Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
cb0118f3
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cb0118f3
编写于
11月 04, 2017
作者:
K
kexinzhao
提交者:
Yi Wang
11月 04, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Polish Operator Doc (m) (#5375)
* fix m_ops * fix activation op
上级
5d8cdf20
变更
9
显示空白变更内容
内联
并排
Showing
9 changed file
with
99 addition
and
67 deletion
+99
-67
paddle/operators/activation_op.cc
paddle/operators/activation_op.cc
+24
-24
paddle/operators/margin_rank_loss_op.cc
paddle/operators/margin_rank_loss_op.cc
+11
-10
paddle/operators/matmul_op.cc
paddle/operators/matmul_op.cc
+6
-2
paddle/operators/mean_op.cc
paddle/operators/mean_op.cc
+5
-1
paddle/operators/minus_op.cc
paddle/operators/minus_op.cc
+5
-3
paddle/operators/modified_huber_loss_op.cc
paddle/operators/modified_huber_loss_op.cc
+20
-12
paddle/operators/momentum_op.cc
paddle/operators/momentum_op.cc
+15
-9
paddle/operators/mul_op.cc
paddle/operators/mul_op.cc
+8
-3
paddle/operators/multiplex_op.cc
paddle/operators/multiplex_op.cc
+5
-3
未找到文件。
paddle/operators/activation_op.cc
浏览文件 @
cb0118f3
...
...
@@ -44,7 +44,7 @@ class SigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Sigmoid operator"
);
AddOutput
(
"Y"
,
"Output of Sigmoid operator"
);
AddComment
(
R"DOC(
Sigmoid
activation o
perator.
Sigmoid
Activation O
perator.
$y = 1 / (1 + e^{-x})$
...
...
@@ -60,7 +60,7 @@ class LogSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of LogSigmoid operator"
);
AddOutput
(
"Y"
,
"Output of LogSigmoid operator"
);
AddComment
(
R"DOC(
Logsigmoid
activation o
perator.
Logsigmoid
Activation O
perator.
$y = \log(1 / (1 + e^{-x}))$
...
...
@@ -75,7 +75,7 @@ class ExpOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Exp operator"
);
AddOutput
(
"Y"
,
"Output of Exp operator"
);
AddComment
(
R"DOC(
Exp
activation o
perator.
Exp
Activation O
perator.
$y = e^x$
...
...
@@ -90,7 +90,7 @@ class ReluOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Relu operator"
);
AddOutput
(
"Y"
,
"Output of Relu operator"
);
AddComment
(
R"DOC(
Relu
activation o
perator.
Relu
Activation O
perator.
$y = \max(x, 0)$
...
...
@@ -109,7 +109,7 @@ class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"alpha"
,
"The small negative slope"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
0.02
f
));
AddComment
(
R"DOC(
LeakyRelu
activation o
perator.
LeakyRelu
Activation O
perator.
$y = \max(x, \alpha * x)$
...
...
@@ -128,7 +128,7 @@ class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"lambda"
,
"non-negative offset"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
0.5
f
));
AddComment
(
R"DOC(
Softshrink
activation o
perator.
Softshrink
Activation O
perator.
$$
y = \begin{cases}
...
...
@@ -149,7 +149,7 @@ class TanhOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Tanh operator"
);
AddOutput
(
"Y"
,
"Output of Tanh operator"
);
AddComment
(
R"DOC(
Tanh
activation o
perator.
Tanh
Activation O
perator.
$$y = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
...
...
@@ -165,7 +165,7 @@ class TanhShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of TanhShrink operator"
);
AddOutput
(
"Y"
,
"Output of TanhShrink operator"
);
AddComment
(
R"DOC(
TanhShrink
activation o
perator.
TanhShrink
Activation O
perator.
$$y = x - \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
...
...
@@ -184,7 +184,7 @@ class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"threshold"
,
"The value of threshold for HardShrink"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
0.5
));
AddComment
(
R"DOC(
HardShrink
activation o
perator.
HardShrink
Activation O
perator.
$$
y = \begin{cases}
...
...
@@ -205,7 +205,7 @@ class SqrtOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Sqrt operator"
);
AddOutput
(
"Y"
,
"Output of Sqrt operator"
);
AddComment
(
R"DOC(
Sqrt
activation o
perator.
Sqrt
Activation O
perator.
$y = \sqrt{x}$
...
...
@@ -220,7 +220,7 @@ class AbsOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Abs operator"
);
AddOutput
(
"Y"
,
"Output of Abs operator"
);
AddComment
(
R"DOC(
Abs
activation o
perator.
Abs
Activation O
perator.
$y = |x|$
...
...
@@ -236,7 +236,7 @@ class ReciprocalOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Reciprocal operator"
);
AddOutput
(
"Y"
,
"Output of Reciprocal operator"
);
AddComment
(
R"DOC(
Reciprocal
activation o
perator.
Reciprocal
Activation O
perator.
$$y = \frac{1}{x}$$
...
...
@@ -251,7 +251,7 @@ class LogOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Log operator"
);
AddOutput
(
"Y"
,
"Output of Log operator"
);
AddComment
(
R"DOC(
Log
activation o
perator.
Log
Activation O
perator.
$y = \ln(x)$
...
...
@@ -268,7 +268,7 @@ class SquareOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Square operator"
);
AddOutput
(
"Y"
,
"Output of Square operator"
);
AddComment
(
R"DOC(
Square
activation o
perator.
Square
Activation O
perator.
$y = x^2$
...
...
@@ -284,7 +284,7 @@ class SoftplusOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Softplus operator"
);
AddOutput
(
"Y"
,
"Output of Softplus operator"
);
AddComment
(
R"DOC(
Softplus
activation o
perator.
Softplus
Activation O
perator.
$y = \ln(1 + e^{x})$
...
...
@@ -300,7 +300,7 @@ class SoftsignOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Input of Softsign operator"
);
AddOutput
(
"Y"
,
"Output of Softsign operator"
);
AddComment
(
R"DOC(
Softsign
activation o
perator.
Softsign
Activation O
perator.
$$y = \frac{x}{1 + |x|}$$
...
...
@@ -320,7 +320,7 @@ class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"t_max"
,
"The max marginal value of BRelu"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
24
));
AddComment
(
R"DOC(
BRelu
activation o
perator.
BRelu
Activation O
perator.
$y = \max(\min(x, t_{min}), t_{max})$
...
...
@@ -339,7 +339,7 @@ class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"threshold"
,
"The threshold value of SoftRelu"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
40
));
AddComment
(
R"DOC(
SoftRelu
activation o
perator.
SoftRelu
Activation O
perator.
$y = \ln(1 + \exp(\max(\min(x, threshold), threshold))$
...
...
@@ -357,7 +357,7 @@ class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"alpha"
,
"The alpha value of ELU"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
1.0
f
));
AddComment
(
R"DOC(
ELU
activation o
perator.
ELU
Activation O
perator.
Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.
...
...
@@ -378,7 +378,7 @@ class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"threshold"
,
"The threshold value of Relu6"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
6
));
AddComment
(
R"DOC(
Relu6
activation o
perator.
Relu6
Activation O
perator.
$y = \min(\max(0, x), 6)$
...
...
@@ -396,7 +396,7 @@ class PowOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"factor"
,
"The exponential factor of Pow"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
1
));
AddComment
(
R"DOC(
Pow
activation o
perator.
Pow
Activation O
perator.
$y = x^{factor}$
...
...
@@ -416,7 +416,7 @@ class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"scale_b"
,
"The scale parameter of b for the input"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
1.7159
));
AddComment
(
R"DOC(
STanh
activation o
perator.
STanh
Activation O
perator.
$$y = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
...
...
@@ -435,7 +435,7 @@ class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"threshold"
,
"The threshold location of activation"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
1.0
));
AddComment
(
R"DOC(
ThresholdedRelu
activation o
perator.
ThresholdedRelu
Activation O
perator.
$$
y = \begin{cases}
...
...
@@ -461,7 +461,7 @@ class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"offset"
,
"Offset for linear approximation of sigmoid"
)
.
SetDefault
(
static_cast
<
AttrType
>
(
0.5
));
AddComment
(
R"DOC(
HardSigmoid
activation o
perator.
HardSigmoid
Activation O
perator.
Segment-wise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
which is much faster than sigmoid.
...
...
paddle/operators/margin_rank_loss_op.cc
浏览文件 @
cb0118f3
...
...
@@ -55,8 +55,6 @@ class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker {
"(2-D tensor with shape [batch_size x 1]) "
"The label indicating X1 ranked higher than X2 or not, "
"can only be +1 or -1."
);
AddAttr
<
T
>
(
"margin"
,
"(scalar, default 0) Margin for MarginRankLossOp."
)
.
SetDefault
(
static_cast
<
T
>
(
0
));
AddOutput
(
"Activated"
,
"(2-D tensor with shape [batch_size x 1]) Intermediate tensor "
"to indicate whether each element of Output(Out) is activated."
)
...
...
@@ -64,23 +62,26 @@ class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
"(2-D tensor with shape [batch_size x 1]) "
"The output loss of MarginRankLoss operator."
);
AddAttr
<
T
>
(
"margin"
,
"(scalar, default 0) Margin for MarginRankLossOp."
)
.
SetDefault
(
static_cast
<
T
>
(
0
));
AddComment
(
R"DOC(
MarginRankLoss Operator.
MarginRankLos
s operator measures the loss given a pair of training sample
Thi
s operator measures the loss given a pair of training sample
{`X1`, `X2`} and the `Label` with attribute `margin`, where `Label = +1`
indicating X1 is ranked higher than `X2`
, otherwise `Label = -1`
. The loss
turns out
indicating X1 is ranked higher than `X2`
and `Label = -1` otherwise
. The loss
is calculated as:
loss(X1, X2, Label) = max(0, -Label * (X1 - X2) + margin).
$loss(X1, X2, Label) = \max(0, -Label * (X1 - X2) + margin)$
The attribute `margin`
involved
here helps make the predictions more robust.
The attribute `margin` here helps make the predictions more robust.
Denote the item ranked higher as the positive sample, otherwise the negative
sample. If the score of the two samples satisfies
positive sample - negative sample < margin,
$positive sample - negative sample < margin$
the pair of samples will contribute to the final loss, which will backprop
o
gate
and train the ranking model to enlarge the difference
of the two score
.
the pair of samples will contribute to the final loss, which will backprop
a
gate
and train the ranking model to enlarge the difference
between the two scores
.
For batch input with size `batch_size`, `X1`, `X2` and `Label`
all have the same shape [batch_size x 1].
...
...
paddle/operators/matmul_op.cc
浏览文件 @
cb0118f3
...
...
@@ -144,7 +144,10 @@ class MatMulOpMaker : public framework::OpProtoAndCheckerMaker {
)DOC"
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
The MatMul operator is used to perform (batched) matrix multiplication
MatMul Operator.
This operator is used to perform (batched) matrix multiplication
over the last two dimensions of the input tensors `X` and `Y`.
If a transpose flag is specified, the last two dimensions of the
...
...
@@ -166,7 +169,8 @@ The differences are:
- We add `transpose_X` and `transpose_Y` flags.
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input `X`.
or not. But the output only shares the LoD information with input `X`.
)DOC"
);
}
};
...
...
paddle/operators/mean_op.cc
浏览文件 @
cb0118f3
...
...
@@ -36,7 +36,11 @@ class MeanOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input of mean op"
);
AddOutput
(
"Out"
,
"The output of mean op"
);
AddComment
(
R"DOC( Mean Operator
AddComment
(
R"DOC(
Mean Operator.
Out is a scalar which is the mean of all elements in X.
)DOC"
);
}
};
...
...
paddle/operators/minus_op.cc
浏览文件 @
cb0118f3
...
...
@@ -52,14 +52,16 @@ class MinusOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Y"
,
"The right tensor of minus operator."
);
AddOutput
(
"Out"
,
"The output tensor of minus operator."
);
AddComment
(
R"DOC(Minus Operator
AddComment
(
R"DOC(
Minus Operator.
Equation:
Out = X - Y
$Out = X - Y$
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input `X`.
or not. But the output only shares the LoD information with input `X`.
)DOC"
);
}
};
...
...
paddle/operators/modified_huber_loss_op.cc
浏览文件 @
cb0118f3
...
...
@@ -43,27 +43,35 @@ class ModifiedHuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The input tensor of modified huber loss op."
"The input tensor of modified huber loss op.
"
"X is 2-D tensor with shape [batch_size, 1]."
);
AddInput
(
"Y"
,
"The target labels of modified huber loss op."
"The shape of Y is same as X. Values of Y must be 0 or 1."
);
"The target labels of modified huber loss op.
"
"The shape of Y is
the
same as X. Values of Y must be 0 or 1."
);
AddOutput
(
"IntermediateVal"
,
"Variable to save intermediate result which will be reused in "
"backward processing."
)
.
AsIntermediate
();
AddOutput
(
"Out"
,
"Classification loss for X."
);
AddComment
(
R"DOC(
Modified huber loss is used in binary classification problem. The shape of
input X and target Y are both [N, 1] and so is the shape of output loss.
Since target Y is not differentiable, cacluating gradient for Y is illegal.
The formulation of modified huber loss is:
L(y, f(x)) = max(0, 1 - yf(x))^2 for yf(x) >= -1,
-4yf(x) otherwise.
Make sure the values of target label Y are in {0, 1} here. The operator will
Modified Huber Loss Operator.
This operator is used in binary classification problem. The shape of
input X and target Y are both [N, 1] and so is the shape of the output loss.
Since target Y is not differentiable, calculating gradient for Y is illegal.
The formula of modified huber loss is:
$$
L(y, f(x)) =
\begin{cases}
(\max(0, 1 - yf(x)))^2, \text{if} \ yf(x) >= -1 \\
-4yf(x), \quad \text{otherwise}
\end{cases}
$$
Make sure the values of target label Y are in {0, 1} here. This operator will
scale values of Y to {-1, +1} when computing losses and gradients.
)DOC"
);
}
};
...
...
paddle/operators/momentum_op.cc
浏览文件 @
cb0118f3
...
...
@@ -75,17 +75,23 @@ class MomentumOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"VelocityOut"
,
"(Tensor) Output updated velocity"
);
AddAttr
<
float
>
(
"mu"
,
"(float) Momentum coefficient"
);
AddAttr
<
bool
>
(
"useNesterov"
,
"(bool) Use Nesterov Momentum"
)
AddAttr
<
bool
>
(
"useNesterov"
,
"(bool, default false) "
"Use Nesterov Momentum"
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
Momentum Algorithm with a flag for Nestrov Moemntum (momentum).
velocity = mu * velocity + gradient
if (use_nesterov):
param = param - gradient * learning_rate + mu * velocity * learning_rate
else:
param = param - learning_rate * velocity
Momentum Optimizer.
This optimizer has a flag for Nestrov Momentum.
The update equations are as follows:
$$
velocity = mu * velocity + gradient \\
if (use\_nesterov): \\
param = param - gradient * learning\_rate + mu * velocity * learning\_rate \\
else: \\
param = param - learning\_rate * velocity. \\
$$
)DOC"
);
}
...
...
paddle/operators/mul_op.cc
浏览文件 @
cb0118f3
...
...
@@ -78,6 +78,7 @@ class MulOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
"The output of mul op"
);
AddAttr
<
int
>
(
"x_num_col_dims"
,
"(int, default 1) "
R"DOC(mul_op can take tensors with more than two dimensions as input `X`,
in that case, tensors will be reshaped to a matrix. The matrix's first
dimension(column length) will be the product of tensor's last
...
...
@@ -88,20 +89,24 @@ class MulOpMaker : public framework::OpProtoAndCheckerMaker {
.
EqualGreaterThan
(
1
);
AddAttr
<
int
>
(
"y_num_col_dims"
,
"(int, default 1) "
R"DOC(mul_op can take tensors with more than two dimensions as input `Y`,
in that case, tensors will be reshaped to a matrix. Just like input `X`.
)DOC"
)
.
SetDefault
(
1
)
.
EqualGreaterThan
(
1
);
AddComment
(
R"DOC(
Mul operator is used to perform matrix multiplication for input X and Y.
Mul Operator.
This operator is used to perform matrix multiplication for input X and Y.
The equation is:
Out = X * Y
$$Out = X * Y$$
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input `X`.
or not. But the output only shares the LoD information with input `X`.
)DOC"
);
}
};
...
...
paddle/operators/multiplex_op.cc
浏览文件 @
cb0118f3
...
...
@@ -66,7 +66,8 @@ class MultiplexOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"The candidate tensors of multiplex operator."
)
.
AsDuplicable
();
AddOutput
(
"Out"
,
"The output tensor of multiplex operator."
);
AddComment
(
R"DOC(Multiplex operator
AddComment
(
R"DOC(
Multiplex Operator.
Multiplex multiple tensors according to the index provided by the index tensor.
...
...
@@ -77,10 +78,11 @@ the (Ids[i])-th tensor.
For i-th row of the output tensor:
y[i] = x_{k}[i]
$$y[i] = x_{k}[i]$$
where
y is the output tensor. `x_{k}` is the k-th input tensor
where
`y` is the output tensor, `x_{k}` is the k-th input tensor,
and `k = Ids[i]`.
)DOC"
);
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录