Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
cc077693
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
cc077693
编写于
5月 10, 2022
作者:
Q
qipengh
提交者:
GitHub
5月 10, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU]add adam, adamw op of mlu device (#42557)
上级
ecd6db43
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
851 addition
and
13 deletion
+851
-13
paddle/fluid/operators/dropout_op_mlu.cc
paddle/fluid/operators/dropout_op_mlu.cc
+1
-1
paddle/fluid/operators/mlu/mlu_baseop.cc
paddle/fluid/operators/mlu/mlu_baseop.cc
+8
-8
paddle/fluid/operators/mlu/mlu_baseop.h
paddle/fluid/operators/mlu/mlu_baseop.h
+4
-4
paddle/fluid/operators/optimizers/adam_op_mlu.cc
paddle/fluid/operators/optimizers/adam_op_mlu.cc
+285
-0
python/paddle/fluid/tests/unittests/mlu/test_adam_op_mlu.py
python/paddle/fluid/tests/unittests/mlu/test_adam_op_mlu.py
+303
-0
python/paddle/fluid/tests/unittests/mlu/test_adamw_op_mlu.py
python/paddle/fluid/tests/unittests/mlu/test_adamw_op_mlu.py
+250
-0
未找到文件。
paddle/fluid/operators/dropout_op_mlu.cc
浏览文件 @
cc077693
...
...
@@ -82,7 +82,7 @@ class DropoutMLUKernel : public framework::OpKernel<T> {
*
x
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
MLUDeviceContext
>(),
out
);
}
else
{
float
scale
=
static_cast
<
T
>
(
1.0
f
-
dropout_prob
);
auto
scale
=
static_cast
<
T
>
(
1.0
f
-
dropout_prob
);
Tensor
scale_tensor
(
x
->
dtype
());
scale_tensor
.
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
MLUCnnlTensorDesc
scale_desc
(
scale_tensor
);
...
...
paddle/fluid/operators/mlu/mlu_baseop.cc
浏览文件 @
cc077693
...
...
@@ -805,17 +805,17 @@ MLUCnnlTrigonDesc::~MLUCnnlTrigonDesc() {
}
/* static */
void
MLUCnnl
::
ApplyAdam
(
const
ExecutionContext
&
ctx
,
const
cnnlTensorDescriptor_t
grad
_desc
,
const
void
*
grad
,
const
void
*
lr
,
const
void
*
beta1
,
const
void
*
beta2
,
const
void
*
beta1_power
,
const
void
*
beta2_power
,
const
void
*
epsilon
,
const
bool
use_nesterov
,
const
cnnlTensorDescriptor_t
var_desc
,
void
*
va
r
,
const
cnnlTensorDescriptor_t
m_desc
,
void
*
m
,
const
cnnlTensorDescriptor_t
v_desc
,
void
*
v
)
{
const
ExecutionContext
&
ctx
,
const
cnnlTensorDescriptor_t
var
_desc
,
void
*
var
,
const
cnnlTensorDescriptor_t
m_desc
,
void
*
m
,
const
cnnlTensorDescriptor_t
v_desc
,
void
*
v
,
const
cnnlTensorDescriptor_t
grad_desc
,
const
void
*
grad
,
const
void
*
l
r
,
const
void
*
beta1
,
const
void
*
beta2
,
const
void
*
beta1_power
,
const
void
*
beta2_power
,
const
void
*
epsilon
,
const
bool
use_nestero
v
)
{
cnnlHandle_t
handle
=
GetHandleFromCTX
(
ctx
);
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlApplyAdam
(
handle
,
grad_desc
,
var
,
grad_desc
,
m
,
grad_desc
,
v
,
grad_desc
,
grad
,
lr
,
beta
1
,
beta
2
,
beta1_power
,
beta2_power
,
epsilon
,
use_nesterov
));
handle
,
var_desc
,
var
,
m_desc
,
m
,
v_desc
,
v
,
grad_desc
,
grad
,
lr
,
beta1
,
beta2
,
beta1_power
,
beta2_power
,
epsilon
,
use_nesterov
));
}
/* static */
void
MLUCnnl
::
ApplyAdaMax
(
...
...
paddle/fluid/operators/mlu/mlu_baseop.h
浏览文件 @
cc077693
...
...
@@ -503,14 +503,14 @@ class MLUCnnl {
const
cnnlTensorDescriptor_t
mom_desc
,
void
*
mom
);
static
void
ApplyAdam
(
const
ExecutionContext
&
ctx
,
const
cnnlTensorDescriptor_t
var_desc
,
void
*
var
,
const
cnnlTensorDescriptor_t
m_desc
,
void
*
m
,
const
cnnlTensorDescriptor_t
v_desc
,
void
*
v
,
const
cnnlTensorDescriptor_t
grad_desc
,
const
void
*
grad
,
const
void
*
lr
,
const
void
*
beta1
,
const
void
*
beta2
,
const
void
*
beta1_power
,
const
void
*
beta2_power
,
const
void
*
epsilon
,
const
bool
use_nesterov
,
const
cnnlTensorDescriptor_t
var_desc
,
void
*
var
,
const
cnnlTensorDescriptor_t
m_desc
,
void
*
m
,
const
cnnlTensorDescriptor_t
v_desc
,
void
*
v
);
const
bool
use_nesterov
);
static
void
ApplyAdaMax
(
const
ExecutionContext
&
ctx
,
const
cnnlTensorDescriptor_t
grad_desc
,
...
...
paddle/fluid/operators/optimizers/adam_op_mlu.cc
0 → 100644
浏览文件 @
cc077693
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op_mlu.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
typename
T
>
class
AdamMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE_EQ
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
InputNames
(
"Param"
).
front
(),
framework
::
ToTypeName
(
param_var
->
Type
())));
auto
*
param
=
ctx
.
Input
<
LoDTensor
>
(
"Param"
);
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
PADDLE_ENFORCE_EQ
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"The Grad(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
InputNames
(
"Grad"
).
front
(),
framework
::
ToTypeName
(
param_var
->
Type
())));
auto
*
grad
=
ctx
.
Input
<
LoDTensor
>
(
"Grad"
);
auto
*
mom1
=
ctx
.
Input
<
LoDTensor
>
(
"Moment1"
);
auto
*
mom2
=
ctx
.
Input
<
LoDTensor
>
(
"Moment2"
);
auto
*
lr
=
ctx
.
Input
<
LoDTensor
>
(
"LearningRate"
);
auto
*
beta1_pow
=
ctx
.
Input
<
Tensor
>
(
"Beta1Pow"
);
auto
*
beta2_pow
=
ctx
.
Input
<
Tensor
>
(
"Beta2Pow"
);
auto
*
param_out
=
ctx
.
Output
<
LoDTensor
>
(
"ParamOut"
);
auto
*
mom1_out
=
ctx
.
Output
<
LoDTensor
>
(
"Moment1Out"
);
auto
*
mom2_out
=
ctx
.
Output
<
LoDTensor
>
(
"Moment2Out"
);
auto
*
beta1_pow_out
=
ctx
.
Output
<
LoDTensor
>
(
"Beta1PowOut"
);
auto
*
beta2_pow_out
=
ctx
.
Output
<
LoDTensor
>
(
"Beta2PowOut"
);
bool
skip_update
=
false
;
if
(
ctx
.
HasInput
(
"SkipUpdate"
))
{
auto
*
skip_update_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"SkipUpdate"
);
PADDLE_ENFORCE_EQ
(
skip_update_tensor
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"Input(SkipUpdate) size must be 1, but get %d"
,
skip_update_tensor
->
numel
()));
std
::
vector
<
bool
>
skip_update_vec
;
paddle
::
framework
::
TensorToVector
(
*
skip_update_tensor
,
ctx
.
device_context
(),
&
skip_update_vec
);
skip_update
=
skip_update_vec
[
0
];
}
// skip_update=true, just copy input to output, and TensorCopy will call
// mutable_data
if
(
skip_update
)
{
VLOG
(
4
)
<<
"Adam skip update"
;
framework
::
TensorCopy
(
*
param
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
MLUDeviceContext
>(),
param_out
);
framework
::
TensorCopy
(
*
mom1
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
MLUDeviceContext
>(),
mom1_out
);
framework
::
TensorCopy
(
*
mom2
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
MLUDeviceContext
>(),
mom2_out
);
framework
::
TensorCopy
(
*
beta1_pow
,
beta1_pow
->
place
(),
ctx
.
template
device_context
<
platform
::
MLUDeviceContext
>(),
beta1_pow_out
);
framework
::
TensorCopy
(
*
beta2_pow
,
beta2_pow
->
place
(),
ctx
.
template
device_context
<
platform
::
MLUDeviceContext
>(),
beta2_pow_out
);
return
;
}
bool
use_global_beta_pow
=
ctx
.
Attr
<
bool
>
(
"use_global_beta_pow"
);
VLOG
(
4
)
<<
"use_global_beta_pow:"
<<
use_global_beta_pow
;
param_out
->
ShareDataWith
(
*
param
);
mom1_out
->
ShareDataWith
(
*
mom1
);
mom2_out
->
ShareDataWith
(
*
mom2
);
LoDTensor
beta1_pow_tmp
;
LoDTensor
beta2_pow_tmp
;
if
(
beta1_pow
->
place
()
==
platform
::
CPUPlace
())
{
T
beta1
=
*
beta1_pow
->
data
<
T
>
();
beta1_pow_tmp
.
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
MLUCnnlTensorDesc
beta1_pow_tmp_desc
(
beta1_pow_tmp
);
MLUCnnl
::
Fill
(
ctx
,
CNNL_POINTER_MODE_HOST
,
&
beta1
,
beta1_pow_tmp_desc
.
get
(),
GetBasePtr
(
&
beta1_pow_tmp
));
beta1_pow
=
&
beta1_pow_tmp
;
}
if
(
beta2_pow
->
place
()
==
platform
::
CPUPlace
())
{
T
beta2
=
*
beta2_pow
->
data
<
T
>
();
beta2_pow_tmp
.
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
MLUCnnlTensorDesc
beta2_pow_tmp_desc
(
beta2_pow_tmp
);
MLUCnnl
::
Fill
(
ctx
,
CNNL_POINTER_MODE_HOST
,
&
beta2
,
beta2_pow_tmp_desc
.
get
(),
GetBasePtr
(
&
beta2_pow_tmp
));
beta2_pow
=
&
beta2_pow_tmp
;
}
VLOG
(
3
)
<<
"beta1_pow.numel() : "
<<
beta1_pow
->
numel
()
<<
"beta2_pow.numel() : "
<<
beta2_pow
->
numel
();
VLOG
(
3
)
<<
"param.numel(): "
<<
param
->
numel
();
PADDLE_ENFORCE_EQ
(
beta1_pow_out
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"beta1 pow output size should be 1, but received "
"value is:%d."
,
beta1_pow_out
->
numel
()));
PADDLE_ENFORCE_EQ
(
beta2_pow_out
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"beta2 pow output size should be 1, but received "
"value is:%d."
,
beta2_pow_out
->
numel
()));
const
Tensor
*
beta1_tensor
=
nullptr
;
const
Tensor
*
beta2_tensor
=
nullptr
;
const
Tensor
*
epsilon_tensor
=
nullptr
;
Tensor
beta1_tmp
(
experimental
::
DataType
::
FLOAT32
);
Tensor
beta2_tmp
(
experimental
::
DataType
::
FLOAT32
);
Tensor
epsilon_tmp
(
experimental
::
DataType
::
FLOAT32
);
if
(
ctx
.
HasInput
(
"Beta1Tensor"
))
{
beta1_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Beta1Tensor"
);
PADDLE_ENFORCE_EQ
(
beta1_tensor
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"Input(Beta1Tensor) size must be 1, but get %d"
,
beta1_tensor
->
numel
()));
}
else
{
T
beta1
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"beta1"
));
beta1_tmp
.
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
MLUCnnlTensorDesc
beta1_tmp_desc
(
beta1_tmp
);
MLUCnnl
::
Fill
(
ctx
,
CNNL_POINTER_MODE_HOST
,
&
beta1
,
beta1_tmp_desc
.
get
(),
GetBasePtr
(
&
beta1_tmp
));
beta1_tensor
=
&
beta1_tmp
;
}
if
(
ctx
.
HasInput
(
"Beta2Tensor"
))
{
beta2_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Beta2Tensor"
);
PADDLE_ENFORCE_EQ
(
beta2_tensor
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"Input(Beta2Tensor) size must be 1, but get %d"
,
beta2_tensor
->
numel
()));
}
else
{
T
beta2
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"beta2"
));
beta2_tmp
.
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
MLUCnnlTensorDesc
beta2_tmp_desc
(
beta2_tmp
);
MLUCnnl
::
Fill
(
ctx
,
CNNL_POINTER_MODE_HOST
,
&
beta2
,
beta2_tmp_desc
.
get
(),
GetBasePtr
(
&
beta2_tmp
));
beta2_tensor
=
&
beta2_tmp
;
}
if
(
ctx
.
HasInput
(
"EpsilonTensor"
))
{
epsilon_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"EpsilonTensor"
);
PADDLE_ENFORCE_EQ
(
epsilon_tensor
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"Input(EpsilonTensor) size must be 1, but get %d"
,
epsilon_tensor
->
numel
()));
}
else
{
T
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
epsilon_tmp
.
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
MLUCnnlTensorDesc
epsilon_tmp_desc
(
epsilon_tmp
);
MLUCnnl
::
Fill
(
ctx
,
CNNL_POINTER_MODE_HOST
,
&
epsilon
,
epsilon_tmp_desc
.
get
(),
GetBasePtr
(
&
epsilon_tmp
));
epsilon_tensor
=
&
epsilon_tmp
;
}
MLUCnnlTensorDesc
param_desc
(
*
param
);
MLUCnnlTensorDesc
mom1_desc
(
*
mom1
);
MLUCnnlTensorDesc
mom2_desc
(
*
mom2
);
MLUCnnlTensorDesc
grad_desc
(
*
grad
);
MLUCnnl
::
ApplyAdam
(
ctx
,
param_desc
.
get
(),
GetBasePtr
(
param_out
),
mom1_desc
.
get
(),
GetBasePtr
(
mom1_out
),
mom2_desc
.
get
(),
GetBasePtr
(
mom2_out
),
grad_desc
.
get
(),
GetBasePtr
(
grad
),
GetBasePtr
(
lr
),
GetBasePtr
(
beta1_tensor
),
GetBasePtr
(
beta2_tensor
),
GetBasePtr
(
beta1_pow
),
GetBasePtr
(
beta2_pow
),
GetBasePtr
(
epsilon_tensor
),
/*use_nesterov*/
false
);
if
(
!
use_global_beta_pow
)
{
beta1_pow_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
beta2_pow_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
beta1_desc
(
*
beta1_tensor
);
MLUCnnlOpTensorDesc
mul_op_desc
(
CNNL_OP_TENSOR_MUL
,
ToCnnlDataType
<
T
>
(),
CNNL_NOT_PROPAGATE_NAN
);
MLUCnnl
::
OpTensor
(
ctx
,
mul_op_desc
.
get
(),
beta1_desc
.
get
(),
GetBasePtr
(
beta1_pow
),
beta1_desc
.
get
(),
GetBasePtr
(
beta1_tensor
),
beta1_desc
.
get
(),
GetBasePtr
(
beta1_pow_out
),
ToCnnlDataType
<
T
>
());
MLUCnnl
::
OpTensor
(
ctx
,
mul_op_desc
.
get
(),
beta1_desc
.
get
(),
GetBasePtr
(
beta2_pow
),
beta1_desc
.
get
(),
GetBasePtr
(
beta2_tensor
),
beta1_desc
.
get
(),
GetBasePtr
(
beta2_pow_out
),
ToCnnlDataType
<
T
>
());
}
}
};
template
<
typename
T
>
class
AdamWMLUKernel
:
public
AdamMLUKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
VLOG
(
3
)
<<
"MLU AdamW Kernel"
;
bool
skip_update
=
false
;
if
(
ctx
.
HasInput
(
"SkipUpdate"
))
{
VLOG
(
3
)
<<
"Has SkipUpdate"
;
auto
*
skip_update_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"SkipUpdate"
);
PADDLE_ENFORCE_EQ
(
skip_update_tensor
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"Input(SkipUpdate) size must be 1, but get %d"
,
skip_update_tensor
->
numel
()));
std
::
vector
<
bool
>
skip_update_vec
;
paddle
::
framework
::
TensorToVector
(
*
skip_update_tensor
,
ctx
.
device_context
(),
&
skip_update_vec
);
skip_update
=
skip_update_vec
[
0
];
}
VLOG
(
3
)
<<
"Skip update"
<<
skip_update
;
bool
with_decay
=
ctx
.
Attr
<
bool
>
(
"with_decay"
);
if
(
!
skip_update
&&
with_decay
)
{
if
(
ctx
.
HasInput
(
"MasterParam"
))
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Master Param is not supported on MLU"
));
}
else
{
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE_EQ
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
InputNames
(
"Param"
).
front
(),
framework
::
ToTypeName
(
param_var
->
Type
())));
auto
*
param
=
ctx
.
Input
<
LoDTensor
>
(
"Param"
);
auto
*
lr
=
ctx
.
Input
<
LoDTensor
>
(
"LearningRate"
);
float
coeff
=
ctx
.
Attr
<
float
>
(
"coeff"
);
// update param with decay coeff: mul(-1 * lr, coeff * param) + param
MLUCnnlTensorDesc
lr_desc
(
*
lr
);
MLUCnnlTensorDesc
param_desc
(
*
param
);
MLUCnnlOpTensorDesc
mul_op_desc
(
CNNL_OP_TENSOR_MUL
,
ToCnnlDataType
<
T
>
(),
CNNL_NOT_PROPAGATE_NAN
);
MLUCnnl
::
OpTensor
(
ctx
,
mul_op_desc
.
get
(),
lr_desc
.
get
(),
GetBasePtr
(
lr
),
param_desc
.
get
(),
GetBasePtr
(
param
),
param_desc
.
get
(),
const_cast
<
void
*>
(
GetBasePtr
(
param
)),
ToCnnlDataType
<
T
>
(),
/*alpha1*/
-
1.
f
,
/*alpha2*/
coeff
,
/*beta*/
1.
f
);
}
}
AdamMLUKernel
<
T
>::
Compute
(
ctx
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_MLU_KERNEL
(
adam
,
ops
::
AdamMLUKernel
<
float
>
,
ops
::
AdamMLUKernel
<
plat
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
adamw
,
ops
::
AdamWMLUKernel
<
float
>
,
ops
::
AdamWMLUKernel
<
plat
::
float16
>
);
python/paddle/fluid/tests/unittests/mlu/test_adam_op_mlu.py
0 → 100644
浏览文件 @
cc077693
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
test_adam_op
import
adam_step
paddle
.
enable_static
()
SEED
=
2022
class
TestAdam
(
OpTest
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"adam"
param
=
np
.
random
.
uniform
(
-
1
,
1
,
(
102
,
105
)).
astype
(
"float32"
)
grad
=
np
.
random
.
uniform
(
-
1
,
1
,
(
102
,
105
)).
astype
(
"float32"
)
moment1
=
np
.
random
.
uniform
(
-
1
,
1
,
(
102
,
105
)).
astype
(
"float32"
)
# The second moment is positive
moment2
=
np
.
random
.
random
((
102
,
105
)).
astype
(
"float32"
)
learning_rate
=
0.004
beta1
=
0.78
beta2
=
0.836
epsilon
=
1e-4
beta1_pow
=
beta1
**
10
beta2_pow
=
beta2
**
10
self
.
inputs
=
{
'Param'
:
param
,
'Grad'
:
grad
,
'Moment1'
:
moment1
,
'Moment2'
:
moment2
,
'LearningRate'
:
np
.
array
([
learning_rate
]).
astype
(
"float32"
),
'Beta1Pow'
:
np
.
array
([
beta1_pow
]).
astype
(
"float32"
),
'Beta2Pow'
:
np
.
array
([
beta2_pow
]).
astype
(
"float32"
)
}
self
.
attrs
=
{
'epsilon'
:
epsilon
,
'beta1'
:
beta1
,
'beta2'
:
beta2
}
param_out
,
moment1_out
,
\
moment2_out
=
adam_step
(
self
.
inputs
,
self
.
attrs
)
self
.
outputs
=
{
'Moment1Out'
:
moment1_out
,
'Moment2Out'
:
moment2_out
,
'ParamOut'
:
param_out
,
'Beta1PowOut'
:
np
.
array
([
beta1_pow
]).
astype
(
"float32"
)
*
beta1
,
'Beta2PowOut'
:
np
.
array
([
beta2_pow
]).
astype
(
"float32"
)
*
beta2
}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-5
)
class
TestAdamWithEpsilonTensor
(
OpTest
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"adam"
param
=
np
.
random
.
uniform
(
-
1
,
1
,
(
102
,
105
)).
astype
(
"float32"
)
grad
=
np
.
random
.
uniform
(
-
1
,
1
,
(
102
,
105
)).
astype
(
"float32"
)
moment1
=
np
.
random
.
uniform
(
-
1
,
1
,
(
102
,
105
)).
astype
(
"float32"
)
# The second moment is positive
moment2
=
np
.
random
.
random
((
102
,
105
)).
astype
(
"float32"
)
learning_rate
=
0.004
beta1
=
0.78
beta2
=
0.836
epsilon
=
1e-4
beta1_pow
=
beta1
**
10
beta2_pow
=
beta2
**
10
self
.
inputs
=
{
'Param'
:
param
,
'Grad'
:
grad
,
'Moment1'
:
moment1
,
'Moment2'
:
moment2
,
'LearningRate'
:
np
.
array
([
learning_rate
]).
astype
(
"float32"
),
'Beta1Pow'
:
np
.
array
([
beta1_pow
]).
astype
(
"float32"
),
'Beta2Pow'
:
np
.
array
([
beta2_pow
]).
astype
(
"float32"
),
'Beta1Tensor'
:
np
.
array
([
beta1
]).
astype
(
"float32"
),
'Beta2Tensor'
:
np
.
array
([
beta2
]).
astype
(
"float32"
),
'EpsilonTensor'
:
np
.
array
([
epsilon
]).
astype
(
"float32"
),
}
self
.
attrs
=
{
'epsilon'
:
epsilon
}
param_out
,
moment1_out
,
\
moment2_out
=
adam_step
(
self
.
inputs
,
self
.
attrs
)
self
.
outputs
=
{
'Moment1Out'
:
moment1_out
,
'Moment2Out'
:
moment2_out
,
'ParamOut'
:
param_out
,
'Beta1PowOut'
:
np
.
array
([
beta1_pow
]).
astype
(
"float32"
)
*
beta1
,
'Beta2PowOut'
:
np
.
array
([
beta2_pow
]).
astype
(
"float32"
)
*
beta2
}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-5
)
class
TestAdamOpWithSkipUpdate
(
OpTest
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"adam"
param
=
np
.
random
.
uniform
(
-
1
,
1
,
(
102
,
105
)).
astype
(
"float32"
)
grad
=
np
.
random
.
uniform
(
-
1
,
1
,
(
102
,
105
)).
astype
(
"float32"
)
moment1
=
np
.
random
.
uniform
(
-
1
,
1
,
(
102
,
105
)).
astype
(
"float32"
)
# The second moment is positive
moment2
=
np
.
random
.
random
((
102
,
105
)).
astype
(
"float32"
)
learning_rate
=
0.004
beta1
=
0.78
beta2
=
0.836
epsilon
=
1e-4
beta1_pow
=
beta1
**
10
beta2_pow
=
beta2
**
10
self
.
inputs
=
{
'Param'
:
param
,
'Grad'
:
grad
,
'Moment1'
:
moment1
,
'Moment2'
:
moment2
,
'LearningRate'
:
np
.
array
([
learning_rate
]).
astype
(
"float32"
),
'Beta1Pow'
:
np
.
array
([
beta1_pow
]).
astype
(
"float32"
),
'Beta2Pow'
:
np
.
array
([
beta2_pow
]).
astype
(
"float32"
),
'Beta1Tensor'
:
np
.
array
([
beta1
]).
astype
(
"float32"
),
'Beta2Tensor'
:
np
.
array
([
beta2
]).
astype
(
"float32"
),
'EpsilonTensor'
:
np
.
array
([
epsilon
]).
astype
(
"float32"
),
"SkipUpdate"
:
np
.
array
([
True
]).
astype
(
"bool"
),
}
self
.
attrs
=
{
'epsilon'
:
epsilon
}
self
.
outputs
=
{
'Moment1Out'
:
moment1
,
'Moment2Out'
:
moment2
,
'ParamOut'
:
param
,
'Beta1PowOut'
:
self
.
inputs
[
'Beta1Pow'
],
'Beta2PowOut'
:
self
.
inputs
[
'Beta2Pow'
],
}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-5
)
class
TestAdamOpWithGlobalBetaPow
(
OpTest
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"adam"
param
=
np
.
random
.
uniform
(
-
1
,
1
,
(
102
,
105
)).
astype
(
"float32"
)
grad
=
np
.
random
.
uniform
(
-
1
,
1
,
(
102
,
105
)).
astype
(
"float32"
)
moment1
=
np
.
random
.
uniform
(
-
1
,
1
,
(
102
,
105
)).
astype
(
"float32"
)
# The second moment is positive
moment2
=
np
.
random
.
random
((
102
,
105
)).
astype
(
"float32"
)
learning_rate
=
0.004
beta1
=
0.78
beta2
=
0.836
epsilon
=
1e-4
beta1_pow
=
beta1
**
10
beta2_pow
=
beta2
**
10
self
.
inputs
=
{
'Param'
:
param
,
'Grad'
:
grad
,
'Moment1'
:
moment1
,
'Moment2'
:
moment2
,
'LearningRate'
:
np
.
array
([
learning_rate
]).
astype
(
"float32"
),
'Beta1Pow'
:
np
.
array
([
beta1_pow
]).
astype
(
"float32"
),
'Beta2Pow'
:
np
.
array
([
beta2_pow
]).
astype
(
"float32"
),
'Beta1Tensor'
:
np
.
array
([
beta1
]).
astype
(
"float32"
),
'Beta2Tensor'
:
np
.
array
([
beta2
]).
astype
(
"float32"
),
'EpsilonTensor'
:
np
.
array
([
epsilon
]).
astype
(
"float32"
),
}
attributes
=
{
'epsilon'
:
epsilon
}
param_out
,
moment1_out
,
\
moment2_out
=
adam_step
(
self
.
inputs
,
attributes
)
self
.
attrs
=
{
'use_global_beta_pow'
:
True
}
# use_global_beta_pow=True, Beta1PowOut and Beta2PowOut are empty.
self
.
outputs
=
{
'Moment1Out'
:
moment1_out
,
'Moment2Out'
:
moment2_out
,
'ParamOut'
:
param_out
,
'Beta1PowOut'
:
np
.
array
([]),
'Beta2PowOut'
:
np
.
array
([])
}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-5
)
class
TestNet
(
unittest
.
TestCase
):
def
_test
(
self
,
run_mlu
=
True
):
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
np
.
random
.
seed
(
SEED
)
a_np
=
np
.
random
.
random
(
size
=
(
32
,
32
)).
astype
(
'float32'
)
b_np
=
np
.
random
.
random
(
size
=
(
32
,
32
)).
astype
(
'float32'
)
label_np
=
np
.
random
.
randint
(
2
,
size
=
(
32
,
1
)).
astype
(
'int64'
)
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
a
=
paddle
.
static
.
data
(
name
=
"a"
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
b
=
paddle
.
static
.
data
(
name
=
"b"
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
label
=
paddle
.
static
.
data
(
name
=
"label"
,
shape
=
[
32
,
1
],
dtype
=
'int64'
)
sum
=
paddle
.
add
(
a
,
b
)
z
=
paddle
.
pow
(
sum
,
2.0
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
z
,
size
=
128
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
adam
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.01
)
adam
.
minimize
(
loss
)
if
run_mlu
:
place
=
paddle
.
device
.
MLUPlace
(
0
)
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
print
(
"Start run on {}"
.
format
(
place
))
for
epoch
in
range
(
100
):
pred_res
,
loss_res
=
exe
.
run
(
main_prog
,
feed
=
{
"a"
:
a_np
,
"b"
:
b_np
,
"label"
:
label_np
},
fetch_list
=
[
prediction
,
loss
])
if
epoch
%
10
==
0
:
print
(
"Epoch {} | Prediction[0]: {}, Loss: {}"
.
format
(
epoch
,
pred_res
[
0
],
loss_res
))
return
pred_res
,
loss_res
def
test_mlu
(
self
):
mlu_pred
,
mlu_loss
=
self
.
_test
(
True
)
cpu_pred
,
cpu_loss
=
self
.
_test
(
False
)
self
.
assertTrue
(
np
.
allclose
(
mlu_pred
,
cpu_pred
,
rtol
=
1e-3
))
self
.
assertTrue
(
np
.
allclose
(
mlu_loss
,
cpu_loss
,
rtol
=
1e-3
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_adamw_op_mlu.py
0 → 100644
浏览文件 @
cc077693
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
test_adam_op
import
adamw_step
paddle
.
enable_static
()
SEED
=
2022
class
TestAdamW
(
OpTest
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"adamw"
param
=
np
.
random
.
uniform
(
-
1
,
1
,
(
105
,
102
)).
astype
(
"float32"
)
grad
=
np
.
random
.
uniform
(
-
1
,
1
,
(
105
,
102
)).
astype
(
"float32"
)
moment1
=
np
.
random
.
uniform
(
-
1
,
1
,
(
105
,
102
)).
astype
(
"float32"
)
# The second moment is positive
moment2
=
np
.
random
.
random
((
105
,
102
)).
astype
(
"float32"
)
learning_rate
=
0.5
beta1
=
0.78
beta2
=
0.836
epsilon
=
1e-4
beta1_pow
=
beta1
**
10
beta2_pow
=
beta2
**
10
self
.
inputs
=
{
'Param'
:
param
,
'Grad'
:
grad
,
'Moment1'
:
moment1
,
'Moment2'
:
moment2
,
'LearningRate'
:
np
.
array
([
learning_rate
]).
astype
(
"float32"
),
'Beta1Pow'
:
np
.
array
([
beta1_pow
]).
astype
(
"float32"
),
'Beta2Pow'
:
np
.
array
([
beta2_pow
]).
astype
(
"float32"
)
}
self
.
attrs
=
{
'epsilon'
:
epsilon
,
'beta1'
:
beta1
,
'beta2'
:
beta2
,
"coeff"
:
0.9
,
"with_decay"
:
True
}
param_out
,
moment1_out
,
\
moment2_out
=
adamw_step
(
self
.
inputs
,
self
.
attrs
)
self
.
outputs
=
{
'Moment1Out'
:
moment1_out
,
'Moment2Out'
:
moment2_out
,
'ParamOut'
:
param_out
,
'Beta1PowOut'
:
np
.
array
([
beta1_pow
]).
astype
(
"float32"
)
*
beta1
,
'Beta2PowOut'
:
np
.
array
([
beta2_pow
]).
astype
(
"float32"
)
*
beta2
}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-5
)
class
TestAdamOpWithSkipUpdate
(
OpTest
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"adamw"
param
=
np
.
random
.
uniform
(
-
1
,
1
,
(
102
,
105
)).
astype
(
"float32"
)
grad
=
np
.
random
.
uniform
(
-
1
,
1
,
(
102
,
105
)).
astype
(
"float32"
)
moment1
=
np
.
random
.
uniform
(
-
1
,
1
,
(
102
,
105
)).
astype
(
"float32"
)
# The second moment is positive
moment2
=
np
.
random
.
random
((
102
,
105
)).
astype
(
"float32"
)
learning_rate
=
0.004
beta1
=
0.78
beta2
=
0.836
epsilon
=
1e-4
beta1_pow
=
beta1
**
10
beta2_pow
=
beta2
**
10
self
.
inputs
=
{
'Param'
:
param
,
'Grad'
:
grad
,
'Moment1'
:
moment1
,
'Moment2'
:
moment2
,
'LearningRate'
:
np
.
array
([
learning_rate
]).
astype
(
"float32"
),
'Beta1Pow'
:
np
.
array
([
beta1_pow
]).
astype
(
"float32"
),
'Beta2Pow'
:
np
.
array
([
beta2_pow
]).
astype
(
"float32"
),
'Beta1Tensor'
:
np
.
array
([
beta1
]).
astype
(
"float32"
),
'Beta2Tensor'
:
np
.
array
([
beta2
]).
astype
(
"float32"
),
'EpsilonTensor'
:
np
.
array
([
epsilon
]).
astype
(
"float32"
),
"SkipUpdate"
:
np
.
array
([
True
]).
astype
(
"bool"
),
}
self
.
attrs
=
{
'epsilon'
:
epsilon
,
"coeff"
:
0.02
,
"with_decay"
:
True
}
self
.
outputs
=
{
'Moment1Out'
:
moment1
,
'Moment2Out'
:
moment2
,
'ParamOut'
:
param
,
'Beta1PowOut'
:
self
.
inputs
[
'Beta1Pow'
],
'Beta2PowOut'
:
self
.
inputs
[
'Beta2Pow'
],
}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-5
)
class
TestAdamOpWithoutDecay
(
OpTest
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"adamw"
param
=
np
.
random
.
uniform
(
-
1
,
1
,
(
102
,
105
)).
astype
(
"float32"
)
grad
=
np
.
random
.
uniform
(
-
1
,
1
,
(
102
,
105
)).
astype
(
"float32"
)
moment1
=
np
.
random
.
uniform
(
-
1
,
1
,
(
102
,
105
)).
astype
(
"float32"
)
# The second moment is positive
moment2
=
np
.
random
.
random
((
102
,
105
)).
astype
(
"float32"
)
learning_rate
=
0.004
beta1
=
0.78
beta2
=
0.836
epsilon
=
1e-4
beta1_pow
=
beta1
**
10
beta2_pow
=
beta2
**
10
self
.
inputs
=
{
'Param'
:
param
,
'Grad'
:
grad
,
'Moment1'
:
moment1
,
'Moment2'
:
moment2
,
'LearningRate'
:
np
.
array
([
learning_rate
]).
astype
(
"float32"
),
'Beta1Pow'
:
np
.
array
([
beta1_pow
]).
astype
(
"float32"
),
'Beta2Pow'
:
np
.
array
([
beta2_pow
]).
astype
(
"float32"
),
'Beta1Tensor'
:
np
.
array
([
beta1
]).
astype
(
"float32"
),
'Beta2Tensor'
:
np
.
array
([
beta2
]).
astype
(
"float32"
),
'EpsilonTensor'
:
np
.
array
([
epsilon
]).
astype
(
"float32"
),
"SkipUpdate"
:
np
.
array
([
True
]).
astype
(
"bool"
),
}
self
.
attrs
=
{
'epsilon'
:
epsilon
,
"coeff"
:
0.02
,
"with_decay"
:
False
}
self
.
outputs
=
{
'Moment1Out'
:
moment1
,
'Moment2Out'
:
moment2
,
'ParamOut'
:
param
,
'Beta1PowOut'
:
self
.
inputs
[
'Beta1Pow'
],
'Beta2PowOut'
:
self
.
inputs
[
'Beta2Pow'
],
}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
1e-5
)
class
TestNet
(
unittest
.
TestCase
):
def
_test
(
self
,
run_mlu
=
True
):
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
np
.
random
.
seed
(
SEED
)
a_np
=
np
.
random
.
random
(
size
=
(
32
,
32
)).
astype
(
'float32'
)
b_np
=
np
.
random
.
random
(
size
=
(
32
,
32
)).
astype
(
'float32'
)
label_np
=
np
.
random
.
randint
(
2
,
size
=
(
32
,
1
)).
astype
(
'int64'
)
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
a
=
paddle
.
static
.
data
(
name
=
"a"
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
b
=
paddle
.
static
.
data
(
name
=
"b"
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
label
=
paddle
.
static
.
data
(
name
=
"label"
,
shape
=
[
32
,
1
],
dtype
=
'int64'
)
sum
=
paddle
.
add
(
a
,
b
)
z
=
paddle
.
pow
(
sum
,
2.0
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
z
,
size
=
128
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
adam
=
paddle
.
optimizer
.
AdamW
(
learning_rate
=
0.01
,
weight_decay
=
0.02
)
adam
.
minimize
(
loss
)
if
run_mlu
:
place
=
paddle
.
device
.
MLUPlace
(
0
)
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
print
(
"Start run on {}"
.
format
(
place
))
for
epoch
in
range
(
100
):
pred_res
,
loss_res
=
exe
.
run
(
main_prog
,
feed
=
{
"a"
:
a_np
,
"b"
:
b_np
,
"label"
:
label_np
},
fetch_list
=
[
prediction
,
loss
])
if
epoch
%
10
==
0
:
print
(
"Epoch {} | Prediction[0]: {}, Loss: {}"
.
format
(
epoch
,
pred_res
[
0
],
loss_res
))
return
pred_res
,
loss_res
def
test_mlu
(
self
):
mlu_pred
,
mlu_loss
=
self
.
_test
(
True
)
cpu_pred
,
cpu_loss
=
self
.
_test
(
False
)
self
.
assertTrue
(
np
.
allclose
(
mlu_pred
,
cpu_pred
,
rtol
=
1e-3
))
self
.
assertTrue
(
np
.
allclose
(
mlu_loss
,
cpu_loss
,
rtol
=
1e-3
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录