Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
cfda1fde
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cfda1fde
编写于
3月 25, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add attr scale. test=develop
上级
f9061796
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
218 addition
and
49 deletion
+218
-49
paddle/fluid/operators/interpolate_op.cc
paddle/fluid/operators/interpolate_op.cc
+13
-2
paddle/fluid/operators/interpolate_op.cu
paddle/fluid/operators/interpolate_op.cu
+25
-13
paddle/fluid/operators/interpolate_op.h
paddle/fluid/operators/interpolate_op.h
+25
-10
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+27
-20
python/paddle/fluid/tests/unittests/test_bilinear_interp_op.py
...n/paddle/fluid/tests/unittests/test_bilinear_interp_op.py
+65
-2
python/paddle/fluid/tests/unittests/test_nearest_interp_op.py
...on/paddle/fluid/tests/unittests/test_nearest_interp_op.py
+63
-2
未找到文件。
paddle/fluid/operators/interpolate_op.cc
浏览文件 @
cfda1fde
...
@@ -36,10 +36,19 @@ class InterpolateOp : public framework::OperatorWithKernel {
...
@@ -36,10 +36,19 @@ class InterpolateOp : public framework::OperatorWithKernel {
"Interpolation method can only be
\"
bilinear
\"
or
\"
nearest
\"
."
);
"Interpolation method can only be
\"
bilinear
\"
or
\"
nearest
\"
."
);
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
// NCHW format
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
// NCHW format
int
out_h
=
ctx
->
Attrs
().
Get
<
int
>
(
"out_h"
);
int
out_w
=
ctx
->
Attrs
().
Get
<
int
>
(
"out_w"
);
PADDLE_ENFORCE_EQ
(
dim_x
.
size
(),
4
,
"X's dimension must be 4"
);
PADDLE_ENFORCE_EQ
(
dim_x
.
size
(),
4
,
"X's dimension must be 4"
);
// priority: OutSize > scale > out_h/out_w
int
out_h
,
out_w
;
float
scale
=
ctx
->
Attrs
().
Get
<
float
>
(
"scale"
);
if
(
scale
>
0
)
{
out_h
=
dim_x
[
2
]
*
scale
;
out_w
=
dim_x
[
3
]
*
scale
;
}
else
{
out_h
=
ctx
->
Attrs
().
Get
<
int
>
(
"out_h"
);
out_w
=
ctx
->
Attrs
().
Get
<
int
>
(
"out_w"
);
}
if
(
ctx
->
HasInput
(
"OutSize"
)
&&
ctx
->
IsRuntime
())
{
if
(
ctx
->
HasInput
(
"OutSize"
)
&&
ctx
->
IsRuntime
())
{
auto
out_size_dim
=
ctx
->
GetInputDim
(
"OutSize"
);
auto
out_size_dim
=
ctx
->
GetInputDim
(
"OutSize"
);
PADDLE_ENFORCE_EQ
(
out_size_dim
.
size
(),
1
,
PADDLE_ENFORCE_EQ
(
out_size_dim
.
size
(),
1
,
...
@@ -76,6 +85,8 @@ class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -76,6 +85,8 @@ class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
int
>
(
"out_h"
,
"output height of interpolate op."
);
AddAttr
<
int
>
(
"out_h"
,
"output height of interpolate op."
);
AddAttr
<
int
>
(
"out_w"
,
"output width of interpolate op."
);
AddAttr
<
int
>
(
"out_w"
,
"output width of interpolate op."
);
AddAttr
<
float
>
(
"scale"
,
"scale factor of interpolate op."
)
.
SetDefault
(
0.
);
AddAttr
<
std
::
string
>
(
"interp_method"
,
AddAttr
<
std
::
string
>
(
"interp_method"
,
"(string, default
\"
bilinear
\"
), interpolation "
"(string, default
\"
bilinear
\"
), interpolation "
"method, can be
\"
bilinear
\"
for "
"method, can be
\"
bilinear
\"
for "
...
...
paddle/fluid/operators/interpolate_op.cu
浏览文件 @
cfda1fde
...
@@ -192,9 +192,21 @@ class InterpolateOpCUDAKernel : public framework::OpKernel<T> {
...
@@ -192,9 +192,21 @@ class InterpolateOpCUDAKernel : public framework::OpKernel<T> {
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
*
input_data
=
input
->
data
<
T
>
();
auto
*
input_data
=
input
->
data
<
T
>
();
int
n
=
input
->
dims
()[
0
];
int
c
=
input
->
dims
()[
1
];
int
in_h
=
input
->
dims
()[
2
];
int
in_w
=
input
->
dims
()[
3
];
auto
interp_method
=
ctx
.
Attr
<
std
::
string
>
(
"interp_method"
);
auto
interp_method
=
ctx
.
Attr
<
std
::
string
>
(
"interp_method"
);
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
float
scale
=
ctx
.
Attr
<
float
>
(
"scale"
);
if
(
scale
>
0
)
{
out_h
=
in_h
*
scale
;
out_w
=
in_w
*
scale
;
}
auto
out_size
=
ctx
.
Input
<
Tensor
>
(
"OutSize"
);
auto
out_size
=
ctx
.
Input
<
Tensor
>
(
"OutSize"
);
if
(
out_size
!=
nullptr
)
{
if
(
out_size
!=
nullptr
)
{
Tensor
sizes
;
Tensor
sizes
;
...
@@ -207,11 +219,6 @@ class InterpolateOpCUDAKernel : public framework::OpKernel<T> {
...
@@ -207,11 +219,6 @@ class InterpolateOpCUDAKernel : public framework::OpKernel<T> {
bool
align_corners
=
ctx
.
Attr
<
bool
>
(
"align_corners"
);
bool
align_corners
=
ctx
.
Attr
<
bool
>
(
"align_corners"
);
int
align_mode
=
ctx
.
Attr
<
int
>
(
"align_mode"
);
int
align_mode
=
ctx
.
Attr
<
int
>
(
"align_mode"
);
int
n
=
input
->
dims
()[
0
];
int
c
=
input
->
dims
()[
1
];
int
in_h
=
input
->
dims
()[
2
];
int
in_w
=
input
->
dims
()[
3
];
auto
*
output_data
=
auto
*
output_data
=
output
->
mutable_data
<
T
>
({
n
,
c
,
out_h
,
out_w
},
ctx
.
GetPlace
());
output
->
mutable_data
<
T
>
({
n
,
c
,
out_h
,
out_w
},
ctx
.
GetPlace
());
...
@@ -268,14 +275,20 @@ class InterpolateGradOpCUDAKernel : public framework::OpKernel<T> {
...
@@ -268,14 +275,20 @@ class InterpolateGradOpCUDAKernel : public framework::OpKernel<T> {
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
zero
;
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
zero
;
zero
(
device_ctx
,
input_grad
,
static_cast
<
T
>
(
0.0
));
zero
(
device_ctx
,
input_grad
,
static_cast
<
T
>
(
0.0
));
int
n
=
input_grad
->
dims
()[
0
];
int
c
=
input_grad
->
dims
()[
1
];
int
in_h
=
input_grad
->
dims
()[
2
];
int
in_w
=
input_grad
->
dims
()[
3
];
auto
interp_method
=
ctx
.
Attr
<
std
::
string
>
(
"interp_method"
);
auto
interp_method
=
ctx
.
Attr
<
std
::
string
>
(
"interp_method"
);
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
float
scale
=
ctx
.
Attr
<
float
>
(
"scale"
);
if
(
scale
>
0
)
{
out_h
=
in_h
*
scale
;
out_w
-
in_w
*
scale
;
}
auto
out_size
=
ctx
.
Input
<
Tensor
>
(
"OutSize"
);
auto
out_size
=
ctx
.
Input
<
Tensor
>
(
"OutSize"
);
bool
align_corners
=
ctx
.
Attr
<
bool
>
(
"align_corners"
);
int
align_mode
=
ctx
.
Attr
<
int
>
(
"align_mode"
);
if
(
out_size
!=
nullptr
)
{
if
(
out_size
!=
nullptr
)
{
Tensor
sizes
;
Tensor
sizes
;
framework
::
TensorCopy
(
*
out_size
,
platform
::
CPUPlace
(),
&
sizes
);
framework
::
TensorCopy
(
*
out_size
,
platform
::
CPUPlace
(),
&
sizes
);
...
@@ -284,10 +297,9 @@ class InterpolateGradOpCUDAKernel : public framework::OpKernel<T> {
...
@@ -284,10 +297,9 @@ class InterpolateGradOpCUDAKernel : public framework::OpKernel<T> {
out_w
=
size_data
[
1
];
out_w
=
size_data
[
1
];
}
}
int
n
=
input_grad
->
dims
()[
0
];
bool
align_corners
=
ctx
.
Attr
<
bool
>
(
"align_corners"
);
int
c
=
input_grad
->
dims
()[
1
];
int
align_mode
=
ctx
.
Attr
<
int
>
(
"align_mode"
);
int
in_h
=
input_grad
->
dims
()[
2
];
int
in_w
=
input_grad
->
dims
()[
3
];
int
in_hw
=
in_h
*
in_w
;
int
in_hw
=
in_h
*
in_w
;
int
out_hw
=
out_h
*
out_w
;
int
out_hw
=
out_h
*
out_w
;
...
...
paddle/fluid/operators/interpolate_op.h
浏览文件 @
cfda1fde
...
@@ -163,9 +163,21 @@ class InterpolateKernel : public framework::OpKernel<T> {
...
@@ -163,9 +163,21 @@ class InterpolateKernel : public framework::OpKernel<T> {
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
const
int
n
=
input
->
dims
()[
0
];
const
int
c
=
input
->
dims
()[
1
];
const
int
in_h
=
input
->
dims
()[
2
];
const
int
in_w
=
input
->
dims
()[
3
];
std
::
string
interp_method
=
ctx
.
Attr
<
std
::
string
>
(
"interp_method"
);
std
::
string
interp_method
=
ctx
.
Attr
<
std
::
string
>
(
"interp_method"
);
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
float
scale
=
ctx
.
Attr
<
float
>
(
"scale"
);
if
(
scale
>
0
)
{
out_h
=
in_h
*
scale
;
out_w
=
in_w
*
scale
;
}
auto
out_size
=
ctx
.
Input
<
Tensor
>
(
"OutSize"
);
auto
out_size
=
ctx
.
Input
<
Tensor
>
(
"OutSize"
);
if
(
out_size
!=
nullptr
)
{
if
(
out_size
!=
nullptr
)
{
auto
out_size_data
=
out_size
->
data
<
int
>
();
auto
out_size_data
=
out_size
->
data
<
int
>
();
...
@@ -175,11 +187,6 @@ class InterpolateKernel : public framework::OpKernel<T> {
...
@@ -175,11 +187,6 @@ class InterpolateKernel : public framework::OpKernel<T> {
bool
align_corners
=
ctx
.
Attr
<
bool
>
(
"align_corners"
);
bool
align_corners
=
ctx
.
Attr
<
bool
>
(
"align_corners"
);
int
align_mode
=
ctx
.
Attr
<
int
>
(
"align_mode"
);
int
align_mode
=
ctx
.
Attr
<
int
>
(
"align_mode"
);
const
int
n
=
input
->
dims
()[
0
];
const
int
c
=
input
->
dims
()[
1
];
const
int
in_h
=
input
->
dims
()[
2
];
const
int
in_w
=
input
->
dims
()[
3
];
output
->
mutable_data
<
T
>
({
n
,
c
,
out_h
,
out_w
},
ctx
.
GetPlace
());
output
->
mutable_data
<
T
>
({
n
,
c
,
out_h
,
out_w
},
ctx
.
GetPlace
());
auto
&
device_ctx
=
auto
&
device_ctx
=
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>();
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>();
...
@@ -221,23 +228,31 @@ class InterpolateGradKernel : public framework::OpKernel<T> {
...
@@ -221,23 +228,31 @@ class InterpolateGradKernel : public framework::OpKernel<T> {
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
const
int
n
=
input
->
dims
()[
0
];
const
int
c
=
input
->
dims
()[
1
];
const
int
in_h
=
input
->
dims
()[
2
];
const
int
in_w
=
input
->
dims
()[
3
];
std
::
string
interp_method
=
ctx
.
Attr
<
std
::
string
>
(
"interp_method"
);
std
::
string
interp_method
=
ctx
.
Attr
<
std
::
string
>
(
"interp_method"
);
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_h
=
ctx
.
Attr
<
int
>
(
"out_h"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
int
out_w
=
ctx
.
Attr
<
int
>
(
"out_w"
);
float
scale
=
ctx
.
Attr
<
float
>
(
"scale"
);
if
(
scale
>
0
)
{
out_h
=
in_h
*
scale
;
out_w
=
in_w
*
scale
;
}
auto
out_size
=
ctx
.
Input
<
Tensor
>
(
"OutSize"
);
auto
out_size
=
ctx
.
Input
<
Tensor
>
(
"OutSize"
);
if
(
out_size
!=
nullptr
)
{
if
(
out_size
!=
nullptr
)
{
auto
out_size_data
=
out_size
->
data
<
int
>
();
auto
out_size_data
=
out_size
->
data
<
int
>
();
out_h
=
out_size_data
[
0
];
out_h
=
out_size_data
[
0
];
out_w
=
out_size_data
[
1
];
out_w
=
out_size_data
[
1
];
}
}
bool
align_corners
=
ctx
.
Attr
<
bool
>
(
"align_corners"
);
bool
align_corners
=
ctx
.
Attr
<
bool
>
(
"align_corners"
);
int
align_mode
=
ctx
.
Attr
<
int
>
(
"align_mode"
);
int
align_mode
=
ctx
.
Attr
<
int
>
(
"align_mode"
);
const
int
n
=
input
->
dims
()[
0
];
const
int
c
=
input
->
dims
()[
1
];
const
int
in_h
=
input
->
dims
()[
2
];
const
int
in_w
=
input
->
dims
()[
3
];
input_grad
->
mutable_data
<
T
>
({
n
,
c
,
in_h
,
in_w
},
ctx
.
GetPlace
());
input_grad
->
mutable_data
<
T
>
({
n
,
c
,
in_h
,
in_w
},
ctx
.
GetPlace
());
auto
&
device_ctx
=
auto
&
device_ctx
=
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>();
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>();
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
cfda1fde
...
@@ -7056,10 +7056,10 @@ def image_resize(input,
...
@@ -7056,10 +7056,10 @@ def image_resize(input,
out_shape(list|tuple|Variable|None): Output shape of image resize
out_shape(list|tuple|Variable|None): Output shape of image resize
layer, the shape is (out_h, out_w).
layer, the shape is (out_h, out_w).
Default: None
Default: None
scale(float|None): The multiplier for the input height or width.
scale(float|None): The multiplier for the input height or width.
At
At least one of out_shape or scale must be set.
least one of :attr:`out_shape` or :attr:`scale`` must be set.
And out_shape has a higher priority than scale.
And :attr:`scale` has a higher priority than :attr:`out_shape`.
Default: None
Default: None.
name(str|None): A name for this layer(optional). If set None, the layer
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
will be named automatically.
resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
...
@@ -7093,10 +7093,12 @@ def image_resize(input,
...
@@ -7093,10 +7093,12 @@ def image_resize(input,
Raises:
Raises:
TypeError: out_shape should be a list or tuple or Variable.
TypeError: out_shape should be a list or tuple or Variable.
TypeError: actual_shape should either be Variable or None.
TypeError: actual_shape should either be Variable or None.
TypeError: scale should either be Variable or None.
ValueError: The 'resample' of image_resize can only be 'BILINEAR'
ValueError: The 'resample' of image_resize can only be 'BILINEAR'
or 'NEAREST' currently.
or 'NEAREST' currently.
ValueError: One of out_shape and scale must not be None.
ValueError: One of out_shape and scale must not be None.
ValueError: out_shape length should be 2.
ValueError: out_shape length should be 2.
ValueError: scale should be greater than zero.
TypeError: align_corners shoule be a bool value
TypeError: align_corners shoule be a bool value
ValueError: align_mode can only be '0' or '1'
ValueError: align_mode can only be '0' or '1'
...
@@ -7128,9 +7130,15 @@ def image_resize(input,
...
@@ -7128,9 +7130,15 @@ def image_resize(input,
def
_is_list_or_turple_
(
data
):
def
_is_list_or_turple_
(
data
):
return
(
isinstance
(
data
,
list
)
or
isinstance
(
data
,
tuple
))
return
(
isinstance
(
data
,
list
)
or
isinstance
(
data
,
tuple
))
inputs
=
{
"X"
:
input
}
attrs
=
{
"interp_method"
:
resample_type
,
"align_corners"
:
align_corners
,
"align_mode"
:
align_mode
}
out_h
=
0
out_h
=
0
out_w
=
0
out_w
=
0
inputs
=
{
"X"
:
input
}
if
out_shape
is
not
None
:
if
out_shape
is
not
None
:
if
isinstance
(
out_shape
,
Variable
):
if
isinstance
(
out_shape
,
Variable
):
warnings
.
warn
(
"out_shape as Variable type is deprecated,
\
warnings
.
warn
(
"out_shape as Variable type is deprecated,
\
...
@@ -7143,11 +7151,14 @@ def image_resize(input,
...
@@ -7143,11 +7151,14 @@ def image_resize(input,
raise
ValueError
(
"out_shape length should be 2."
)
raise
ValueError
(
"out_shape length should be 2."
)
out_shape
=
list
(
map
(
int
,
out_shape
))
out_shape
=
list
(
map
(
int
,
out_shape
))
out_h
=
out_shape
[
0
]
attrs
[
'out_h'
]
=
out_shape
[
0
]
out_w
=
out_shape
[
1
]
attrs
[
'out_w'
]
=
out_shape
[
1
]
else
:
else
:
out_h
=
int
(
input
.
shape
[
2
]
*
scale
)
if
not
isinstance
(
scale
,
float
):
out_w
=
int
(
input
.
shape
[
3
]
*
scale
)
raise
TypeError
(
"scale should either be Variable or None."
)
if
scale
<=
0
:
raise
ValueError
(
"scale should be greater than zero."
)
attrs
[
'scale'
]
=
scale
if
isinstance
(
actual_shape
,
Variable
):
if
isinstance
(
actual_shape
,
Variable
):
inputs
[
"OutSize"
]
=
actual_shape
inputs
[
"OutSize"
]
=
actual_shape
...
@@ -7159,13 +7170,7 @@ def image_resize(input,
...
@@ -7159,13 +7170,7 @@ def image_resize(input,
type
=
'{}_interp'
.
format
(
resample_type
),
type
=
'{}_interp'
.
format
(
resample_type
),
inputs
=
inputs
,
inputs
=
inputs
,
outputs
=
{
"Out"
:
out
},
outputs
=
{
"Out"
:
out
},
attrs
=
{
attrs
=
attrs
)
"out_h"
:
out_h
,
"out_w"
:
out_w
,
"interp_method"
:
resample_type
,
"align_corners"
:
align_corners
,
"align_mode"
:
align_mode
})
return
out
return
out
...
@@ -7236,8 +7241,9 @@ def resize_bilinear(input,
...
@@ -7236,8 +7241,9 @@ def resize_bilinear(input,
out_shape(${out_size_type}): ${out_size_comment}.
out_shape(${out_size_type}): ${out_size_comment}.
scale(float|None): The multiplier for the input height or width. At
scale(float|None): The multiplier for the input height or width. At
least one of out_shape or scale must be set. And out_shape has
least one of :attr:`out_shape` or :attr:`scale`` must be set.
a higher priority than scale. Default: None.
And :attr:`scale` has a higher priority than :attr:`out_shape`.
Default: None.
name(str|None): The output variable name.
name(str|None): The output variable name.
actual_shape(Variable): An optional input to specify output shape
actual_shape(Variable): An optional input to specify output shape
...
@@ -7327,8 +7333,9 @@ def resize_nearest(input,
...
@@ -7327,8 +7333,9 @@ def resize_nearest(input,
out_shape(${out_size_type}): ${out_size_comment}.
out_shape(${out_size_type}): ${out_size_comment}.
scale(float|None): The multiplier for the input height or width. At
scale(float|None): The multiplier for the input height or width. At
least one of out_shape or scale must be set. And out_shape has
least one of :attr:`out_shape` or :attr:`scale`` must be set.
a higher priority than scale. Default: None.
And :attr:`scale` has a higher priority than :attr:`out_shape`.
Default: None.
name(str|None): The output variable name.
name(str|None): The output variable name.
actual_shape(Variable): An optional input to specify output shape
actual_shape(Variable): An optional input to specify output shape
...
...
python/paddle/fluid/tests/unittests/test_bilinear_interp_op.py
浏览文件 @
cfda1fde
...
@@ -91,7 +91,14 @@ class TestBilinearInterpOp(OpTest):
...
@@ -91,7 +91,14 @@ class TestBilinearInterpOp(OpTest):
self
.
op_type
=
"bilinear_interp"
self
.
op_type
=
"bilinear_interp"
input_np
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
"float32"
)
input_np
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
"float32"
)
output_np
=
bilinear_interp_np
(
input_np
,
self
.
out_h
,
self
.
out_w
,
if
self
.
scale
>
0
:
out_h
=
int
(
self
.
input_shape
[
2
]
*
self
.
scale
)
out_w
=
int
(
self
.
input_shape
[
3
]
*
self
.
scale
)
else
:
out_h
=
self
.
out_h
out_w
=
self
.
out_w
output_np
=
bilinear_interp_np
(
input_np
,
out_h
,
out_w
,
self
.
out_size
,
self
.
actual_shape
,
self
.
out_size
,
self
.
actual_shape
,
self
.
align_corners
,
self
.
align_mode
)
self
.
align_corners
,
self
.
align_mode
)
self
.
inputs
=
{
'X'
:
input_np
}
self
.
inputs
=
{
'X'
:
input_np
}
...
@@ -99,9 +106,11 @@ class TestBilinearInterpOp(OpTest):
...
@@ -99,9 +106,11 @@ class TestBilinearInterpOp(OpTest):
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
if
self
.
actual_shape
is
not
None
:
if
self
.
actual_shape
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
actual_shape
self
.
inputs
[
'OutSize'
]
=
self
.
actual_shape
self
.
attrs
=
{
self
.
attrs
=
{
'out_h'
:
self
.
out_h
,
'out_h'
:
self
.
out_h
,
'out_w'
:
self
.
out_w
,
'out_w'
:
self
.
out_w
,
'scale'
:
self
.
scale
,
'interp_method'
:
self
.
interp_method
,
'interp_method'
:
self
.
interp_method
,
'align_corners'
:
self
.
align_corners
,
'align_corners'
:
self
.
align_corners
,
'align_mode'
:
self
.
align_mode
'align_mode'
:
self
.
align_mode
...
@@ -119,6 +128,7 @@ class TestBilinearInterpOp(OpTest):
...
@@ -119,6 +128,7 @@ class TestBilinearInterpOp(OpTest):
self
.
input_shape
=
[
2
,
3
,
4
,
4
]
self
.
input_shape
=
[
2
,
3
,
4
,
4
]
self
.
out_h
=
2
self
.
out_h
=
2
self
.
out_w
=
2
self
.
out_w
=
2
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
3
,
3
]).
astype
(
"int32"
)
self
.
out_size
=
np
.
array
([
3
,
3
]).
astype
(
"int32"
)
self
.
align_corners
=
True
self
.
align_corners
=
True
self
.
align_mode
=
1
self
.
align_mode
=
1
...
@@ -130,6 +140,7 @@ class TestBilinearInterpCase1(TestBilinearInterpOp):
...
@@ -130,6 +140,7 @@ class TestBilinearInterpCase1(TestBilinearInterpOp):
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
1
self
.
out_h
=
1
self
.
out_w
=
1
self
.
out_w
=
1
self
.
scale
=
0.
self
.
align_corners
=
True
self
.
align_corners
=
True
self
.
align_mode
=
1
self
.
align_mode
=
1
...
@@ -140,6 +151,7 @@ class TestBilinearInterpCase2(TestBilinearInterpOp):
...
@@ -140,6 +151,7 @@ class TestBilinearInterpCase2(TestBilinearInterpOp):
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
12
self
.
out_h
=
12
self
.
out_w
=
12
self
.
out_w
=
12
self
.
scale
=
0.
self
.
align_corners
=
True
self
.
align_corners
=
True
self
.
align_mode
=
1
self
.
align_mode
=
1
...
@@ -150,6 +162,7 @@ class TestBilinearInterpCase3(TestBilinearInterpOp):
...
@@ -150,6 +162,7 @@ class TestBilinearInterpCase3(TestBilinearInterpOp):
self
.
input_shape
=
[
1
,
1
,
128
,
64
]
self
.
input_shape
=
[
1
,
1
,
128
,
64
]
self
.
out_h
=
64
self
.
out_h
=
64
self
.
out_w
=
128
self
.
out_w
=
128
self
.
scale
=
0.
self
.
align_corners
=
True
self
.
align_corners
=
True
self
.
align_mode
=
1
self
.
align_mode
=
1
...
@@ -160,6 +173,7 @@ class TestBilinearInterpCase4(TestBilinearInterpOp):
...
@@ -160,6 +173,7 @@ class TestBilinearInterpCase4(TestBilinearInterpOp):
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
1
self
.
out_h
=
1
self
.
out_w
=
1
self
.
out_w
=
1
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
2
,
2
]).
astype
(
"int32"
)
self
.
out_size
=
np
.
array
([
2
,
2
]).
astype
(
"int32"
)
self
.
align_corners
=
True
self
.
align_corners
=
True
self
.
align_mode
=
1
self
.
align_mode
=
1
...
@@ -171,6 +185,7 @@ class TestBilinearInterpCase5(TestBilinearInterpOp):
...
@@ -171,6 +185,7 @@ class TestBilinearInterpCase5(TestBilinearInterpOp):
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
12
self
.
out_h
=
12
self
.
out_w
=
12
self
.
out_w
=
12
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
11
,
11
]).
astype
(
"int32"
)
self
.
out_size
=
np
.
array
([
11
,
11
]).
astype
(
"int32"
)
self
.
align_corners
=
True
self
.
align_corners
=
True
self
.
align_mode
=
1
self
.
align_mode
=
1
...
@@ -182,6 +197,7 @@ class TestBilinearInterpCase6(TestBilinearInterpOp):
...
@@ -182,6 +197,7 @@ class TestBilinearInterpCase6(TestBilinearInterpOp):
self
.
input_shape
=
[
1
,
1
,
128
,
64
]
self
.
input_shape
=
[
1
,
1
,
128
,
64
]
self
.
out_h
=
64
self
.
out_h
=
64
self
.
out_w
=
128
self
.
out_w
=
128
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
65
,
129
]).
astype
(
"int32"
)
self
.
out_size
=
np
.
array
([
65
,
129
]).
astype
(
"int32"
)
self
.
align_corners
=
True
self
.
align_corners
=
True
self
.
align_mode
=
1
self
.
align_mode
=
1
...
@@ -193,6 +209,7 @@ class TestBilinearInterpActualShape(TestBilinearInterpOp):
...
@@ -193,6 +209,7 @@ class TestBilinearInterpActualShape(TestBilinearInterpOp):
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
out_h
=
64
self
.
out_h
=
64
self
.
out_w
=
32
self
.
out_w
=
32
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
66
,
40
]).
astype
(
"int32"
)
self
.
out_size
=
np
.
array
([
66
,
40
]).
astype
(
"int32"
)
self
.
align_corners
=
True
self
.
align_corners
=
True
self
.
align_mode
=
1
self
.
align_mode
=
1
...
@@ -206,15 +223,25 @@ class TestBilinearInterpOpUint8(OpTest):
...
@@ -206,15 +223,25 @@ class TestBilinearInterpOpUint8(OpTest):
self
.
op_type
=
"bilinear_interp"
self
.
op_type
=
"bilinear_interp"
input_np
=
np
.
random
.
randint
(
input_np
=
np
.
random
.
randint
(
low
=
0
,
high
=
256
,
size
=
self
.
input_shape
).
astype
(
"uint8"
)
low
=
0
,
high
=
256
,
size
=
self
.
input_shape
).
astype
(
"uint8"
)
output_np
=
bilinear_interp_np
(
input_np
,
self
.
out_h
,
self
.
out_w
,
if
self
.
scale
>
0
:
out_h
=
int
(
self
.
input_shape
[
2
]
*
self
.
scale
)
out_w
=
int
(
self
.
input_shape
[
3
]
*
self
.
scale
)
else
:
out_h
=
self
.
out_h
out_w
=
self
.
out_w
output_np
=
bilinear_interp_np
(
input_np
,
out_h
,
out_w
,
self
.
out_size
,
self
.
actual_shape
,
self
.
out_size
,
self
.
actual_shape
,
self
.
align_corners
,
self
.
align_mode
)
self
.
align_corners
,
self
.
align_mode
)
self
.
inputs
=
{
'X'
:
input_np
}
self
.
inputs
=
{
'X'
:
input_np
}
if
self
.
out_size
is
not
None
:
if
self
.
out_size
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
self
.
attrs
=
{
self
.
attrs
=
{
'out_h'
:
self
.
out_h
,
'out_h'
:
self
.
out_h
,
'out_w'
:
self
.
out_w
,
'out_w'
:
self
.
out_w
,
'scale'
:
self
.
scale
,
'interp_method'
:
self
.
interp_method
,
'interp_method'
:
self
.
interp_method
,
'align_corners'
:
self
.
align_corners
,
'align_corners'
:
self
.
align_corners
,
'align_mode'
:
self
.
align_mode
'align_mode'
:
self
.
align_mode
...
@@ -229,6 +256,7 @@ class TestBilinearInterpOpUint8(OpTest):
...
@@ -229,6 +256,7 @@ class TestBilinearInterpOpUint8(OpTest):
self
.
input_shape
=
[
1
,
3
,
9
,
6
]
self
.
input_shape
=
[
1
,
3
,
9
,
6
]
self
.
out_h
=
10
self
.
out_h
=
10
self
.
out_w
=
9
self
.
out_w
=
9
self
.
scale
=
0.
self
.
align_corners
=
True
self
.
align_corners
=
True
self
.
align_mode
=
1
self
.
align_mode
=
1
...
@@ -239,6 +267,7 @@ class TestBilinearInterpCase1Uint8(TestBilinearInterpOpUint8):
...
@@ -239,6 +267,7 @@ class TestBilinearInterpCase1Uint8(TestBilinearInterpOpUint8):
self
.
input_shape
=
[
2
,
3
,
128
,
64
]
self
.
input_shape
=
[
2
,
3
,
128
,
64
]
self
.
out_h
=
120
self
.
out_h
=
120
self
.
out_w
=
50
self
.
out_w
=
50
self
.
scale
=
0.
self
.
align_corners
=
True
self
.
align_corners
=
True
self
.
align_mode
=
1
self
.
align_mode
=
1
...
@@ -249,6 +278,7 @@ class TestBilinearInterpCase2Uint8(TestBilinearInterpOpUint8):
...
@@ -249,6 +278,7 @@ class TestBilinearInterpCase2Uint8(TestBilinearInterpOpUint8):
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
5
self
.
out_h
=
5
self
.
out_w
=
13
self
.
out_w
=
13
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
6
,
15
]).
astype
(
"int32"
)
self
.
out_size
=
np
.
array
([
6
,
15
]).
astype
(
"int32"
)
self
.
align_corners
=
True
self
.
align_corners
=
True
self
.
align_mode
=
1
self
.
align_mode
=
1
...
@@ -272,5 +302,38 @@ class TestBilinearInterpWithMethod3(TestBilinearInterpOp):
...
@@ -272,5 +302,38 @@ class TestBilinearInterpWithMethod3(TestBilinearInterpOp):
self
.
align_mode
=
0
self
.
align_mode
=
0
class
TestBilinearInterpScale1
(
TestBilinearInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bilinear'
self
.
input_shape
=
[
2
,
3
,
16
,
32
]
self
.
out_h
=
60
self
.
out_w
=
25
self
.
scale
=
2.
self
.
align_corners
=
True
self
.
align_mode
=
1
class
TestBilinearInterpScale2
(
TestBilinearInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bilinear'
self
.
input_shape
=
[
2
,
3
,
16
,
32
]
self
.
out_h
=
60
self
.
out_w
=
25
self
.
scale
=
1.
self
.
align_corners
=
True
self
.
align_mode
=
1
class
TestBilinearInterpScale3
(
TestBilinearInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bilinear'
self
.
input_shape
=
[
2
,
3
,
16
,
32
]
self
.
out_h
=
60
self
.
out_w
=
25
self
.
scale
=
1.5
self
.
align_corners
=
True
self
.
align_mode
=
1
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_nearest_interp_op.py
浏览文件 @
cfda1fde
...
@@ -73,7 +73,14 @@ class TestNearestInterpOp(OpTest):
...
@@ -73,7 +73,14 @@ class TestNearestInterpOp(OpTest):
self
.
op_type
=
"nearest_interp"
self
.
op_type
=
"nearest_interp"
input_np
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
"float32"
)
input_np
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
"float32"
)
output_np
=
nearest_neighbor_interp_np
(
input_np
,
self
.
out_h
,
self
.
out_w
,
if
self
.
scale
>
0
:
out_h
=
int
(
self
.
input_shape
[
2
]
*
self
.
scale
)
out_w
=
int
(
self
.
input_shape
[
3
]
*
self
.
scale
)
else
:
out_h
=
self
.
out_h
out_w
=
self
.
out_w
output_np
=
nearest_neighbor_interp_np
(
input_np
,
out_h
,
out_w
,
self
.
out_size
,
self
.
actual_shape
,
self
.
out_size
,
self
.
actual_shape
,
self
.
align_corners
)
self
.
align_corners
)
self
.
inputs
=
{
'X'
:
input_np
}
self
.
inputs
=
{
'X'
:
input_np
}
...
@@ -84,6 +91,7 @@ class TestNearestInterpOp(OpTest):
...
@@ -84,6 +91,7 @@ class TestNearestInterpOp(OpTest):
self
.
attrs
=
{
self
.
attrs
=
{
'out_h'
:
self
.
out_h
,
'out_h'
:
self
.
out_h
,
'out_w'
:
self
.
out_w
,
'out_w'
:
self
.
out_w
,
'scale'
:
self
.
scale
,
'interp_method'
:
self
.
interp_method
,
'interp_method'
:
self
.
interp_method
,
'align_corners'
:
self
.
align_corners
,
'align_corners'
:
self
.
align_corners
,
}
}
...
@@ -100,6 +108,7 @@ class TestNearestInterpOp(OpTest):
...
@@ -100,6 +108,7 @@ class TestNearestInterpOp(OpTest):
self
.
input_shape
=
[
2
,
3
,
4
,
4
]
self
.
input_shape
=
[
2
,
3
,
4
,
4
]
self
.
out_h
=
2
self
.
out_h
=
2
self
.
out_w
=
2
self
.
out_w
=
2
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
3
,
3
]).
astype
(
"int32"
)
self
.
out_size
=
np
.
array
([
3
,
3
]).
astype
(
"int32"
)
self
.
align_corners
=
True
self
.
align_corners
=
True
...
@@ -110,6 +119,7 @@ class TestNearestNeighborInterpCase1(TestNearestInterpOp):
...
@@ -110,6 +119,7 @@ class TestNearestNeighborInterpCase1(TestNearestInterpOp):
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
1
self
.
out_h
=
1
self
.
out_w
=
1
self
.
out_w
=
1
self
.
scale
=
0.
self
.
align_corners
=
True
self
.
align_corners
=
True
...
@@ -119,6 +129,7 @@ class TestNearestNeighborInterpCase2(TestNearestInterpOp):
...
@@ -119,6 +129,7 @@ class TestNearestNeighborInterpCase2(TestNearestInterpOp):
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
12
self
.
out_h
=
12
self
.
out_w
=
12
self
.
out_w
=
12
self
.
scale
=
0.
self
.
align_corners
=
True
self
.
align_corners
=
True
...
@@ -128,6 +139,7 @@ class TestNearestNeighborInterpCase3(TestNearestInterpOp):
...
@@ -128,6 +139,7 @@ class TestNearestNeighborInterpCase3(TestNearestInterpOp):
self
.
input_shape
=
[
1
,
1
,
128
,
64
]
self
.
input_shape
=
[
1
,
1
,
128
,
64
]
self
.
out_h
=
64
self
.
out_h
=
64
self
.
out_w
=
128
self
.
out_w
=
128
self
.
scale
=
0.
self
.
align_corners
=
True
self
.
align_corners
=
True
...
@@ -137,6 +149,7 @@ class TestNearestNeighborInterpCase4(TestNearestInterpOp):
...
@@ -137,6 +149,7 @@ class TestNearestNeighborInterpCase4(TestNearestInterpOp):
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
1
self
.
out_h
=
1
self
.
out_w
=
1
self
.
out_w
=
1
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
2
,
2
]).
astype
(
"int32"
)
self
.
out_size
=
np
.
array
([
2
,
2
]).
astype
(
"int32"
)
self
.
align_corners
=
True
self
.
align_corners
=
True
...
@@ -147,6 +160,7 @@ class TestNearestNeighborInterpCase5(TestNearestInterpOp):
...
@@ -147,6 +160,7 @@ class TestNearestNeighborInterpCase5(TestNearestInterpOp):
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
12
self
.
out_h
=
12
self
.
out_w
=
12
self
.
out_w
=
12
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
11
,
11
]).
astype
(
"int32"
)
self
.
out_size
=
np
.
array
([
11
,
11
]).
astype
(
"int32"
)
self
.
align_corners
=
True
self
.
align_corners
=
True
...
@@ -157,6 +171,7 @@ class TestNearestNeighborInterpCase6(TestNearestInterpOp):
...
@@ -157,6 +171,7 @@ class TestNearestNeighborInterpCase6(TestNearestInterpOp):
self
.
input_shape
=
[
1
,
1
,
128
,
64
]
self
.
input_shape
=
[
1
,
1
,
128
,
64
]
self
.
out_h
=
64
self
.
out_h
=
64
self
.
out_w
=
128
self
.
out_w
=
128
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
65
,
129
]).
astype
(
"int32"
)
self
.
out_size
=
np
.
array
([
65
,
129
]).
astype
(
"int32"
)
self
.
align_corners
=
True
self
.
align_corners
=
True
...
@@ -167,6 +182,7 @@ class TestNearestNeighborInterpActualShape(TestNearestInterpOp):
...
@@ -167,6 +182,7 @@ class TestNearestNeighborInterpActualShape(TestNearestInterpOp):
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
out_h
=
64
self
.
out_h
=
64
self
.
out_w
=
32
self
.
out_w
=
32
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
66
,
40
]).
astype
(
"int32"
)
self
.
out_size
=
np
.
array
([
66
,
40
]).
astype
(
"int32"
)
self
.
align_corners
=
True
self
.
align_corners
=
True
...
@@ -179,7 +195,15 @@ class TestNearestInterpOpUint8(OpTest):
...
@@ -179,7 +195,15 @@ class TestNearestInterpOpUint8(OpTest):
self
.
op_type
=
"nearest_interp"
self
.
op_type
=
"nearest_interp"
input_np
=
np
.
random
.
randint
(
input_np
=
np
.
random
.
randint
(
low
=
0
,
high
=
256
,
size
=
self
.
input_shape
).
astype
(
"uint8"
)
low
=
0
,
high
=
256
,
size
=
self
.
input_shape
).
astype
(
"uint8"
)
output_np
=
nearest_neighbor_interp_np
(
input_np
,
self
.
out_h
,
self
.
out_w
,
if
self
.
scale
>
0
:
out_h
=
int
(
self
.
input_shape
[
2
]
*
self
.
scale
)
out_w
=
int
(
self
.
input_shape
[
3
]
*
self
.
scale
)
else
:
out_h
=
self
.
out_h
out_w
=
self
.
out_w
output_np
=
nearest_neighbor_interp_np
(
input_np
,
out_h
,
out_w
,
self
.
out_size
,
self
.
actual_shape
,
self
.
out_size
,
self
.
actual_shape
,
self
.
align_corners
)
self
.
align_corners
)
self
.
inputs
=
{
'X'
:
input_np
}
self
.
inputs
=
{
'X'
:
input_np
}
...
@@ -188,6 +212,7 @@ class TestNearestInterpOpUint8(OpTest):
...
@@ -188,6 +212,7 @@ class TestNearestInterpOpUint8(OpTest):
self
.
attrs
=
{
self
.
attrs
=
{
'out_h'
:
self
.
out_h
,
'out_h'
:
self
.
out_h
,
'out_w'
:
self
.
out_w
,
'out_w'
:
self
.
out_w
,
'scale'
:
self
.
scale
,
'interp_method'
:
self
.
interp_method
,
'interp_method'
:
self
.
interp_method
,
'align_corners'
:
self
.
align_corners
'align_corners'
:
self
.
align_corners
}
}
...
@@ -201,6 +226,7 @@ class TestNearestInterpOpUint8(OpTest):
...
@@ -201,6 +226,7 @@ class TestNearestInterpOpUint8(OpTest):
self
.
input_shape
=
[
1
,
3
,
9
,
6
]
self
.
input_shape
=
[
1
,
3
,
9
,
6
]
self
.
out_h
=
10
self
.
out_h
=
10
self
.
out_w
=
9
self
.
out_w
=
9
self
.
scale
=
0.
self
.
align_corners
=
True
self
.
align_corners
=
True
...
@@ -210,6 +236,7 @@ class TestNearestNeighborInterpCase1Uint8(TestNearestInterpOpUint8):
...
@@ -210,6 +236,7 @@ class TestNearestNeighborInterpCase1Uint8(TestNearestInterpOpUint8):
self
.
input_shape
=
[
2
,
3
,
128
,
64
]
self
.
input_shape
=
[
2
,
3
,
128
,
64
]
self
.
out_h
=
120
self
.
out_h
=
120
self
.
out_w
=
50
self
.
out_w
=
50
self
.
scale
=
0.
self
.
align_corners
=
True
self
.
align_corners
=
True
...
@@ -219,6 +246,7 @@ class TestNearestNeighborInterpCase2Uint8(TestNearestInterpOpUint8):
...
@@ -219,6 +246,7 @@ class TestNearestNeighborInterpCase2Uint8(TestNearestInterpOpUint8):
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
5
self
.
out_h
=
5
self
.
out_w
=
13
self
.
out_w
=
13
self
.
scale
=
0.
self
.
out_size
=
np
.
array
([
6
,
15
]).
astype
(
"int32"
)
self
.
out_size
=
np
.
array
([
6
,
15
]).
astype
(
"int32"
)
self
.
align_corners
=
True
self
.
align_corners
=
True
...
@@ -228,5 +256,38 @@ class TestNearestInterpWithoutCorners(TestNearestInterpOp):
...
@@ -228,5 +256,38 @@ class TestNearestInterpWithoutCorners(TestNearestInterpOp):
self
.
align_corners
=
False
self
.
align_corners
=
False
class
TestNearestNeighborInterpScale1
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
2.
self
.
out_size
=
np
.
array
([
66
,
40
]).
astype
(
"int32"
)
self
.
align_corners
=
True
class
TestNearestNeighborInterpScale2
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
1.5
self
.
out_size
=
np
.
array
([
66
,
40
]).
astype
(
"int32"
)
self
.
align_corners
=
True
class
TestNearestNeighborInterpScale3
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
1.
self
.
out_size
=
np
.
array
([
66
,
40
]).
astype
(
"int32"
)
self
.
align_corners
=
True
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录