_s lstm_attr_t;
} // namespace jitkernel
} // namespace math
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/jit_kernel.h"
#include <math.h>
#include <limits>
#include <string>
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
/* Layer Norm JitKernel */
template <typename T, platform::cpu_isa_t isa, jit_block>
class LayerNormKernelImpl : public LayerNormKernel<T> {
public:
explicit LayerNormKernelImpl(int right) : LayerNormKernel<T>() {
this->num_ = right;
}
void Compute(T* x, T* out, T* mean, T* var, const T* scale, const T* bias,
int height, const float epsilon) const override {
// get mean
for (int i = 0; i < height; i++) {
T sum = 0.0;
int offset = i * this->num_;
for (int j = 0; j < this->num_; j++) {
sum += x[offset + j];
}
mean[i] = sum / this->num_;
}
// get variance
for (int i = 0; i < height; i++) {
T sum = 0.0;
int offset = i * this->num_;
for (int j = 0; j < this->num_; j++) {
sum += (x[offset + j] - mean[i]) * (x[offset + j] - mean[i]);
}
var[i] = sum / this->num_;
}
for (int i = 0; i < height; i++) {
int offset = i * this->num_;
T sqrt_var = sqrt(var[i] + (T)epsilon);
for (int j = 0; j < this->num_; j++) {
out[offset + j] = (x[offset + j] - mean[i]) / sqrt_var;
}
}
if (scale) {
for (int i = 0; i < height; i++) {
int offset = i * this->num_;
for (int j = 0; j < this->num_; j++) {
out[offset + j] *= scale[j];
}
}
}
if (bias) {
for (int i = 0; i < height; i++) {
int offset = i * this->num_;
for (int j = 0; j < this->num_; j++) {
out[offset + j] += bias[j];
}
}
}
}
};
#define INTRIAVX_FLOAT(isa, jit_block) \
template <> \
LayerNormKernelImpl<float, isa, jit_block>::LayerNormKernelImpl(int right) \
: LayerNormKernel<float>() { \
this->num_ = right; \
this->rest_ = this->num_ % YMM_FLOAT_BLOCK; \
this->end_ = this->num_ - this->rest_; \
} \
template <> \
void LayerNormKernelImpl<float, isa, jit_block>::Compute( \
float* x, float* out, float* mean, float* var, const float* scale, \
const float* bias, int height, const float epsilon) const { \
__m256 sum; \
__m256 mean_vec, var_vec; \
__m128 hi, lo; \
__m256 tmp; \
size_t offset; \
size_t j; \
size_t block = YMM_FLOAT_BLOCK; \
__m256 reverse_num_vec = \
_mm256_div_ps(_mm256_set1_ps(1.0), _mm256_set1_ps(this->num_)); \
__m256 epsilon_vec = _mm256_set1_ps(epsilon); \
int rest_mask = \
((-1) & (~((~0U) >> (sizeof(int) * 8 - (YMM_FLOAT_BLOCK - rest_))))) & \
0x0ff; \
__m256i mask_vec = _mm256_set_epi32( \
rest_mask & 0x80 ? 0xffffffff : 0, rest_mask & 0x40 ? 0xffffffff : 0, \
rest_mask & 0x20 ? 0xffffffff : 0, rest_mask & 0x10 ? 0xffffffff : 0, \
rest_mask & 0x8 ? 0xffffffff : 0, rest_mask & 0x4 ? 0xffffffff : 0, \
rest_mask & 0x2 ? 0xffffffff : 0, rest_mask & 0x1 ? 0xffffffff : 0); \
\
for (int i = 0; i < height; ++i) { \
offset = i * this->num_; \
\
/* get mean */ \
sum = _mm256_setzero_ps(); \
for (j = offset; j < end_ + offset; j += block) { \
sum = _mm256_add_ps(sum, _mm256_loadu_ps((const float*)x + j)); \
} \
if (rest_ != 0) { \
j = offset + this->num_ - block; \
tmp = _mm256_loadu_ps((const float*)x + j); \
tmp = _mm256_blendv_ps(_mm256_setzero_ps(), tmp, *(__m256*)&mask_vec); \
sum = _mm256_add_ps(sum, tmp); \
} \
hi = _mm256_extractf128_ps(sum, 1); \
lo = _mm256_extractf128_ps(sum, 0); \
sum = _mm256_add_ps( \
sum, _mm256_insertf128_ps( \
_mm256_insertf128_ps(_mm256_setzero_ps(), hi, 0), lo, 1)); \
sum = _mm256_hadd_ps(sum, sum); \
sum = _mm256_hadd_ps(sum, sum); \
mean_vec = _mm256_mul_ps(sum, reverse_num_vec); \
mean[i] = *reinterpret_cast<float*>(&mean_vec); \
\
/* get variance */ \
sum = _mm256_setzero_ps(); \
for (j = offset; j < end_ + offset; j += block) { \
tmp = _mm256_sub_ps(_mm256_loadu_ps((const float*)x + j), mean_vec); \
tmp = _mm256_mul_ps(tmp, tmp); \
sum = _mm256_add_ps(sum, tmp); \
} \
if (rest_ != 0) { \
j = offset + this->num_ - block; \
tmp = _mm256_sub_ps(_mm256_loadu_ps((const float*)x + j), mean_vec); \
tmp = _mm256_mul_ps(tmp, tmp); \
tmp = _mm256_blendv_ps(_mm256_setzero_ps(), tmp, *(__m256*)&mask_vec); \
sum = _mm256_add_ps(sum, tmp); \
} \
hi = _mm256_extractf128_ps(sum, 1); \
lo = _mm256_extractf128_ps(sum, 0); \
sum = _mm256_add_ps( \
sum, _mm256_insertf128_ps( \
_mm256_insertf128_ps(_mm256_setzero_ps(), hi, 0), lo, 1)); \
sum = _mm256_hadd_ps(sum, sum); \
sum = _mm256_hadd_ps(sum, sum); \
var_vec = _mm256_mul_ps(sum, reverse_num_vec); \
var[i] = *reinterpret_cast<float*>(&var_vec); \
\
/* get x_norm and calculate output*/ \
for (j = offset; j < end_ + offset; j += block) { \
tmp = _mm256_sub_ps(_mm256_loadu_ps((const float*)x + j), mean_vec); \
tmp = _mm256_div_ps( \
tmp, _mm256_sqrt_ps(_mm256_add_ps(var_vec, epsilon_vec))); \
_mm256_storeu_ps(reinterpret_cast<float*>(out) + j, tmp); \
} \
if (rest_ != 0) { \
j = offset + num_ - block; \
tmp = _mm256_sub_ps(_mm256_loadu_ps((const float*)x + j), mean_vec); \
tmp = _mm256_div_ps( \
tmp, _mm256_sqrt_ps(_mm256_add_ps(var_vec, epsilon_vec))); \
_mm256_storeu_ps(reinterpret_cast<float*>(out) + j, tmp); \
} \
\
if (scale) { \
if (rest_ != 0) { \
j = offset + this->num_ - block; \
tmp = _mm256_loadu_ps((const float*)out + j); \
} \
for (j = offset; j < end_ + offset; j += block) { \
_mm256_storeu_ps( \
reinterpret_cast<float*>(out) + j, \
_mm256_mul_ps( \
_mm256_loadu_ps((const float*)out + j), \
_mm256_loadu_ps((const float*)scale + j - offset))); \
} \
if (rest_ != 0) { \
j = offset + this->num_ - block; \
_mm256_storeu_ps( \
reinterpret_cast<float*>(out) + j, \
_mm256_mul_ps( \
tmp, _mm256_loadu_ps((const float*)scale + j - offset))); \
} \
} \
\
if (bias) { \
if (rest_ != 0) { \
j = offset + this->num_ - block; \
tmp = _mm256_loadu_ps((const float*)out + j); \
} \
for (j = offset; j < end_ + offset; j += block) { \
_mm256_storeu_ps( \
reinterpret_cast<float*>(out) + j, \
_mm256_add_ps( \
_mm256_loadu_ps((const float*)out + j), \
_mm256_loadu_ps((const float*)bias + j - offset))); \
} \
if (rest_ != 0) { \
j = offset + this->num_ - block; \
_mm256_storeu_ps( \
reinterpret_cast<float*>(out) + j, \
_mm256_add_ps( \
tmp, _mm256_loadu_ps((const float*)bias + j - offset))); \
} \
} \
} \
}
#ifdef __AVX__
INTRIAVX_FLOAT(platform::avx, kEQ8);
INTRIAVX_FLOAT(platform::avx, kGT8LT16);
INTRIAVX_FLOAT(platform::avx, kEQ16);
INTRIAVX_FLOAT(platform::avx, kGT16);
INTRIAVX_FLOAT(platform::avx2, kEQ8);
INTRIAVX_FLOAT(platform::avx2, kGT8LT16);
INTRIAVX_FLOAT(platform::avx2, kEQ16);
INTRIAVX_FLOAT(platform::avx2, kGT16);
INTRIAVX_FLOAT(platform::avx512f, kEQ8);
INTRIAVX_FLOAT(platform::avx512f, kGT8LT16);
INTRIAVX_FLOAT(platform::avx512f, kEQ16);
INTRIAVX_FLOAT(platform::avx512f, kGT16);
#endif
#undef INTRIAVX_FLOAT
REGISTER_JITKERNEL_DEPRECATED(layer_norm, LayerNormKernel);
} // namespace jitkernel
} // namespace math
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
#define JITKERNEL_DECLARE_STATIC_FUNC \
static inline std::string name(int d) { \
PADDLE_THROW("DType should be either float or double"); \
} \
static inline bool useJIT(int d) { return false; } \
static inline bool useMKL(int d) { return false; }
#define JITKERNEL_DEFINE_NAME(ker_key, ker_class) \
template <> \
std::string ker_class##Impl<float>::name(int d) { \
std::string key(#ker_key "f"); \
if (useJIT(d)) { \
/* only jit code need record d*/ \
return key + "jit" + std::to_string(d); \
} else if (useMKL(d)) { \
return key + "mkl"; \
} else { \
return key + "any"; \
} \
} \
template <> \
std::string ker_class##Impl<double>::name(int d) { \
std::string key(#ker_key "d"); \
/* jit code do not support double yet*/ \
if (useMKL(d)) { \
return key + "mkl"; \
} else { \
return key + "any"; \
} \
}
#define JITKERNEL_DECLARE(ker_class, ker_dtype) \
template <> \
std::shared_ptr<const ker_class<ker_dtype>> \
KernelPool::Get<ker_class<ker_dtype>, int>(int d)
#define JITKERNEL_FIND_KEY(ker_class, ker_dtype) \
std::string key = ker_class##Impl<ker_dtype>::name(d)
#define JITKERNEL_IMPL(ker_class, ker_dtype) \
p = std::dynamic_pointer_cast<ker_class<ker_dtype>>( \
std::make_shared<ker_class##Impl<ker_dtype>>(d))
#define REGISTER_JITKERNEL_WITH_DTYPE(ker_class, ker_dtype, marco_declare, \
macro_find_key, macro_impl) \
marco_declare(ker_class, ker_dtype) { \
macro_find_key(ker_class, ker_dtype); \
if (kers_.find(key) == kers_.end()) { \
std::shared_ptr<ker_class<ker_dtype>> p; \
macro_impl(ker_class, ker_dtype); \
kers_.insert({key, std::dynamic_pointer_cast<Kernel>(p)}); \
return p; \
} \
return std::dynamic_pointer_cast<const ker_class<ker_dtype>>( \
kers_.at(key)); \
}
#define REGISTER_JITKERNEL_ARGS(ker_key, ker_class, marco_define_name, \
marco_declare, macro_find_key, macro_impl) \
marco_define_name(ker_key, ker_class); \
REGISTER_JITKERNEL_WITH_DTYPE(ker_class, float, marco_declare, \
macro_find_key, macro_impl); \
REGISTER_JITKERNEL_WITH_DTYPE(ker_class, double, marco_declare, \
macro_find_key, macro_impl)
#define REGISTER_JITKERNEL(ker_key, ker_class) \
REGISTER_JITKERNEL_ARGS(ker_key, ker_class, JITKERNEL_DEFINE_NAME, \
JITKERNEL_DECLARE, JITKERNEL_FIND_KEY, \
JITKERNEL_IMPL)
// TODO(TJ): below defines are deprecated, would be remove recently
#define SEARCH_BLOCK(macro_, ker, dtype, isa) \
if (d < YMM_FLOAT_BLOCK) { \
macro_(ker, dtype, isa, kLT8); \
} else if (d == YMM_FLOAT_BLOCK) { \
macro_(ker, dtype, isa, kEQ8); \
} else if (d > YMM_FLOAT_BLOCK && d < ZMM_FLOAT_BLOCK) { \
macro_(ker, dtype, isa, kGT8LT16); \
} else if (d == ZMM_FLOAT_BLOCK) { \
macro_(ker, dtype, isa, kEQ16); \
} else { \
macro_(ker, dtype, isa, kGT16); \
}
#define SEARCH_ISA_BLOCK(macro_, ker, dtype) \
if (platform::MayIUse(platform::avx512f)) { \
SEARCH_BLOCK(macro_, ker, dtype, platform::avx512f); \
} else if (platform::MayIUse(platform::avx2)) { \
SEARCH_BLOCK(macro_, ker, dtype, platform::avx2); \
} else if (platform::MayIUse(platform::avx)) { \
SEARCH_BLOCK(macro_, ker, dtype, platform::avx); \
} else { \
SEARCH_BLOCK(macro_, ker, dtype, platform::isa_any); \
}
#define JITKERNEL_KEY(ker_key, dtype_key) \
#ker_key #dtype_key + std::to_string(d)
#define JITKERNEL_NEW_IMPL_DEPRECATED(ker, dtype, isa, k) \
p = std::dynamic_pointer_cast<ker<dtype>>( \
std::make_shared<ker##Impl<dtype, isa, k>>(d))
#define JITKERNEL_WITH_DTYPE_DEPRECATED(ker_key, ker_class, ker_dtype, \
dtype_key, marco_declare, macro_key, \
macro_impl) \
marco_declare(ker_class, ker_dtype) { \
std::string key = macro_key(ker_key, dtype_key); \
if (kers_.find(key) == kers_.end()) { \
std::shared_ptr<ker_class<ker_dtype>> p; \
SEARCH_ISA_BLOCK(macro_impl, ker_class, ker_dtype); \
kers_.insert({key, std::dynamic_pointer_cast<Kernel>(p)}); \
return p; \
} \
return std::dynamic_pointer_cast<const ker_class<ker_dtype>>( \
kers_.at(key)); \
}
#define REGISTER_JITKERNEL_DEPRECATED(ker_key, ker_class) \
JITKERNEL_WITH_DTYPE_DEPRECATED(ker_key, ker_class, float, f, \
JITKERNEL_DECLARE, JITKERNEL_KEY, \
JITKERNEL_NEW_IMPL_DEPRECATED); \
JITKERNEL_WITH_DTYPE_DEPRECATED(ker_key, ker_class, double, d, \
JITKERNEL_DECLARE, JITKERNEL_KEY, \
JITKERNEL_NEW_IMPL_DEPRECATED)
#define REGISTER_JITKERNEL_ARGS_DEPRECATED(ker_key, ker_class, marco_declare, \
macro_key, macro_impl) \
JITKERNEL_WITH_DTYPE_DEPRECATED(ker_key, ker_class, float, f, marco_declare, \
macro_key, macro_impl); \
JITKERNEL_WITH_DTYPE_DEPRECATED(ker_key, ker_class, double, d, \
marco_declare, macro_key, macro_impl)
#define FOR_EACH_ISA(macro_, block) \
macro_(platform::avx512f, block); \
macro_(platform::avx2, block); \
macro_(platform::avx, block); \
macro_(platform::isa_any, block)
#define FOR_EACH_BLOCK(macro_, isa) \
macro_(isa, kLT8); \
macro_(isa, kEQ8); \
macro_(isa, kGT8LT16); \
macro_(isa, kEQ16); \
macro_(isa, kGT16)
#define FOR_EACH_ISA_BLOCK(macro_) \
FOR_EACH_BLOCK(macro_, platform::avx512f); \
FOR_EACH_BLOCK(macro_, platform::avx2); \
FOR_EACH_BLOCK(macro_, platform::avx); \
FOR_EACH_BLOCK(macro_, platform::isa_any)
} // namespace jitkernel
} // namespace math
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
#include "paddle/fluid/operators/math/jit_kernel_refer.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/macros.h"
#ifdef PADDLE_WITH_XBYAK
#include "paddle/fluid/operators/math/jit_code.h"
#endif
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
/* LSTM JitKernel */
template <typename T>
class LSTMKernelImpl : public LSTMKernel<T> {
public:
static inline std::string name(const lstm_attr_t& attr) {
PADDLE_THROW("DType should be either float or double");
}
static inline bool useJIT(int d) { return false; }
static inline bool useMKL(int d) { return false; }
explicit LSTMKernelImpl(const lstm_attr_t& attr) : LSTMKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
if (useJIT(attr.d)) {
size_t sz = 96 + attr.d / YMM_FLOAT_BLOCK * 90 * 4 * 8;
jitcode0_.reset(new gen::LSTMJitCode(false, attr, sz > 4096 ? sz : 4096));
this->ComputeCtHt =
jitcode0_->getCode<void (*)(lstm_t*, const lstm_attr_t*)>();
jitcode1_.reset(new gen::LSTMJitCode(true, attr, sz > 4096 ? sz : 4096));
this->ComputeC1H1 =
jitcode1_->getCode<void (*)(lstm_t*, const lstm_attr_t*)>();
return;
}
#endif
this->ComputeCtHt = refer::LSTMCtHt<T>;
this->ComputeC1H1 = refer::LSTMC1H1<T>;
}
#ifdef PADDLE_WITH_XBYAK
private:
std::unique_ptr<gen::LSTMJitCode> jitcode0_{nullptr}, jitcode1_{nullptr};
#endif
};
#ifdef PADDLE_WITH_XBYAK
template <>
bool LSTMKernelImpl<float>::useJIT(int d) {
return gen::LSTMJitCode::init(d);
}
#endif
/* Peephole JitKernel */
template <typename T>
class PeepholeKernelImpl : public LSTMKernel<T> {
public:
static inline std::string name(const lstm_attr_t& attr) {
PADDLE_THROW("DType should be either float or double");
}
static inline bool useJIT(int d) { return false; }
static inline bool useMKL(int d) { return false; }
explicit PeepholeKernelImpl(const lstm_attr_t& attr) : LSTMKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
if (useJIT(attr.d)) {
size_t sz = 96 + attr.d / YMM_FLOAT_BLOCK * 96 * 4 * 8;
jitcode0_.reset(new gen::LSTMJitCode(false, attr, sz > 4096 ? sz : 4096));
this->ComputeCtHt =
jitcode0_->getCode<void (*)(lstm_t*, const lstm_attr_t*)>();
jitcode1_.reset(new gen::LSTMJitCode(true, attr, sz > 4096 ? sz : 4096));
this->ComputeC1H1 =
jitcode1_->getCode<void (*)(lstm_t*, const lstm_attr_t*)>();
return;
}
#endif
this->ComputeCtHt = refer::LSTMCtHt<T>;
this->ComputeC1H1 = refer::LSTMC1H1<T>;
}
#ifdef PADDLE_WITH_XBYAK
private:
std::unique_ptr<gen::LSTMJitCode> jitcode0_{nullptr}, jitcode1_{nullptr};
#endif
};
#ifdef PADDLE_WITH_XBYAK
template <>
bool PeepholeKernelImpl<float>::useJIT(int d) {
return gen::LSTMJitCode::init(d);
}
#endif
#define JITKERNEL_DEFINE_NAME_LSTM(ker_key, ker_class) \
template <> \
std::string ker_class##Impl<float>::name(const lstm_attr_t& attr) { \
std::string key(#ker_key "f"); \
key += (attr.act_gate + attr.act_cand + attr.act_cell + \
(attr.use_peephole ? "p" : "n")); \
if (useJIT(attr.d)) { \
/* only jit code need record d*/ \
return key + "jit" + std::to_string(attr.d); \
} else if (useMKL(attr.d)) { \
return key + "mkl"; \
} else { \
return key + "any"; \
} \
} \
template <> \
std::string ker_class##Impl<double>::name(const lstm_attr_t& attr) { \
std::string key(#ker_key "d"); \
/* jit code do not support double yet*/ \
if (useMKL(attr.d)) { \
return key + "mkl"; \
} else { \
return key + "any"; \
} \
}
#define JITKERNEL_DECLARE_LSTM(ker_class, ker_dtype) \
template <> \
std::shared_ptr<const LSTMKernel<ker_dtype>> \
KernelPool::Get<LSTMKernel<ker_dtype>, const lstm_attr_t&>( \
const lstm_attr_t& attr)
#define JITKERNEL_FIND_KEY_LSTM(ker_class, ker_dtype) \
std::string key = ker_class##Impl<ker_dtype>::name(attr)
#define JITKERNEL_LSTM_IMPL(ker, dtype) \
if (attr.use_peephole) { \
p = std::dynamic_pointer_cast<ker<dtype>>( \
std::make_shared<PeepholeKernelImpl<dtype>>(attr)); \
} else { \
p = std::dynamic_pointer_cast<ker<dtype>>( \
std::make_shared<ker##Impl<dtype>>(attr)); \
}
REGISTER_JITKERNEL_ARGS(lstm, LSTMKernel, JITKERNEL_DEFINE_NAME_LSTM,
JITKERNEL_DECLARE_LSTM, JITKERNEL_FIND_KEY_LSTM,
JITKERNEL_LSTM_IMPL);
#undef JITKERNEL_LSTM_IMPL
#undef JITKERNEL_FIND_KEY_LSTM
#undef JITKERNEL_DECLARE_LSTM
#undef JITKERNEL_DEFINE_NAME_LSTM
/* GRU JitKernel */
template <typename T>
class GRUKernelImpl : public GRUKernel<T> {
public:
static inline std::string name(const gru_attr_t& attr) {
PADDLE_THROW("DType should be either float or double");
}
static inline bool useJIT(int d) { return false; }
static inline bool useMKL(int d) { return false; }
explicit GRUKernelImpl(const gru_attr_t& attr) : GRUKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
if (useJIT(attr.d)) {
size_t sz = 96 + attr.d / YMM_FLOAT_BLOCK * 96 * 2 * 8;
jitcode0_.reset(new gen::GRUJitCode(0, attr, sz > 4096 ? sz : 4096));
this->ComputeH1 =
jitcode0_->getCode<void (*)(gru_t*, const gru_attr_t*)>();
jitcode1_.reset(new gen::GRUJitCode(1, attr, sz > 4096 ? sz : 4096));
this->ComputeHtPart1 =
jitcode1_->getCode<void (*)(gru_t*, const gru_attr_t*)>();
jitcode2_.reset(new gen::GRUJitCode(2, attr, sz > 4096 ? sz : 4096));
this->ComputeHtPart2 =
jitcode2_->getCode<void (*)(gru_t*, const gru_attr_t*)>();
return;
}
#endif
this->ComputeH1 = refer::GRUH1<T>;
this->ComputeHtPart1 = refer::GRUHtPart1<T>;
this->ComputeHtPart2 = refer::GRUHtPart2<T>;
}
#ifdef PADDLE_WITH_XBYAK
private:
std::unique_ptr<gen::GRUJitCode> jitcode0_{nullptr}, jitcode1_{nullptr},
jitcode2_{nullptr};
#endif
};
#ifdef PADDLE_WITH_XBYAK
template <>
bool GRUKernelImpl<float>::useJIT(int d) {
return gen::GRUJitCode::init(d);
}
#endif
#define JITKERNEL_DEFINE_NAME_GRU(ker_key, ker_class) \
template <> \
std::string ker_class##Impl<float>::name(const gru_attr_t& attr) { \
std::string key(#ker_key "f"); \
key += (attr.act_gate + attr.act_cand); \
if (useJIT(attr.d)) { \
/* only jit code need record d*/ \
return key + "jit" + std::to_string(attr.d); \
} else if (useMKL(attr.d)) { \
return key + "mkl"; \
} else { \
return key + "any"; \
} \
} \
template <> \
std::string ker_class##Impl<double>::name(const gru_attr_t& attr) { \
std::string key(#ker_key "d"); \
/* jit code do not support double yet*/ \
if (useMKL(attr.d)) { \
return key + "mkl"; \
} else { \
return key + "any"; \
} \
}
#define JITKERNEL_DECLARE_GRU(ker_class, ker_dtype) \
template <> \
std::shared_ptr<const ker_class<ker_dtype>> \
KernelPool::Get<ker_class<ker_dtype>, const gru_attr_t&>( \
const gru_attr_t& attr)
#define JITKERNEL_FIND_KEY_GRU(ker_class, ker_dtype) \
std::string key = ker_class##Impl<ker_dtype>::name(attr)
#define JITKERNEL_GRU_IMPL(ker, dtype) \
p = std::dynamic_pointer_cast<ker<dtype>>( \
std::make_shared<ker##Impl<dtype>>(attr));
REGISTER_JITKERNEL_ARGS(gru, GRUKernel, JITKERNEL_DEFINE_NAME_GRU,
JITKERNEL_DECLARE_GRU, JITKERNEL_FIND_KEY_GRU,
JITKERNEL_GRU_IMPL);
#undef JITKERNEL_GRU_IMPL
#undef JITKERNEL_FIND_KEY_GRU
#undef JITKERNEL_DECLARE_GRU
#undef JITKERNEL_DEFINE_NAME_GRU
} // namespace jitkernel
} // namespace math
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/jit_kernel.h"
#include <cmath> // for exp
#include <cstring> // for memcpy
#include <random>
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
#include "paddle/fluid/operators/math/jit_kernel_refer.h"
#include "paddle/fluid/platform/port.h"
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif
#ifdef __AVX__
#include <immintrin.h>
#endif
constexpr int repeat = 20000;
// TODO(TJ): benchmark and test should be seperated,
// benchmark should verify more sizes
inline double GetCurrentUS() {
struct timeval time;
gettimeofday(&time, NULL);
return 1e+6 * time.tv_sec + time.tv_usec;
}
template <typename T>
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
const T upper = static_cast<T>(20.f)) {
static unsigned int seed = 100;
std::mt19937 rng(seed++);
std::uniform_real_distribution<double> uniform_dist(0, 1);
for (int i = 0; i < n; ++i) {
a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
}
}
#if defined __AVX__ || defined __AVX2__
void vrelu_intri8(const int n, const float* x, float* y) {
__m256 tmp = _mm256_loadu_ps(x);
tmp = _mm256_max_ps(tmp, _mm256_setzero_ps());
_mm256_storeu_ps(y, tmp);
}
#endif
TEST(JitKernel, vrelu) {
namespace jit = paddle::operators::math::jitkernel;
namespace refer = paddle::operators::math::jitkernel::refer;
for (int d : {3, 7, 8, 15, 16, 30, 256, 512}) {
std::vector<float> x(d);
std::vector<float> zref(d), ztgt(d);
RandomVec<float>(d, x.data(), -10.f, 1.f);
const auto& ker =
jit::KernelPool::Instance().template Get<jit::VReluKernel<float>>(d);
const float* x_data = x.data();
float* ztgt_data = ztgt.data();
float* zref_data = zref.data();
auto trefs = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
refer::VRelu<float>(x_data, zref_data, d);
}
auto trefe = GetCurrentUS();
#if defined __AVX__ || defined __AVX2__
if (d == 8) {
auto si0 = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
vrelu_intri8(d, x_data, zref_data);
}
auto si1 = GetCurrentUS();
VLOG(3) << "Vec size 8 intr takes: " << (si1 - si0) / repeat << " us";
}
#endif
auto ttgts = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
ker->Compute(x_data, ztgt_data, d);
}
auto ttgte = GetCurrentUS();
VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
<< " us, tgt takes: " << (ttgte - ttgts) / repeat << " us";
for (int i = 0; i < d; ++i) {
EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
}
}
}
TEST(JitKernel, vaddbias) {
namespace jit = paddle::operators::math::jitkernel;
namespace refer = paddle::operators::math::jitkernel::refer;
for (int d : {7, 8, 15, 16, 30, 64, 100, 128, 256}) {
std::vector<float> x(d);
std::vector<float> zref(d), ztgt(d);
RandomVec<float>(d, x.data(), -2.f, 2.f);
const auto& ker =
jit::KernelPool::Instance().template Get<jit::VAddBiasKernel<float>>(d);
const float a = 2.f;
const float* x_data = x.data();
float* ztgt_data = ztgt.data();
float* zref_data = zref.data();
auto trefs = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
refer::VAddBias<float>(&a, x_data, zref_data, d);
}
auto trefe = GetCurrentUS();
auto ttgts = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
ker->Compute(&a, x_data, ztgt_data, d);
}
auto ttgte = GetCurrentUS();
VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
<< " us, tgt takes: " << (ttgte - ttgts) / repeat << " us";
for (int i = 0; i < d; ++i) {
EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
}
}
}
#ifdef PADDLE_WITH_MKLML
void vexp_mkl(const int n, const float* x, float* y) {
paddle::platform::dynload::vsExp(n, x, y);
}
#endif
TEST(JitKernel, vexp) {
namespace jit = paddle::operators::math::jitkernel;
namespace refer = paddle::operators::math::jitkernel::refer;
for (int d : {1, 3, 4, 6, 7, 8, 12, 15, 16, 20, 30, 128, 256}) {
std::vector<float> x(d);
std::vector<float> zref(d), ztgt(d);
RandomVec<float>(d, x.data(), -2.f, 2.f);
const auto& ker =
jit::KernelPool::Instance().template Get<jit::VExpKernel<float>>(d);
const float* x_data = x.data();
float* ztgt_data = ztgt.data();
float* zref_data = zref.data();
auto trefs = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
refer::VExp<float>(x_data, zref_data, d);
}
auto trefe = GetCurrentUS();
#ifdef PADDLE_WITH_MKLML
auto tmkls = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
vexp_mkl(d, x_data, zref_data);
}
auto tmkle = GetCurrentUS();
#endif
auto ttgts = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
// ker->Compute(x_data, ztgt_data);
ker->Compute(x_data, ztgt_data, d);
}
auto ttgte = GetCurrentUS();
VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
#ifdef PADDLE_WITH_MKLML
<< " us, mkl takes: " << (tmkle - tmkls) / repeat << " us, "
#else
<< " us, "
#endif
<< "tgt takes: " << (ttgte - ttgts) / repeat << " us";
for (int i = 0; i < d; ++i) {
EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
}
}
}
void vsigmoid_better(
const std::shared_ptr<
const paddle::operators::math::jitkernel::VExpKernel<float>>& vexp,
const int n, const float* x, float* y) {
const float min = SIGMOID_THRESHOLD_MIN;
const float max = SIGMOID_THRESHOLD_MAX;
for (int i = 0; i < n; ++i) {
y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
y[i] = 0.f - y[i];
}
vexp->Compute(y, y, n);
for (int i = 0; i < n; ++i) {
y[i] = 1.f / (1.f + y[i]);
}
}
TEST(JitKernel, vsigmoid) {
namespace jit = paddle::operators::math::jitkernel;
namespace refer = paddle::operators::math::jitkernel::refer;
for (int d : {1, 3, 4, 6, 7, 8, 15, 16, 30, 32, 64, 100, 128, 256}) {
std::vector<float> x(d);
std::vector<float> zref(d), ztgt(d);
RandomVec<float>(d, x.data(), -2.f, 2.f);
const auto& ker =
jit::KernelPool::Instance().template Get<jit::VSigmoidKernel<float>>(d);
const auto& vexp =
jit::KernelPool::Instance().template Get<jit::VExpKernel<float>>(d);
const float* x_data = x.data();
float* ztgt_data = ztgt.data();
float* zref_data = zref.data();
auto tmkls = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
vsigmoid_better(vexp, d, x_data, zref_data);
}
auto tmkle = GetCurrentUS();
auto trefs = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
refer::VSigmoid<float>(x_data, zref_data, d);
}
auto trefe = GetCurrentUS();
auto ttgts = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
ker->Compute(x_data, ztgt_data, d);
}
auto ttgte = GetCurrentUS();
VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
<< " us, better(jit exp) takes: " << (tmkle - tmkls) / repeat
<< " us, tgt takes: " << (ttgte - ttgts) / repeat << " us";
for (int i = 0; i < d; ++i) {
EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
}
}
}
void vtanh_better(
const std::shared_ptr<
const paddle::operators::math::jitkernel::VScalKernel<float>>& vscal,
const std::shared_ptr<
const paddle::operators::math::jitkernel::VSigmoidKernel<float>>&
vsigmoid,
const std::shared_ptr<
const paddle::operators::math::jitkernel::VAddBiasKernel<float>>&
vaddbias,
const int n, const float* x, float* y) {
const float a = 2.f, b = -1.f;
vscal->Compute(&a, x, y, n);
vsigmoid->Compute(y, y, n);
vscal->Compute(&a, y, y, n);
vaddbias->Compute(&b, y, y, n);
}
TEST(JitKernel, vtanh) {
namespace jit = paddle::operators::math::jitkernel;
namespace refer = paddle::operators::math::jitkernel::refer;
for (int d : {1, 2, 3, 4, 5, 6, 7, 8, 15, 16, 30, 32, 64, 100, 128, 256}) {
std::vector<float> x(d);
std::vector<float> zref(d), ztgt(d);
RandomVec<float>(d, x.data(), -2.f, 2.f);
const auto& ker =
jit::KernelPool::Instance().template Get<jit::VTanhKernel<float>>(d);
const auto& vscal =
jit::KernelPool::Instance().template Get<jit::VScalKernel<float>>(d);
const auto& vsigmoid =
jit::KernelPool::Instance().template Get<jit::VSigmoidKernel<float>>(d);
const auto& vaddbias =
jit::KernelPool::Instance().template Get<jit::VAddBiasKernel<float>>(d);
const float* x_data = x.data();
float* ztgt_data = ztgt.data();
float* zref_data = zref.data();
auto tmkls = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
vtanh_better(vscal, vsigmoid, vaddbias, d, x_data, zref_data);
}
auto tmkle = GetCurrentUS();
auto trefs = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
refer::VTanh<float>(x_data, zref_data, d);
}
auto trefe = GetCurrentUS();
auto ttgts = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
ker->Compute(x_data, ztgt_data, d);
}
auto ttgte = GetCurrentUS();
VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
<< " us, better(jit exp) takes: " << (tmkle - tmkls) / repeat
<< " us, tgt takes: " << (ttgte - ttgts) / repeat << " us";
for (int i = 0; i < d; ++i) {
EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
}
}
}
void lstm_ctht_better(
const std::shared_ptr<
const paddle::operators::math::jitkernel::VSigmoidKernel<float>>&
vsigmoid_3d,
const std::shared_ptr<
const paddle::operators::math::jitkernel::VTanhKernel<float>>& vtanh_d,
const std::shared_ptr<
const paddle::operators::math::jitkernel::VMulKernel<float>>& vmul_d,
const std::shared_ptr<
const paddle::operators::math::jitkernel::VAddKernel<float>>& vadd_d,
const int d, float* gates, const float* ct_1, float* ct, float* ht) {
int d2 = d * 2;
vsigmoid_3d->Compute(gates + d, gates + d, 3 * d);
vtanh_d->Compute(gates, gates, d);
vmul_d->Compute(gates, gates + d, gates + d, d);
vmul_d->Compute(ct_1, gates + d2, gates + d2, d);
vadd_d->Compute(gates + d, gates + d2, ct, d);
/* H_t = act_cell(C_t) * ogated */
vtanh_d->Compute(ct, gates + d2, d);
vmul_d->Compute(gates + d2, gates + d * 3, ht, d);
}
TEST(JitKernel, lstm) {
namespace jit = paddle::operators::math::jitkernel;
namespace refer = paddle::operators::math::jitkernel::refer;
for (int d : {1, 2, 3, 4, 5, 6, 7, 8, 15, 16, 30, 32, 64, 100}) {
int d4 = d * 4;
int d3 = d * 3;
std::vector<float> x(d4), xref(d4);
std::vector<float> ct_1(d), ct_tgt(d), ht_tgt(d);
std::vector<float> ct_ref(d), ht_ref(d);
RandomVec<float>(d4, x.data(), -2.f, 2.f);
RandomVec<float>(d, ct_1.data(), -2.f, 2.f);
memcpy(xref.data(), x.data(), sizeof(float) * d4);
std::string act_gate = "sigmoid", act_cand = "tanh", act_cell = "tanh";
const jit::lstm_attr_t attr(d, act_gate, act_cand, act_cell, false);
const auto& ker =
jit::KernelPool::Instance()
.template Get<jit::LSTMKernel<float>, const jit::lstm_attr_t&>(
attr);
// below kernels are used to compute refer
const auto& vsigmoid_3d =
jit::KernelPool::Instance().template Get<jit::VSigmoidKernel<float>>(
d3);
const auto& vtanh_d =
jit::KernelPool::Instance().template Get<jit::VTanhKernel<float>>(d);
const auto& vmul_d =
jit::KernelPool::Instance().template Get<jit::VMulKernel<float>>(d);
const auto& vadd_d =
jit::KernelPool::Instance().template Get<jit::VAddKernel<float>>(d);
float* x_data = x.data();
float* xref_data = xref.data();
const float* ct_1_data = ct_1.data();
float* ct_tgt_data = ct_tgt.data();
float* ht_tgt_data = ht_tgt.data();
float* ct_ref_data = ct_ref.data();
float* ht_ref_data = ht_ref.data();
// compute once to check correctness
jit::lstm_t step;
step.gates = xref_data;
step.ct_1 = ct_1_data;
step.ct = ct_ref_data;
step.ht = ht_ref_data;
refer::LSTMCtHt<float>(&step, &attr);
step.gates = x_data;
step.ct = ct_tgt_data;
step.ht = ht_tgt_data;
ker->ComputeCtHt(&step, &attr);
for (int i = 0; i < d; ++i) {
EXPECT_NEAR(ct_tgt_data[i], ct_ref_data[i], 1e-3);
EXPECT_NEAR(ht_tgt_data[i], ht_ref_data[i], 1e-3);
}
auto tmkls = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
lstm_ctht_better(vsigmoid_3d, vtanh_d, vmul_d, vadd_d, d, xref_data,
ct_1_data, ct_ref_data, ht_ref_data);
}
auto tmkle = GetCurrentUS();
auto trefs = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
refer::LSTMCtHt<float>(&step, &attr);
}
auto trefe = GetCurrentUS();
auto ttgts = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
ker->ComputeCtHt(&step, &attr);
}
auto ttgte = GetCurrentUS();
VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
<< " us, better(jit) takes: " << (tmkle - tmkls) / repeat
<< " us, tgt takes: " << (ttgte - ttgts) / repeat << " us";
}
}
#if defined __AVX__ || defined __AVX2__
void vscal_intri8(const int n, const float a, const float* x, float* y) {
__m256 tmp;
__m256 scalar = _mm256_set1_ps(a);
tmp = _mm256_loadu_ps(x);
tmp = _mm256_mul_ps(tmp, scalar);
_mm256_storeu_ps(y, tmp);
}
void vscal_inp_intri8(const int n, const float a, float* x) {
__m256 tmp;
__m256 scalar = _mm256_set1_ps(a);
tmp = _mm256_loadu_ps(x);
tmp = _mm256_mul_ps(tmp, scalar);
_mm256_storeu_ps(x, tmp);
}
#endif
#ifdef PADDLE_WITH_MKLML
void vscal_inp_mkl(const int n, const float a, float* x) {
paddle::platform::dynload::cblas_sscal(n, a, x, 1);
}
#endif
TEST(JitKernel, vscal) {
namespace jit = paddle::operators::math::jitkernel;
namespace refer = paddle::operators::math::jitkernel::refer;
for (int d : {7, 8, 15, 16, 30, 256, 512}) {
std::vector<float> x(d), y(d);
std::vector<float> zref(d), ztgt(d);
RandomVec<float>(d, x.data());
std::memcpy(y.data(), x.data(), sizeof(float) * d);
float a = 2.f;
const auto& ker =
jit::KernelPool::Instance().template Get<jit::VScalKernel<float>>(d);
const float* x_data = x.data();
float* y_data = y.data();
float* ztgt_data = ztgt.data();
float* zref_data = zref.data();
auto trefs = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
refer::VScal<float>(&a, x_data, zref_data, d);
}
auto trefe = GetCurrentUS();
auto trefs1 = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
refer::VScal<float>(&a, y_data, y_data, d);
}
auto trefe1 = GetCurrentUS();
#ifdef PADDLE_WITH_MKLML
auto tmkls = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
vscal_inp_mkl(d, a, y_data);
}
auto tmkle = GetCurrentUS();
#endif
#if defined __AVX__ || defined __AVX2__
if (d == 8) {
auto si0 = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
vscal_intri8(d, a, x_data, zref_data);
}
auto si1 = GetCurrentUS();
auto si2 = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
vscal_inp_intri8(d, a, y_data);
}
auto si3 = GetCurrentUS();
VLOG(3) << "Vec size 8 intr takes: " << (si1 - si0) / repeat
<< " us, inplace: " << (si3 - si2) / repeat << " us";
}
#endif
auto ttgts = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
ker->Compute(&a, x_data, ztgt_data, d);
}
auto ttgte = GetCurrentUS();
auto ttgts1 = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
ker->Compute(&a, y_data, y_data, d);
}
auto ttgte1 = GetCurrentUS();
VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
<< " us, inplace takes: " << (trefe1 - trefs1) / repeat
#ifdef PADDLE_WITH_MKLML
<< " us, mkl inplace takes: " << (tmkle - tmkls) / repeat << " us, "
#else
<< " us, "
#endif
<< "tgt takes: " << (ttgte - ttgts) / repeat
<< "us, tgt inplace takes: " << (ttgte1 - ttgts1) / repeat << " us";
for (int i = 0; i < d; ++i) {
EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
}
}
}
#if defined __AVX__ || defined __AVX2__
void vmul_intri8(const int n, const float* x, const float* y, float* z) {
__m256 tmpx, tmpy;
tmpx = _mm256_loadu_ps(x);
tmpy = _mm256_loadu_ps(y);
tmpx = _mm256_mul_ps(tmpx, tmpy);
_mm256_storeu_ps(z, tmpx);
}
#endif
#ifdef PADDLE_WITH_MKLML
void vmul_mkl(const int n, const float* x, const float* y, float* z) {
paddle::platform::dynload::vsMul(n, x, y, z);
}
#endif
TEST(JitKernel, vmul) {
namespace jit = paddle::operators::math::jitkernel;
namespace refer = paddle::operators::math::jitkernel::refer;
for (int d : {7, 8, 15, 16, 20, 30, 256, 512, 1000, 1024}) {
std::vector<float> x(d), y(d);
std::vector<float> zref(d), ztgt(d);
RandomVec<float>(d, x.data());
RandomVec<float>(d, y.data());
const auto& ker =
jit::KernelPool::Instance().template Get<jit::VMulKernel<float>>(d);
const float* x_data = x.data();
const float* y_data = y.data();
float* ztgt_data = ztgt.data();
float* zref_data = zref.data();
auto trefs = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
refer::VMul<float>(x_data, y_data, zref_data, d);
}
auto trefe = GetCurrentUS();
#ifdef PADDLE_WITH_MKLML
auto tmkls = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
vmul_mkl(d, x_data, y_data, zref_data);
}
auto tmkle = GetCurrentUS();
#endif
#if defined __AVX__ || defined __AVX2__
if (d == 8) {
auto si0 = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
vmul_intri8(d, x_data, y_data, zref_data);
}
auto si1 = GetCurrentUS();
VLOG(3) << "Vec size 8 intr takes: " << (si1 - si0) / repeat;
}
#endif
auto ttgts = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
ker->Compute(x_data, y_data, ztgt_data, d);
}
auto ttgte = GetCurrentUS();
VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
#ifdef PADDLE_WITH_MKLML
<< " us, mkl takes: " << (tmkle - tmkls) / repeat << " us, "
#else
<< " us, "
#endif
<< "tgt takes: " << (ttgte - ttgts) / repeat << " us";
for (int i = 0; i < d; ++i) {
EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
}
}
}
#if defined __AVX__ || defined __AVX2__
void vadd_intri8(const int n, const float* x, const float* y, float* z) {
__m256 tmpx, tmpy;
tmpx = _mm256_loadu_ps(x);
tmpy = _mm256_loadu_ps(y);
tmpx = _mm256_add_ps(tmpx, tmpy);
_mm256_storeu_ps(z, tmpx);
}
#endif
#ifdef PADDLE_WITH_MKLML
void vadd_mkl(const int n, const float* x, const float* y, float* z) {
paddle::platform::dynload::vsAdd(n, x, y, z);
}
#endif
TEST(JitKernel, vadd) {
namespace jit = paddle::operators::math::jitkernel;
namespace refer = paddle::operators::math::jitkernel::refer;
for (int d : {7, 8, 15, 16, 30, 256, 512}) {
std::vector<float> x(d), y(d);
std::vector<float> zref(d), ztgt(d);
RandomVec<float>(d, x.data());
RandomVec<float>(d, y.data());
const auto& ker =
jit::KernelPool::Instance().template Get<jit::VAddKernel<float>>(d);
const float* x_data = x.data();
const float* y_data = y.data();
float* ztgt_data = ztgt.data();
float* zref_data = zref.data();
auto trefs = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
refer::VAdd<float>(x_data, y_data, zref_data, d);
}
auto trefe = GetCurrentUS();
#ifdef PADDLE_WITH_MKLML
auto tmkls = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
vadd_mkl(d, x_data, y_data, zref_data);
}
auto tmkle = GetCurrentUS();
#endif
#if defined __AVX__ || defined __AVX2__
if (d == 8) {
auto si0 = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
vadd_intri8(d, x_data, y_data, zref_data);
}
auto si1 = GetCurrentUS();
VLOG(3) << "Vec size 8 intr takes: " << (si1 - si0) / repeat;
}
#endif
auto ttgts = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
ker->Compute(x_data, y_data, ztgt_data, d);
}
auto ttgte = GetCurrentUS();
VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
#ifdef PADDLE_WITH_MKLML
<< " us, mkl takes: " << (tmkle - tmkls) / repeat << " us, "
#else
<< " us, "
#endif
<< "tgt takes: " << (ttgte - ttgts) / repeat << " us";
for (int i = 0; i < d; ++i) {
EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
}
}
}
void vaddrelu_better(
const std::shared_ptr<
const paddle::operators::math::jitkernel::VAddKernel<float>>& vadd,
const std::shared_ptr<
const paddle::operators::math::jitkernel::VReluKernel<float>>& vrelu,
const float* x, const float* y, float* z, int d) {
vadd->Compute(x, y, z, d);
vrelu->Compute(z, z, d);
}
TEST(JitKernel, vaddrelu) {
namespace jit = paddle::operators::math::jitkernel;
namespace refer = paddle::operators::math::jitkernel::refer;
for (int d : {7, 8, 15, 16, 30, 256, 512}) {
std::vector<float> x(d), y(d);
std::vector<float> zref(d), ztgt(d);
RandomVec<float>(d, x.data());
RandomVec<float>(d, y.data());
const auto& ker =
jit::KernelPool::Instance().template Get<jit::VAddReluKernel<float>>(d);
const auto& vadd =
jit::KernelPool::Instance().template Get<jit::VAddKernel<float>>(d);
const auto& vrelu =
jit::KernelPool::Instance().template Get<jit::VReluKernel<float>>(d);
const float* x_data = x.data();
const float* y_data = y.data();
float* ztgt_data = ztgt.data();
float* zref_data = zref.data();
auto trefs = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
refer::VAddRelu<float>(x_data, y_data, zref_data, d);
}
auto trefe = GetCurrentUS();
auto tmkls = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
vaddrelu_better(vadd, vrelu, x_data, y_data, zref_data, d);
}
auto tmkle = GetCurrentUS();
auto ttgts = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
ker->Compute(x_data, y_data, ztgt_data, d);
}
auto ttgte = GetCurrentUS();
VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
<< " us, better takes: " << (tmkle - tmkls) / repeat << " us, "
<< "tgt takes: " << (ttgte - ttgts) / repeat << " us";
for (int i = 0; i < d; ++i) {
EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
}
}
}
TEST(JitKernel, pool) {
namespace jit = paddle::operators::math::jitkernel;
const int frame_size = 4;
std::string act_gate = "sigmoid", act_cand = "tanh", act_cell = "tanh";
jit::lstm_attr_t attr(frame_size, act_gate, act_cand, act_cell, false);
// empty call it to avoid unknown flag 'use_pinned_memory' on Mac
paddle::platform::MayIUse(paddle::platform::avx);
const auto& plstm1 =
jit::KernelPool::Instance()
.template Get<jit::LSTMKernel<float>, const jit::lstm_attr_t&>(attr);
const auto& plstm2 =
jit::KernelPool::Instance()
.template Get<jit::LSTMKernel<float>, const jit::lstm_attr_t&>(attr);
EXPECT_EQ(plstm1, plstm2);
const auto& peephole =
jit::KernelPool::Instance()
.template Get<jit::LSTMKernel<float>, const jit::lstm_attr_t&>(
jit::lstm_attr_t(frame_size, act_gate, act_cand, act_cell, true));
EXPECT_TRUE(plstm1 != peephole);
const auto& pvmul_f =
jit::KernelPool::Instance().template Get<jit::VMulKernel<float>>(4);
EXPECT_TRUE(std::dynamic_pointer_cast<const jit::Kernel>(plstm2) !=
std::dynamic_pointer_cast<const jit::Kernel>(pvmul_f));
const auto& pvmul_d =
jit::KernelPool::Instance().template Get<jit::VMulKernel<double>>(4);
EXPECT_TRUE(std::dynamic_pointer_cast<const jit::Kernel>(pvmul_f) !=
std::dynamic_pointer_cast<const jit::Kernel>(pvmul_d));
const auto& pvmul_from_key = jit::KernelPool::Instance().Get("vmulfjit4");
#if defined(__APPLE__) || defined(__OSX__) || defined(_WIN32)
EXPECT_EQ(pvmul_from_key, nullptr);
#else
EXPECT_EQ(pvmul_from_key, pvmul_f);
#endif
const auto& pvmul_from_key2 = jit::KernelPool::Instance().Get("vmulfjit");
EXPECT_TRUE(pvmul_from_key2 == nullptr);
}
......@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <set>
#include <unordered_map>
......@@ -252,23 +253,26 @@ elementwise_add_to(const DeviceContext& ctx, BlasT<DeviceContext, T>* blas,
template <typename T>
struct MergeAdd<platform::CPUDeviceContext, T> {
framework::SelectedRows operator()(const platform::CPUDeviceContext& context,
const framework::SelectedRows& input) {
const framework::SelectedRows& input,
const bool sorted_result = false) {
framework::SelectedRows out;
(*this)(context, input, &out);
(*this)(context, input, &out, sorted_result);
return out;
}
void operator()(const platform::CPUDeviceContext& context,
const framework::SelectedRows& input,
framework::SelectedRows* output) {
framework::SelectedRows* output,
const bool sorted_result = false) {
std::vector<const framework::SelectedRows*> inputs;
inputs.push_back(&input);
(*this)(context, inputs, output);
(*this)(context, inputs, output, sorted_result);
}
void operator()(const platform::CPUDeviceContext& context,
const std::vector<const framework::SelectedRows*>& inputs,
framework::SelectedRows* output) {
framework::SelectedRows* output,
const bool sorted_result = false) {
if (inputs.size() == 0) {
VLOG(3) << "no input! return";
return;
......@@ -301,6 +305,9 @@ struct MergeAdd<platform::CPUDeviceContext, T> {
}
std::vector<int64_t> merge_rows(merged_row_set.begin(),
merged_row_set.end());
if (sorted_result) {
std::sort(merge_rows.begin(), merge_rows.end());
}
std::unordered_map<int64_t, size_t> rows_to_id;
for (size_t i = 0; i < merge_rows.size(); ++i) {
rows_to_id[merge_rows[i]] = i;
......
......@@ -266,7 +266,8 @@ __global__ void MergeAddKernel(const T* input, const int64_t* input_rows,
template <typename T>
struct MergeAdd<platform::CUDADeviceContext, T> {
framework::SelectedRows operator()(const platform::CUDADeviceContext& context,
const framework::SelectedRows& input) {
const framework::SelectedRows& input,
const bool sorted_result = false) {
framework::SelectedRows out;
(*this)(context, input, &out);
return out;
......@@ -274,7 +275,8 @@ struct MergeAdd<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& context,
const framework::SelectedRows& input,
framework::SelectedRows* output) {
framework::SelectedRows* output,
const bool sorted_result = false) {
framework::Vector<int64_t> input_rows(input.rows());
if (input_rows.size() == 0) {
return;
......@@ -312,7 +314,8 @@ struct MergeAdd<platform::CUDADeviceContext, T> {
void operator()(const platform::CUDADeviceContext& context,
const std::vector<const framework::SelectedRows*>& inputs,
framework::SelectedRows* output) {
framework::SelectedRows* output,
const bool sorted_result = false) {
if (inputs.size() == 0) {
VLOG(3) << "no input! return";
return;
......
......@@ -81,13 +81,16 @@ struct MergeAdd {
// unary functor, merge by adding duplicated rows in
// the input SelectedRows object.
framework::SelectedRows operator()(const DeviceContext& context,
const framework::SelectedRows& input);
const framework::SelectedRows& input,
const bool sorted_result = false);
void operator()(const DeviceContext& context,
const framework::SelectedRows& input,
framework::SelectedRows* output);
framework::SelectedRows* output,
const bool sorted_result = false);
void operator()(const DeviceContext& context,
const std::vector<const framework::SelectedRows*>& inputs,
framework::SelectedRows* output);
framework::SelectedRows* output,
const bool sorted_result = false);
};
enum class ScatterOps { ASSIGN, ADD, SUB, SUBBY, MUL, DIV, DIVBY };
......
......@@ -92,8 +92,8 @@ template <typename T>
class MeanIoUCUDAOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto& place = *ctx.template device_context<platform::CUDADeviceContext>()
.eigen_device();
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
auto& place = *dev_ctx.eigen_device();
// get input and output tensor
auto* predictions = ctx.Input<Tensor>("Predictions");
auto* labels = ctx.Input<Tensor>("Labels");
......@@ -115,11 +115,11 @@ class MeanIoUCUDAOpKernel : public framework::OpKernel<T> {
auto out_wrong_t = EigenTensor<int, 1>::From(*out_wrong);
auto out_correct_t = EigenTensor<int, 1>::From(*out_correct);
// Temporary tensor
Tensor ious;
float* ious_data = ious.mutable_data<float>(
{static_cast<int64_t>(num_classes)}, ctx.GetPlace());
auto ious_t = EigenTensor<float, 1>::From(ious);
// Temporary memory
auto& allocator =
platform::DeviceTemporaryAllocator::Instance().Get(dev_ctx);
auto tmp_ious_data = allocator.Allocate(num_classes * sizeof(float));
float* ious_data = static_cast<float*>(tmp_ious_data->ptr());
// Init out_wrong, out_correct and out_mean_iou
out_wrong_t.device(place) = out_wrong_t.constant(0);
......@@ -148,7 +148,7 @@ class MeanIoUCUDAOpKernel : public framework::OpKernel<T> {
CountCUDAKernel<T><<<grid, block, cache_size, stream>>>(
num_classes, predictions->numel(), predictions_data, labels_data,
out_wrong_data, out_correct_data);
ctx.device_context().Wait();
ComputeIoUCUDAKernel<<<1, block, 0, stream>>>(num_classes, out_wrong_data,
out_correct_data, ious_data,
out_mean_iou_data);
......
......@@ -16,6 +16,7 @@ limitations under the License. */
#include <thrust/reduce.h>
#include "paddle/fluid/operators/metrics/accuracy_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/gpu_info.h"
namespace paddle {
......@@ -94,6 +95,7 @@ class AccuracyOpCUDAKernel : public framework::OpKernel<T> {
// FIXME(typhoonzero): types of T is for inference data.
// label data is always int64
REGISTER_OP_CUDA_KERNEL(accuracy,
paddle::operators::AccuracyOpCUDAKernel<float>,
paddle::operators::AccuracyOpCUDAKernel<double>);
REGISTER_OP_CUDA_KERNEL(
accuracy, paddle::operators::AccuracyOpCUDAKernel<float>,
paddle::operators::AccuracyOpCUDAKernel<double>,
paddle::operators::AccuracyOpCUDAKernel<paddle::platform::float16>);
......@@ -22,4 +22,6 @@ limitations under the License. */
#pragma once
#include "ops/binary_unnary_op.h"
#include "ops/fill_constant_op.h"
#include "ops/mul_op.h"
#include "ops/top_k_op.h"
......@@ -45,7 +45,6 @@ static void BuildUnaryNode(
auto out = std::make_shared<T>(input);
paddle::platform::SetOutputNode(op, "Out", out, ngb_node_map);
}
} // namespace ngraphs
} // namespace operators
} // namespace paddle
......
/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_NGRAPH
#pragma once
#include <string>
#include <vector>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/platform/ngraph_helper.h"
namespace paddle {
namespace operators {
namespace ngraphs {
void BuildFillConstantNode(
const std::shared_ptr<paddle::framework::OperatorBase>& op,
std::shared_ptr<
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
ngb_node_map) {
auto op_attrs = paddle::framework::AttrReader(op->Attrs());
auto vsp = op_attrs.Get<std::vector<int64_t>>("shape");
ngraph::Shape shape;
for (auto& sp : vsp) {
shape.push_back(sp);
}
float value = op_attrs.Get<float>("value");
ngraph::element::Type ng_dtype;
auto data_type = static_cast<paddle::framework::proto::VarType::Type>(
op_attrs.Get<int>("dtype"));
if (data_type == paddle::framework::proto::VarType::FP32) {
ng_dtype = ngraph::element::f32;
} else if (data_type == paddle::framework::proto::VarType::FP64) {
ng_dtype = ngraph::element::f64;
} else if (data_type == paddle::framework::proto::VarType::INT64) {
ng_dtype = ngraph::element::i64;
} else if (data_type == paddle::framework::proto::VarType::INT32) {
ng_dtype = ngraph::element::i32;
} else if (data_type == paddle::framework::proto::VarType::BOOL) {
ng_dtype = ngraph::element::boolean;
} else {
PADDLE_THROW("unsupported data type: %s", data_type);
}
auto out = ngraph::op::Constant::create(ng_dtype, shape, {value});
paddle::platform::SetOutputNode(op, "Out", out, ngb_node_map);
}
} // namespace ngraphs
} // namespace operators
} // namespace paddle
#endif
/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_NGRAPH
#pragma once
#include <string>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/platform/ngraph_helper.h"
namespace paddle {
namespace operators {
namespace ngraphs {
void BuildTopKNode(
const std::shared_ptr<paddle::framework::OperatorBase>& op,
std::shared_ptr<
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
ngb_node_map) {
auto op_attrs = paddle::framework::AttrReader(op->Attrs());
int k = op_attrs.Get<int>("k");
auto input = paddle::platform::GetInputNode(op, "X", ngb_node_map);
auto top_k = std::make_shared<ngraph::op::TopK>(
input, input->get_shape().size() - 1, ngraph::element::i64, k);
std::shared_ptr<ngraph::Node> indices =
std::make_shared<ngraph::op::GetOutputElement>(top_k, 0);
std::shared_ptr<ngraph::Node> out =
std::make_shared<ngraph::op::GetOutputElement>(top_k, 1);
auto dummy_out = paddle::platform::GetOutputNode(op, "Out", ngb_node_map);
if (dummy_out && dummy_out->get_element_type() != out->get_element_type()) {
out = std::make_shared<ngraph::op::Convert>(out,
dummy_out->get_element_type());
}
paddle::platform::SetOutputNode(op, "Indices", indices, ngb_node_map);
paddle::platform::SetOutputNode(op, "Out", out, ngb_node_map);
}
} // namespace ngraphs
} // namespace operators
} // namespace paddle
#endif
......@@ -157,8 +157,11 @@ struct AdamFunctor<T, CPUAdam> {
}
};
template <typename T, typename Flavour>
struct SparseAdamFunctor;
template <typename T>
struct SparseAdamFunctor {
struct SparseAdamFunctor<T, GPUAdam> {
T beta1_;
T beta2_;
T epsilon_;
......@@ -236,6 +239,106 @@ struct SparseAdamFunctor {
}
};
template <typename T>
struct SparseAdamFunctor<T, CPUAdam> {
T beta1_;
T beta2_;
T epsilon_;
const T* beta1_pow_;
const T* beta2_pow_;
const T* moment1_;
T* moment1_out_;
const T* moment2_;
T* moment2_out_;
const T* lr_;
const T* grad_;
const T* param_;
T* param_out_;
const int64_t* rows_;
int64_t row_numel_;
int64_t row_count_;
SparseAdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
const T* beta2_pow, const T* mom1, T* mom1_out,
const T* mom2, T* mom2_out, const T* lr, const T* grad,
const T* param, T* param_out, const int64_t* rows,
int64_t row_numel, int64_t row_count, bool lazy_mode)
: beta1_(beta1),
beta2_(beta2),
epsilon_(epsilon),
beta1_pow_(beta1_pow),
beta2_pow_(beta2_pow),
moment1_(mom1),
moment1_out_(mom1_out),
moment2_(mom2),
moment2_out_(mom2_out),
lr_(lr),
grad_(grad),
param_(param),
param_out_(param_out),
rows_(rows),
row_numel_(row_numel),
row_count_(row_count) {}
inline HOSTDEVICE void adam_update(size_t i, T g) const {
// The following code is the same as dense
T mom1 = moment1_[i];
T mom2 = moment2_[i];
T lr = *lr_;
T beta1_pow = *beta1_pow_;
T beta2_pow = *beta2_pow_;
T p = param_[i];
// Calculation
lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
mom1 = beta1_ * mom1 + (1 - beta1_) * g;
mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
// Write back to global memory
moment1_out_[i] = mom1;
moment2_out_[i] = mom2;
param_out_[i] = p;
}
inline void operator()(size_t numel) const {
// lr could be reuse
T lr = *lr_;
T beta1_pow = *beta1_pow_;
T beta2_pow = *beta2_pow_;
lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
size_t row_count = numel / row_numel_;
for (size_t i = 0U, j = 0U; i != row_count; ++i) {
if (i == *(rows_ + j)) {
for (size_t k = 0U; k != row_numel_; ++k) {
T g = grad_[j * row_numel_ + k];
adam_update(i * row_numel_ + k, g);
}
++j;
} else {
for (size_t k = 0U; k != row_numel_; ++k) {
T mom1 = moment1_[i * row_numel_ + k];
T mom2 = moment2_[i * row_numel_ + k];
T p = param_[i * row_numel_ + k];
mom1 = beta1_ * mom1;
mom2 = beta2_ * mom2;
p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
// Write back to global memory
moment1_out_[i * row_numel_ + k] = mom1;
moment2_out_[i * row_numel_ + k] = mom2;
param_out_[i * row_numel_ + k] = p;
}
}
}
}
};
template <typename DeviceContext, typename T>
class AdamOpKernel : public framework::OpKernel<T> {
public:
......@@ -331,7 +434,7 @@ class AdamOpKernel : public framework::OpKernel<T> {
.Var()
->GetMutable<framework::SelectedRows>();
merge_func(ctx.template device_context<DeviceContext>(), grad,
grad_merge_var);
grad_merge_var, true);
grad_merge_ptr = grad_merge_var;
}
......@@ -347,32 +450,46 @@ class AdamOpKernel : public framework::OpKernel<T> {
} else {
#endif
rows = grad_merge.rows().data();
#if defined(PADDLE_WITH_CUDA)
}
#endif
auto row_numel = grad_tensor.numel() / grad_merge.rows().size();
SparseAdamFunctor<T> functor(
beta1, beta2, epsilon, beta1_pow.template data<T>(),
beta2_pow.template data<T>(), mom1.template data<T>(),
mom1_out.template mutable_data<T>(ctx.GetPlace()),
mom2.template data<T>(),
mom2_out.template mutable_data<T>(ctx.GetPlace()),
lr.template data<T>(), grad_data, param.template data<T>(),
param_out.template mutable_data<T>(ctx.GetPlace()), rows, row_numel,
grad_merge.rows().size(), lazy_mode);
VLOG(3) << "lazy_mode :" << lazy_mode;
if (lazy_mode && platform::is_cpu_place(ctx.GetPlace())) {
size_t row_count = grad_merge.rows().size();
std::vector<int64_t> cpu_rows(grad_merge.rows());
for (size_t row_index = 0; row_index < row_count; ++row_index) {
for (size_t offset = 0; offset < row_numel; ++offset) {
size_t i = cpu_rows[row_index] * row_numel + offset;
functor.adam_update(i, grad_data[row_index * row_numel + offset]);
if (platform::is_cpu_place(ctx.GetPlace())) {
SparseAdamFunctor<T, CPUAdam> functor(
beta1, beta2, epsilon, beta1_pow.template data<T>(),
beta2_pow.template data<T>(), mom1.template data<T>(),
mom1_out.template mutable_data<T>(ctx.GetPlace()),
mom2.template data<T>(),
mom2_out.template mutable_data<T>(ctx.GetPlace()),
lr.template data<T>(), grad_data, param.template data<T>(),
param_out.template mutable_data<T>(ctx.GetPlace()), rows, row_numel,
grad_merge.rows().size(), lazy_mode);
if (lazy_mode) {
size_t row_count = grad_merge.rows().size();
std::vector<int64_t> cpu_rows(grad_merge.rows());
for (size_t row_index = 0; row_index < row_count; ++row_index) {
for (size_t offset = 0; offset < row_numel; ++offset) {
size_t i = cpu_rows[row_index] * row_numel + offset;
functor.adam_update(i, grad_data[row_index * row_numel + offset]);
}
}
} else {
functor(param.numel());
}
} else {
} else if (platform::is_gpu_place(ctx.GetPlace())) {
SparseAdamFunctor<T, GPUAdam> functor(
beta1, beta2, epsilon, beta1_pow.template data<T>(),
beta2_pow.template data<T>(), mom1.template data<T>(),
mom1_out.template mutable_data<T>(ctx.GetPlace()),
mom2.template data<T>(),
mom2_out.template mutable_data<T>(ctx.GetPlace()),
lr.template data<T>(), grad_data, param.template data<T>(),
param_out.template mutable_data<T>(ctx.GetPlace()), rows, row_numel,
grad_merge.rows().size(), lazy_mode);
// FIXME(minqiyang): remove BinarySearch in GPU later
platform::ForRange<DeviceContext> for_range(
static_cast<const DeviceContext&>(ctx.device_context()),
param.numel());
......
......@@ -14,8 +14,11 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/optimizers/momentum_op.h"
#include "paddle/fluid/platform/float16.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
momentum, ops::MomentumOpKernel<paddle::platform::CUDADeviceContext, float>,
ops::MomentumOpKernel<paddle::platform::CUDADeviceContext, double>);
ops::MomentumOpKernel<paddle::platform::CUDADeviceContext, double>,
ops::MomentumOpKernel<paddle::platform::CUDADeviceContext,
paddle::platform::float16>);
......@@ -237,7 +237,8 @@ class SparseMomentumFunctor<T, UseNesterov> {
inline HOSTDEVICE void operator()(size_t i) {
auto row_idx =
math::BinarySearch<int64_t>(rows_, row_height_, i / row_numel_);
T g = row_idx >= 0 ? g_[row_idx * row_numel_ + i % row_numel_] : 0;
T g = row_idx >= 0 ? g_[row_idx * row_numel_ + i % row_numel_]
: static_cast<T>(0);
// put memory access in register
const T p = p_[i];
const T lr = lr_[0];
......@@ -282,7 +283,8 @@ class SparseMomentumFunctor<T, NoNesterov> {
inline HOSTDEVICE void operator()(size_t i) {
auto row_idx =
math::BinarySearch<int64_t>(rows_, row_height_, i / row_numel_);
T g = row_idx >= 0 ? g_[row_idx * row_numel_ + i % row_numel_] : 0;
T g = row_idx >= 0 ? g_[row_idx * row_numel_ + i % row_numel_]
: static_cast<T>(0);
// put memory access in register
const T p = p_[i];
const T lr = lr_[0];
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/py_func_op.h"
#include <set>
#include <string>
#include <vector>
#include "Python.h"
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
namespace py = ::pybind11;
static std::vector<py::object> g_py_callables;
const char kForwardPythonCallableId[] = "forward_callable_id";
const char kBackwardPythonCallableId[] = "backward_callable_id";
const char kPyFuncBackwardSkipVars[] = "backward_skip_vars";
size_t AppendPythonCallableObjectAndReturnId(const py::object &py_obj) {
g_py_callables.emplace_back(py_obj);
return g_py_callables.size() - 1;
}
// Return py::object* instead of py::object
// Returning py::object would cause reference count increasing
// but without GIL, reference count in Python may not be safe
static py::object *GetPythonCallableObject(size_t i) {
PADDLE_ENFORCE_LT(i, g_py_callables.size(), "Invalid python callable id");
return &g_py_callables[i];
}
static std::string PythonFuncDebugString(const py::object &py_callable) {
py::gil_scoped_acquire guard;
std::string wrapper_func_str = py::str(py_callable);
auto inner_func = py_callable.attr("_func");
std::string inner_func_str = py::str(inner_func);
return inner_func_str + " wrapped by " + wrapper_func_str;
}
static void CallPythonFunc(py::object *callable,
const std::vector<framework::LoDTensor> &ins,
std::vector<framework::LoDTensor *> *outs) {
py::gil_scoped_acquire guard;
py::tuple in_args(ins.size());
for (size_t i = 0; i < ins.size(); ++i) {
in_args[i] = ins[i].IsInitialized() ? py::cast(ins[i]) : py::cast(nullptr);
}
auto ret = (*callable)(*in_args);
auto ret_tuple = py::cast<py::tuple>(ret);
size_t ret_num = py::len(ret_tuple);
size_t out_num = outs->size();
if (UNLIKELY(ret_num != out_num)) {
// Python function has no return values or returns None
// In this case, ret_num = 1 && ret[0] == None && out_num should be 0
// Otherwise, ret_num must be equal to out_num
PADDLE_ENFORCE(
ret_num == 1 && out_num == 0 &&
py::cast<framework::LoDTensor *>(ret_tuple[0]) == nullptr,
"Output number not match. Expected %d, actual %d", out_num, ret_num);
}
for (size_t i = 0; i < out_num; ++i) {
auto *out = (*outs)[i];
if (out == nullptr) {
continue;
}
try {
auto *py_out_tensor = py::cast<framework::LoDTensor *>(ret_tuple[i]);
PADDLE_ENFORCE_NOT_NULL(py_out_tensor,
"Output tensor %d should not be nullptr", i);
out->set_lod(py_out_tensor->lod());
out->ShareDataWith(*py_out_tensor);
} catch (py::cast_error &) {
PADDLE_THROW("The %d-th output must be LoDTensor", i);
}
}
}
class PyFuncOpVarTypInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op,
framework::BlockDesc *block) const override {
auto &outs = op.Outputs();
bool has_out = (outs.count("Out") > 0 && !outs.at("Out").empty());
auto &ins = op.Inputs();
bool has_in = (ins.count("X") > 0 && !ins.at("X").empty());
/**
* X or Out can be empty, so that py_func can be more flexible
* to support Python functions with no input or no output
*/
PADDLE_ENFORCE(has_in || has_out, "Input(X) or Output(Out) must exist");
PADDLE_ENFORCE_GE(boost::get<int>(op.GetAttr(kForwardPythonCallableId)), 0,
"Function id cannot be less than 0");
if (!has_out) return;
/**
* Traverse all outputs, check if name of any output ends with @GRAD.
* If found, set its shape, dtype, lod_level, type to be the same as
* the corresponding forward variable
*/
const std::string kGradVarSuffix = framework::kGradVarSuffix;
auto &out_var_names = outs.at("Out");
for (auto &out_var_name : out_var_names) {
if (out_var_name == framework::kEmptyVarName ||
out_var_name.size() < kGradVarSuffix.size()) {
continue;
}
size_t len = out_var_name.size() - kGradVarSuffix.size();
if (out_var_name.substr(len) == kGradVarSuffix) {
auto fwd_var_name = out_var_name.substr(0, len);
auto *out_var_desc = block->FindVarRecursive(out_var_name);
auto *fwd_var_desc = block->FindVarRecursive(fwd_var_name);
PADDLE_ENFORCE_NOT_NULL(out_var_desc, "Backward variable %s not found",
out_var_name);
PADDLE_ENFORCE_NOT_NULL(fwd_var_desc, "Forward variable %s not found",
fwd_var_name);
VLOG(10) << "Infer var_desc of Output(" << out_var_name << ") as Input("
<< fwd_var_name << ")";
out_var_desc->SetShape(fwd_var_desc->GetShape());
out_var_desc->SetDataType(fwd_var_desc->GetDataType());
out_var_desc->SetLoDLevel(fwd_var_desc->GetLoDLevel());
out_var_desc->SetType(fwd_var_desc->GetType());
}
}
}
};
class PyFuncOpShapeInference : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(!ctx->IsRuntime(),
"Infer shape cannot be called in runtime.");
}
};
class PyFuncOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "Inputs of py_func op.").AsDuplicable();
AddOutput("Out", "Outputs of py_func op").AsDuplicable();
AddAttr<int>(kForwardPythonCallableId,
"Index of registered forward Python function.")
.SetDefault(0);
AddAttr<int>(kBackwardPythonCallableId,
"Index of registered backward Python function.")
.SetDefault(-1);
AddAttr<std::vector<std::string>>(kPyFuncBackwardSkipVars,
"Unused forward in/out in backward op")
.SetDefault(std::vector<std::string>());
AddComment(R"DOC("PyFunc Op")DOC");
}
};
/**
* There are several benefits when backward op of py_func op is
* still py_func op.
*
* - Less codes are needed, since codes of backward is almost
* the same as forward.
*
* - To support high order derivative, so that py_func is
* infinite-order differentiable
*/
class PyFuncOpGradDescMaker : public framework::GradOpDescMakerBase {
private:
static std::string DebugString(const std::vector<std::string> &strs) {
if (strs.empty()) return "";
std::string ret = strs[0];
for (size_t i = 1; i < strs.size(); ++i) {
ret += " ";
ret += strs[i];
}
return ret;
}
public:
using framework::GradOpDescMakerBase::GradOpDescMakerBase;
std::vector<std::unique_ptr<framework::OpDesc>> operator()() const override {
auto &fwd_attrs = Attrs();
// no backward op when backward_id is less than 0
if (boost::get<int>(fwd_attrs.at(kBackwardPythonCallableId)) < 0) {
return {};
}
std::unique_ptr<framework::OpDesc> grad_op(new framework::OpDesc());
grad_op->SetType("py_func");
framework::AttributeMap bwd_attrs;
bwd_attrs[kForwardPythonCallableId] =
fwd_attrs.at(kBackwardPythonCallableId);
bwd_attrs[kBackwardPythonCallableId] = -1;
grad_op->SetAttrMap(bwd_attrs);
// All forward inputs
auto fwd_ins = Input("X");
// All forward outputs
auto fwd_outs = Output("Out");
// For memory reused, some inputs/output in forward part may be not needed
// in backward part. Skipping these vars helps to save memory
auto &backward_skip_var_list = boost::get<std::vector<std::string>>(
fwd_attrs.at(kPyFuncBackwardSkipVars));
std::unordered_set<std::string> backward_skip_var_set(
backward_skip_var_list.begin(), backward_skip_var_list.end());
std::vector<std::string> bwd_ins;
bwd_ins.reserve(fwd_ins.size() + fwd_outs.size());
for (auto &fwd_in : fwd_ins) {
if (backward_skip_var_set.count(fwd_in) == 0) {
bwd_ins.emplace_back(fwd_in);
}
}
for (auto &fwd_out : fwd_outs) {
if (backward_skip_var_set.count(fwd_out) == 0) {
bwd_ins.emplace_back(fwd_out);
}
}
// Backward OG cannot be skipped
// But in Python side, if OG is kEmptyVarName, input tensor would be None
auto fwd_out_grads = OutputGrad("Out");
bwd_ins.reserve(bwd_ins.size() + fwd_out_grads.size());
bwd_ins.insert(bwd_ins.end(), fwd_out_grads.begin(), fwd_out_grads.end());
// Backward IG cannot be skipped
// But in Python side, if IG is not needed, users can just return None
auto bwd_outs = InputGrad("X", false);
VLOG(10) << "PyFunc Grad Input: " << DebugString(bwd_ins);
VLOG(10) << "PyFunc Grad Output: " << DebugString(bwd_outs);
grad_op->SetInput("X", bwd_ins);
grad_op->SetOutput("Out", bwd_outs);
std::vector<std::unique_ptr<framework::OpDesc>> ret(1);
ret[0] = std::move(grad_op);
return ret;
}
};
class PyFuncOp : public framework::OperatorBase {
public:
using framework::OperatorBase::OperatorBase;
protected:
void RunImpl(const framework::Scope &scope,
const platform::Place &place) const override {
auto &in_arg_names = Inputs("X");
auto &out_arg_names = Outputs("Out");
std::vector<framework::LoDTensor> inputs(in_arg_names.size());
for (size_t i = 0; i < in_arg_names.size(); ++i) {
auto in_var = scope.FindVar(in_arg_names[i]);
// When py_func op is called in backward, in_var may be null
if (in_var == nullptr) {
continue;
}
auto &in_tensor = in_var->Get<framework::LoDTensor>();
if (!in_tensor.IsInitialized()) {
continue;
}
if (platform::is_gpu_place(in_tensor.place())) {
framework::TensorCopySync(in_tensor, platform::CPUPlace(), &inputs[i]);
} else {
inputs[i].ShareDataWith(in_tensor);
}
inputs[i].set_lod(in_tensor.lod());
}
std::vector<framework::LoDTensor *> outputs(out_arg_names.size());
for (size_t i = 0; i < out_arg_names.size(); ++i) {
auto *out_var = scope.FindVar(out_arg_names[i]);
outputs[i] =
out_var ? out_var->GetMutable<framework::LoDTensor>() : nullptr;
}
auto callable_id = static_cast<size_t>(Attr<int>(kForwardPythonCallableId));
auto *py_callable = GetPythonCallableObject(callable_id);
VLOG(10) << "Call Python function with id " << callable_id << ": "
<< PythonFuncDebugString(*py_callable);
CallPythonFunc(py_callable, inputs, &outputs);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(py_func, ops::PyFuncOp, ops::PyFuncOpMaker,
ops::PyFuncOpVarTypInference, ops::PyFuncOpShapeInference,
ops::PyFuncOpGradDescMaker);
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "pybind11/pybind11.h"
namespace paddle {
namespace operators {
size_t AppendPythonCallableObjectAndReturnId(const ::pybind11::object &py_obj);
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "mkldnn.hpp"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/quantize_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"
namespace paddle {
namespace operators {
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using platform::to_void_cast;
using Tensor = framework::Tensor;
using framework::DataLayout;
using mkldnn::stream;
using platform::GetMKLDNNFormat;
template <typename T>
class QuantOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<Tensor>("Input");
auto scale_data = ctx.Attr<float>("Scale");
auto* output = ctx.Output<Tensor>("Output");
auto& dev_ctx =
ctx.template device_context<platform::MKLDNNDeviceContext>();
const auto& engine = dev_ctx.GetEngine();
std::vector<primitive> pipeline;
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
const T* input_data = input->data<T>();
mkldnn::primitive_attr attri;
int mask = 0;
attri.set_output_scales(mask, {scale_data});
auto src_md = platform::MKLDNNMemDesc({src_tz}, memory::data_type::f32,
input->format());
auto src_pd = mkldnn::memory::primitive_desc(src_md, engine);
auto src_memory =
std::make_shared<mkldnn::memory>(src_pd, to_void_cast<T>(input_data));
std::shared_ptr<primitive::at> src_memory_p =
std::shared_ptr<primitive::at>(new primitive::at(*src_memory));
bool is_negative = ctx.Attr<bool>("is_negative_input");
std::shared_ptr<mkldnn::memory::primitive_desc> dst_pd;
std::shared_ptr<mkldnn::memory> dst_memory;
if (is_negative) {
platform::ConvMKLDNNHandler::SetDstMemory<int8_t>(
ctx, output, dst_tz, engine, dst_pd, dst_memory);
} else {
platform::ConvMKLDNNHandler::SetDstMemory<uint8_t>(
ctx, output, dst_tz, engine, dst_pd, dst_memory);
}
auto reorder_pd = std::shared_ptr<reorder::primitive_desc>(
new reorder::primitive_desc(src_pd, *dst_pd, attri));
auto reorder_p = std::shared_ptr<reorder>(
new reorder(*reorder_pd, *src_memory_p, *dst_memory));
pipeline.push_back(*reorder_p);
stream(stream::kind::eager).submit(pipeline).wait();
output->set_layout(DataLayout::kMKLDNN);
output->set_format(GetMKLDNNFormat(*dst_memory));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
// TODO(Xiaoli) Support FP32->S8 quantization.
REGISTER_OP_KERNEL(quantize, MKLDNN, ::paddle::platform::CPUPlace,
ops::QuantOpKernel<float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/quantize_op.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle {
namespace operators {
framework::OpKernelType QuantOp::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
framework::LibraryType library_ = framework::LibraryType::kMKLDNN;
framework::DataLayout layout_ = framework::DataLayout::kMKLDNN;
return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
ctx.GetPlace(), layout_, library_);
}
void QuantOpMaker::Make() {
AddInput("Input", "input data");
AddOutput("Output", "output data");
AddAttr<bool>("is_negative_input",
"(bool, default false) Only used in mkldnn INT8 kernel")
.SetDefault(false);
AddAttr<float>("Scale", "scale data").SetDefault({1.0f});
AddComment(R"DOC(This op will quantize data from FP32 to INT8)DOC");
}
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(quantize, ops::QuantOp, ops::QuantOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
......@@ -12,28 +12,35 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/jit_kernel.h"
#include <iostream>
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
KernelPool& KernelPool::Instance() {
static thread_local KernelPool g_jit_kernels;
return g_jit_kernels;
}
using framework::OpKernelType;
using framework::Tensor;
class QuantOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
std::shared_ptr<const Kernel> KernelPool::Get(const std::string& key) const {
if (kers_.find(key) == kers_.end()) {
return nullptr;
void InferShape(framework::InferShapeContext* ctx) const override {
ctx->SetOutputDim("Output", ctx->GetInputDim("Input"));
ctx->ShareLoD("Input", /*->*/ "Output");
}
return kers_.at(key);
}
} // namespace jitkernel
} // namespace math
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override;
};
class QuantOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override;
};
} // namespace operators
} // namespace paddle
......@@ -52,7 +52,7 @@ class SequenceMaskOpMaker : public framework::OpProtoAndCheckerMaker {
"The maximum length of the sequence. If maxlen < 0, maxlen "
"= max(Input(X)).")
.SetDefault(-1)
.AddCustomChecker([](int &v) {
.AddCustomChecker([](const int &v) {
PADDLE_ENFORCE(v < 0 || v >= 1,
"Attr(maxlen) must be less than 0 or larger than 1");
});
......
......@@ -63,7 +63,7 @@ class SplitLoDTensorOp : public framework::OperatorBase {
}
auto *mask_data = cpu_mask->data<bool>();
std::vector<std::vector<CopyRange>> copy_ranges(mask_dim[0]);
std::vector<std::vector<CopyRange>> copy_ranges(2);
// set out_true/out_false lod
for (size_t t = 0; t < 2; t++) {
......
......@@ -21,7 +21,7 @@ class TopkOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of TopkOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
......@@ -44,12 +44,25 @@ class TopkOp : public framework::OperatorWithKernel {
ctx->ShareLoD("X", "Out");
ctx->ShareLoD("X", "Indices");
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
framework::LibraryType library_{framework::LibraryType::kPlain};
framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
ctx.device_context(), layout_, library_);
}
};
class TopkOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor) The input of Topk op");
AddInput("K",
"(Tensor) Number of top elements to look for along "
"the last dimension (along each row for matrices).")
.AsDispensable();
AddOutput("Out", "(Tensor) The output tensor of Topk op");
AddOutput("Indices", "(Tensor) The indices of Topk elements of input");
AddComment(R"DOC(
......
......@@ -16,6 +16,7 @@ limitations under the License. */
#include "paddle/fluid/operators/top_k_op.h"
#include "paddle/fluid/platform/assert.h"
#include "paddle/fluid/platform/cuda_device_function.h"
#include "paddle/fluid/platform/float16.h"
namespace paddle {
namespace operators {
......@@ -150,7 +151,7 @@ __device__ __forceinline__ void ThreadGetTopK(Pair<T> topk[], int* beam,
if (k < MaxLength - (*beam)) {
topk[k] = topk[k + *beam];
} else {
topk[k].set(-INFINITY, -1);
topk[k].set(-static_cast<T>(INFINITY), -1);
}
}
if (!(*is_empty)) {
......@@ -160,7 +161,7 @@ __device__ __forceinline__ void ThreadGetTopK(Pair<T> topk[], int* beam,
}
*max = topk[MaxLength - 1];
if ((*max).v == -1) *is_empty = true;
if ((*max).v == -static_cast<T>(1)) *is_empty = true;
*beam = 0;
}
}
......@@ -181,7 +182,7 @@ __device__ __forceinline__ void ThreadGetTopK(Pair<T> topk[], int* beam,
if (k < MaxLength - *beam) {
topk[k] = topk[k + *beam];
} else {
topk[k].set(-INFINITY, -1);
topk[k].set(-static_cast<T>(INFINITY), -1);
}
}
if (!(*is_empty)) {
......@@ -278,7 +279,7 @@ __global__ void KeMatrixTopK(T* output, int output_stride, int64_t* indices,
bool firststep = true;
for (int j = 0; j < MaxLength; j++) {
topk[j].set(-INFINITY, -1);
topk[j].set(-static_cast<T>(INFINITY), -1);
}
while (top_num) {
ThreadGetTopK<T, MaxLength, BlockSize>(
......@@ -326,6 +327,17 @@ class TopkOpCUDAKernel : public framework::OpKernel<T> {
auto* indices = ctx.Output<Tensor>("Indices");
size_t k = static_cast<int>(ctx.Attr<int>("k"));
auto* k_t = ctx.Input<Tensor>("K");
if (k_t) {
Tensor k_host;
framework::TensorCopySync(*k_t, platform::CPUPlace(), &k_host);
k = k_host.data<int>()[0];
framework::DDim output_dims = output->dims();
output_dims[output_dims.size() - 1] = k;
output->Resize(output_dims);
indices->Resize(output_dims);
}
const T* input_data = input->data<T>();
T* output_data = output->mutable_data<T>(ctx.GetPlace());
// FIXME(typhoonzero): data is always converted to type T?
......@@ -362,5 +374,7 @@ class TopkOpCUDAKernel : public framework::OpKernel<T> {
} // namespace operators
} // namespace paddle
REGISTER_OP_CUDA_KERNEL(top_k, paddle::operators::TopkOpCUDAKernel<float>,
paddle::operators::TopkOpCUDAKernel<double>);
REGISTER_OP_CUDA_KERNEL(
top_k, paddle::operators::TopkOpCUDAKernel<float>,
paddle::operators::TopkOpCUDAKernel<double>,
paddle::operators::TopkOpCUDAKernel<paddle::platform::float16>);
......@@ -37,8 +37,16 @@ class TopkKernel : public framework::OpKernel<T> {
auto* input = ctx.Input<Tensor>("X");
auto* output = ctx.Output<Tensor>("Out");
auto* indices = ctx.Output<Tensor>("Indices");
// k is determined by Attr
const size_t k = static_cast<int>(ctx.Attr<int>("k"));
size_t k = static_cast<int>(ctx.Attr<int>("k"));
auto* k_t = ctx.Input<Tensor>("K");
if (k_t) {
k = k_t->data<int>()[0];
framework::DDim output_dims = output->dims();
output_dims[output_dims.size() - 1] = k;
output->Resize(output_dims);
indices->Resize(output_dims);
}
T* output_data = output->mutable_data<T>(ctx.GetPlace());
int64_t* indices_data = indices->mutable_data<int64_t>(ctx.GetPlace());
......
......@@ -29,10 +29,6 @@ class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");
const bool is_test = ctx.Attr<bool>("is_test");
PADDLE_ENFORCE(
is_test == true,
"TransposeMKLDNN works only for inference!. Set is_test = True");
auto& dev_ctx =
ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
const auto& mkldnn_engine = dev_ctx.GetEngine();
......@@ -68,6 +64,57 @@ class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
}
};
template <typename T>
class TransposeMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");
auto* out_grad =
ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* x_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
if (!x_grad) return;
auto& dev_ctx =
ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
const auto& mkldnn_engine = dev_ctx.GetEngine();
std::vector<int> axis = ctx.Attr<std::vector<int>>("axis");
std::vector<int> reversed_axis(axis);
int ndims = axis.size();
if (ndims == 1) {
x_grad->ShareDataWith(*out_grad);
return;
}
for (size_t i = 0; i < axis.size(); i++) {
reversed_axis[axis[i]] = i;
}
const T* out_grad_data = out_grad->data<T>();
x_grad->mutable_data<T>(ctx.GetPlace());
std::vector<int> nchw_tz =
paddle::framework::vectorize2int(out_grad->dims());
const std::string key = platform::TransposeMKLDNNHandler::GetHash(
nchw_tz, axis, ctx.op().Output(framework::GradVarName("X")));
platform::TransposeMKLDNNHandler handler(nchw_tz, reversed_axis, dev_ctx,
mkldnn_engine, key);
auto transpose_src_memory_p = handler.AcquireSrcMemory(
out_grad->format(), platform::to_void_cast<T>(out_grad_data));
auto transpose_dst_memory_p =
handler.AcquireDstMemory(x_grad, ctx.GetPlace());
auto transpose_p = handler.AcquireTranspose(transpose_dst_memory_p,
transpose_src_memory_p);
std::vector<mkldnn::primitive> pipeline;
pipeline.push_back(*transpose_p);
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}
};
} // namespace operators
} // namespace paddle
......@@ -77,3 +124,8 @@ REGISTER_OP_KERNEL(transpose2, MKLDNN, ::paddle::platform::CPUPlace,
ops::TransposeMKLDNNOpKernel<float>);
REGISTER_OP_KERNEL(transpose, MKLDNN, ::paddle::platform::CPUPlace,
ops::TransposeMKLDNNOpKernel<float>);
REGISTER_OP_KERNEL(transpose_grad, MKLDNN, ::paddle::platform::CPUPlace,
ops::TransposeMKLDNNGradOpKernel<float>);
REGISTER_OP_KERNEL(transpose2_grad, MKLDNN, ::paddle::platform::CPUPlace,
ops::TransposeMKLDNNGradOpKernel<float>);
......@@ -79,10 +79,6 @@ class TransposeOp : public framework::OperatorWithKernel {
class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddAttr<bool>("is_test",
"(bool, default false) Set to true for inference only, false "
"for training. Some layers may run faster when this is true.")
.SetDefault(false);
AddInput(
"X",
"(Tensor) The input tensor, tensors with rank up to 6 are supported.");
......@@ -147,6 +143,24 @@ class TransposeOpGrad : public framework::OperatorWithKernel {
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
}
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
framework::LibraryType library_{framework::LibraryType::kPlain};
std::string data_format = ctx.Attr<std::string>("data_format");
framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
if (library_ == framework::LibraryType::kPlain &&
platform::CanMKLDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kMKLDNN;
layout_ = framework::DataLayout::kMKLDNN;
}
#endif
return framework::OpKernelType(
ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"))->type(),
ctx.GetPlace(), layout_, library_);
}
};
// FIXME(zcd): transpose2 adds an intermediate output(XShape) based on
......@@ -237,9 +251,19 @@ class Transpose2OpGrad : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
framework::LibraryType library_{framework::LibraryType::kPlain};
std::string data_format = ctx.Attr<std::string>("data_format");
framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
if (library_ == framework::LibraryType::kPlain &&
platform::CanMKLDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kMKLDNN;
layout_ = framework::DataLayout::kMKLDNN;
}
#endif
return framework::OpKernelType(
ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"))->type(),
ctx.device_context());
ctx.GetPlace(), layout_, library_);
}
};
......
......@@ -56,6 +56,8 @@ ELSE()
set(MKLDNN_CTX_DEPS)
ENDIF()
cc_library(temp_allocator SRCS temporary_allocator.cc DEPS allocator_facade)
nv_library(stream_callback_manager SRCS stream_callback_manager.cc DEPS simple_threadpool enforce)
IF(WITH_GPU)
set(STREAM_CALLBACK_DEPS stream_callback_manager)
......@@ -66,7 +68,8 @@ ENDIF()
# memcpy depends on device_context, here add deps individually for
# avoiding cycle dependencies
cc_library(device_context SRCS device_context.cc init.cc DEPS simple_threadpool malloc ${STREAM_CALLBACK_DEPS}
place eigen3 stringpiece cpu_helper cpu_info framework_proto ${GPU_CTX_DEPS} ${MKLDNN_CTX_DEPS})
place eigen3 stringpiece cpu_helper cpu_info framework_proto ${GPU_CTX_DEPS} ${MKLDNN_CTX_DEPS} temp_allocator)
if(WIN32)
if(WITH_GPU AND NOT WITH_DSO)
get_property(cuda_modules GLOBAL PROPERTY CUDA_MODULES)
......@@ -92,3 +95,9 @@ IF(WITH_GPU)
nv_test(cuda_helper_test SRCS cuda_helper_test.cu)
ENDIF()
nv_library(cuda_device_guard SRCS cuda_device_guard.cc DEPS gpu_info)
if(WITH_GPU)
nv_test(temporal_allocator_test SRCS temporary_allocator_test.cc DEPS temp_allocator tensor)
else()
cc_test(temporal_allocator_test SRCS temporary_allocator_test.cc DEPS temp_allocator tensor)
endif()
......@@ -22,7 +22,6 @@ limitations under the License. */
#ifdef __APPLE__
#include <sys/sysctl.h>
#include <sys/types.h>
#elif defined(_WIN32)
#define NOMINMAX // msvc max/min macro conflict with std::min/max
#include <windows.h>
......
......@@ -85,6 +85,49 @@ DeviceContextPool::DeviceContextPool(
}
}
DeviceTemporaryAllocator* DeviceTemporaryAllocator::allocators = nullptr;
#ifdef PADDLE_WITH_CUDA
platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
const platform::Place& place, const cudaStream_t& stream) {
PADDLE_ENFORCE(platform::is_gpu_place(place));
auto place_stream = std::make_pair(place, stream);
{
std::unique_lock<std::mutex> lock(mtx_);
if (!device_allocator_.count(place_stream)) {
device_allocator_[place_stream].reset(new TemporaryAllocator(place));
device_allocator_[place_stream]->SetCallback([stream]() {
PADDLE_ENFORCE(cudaStreamSynchronize(stream));
PADDLE_ENFORCE(cudaGetLastError());
});
}
}
return *device_allocator_.at(place_stream);
}
template <>
platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
const platform::CUDADeviceContext& dev_ctx) {
auto place_stream = std::make_pair(dev_ctx.GetPlace(), dev_ctx.stream());
if (device_allocator_.count(place_stream)) {
return *device_allocator_.at(place_stream);
}
return Get(dev_ctx.GetPlace(), dev_ctx.stream());
}
#endif
template <>
platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
const platform::CPUDeviceContext& dev_ctx) {
return cpu_allocator_;
}
platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
const platform::Place& place) {
PADDLE_ENFORCE(platform::is_cpu_place(place), "You should pass CPUPlace");
return cpu_allocator_;
}
CPUDeviceContext::CPUDeviceContext() {
eigen_device_.reset(new Eigen::DefaultDevice());
}
......@@ -213,10 +256,11 @@ CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
<< ", CUDA Capability: " << compute_capability_
<< ", Driver Version: " << driver_version_ / 1000
<< ", Driver API Version: " << driver_version_ / 1000
<< "." << (driver_version_ % 100) / 10
<< ", Runtime Version: " << runtime_version_ / 1000
<< "." << (runtime_version_ % 100) / 10;
<< ", Runtime API Version: "
<< runtime_version_ / 1000 << "."
<< (runtime_version_ % 100) / 10;
size_t cudnn_dso_ver = dynload::cudnnGetVersion();
LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
<< ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
......@@ -271,8 +315,12 @@ CUDADeviceContext::~CUDADeviceContext() {
Place CUDADeviceContext::GetPlace() const { return place_; }
void CUDADeviceContext::Wait() const {
PADDLE_ENFORCE(cudaStreamSynchronize(stream_));
PADDLE_ENFORCE(cudaGetLastError());
auto& allocator =
DeviceTemporaryAllocator::Instance().Get<CUDADeviceContext>(*this);
allocator.Release([=]() {
PADDLE_ENFORCE(cudaStreamSynchronize(stream_));
PADDLE_ENFORCE(cudaGetLastError());
});
}
int CUDADeviceContext::GetComputeCapability() const {
......
......@@ -15,8 +15,10 @@ limitations under the License. */
#include <mutex> // NOLINT
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/platform/temporary_allocator.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
......@@ -39,6 +41,71 @@ limitations under the License. */
namespace paddle {
namespace platform {
/*! \brief device temporary allocator singleton.
*
* Some operator needs temporary memory during computation, for example,
* conv_gemm, which needs use col to store the result of im2col. If we
* create a stack memory which is used by CUDA Kernel, before the
* Computation(...) returns, we should add ctx->Wait(), because the
* execution of CUDA is async, if there doesn't have ctx->Wait(),
* the temporary memory will be released before the CUDA Kernel uses
* it.
*
* DeviceTemporaryAllocator is a singleton, which contains a
* `TemporaryAllocator` for each <Place, Stream>. And the TemporaryAllocator
* contains a temp_allocation_queue which is used to store the temporary
* allocations. The allocation, which is allocated by TemporaryAllocator,
* is a unique_ptr, and when it is not held by any variable, it will be
* pushed into the temp_allocation_queue. There are two opportunities to free
* the allocations of temp_allocation_queue:
* - when the Stream calls cudaStreamSynchronize;
* - when the allocation size of opportunities exceeds a certain threshold
* (defined by FLAGS_limit_of_temporary_allocation).
*
* */
class DeviceTemporaryAllocator {
public:
static DeviceTemporaryAllocator& Instance() {
PADDLE_ENFORCE_NOT_NULL(allocators,
"Need to Create DeviceTemporaryAllocator first!");
return *allocators;
}
static DeviceTemporaryAllocator& Init() {
if (allocators == nullptr) {
allocators = new DeviceTemporaryAllocator();
}
return *allocators;
}
/*! \brief Return handle of single temporary allocator. */
#ifdef PADDLE_WITH_CUDA
platform::TemporaryAllocator& Get(const platform::Place& place,
const cudaStream_t& stream);
#endif
template <typename DeviceContext>
platform::TemporaryAllocator& Get(const DeviceContext& dev_ctx);
platform::TemporaryAllocator& Get(const platform::Place& place);
private:
DeviceTemporaryAllocator() : cpu_allocator_(platform::CPUPlace()) {}
static DeviceTemporaryAllocator* allocators;
platform::TemporaryAllocator cpu_allocator_;
#ifdef PADDLE_WITH_CUDA
std::map<std::pair<platform::Place, cudaStream_t>,
std::unique_ptr<platform::TemporaryAllocator>>
device_allocator_;
#endif
std::mutex mtx_;
DISABLE_COPY_AND_ASSIGN(DeviceTemporaryAllocator);
};
class DeviceContext {
public:
virtual ~DeviceContext() {}
......
......@@ -227,6 +227,8 @@ void* GetTensorRtDsoHandle() {
void* GetMKLMLDsoHandle() {
#if defined(__APPLE__) || defined(__OSX__)
return GetDsoHandleFromSearchPath(FLAGS_mklml_dir, "libmklml_intel.dylib");
#elif defined(_WIN32)
return GetDsoHandleFromSearchPath(FLAGS_mklml_dir, "mklml.dll");
#else
return GetDsoHandleFromSearchPath(FLAGS_mklml_dir, "libmklml_intel.so");
#endif
......
......@@ -140,68 +140,72 @@ struct EOFException : public std::exception {
#define LIKELY(condition) (condition)
#endif
inline bool is_error(bool stat) { return !stat; }
template <typename... Args>
inline typename std::enable_if<sizeof...(Args) != 0, void>::type throw_on_error(
bool stat, const Args&... args) {
if (UNLIKELY(!(stat))) {
#ifndef REPLACE_ENFORCE_GLOG
throw std::runtime_error(string::Sprintf(args...));
throw std::runtime_error(string::Sprintf(args...));
#else
LOG(FATAL) << string::Sprintf(args...);
LOG(FATAL) << string::Sprintf(args...);
#endif
}
}
#ifdef PADDLE_WITH_CUDA
inline bool is_error(cudaError_t e) { return UNLIKELY(e); }
template <typename... Args>
inline typename std::enable_if<sizeof...(Args) != 0, void>::type throw_on_error(
cudaError_t e, const Args&... args) {
if (UNLIKELY(e)) {
#ifndef REPLACE_ENFORCE_GLOG
throw thrust::system_error(e, thrust::cuda_category(),
string::Sprintf(args...));
throw thrust::system_error(e, thrust::cuda_category(),
string::Sprintf(args...));
#else
LOG(FATAL) << string::Sprintf(args...);
LOG(FATAL) << string::Sprintf(args...);
#endif
}
}
inline bool is_error(curandStatus_t stat) {
return stat != CURAND_STATUS_SUCCESS;
}
template <typename... Args>
inline typename std::enable_if<sizeof...(Args) != 0, void>::type throw_on_error(
curandStatus_t stat, const Args&... args) {
if (stat != CURAND_STATUS_SUCCESS) {
#ifndef REPLACE_ENFORCE_GLOG
throw thrust::system_error(cudaErrorLaunchFailure, thrust::cuda_category(),
string::Sprintf(args...));
throw thrust::system_error(cudaErrorLaunchFailure, thrust::cuda_category(),
string::Sprintf(args...));
#else
LOG(FATAL) << string::Sprintf(args...);
LOG(FATAL) << string::Sprintf(args...);
#endif
}
}
inline bool is_error(cudnnStatus_t stat) {
return stat != CUDNN_STATUS_SUCCESS;
}
template <typename... Args>
inline typename std::enable_if<sizeof...(Args) != 0, void>::type throw_on_error(
cudnnStatus_t stat, const Args&... args) {
if (stat == CUDNN_STATUS_SUCCESS) {
return;
} else {
#ifndef REPLACE_ENFORCE_GLOG
throw std::runtime_error(platform::dynload::cudnnGetErrorString(stat) +
string::Sprintf(args...));
throw std::runtime_error(platform::dynload::cudnnGetErrorString(stat) +
string::Sprintf(args...));
#else
LOG(FATAL) << string::Sprintf(args...);
LOG(FATAL) << string::Sprintf(args...);
#endif
}
}
inline bool is_error(cublasStatus_t stat) {
return stat != CUBLAS_STATUS_SUCCESS;
}
template <typename... Args>
inline typename std::enable_if<sizeof...(Args) != 0, void>::type throw_on_error(
cublasStatus_t stat, const Args&... args) {
std::string err;
if (stat == CUBLAS_STATUS_SUCCESS) {
return;
} else if (stat == CUBLAS_STATUS_NOT_INITIALIZED) {
if (stat == CUBLAS_STATUS_NOT_INITIALIZED) {
err = "CUBLAS: not initialized, ";
} else if (stat == CUBLAS_STATUS_ALLOC_FAILED) {
err = "CUBLAS: alloc failed, ";
......@@ -254,21 +258,49 @@ inline void throw_on_error(T e) {
#define PADDLE_THROW(...) \
throw ::paddle::platform::EnforceNotMet(__FILE__, __LINE__, __VA_ARGS__)
#define __PADDLE_THROW_ERROR_I(_, _9, _8, _7, _6, _5, _4, _3, _2, X_, ...) X_;
#define __THROW_ON_ERROR_ONE_ARG(COND, ARG) \
::paddle::platform::throw_on_error(COND, ::paddle::string::Sprintf(ARG));
#define __PADDLE_THROW_ON_ERROR(COND, ...) \
__PADDLE_THROW_ERROR_I( \
__VA_ARGS__, ::paddle::platform::throw_on_error(COND, __VA_ARGS__), \
::paddle::platform::throw_on_error(COND, __VA_ARGS__), \
::paddle::platform::throw_on_error(COND, __VA_ARGS__), \
::paddle::platform::throw_on_error(COND, __VA_ARGS__), \
::paddle::platform::throw_on_error(COND, __VA_ARGS__), \
::paddle::platform::throw_on_error(COND, __VA_ARGS__), \
::paddle::platform::throw_on_error(COND, __VA_ARGS__), \
::paddle::platform::throw_on_error(COND, __VA_ARGS__), \
__THROW_ON_ERROR_ONE_ARG(COND, __VA_ARGS__))
#define __PADDLE_UNARY_COMPARE(COND, ...) \
do { \
auto __cond = COND; \
if (UNLIKELY(::paddle::platform::is_error(__cond))) { \
__PADDLE_THROW_ON_ERROR(__cond, __VA_ARGS__); \
} \
} while (0)
#ifndef REPLACE_ENFORCE_GLOG
#define PADDLE_ENFORCE(...) \
#define __PADDLE_ENFORCE_I(COND, ...) \
do { \
try { \
::paddle::platform::throw_on_error(__VA_ARGS__); \
__PADDLE_UNARY_COMPARE(COND, __VA_ARGS__); \
} catch (...) { \
throw ::paddle::platform::EnforceNotMet(std::current_exception(), \
__FILE__, __LINE__); \
} \
} while (false)
} while (0)
#else
#define PADDLE_ENFORCE(...) ::paddle::platform::throw_on_error(__VA_ARGS__);
#define __PADDLE_ENFORCE_I(COND, ...) __PADDLE_UNARY_COMPARE(COND, __VA_ARGS__);
#endif // REPLACE_ENFORCE_GLOG
#define __PADDLE_ENFORCE(__args) __PADDLE_ENFORCE_I __args
#define PADDLE_ENFORCE(...) __PADDLE_ENFORCE((__VA_ARGS__))
#define PADDLE_THROW_EOF() \
do { \
throw ::paddle::platform::EOFException("There is no next data.", __FILE__, \
......
......@@ -37,6 +37,25 @@ TEST(ENFORCE, FAILED) {
HasPrefix(StringPiece(error.what()), "Enforce is not ok 123 at all"));
}
EXPECT_TRUE(caught_exception);
caught_exception = false;
try {
PADDLE_ENFORCE(false, "Enforce is not ok at all");
} catch (paddle::platform::EnforceNotMet error) {
caught_exception = true;
EXPECT_TRUE(
HasPrefix(StringPiece(error.what()), "Enforce is not ok at all"));
}
EXPECT_TRUE(caught_exception);
caught_exception = false;
try {
PADDLE_ENFORCE(false);
} catch (paddle::platform::EnforceNotMet error) {
caught_exception = true;
EXPECT_NE(std::string(error.what()).find(" at "), 0);
}
EXPECT_TRUE(caught_exception);
}
TEST(ENFORCE, NO_ARG_OK) {
......
......@@ -12,6 +12,7 @@ limitations under the License. */
#include <vector>
#define GLOG_NO_ABBREVIATED_SEVERITIES // msvc conflict logging with windows.h
#include "gtest/gtest.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/platform/init.h"
......
......@@ -11,6 +11,7 @@ limitations under the License. */
#include "paddle/fluid/platform/float16.h"
#define GLOG_NO_ABBREVIATED_SEVERITIES // msvc conflict logging with windows.h
#include <glog/logging.h>
#include <gtest/gtest.h>
#include <bitset>
......
......@@ -110,7 +110,7 @@ void InitDevices(bool init_p2p, const std::vector<int> devices) {
}
places.emplace_back(platform::CPUPlace());
platform::DeviceContextPool::Init(places);
platform::DeviceTemporaryAllocator::Init();
#ifndef PADDLE_WITH_MKLDNN
platform::SetNumThreads(FLAGS_paddle_num_threads);
#endif
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#include <string>
#include <vector>
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"
......@@ -181,6 +182,21 @@ class MKLDNNHandler {
return dims2str(operand_dims) + suffix;
}
template <typename M>
static void SetDstMemory(
const framework::ExecutionContext& ctx, framework::Tensor* output,
std::vector<int> dst_tz, const mkldnn::engine& engine,
std::shared_ptr<mkldnn::memory::primitive_desc>& dst_pd, // NOLINT
std::shared_ptr<mkldnn::memory>& dst_memory) { // NOLINT
M* output_data = output->mutable_data<M>(ctx.GetPlace());
auto dst_md = platform::MKLDNNMemDesc(
{dst_tz}, paddle::framework::ToMKLDNNDataType(
framework::DataTypeTrait<M>::DataType),
mkldnn::memory::format::nhwc);
dst_pd.reset(new mkldnn::memory::primitive_desc(dst_md, engine));
dst_memory.reset(new mkldnn::memory(*dst_pd, to_void_cast<M>(output_data)));
}
protected:
static std::string dims2str(const mkldnn::memory::dims& operand_dims) {
std::string dstr = "";
......
......@@ -23,6 +23,7 @@
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/platform/dynload/nccl.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/float16.h"
#define NCCL_ID_VARNAME "NCCLID"
......@@ -38,6 +39,8 @@ inline ncclDataType_t ToNCCLDataType(framework::proto::VarType::Type type) {
return ncclInt;
} else if (type == framework::proto::VarType::INT64) {
return ncclInt64;
} else if (type == framework::proto::VarType::FP16) {
return ncclFloat16;
} else {
PADDLE_THROW("Not supported");
}
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/platform/temporary_allocator.h"
#include "paddle/fluid/memory/allocation/allocator_facade.h"
DEFINE_double(limit_of_temporary_allocation, -1,
"The up limit of temporary_allocation size.");
namespace paddle {
namespace platform {
namespace alloc = memory::allocation;
TemporaryAllocation::TemporaryAllocation(
alloc::AllocationPtr &&underlying_allocation)
: Allocation(underlying_allocation->ptr(), underlying_allocation->size(),
underlying_allocation->place()),
underlying_allocation_(std::move(underlying_allocation)) {}
TemporaryAllocator::TemporaryAllocator(platform::Place place) : place_(place) {
temp_mem_queue_.reset(new std::deque<TemporaryAllocation *>());
}
bool TemporaryAllocator::IsAllocThreadSafe() const { return true; }
void TemporaryAllocator::Release(const std::function<void()> &callback) {
std::shared_ptr<std::deque<TemporaryAllocation *>> t_allocations;
{
std::unique_lock<std::mutex> lock(mtx_);
callback();
t_allocations = temp_mem_queue_;
temp_mem_queue_.reset(new std::deque<TemporaryAllocation *>());
wait_delete_mem_ = 0;
}
for (auto tmp : *t_allocations) {
VLOG(10) << "Delete temporary allocation " << tmp->ptr()
<< " size: " << tmp->size();
delete tmp;
}
}
void TemporaryAllocator::Free(alloc::Allocation *allocation) {
auto *temp_allocation = dynamic_cast<TemporaryAllocation *>(allocation);
PADDLE_ENFORCE_NOT_NULL(temp_allocation);
if (platform::is_gpu_place(temp_allocation->place())) {
size_t wait_delete_mem = 0;
{
std::unique_lock<std::mutex> lock(mtx_);
temp_mem_queue_->emplace_back(temp_allocation);
wait_delete_mem_ += temp_allocation->size();
wait_delete_mem = wait_delete_mem_;
VLOG(10) << "Move temporary allocation: " << temp_allocation->ptr()
<< " to delete queue: " << temp_allocation->size() << "; "
<< "wait_delete_mem: " << wait_delete_mem_;
}
if (FLAGS_limit_of_temporary_allocation > 0 &&
wait_delete_mem > FLAGS_limit_of_temporary_allocation) {
Release(callback_);
}
return;
}
delete temp_allocation;
}
size_t TemporaryAllocator::TemporaryAllocationQueueSize() {
std::unique_lock<std::mutex> lock(mtx_);
return temp_mem_queue_ ? temp_mem_queue_->size() : 0;
}
void TemporaryAllocator::SetCallback(const std::function<void()> &callback) {
callback_ = callback;
}
alloc::Allocation *TemporaryAllocator::AllocateImpl(
size_t size, alloc::Allocator::Attr attr) {
auto raw_allocation =
alloc::AllocatorFacade::Instance().Alloc(place_, size, attr);
auto temp_mem = new TemporaryAllocation(std::move(raw_allocation));
VLOG(10) << "Alloc temporary allocation: " << temp_mem->ptr() << ": " << size;
return temp_mem;
}
} // namespace platform
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <condition_variable> // NOLINT
#include <deque>
#include <mutex> // NOLINT
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/platform/lock_guard_ptr.h"
namespace paddle {
namespace platform {
class TemporaryAllocation : public memory::allocation::Allocation {
public:
explicit TemporaryAllocation(
memory::allocation::AllocationPtr &&underlying_allocation);
memory::allocation::AllocationPtr underlying_allocation_;
};
/*! \brief the TemporaryAllocator is used to alloc the temporary allocation
* which used by CUDA's async operation.
*
* The TemporaryAllocator contains a temp_allocation_queue which
* is used to store the temporary allocations. The allocation, which is
* allocated by TemporaryAllocator, is a unique_ptr, and when it is not held
* by any variable, it will be pushed into the temp_allocation_queue.
*
* There is one opportunity to free the allocations of temp_allocation_queue:
* - when the allocation size of opportunities exceeds a certain threshold
* (defined by FLAGS_limit_of_temporary_allocation).
*
* */
class TemporaryAllocator : public memory::allocation::Allocator {
public:
explicit TemporaryAllocator(platform::Place place);
void Release(const std::function<void()> &callback);
size_t TemporaryAllocationQueueSize();
bool IsAllocThreadSafe() const override;
void SetCallback(const std::function<void()> &callback);
protected:
void Free(memory::allocation::Allocation *allocation) override;
memory::allocation::Allocation *AllocateImpl(
size_t size, memory::allocation::Allocator::Attr attr) override;
private:
platform::Place place_;
// When the allocation is not held by any variable, it should be placed
// to temp_mem_queue immediately.
std::shared_ptr<std::deque<TemporaryAllocation *>> temp_mem_queue_{nullptr};
std::mutex mtx_;
size_t wait_delete_mem_{0};
std::function<void()> callback_;
};
} // namespace platform
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/platform/temporary_allocator.h"
#include <gtest/gtest.h>
#include "paddle/fluid/framework/tensor_util.h"
DECLARE_double(limit_of_temporary_allocation);
namespace paddle {
namespace platform {
TEST(temporary_allocator, temporary_allocator) {
platform::CPUPlace cpu_place;
TemporaryAllocator alloc(cpu_place);
alloc.Allocate(100);
#ifdef PADDLE_WITH_CUDA
platform::CUDAPlace gpu_place(0);
TemporaryAllocator gpu_alloc(gpu_place);
auto allocation = gpu_alloc.Allocate(101);
PADDLE_ENFORCE_EQ(gpu_alloc.TemporaryAllocationQueueSize(), 0);
gpu_alloc.Release([]() {});
PADDLE_ENFORCE_EQ(gpu_alloc.TemporaryAllocationQueueSize(), 0);
{
auto allocation = gpu_alloc.Allocate(102);
PADDLE_ENFORCE_EQ(gpu_alloc.TemporaryAllocationQueueSize(), 0);
}
PADDLE_ENFORCE_EQ(gpu_alloc.TemporaryAllocationQueueSize(), 1);
gpu_alloc.Release([]() {});
PADDLE_ENFORCE_EQ(gpu_alloc.TemporaryAllocationQueueSize(), 0);
#endif
}
TEST(temporary_allocator, add_callback) {
#ifdef PADDLE_WITH_CUDA
const double limit = FLAGS_limit_of_temporary_allocation;
FLAGS_limit_of_temporary_allocation = 10;
platform::CUDAPlace gpu_place(0);
TemporaryAllocator gpu_alloc(gpu_place);
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
auto* dev_ctx =
static_cast<platform::CUDADeviceContext*>(pool.Get(gpu_place));
auto stream = dev_ctx->stream();
bool deleted = false;
gpu_alloc.SetCallback([stream, &deleted]() {
PADDLE_ENFORCE(cudaStreamSynchronize(stream));
PADDLE_ENFORCE(cudaGetLastError());
deleted = true;
});
{ gpu_alloc.Allocate(100); }
PADDLE_ENFORCE(deleted);
FLAGS_limit_of_temporary_allocation = limit;
#endif
}
TEST(temporary_allocator, create_tensor_with_allocationptr) {
platform::CPUPlace cpu_place;
TemporaryAllocator cpu_alloc(cpu_place);
{
size_t memory_size = 200;
auto allocation = cpu_alloc.Allocate(memory_size);
void* address = allocation->ptr();
int numel = memory_size / sizeof(float);
framework::Tensor tensor = framework::GetTensor<float>(
std::move(allocation), framework::make_ddim({numel}));
PADDLE_ENFORCE_EQ(address, tensor.data<float>());
PADDLE_ENFORCE_EQ(tensor.numel(), numel);
}
#ifdef PADDLE_WITH_CUDA
platform::CUDAPlace gpu_place(0);
TemporaryAllocator gpu_alloc(gpu_place);
{
size_t memory_size = 300;
auto allocation = gpu_alloc.Allocate(memory_size);
void* address = allocation->ptr();
int numel = memory_size / sizeof(float);
framework::Tensor tensor = framework::GetTensor<float>(
std::move(allocation), framework::make_ddim({numel}));
PADDLE_ENFORCE_EQ(address, tensor.data<float>());
PADDLE_ENFORCE_EQ(tensor.numel(), numel);
}
// The allocation is not holded now, it should be placed to
// TemporaryAllocationQueue.
PADDLE_ENFORCE_EQ(gpu_alloc.TemporaryAllocationQueueSize(), 1);
gpu_alloc.Release([]() {});
PADDLE_ENFORCE_EQ(gpu_alloc.TemporaryAllocationQueueSize(), 0);
#endif
}
TEST(temporary_allocator, create_tensor_with_allocationptr2) {
platform::CPUPlace cpu_place;
TemporaryAllocator cpu_alloc(cpu_place);
{
size_t memory_size = 400;
int numel = memory_size / sizeof(float);
framework::Tensor out_side_tensor;
void* address;
{
auto allocation = cpu_alloc.Allocate(memory_size);
address = allocation->ptr();
framework::Tensor tensor = framework::GetTensor<float>(
std::move(allocation), framework::make_ddim({numel}));
PADDLE_ENFORCE_EQ(address, tensor.data<float>());
PADDLE_ENFORCE_EQ(tensor.numel(), numel);
out_side_tensor.ShareDataWith(tensor);
}
PADDLE_ENFORCE_EQ(address, out_side_tensor.data<float>());
PADDLE_ENFORCE_EQ(out_side_tensor.numel(), numel);
}
#ifdef PADDLE_WITH_CUDA
platform::CUDAPlace gpu_place(0);
TemporaryAllocator gpu_alloc(gpu_place);
{
void* address;
size_t memory_size = 500;
int numel = memory_size / sizeof(float);
framework::Tensor out_side_tensor;
{
auto allocation = gpu_alloc.Allocate(memory_size);
address = allocation->ptr();
framework::Tensor tensor = framework::GetTensor<float>(
std::move(allocation), framework::make_ddim({numel}));
PADDLE_ENFORCE_EQ(address, tensor.data<float>());
PADDLE_ENFORCE_EQ(tensor.numel(), numel);
out_side_tensor.ShareDataWith(tensor);
}
PADDLE_ENFORCE_EQ(address, out_side_tensor.data<float>());
PADDLE_ENFORCE_EQ(out_side_tensor.numel(), numel);
// The allocation is holded by out_side_tensor.
PADDLE_ENFORCE_EQ(gpu_alloc.TemporaryAllocationQueueSize(), 0);
gpu_alloc.Release([]() {});
PADDLE_ENFORCE_EQ(gpu_alloc.TemporaryAllocationQueueSize(), 0);
}
// The allocation is not holded now, it should be placed to
// TemporaryAllocationQueue.
PADDLE_ENFORCE_EQ(gpu_alloc.TemporaryAllocationQueueSize(), 1);
gpu_alloc.Release([]() {});
PADDLE_ENFORCE_EQ(gpu_alloc.TemporaryAllocationQueueSize(), 0);
#endif
}
} // namespace platform
} // namespace paddle
set(PYBIND_DEPS pybind python proto_desc memory executor async_executor prune feed_fetch_method pass_builder parallel_executor profiler layer)
set(PYBIND_DEPS pybind python proto_desc memory executor async_executor prune feed_fetch_method pass_builder parallel_executor profiler layer scope_pool)
if(WITH_PYTHON)
list(APPEND PYBIND_DEPS py_func_op)
endif()
set(PYBIND_SRCS pybind.cc exception.cc protobuf.cc const_value.cc recordio.cc async_executor_py.cc imperative.cc)
if(WITH_PYTHON)
......
......@@ -328,7 +328,7 @@ void BindOpDesc(pybind11::module *m) {
.def("infer_var_type", &pd::OpDesc::InferVarType)
.def("set_is_target", &pd::OpDesc::SetIsTarget)
.def("serialize_to_string", SerializeMessage<pd::OpDesc>)
.def("block", &pd::OpDesc::Block,
.def("block", [](pd::OpDesc &self) { return self.Block(); },
pybind11::return_value_policy::reference);
}
......
......@@ -32,11 +32,13 @@ limitations under the License. */
#include "paddle/fluid/framework/parallel_executor.h"
#include "paddle/fluid/framework/prune.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/scope_pool.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/version.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/py_func_op.h"
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/enforce.h"
......@@ -110,6 +112,15 @@ PYBIND11_MODULE(core, m) {
BindException(&m);
m.def(
"_append_python_callable_object_and_return_id",
[](py::object py_obj) -> size_t {
return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
});
m.add_object("_cleanup",
py::capsule([]() { ScopePool::Instance().Clear(); }));
py::class_<imperative::VarBase, PyVarBase>(m, "VarBase", R"DOC()DOC")
// .def(py::init<>())
.def(py::init<bool>(), py::arg("stop_gradient") = false)
......@@ -468,7 +479,7 @@ All parameter, weight, gradient are variables in Paddle.
},
py::return_value_policy::copy);
py::class_<Scope>(m, "Scope", R"DOC(
py::class_<Scope>(m, "_Scope", R"DOC(
Scope is an association of a name to Variable. All variables belong to Scope.
Variables in a parent scope can be retrieved from local scope.
......@@ -488,17 +499,26 @@ All parameter, weight, gradient are variables in Paddle.
param.set(param_array, place)
)DOC")
.def("_remove_from_pool",
[](Scope &self) { ScopePool::Instance().Remove(&self); })
.def("var",
[](Scope &self, const std::string &name) -> Variable * {
return self.Var(name);
},
py::return_value_policy::reference)
.def("find_var", &Scope::FindVar, py::return_value_policy::reference)
.def(py::init<>())
.def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
py::return_value_policy::reference)
.def("drop_kids", &Scope::DropKids);
m.def("Scope",
[]() -> Scope * {
auto *s = new Scope();
ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
return s;
},
py::return_value_policy::reference);
//! @note: Be careful! PyBind will return std::string as an unicode, not
//! Python str. If you want a str object, you should cast them in Python.
m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
......
......@@ -87,7 +87,7 @@ void Fprintf(std::ostream& out, const char* fmt, const Args&... args) {
template <typename... Args>
std::string Sprintf(const Args&... args) {
std::ostringstream oss;
Fprintf(oss, "");
Fprintf(oss, "%s", args...);
return oss.str();
}
......
......@@ -35,16 +35,26 @@ add_executable(demo_trainer demo_trainer.cc)
if(WITH_MKLDNN)
include_directories("${PADDLE_LIB}/third_party/install/mkldnn/include")
set(MKLDNN_LIB ${PADDLE_LIB}/third_party/install/mkldnn/lib/libmkldnn.so.0)
endif()
if(WIN32)
set(MKLDNN_LIB ${PADDLE_LIB}/third_party/install/mkldnn/lib/mkldnn.lib)
else(WIN32)
set(MKLDNN_LIB ${PADDLE_LIB}/third_party/install/mkldnn/lib/libmkldnn.so.0)
endif(WIN32)
endif(WITH_MKLDNN)
if(WITH_MKL)
include_directories("${PADDLE_LIB}/third_party/install/mklml/include")
set(MATH_LIB ${PADDLE_LIB}/third_party/install/mklml/lib/libmklml_intel.so)
if(WIN32)
set(MATH_LIB ${PADDLE_LIB}/third_party/install/mklml/lib/mklml.lib)
else(WIN32)
set(MATH_LIB ${PADDLE_LIB}/third_party/install/mklml/lib/libmklml_intel.so)
endif(WIN32)
else()
if(APPLE)
set(MATH_LIB cblas)
else(APPLE)
elseif(WIN32)
set(MATH_LIB ${PADDLE_LIB}/third_party/install/openblas/lib/libopenblas.lib)
else()
set(MATH_LIB ${PADDLE_LIB}/third_party/install/openblas/lib/libopenblas.a)
endif(APPLE)
endif()
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
import paddle as pd
print(pd.__version__)
......@@ -79,6 +79,7 @@ function cmake_gen() {
PYTHON_FLAGS="-DPYTHON_EXECUTABLE:FILEPATH=/Library/Frameworks/Python.framework/Versions/2.7/bin/python2.7
-DPYTHON_INCLUDE_DIR:PATH=/Library/Frameworks/Python.framework/Versions/2.7/include/python2.7
-DPYTHON_LIBRARY:FILEPATH=/Library/Frameworks/Python.framework/Versions/2.7/lib/libpython2.7.dylib"
pip install --user -r ${PADDLE_ROOT}/python/requirements.txt
else
exit 1
fi
......@@ -91,6 +92,7 @@ function cmake_gen() {
-DPYTHON_INCLUDE_DIR:PATH=/Library/Frameworks/Python.framework/Versions/3.5/include/python3.5m/
-DPYTHON_LIBRARY:FILEPATH=/Library/Frameworks/Python.framework/Versions/3.5/lib/libpython3.5m.dylib"
WITH_FLUID_ONLY=${WITH_FLUID_ONLY:-ON}
pip3.5 install --user -r ${PADDLE_ROOT}/python/requirements.txt
else
exit 1
fi
......@@ -103,6 +105,7 @@ function cmake_gen() {
-DPYTHON_INCLUDE_DIR:PATH=/Library/Frameworks/Python.framework/Versions/3.6/include/python3.6m/
-DPYTHON_LIBRARY:FILEPATH=/Library/Frameworks/Python.framework/Versions/3.6/lib/libpython3.6m.dylib"
WITH_FLUID_ONLY=${WITH_FLUID_ONLY:-ON}
pip3.6 install --user -r ${PADDLE_ROOT}/python/requirements.txt
else
exit 1
fi
......@@ -115,6 +118,7 @@ function cmake_gen() {
-DPYTHON_INCLUDE_DIR:PATH=/Library/Frameworks/Python.framework/Versions/3.7/include/python3.7m/
-DPYTHON_LIBRARY:FILEPATH=/Library/Frameworks/Python.framework/Versions/3.7/lib/libpython3.7m.dylib"
WITH_FLUID_ONLY=${WITH_FLUID_ONLY:-ON}
pip3.7 install --user -r ${PADDLE_ROOT}/python/requirements.txt
else
exit 1
fi
......@@ -441,7 +445,9 @@ EOF
# make install should also be test when unittest
make install -j 8
if [ "$1" == "cp27-cp27m" ]; then
set -e
pip install --user ${INSTALL_PREFIX:-/paddle/build}/opt/paddle/share/wheels/*.whl
python ${PADDLE_ROOT}/paddle/scripts/installation_validate.py
elif [ "$1" == "cp35-cp35m" ]; then
pip3.5 install --user ${INSTALL_PREFIX:-/paddle/build}/opt/paddle/share/wheels/*.whl
elif [ "$1" == "cp36-cp36m" ]; then
......
......@@ -48,18 +48,13 @@ configure_file(${CMAKE_CURRENT_SOURCE_DIR}/setup.py.in
IF(WIN32)
# Python would use the .pyd by default under Windows series platform
set(FLUID_DST_DIR ${PADDLE_BINARY_DIR}/python/paddle/fluid/)
get_filename_component(openblas_refpath ${CBLAS_LIBRARIES} DIRECTORY)
set(FLUID_CORE ${FLUID_DST_DIR}/core.pyd)
add_custom_command(OUTPUT ${FLUID_CORE}
COMMAND cmake -E copy $<TARGET_FILE:paddle_pybind> ${FLUID_CORE}
COMMAND cmake -E copy ${openblas_refpath}/openblas.dll ${FLUID_DST_DIR}
DEPENDS paddle_pybind)
ELSE()
set(FLUID_CORE ${PADDLE_BINARY_DIR}/python/paddle/fluid/core.so)
add_custom_command(OUTPUT ${FLUID_CORE}
COMMAND cmake -E copy $<TARGET_FILE:paddle_pybind> ${FLUID_CORE}
DEPENDS paddle_pybind)
ENDIF()
add_custom_command(OUTPUT ${FLUID_CORE}
COMMAND cmake -E copy $<TARGET_FILE:paddle_pybind> ${FLUID_CORE}
DEPENDS paddle_pybind)
add_custom_target(copy_paddle_pybind ALL DEPENDS ${FLUID_CORE})
IF(WIN32)
......
......@@ -46,7 +46,7 @@ from . import transpiler
from . import distribute_lookup_table
from .param_attr import ParamAttr, WeightNormParamAttr
from .data_feeder import DataFeeder
from .core import LoDTensor, LoDTensorArray, CPUPlace, CUDAPlace, CUDAPinnedPlace, Scope
from .core import LoDTensor, LoDTensorArray, CPUPlace, CUDAPlace, CUDAPinnedPlace, Scope, _Scope
from .transpiler import DistributeTranspiler, \
memory_optimize, release_memory, DistributeTranspilerConfig
from .lod_tensor import create_lod_tensor, create_random_int_lodtensor
......
......@@ -22,6 +22,8 @@ from . import op_frequence
from .op_frequence import *
from . import quantize
from .quantize import *
from . import slim
from .slim import *
from . import utils
from .utils import *
......@@ -30,4 +32,5 @@ __all__ += decoder.__all__
__all__ += memory_usage_calc.__all__
__all__ += op_frequence.__all__
__all__ += quantize.__all__
__all__ += slim.__all__
__all__ += utils.__all__
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .core import *
from .graph import *
from .prune import *
__all__ = [
'build_compressor',
'CompressPass',
'ImitationGraph',
'SensitivePruneStrategy',
'MagnitudePruner',
'RatioPruner',
]
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import config
from .config import *
from . import compress_pass
from .compress_pass import *
from . import strategy
from .strategy import *
from . import pass_builder
from .pass_builder import *
__all__ = config.__all__ + compress_pass.__all__ + strategy.__all__ + pass_builder.__all__
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ....core import CPUPlace
from ..graph import get_executor
__all__ = ['Context', 'CompressPass']
class Context(object):
"""
The context in the process of compression.
Args:
exe: The executor used to execute graph.
graph: The graph to be compressed.
scope: The scope used to execute graph.
program_exe: The program_exe is used to execute the program
created for modifying the variables in scope.
"""
def __init__(self, exe, graph, scope, program_exe=None):
# The total number of epoches to be trained.
self.epoch = 0
# Current epoch
self.epoch_id = 0
# Current batch
self.batch_id = 0
self.exe = exe
self.graph = graph
self.scope = scope
self.program_exe = program_exe
class CompressPass(object):
"""
The pass used to compress model.
Args:
place: The device used in compression.
data_reader: The data_reader used to run graph.
data_feeder: The data_feeder used to run graph.
scope: The scope used to run graph.
metrics: The metrics for evaluating model.
epoch: The total epoches of trainning in compression.
program_exe: The program_exe is used to execute the program
created for modifying the variables in scope.
"""
def __init__(self,
place=None,
data_reader=None,
data_feeder=None,
scope=None,
metrics=None,
epoch=None,
program_exe=None):
self.strategies = []
self.place = CPUPlace() if place is None else place
self.data_reader = data_reader
self.data_feeder = data_feeder
self.scope = scope
self.metrics = metrics
self.epoch = epoch
self.program_exe = program_exe
def add_strategy(self, strategy):
"""
Add a strategy to current compress pass.
Args:
strategy: The strategy to be added into current compress pass.
"""
self.strategies.append(strategy)
self.epoch = max(strategy.end_epoch, self.epoch)
def apply(self, graph):
"""
Compress a model.
Args:
graph: The target graph to be compressed.
"""
self.executor = get_executor(graph, self.place)
context = Context(
self.executor, graph, self.scope, program_exe=self.program_exe)
for strategy in self.strategies:
strategy.on_compress_begin(context)
for epoch in range(self.epoch):
for strategy in self.strategies:
strategy.on_epoch_begin(context)
for data in self.data_reader():
for strategy in self.strategies:
strategy.on_batch_begin(context)
fetches = None
if self.metrics:
fetches = self.metrics.values()
feed = None
if self.data_feeder:
feed = self.data_feeder.feed(data)
results = self.executor.run(graph,
fetches=fetches,
scope=self.scope,
feed=feed)
if results:
print("results: {}".format(
zip(self.metrics.keys(), results)))
for strategy in self.strategies:
strategy.on_batch_end(context)
context.batch_id += 1
for strategy in self.strategies:
strategy.on_epoch_end(context)
context.epoch_id += 1
for strategy in self.strategies:
strategy.on_compress_end(context)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import funcsigs
import yaml
from collections import OrderedDict
from ..prune import *
from .compress_pass import *
from .strategy import *
__all__ = ['ConfigFactory']
"""This factory is used to create instances by loading and parsing configure file with yaml format.
"""
class ConfigFactory(object):
def __init__(self, config):
"""Init a factory from configure file."""
self.instances = {}
self.version = None
self._parse_config(config)
def get_compress_pass(self):
"""
Get compress pass from factory.
"""
return self.instance('compress_pass')
def instance(self, name):
"""
Get instance from factory.
"""
if name in self.instances:
return self.instances[name]
else:
return None
def _new_instance(self, name, attrs):
if name not in self.instances:
class_ = globals()[attrs['class']]
sig = funcsigs.signature(class_.__init__)
keys = [
param.name for param in sig.parameters.values()
if (param.kind == param.POSITIONAL_OR_KEYWORD)
][1:]
keys = set(attrs.keys()).intersection(set(keys))
args = {}
for key in keys:
value = attrs[key]
if isinstance(value, str) and value in self.instances:
value = self.instances[value]
args[key] = value
self.instances[name] = class_(**args)
return self.instances.get(name)
def _parse_config(self, config):
assert config
with open(config, 'r') as config_file:
key_values = self._ordered_load(config_file)
for key in key_values:
# parse version
if key == 'version' and self.version is None:
self.version = int(key_values['version'])
assert self.version == int(key_values['version'])
# parse pruners
if key == 'pruners' or key == 'strategies':
instances = key_values[key]
for name in instances:
self._new_instance(name, instances[name])
if key == 'compress_pass':
compress_pass = self._new_instance(key, key_values[key])
for name in key_values[key]['strategies']:
strategy = self.instance(name)
compress_pass.add_strategy(strategy)
if key == 'include':
for config_file in key_values[key]:
self._parse_config(config_file.strip())
def _ordered_load(self,
stream,
Loader=yaml.Loader,
object_pairs_hook=OrderedDict):
"""
See: https://stackoverflow.com/questions/5121931/in-python-how-can-you-load-yaml-mappings-as-ordereddicts
"""
class OrderedLoader(Loader):
pass
def construct_mapping(loader, node):
loader.flatten_mapping(node)
return object_pairs_hook(loader.construct_pairs(node))
OrderedLoader.add_constructor(
yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG, construct_mapping)
return yaml.load(stream, OrderedLoader)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .compress_pass import CompressPass
from .config import ConfigFactory
__all__ = ['build_compressor']
def build_compressor(place=None,
data_reader=None,
data_feeder=None,
scope=None,
metrics=None,
epoch=None,
config=None):
if config is not None:
factory = ConfigFactory(config)
comp_pass = factory.get_compress_pass()
else:
comp_pass = CompressPass()
comp_pass.place = place
comp_pass.data_reader = data_reader
comp_pass.data_feeder = data_feeder
comp_pass.scope = scope
comp_pass.metrics = metrics
comp_pass.epoch = epoch
return comp_pass
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__all__ = ['Strategy']
class Strategy(object):
"""
Base class for all strategies.
"""
def __init__(self, start_epoch=0, end_epoch=10):
"""
Args:
start_epoch: The first epoch to apply the strategy.
end_epoch: The last epoch to apply the strategy.
"""
self.start_epoch = start_epoch
self.end_epoch = end_epoch
def on_compress_begin(self, context):
pass
def on_epoch_begin(self, context):
pass
def on_epoch_end(self, context):
pass
def on_batch_begin(self, context):
pass
def on_batch_end(self, context):
pass
def on_compress_end(self, context):
pass
version: 1.0
pruners:
pruner_1:
class: 'RatioPruner'
ratios:
'conv1_1.w': 0.3
'conv1_2.w': 0.4
'*': 0.9
group_dims:
'*': [1, 2, 3]
criterions:
'*': 'l1-norm'
strategies:
strategy_1:
class: 'SensitivePruneStrategy'
pruner: 'pruner_1'
start_epoch: 0
end_epoch: 10
delta_rate: 0.20
acc_loss_threshold: 0.2
sensitivities:
'conv1_1.w': 0.4
compress_pass:
class: 'CompressPass'
epoch: 100
strategies:
- strategy_1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
import paddle
import os
import sys
from paddle.fluid.contrib.slim import CompressPass
from paddle.fluid.contrib.slim import build_compressor
from paddle.fluid.contrib.slim import ImitationGraph
class LinearModel(object):
def __init__(slef):
pass
def train(self):
train_program = fluid.Program()
startup_program = fluid.Program()
startup_program.random_seed = 10
with fluid.program_guard(train_program, startup_program):
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=predict, label=y)
avg_cost = fluid.layers.mean(cost)
eval_program = train_program.clone()
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)
train_reader = paddle.batch(
paddle.dataset.uci_housing.train(), batch_size=1)
eval_reader = paddle.batch(
paddle.dataset.uci_housing.test(), batch_size=1)
place = fluid.CPUPlace()
train_feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
eval_feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)
exe.run(startup_program)
train_metrics = {"loss": avg_cost.name}
eval_metrics = {"loss": avg_cost.name}
graph = ImitationGraph(train_program)
config = './config.yaml'
comp_pass = build_compressor(
place,
data_reader=train_reader,
data_feeder=train_feeder,
scope=fluid.global_scope(),
metrics=train_metrics,
epoch=1,
config=config)
comp_pass.apply(graph)
if __name__ == "__main__":
model = LinearModel()
model.train()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import executor
from .executor import *
from . import graph
from .graph import *
from . import graph_pass
from .graph_pass import *
__all__ = executor.__all__
__all__ += graph.__all__
__all__ += graph_pass.__all__
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
from abc import abstractmethod
from .... import executor
from .graph import IRGraph, ImitationGraph
__all__ = ['get_executor']
class GraphExecutor(object):
__metaclass__ = abc.ABCMeta
def __init__(self, place):
self.place = place
@abstractmethod
def run(self, graph, feches=None, feed=None):
pass
class IRGraphExecutor(GraphExecutor):
def run(self, grah, fetches, feed=None):
pass
class ImitationGraphExecutor(GraphExecutor):
def __init__(self, place):
super(ImitationGraphExecutor, self).__init__(place)
self.exe = executor.Executor(place)
def run(self, graph, scope=None, fetches=None, feed=None):
assert isinstance(graph, ImitationGraph)
fetch_list = None
if fetches:
fetch_list = [
graph.program.global_block().var(name) for name in fetches
]
results = self.exe.run(graph.program,
scope=scope,
fetch_list=fetch_list,
feed=feed)
return results
def get_executor(graph, place):
if isinstance(graph, ImitationGraph):
return ImitationGraphExecutor(place)
if isinstance(graph, IRGraph):
return IRGraphExecutor(place)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ....framework import Program
__all__ = ['Graph', 'ImitationGraph', 'IRGraph']
class Graph(object):
"""
Base class for all graph.
"""
def __init__(self):
pass
def all_parameters(self):
"""
Return all the parameters in current graph.
"""
pass
class ImitationGraph(Graph):
def __init__(self, program=None):
super(ImitationGraph, self).__init__()
self.program = Program() if program is None else program
def all_parameters(self):
return self.program.global_block().all_parameters()
class IRGraph(Graph):
pass
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__all__ = ['GraphPass', 'PruneParameterPass']
class GraphPass(object):
"""
Base class for all graph pass.
"""
def __init__(self):
pass
def apply(self, graph):
pass
class PruneParameterPass(GraphPass):
"""
Generate a graph for pruning parameters from target graph.
"""
def __init__(self, pruned_params, thresholds):
super(PruneParameterPass, self).__init__()
self.pruned_params = pruned_params
self.thresholds = thresholds
self.default_threshold = thresholds['*']
def apply(self, graph):
pass
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import pruner
from .pruner import *
from . import prune_strategy
from .prune_strategy import *
__all__ = pruner.__all__
__all__ += prune_strategy.__all__
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..core.strategy import Strategy
from ....framework import Program, program_guard
from .... import layers
import numpy as np
__all__ = ['SensitivePruneStrategy', 'PruneStrategy']
class SensitivePruneStrategy(Strategy):
def __init__(self,
pruner=None,
start_epoch=0,
end_epoch=10,
delta_rate=0.20,
acc_loss_threshold=0.2,
sensitivities=None):
super(SensitivePruneStrategy, self).__init__(start_epoch, end_epoch)
self.pruner = pruner
self.delta_rate = delta_rate
self.acc_loss_threshold = acc_loss_threshold
self.sensitivities = sensitivities
class PruneStrategy(Strategy):
"""
The strategy that pruning weights by threshold or ratio iteratively.
"""
def __init__(self,
pruner,
mini_batch_pruning_frequency=1,
start_epoch=0,
end_epoch=10):
super(PruneStrategy, self).__init__(start_epoch, end_epoch)
self.pruner = pruner
self.mini_batch_pruning_frequency = mini_batch_pruning_frequency
def _triger(self, context):
return (context.batch_id % self.mini_batch_pruning_frequency == 0 and
self.start_epoch <= context.epoch_id < self.end_epoch)
def on_batch_end(self, context):
if self._triger(context):
prune_program = Program()
with program_guard(prune_program):
for param in context.graph.all_parameters():
prune_program.global_block().clone_variable(param)
p = prune_program.global_block().var(param.name)
zeros_mask = self.pruner.prune(p)
pruned_param = p * zeros_mask
layers.assign(input=pruned_param, output=param)
context.program_exe.run(prune_program, scope=context.scope)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from .... import layers
__all__ = ['Pruner', 'MagnitudePruner', 'RatioPruner']
class Pruner(object):
"""
Base class of all pruners.
"""
def __init__(self):
pass
def prune(self, param):
pass
class MagnitudePruner(Pruner):
"""
Pruner used to pruning a parameter by threshold.
"""
def __init__(self, threshold):
self.threshold = threshold
def prune(self, param, threshold=None):
if threshold is None:
thres = layers.fill_constant(
shape=[1], dtype='float32', value=self.threshold)
else:
thres = threshold
zeros_mask = layers.less_than(x=param, y=thres)
return zeros_mask
class RatioPruner(Pruner):
"""
Pruner used to pruning a parameter by ratio.
"""
def __init__(self, ratios=None):
"""
Args:
ratios: dict with pair (paramer_name, pruned_ratio).
"""
self.ratios = ratios
def prune(self, param, ratio=None):
"""
Args:
ratio: `ratio=40%` means pruning (1 - 40%) weights to zero.
"""
if ratio is None:
rat = self.ratios[
param.name] if param.name in self.ratios else self.ratios['*']
else:
rat = ratio
if rat < 1.0:
k = max(int(rat * np.prod(param.shape)), 1)
param_vec = layers.reshape(x=param, shape=[1, -1])
param_topk, _ = layers.topk(param_vec, k=k)
threshold = layers.slice(
param_topk, axes=[1], starts=[-1], ends=[k])
threshold = layers.reshape(x=threshold, shape=[1])
zeros_mask = layers.less_than(x=param, y=threshold)
else:
zeros_mask = layers.ones(param.shape)
return zeros_mask
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
version: 1.0
include: ["./unitest/configs/pruners.yaml", "./unitest/configs/pruners_0.yaml"]
pruners:
pruner_1:
class: 'RatioPruner'
ratios:
'conv1_1.w': 0.3
'conv1_2.w': 0.4
'*': 0.9
group_dims:
'*': [1, 2, 3]
criterions:
'*': 'l1-norm'
strategies:
strategy_1:
class: 'SensitivePruneStrategy'
pruner: 'pruner_2'
start_epoch: 0
end_epoch: 10
delta_rate: 0.20
acc_loss_threshold: 0.2
sensitivities:
'conv1_1.w': 0.4
compress_pass:
class: 'CompressPass'
epoch: 100
strategies:
- strategy_1
version: 1.0
pruners:
pruner_2:
class: 'RatioPruner'
ratios:
'conv1_1.w': 0.5
'conv1_2.w': 0.2
'*': 0.7
group_dims:
'*': [1, 2, 3]
criterions:
'*': 'l1-norm'
version: 1.0
pruners:
pruner_3:
class: 'RatioPruner'
ratios:
'conv1_1.w': 0.5
'conv1_2.w': 0.2
'*': 0.7
group_dims:
'*': [1, 2, 3]
criterions:
'*': 'l1-norm'
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.fluid.contrib.slim import ConfigFactory
import unittest
class TestFactory(unittest.TestCase):
def test_parse(self):
factory = ConfigFactory('./unitest/configs/config.yaml')
pruner = factory.instance('pruner_1')
self.assertEquals(pruner.ratios['conv1_1.w'], 0.3)
pruner = factory.instance('pruner_2')
self.assertEquals(pruner.ratios['*'], 0.7)
strategy = factory.instance('strategy_1')
pruner = strategy.pruner
self.assertEquals(pruner.ratios['*'], 0.7)
compress_pass = factory.get_compress_pass()
self.assertEquals(compress_pass.epoch, 100)
strategy = compress_pass.strategies[0]
self.assertEquals(strategy.delta_rate, 0.2)
if __name__ == '__main__':
unittest.main()
......@@ -44,6 +44,8 @@ class DataToLoDTensorConverter(object):
self.dtype = 'int64'
elif dtype == core.VarDesc.VarType.FP64:
self.dtype = 'float64'
elif dtype == core.VarDesc.VarType.FP16:
self.dtype = 'float16'
elif dtype == core.VarDesc.VarType.INT32:
self.dtype = 'int32'
elif dtype == core.VarDesc.VarType.UINT8:
......
......@@ -191,7 +191,7 @@ def _fetch_var(name, scope=None, return_numpy=True):
assert isinstance(name, str)
if scope is None:
scope = global_scope()
assert isinstance(scope, core.Scope)
assert isinstance(scope, core._Scope)
var = scope.find_var(name)
assert var is not None, (
......
......@@ -18,6 +18,7 @@ from . import framework
import numpy as np
import contextlib
from .core import VarDesc
from . import unique_name
__all__ = [
'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
......@@ -208,17 +209,40 @@ class UniformInitializer(Initializer):
# Initialization Ops should be prepended and not appended
if self._seed == 0:
self._seed = block.program.random_seed
# to be compatible of fp16 initalizers
if var.dtype == VarDesc.VarType.FP16:
out_dtype = VarDesc.VarType.FP32
out_var = block.create_var(
name=unique_name.generate(".".join(['gaussian_random', 'tmp'])),
shape=var.shape,
dtype=out_dtype,
type=VarDesc.VarType.LOD_TENSOR,
persistable=False)
else:
out_dtype = var.dtype
out_var = var
op = block._prepend_op(
type="uniform_random",
outputs={"Out": var},
outputs={"Out": out_var},
attrs={
"shape": var.shape,
"dtype": int(var.dtype),
"dtype": out_dtype,
"min": self._low,
"max": self._high,
"seed": self._seed
},
stop_gradient=True)
if var.dtype == VarDesc.VarType.FP16:
block.append_op(
type="cast",
inputs={"X": out_var},
outputs={"Out": var},
attrs={"in_dtype": out_var.dtype,
"out_dtype": var.dtype})
var.op = op
return op
......@@ -263,18 +287,40 @@ class NormalInitializer(Initializer):
# Initialization Ops should be prepended and not appended
if self._seed == 0:
self._seed = block.program.random_seed
# to be compatible of fp16 initalizers
if var.dtype == VarDesc.VarType.FP16:
out_dtype = VarDesc.VarType.FP32
out_var = block.create_var(
name=unique_name.generate(".".join(['gaussian_random', 'tmp'])),
shape=var.shape,
dtype=out_dtype,
type=VarDesc.VarType.LOD_TENSOR,
persistable=False)
else:
out_dtype = var.dtype
out_var = var
op = block._prepend_op(
type="gaussian_random",
outputs={"Out": var},
outputs={"Out": out_var},
attrs={
"shape": var.shape,
"dtype": int(var.dtype),
"dtype": out_dtype,
"mean": self._mean,
"std": self._std_dev,
"seed": self._seed,
"use_mkldnn": False
},
stop_gradient=True)
if var.dtype == VarDesc.VarType.FP16:
block.append_op(
type="cast",
inputs={"X": out_var},
outputs={"Out": var},
attrs={"in_dtype": out_var.dtype,
"out_dtype": var.dtype})
var.op = op
return op
......
......@@ -18,7 +18,9 @@ All layers just related to the neural network.
from __future__ import print_function
import numpy as np
import six
import os
import inspect
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable, OpProtoHolder
......@@ -176,6 +178,7 @@ __all__ = [
'merge_selected_rows',
'get_tensor_from_selected_rows',
'lstm',
'py_func',
'psroi_pool',
'huber_loss',
]
......@@ -2798,6 +2801,10 @@ def batch_norm(input,
helper = LayerHelper('batch_norm', **locals())
dtype = helper.input_dtype()
# use fp32 for bn parameter
if dtype == core.VarDesc.VarType.FP16:
dtype = core.VarDesc.VarType.FP32
input_shape = input.shape
if data_layout == 'NCHW':
channel_num = input_shape[1]
......@@ -2832,7 +2839,7 @@ def batch_norm(input,
trainable=False,
do_model_average=do_model_average_for_mean_and_var),
shape=param_shape,
dtype=input.dtype)
dtype=dtype)
mean.stop_gradient = True
variance = helper.create_parameter(
......@@ -2842,7 +2849,7 @@ def batch_norm(input,
trainable=False,
do_model_average=do_model_average_for_mean_and_var),
shape=param_shape,
dtype=input.dtype)
dtype=dtype)
variance.stop_gradient = True
# create output
......@@ -4523,7 +4530,7 @@ def topk(input, k, name=None):
Args:
input(Variable): The input variable which can be a vector or Tensor with
higher rank.
k(int): The number of top elements to look for along the last dimension
k(int | Variable): The number of top elements to look for along the last dimension
of input.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
......@@ -4546,12 +4553,18 @@ def topk(input, k, name=None):
helper = LayerHelper("top_k", **locals())
values = helper.create_variable_for_type_inference(dtype=input.dtype)
indices = helper.create_variable_for_type_inference(dtype="int64")
inputs = {"X": [input]}
attrs = None
if isinstance(k, Variable):
inputs['K'] = k
else:
attrs = {'k': k}
helper.append_op(
type="top_k",
inputs={"X": [input]},
inputs=inputs,
outputs={"Out": [values],
"Indices": [indices]},
attrs={"k": k})
attrs=attrs)
values.stop_gradient = True
indices.stop_gradient = True
return values, indices
......@@ -7940,7 +7953,7 @@ def unstack(x, axis=0, num=None):
num = x.shape[axis]
outs = []
for _ in num:
for _ in range(num):
outs.append(helper.create_variable_for_type_inference(x.dtype))
helper.append_op(
......@@ -9327,6 +9340,224 @@ def get_tensor_from_selected_rows(x, name=None):
return out
class PyFuncRegistry(object):
_register_funcs = []
def __init__(self, func):
if func is None or not callable(func):
raise TypeError('func must be a Python function')
self._func = func
# find named args using reflection
args = inspect.getargspec(self._func)
if len(args[0]) == 0 and args[1] is None and args[2] is None:
# Function with no inputs
self._named_args = None
else:
self._named_args = args[0]
self._id = core._append_python_callable_object_and_return_id(self)
'''
Why record self here?
1. For debug usage. Users can call
:code:`py_func.registered_func(idx)` method
to find the registered function corresponding
to :code:`idx`.
2. For increasing reference count of self.
It seems that to release Python object
whose reference count is 1 would cause
segmentation fault error in C++ side.
May be lack of Python GC in C++ side?
'''
PyFuncRegistry._register_funcs.append(self)
@classmethod
def registered_func(cls, idx):
return cls._register_funcs[idx]._func
@classmethod
def registered_func_num(cls):
return len(cls._register_funcs)
@property
def id(self):
return self._id
def __call__(self, *args):
if self._named_args is None:
func_ret = self._func()
else:
kwargs = dict()
idx = 0
for arg in self._named_args:
kwargs[arg] = args[idx]
idx += 1
func_ret = self._func(*args[idx:], **kwargs)
if not isinstance(func_ret, (list, tuple)):
func_ret = (func_ret, )
ret = []
for each_ret in func_ret:
if each_ret is None or isinstance(each_ret, core.LoDTensor):
ret.append(each_ret)
continue
if not isinstance(each_ret, np.ndarray):
each_ret = np.array(each_ret)
tensor = core.LoDTensor()
tensor.set(each_ret, core.CPUPlace())
ret.append(tensor)
return tuple(ret)
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
"""
PyFunc Operator.
User can use :code:`py_func` to register operators in Python side.
The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
numpy array or :code:`LoDTensor`. Paddle would call the registered
:code:`func` in forward part, and call :code:`backward_func` in
backward part (if :code:`backward_func` is not None).
User should set the right data type and shape of :code:`out` before
calling this function. However, data types and shapes of gradients of
:code:`out` and :code:`x` would be inferred automatically.
Input orders of :code:`backward_func` would be: forward inputs
:code:`x`, forward outputs :code:`out` and backward input gradients of
:code:`out`. If some variables of :code:`out` have no gradient, the input
tensor would be None in Python side. If some variables of :code:`in` have
no gradient, users should return None.
This function can also be used to debug the running network. User can
add a :code:`py_func` operator without output, and print input
:code:`x` inside :code:`func`.
Args:
func (callable): forward Python function.
x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
Paddle cannot infer shapes and data types of :code:`out`. Users
should create :code:`out` beforehand.
backward_func (callable|None): backward Python function.
None means no backward. Default None.
skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
Variables that are not needed in :code:`backward_func` inputs.
These variables must be any of :code:`x` and :code:`out`.
If set, these vars would not be inputs of :code:`backward_func`,
Only useful when :code:`backward_func` is not None. Default None.
Returns:
out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
Examples:
>>> import paddle.fluid as fluid
>>> import six
>>>
>>> def create_tmp_var(name, dtype, shape):
>>> return fluid.default_main_program().current_block().create_var(
>>> name=name, dtype=dtype, shape=shape)
>>>
>>> # tanh activation has been provided by Paddle C++ op
>>> # Here, we only use tanh to be an example to show the usage
>>> # of py_func
>>> def tanh(x):
>>> return np.tanh(x)
>>>
>>> # forward input x is skipped
>>> def tanh_grad(y, dy):
>>> return np.array(dy) * (1 - np.square(np.array(y)))
>>>
>>> def debug_func(x):
>>> print(x)
>>>
>>> def simple_net(img, label):
>>> hidden = img
>>> for idx in six.moves.range(4):
>>> hidden = fluid.layers.fc(hidden, size=200)
>>> new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
>>> dtype=hidden.dtype, shape=hidden.shape)
>>>
>>> # user-defined layers with forward and backward
>>> hidden = fluid.layers.py_func(func=tanh, x=hidden,
>>> out=new_hidden, backward_func=tanh_grad,
>>> skip_vars_in_backward_input=hidden)
>>>
>>> # user-defined debug layers to print variables
>>> fluid.layers.py_func(func=debug_func, x=hidden, out=None)
>>>
>>> prediction = fluid.layers.fc(hidden, size=10, act='softmax')
>>> loss = fluid.layers.cross_entropy(input=prediction, label=label)
>>> return fluid.layers.mean(loss)
"""
helper = LayerHelper('py_func', **locals())
if x is None:
x = []
elif isinstance(x, Variable):
x = [x]
elif not isinstance(x, (list, tuple)):
raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
if out is None:
out_list = []
elif isinstance(out, Variable):
out_list = [out]
elif isinstance(out, (list, tuple)):
out_list = out
else:
raise TypeError(
'Output must be Variable/list(Variable)/tuple(Variable)')
fwd_func_id = PyFuncRegistry(func).id
bwd_func_id = PyFuncRegistry(
backward_func).id if backward_func is not None else -1
for each_out in out_list:
if len(each_out.shape) == 0:
raise ValueError(
'Output shapes of py_func op should be provided by users manually'
)
backward_skip_vars = set()
if backward_func is not None and skip_vars_in_backward_input is not None:
if isinstance(skip_vars_in_backward_input, Variable):
skip_vars_in_backward_input = [skip_vars_in_backward_input]
fwd_in_out = [v.name for v in x]
fwd_in_out.extend([v.name for v in out_list])
fwd_in_out = set(fwd_in_out)
backward_skip_vars = set()
for v in skip_vars_in_backward_input:
if not v.name in fwd_in_out:
raise ValueError(
'Variable {} is not found in forward inputs and outputs'
.format(v.name))
backward_skip_vars.add(v.name)
helper.append_op(
type='py_func',
inputs={'X': x},
outputs={'Out': out_list},
attrs={
'forward_callable_id': fwd_func_id,
'backward_callable_id': bwd_func_id,
'backward_skip_vars': list(backward_skip_vars)
})
return out
# For debug usage
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num
@templatedoc()
def psroi_pool(input,
rois,
......
......@@ -26,7 +26,7 @@ logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
try:
from .graphviz import Digraph
from .graphviz import Graph
except ImportError:
logger.info(
'Cannot import graphviz, which is required for drawing a network. This '
......@@ -112,7 +112,7 @@ def draw_graph(startup_program, main_program, **kwargs):
filename = kwargs.get("filename")
if filename == None:
filename = str(graph_id) + ".gv"
g = Digraph(
g = Graph(
name=str(graph_id),
filename=filename,
graph_attr=GRAPH_STYLE,
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
from paddle.fluid.tests.unittests.test_fill_constant_op import TestFillConstantOp1, TestFillConstantOp2, TestFillConstantOpWithSelectedRows
class TestNGRAPHFillConstantOp1(TestFillConstantOp1):
def setUp(self):
super(TestNGRAPHFillConstantOp1, self).setUp()
class TestNGRAPHFillConstantOp2(TestFillConstantOp2):
def setUp(self):
super(TestNGRAPHFillConstantOp2, self).setUp()
class TestNGRAPHFillConstantOpWithSelectedRows(
TestFillConstantOpWithSelectedRows):
def setUp(self):
super(TestFillConstantOpWithSelectedRows, self).setUp()
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
from paddle.fluid.tests.unittests.test_top_k_op import TestTopkOp, TestTopkOp3d, TestTopkOp2, TestTopkOp3, TestTopkOp4
class TestNGRAPHTopkOp(TestTopkOp):
def setUp(self):
super(TestNGRAPHTopkOp, self).setUp()
class TestNGRAPHTopkOp2(TestTopkOp2):
def setUp(self):
super(TestNGRAPHTopkOp2, self).setUp()
class TestNGRAPHTopkOp3(TestTopkOp3):
def setUp(self):
super(TestNGRAPHTopkOp3, self).setUp()
class TestNGRAPHTopkOp4(TestTopkOp4):
def setUp(self):
super(TestNGRAPHTopkOp4, self).setUp()
if __name__ == "__main__":
unittest.main()
......@@ -368,6 +368,8 @@ class OpTest(unittest.TestCase):
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
return [place]
else:
return []
else:
return []
places = [fluid.CPUPlace()]
......
......@@ -22,8 +22,10 @@ from op_test import OpTest
class TestAccuracyOp(OpTest):
def setUp(self):
self.op_type = "accuracy"
self.dtype = np.float32
self.init_dtype()
n = 8192
infer = np.random.random((n, 1)).astype("float32")
infer = np.random.random((n, 1)).astype(self.dtype)
indices = np.random.randint(0, 2, (n, 1))
label = np.random.randint(0, 2, (n, 1))
self.inputs = {'Out': infer, 'Indices': indices, "Label": label}
......@@ -34,14 +36,25 @@ class TestAccuracyOp(OpTest):
num_correct += 1
break
self.outputs = {
'Accuracy': np.array([num_correct / float(n)]).astype("float32"),
'Accuracy': np.array([num_correct / float(n)]).astype(self.dtype),
'Correct': np.array([num_correct]).astype("int32"),
'Total': np.array([n]).astype("int32")
}
def init_dtype(self):
pass
def test_check_output(self):
self.check_output()
class TestAccuracyOpFp16(TestAccuracyOp):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
self.check_output(atol=1e-3)
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
class TestDeQuantizeOp(OpTest):
def setUp(self):
self.op_type = 'dequantize'
self.scale = 2.0
self.input_size = [1, 1, 5, 5] #Naive nChw16c
self.data_type = 'int8'
self.set_scale()
self.set_data_type()
if self.data_type == 'int8':
input = (np.random.randint(0, 100, self.input_size) - 50
).astype(self.data_type)
output = (input * (1 / self.scale)).astype('float')
else:
input = (np.random.randint(0, 100,
self.input_size)).astype(self.data_type)
output = (input * (1 / self.scale)).astype('float')
self.inputs = {'Input': OpTest.np_dtype_to_fluid_dtype(input)}
self.outputs = {'Output': output}
self.attrs = {'Scale': self.scale, }
def test_check_output(self):
self.check_output()
def set_scale(self):
pass
def set_data_type(OpTest):
pass
class TestDeQuantizeOp1(TestDeQuantizeOp):
def set_scale(self):
self.scale = 1.5
def set_data_type(self):
self.data_type = 'int8'
class TestDeQuantizeOp2(TestDeQuantizeOp):
def set_scale(self):
self.scale = 0.8
def set_data_type(self):
self.data_type = 'uint8'
if __name__ == '__main__':
unittest.main()
......@@ -21,14 +21,16 @@ from op_test import OpTest
class ElementwiseDivOp(OpTest):
def setUp(self):
self.op_type = "elementwise_div"
self.dtype = np.float32
self.init_dtype()
""" Warning
CPU gradient check error!
'X': np.random.random((32,84)).astype("float32"),
'Y': np.random.random((32,84)).astype("float32")
"""
self.inputs = {
'X': np.random.uniform(0.1, 1, [13, 17]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [13, 17]).astype("float32")
'X': np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype),
'Y': np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
}
self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}
......@@ -46,6 +48,9 @@ class ElementwiseDivOp(OpTest):
self.check_grad(
['X'], 'Out', max_relative_error=0.05, no_grad_set=set('Y'))
def init_dtype(self):
pass
class TestElementwiseDivOp_scalar(ElementwiseDivOp):
def setUp(self):
......@@ -126,5 +131,21 @@ class TestElementwiseDivOp_broadcast_3(ElementwiseDivOp):
}
class TestElementwiseDivOpFp16(ElementwiseDivOp):
def init_dtype(self):
self.dtype = np.float16
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=1)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=1, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=1, no_grad_set=set('Y'))
if __name__ == '__main__':
unittest.main()
......@@ -135,5 +135,10 @@ class TestElementwiseMulOp_broadcast_3(ElementwiseMulOp):
}
class TestElementwiseMulOpFp16(ElementwiseMulOp):
def init_dtype(self):
self.dtype = np.float16
if __name__ == '__main__':
unittest.main()
......@@ -22,12 +22,22 @@ from op_test import OpTest
class TestFillZerosLikeOp(OpTest):
def setUp(self):
self.op_type = "fill_zeros_like"
self.inputs = {'X': np.random.random((219, 232)).astype("float32")}
self.dtype = np.float32
self.init_dtype()
self.inputs = {'X': np.random.random((219, 232)).astype(self.dtype)}
self.outputs = {'Out': np.zeros_like(self.inputs["X"])}
def init_dtype(self):
pass
def test_check_output(self):
self.check_output()
class TestFillZerosLikeOpFp16(TestFillZerosLikeOp):
def init_dtype(self):
self.dtype = np.float16
if __name__ == "__main__":
unittest.main()
......@@ -24,11 +24,13 @@ from op_test import OpTest
class TestMomentumOp1(OpTest):
def setUp(self):
self.op_type = "momentum"
self.dtype = np.float32
self.init_dtype()
param = np.random.random((123, 321)).astype("float32")
grad = np.random.random((123, 321)).astype("float32")
velocity = np.zeros((123, 321)).astype("float32")
learning_rate = np.array([0.001]).astype("float32")
param = np.random.random((123, 321)).astype(self.dtype)
grad = np.random.random((123, 321)).astype(self.dtype)
velocity = np.zeros((123, 321)).astype(self.dtype)
learning_rate = np.array([0.001]).astype(self.dtype)
mu = 0.0001
use_nesterov = False
......@@ -50,10 +52,21 @@ class TestMomentumOp1(OpTest):
self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}
def init_dtype(self):
pass
def test_check_output(self):
self.check_output()
class TestMomentumOpFp16(TestMomentumOp1):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
self.check_output(atol=1e-3)
class TestMomentumOp2(OpTest):
'''Test Momentum with default values for attributes
'''
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import paddle.fluid as fluid
import paddle
import unittest
import six
import numpy as np
dev_cnt = 2
if fluid.core.is_compiled_with_cuda():
dev_cnt = fluid.core.get_cuda_device_count()
os.environ['CPU_NUM'] = str(dev_cnt)
def dummy_func_with_no_input():
return np.array([0], dtype='float32')
def dummy_func_with_no_output(x):
pass
def tanh(x):
return np.tanh(x)
def tanh_grad(y, dy):
return np.array(dy) * (1 - np.square(np.array(y)))
def cross_entropy(logits, labels):
logits = np.array(logits)
labels = np.array(labels)
M = logits.shape[0]
N = logits.shape[1]
ret = np.ndarray([M, 1]).astype(logits.dtype)
for idx in six.moves.range(M):
ret[idx][0] = -np.log(logits[idx][labels[idx][0]])
return ret
def cross_entropy_grad(logits, labels, bwd_dout):
logits = np.array(logits)
labels = np.array(labels)
bwd_dout = np.array(bwd_dout)
M = logits.shape[0]
N = logits.shape[1]
dlogits = np.zeros([M, N]).astype(logits.dtype)
for idx in six.moves.range(M):
dlogits[idx][labels[idx][0]] = -bwd_dout[idx] / logits[idx][labels[idx][
0]]
return dlogits, None
def simple_fc_net(img, label, use_py_func_op):
hidden = img
for idx in range(4):
hidden = fluid.layers.fc(
hidden,
size=200,
bias_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=1.0)))
if not use_py_func_op:
hidden = fluid.layers.tanh(hidden)
else:
new_hidden = fluid.default_main_program().current_block(
).create_var(
name='hidden_{}'.format(idx),
dtype='float32',
shape=hidden.shape)
hidden = fluid.layers.py_func(
func=tanh,
x=hidden,
out=new_hidden,
backward_func=tanh_grad,
skip_vars_in_backward_input=hidden)
prediction = fluid.layers.fc(hidden, size=10, act='softmax')
if not use_py_func_op:
loss = fluid.layers.cross_entropy(input=prediction, label=label)
else:
loss = fluid.default_main_program().current_block().create_var(
name='loss', dtype='float32', shape=[-1, 1])
loss = fluid.layers.py_func(
func=cross_entropy,
x=[prediction, label],
out=loss,
backward_func=cross_entropy_grad,
skip_vars_in_backward_input=loss)
dummy_var = fluid.default_main_program().current_block().create_var(
name='test_tmp_var', dtype='float32', shape=[1])
fluid.layers.py_func(
func=dummy_func_with_no_input, x=None, out=dummy_var)
loss += dummy_var
fluid.layers.py_func(func=dummy_func_with_no_output, x=loss, out=None)
loss = fluid.layers.mean(loss)
return loss
def reader():
for _ in six.moves.range(dev_cnt * 100):
yield np.random.random([784]), np.random.random_integers(
size=[1], low=0, high=9)
def test_main(use_cuda, use_py_func_op, use_parallel_executor):
if use_cuda and not fluid.core.is_compiled_with_cuda():
return None
with fluid.program_guard(fluid.Program(), fluid.Program()):
with fluid.scope_guard(fluid.core.Scope()):
fluid.default_main_program().random_seed = 1
fluid.default_startup_program().random_seed = 1
np.random.seed(1)
img = fluid.layers.data(name='image', shape=[784], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
loss = simple_fc_net(img, label, use_py_func_op)
optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
optimizer.minimize(loss)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
feeder = fluid.DataFeeder(feed_list=[img, label], place=place)
r = paddle.batch(reader, batch_size=10)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
if use_parallel_executor:
exe = fluid.ParallelExecutor(
use_cuda=use_cuda, loss_name=loss.name)
fetch_list = [loss.name]
else:
fetch_list = [loss]
ret = []
for epoch_id in six.moves.range(2):
for d in r():
L, = exe.run(feed=feeder.feed(d), fetch_list=fetch_list)
ret.append(L)
return np.array(ret)
class TestPyFuncOpUseExecutor(unittest.TestCase):
def setUp(self):
self.use_parallel_executor = False
def test_loss_diff(self):
losses = []
for use_cuda in [True, False]:
for use_py_func_op in [True, False]:
L = test_main(use_cuda, use_py_func_op,
self.use_parallel_executor)
if L is not None:
losses.append(L)
for idx in six.moves.range(len(losses) - 1):
max_diff = np.max(np.abs(losses[idx] - losses[0]))
self.assertAlmostEqual(max_diff, 0, delta=1e-3)
class TestPyFuncOpUseParallelExecutor(TestPyFuncOpUseExecutor):
def setUp(self):
self.use_parallel_executor = True
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
class TestQuantizeOp(OpTest):
def setUp(self):
self.op_type = 'quantize'
self.scale = 2.0
self.input_size = [1, 1, 5, 5] #Naive nChw16c
self.is_negative = False
self.set_scale()
self.set_is_negative()
if self.is_negative:
input = (100 * np.random.random_sample(self.input_size) - 50
).astype('float32')
output = np.round(input * self.scale).astype('int8')
else:
input = (100 *
np.random.random_sample(self.input_size)).astype('float32')
output = np.round(input * self.scale).astype('uint8')
self.inputs = {'Input': OpTest.np_dtype_to_fluid_dtype(input)}
self.outputs = {'Output': output}
self.attrs = {
'Scale': self.scale,
'is_negative_input': self.is_negative
}
def test_check_output(self):
self.check_output()
def set_scale(self):
pass
def set_is_negative(self):
pass
class TestQuantizeOp1(TestQuantizeOp):
def set_scale(self):
self.scale = 1.5
def set_is_negative(self):
self.is_nagative = True
class TestQuantizeOp2(TestQuantizeOp):
def set_scale(self):
self.scale = 0.1
def set_is_negative(self):
self.is_nagative = False
if __name__ == '__main__':
unittest.main()
......@@ -21,15 +21,22 @@ from op_test import OpTest
class TestTopkOp(OpTest):
def setUp(self):
self.variable_k = False
self.set_args()
self.op_type = "top_k"
self.dtype = np.float32
self.init_dtype()
k = self.top_k
input = np.random.random((self.row, k)).astype("float32")
input = np.random.random((self.row, k)).astype(self.dtype)
output = np.ndarray((self.row, k))
indices = np.ndarray((self.row, k)).astype("int64")
self.inputs = {'X': input}
self.attrs = {'k': k}
if self.variable_k:
self.inputs['K'] = np.array([k]).astype("int32")
else:
self.attrs = {'k': k}
for rowid in range(self.row):
row = input[rowid]
......@@ -38,6 +45,9 @@ class TestTopkOp(OpTest):
self.outputs = {'Out': output, 'Indices': indices}
def init_dtype(self):
pass
def set_args(self):
self.row = 32
self.top_k = 1
......@@ -46,6 +56,11 @@ class TestTopkOp(OpTest):
self.check_output()
class TestTopkOpFp16(TestTopkOp):
def init_dtype(self):
self.dtype = np.float16
class TestTopkOp3d(OpTest):
def setUp(self):
self.op_type = "top_k"
......@@ -107,5 +122,12 @@ class TestTopkOp4(TestTopkOp):
self.top_k = 1
class TestTopkOp5(TestTopkOp):
def set_args(self):
self.row = 40000
self.top_k = 3
self.variable_k = True
if __name__ == "__main__":
unittest.main()
......@@ -23,16 +23,6 @@ class TestTransposeMKLDNN(TestTransposeOp):
def init_op_type(self):
self.op_type = "transpose2"
self.use_mkldnn = True
self.is_test = True
return
def test_check_grad(self):
return
def test_check_grad_no_input(self):
return
def test_check_grad_no_filter(self):
return
......
......@@ -27,7 +27,6 @@ class TestTransposeOp(OpTest):
self.attrs = {
'axis': list(self.axis),
'use_mkldnn': self.use_mkldnn,
'is_test': self.is_test,
}
self.outputs = {
'XShape': np.random.random(self.shape).astype("float32"),
......@@ -37,7 +36,6 @@ class TestTransposeOp(OpTest):
def init_op_type(self):
self.op_type = "transpose2"
self.use_mkldnn = False
self.is_test = False
def test_check_output(self):
self.check_output(no_check_set=['XShape'])
......
......@@ -57,7 +57,7 @@ class InferenceTranspiler(object):
raise TypeError("place should be as CPUPlace/CUDAPlace type")
if scope is None:
scope = global_scope()
if not isinstance(scope, core.Scope):
if not isinstance(scope, core._Scope):
raise TypeError("scope should be as Scope type or None")
use_mkldnn = bool(os.getenv("FLAGS_use_mkldnn", False))
......
......@@ -9,3 +9,5 @@ Pillow
nltk>=3.2.2
graphviz
six
funcsigs
pyyaml
......@@ -109,6 +109,10 @@ packages=['paddle',
'paddle.fluid.contrib',
'paddle.fluid.contrib.decoder',
'paddle.fluid.contrib.quantize',
'paddle.fluid.contrib.slim',
'paddle.fluid.contrib.slim.core',
'paddle.fluid.contrib.slim.graph',
'paddle.fluid.contrib.slim.prune',
'paddle.fluid.contrib.utils',
'paddle.fluid.transpiler',
'paddle.fluid.transpiler.details']
......@@ -140,8 +144,6 @@ if '${WITH_FLUID_ONLY}'== 'OFF':
'${PADDLE_BINARY_DIR}/paddle/scripts/paddle']
package_data={'paddle.fluid': ['core' + (ext_name if os.name != 'nt' else '.pyd')]}
if os.name == 'nt':
package_data['paddle.fluid'] += ['openblas' + ext_name]
if '${WITH_FLUID_ONLY}'== 'OFF':
package_data['paddle.v2.master']=['libpaddle_master' + ext_name]
......@@ -166,11 +168,17 @@ package_data['paddle.libs']=[('libwarpctc' if os.name != 'nt' else 'warpctc') +
shutil.copy('${WARPCTC_LIBRARIES}', libs_path)
if '${WITH_MKL}' == 'ON':
shutil.copy('${MKLML_LIB}', libs_path)
shutil.copy('${MKLML_IOMP_LIB}', libs_path)
package_data['paddle.libs']+=['libmklml_intel' + ext_name,'libiomp5' + ext_name]
shutil.copy('${MKLML_SHARED_LIB}', libs_path)
shutil.copy('${MKLML_SHARED_IOMP_LIB}', libs_path)
package_data['paddle.libs']+=[('libmklml_intel' if os.name != 'nt' else 'mklml') + ext_name, ('libiomp5' if os.name != 'nt' else 'libiomp5md') + ext_name]
else:
if os.name == 'nt':
# copy the openblas.dll
shutil.copy(os.path.dirname('${CBLAS_LIBRARIES}') + '/openblas' + ext_name, libs_path)
package_data['paddle.libs'] += ['openblas' + ext_name]
if '${WITH_MKLDNN}' == 'ON':
if '${CMAKE_BUILD_TYPE}' == 'Release':
if '${CMAKE_BUILD_TYPE}' == 'Release' and os.name != 'nt':
# only change rpath in Release mode.
# TODO(typhoonzero): use install_name_tool to patch mkl libs once
# we can support mkl on mac.
......@@ -181,7 +189,7 @@ if '${WITH_MKLDNN}' == 'ON':
command = "patchelf --set-rpath '$ORIGIN/' ${MKLDNN_SHARED_LIB}"
if os.system(command) != 0:
raise Exception("patch libmkldnn.so failed, command: %s" % command)
package_data['paddle.libs']+=['libmkldnn.so.0']
package_data['paddle.libs']+=['libmkldnn.so.0' if os.name != 'nt' else ('mkldnn' + ext_name)]
shutil.copy('${MKLDNN_SHARED_LIB}', libs_path)
if '${WITH_NGRAPH}' == 'ON':
# only change rpath in Release mode,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册