Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
d04c8538
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d04c8538
编写于
11月 10, 2017
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine .cc and .h, more unit test more readable.
上级
0d9ba3da
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
46 addition
and
32 deletion
+46
-32
paddle/operators/expand_op.cc
paddle/operators/expand_op.cc
+16
-11
paddle/operators/expand_op.h
paddle/operators/expand_op.h
+20
-11
python/paddle/v2/framework/tests/test_expand_op.py
python/paddle/v2/framework/tests/test_expand_op.py
+10
-10
未找到文件。
paddle/operators/expand_op.cc
浏览文件 @
d04c8538
...
@@ -25,13 +25,15 @@ class ExpandOp : public framework::OperatorWithKernel {
...
@@ -25,13 +25,15 @@ class ExpandOp : public framework::OperatorWithKernel {
protected:
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) must be initialized."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) should not be null."
);
std
::
vector
<
int
>
expand_times
=
std
::
vector
<
int
>
expand_times
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"expand
T
imes"
);
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"expand
_t
imes"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_EQ
(
static_cast
<
size_t
>
(
x_dims
.
size
()),
expand_times
.
size
(),
PADDLE_ENFORCE_EQ
(
static_cast
<
size_t
>
(
x_dims
.
size
()),
expand_times
.
size
(),
"The number of Attr(expand
T
imes)'s value must be equal "
"The number of Attr(expand
_t
imes)'s value must be equal "
"to the rank of Input(X)."
);
"to the rank of Input(X)."
);
PADDLE_ENFORCE_LE
(
x_dims
.
size
(),
6
,
PADDLE_ENFORCE_LE
(
x_dims
.
size
(),
6
,
"The rank of Input(X) must not be greater than 6."
);
"The rank of Input(X) must not be greater than 6."
);
...
@@ -39,14 +41,16 @@ class ExpandOp : public framework::OperatorWithKernel {
...
@@ -39,14 +41,16 @@ class ExpandOp : public framework::OperatorWithKernel {
std
::
vector
<
int64_t
>
out_shape
(
x_dims
.
size
());
std
::
vector
<
int64_t
>
out_shape
(
x_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
expand_times
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
expand_times
.
size
();
++
i
)
{
PADDLE_ENFORCE_GE
(
expand_times
[
i
],
1
,
PADDLE_ENFORCE_GE
(
expand_times
[
i
],
1
,
"Each value of Attr(expand
T
imes) should not be "
"Each value of Attr(expand
_t
imes) should not be "
"less than 1."
);
"less than 1."
);
out_shape
[
i
]
=
x_dims
[
i
]
*
expand_times
[
i
];
out_shape
[
i
]
=
x_dims
[
i
]
*
expand_times
[
i
];
}
}
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
out_shape
));
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
out_shape
));
if
(
out_shape
[
0
]
==
x_dims
[
0
])
{
ctx
->
ShareLoD
(
"X"
,
"Out"
);
ctx
->
ShareLoD
(
"X"
,
"Out"
);
}
}
}
};
};
class
ExpandOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
class
ExpandOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
@@ -61,13 +65,13 @@ class ExpandOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -61,13 +65,13 @@ class ExpandOpMaker : public framework::OpProtoAndCheckerMaker {
"The rank of Output(Out) is same as Input(X) except that each "
"The rank of Output(Out) is same as Input(X) except that each "
"dimension size of Output(Out) is equal to corresponding "
"dimension size of Output(Out) is equal to corresponding "
"dimension size of Input(X) multiplying corresponding value of "
"dimension size of Input(X) multiplying corresponding value of "
"Attr(expand
T
imes)."
);
"Attr(expand
_t
imes)."
);
AddAttr
<
std
::
vector
<
int
>>
(
"expand
T
imes"
,
AddAttr
<
std
::
vector
<
int
>>
(
"expand
_t
imes"
,
"Expand times number for each dimension."
);
"Expand times number for each dimension."
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Expand operator tiles the input by given times number. You should set times
Expand operator tiles the input by given times number. You should set times
number for each dimension by providing attribute 'expand
T
imes'. The rank of X
number for each dimension by providing attribute 'expand
_t
imes'. The rank of X
should be in [1, 6]. Please notice that size of 'expand
T
imes' must be same with
should be in [1, 6]. Please notice that size of 'expand
_t
imes' must be same with
X's rank.
X's rank.
)DOC"
);
)DOC"
);
}
}
...
@@ -82,16 +86,17 @@ class ExpandGradOp : public framework::OperatorWithKernel {
...
@@ -82,16 +86,17 @@ class ExpandGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) should not be null."
);
"Input(Out@GRAD) should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
std
::
vector
<
int
>
expand_times
=
std
::
vector
<
int
>
expand_times
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"expand
T
imes"
);
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"expand
_t
imes"
);
auto
out_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
));
auto
out_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
));
for
(
size_t
i
=
0
;
i
<
expand_times
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
expand_times
.
size
();
++
i
)
{
PADDLE_ENFORCE_EQ
(
x_dims
[
i
]
*
expand_times
[
i
],
out_dims
[
i
],
PADDLE_ENFORCE_EQ
(
x_dims
[
i
]
*
expand_times
[
i
],
out_dims
[
i
],
"Each dimension size of Input(Out@GRAD) should be "
"Each dimension size of Input(Out@GRAD) should be "
"equal to multiplication of crroresponding dimension "
"equal to multiplication of crroresponding dimension "
"size of Input(X) and Attr(expand
T
imes) value."
);
"size of Input(X) and Attr(expand
_t
imes) value."
);
}
}
auto
x_grad_name
=
framework
::
GradVarName
(
"X"
);
auto
x_grad_name
=
framework
::
GradVarName
(
"X"
);
...
...
paddle/operators/expand_op.h
浏览文件 @
d04c8538
...
@@ -25,14 +25,17 @@
...
@@ -25,14 +25,17 @@
#include "paddle/framework/op_registry.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/operator.h"
#define MAX_RANK_SUPPORTED 6
#define EXPAND_TEMPLATE(z, n, data) \
#define EXPAND_TEMPLATE(z, n, data) \
case n + 1: { \
case n + 1: { \
Expand<n + 1>(context); \
Expand<n + 1>(context); \
break; \
break; \
}
}
#define REP_EXPAND_TEMPLATE(n) BOOST_PP_REPEAT(n, EXPAND_TEMPLATE, ~)
#define REP_EXPAND_TEMPLATE(n) BOOST_PP_REPEAT(n, EXPAND_TEMPLATE, ~)
#define COND(n) \
#define COND(n) BOOST_PP_GREATER_EQUAL(BOOST_PP_DIV(n, 6), BOOST_PP_MOD(n, 6))
BOOST_PP_GREATER_EQUAL(BOOST_PP_DIV(n, MAX_RANK_SUPPORTED), \
BOOST_PP_MOD(n, MAX_RANK_SUPPORTED))
#define EXPAND_GRAD_CASE(n) \
#define EXPAND_GRAD_CASE(n) \
case n: { \
case n: { \
ExpandBackward<n>(context, reshape_dims_vec, reduce_dims_vec); \
ExpandBackward<n>(context, reshape_dims_vec, reduce_dims_vec); \
...
@@ -46,7 +49,6 @@ namespace paddle {
...
@@ -46,7 +49,6 @@ namespace paddle {
namespace
operators
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
...
@@ -60,7 +62,7 @@ class ExpandKernel : public framework::OpKernel<T> {
...
@@ -60,7 +62,7 @@ class ExpandKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
rank
=
context
.
Input
<
Tensor
>
(
"X"
)
->
dims
().
size
();
auto
rank
=
context
.
Input
<
Tensor
>
(
"X"
)
->
dims
().
size
();
switch
(
rank
)
{
switch
(
rank
)
{
REP_EXPAND_TEMPLATE
(
6
)
REP_EXPAND_TEMPLATE
(
MAX_RANK_SUPPORTED
)
default:
default:
PADDLE_ENFORCE
(
false
,
PADDLE_ENFORCE
(
false
,
"Only support tensor with rank being between 1 and 6."
);
"Only support tensor with rank being between 1 and 6."
);
...
@@ -71,7 +73,7 @@ class ExpandKernel : public framework::OpKernel<T> {
...
@@ -71,7 +73,7 @@ class ExpandKernel : public framework::OpKernel<T> {
template
<
int
Rank
>
template
<
int
Rank
>
void
Expand
(
const
framework
::
ExecutionContext
&
context
)
const
{
void
Expand
(
const
framework
::
ExecutionContext
&
context
)
const
{
auto
*
in0
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
in0
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
&
expand_times
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"expand
T
imes"
);
auto
&
expand_times
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"expand
_t
imes"
);
auto
*
out0
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
*
out0
=
context
.
Output
<
Tensor
>
(
"Out"
);
Eigen
::
DSizes
<
int
,
Rank
>
bcast_dims
;
Eigen
::
DSizes
<
int
,
Rank
>
bcast_dims
;
auto
x_dims
=
in0
->
dims
();
auto
x_dims
=
in0
->
dims
();
...
@@ -91,8 +93,14 @@ class ExpandGradKernel : public framework::OpKernel<T> {
...
@@ -91,8 +93,14 @@ class ExpandGradKernel : public framework::OpKernel<T> {
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in0
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
in0
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
&
expand_times
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"expand
T
imes"
);
auto
&
expand_times
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"expand
_t
imes"
);
auto
x_dims
=
in0
->
dims
();
auto
x_dims
=
in0
->
dims
();
// 1. reshape_dims_vec is the broadcast parameter. For each dimension i,
// if expand_times[i] > 1 and x_dims[i] > 1, i will be splitted to two
// dimensions [expand_times[i], x_dims[i]].
// 2. reduce_dims_vec is the dimension parameter to compute gradients. For
// each dimension expanded, the gradients should be summed to original
// size.
std
::
vector
<
int
>
reshape_dims_vec
;
std
::
vector
<
int
>
reshape_dims_vec
;
std
::
vector
<
int
>
reduce_dims_vec
;
std
::
vector
<
int
>
reduce_dims_vec
;
for
(
size_t
i
=
0
;
i
<
expand_times
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
expand_times
.
size
();
++
i
)
{
...
@@ -110,7 +118,8 @@ class ExpandGradKernel : public framework::OpKernel<T> {
...
@@ -110,7 +118,8 @@ class ExpandGradKernel : public framework::OpKernel<T> {
}
}
}
}
int
dims
=
reshape_dims_vec
.
size
()
*
6
+
reduce_dims_vec
.
size
()
-
7
;
int
dims
=
reshape_dims_vec
.
size
()
*
MAX_RANK_SUPPORTED
+
reduce_dims_vec
.
size
()
-
MAX_RANK_SUPPORTED
-
1
;
// no need reduce, just copy
// no need reduce, just copy
if
(
reduce_dims_vec
.
size
()
==
0
)
{
if
(
reduce_dims_vec
.
size
()
==
0
)
{
auto
*
in0
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
in0
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
...
@@ -132,8 +141,8 @@ class ExpandGradKernel : public framework::OpKernel<T> {
...
@@ -132,8 +141,8 @@ class ExpandGradKernel : public framework::OpKernel<T> {
void
ExpandBackward
(
const
framework
::
ExecutionContext
&
context
,
void
ExpandBackward
(
const
framework
::
ExecutionContext
&
context
,
const
std
::
vector
<
int
>&
reshape_dims_vec
,
const
std
::
vector
<
int
>&
reshape_dims_vec
,
const
std
::
vector
<
int
>&
reduce_dims_vec
)
const
{
const
std
::
vector
<
int
>&
reduce_dims_vec
)
const
{
size_t
reshape_size
=
Dims
/
6
+
1
;
size_t
reshape_size
=
Dims
/
MAX_RANK_SUPPORTED
+
1
;
size_t
reduce_size
=
Dims
%
6
+
1
;
size_t
reduce_size
=
Dims
%
MAX_RANK_SUPPORTED
+
1
;
PADDLE_ENFORCE_EQ
(
reshape_size
,
reshape_dims_vec
.
size
(),
PADDLE_ENFORCE_EQ
(
reshape_size
,
reshape_dims_vec
.
size
(),
"Inconsistent size between template Dims and "
"Inconsistent size between template Dims and "
"reshape dimensions."
);
"reshape dimensions."
);
...
@@ -145,11 +154,11 @@ class ExpandGradKernel : public framework::OpKernel<T> {
...
@@ -145,11 +154,11 @@ class ExpandGradKernel : public framework::OpKernel<T> {
auto
x
=
EigenVector
<
T
>::
Flatten
(
*
(
context
.
Input
<
Tensor
>
(
"X"
)));
auto
x
=
EigenVector
<
T
>::
Flatten
(
*
(
context
.
Input
<
Tensor
>
(
"X"
)));
out0
->
mutable_data
<
T
>
(
context
.
GetPlace
());
out0
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x_grad
=
EigenVector
<
T
>::
Flatten
(
*
out0
);
auto
x_grad
=
EigenVector
<
T
>::
Flatten
(
*
out0
);
Eigen
::
DSizes
<
int
,
Dims
/
6
+
1
>
reshape_dims
;
Eigen
::
DSizes
<
int
,
Dims
/
MAX_RANK_SUPPORTED
+
1
>
reshape_dims
;
for
(
size_t
i
=
0
;
i
<
reshape_size
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
reshape_size
;
++
i
)
{
reshape_dims
[
i
]
=
reshape_dims_vec
[
i
];
reshape_dims
[
i
]
=
reshape_dims_vec
[
i
];
}
}
Eigen
::
DSizes
<
int
,
Dims
%
6
+
1
>
reduce_dims
;
Eigen
::
DSizes
<
int
,
Dims
%
MAX_RANK_SUPPORTED
+
1
>
reduce_dims
;
for
(
size_t
i
=
0
;
i
<
reduce_size
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
reduce_size
;
++
i
)
{
reduce_dims
[
i
]
=
reduce_dims_vec
[
i
];
reduce_dims
[
i
]
=
reduce_dims_vec
[
i
];
}
}
...
...
python/paddle/v2/framework/tests/test_expand_op.py
浏览文件 @
d04c8538
...
@@ -7,7 +7,7 @@ class TestExpandOpRank1(OpTest):
...
@@ -7,7 +7,7 @@ class TestExpandOpRank1(OpTest):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"expand"
self
.
op_type
=
"expand"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
12
).
astype
(
"float32"
)}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
12
).
astype
(
"float32"
)}
self
.
attrs
=
{
'expand
T
imes'
:
[
2
]}
self
.
attrs
=
{
'expand
_t
imes'
:
[
2
]}
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
2
)
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
2
)
self
.
outputs
=
{
'Out'
:
output
}
self
.
outputs
=
{
'Out'
:
output
}
...
@@ -18,11 +18,11 @@ class TestExpandOpRank1(OpTest):
...
@@ -18,11 +18,11 @@ class TestExpandOpRank1(OpTest):
self
.
check_grad
([
'X'
],
'Out'
)
self
.
check_grad
([
'X'
],
'Out'
)
class
TestExpandOpRank2_
1
(
OpTest
):
class
TestExpandOpRank2_
Corner
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"expand"
self
.
op_type
=
"expand"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
12
,
14
)).
astype
(
"float32"
)}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
12
,
14
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'expand
T
imes'
:
[
1
,
1
]}
self
.
attrs
=
{
'expand
_t
imes'
:
[
1
,
1
]}
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
(
1
,
1
))
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
(
1
,
1
))
self
.
outputs
=
{
'Out'
:
output
}
self
.
outputs
=
{
'Out'
:
output
}
...
@@ -33,11 +33,11 @@ class TestExpandOpRank2_1(OpTest):
...
@@ -33,11 +33,11 @@ class TestExpandOpRank2_1(OpTest):
self
.
check_grad
([
'X'
],
'Out'
)
self
.
check_grad
([
'X'
],
'Out'
)
class
TestExpandOpRank2
_2
(
OpTest
):
class
TestExpandOpRank2
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"expand"
self
.
op_type
=
"expand"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
12
,
14
)).
astype
(
"float32"
)}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
12
,
14
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'expand
T
imes'
:
[
2
,
3
]}
self
.
attrs
=
{
'expand
_t
imes'
:
[
2
,
3
]}
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
(
2
,
3
))
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
(
2
,
3
))
self
.
outputs
=
{
'Out'
:
output
}
self
.
outputs
=
{
'Out'
:
output
}
...
@@ -48,11 +48,11 @@ class TestExpandOpRank2_2(OpTest):
...
@@ -48,11 +48,11 @@ class TestExpandOpRank2_2(OpTest):
self
.
check_grad
([
'X'
],
'Out'
)
self
.
check_grad
([
'X'
],
'Out'
)
class
TestExpandOpRank3_
1
(
OpTest
):
class
TestExpandOpRank3_
Corner
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"expand"
self
.
op_type
=
"expand"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
2
,
4
,
5
)).
astype
(
"float32"
)}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
2
,
4
,
5
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'expand
T
imes'
:
[
1
,
1
,
1
]}
self
.
attrs
=
{
'expand
_t
imes'
:
[
1
,
1
,
1
]}
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
(
1
,
1
,
1
))
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
(
1
,
1
,
1
))
self
.
outputs
=
{
'Out'
:
output
}
self
.
outputs
=
{
'Out'
:
output
}
...
@@ -63,11 +63,11 @@ class TestExpandOpRank3_1(OpTest):
...
@@ -63,11 +63,11 @@ class TestExpandOpRank3_1(OpTest):
self
.
check_grad
([
'X'
],
'Out'
)
self
.
check_grad
([
'X'
],
'Out'
)
class
TestExpandOpRank3
_2
(
OpTest
):
class
TestExpandOpRank3
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"expand"
self
.
op_type
=
"expand"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
2
,
4
,
5
)).
astype
(
"float32"
)}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
2
,
4
,
5
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'expand
T
imes'
:
[
2
,
1
,
4
]}
self
.
attrs
=
{
'expand
_t
imes'
:
[
2
,
1
,
4
]}
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
(
2
,
1
,
4
))
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
(
2
,
1
,
4
))
self
.
outputs
=
{
'Out'
:
output
}
self
.
outputs
=
{
'Out'
:
output
}
...
@@ -82,7 +82,7 @@ class TestExpandOpRank4(OpTest):
...
@@ -82,7 +82,7 @@ class TestExpandOpRank4(OpTest):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"expand"
self
.
op_type
=
"expand"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
2
,
4
,
5
,
7
)).
astype
(
"float32"
)}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
2
,
4
,
5
,
7
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'expand
T
imes'
:
[
3
,
2
,
1
,
2
]}
self
.
attrs
=
{
'expand
_t
imes'
:
[
3
,
2
,
1
,
2
]}
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
(
3
,
2
,
1
,
2
))
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
(
3
,
2
,
1
,
2
))
self
.
outputs
=
{
'Out'
:
output
}
self
.
outputs
=
{
'Out'
:
output
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录