Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
c9ef69be
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c9ef69be
编写于
2月 02, 2018
作者:
Q
qingqing01
提交者:
GitHub
2月 02, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #7953 from qingqing01/multiclass_nms_op
Add multi-class non-maximum suppression operator.
上级
624d22d9
a6f3846d
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
625 addition
and
9 deletion
+625
-9
paddle/operators/bipartite_match_op.cc
paddle/operators/bipartite_match_op.cc
+12
-6
paddle/operators/multiclass_nms_op.cc
paddle/operators/multiclass_nms_op.cc
+384
-0
python/paddle/v2/fluid/tests/test_bipartite_match_op.py
python/paddle/v2/fluid/tests/test_bipartite_match_op.py
+3
-3
python/paddle/v2/fluid/tests/test_multiclass_nms_op.py
python/paddle/v2/fluid/tests/test_multiclass_nms_op.py
+226
-0
未找到文件。
paddle/operators/bipartite_match_op.cc
浏览文件 @
c9ef69be
/* Copyright (c) 201
6
PaddlePaddle Authors. All Rights Reserve.
/* Copyright (c) 201
8
PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -28,12 +28,18 @@ class BipartiteMatchOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"DistMat"
),
"Input(DistMat) of BipartiteMatch should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ColToRowMatchIndices"
),
"Output(ColToRowMatchIndices) of BipartiteMatch should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ColToRowMatchDist"
),
"Output(ColToRowMatchDist) of BipartiteMatch should not be null."
);
auto
dims
=
ctx
->
GetInputDim
(
"DistMat"
);
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
2
,
"The rank of Input(DistMat) must be 2."
);
ctx
->
SetOutputDim
(
"ColToRowMatchIndices"
,
dims
);
ctx
->
SetOutputDim
(
"ColToRowMatchDis"
,
dims
);
ctx
->
SetOutputDim
(
"ColToRowMatchDis
t
"
,
dims
);
}
};
...
...
@@ -91,7 +97,7 @@ class BipartiteMatchKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
dist_mat
=
context
.
Input
<
LoDTensor
>
(
"DistMat"
);
auto
*
match_indices
=
context
.
Output
<
Tensor
>
(
"ColToRowMatchIndices"
);
auto
*
match_dist
=
context
.
Output
<
Tensor
>
(
"ColToRowMatchDis"
);
auto
*
match_dist
=
context
.
Output
<
Tensor
>
(
"ColToRowMatchDis
t
"
);
auto
&
dev_ctx
=
context
.
device_context
<
platform
::
CPUDeviceContext
>
();
...
...
@@ -148,13 +154,13 @@ class BipartiteMatchOpMaker : public framework::OpProtoAndCheckerMaker {
"Otherwise, it means B[j] is matched to row "
"ColToRowMatchIndices[i][j] in i-th instance. The row number of "
"i-th instance is saved in ColToRowMatchIndices[i][j]."
);
AddOutput
(
"ColToRowMatchDis"
,
AddOutput
(
"ColToRowMatchDis
t
"
,
"(Tensor) A 2-D Tensor with shape [N, M] in float type. "
"N is batch size. If ColToRowMatchIndices[i][j] is -1, "
"ColToRowMatchDis[i][j] is also -1.0. Otherwise, assumed "
"ColToRowMatchDis
t
[i][j] is also -1.0. Otherwise, assumed "
"ColToRowMatchIndices[i][j] = d, and the row offsets of each "
"instance are called LoD. Then "
"ColToRowMatchDis[i][j] = DistMat[d+LoD[i]][j]"
);
"ColToRowMatchDis
t
[i][j] = DistMat[d+LoD[i]][j]"
);
AddComment
(
R"DOC(
This operator is a greedy bipartite matching algorithm, which is used to
obtain the matching with the maximum distance based on the input
...
...
paddle/operators/multiclass_nms_op.cc
0 → 100644
浏览文件 @
c9ef69be
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
constexpr
int64_t
kOutputDim
=
6
;
constexpr
int64_t
kBBoxSize
=
4
;
class
MultiClassNMSOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"BBoxes"
),
"Input(BBoxes) of MultiClassNMS should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Scores"
),
"Input(Scores) of MultiClassNMS should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of MultiClassNMS should not be null."
);
auto
box_dims
=
ctx
->
GetInputDim
(
"BBoxes"
);
auto
score_dims
=
ctx
->
GetInputDim
(
"Scores"
);
PADDLE_ENFORCE_EQ
(
box_dims
.
size
(),
2
,
"The rank of Input(BBoxes) must be 2."
);
PADDLE_ENFORCE_EQ
(
score_dims
.
size
(),
3
,
"The rank of Input(Scores) must be 3."
);
PADDLE_ENFORCE_EQ
(
box_dims
[
1
],
4
,
"The 2nd dimension of Input(BBoxes) must be 4, "
"represents the layout of coordinate "
"[xmin, ymin, xmax, ymax]"
);
PADDLE_ENFORCE_EQ
(
box_dims
[
0
],
score_dims
[
2
],
"The 1st dimensiong of Input(BBoxes) must be equal to "
"3rd dimension of Input(Scores), which represents the "
"predicted bboxes."
);
// Here the box_dims[0] is not the real dimension of output.
// It will be rewritten in the computing kernel.
ctx
->
SetOutputDim
(
"Out"
,
{
box_dims
[
0
],
6
});
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Scores"
)
->
type
()),
ctx
.
device_context
());
}
};
template
<
class
T
>
bool
SortScorePairDescend
(
const
std
::
pair
<
float
,
T
>&
pair1
,
const
std
::
pair
<
float
,
T
>&
pair2
)
{
return
pair1
.
first
>
pair2
.
first
;
}
template
<
class
T
>
static
inline
void
GetMaxScoreIndex
(
const
std
::
vector
<
T
>&
scores
,
const
T
threshold
,
int
top_k
,
std
::
vector
<
std
::
pair
<
T
,
int
>>*
sorted_indices
)
{
for
(
size_t
i
=
0
;
i
<
scores
.
size
();
++
i
)
{
if
(
scores
[
i
]
>
threshold
)
{
sorted_indices
->
push_back
(
std
::
make_pair
(
scores
[
i
],
i
));
}
}
// Sort the score pair according to the scores in descending order
std
::
stable_sort
(
sorted_indices
->
begin
(),
sorted_indices
->
end
(),
SortScorePairDescend
<
int
>
);
// Keep top_k scores if needed.
if
(
top_k
>
-
1
&&
top_k
<
sorted_indices
->
size
())
{
sorted_indices
->
resize
(
top_k
);
}
}
template
<
class
T
>
static
inline
T
BBoxArea
(
const
T
*
box
,
const
bool
normalized
)
{
if
(
box
[
2
]
<
box
[
0
]
||
box
[
3
]
<
box
[
1
])
{
// If coordinate values are is invalid
// (e.g. xmax < xmin or ymax < ymin), return 0.
return
static_cast
<
T
>
(
0.
);
}
else
{
const
T
w
=
box
[
2
]
-
box
[
0
];
const
T
h
=
box
[
3
]
-
box
[
1
];
if
(
normalized
)
{
return
w
*
h
;
}
else
{
// If coordinate values are not within range [0, 1].
return
(
w
+
1
)
*
(
h
+
1
);
}
}
}
template
<
class
T
>
static
inline
T
JaccardOverlap
(
const
T
*
box1
,
const
T
*
box2
,
const
bool
normalized
)
{
if
(
box2
[
0
]
>
box1
[
2
]
||
box2
[
2
]
<
box1
[
0
]
||
box2
[
1
]
>
box1
[
3
]
||
box2
[
3
]
<
box1
[
1
])
{
return
static_cast
<
T
>
(
0.
);
}
else
{
const
T
inter_xmin
=
std
::
max
(
box1
[
0
],
box2
[
0
]);
const
T
inter_ymin
=
std
::
max
(
box1
[
1
],
box2
[
1
]);
const
T
inter_xmax
=
std
::
min
(
box1
[
2
],
box2
[
2
]);
const
T
inter_ymax
=
std
::
min
(
box1
[
3
],
box2
[
3
]);
const
T
inter_w
=
inter_xmax
-
inter_xmin
;
const
T
inter_h
=
inter_ymax
-
inter_ymin
;
const
T
inter_area
=
inter_w
*
inter_h
;
const
T
bbox1_area
=
BBoxArea
<
T
>
(
box1
,
normalized
);
const
T
bbox2_area
=
BBoxArea
<
T
>
(
box2
,
normalized
);
return
inter_area
/
(
bbox1_area
+
bbox2_area
-
inter_area
);
}
}
template
<
typename
T
>
class
MultiClassNMSKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
NMSFast
(
const
Tensor
&
bbox
,
const
Tensor
&
scores
,
const
T
score_threshold
,
const
T
nms_threshold
,
const
T
eta
,
const
int64_t
top_k
,
std
::
vector
<
int
>*
selected_indices
)
const
{
// The total boxes for each instance.
int64_t
num_boxes
=
bbox
.
dims
()[
0
];
// 4: [xmin ymin xmax ymax]
int64_t
box_size
=
bbox
.
dims
()[
1
];
std
::
vector
<
T
>
scores_data
(
num_boxes
);
std
::
copy_n
(
scores
.
data
<
T
>
(),
num_boxes
,
scores_data
.
begin
());
std
::
vector
<
std
::
pair
<
T
,
int
>>
sorted_indices
;
GetMaxScoreIndex
(
scores_data
,
score_threshold
,
top_k
,
&
sorted_indices
);
selected_indices
->
clear
();
T
adaptive_threshold
=
nms_threshold
;
const
T
*
bbox_data
=
bbox
.
data
<
T
>
();
while
(
sorted_indices
.
size
()
!=
0
)
{
const
int
idx
=
sorted_indices
.
front
().
second
;
bool
keep
=
true
;
for
(
int
k
=
0
;
k
<
selected_indices
->
size
();
++
k
)
{
if
(
keep
)
{
const
int
kept_idx
=
(
*
selected_indices
)[
k
];
T
overlap
=
JaccardOverlap
<
T
>
(
bbox_data
+
idx
*
box_size
,
bbox_data
+
kept_idx
*
box_size
,
true
);
keep
=
overlap
<=
adaptive_threshold
;
}
else
{
break
;
}
}
if
(
keep
)
{
selected_indices
->
push_back
(
idx
);
}
sorted_indices
.
erase
(
sorted_indices
.
begin
());
if
(
keep
&&
eta
<
1
&&
adaptive_threshold
>
0.5
)
{
adaptive_threshold
*=
eta
;
}
}
}
void
MultiClassNMS
(
const
framework
::
ExecutionContext
&
ctx
,
const
Tensor
&
scores
,
const
Tensor
&
bboxes
,
std
::
map
<
int
,
std
::
vector
<
int
>>&
indices
,
int
&
num_nmsed_out
)
const
{
int64_t
background_label
=
ctx
.
Attr
<
int
>
(
"background_label"
);
int64_t
nms_top_k
=
ctx
.
Attr
<
int
>
(
"nms_top_k"
);
int64_t
keep_top_k
=
ctx
.
Attr
<
int
>
(
"keep_top_k"
);
T
nms_threshold
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"nms_threshold"
));
T
nms_eta
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"nms_eta"
));
T
score_threshold
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"score_threshold"
));
int64_t
class_num
=
scores
.
dims
()[
0
];
int64_t
predict_dim
=
scores
.
dims
()[
1
];
int
num_det
=
0
;
for
(
int64_t
c
=
0
;
c
<
class_num
;
++
c
)
{
if
(
c
==
background_label
)
continue
;
Tensor
score
=
scores
.
Slice
(
c
,
c
+
1
);
NMSFast
(
bboxes
,
score
,
score_threshold
,
nms_threshold
,
nms_eta
,
nms_top_k
,
&
(
indices
[
c
]));
num_det
+=
indices
[
c
].
size
();
}
num_nmsed_out
=
num_det
;
const
T
*
scores_data
=
scores
.
data
<
T
>
();
if
(
keep_top_k
>
-
1
&&
num_det
>
keep_top_k
)
{
std
::
vector
<
std
::
pair
<
float
,
std
::
pair
<
int
,
int
>>>
score_index_pairs
;
for
(
const
auto
&
it
:
indices
)
{
int
label
=
it
.
first
;
const
T
*
sdata
=
scores_data
+
label
*
predict_dim
;
const
std
::
vector
<
int
>&
label_indices
=
it
.
second
;
for
(
int
j
=
0
;
j
<
label_indices
.
size
();
++
j
)
{
int
idx
=
label_indices
[
j
];
PADDLE_ENFORCE_LT
(
idx
,
predict_dim
);
score_index_pairs
.
push_back
(
std
::
make_pair
(
sdata
[
idx
],
std
::
make_pair
(
label
,
idx
)));
}
}
// Keep top k results per image.
std
::
stable_sort
(
score_index_pairs
.
begin
(),
score_index_pairs
.
end
(),
SortScorePairDescend
<
std
::
pair
<
int
,
int
>>
);
score_index_pairs
.
resize
(
keep_top_k
);
// Store the new indices.
std
::
map
<
int
,
std
::
vector
<
int
>>
new_indices
;
for
(
int
j
=
0
;
j
<
score_index_pairs
.
size
();
++
j
)
{
int
label
=
score_index_pairs
[
j
].
second
.
first
;
int
idx
=
score_index_pairs
[
j
].
second
.
second
;
new_indices
[
label
].
push_back
(
idx
);
}
new_indices
.
swap
(
indices
);
num_nmsed_out
=
keep_top_k
;
}
}
void
MultiClassOutput
(
const
Tensor
&
scores
,
const
Tensor
&
bboxes
,
std
::
map
<
int
,
std
::
vector
<
int
>>&
selected_indices
,
Tensor
*
outs
)
const
{
int
predict_dim
=
scores
.
dims
()[
1
];
auto
*
scores_data
=
scores
.
data
<
T
>
();
auto
*
bboxes_data
=
bboxes
.
data
<
T
>
();
auto
*
odata
=
outs
->
data
<
T
>
();
int
count
=
0
;
for
(
const
auto
&
it
:
selected_indices
)
{
int
label
=
it
.
first
;
const
T
*
sdata
=
scores_data
+
label
*
predict_dim
;
const
std
::
vector
<
int
>&
indices
=
it
.
second
;
for
(
int
j
=
0
;
j
<
indices
.
size
();
++
j
)
{
int
idx
=
indices
[
j
];
const
T
*
bdata
=
bboxes_data
+
idx
*
kBBoxSize
;
odata
[
count
*
kOutputDim
]
=
label
;
// label
odata
[
count
*
kOutputDim
+
1
]
=
sdata
[
idx
];
// score
// xmin, ymin, xmax, ymax
std
::
memcpy
(
odata
+
count
*
kOutputDim
+
2
,
bdata
,
4
*
sizeof
(
T
));
count
++
;
}
}
}
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
boxes
=
ctx
.
Input
<
Tensor
>
(
"BBoxes"
);
auto
*
scores
=
ctx
.
Input
<
Tensor
>
(
"Scores"
);
auto
*
outs
=
ctx
.
Output
<
LoDTensor
>
(
"Out"
);
auto
score_dims
=
scores
->
dims
();
int64_t
batch_size
=
score_dims
[
0
];
int64_t
class_num
=
score_dims
[
1
];
int64_t
predict_dim
=
score_dims
[
2
];
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
int
>>>
all_indices
;
std
::
vector
<
size_t
>
batch_starts
=
{
0
};
for
(
int64_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
Tensor
ins_score
=
scores
->
Slice
(
i
,
i
+
1
);
ins_score
.
Resize
({
class_num
,
predict_dim
});
std
::
map
<
int
,
std
::
vector
<
int
>>
indices
;
int
num_nmsed_out
=
0
;
MultiClassNMS
(
ctx
,
ins_score
,
*
boxes
,
indices
,
num_nmsed_out
);
all_indices
.
push_back
(
indices
);
batch_starts
.
push_back
(
batch_starts
.
back
()
+
num_nmsed_out
);
}
int
num_kept
=
batch_starts
.
back
();
if
(
num_kept
==
0
)
{
T
*
od
=
outs
->
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
od
[
0
]
=
-
1
;
}
else
{
outs
->
mutable_data
<
T
>
({
num_kept
,
kOutputDim
},
ctx
.
GetPlace
());
for
(
int64_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
Tensor
ins_score
=
scores
->
Slice
(
i
,
i
+
1
);
ins_score
.
Resize
({
class_num
,
predict_dim
});
int64_t
s
=
batch_starts
[
i
];
int64_t
e
=
batch_starts
[
i
+
1
];
if
(
e
>
s
)
{
Tensor
out
=
outs
->
Slice
(
s
,
e
);
MultiClassOutput
(
ins_score
,
*
boxes
,
all_indices
[
i
],
&
out
);
}
}
}
framework
::
LoD
lod
;
lod
.
emplace_back
(
batch_starts
);
outs
->
set_lod
(
lod
);
}
};
class
MultiClassNMSOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
MultiClassNMSOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"BBoxes"
,
"(Tensor) A 2-D Tensor with shape [M, 4] represents the "
"predicted locations of M bounding bboxes. Each bounding box "
"has four coordinate values and the layout is "
"[xmin, ymin, xmax, ymax]."
);
AddInput
(
"Scores"
,
"(Tensor) A 3-D Tensor with shape [N, C, M] represents the "
"predicted confidence predictions. N is the batch size, C is the "
"class number, M is number of bounding boxes. For each category "
"there are total M scores which corresponding M bounding boxes. "
" Please note, M is equal to the 1st dimension of BBoxes. "
);
AddAttr
<
int
>
(
"background_label"
,
"(int64_t, defalut: 0) "
"The index of background label, the background label will be ignored. "
"If set to -1, then all categories will be considered."
)
.
SetDefault
(
0
);
AddAttr
<
float
>
(
"score_threshold"
,
"(float) "
"Threshold to filter out bounding boxes with low "
"confidence score. If not provided, consider all boxes."
);
AddAttr
<
int
>
(
"nms_top_k"
,
"(int64_t) "
"Maximum number of detections to be kept according to the "
"confidences aftern the filtering detections based on "
"score_threshold"
);
AddAttr
<
float
>
(
"nms_threshold"
,
"(float, defalut: 0.3) "
"The threshold to be used in NMS."
)
.
SetDefault
(
0.3
);
AddAttr
<
float
>
(
"nms_eta"
,
"(float) "
"The parameter for adaptive NMS."
)
.
SetDefault
(
1.0
);
AddAttr
<
int
>
(
"keep_top_k"
,
"(int64_t) "
"Number of total bboxes to be kept per image after NMS "
"step. -1 means keeping all bboxes after NMS step."
);
AddOutput
(
"Out"
,
"(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
"detections. Each row has 6 values: "
"[label, confidence, xmin, ymin, xmax, ymax], No is the total "
"number of detections in this mini-batch. For each instance, "
"the offsets in first dimension are called LoD, the number of "
"offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
"no detected bbox."
);
AddComment
(
R"DOC(
This operator is to do multi-class non maximum suppression (NMS) on a batched
of boxes and scores.
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator pruns away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
per image if keep_top_k is larger than -1.
This operator support multi-class and batched inputs. It applying NMS
independently for each class. The outputs is a 2-D LoDTenosr, for each
image, the offsets in first dimension of LoDTensor are called LoD, the number
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
means there is no detected bbox for this image. If there is no detected boxes
for all images, all the elements in LoD are 0, and the Out only contains one
value which is -1.
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
multiclass_nms
,
ops
::
MultiClassNMSOp
,
ops
::
MultiClassNMSOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
);
REGISTER_OP_CPU_KERNEL
(
multiclass_nms
,
ops
::
MultiClassNMSKernel
<
float
>
,
ops
::
MultiClassNMSKernel
<
double
>
);
python/paddle/v2/fluid/tests/test_bipartite_match_op.py
浏览文件 @
c9ef69be
...
...
@@ -62,7 +62,7 @@ def batch_bipartite_match(distance, lod):
return
match_indices
,
match_dist
class
TestBipartiteMatchOp
For
WithLoD
(
OpTest
):
class
TestBipartiteMatchOpWithLoD
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
'bipartite_match'
lod
=
[[
0
,
5
,
11
,
23
]]
...
...
@@ -72,7 +72,7 @@ class TestBipartiteMatchOpForWithLoD(OpTest):
self
.
inputs
=
{
'DistMat'
:
(
dist
,
lod
)}
self
.
outputs
=
{
'ColToRowMatchIndices'
:
(
match_indices
),
'ColToRowMatchDis'
:
(
match_dist
),
'ColToRowMatchDis
t
'
:
(
match_dist
),
}
def
test_check_output
(
self
):
...
...
@@ -89,7 +89,7 @@ class TestBipartiteMatchOpWithoutLoD(OpTest):
self
.
inputs
=
{
'DistMat'
:
dist
}
self
.
outputs
=
{
'ColToRowMatchIndices'
:
match_indices
,
'ColToRowMatchDis'
:
match_dist
,
'ColToRowMatchDis
t
'
:
match_dist
,
}
def
test_check_output
(
self
):
...
...
python/paddle/v2/fluid/tests/test_multiclass_nms_op.py
0 → 100644
浏览文件 @
c9ef69be
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import
unittest
import
numpy
as
np
import
copy
from
op_test
import
OpTest
def
iou
(
box_a
,
box_b
):
"""Apply intersection-over-union overlap between box_a and box_b
"""
xmin_a
=
min
(
box_a
[
0
],
box_a
[
2
])
ymin_a
=
min
(
box_a
[
1
],
box_a
[
3
])
xmax_a
=
max
(
box_a
[
0
],
box_a
[
2
])
ymax_a
=
max
(
box_a
[
1
],
box_a
[
3
])
xmin_b
=
min
(
box_b
[
0
],
box_b
[
2
])
ymin_b
=
min
(
box_b
[
1
],
box_b
[
3
])
xmax_b
=
max
(
box_b
[
0
],
box_b
[
2
])
ymax_b
=
max
(
box_b
[
1
],
box_b
[
3
])
area_a
=
(
ymax_a
-
ymin_a
)
*
(
xmax_a
-
xmin_a
)
area_b
=
(
ymax_b
-
ymin_b
)
*
(
xmax_b
-
xmin_b
)
if
area_a
<=
0
and
area_b
<=
0
:
return
0.0
xa
=
max
(
xmin_a
,
xmin_b
)
ya
=
max
(
ymin_a
,
ymin_b
)
xb
=
min
(
xmax_a
,
xmax_b
)
yb
=
min
(
ymax_a
,
ymax_b
)
inter_area
=
max
(
xb
-
xa
,
0.0
)
*
max
(
yb
-
ya
,
0.0
)
box_a_area
=
(
box_a
[
2
]
-
box_a
[
0
])
*
(
box_a
[
3
]
-
box_a
[
1
])
box_b_area
=
(
box_b
[
2
]
-
box_b
[
0
])
*
(
box_b
[
3
]
-
box_b
[
1
])
iou_ratio
=
inter_area
/
(
area_a
+
area_b
-
inter_area
)
return
iou_ratio
def
nms
(
boxes
,
scores
,
score_threshold
,
nms_threshold
,
top_k
=
200
,
eta
=
1.0
):
"""Apply non-maximum suppression at test time to avoid detecting too many
overlapping bounding boxes for a given object.
Args:
boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
scores: (tensor) The class predscores for the img, Shape:[num_priors].
score_threshold: (float) The confidence thresh for filtering low
confidence boxes.
nms_threshold: (float) The overlap thresh for suppressing unnecessary
boxes.
top_k: (int) The maximum number of box preds to consider.
eta: (float) The parameter for adaptive NMS.
Return:
The indices of the kept boxes with respect to num_priors.
"""
all_scores
=
copy
.
deepcopy
(
scores
)
all_scores
=
all_scores
.
flatten
()
selected_indices
=
np
.
argwhere
(
all_scores
>
score_threshold
)
selected_indices
=
selected_indices
.
flatten
()
all_scores
=
all_scores
[
selected_indices
]
sorted_indices
=
np
.
argsort
(
-
all_scores
,
axis
=
0
,
kind
=
'mergesort'
)
sorted_scores
=
all_scores
[
sorted_indices
]
if
top_k
>
-
1
and
top_k
<
sorted_indices
.
shape
[
0
]:
sorted_indices
=
sorted_indices
[:
top_k
]
sorted_scores
=
sorted_scores
[:
top_k
]
selected_indices
=
[]
adaptive_threshold
=
nms_threshold
for
i
in
range
(
sorted_scores
.
shape
[
0
]):
idx
=
sorted_indices
[
i
]
keep
=
True
for
k
in
range
(
len
(
selected_indices
)):
if
keep
:
kept_idx
=
selected_indices
[
k
]
overlap
=
iou
(
boxes
[
idx
],
boxes
[
kept_idx
])
keep
=
True
if
overlap
<=
adaptive_threshold
else
False
else
:
break
if
keep
:
selected_indices
.
append
(
idx
)
if
keep
and
eta
<
1
and
adaptive_threshold
>
0.5
:
adaptive_threshold
*=
eta
return
selected_indices
def
multiclass_nms
(
boxes
,
scores
,
background
,
score_threshold
,
nms_threshold
,
nms_top_k
,
keep_top_k
):
class_num
=
scores
.
shape
[
0
]
priorbox_num
=
scores
.
shape
[
1
]
selected_indices
=
{}
num_det
=
0
for
c
in
range
(
class_num
):
if
c
==
background
:
continue
indices
=
nms
(
boxes
,
scores
[
c
],
score_threshold
,
nms_threshold
,
nms_top_k
)
selected_indices
[
c
]
=
indices
num_det
+=
len
(
indices
)
if
keep_top_k
>
-
1
and
num_det
>
keep_top_k
:
score_index
=
[]
for
c
,
indices
in
selected_indices
.
iteritems
():
for
idx
in
indices
:
score_index
.
append
((
scores
[
c
][
idx
],
c
,
idx
))
sorted_score_index
=
sorted
(
score_index
,
key
=
lambda
tup
:
tup
[
0
],
reverse
=
True
)
sorted_score_index
=
sorted_score_index
[:
keep_top_k
]
selected_indices
=
{}
for
_
,
c
,
_
in
sorted_score_index
:
selected_indices
[
c
]
=
[]
for
s
,
c
,
idx
in
sorted_score_index
:
selected_indices
[
c
].
append
(
idx
)
num_det
=
keep_top_k
return
selected_indices
,
num_det
def
batched_multiclass_nms
(
boxes
,
scores
,
background
,
score_threshold
,
nms_threshold
,
nms_top_k
,
keep_top_k
):
batch_size
=
scores
.
shape
[
0
]
det_outs
=
[]
lod
=
[
0
]
for
n
in
range
(
batch_size
):
nmsed_outs
,
nmsed_num
=
multiclass_nms
(
boxes
,
scores
[
n
],
background
,
score_threshold
,
nms_threshold
,
nms_top_k
,
keep_top_k
)
lod
.
append
(
lod
[
-
1
]
+
nmsed_num
)
if
nmsed_num
==
0
:
continue
for
c
,
indices
in
nmsed_outs
.
iteritems
():
for
idx
in
indices
:
xmin
,
ymin
,
xmax
,
ymax
=
boxes
[
idx
][:]
det_outs
.
append
([
c
,
scores
[
n
][
c
][
idx
],
xmin
,
ymin
,
xmax
,
ymax
])
return
det_outs
,
lod
class
TestMulticlassNMSOp
(
OpTest
):
def
set_argument
(
self
):
self
.
score_threshold
=
0.01
def
setUp
(
self
):
self
.
set_argument
()
N
=
7
M
=
1200
C
=
21
BOX_SIZE
=
4
background
=
0
nms_threshold
=
0.3
nms_top_k
=
400
keep_top_k
=
200
score_threshold
=
self
.
score_threshold
scores
=
np
.
random
.
random
((
N
*
M
,
C
)).
astype
(
'float32'
)
def
softmax
(
x
):
shiftx
=
x
-
np
.
max
(
x
).
clip
(
-
64.
)
exps
=
np
.
exp
(
shiftx
)
return
exps
/
np
.
sum
(
exps
)
scores
=
np
.
apply_along_axis
(
softmax
,
1
,
scores
)
scores
=
np
.
reshape
(
scores
,
(
N
,
M
,
C
))
scores
=
np
.
transpose
(
scores
,
(
0
,
2
,
1
))
boxes
=
np
.
random
.
random
((
M
,
BOX_SIZE
)).
astype
(
'float32'
)
boxes
[:,
0
:
2
]
=
boxes
[:,
0
:
2
]
*
0.5
boxes
[:,
2
:
4
]
=
boxes
[:,
2
:
4
]
*
0.5
+
0.5
nmsed_outs
,
lod
=
batched_multiclass_nms
(
boxes
,
scores
,
background
,
score_threshold
,
nms_threshold
,
nms_top_k
,
keep_top_k
)
nmsed_outs
=
[
-
1
]
if
not
nmsed_outs
else
nmsed_outs
nmsed_outs
=
np
.
array
(
nmsed_outs
).
astype
(
'float32'
)
self
.
op_type
=
'multiclass_nms'
self
.
inputs
=
{
'BBoxes'
:
boxes
,
'Scores'
:
scores
}
self
.
outputs
=
{
'Out'
:
(
nmsed_outs
,
[
lod
])}
self
.
attrs
=
{
'background_label'
:
0
,
'nms_threshold'
:
nms_threshold
,
'nms_top_k'
:
nms_top_k
,
'keep_top_k'
:
keep_top_k
,
'score_threshold'
:
score_threshold
,
'nms_eta'
:
1.0
,
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestMulticlassNMSOpNoOutput
(
TestMulticlassNMSOp
):
def
set_argument
(
self
):
# Here set 2.0 to test the case there is no outputs.
# In practical use, 0.0 < score_threshold < 1.0
self
.
score_threshold
=
2.0
class
TestIOU
(
unittest
.
TestCase
):
def
test_iou
(
self
):
box1
=
np
.
array
([
4.0
,
3.0
,
7.0
,
5.0
]).
astype
(
'float32'
)
box2
=
np
.
array
([
3.0
,
4.0
,
6.0
,
8.0
]).
astype
(
'float32'
)
expt_output
=
np
.
array
([
2.0
/
16.0
]).
astype
(
'float32'
)
calc_output
=
np
.
array
([
iou
(
box1
,
box2
)]).
astype
(
'float32'
)
self
.
assertTrue
(
np
.
allclose
(
calc_output
,
expt_output
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录