Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
ce468817
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ce468817
编写于
10月 10, 2019
作者:
Y
Youwei Song
提交者:
Aurelius84
10月 10, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
cherry-pick #20199 #20200 #20240 #20243 (#20410)
test=release/1.6, test=document_fix
上级
3c30e92b
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
105 addition
and
61 deletion
+105
-61
paddle/fluid/API.spec
paddle/fluid/API.spec
+9
-9
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+25
-7
python/paddle/fluid/backward.py
python/paddle/fluid/backward.py
+26
-21
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+14
-4
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+31
-20
未找到文件。
paddle/fluid/API.spec
浏览文件 @
ce468817
...
...
@@ -11,10 +11,10 @@ paddle.fluid.default_startup_program (ArgSpec(args=[], varargs=None, keywords=No
paddle.fluid.default_main_program (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', '853718df675e59aea7104f3d61bbf11d'))
paddle.fluid.program_guard (ArgSpec(args=['main_program', 'startup_program'], varargs=None, keywords=None, defaults=(None,)), ('document', '78fb5c7f70ef76bcf4a1862c3f6b8191'))
paddle.fluid.name_scope (ArgSpec(args=['prefix'], varargs=None, keywords=None, defaults=(None,)), ('document', '917d313881ff990de5fb18d98a9c7b42'))
paddle.fluid.cuda_places (ArgSpec(args=['device_ids'], varargs=None, keywords=None, defaults=(None,)), ('document', '
1f2bb6ece651e44117652d2d7bedecf5
'))
paddle.fluid.cpu_places (ArgSpec(args=['device_count'], varargs=None, keywords=None, defaults=(None,)), ('document', '
956bab564ebc69ffd17195c08cc8ffa0
'))
paddle.fluid.cuda_pinned_places (ArgSpec(args=['device_count'], varargs=None, keywords=None, defaults=(None,)), ('document', '
c2562241744aabe3fff1b59af22dd281
'))
paddle.fluid.in_dygraph_mode (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', '
301bae0d8e02cc9eec5be02f052f11c6
'))
paddle.fluid.cuda_places (ArgSpec(args=['device_ids'], varargs=None, keywords=None, defaults=(None,)), ('document', '
ab9bd2079536114aa7c1488a489ee87f
'))
paddle.fluid.cpu_places (ArgSpec(args=['device_count'], varargs=None, keywords=None, defaults=(None,)), ('document', '
a7352a3dd39308fde4fbbf6421a4193d
'))
paddle.fluid.cuda_pinned_places (ArgSpec(args=['device_count'], varargs=None, keywords=None, defaults=(None,)), ('document', '
567ac29567716fd8e7432b533337d529
'))
paddle.fluid.in_dygraph_mode (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', '
df1f4d1ed7e1eefe04f6361efda6b75a
'))
paddle.fluid.is_compiled_with_cuda (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', '60c7f107a5050aeb58bb74eb175672b5'))
paddle.fluid.Variable ('paddle.fluid.framework.Variable', ('document', '65ff735c2b96673d7131f5ff6b0db40c'))
paddle.fluid.Variable.__init__ (ArgSpec(args=['self', 'block', 'type', 'name', 'shape', 'dtype', 'lod_level', 'capacity', 'persistable', 'error_clip', 'stop_gradient', 'is_data', 'need_check_feed'], varargs=None, keywords='kwargs', defaults=(VarType.LOD_TENSOR, None, None, None, None, None, None, None, False, False, False)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
...
...
@@ -34,7 +34,7 @@ paddle.fluid.Executor.infer_from_dataset (ArgSpec(args=['self', 'program', 'data
paddle.fluid.Executor.run (ArgSpec(args=['self', 'program', 'feed', 'fetch_list', 'feed_var_name', 'fetch_var_name', 'scope', 'return_numpy', 'use_program_cache'], varargs=None, keywords=None, defaults=(None, None, None, 'feed', 'fetch', None, True, False)), ('document', '4cfcd9c15b766a51b584cc46d38f1ad8'))
paddle.fluid.Executor.train_from_dataset (ArgSpec(args=['self', 'program', 'dataset', 'scope', 'thread', 'debug', 'fetch_list', 'fetch_info', 'print_period', 'fetch_handler'], varargs=None, keywords=None, defaults=(None, None, None, 0, False, None, None, 100, None)), ('document', '73024c79f46b4f14f1060edeaa4919c8'))
paddle.fluid.global_scope (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', 'f65788d9ead293ada47551339df12203'))
paddle.fluid.scope_guard (ArgSpec(args=['scope'], varargs=None, keywords=None, defaults=None), ('document', '
e6c073ed237001aaba7bff976b62b122
'))
paddle.fluid.scope_guard (ArgSpec(args=['scope'], varargs=None, keywords=None, defaults=None), ('document', '
02fcfc1eda07c03a84ed62422366239c
'))
paddle.fluid.DistributeTranspiler ('paddle.fluid.transpiler.distribute_transpiler.DistributeTranspiler', ('document', 'b2b19821c5dffcd11473d6a4eef089af'))
paddle.fluid.DistributeTranspiler.__init__ (ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.DistributeTranspiler.get_pserver_program (ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None), ('document', 'b1951949c6d21698290aa8ac69afee32'))
...
...
@@ -1041,7 +1041,7 @@ paddle.fluid.optimizer.RecomputeOptimizer.backward (ArgSpec(args=['self', 'loss'
paddle.fluid.optimizer.RecomputeOptimizer.get_opti_var_name_list (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.optimizer.RecomputeOptimizer.load (ArgSpec(args=['self', 'stat_dict'], varargs=None, keywords=None, defaults=None), ('document', '7b2b8ae72011bc4decb67e97623f2c56'))
paddle.fluid.optimizer.RecomputeOptimizer.minimize (ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'grad_clip'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.backward.append_backward (ArgSpec(args=['loss', 'parameter_list', 'no_grad_set', 'callbacks', 'checkpoints'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', '
52488008103886c793843a3828bacd5e
'))
paddle.fluid.backward.append_backward (ArgSpec(args=['loss', 'parameter_list', 'no_grad_set', 'callbacks', 'checkpoints'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', '
c68fe1cb95d90762b57c309cae9b99d9
'))
paddle.fluid.backward.gradients (ArgSpec(args=['targets', 'inputs', 'target_gradients', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'e2097e1e0ed84ae44951437bfe269a1b'))
paddle.fluid.regularizer.L1DecayRegularizer ('paddle.fluid.regularizer.L1DecayRegularizer', ('document', '34603757e70974d2fcc730643b382925'))
paddle.fluid.regularizer.L1DecayRegularizer.__init__ (ArgSpec(args=['self', 'regularization_coeff'], varargs=None, keywords=None, defaults=(0.0,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
...
...
@@ -1058,11 +1058,11 @@ paddle.fluid.LoDTensor.shape shape(self: paddle.fluid.core_avx.Tensor) -> List[i
paddle.fluid.LoDTensorArray ('paddle.fluid.core_avx.LoDTensorArray', ('document', 'e9895b67ba54438b9c0f7053e18966f5'))
paddle.fluid.LoDTensorArray.__init__ __init__(self: paddle.fluid.core_avx.LoDTensorArray) -> None
paddle.fluid.LoDTensorArray.append append(self: paddle.fluid.core_avx.LoDTensorArray, tensor: paddle.fluid.core_avx.LoDTensor) -> None
paddle.fluid.CPUPlace ('paddle.fluid.core_avx.CPUPlace', ('document', '
6014005ef2649045b77d502aeb6cd7f9
'))
paddle.fluid.CPUPlace ('paddle.fluid.core_avx.CPUPlace', ('document', '
d269ec68ce9b102ab10610e89ffa06e1
'))
paddle.fluid.CPUPlace.__init__ __init__(self: paddle.fluid.core_avx.CPUPlace) -> None
paddle.fluid.CUDAPlace ('paddle.fluid.core_avx.CUDAPlace', ('document', '
6a6cd8ed607beb951692c4b066d08c94
'))
paddle.fluid.CUDAPlace ('paddle.fluid.core_avx.CUDAPlace', ('document', '
f862cb3e5596a3920102f1b1238c223b
'))
paddle.fluid.CUDAPlace.__init__ __init__(self: paddle.fluid.core_avx.CUDAPlace, arg0: int) -> None
paddle.fluid.CUDAPinnedPlace ('paddle.fluid.core_avx.CUDAPinnedPlace', ('document', '
afd58ea5d390b5ea06ca70291a266d45
'))
paddle.fluid.CUDAPinnedPlace ('paddle.fluid.core_avx.CUDAPinnedPlace', ('document', '
1320ef739c81c95385330dab3fe6e80b
'))
paddle.fluid.CUDAPinnedPlace.__init__ __init__(self: paddle.fluid.core_avx.CUDAPinnedPlace) -> None
paddle.fluid.ParamAttr ('paddle.fluid.param_attr.ParamAttr', ('document', '7b5bfe856689036b8fffb71af1558e5c'))
paddle.fluid.ParamAttr.__init__ (ArgSpec(args=['self', 'name', 'initializer', 'learning_rate', 'regularizer', 'trainable', 'gradient_clip', 'do_model_average'], varargs=None, keywords=None, defaults=(None, None, 1.0, None, True, None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
ce468817
...
...
@@ -832,9 +832,23 @@ All parameter, weight, gradient are variables in Paddle.
py
::
class_
<
platform
::
Communicator
>
(
m
,
"Communicator"
).
def
(
py
::
init
<>
());
#endif
py
::
class_
<
platform
::
CUDAPlace
>
(
m
,
"CUDAPlace"
,
R"DOC(
CUDAPlace is a descriptor of a device. It represents a GPU, and each CUDAPlace
has a dev_id to indicate the number of cards represented by the current CUDAPlace.
**Note**:
For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.
CUDAPlace is a descriptor of a device.
It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
staring from 0.
The memory of CUDAPlace with different dev_id is not accessible.
Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
When the program starts, visible GPU devices will be numbered from 0.
If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
and the logical ID is the same as the actual ID.
Parameters:
id (int): GPU device ID.
Examples:
.. code-block:: python
...
...
@@ -892,14 +906,14 @@ All parameter, weight, gradient are variables in Paddle.
.
def
(
"__str__"
,
string
::
to_string
<
const
platform
::
CUDAPlace
&>
);
py
::
class_
<
paddle
::
platform
::
CPUPlace
>
(
m
,
"CPUPlace"
,
R"DOC(
CPUPlace is a descriptor of a device.
It represents a CPU, and the memory
CPUPlace can be accessed by CPU
.
CPUPlace is a descriptor of a device.
It represents a CPU device allocated or to be allocated with Tensor or LoDTensor
.
Examples:
.. code-block:: python
import paddle.fluid as fluid
cpu_place = fluid.CPUPlace()
cpu_place = fluid.CPUPlace()
to be allocated
)DOC"
)
.
def
(
py
::
init
<>
())
...
...
@@ -912,8 +926,12 @@ All parameter, weight, gradient are variables in Paddle.
.
def
(
"__str__"
,
string
::
to_string
<
const
platform
::
CPUPlace
&>
);
py
::
class_
<
paddle
::
platform
::
CUDAPinnedPlace
>
(
m
,
"CUDAPinnedPlace"
,
R"DOC(
CUDAPinnedPlace is a descriptor of a device. The memory of CUDAPinnedPlace
can be accessed by GPU and CPU.
CUDAPinnedPlace is a descriptor of a device.
It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
The host operating system will not paging and exchanging the memory.
It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
For more information on CUDA data transfer and `pinned memory`,
please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
Examples:
.. code-block:: python
...
...
python/paddle/fluid/backward.py
浏览文件 @
ce468817
...
...
@@ -919,29 +919,31 @@ def append_backward(loss,
callbacks
=
None
,
checkpoints
=
None
):
"""
Append
backward part to main_program.
This function appends
backward part to main_program.
A complete neural network training is made up of forward and backward
propagation. However, when we configure a network, we only need to
specify its forw
rd part. The backward part is generated
automatically
according to the forward part by this function
.
specify its forw
ard part. This function uses the chain rule to
automatically
generate the backward part according to the forward part
.
In most cases, users do not need to invoke this function manually.
It
will be automatically invoked by the optimizer's `minimize` function.
In most cases, users do not need to invoke this function manually.
It
will be automatically invoked by the optimizer's `minimize` function.
Arg
s:
loss(
Variable
): The loss variable of the network.
parameter_list(list
[string]|None
): Names of parameters that need
Parameter
s:
loss(
:ref:`api_guide_Variable_en`
): The loss variable of the network.
parameter_list(list
of str, optional
): Names of parameters that need
to be updated by optimizers.
If it is None, all parameters
will be updated.
Default: None
no_grad_set(set
|None): Variables in the Block
0 whose gradients
Default: None
.
no_grad_set(set
of str, optional): Variable names in the :ref:`api_guide_Block_en`
0 whose gradients
should be ignored. All variables with
`stop_gradient=True` from all blocks will
be automatically added into this set.
Default: None
callbacks(list[callable object]|None): The callbacks are used for
If this parameter is not None, the names in this set will be added to the default set.
Default: None.
callbacks(list of callable object, optional): List of callback functions.
The callbacks are used for
doing some custom jobs during
backward part building. All
callable objects in it will
...
...
@@ -950,23 +952,23 @@ def append_backward(loss,
into the program. The callable
object must has two input
parameters: 'block' and 'context'.
The 'block' is the
block
which
The 'block' is the
:ref:`api_guide_Block_en`
which
the new gradient operator will
be added to. The 'context' is a
map, whose keys are gradient
variable names and values are
corresponding original
variables
.
corresponding original
:ref:`api_guide_Variable_en`
.
In addition to this, the 'context'
has another special key-value pair:
the key is string '__current_op_desc__'
and the value is the op_desc of the
gradient operator who has just
triggered the callable object.
Default: None.
Returns:
list[(Variable,Variable)]: Pairs of parameter and its
corresponding gradients. The key is the parameter and the
value is gradient variable.
list of tuple ( :ref:`api_guide_Variable_en` , :ref:`api_guide_Variable_en` ): Pairs of parameter and its corresponding gradients.
The key is the parameter and the value is gradient variable.
Raises:
AssertionError: If `loss` is not an instance of Variable.
...
...
@@ -974,17 +976,20 @@ def append_backward(loss,
Examples:
.. code-block:: python
# network configuration code
# loss from ...
import paddle.fluid as fluid
x = fluid.
layers.data(name='x', shape=[
13], dtype='float32')
y = fluid.
layers.data(name='y', shape=[
1], dtype='float32')
x = fluid.
data(name='x', shape=[None,
13], dtype='float32')
y = fluid.
data(name='y', shape=[None,
1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
loss = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_loss = fluid.layers.mean(loss)
param_grad_list = fluid.backward.append_backward(loss=avg_loss)
p_g_list1 = fluid.backward.append_backward(loss=avg_loss) # len(p_g_list1) == 2
p_g_list2 = fluid.backward.append_backward(loss=avg_loss, parameter_list=[p_g_list1[0][0].name]) # len(p_g_list1) == 1
p_g_list3 = fluid.backward.append_backward(loss=avg_loss, no_grad_set=set([p_g_list1[0][0].name])) # len(p_g_list1) == 1
p_g_list4 = fluid.backward.append_backward(loss=avg_loss, parameter_list=[p_g_list1[0][0].name], no_grad_set=set([p_g_list1[0][0].name])) # len(p_g_list1) == 0
"""
assert
isinstance
(
loss
,
framework
.
Variable
)
...
...
python/paddle/fluid/executor.py
浏览文件 @
ce468817
...
...
@@ -67,11 +67,21 @@ def _switch_scope(scope):
@
signature_safe_contextmanager
def
scope_guard
(
scope
):
"""
Change the global/default scope instance by Python `with` statement. All
variable in runtime will assigned to the new scope.
This function switches scope through python `with` statement.
Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
similar to brackets in programming languages.
If this function is not invoked, all variables and variable names are recorded in the default global scope.
When users need to create variables with the same name,
they need to switch scopes through this function
if they do not want the mapping of variables with the same name to be overwritten.
After switching through the `with` statement,
all variables created in the `with` block will be assigned to a new scope.
Parameters:
scope: The new scope.
Arg
s:
scope: The new global/default scope.
Return
s:
None
Examples:
.. code-block:: python
...
...
python/paddle/fluid/framework.py
浏览文件 @
ce468817
...
...
@@ -62,17 +62,20 @@ _dygraph_current_expected_place_ = None
def
in_dygraph_mode
():
"""
Check program status(tracer), Whether it runs in dygraph mode or not
This function checks whether the program runs in dynamic graph mode or not.
You can turn on dynamic graph mode with :ref:`api_fluid_dygraph_guard` api.
Returns:
out (boolean): True if the program is running in dynamic graph mode
bool: Whether the program is running in dynamic graph mode.
Examples:
.. code-block:: python
import paddle.fluid as fluid
if fluid.in_dygraph_mode():
pass
print('running in dygraph mode')
else:
print('not running in dygraph mode')
"""
return
_dygraph_tracer_
is
not
None
...
...
@@ -149,25 +152,29 @@ def is_compiled_with_cuda():
def
cuda_places
(
device_ids
=
None
):
"""
Create a list of :code:`fluid.CUDAPlace` objects.
**Note**:
For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.
This function creates a list of :code:`fluid.CUDAPlace` objects.
If :code:`device_ids` is None, environment variable of
:code:`FLAGS_selected_gpus` would be checked first.
I
f
:code:`FLAGS_selected_gpus` would be checked first.
For example, i
f
:code:`FLAGS_selected_gpus=0,1,2`, the returned list would
be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
If :code:`FLAGS_selected_gpus` is not set, all visible
gpu places would be returned
.
gpu places would be returned
according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
If :code:`device_ids` is not None, it should be the device
ids of
gpus. For example, if :code:`device_ids=[0,1,2]`,
ids of
GPUs. For example, if :code:`device_ids=[0,1,2]`,
the returned list would be
[fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
Args:
device_ids (
None|list(int)|tuple(int)): gpu device id list
.
Parameters:
device_ids (
list or tuple of int, optional): list of GPU device ids
.
Returns:
out (list(fluid.CUDAPlace)): gpu
place list.
list of fluid.CUDAPlace: Created GPU
place list.
Examples:
.. code-block:: python
...
...
@@ -187,18 +194,20 @@ def cuda_places(device_ids=None):
def
cpu_places
(
device_count
=
None
):
"""
Create a list of :code:`fluid.CPUPlace` objects
.
This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list
.
If :code:`device_count` is None, the device count would
be determined by environment variable :code:`CPU_NUM`.
If :code:`CPU_NUM` is not set, the default value is 1,
i.e. CPU_NUM=1.
:code:`CPU_NUM` indicates the number of devices used in the current task.
The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
Arg
s:
device_count (
None|int): device number
.
Parameter
s:
device_count (
int, optional): device number. Default: None
.
Returns:
out (list(fluid.CPUPlace)): cpu place list
.
list of fluid.CPUPlace: Created list of CPU places
.
Examples:
.. code-block:: python
...
...
@@ -214,18 +223,20 @@ def cpu_places(device_count=None):
def
cuda_pinned_places
(
device_count
=
None
):
"""
Create
a list of :code:`fluid.CUDAPinnedPlace` objects.
This function creates
a list of :code:`fluid.CUDAPinnedPlace` objects.
If :code:`device_count` is None, the device count would
be determined by environment variable :code:`CPU_NUM`.
If :code:`CPU_NUM` is not set, the device count would
be determined by :code:`multiprocessing.cpu_count()`.
If :code:`CPU_NUM` is not set, the default value is 1,
i.e. CPU_NUM=1.
:code:`CPU_NUM` indicates the number of devices used in the current task.
The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
Arg
s:
device_count (
None|int): device number
.
Parameter
s:
device_count (
int, optional): device number. Default: None
.
Returns:
out (list(fluid.CUDAPinnedPlace)): cuda pinned place list
.
list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places
.
Examples:
.. code-block:: python
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录