From c6c9c1862bddbd3fdb44d51669971c1a0947fc16 Mon Sep 17 00:00:00 2001 From: Nyakku Shigure Date: Tue, 20 Sep 2022 14:47:55 +0800 Subject: [PATCH] [CodeStyle] remove crlf for python files (#46155) --- .../tests/unittests/asp/test_asp_utils.py | 448 +++---- .../mkldnn/test_elementwise_sub_mkldnn_op.py | 484 +++---- .../mkldnn/test_fill_constant_mkldnn_op.py | 252 ++-- .../sequence/test_sequence_first_step.py | 102 +- .../sequence/test_sequence_last_step.py | 102 +- .../tests/unittests/test_lstm_cudnn_op.py | 1178 ++++++++--------- .../fluid/tests/unittests/test_rnn_op.py | 424 +++--- .../memory_optimization_transpiler.py | 4 +- 8 files changed, 1497 insertions(+), 1497 deletions(-) diff --git a/python/paddle/fluid/tests/unittests/asp/test_asp_utils.py b/python/paddle/fluid/tests/unittests/asp/test_asp_utils.py index a65721aa0be..3ff26ea4f3a 100644 --- a/python/paddle/fluid/tests/unittests/asp/test_asp_utils.py +++ b/python/paddle/fluid/tests/unittests/asp/test_asp_utils.py @@ -1,224 +1,224 @@ -# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. -# Copyright (c) 2021 NVIDIA Corporation. All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from __future__ import print_function - -import unittest -import threading, time -import paddle -import numpy as np - - -class TestASPUtils(unittest.TestCase): - - def test_get_check_method(self): - self.assertEqual( - paddle.fluid.contrib.sparsity.CheckMethod.get_checking_method( - paddle.fluid.contrib.sparsity.MaskAlgo.MASK_1D), - paddle.fluid.contrib.sparsity.CheckMethod.CHECK_1D) - self.assertEqual( - paddle.fluid.contrib.sparsity.CheckMethod.get_checking_method( - paddle.fluid.contrib.sparsity.MaskAlgo.MASK_2D_GREEDY), - paddle.fluid.contrib.sparsity.CheckMethod.CHECK_2D) - self.assertEqual( - paddle.fluid.contrib.sparsity.CheckMethod.get_checking_method( - paddle.fluid.contrib.sparsity.MaskAlgo.MASK_2D_BEST), - paddle.fluid.contrib.sparsity.CheckMethod.CHECK_2D) - - def test_density(self): - x = np.array([[1.0, 1.0, 1.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0, 1.0], - [1.0, 0.0, 0.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0, 1.0], - [0.0, 1.0, 0.0, 0.0, 1.0]]) - self.assertEqual(paddle.incubate.asp.calculate_density(x), 0.56) - x[:, 0] = 0.0 - self.assertEqual(paddle.incubate.asp.calculate_density(x), 0.4) - - def test_check_mask_1d(self): - x = np.array([[1.0, 0.0, 0.0, 1.0, 1.0], [1.0, 1.0, 0.0, 0.0, 1.0], - [1.0, 1.0, 0.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0, 1.0], - [0.0, 1.0, 0.0, 0.0, 1.0]]) - self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_1d(x, 2, 4)) - self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_1d(x, 3, 4)) - self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_1d(x, 2, 5)) - self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_1d(x, 3, 5)) - self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_1d(x, 3, 6)) - self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_1d(x, 4, 6)) - - def test_get_mask_1d(self): - for _ in range(10): - x = np.random.randint(10, size=(5, 5)) - x = paddle.fluid.contrib.sparsity.get_mask_1d(x, 2, 4) - self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_1d( - x, 2, 4)) - - x = np.random.randn(5, 4) - x = paddle.fluid.contrib.sparsity.get_mask_1d(x, 2, 4) - self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_1d( - x, 2, 4)) - - def test_check_mask_2d(self): - x = np.array([[1.0, 0.0, 0.0, 1.0, 1.0], [0.0, 1.0, 0.0, 0.0, 0.0], - [0.0, 0.0, 1.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0, 0.0], - [0.0, 1.0, 0.0, 0.0, 1.0]]) - self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d(x, 2, 4)) - self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_2d(x, 3, 4)) - self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d(x, 2, 5)) - self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_2d(x, 3, 5)) - self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d(x, 3, 6)) - self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_2d(x, 4, 6)) - - def test_get_mask_2d_greedy(self): - for _ in range(10): - x = np.random.randint(10, size=(5, 5)) - x = paddle.fluid.contrib.sparsity.get_mask_2d_greedy(x, 2, 4) - self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d( - x, 2, 4)) - - x = np.random.randn(5, 4) - x = paddle.fluid.contrib.sparsity.get_mask_2d_greedy(x, 2, 4) - self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d( - x, 2, 4)) - - def test_get_mask_2d_best(self): - for _ in range(10): - x = np.random.randint(10, size=(5, 5)) - x = paddle.fluid.contrib.sparsity.get_mask_2d_best(x, 2, 4) - self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d( - x, 2, 4)) - - x = np.random.randn(5, 4) - x = paddle.fluid.contrib.sparsity.get_mask_2d_best(x, 2, 4) - self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d( - x, 2, 4)) - - def test_threadsafe_valid_2d_patterns(self): - - def get_reference(m=4, n=2): - from itertools import permutations - - patterns = np.zeros(m) - patterns[:n] = 1 - patterns = list(set(permutations(patterns.tolist()))) - patterns = patterns + patterns - patterns = np.asarray(list(set(permutations(patterns, m)))) - - valid = ((patterns.sum(axis=1) <= n).sum( - axis=1) == m).nonzero()[0].reshape(-1) - valid_patterns = np.empty((valid.shape[0], m, m)) - valid_patterns[:] = patterns[valid[:]] - return valid_patterns - - for _ in range(4): - computing_thread = threading.Thread( - target=paddle.fluid.contrib.sparsity.utils. - _compute_valid_2d_patterns, - args=(2, 4)) - computing_thread.start() - time.sleep(3) - patterns_map = paddle.fluid.contrib.sparsity.utils._valid_2d_patterns - reference_patterns = get_reference() - reference_key = '4_2' - - self.assertTrue(reference_key in patterns_map) - self.assertTrue(len(patterns_map) == 1) - self.assertTrue( - (reference_patterns == patterns_map[reference_key]).all()) - - def test_check_sparsity(self): - for _ in range(10): - x = np.random.randint(10, size=(5)) - x_2d = x.reshape(1, x.shape[0]) - self.__test_1D_2D_sparsity_checking_methods(x_2d) - - x = np.random.randint(10, size=(5, 5)) - x_2d = x - self.__test_1D_2D_sparsity_checking_methods(x_2d) - - x = np.random.randint(10, size=(5, 5, 5)) - x_2d = x.reshape(x.shape[0] * x.shape[1], x.shape[2]) - self.__test_1D_2D_sparsity_checking_methods(x_2d) - - x = np.random.randint(10, size=(5, 5, 5, 5)) - x_2d = x.reshape(x.shape[0], x.shape[1] * x.shape[2] * x.shape[3]) - self.__test_1D_2D_sparsity_checking_methods(x_2d) - - def test_create_mask(self): - for _ in range(10): - x = np.random.randint(10, size=(5)) - self.__test_1D_2D_sparse_mask_generation_methods(x) - - x = np.random.randint(10, size=(5, 5)) - self.__test_1D_2D_sparse_mask_generation_methods(x) - - x = np.random.randint(10, size=(5, 5, 5)) - self.__test_1D_2D_sparse_mask_generation_methods(x) - - x = np.random.randint(10, size=(5, 5, 5, 5)) - self.__test_1D_2D_sparse_mask_generation_methods(x) - - def __test_1D_2D_sparsity_checking_methods(self, x_2d): - mask = paddle.fluid.contrib.sparsity.get_mask_1d(x_2d, 2, 4) - self.assertEqual( - paddle.fluid.contrib.sparsity.check_sparsity( - mask, - func_name=paddle.fluid.contrib.sparsity.CheckMethod.CHECK_1D, - n=2, - m=4), paddle.fluid.contrib.sparsity.check_mask_1d(mask, 2, 4)) - mask = paddle.fluid.contrib.sparsity.get_mask_2d_best(x_2d, 2, 4) - self.assertEqual( - paddle.fluid.contrib.sparsity.check_sparsity( - mask, - func_name=paddle.fluid.contrib.sparsity.CheckMethod.CHECK_2D, - n=2, - m=4), paddle.fluid.contrib.sparsity.check_mask_2d(mask, 2, 4)) - - def __test_1D_2D_sparse_mask_generation_methods(self, x): - mask = paddle.fluid.contrib.sparsity.create_mask( - x, - func_name=paddle.fluid.contrib.sparsity.MaskAlgo.MASK_1D, - n=2, - m=4) - self.assertTrue( - paddle.fluid.contrib.sparsity.check_sparsity( - mask, - func_name=paddle.fluid.contrib.sparsity.CheckMethod.CHECK_1D, - n=2, - m=4)) - mask = paddle.fluid.contrib.sparsity.create_mask( - x, - func_name=paddle.fluid.contrib.sparsity.MaskAlgo.MASK_2D_GREEDY, - n=2, - m=4) - self.assertTrue( - paddle.fluid.contrib.sparsity.check_sparsity( - mask, - func_name=paddle.fluid.contrib.sparsity.CheckMethod.CHECK_2D, - n=2, - m=4)) - mask = paddle.fluid.contrib.sparsity.create_mask( - x, - func_name=paddle.fluid.contrib.sparsity.MaskAlgo.MASK_2D_BEST, - n=2, - m=4) - self.assertTrue( - paddle.fluid.contrib.sparsity.check_sparsity( - mask, - func_name=paddle.fluid.contrib.sparsity.CheckMethod.CHECK_2D, - n=2, - m=4)) - - -if __name__ == '__main__': - unittest.main() +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# Copyright (c) 2021 NVIDIA Corporation. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import unittest +import threading, time +import paddle +import numpy as np + + +class TestASPUtils(unittest.TestCase): + + def test_get_check_method(self): + self.assertEqual( + paddle.fluid.contrib.sparsity.CheckMethod.get_checking_method( + paddle.fluid.contrib.sparsity.MaskAlgo.MASK_1D), + paddle.fluid.contrib.sparsity.CheckMethod.CHECK_1D) + self.assertEqual( + paddle.fluid.contrib.sparsity.CheckMethod.get_checking_method( + paddle.fluid.contrib.sparsity.MaskAlgo.MASK_2D_GREEDY), + paddle.fluid.contrib.sparsity.CheckMethod.CHECK_2D) + self.assertEqual( + paddle.fluid.contrib.sparsity.CheckMethod.get_checking_method( + paddle.fluid.contrib.sparsity.MaskAlgo.MASK_2D_BEST), + paddle.fluid.contrib.sparsity.CheckMethod.CHECK_2D) + + def test_density(self): + x = np.array([[1.0, 1.0, 1.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0, 1.0], + [1.0, 0.0, 0.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0, 1.0], + [0.0, 1.0, 0.0, 0.0, 1.0]]) + self.assertEqual(paddle.incubate.asp.calculate_density(x), 0.56) + x[:, 0] = 0.0 + self.assertEqual(paddle.incubate.asp.calculate_density(x), 0.4) + + def test_check_mask_1d(self): + x = np.array([[1.0, 0.0, 0.0, 1.0, 1.0], [1.0, 1.0, 0.0, 0.0, 1.0], + [1.0, 1.0, 0.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0, 1.0], + [0.0, 1.0, 0.0, 0.0, 1.0]]) + self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_1d(x, 2, 4)) + self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_1d(x, 3, 4)) + self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_1d(x, 2, 5)) + self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_1d(x, 3, 5)) + self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_1d(x, 3, 6)) + self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_1d(x, 4, 6)) + + def test_get_mask_1d(self): + for _ in range(10): + x = np.random.randint(10, size=(5, 5)) + x = paddle.fluid.contrib.sparsity.get_mask_1d(x, 2, 4) + self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_1d( + x, 2, 4)) + + x = np.random.randn(5, 4) + x = paddle.fluid.contrib.sparsity.get_mask_1d(x, 2, 4) + self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_1d( + x, 2, 4)) + + def test_check_mask_2d(self): + x = np.array([[1.0, 0.0, 0.0, 1.0, 1.0], [0.0, 1.0, 0.0, 0.0, 0.0], + [0.0, 0.0, 1.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0, 0.0], + [0.0, 1.0, 0.0, 0.0, 1.0]]) + self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d(x, 2, 4)) + self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_2d(x, 3, 4)) + self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d(x, 2, 5)) + self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_2d(x, 3, 5)) + self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d(x, 3, 6)) + self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_2d(x, 4, 6)) + + def test_get_mask_2d_greedy(self): + for _ in range(10): + x = np.random.randint(10, size=(5, 5)) + x = paddle.fluid.contrib.sparsity.get_mask_2d_greedy(x, 2, 4) + self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d( + x, 2, 4)) + + x = np.random.randn(5, 4) + x = paddle.fluid.contrib.sparsity.get_mask_2d_greedy(x, 2, 4) + self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d( + x, 2, 4)) + + def test_get_mask_2d_best(self): + for _ in range(10): + x = np.random.randint(10, size=(5, 5)) + x = paddle.fluid.contrib.sparsity.get_mask_2d_best(x, 2, 4) + self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d( + x, 2, 4)) + + x = np.random.randn(5, 4) + x = paddle.fluid.contrib.sparsity.get_mask_2d_best(x, 2, 4) + self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d( + x, 2, 4)) + + def test_threadsafe_valid_2d_patterns(self): + + def get_reference(m=4, n=2): + from itertools import permutations + + patterns = np.zeros(m) + patterns[:n] = 1 + patterns = list(set(permutations(patterns.tolist()))) + patterns = patterns + patterns + patterns = np.asarray(list(set(permutations(patterns, m)))) + + valid = ((patterns.sum(axis=1) <= n).sum( + axis=1) == m).nonzero()[0].reshape(-1) + valid_patterns = np.empty((valid.shape[0], m, m)) + valid_patterns[:] = patterns[valid[:]] + return valid_patterns + + for _ in range(4): + computing_thread = threading.Thread( + target=paddle.fluid.contrib.sparsity.utils. + _compute_valid_2d_patterns, + args=(2, 4)) + computing_thread.start() + time.sleep(3) + patterns_map = paddle.fluid.contrib.sparsity.utils._valid_2d_patterns + reference_patterns = get_reference() + reference_key = '4_2' + + self.assertTrue(reference_key in patterns_map) + self.assertTrue(len(patterns_map) == 1) + self.assertTrue( + (reference_patterns == patterns_map[reference_key]).all()) + + def test_check_sparsity(self): + for _ in range(10): + x = np.random.randint(10, size=(5)) + x_2d = x.reshape(1, x.shape[0]) + self.__test_1D_2D_sparsity_checking_methods(x_2d) + + x = np.random.randint(10, size=(5, 5)) + x_2d = x + self.__test_1D_2D_sparsity_checking_methods(x_2d) + + x = np.random.randint(10, size=(5, 5, 5)) + x_2d = x.reshape(x.shape[0] * x.shape[1], x.shape[2]) + self.__test_1D_2D_sparsity_checking_methods(x_2d) + + x = np.random.randint(10, size=(5, 5, 5, 5)) + x_2d = x.reshape(x.shape[0], x.shape[1] * x.shape[2] * x.shape[3]) + self.__test_1D_2D_sparsity_checking_methods(x_2d) + + def test_create_mask(self): + for _ in range(10): + x = np.random.randint(10, size=(5)) + self.__test_1D_2D_sparse_mask_generation_methods(x) + + x = np.random.randint(10, size=(5, 5)) + self.__test_1D_2D_sparse_mask_generation_methods(x) + + x = np.random.randint(10, size=(5, 5, 5)) + self.__test_1D_2D_sparse_mask_generation_methods(x) + + x = np.random.randint(10, size=(5, 5, 5, 5)) + self.__test_1D_2D_sparse_mask_generation_methods(x) + + def __test_1D_2D_sparsity_checking_methods(self, x_2d): + mask = paddle.fluid.contrib.sparsity.get_mask_1d(x_2d, 2, 4) + self.assertEqual( + paddle.fluid.contrib.sparsity.check_sparsity( + mask, + func_name=paddle.fluid.contrib.sparsity.CheckMethod.CHECK_1D, + n=2, + m=4), paddle.fluid.contrib.sparsity.check_mask_1d(mask, 2, 4)) + mask = paddle.fluid.contrib.sparsity.get_mask_2d_best(x_2d, 2, 4) + self.assertEqual( + paddle.fluid.contrib.sparsity.check_sparsity( + mask, + func_name=paddle.fluid.contrib.sparsity.CheckMethod.CHECK_2D, + n=2, + m=4), paddle.fluid.contrib.sparsity.check_mask_2d(mask, 2, 4)) + + def __test_1D_2D_sparse_mask_generation_methods(self, x): + mask = paddle.fluid.contrib.sparsity.create_mask( + x, + func_name=paddle.fluid.contrib.sparsity.MaskAlgo.MASK_1D, + n=2, + m=4) + self.assertTrue( + paddle.fluid.contrib.sparsity.check_sparsity( + mask, + func_name=paddle.fluid.contrib.sparsity.CheckMethod.CHECK_1D, + n=2, + m=4)) + mask = paddle.fluid.contrib.sparsity.create_mask( + x, + func_name=paddle.fluid.contrib.sparsity.MaskAlgo.MASK_2D_GREEDY, + n=2, + m=4) + self.assertTrue( + paddle.fluid.contrib.sparsity.check_sparsity( + mask, + func_name=paddle.fluid.contrib.sparsity.CheckMethod.CHECK_2D, + n=2, + m=4)) + mask = paddle.fluid.contrib.sparsity.create_mask( + x, + func_name=paddle.fluid.contrib.sparsity.MaskAlgo.MASK_2D_BEST, + n=2, + m=4) + self.assertTrue( + paddle.fluid.contrib.sparsity.check_sparsity( + mask, + func_name=paddle.fluid.contrib.sparsity.CheckMethod.CHECK_2D, + n=2, + m=4)) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/mkldnn/test_elementwise_sub_mkldnn_op.py b/python/paddle/fluid/tests/unittests/mkldnn/test_elementwise_sub_mkldnn_op.py index e70cc8e3779..5989d5ba709 100644 --- a/python/paddle/fluid/tests/unittests/mkldnn/test_elementwise_sub_mkldnn_op.py +++ b/python/paddle/fluid/tests/unittests/mkldnn/test_elementwise_sub_mkldnn_op.py @@ -1,242 +1,242 @@ -# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from __future__ import print_function -import unittest -import numpy as np -from paddle import enable_static -from paddle.fluid.tests.unittests.op_test import OpTest, OpTestTool, convert_float_to_uint16 -from paddle.fluid.framework import _current_expected_place -import paddle.fluid.core as core - - -@OpTestTool.skip_if(not (isinstance(_current_expected_place(), core.CPUPlace)), - "GPU is not supported") -class TestMKLDNNElementwiseSubOp(OpTest): - - def setUp(self): - self.op_type = "elementwise_sub" - self.init_dtype() - self.init_input_output() - self.init_kernel_type() - self.init_axis() - self.inputs = { - 'X': OpTest.np_dtype_to_fluid_dtype(self.x), - 'Y': OpTest.np_dtype_to_fluid_dtype(self.y) - } - self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn} - self.outputs = {'Out': self.out} - - def init_input_output(self): - self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype) - self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype) - self.out = np.subtract(self.x, self.y) - - def test_check_grad_normal(self): - self.check_grad(['X', 'Y'], 'Out') - - def test_check_grad_ignore_x(self): - self.check_grad(['Y'], 'Out', no_grad_set=set("X")) - - def test_check_grad_ignore_y(self): - self.check_grad(['X'], 'Out', no_grad_set=set('Y')) - - def init_axis(self): - self.axis = -1 - - def init_kernel_type(self): - self.use_mkldnn = True - - def init_dtype(self): - self.dtype = np.float32 - - def test_check_output(self): - self.check_output() - - -class TestMKLDNNElementwiseSubOp2(TestMKLDNNElementwiseSubOp): - - def init_input_output(self): - self.x = np.random.random((100, )).astype(self.dtype) - self.y = np.random.random((100, )).astype(self.dtype) - self.out = np.subtract(self.x, self.y) - - -class TestMKLDNNElementwiseSubOp3(TestMKLDNNElementwiseSubOp): - - def init_input_output(self): - self.x = np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype(self.dtype) - self.y = np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype(self.dtype) - self.out = np.subtract(self.x, self.y) - - -class TestMKLDNNElementwiseSubOp4(TestMKLDNNElementwiseSubOp): - - def init_input_output(self): - self.x = np.random.uniform(1, 2, [2, 3, 4, 32]).astype(self.dtype) - self.y = np.random.uniform(1, 2, [4, 32]).astype(self.dtype) - self.out = np.subtract(self.x, self.y) - - -class TestMKLDNNElementwiseSubOp5(TestMKLDNNElementwiseSubOp): - - def init_input_output(self): - self.x = np.random.uniform(1, 2, [2, 3, 4, 100]).astype(self.dtype) - self.y = np.random.uniform(1, 2, [100]).astype(self.dtype) - self.out = np.subtract(self.x, self.y) - - -class TestMKLDNNElementwiseSubOp_broadcast(TestMKLDNNElementwiseSubOp): - - def init_input_output(self): - self.x = np.random.rand(2, 10, 12, 3).astype(self.dtype) - self.y = np.random.rand(10, 12).astype(self.dtype) - self.out = self.x - self.y.reshape(1, 10, 12, 1) - - def init_axis(self): - self.axis = 1 - - -class TestElementwiseSubOp_xsize_lessthan_ysize_sub(TestMKLDNNElementwiseSubOp): - - def init_input_output(self): - self.x = np.random.rand(10, 12).astype(self.dtype) - self.y = np.random.rand(2, 2, 10, 12).astype(self.dtype) - self.out = self.x - self.y - - def init_axis(self): - self.axis = 2 - - def test_check_grad_normal(self): - pass - - def test_check_grad_ignore_y(self): - pass - - def test_check_grad_ignore_x(self): - pass - - -@OpTestTool.skip_if_not_cpu_bf16() -class TestBf16(TestMKLDNNElementwiseSubOp): - - def setUp(self): - self.op_type = "elementwise_sub" - self.init_dtype() - self.init_input_output() - self.init_kernel_type() - self.init_axis() - - self.x_bf16 = convert_float_to_uint16(self.x) - self.y_bf16 = convert_float_to_uint16(self.y) - self.inputs = {'X': self.x_bf16, 'Y': self.y_bf16} - self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn} - self.outputs = {'Out': convert_float_to_uint16(self.out)} - - def init_dtype(self): - self.dtype = np.float32 - self.mkldnn_data_type = "bfloat16" - - def init_input_output(self): - self.x = np.random.random(100, ).astype(self.dtype) - self.y = np.random.random(100, ).astype(self.dtype) - self.out = np.subtract(self.x, self.y) - - def test_check_output(self): - self.check_output_with_place(core.CPUPlace()) - - def test_check_grad_normal(self): - self.check_grad_with_place(core.CPUPlace(), ["X", "Y"], - "Out", - user_defined_grads=[self.x, -self.x], - user_defined_grad_outputs=[self.x_bf16]) - - def test_check_grad_ignore_x(self): - self.check_grad_with_place(core.CPUPlace(), ["Y"], - "Out", - user_defined_grads=[-self.y], - user_defined_grad_outputs=[self.y_bf16]) - - def test_check_grad_ignore_y(self): - self.check_grad_with_place(core.CPUPlace(), ["X"], - "Out", - user_defined_grads=[self.x], - user_defined_grad_outputs=[self.x_bf16]) - - -class TestBf16Broadcasting(TestBf16): - - def init_input_output(self): - self.x = np.random.uniform(1, 2, [2, 3, 4, 100]).astype(self.dtype) - self.y = np.random.uniform(1, 2, [100]).astype(self.dtype) - self.out = np.subtract(self.x, self.y) - - def compute_reduced_gradients(self, out_grads): - part_sum = np.add.reduceat(out_grads, [0], axis=0) - part_sum = np.add.reduceat(part_sum, [0], axis=1) - part_sum = np.add.reduceat(part_sum, [0], axis=2) - return -part_sum.flatten() - - def test_check_grad_normal(self): - self.check_grad_with_place( - core.CPUPlace(), ["X", "Y"], - "Out", - user_defined_grads=[self.x, - self.compute_reduced_gradients(self.x)], - user_defined_grad_outputs=[self.x_bf16]) - - def test_check_grad_ignore_x(self): - self.check_grad_with_place( - core.CPUPlace(), ["Y"], - "Out", - user_defined_grads=[self.compute_reduced_gradients(self.x)], - user_defined_grad_outputs=[self.x_bf16]) - - -class TestInt8(TestMKLDNNElementwiseSubOp): - - def init_kernel_type(self): - self.use_mkldnn = True - self._cpu_only = True - - def init_dtype(self): - self.dtype = np.int8 - - def init_input_output(self): - self.x = np.random.randint(0, 3, (12, 9)).astype("int8") - self.y = np.random.randint(0, 3, (12, 9)).astype("int8") - self.out = np.subtract(self.x, self.y) - - def init_scales(self): - self.attrs['Scale_x'] = 1.0 - self.attrs['Scale_y'] = 1.0 - self.attrs['Scale_out'] = 1.0 - - def test_check_output(self): - self.init_scales() - self.check_output() - - def test_check_grad_normal(self): - pass - - def test_check_grad_ignore_x(self): - pass - - def test_check_grad_ignore_y(self): - pass - - -if __name__ == '__main__': - enable_static() - unittest.main() +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function +import unittest +import numpy as np +from paddle import enable_static +from paddle.fluid.tests.unittests.op_test import OpTest, OpTestTool, convert_float_to_uint16 +from paddle.fluid.framework import _current_expected_place +import paddle.fluid.core as core + + +@OpTestTool.skip_if(not (isinstance(_current_expected_place(), core.CPUPlace)), + "GPU is not supported") +class TestMKLDNNElementwiseSubOp(OpTest): + + def setUp(self): + self.op_type = "elementwise_sub" + self.init_dtype() + self.init_input_output() + self.init_kernel_type() + self.init_axis() + self.inputs = { + 'X': OpTest.np_dtype_to_fluid_dtype(self.x), + 'Y': OpTest.np_dtype_to_fluid_dtype(self.y) + } + self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn} + self.outputs = {'Out': self.out} + + def init_input_output(self): + self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype) + self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype) + self.out = np.subtract(self.x, self.y) + + def test_check_grad_normal(self): + self.check_grad(['X', 'Y'], 'Out') + + def test_check_grad_ignore_x(self): + self.check_grad(['Y'], 'Out', no_grad_set=set("X")) + + def test_check_grad_ignore_y(self): + self.check_grad(['X'], 'Out', no_grad_set=set('Y')) + + def init_axis(self): + self.axis = -1 + + def init_kernel_type(self): + self.use_mkldnn = True + + def init_dtype(self): + self.dtype = np.float32 + + def test_check_output(self): + self.check_output() + + +class TestMKLDNNElementwiseSubOp2(TestMKLDNNElementwiseSubOp): + + def init_input_output(self): + self.x = np.random.random((100, )).astype(self.dtype) + self.y = np.random.random((100, )).astype(self.dtype) + self.out = np.subtract(self.x, self.y) + + +class TestMKLDNNElementwiseSubOp3(TestMKLDNNElementwiseSubOp): + + def init_input_output(self): + self.x = np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype(self.dtype) + self.y = np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype(self.dtype) + self.out = np.subtract(self.x, self.y) + + +class TestMKLDNNElementwiseSubOp4(TestMKLDNNElementwiseSubOp): + + def init_input_output(self): + self.x = np.random.uniform(1, 2, [2, 3, 4, 32]).astype(self.dtype) + self.y = np.random.uniform(1, 2, [4, 32]).astype(self.dtype) + self.out = np.subtract(self.x, self.y) + + +class TestMKLDNNElementwiseSubOp5(TestMKLDNNElementwiseSubOp): + + def init_input_output(self): + self.x = np.random.uniform(1, 2, [2, 3, 4, 100]).astype(self.dtype) + self.y = np.random.uniform(1, 2, [100]).astype(self.dtype) + self.out = np.subtract(self.x, self.y) + + +class TestMKLDNNElementwiseSubOp_broadcast(TestMKLDNNElementwiseSubOp): + + def init_input_output(self): + self.x = np.random.rand(2, 10, 12, 3).astype(self.dtype) + self.y = np.random.rand(10, 12).astype(self.dtype) + self.out = self.x - self.y.reshape(1, 10, 12, 1) + + def init_axis(self): + self.axis = 1 + + +class TestElementwiseSubOp_xsize_lessthan_ysize_sub(TestMKLDNNElementwiseSubOp): + + def init_input_output(self): + self.x = np.random.rand(10, 12).astype(self.dtype) + self.y = np.random.rand(2, 2, 10, 12).astype(self.dtype) + self.out = self.x - self.y + + def init_axis(self): + self.axis = 2 + + def test_check_grad_normal(self): + pass + + def test_check_grad_ignore_y(self): + pass + + def test_check_grad_ignore_x(self): + pass + + +@OpTestTool.skip_if_not_cpu_bf16() +class TestBf16(TestMKLDNNElementwiseSubOp): + + def setUp(self): + self.op_type = "elementwise_sub" + self.init_dtype() + self.init_input_output() + self.init_kernel_type() + self.init_axis() + + self.x_bf16 = convert_float_to_uint16(self.x) + self.y_bf16 = convert_float_to_uint16(self.y) + self.inputs = {'X': self.x_bf16, 'Y': self.y_bf16} + self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn} + self.outputs = {'Out': convert_float_to_uint16(self.out)} + + def init_dtype(self): + self.dtype = np.float32 + self.mkldnn_data_type = "bfloat16" + + def init_input_output(self): + self.x = np.random.random(100, ).astype(self.dtype) + self.y = np.random.random(100, ).astype(self.dtype) + self.out = np.subtract(self.x, self.y) + + def test_check_output(self): + self.check_output_with_place(core.CPUPlace()) + + def test_check_grad_normal(self): + self.check_grad_with_place(core.CPUPlace(), ["X", "Y"], + "Out", + user_defined_grads=[self.x, -self.x], + user_defined_grad_outputs=[self.x_bf16]) + + def test_check_grad_ignore_x(self): + self.check_grad_with_place(core.CPUPlace(), ["Y"], + "Out", + user_defined_grads=[-self.y], + user_defined_grad_outputs=[self.y_bf16]) + + def test_check_grad_ignore_y(self): + self.check_grad_with_place(core.CPUPlace(), ["X"], + "Out", + user_defined_grads=[self.x], + user_defined_grad_outputs=[self.x_bf16]) + + +class TestBf16Broadcasting(TestBf16): + + def init_input_output(self): + self.x = np.random.uniform(1, 2, [2, 3, 4, 100]).astype(self.dtype) + self.y = np.random.uniform(1, 2, [100]).astype(self.dtype) + self.out = np.subtract(self.x, self.y) + + def compute_reduced_gradients(self, out_grads): + part_sum = np.add.reduceat(out_grads, [0], axis=0) + part_sum = np.add.reduceat(part_sum, [0], axis=1) + part_sum = np.add.reduceat(part_sum, [0], axis=2) + return -part_sum.flatten() + + def test_check_grad_normal(self): + self.check_grad_with_place( + core.CPUPlace(), ["X", "Y"], + "Out", + user_defined_grads=[self.x, + self.compute_reduced_gradients(self.x)], + user_defined_grad_outputs=[self.x_bf16]) + + def test_check_grad_ignore_x(self): + self.check_grad_with_place( + core.CPUPlace(), ["Y"], + "Out", + user_defined_grads=[self.compute_reduced_gradients(self.x)], + user_defined_grad_outputs=[self.x_bf16]) + + +class TestInt8(TestMKLDNNElementwiseSubOp): + + def init_kernel_type(self): + self.use_mkldnn = True + self._cpu_only = True + + def init_dtype(self): + self.dtype = np.int8 + + def init_input_output(self): + self.x = np.random.randint(0, 3, (12, 9)).astype("int8") + self.y = np.random.randint(0, 3, (12, 9)).astype("int8") + self.out = np.subtract(self.x, self.y) + + def init_scales(self): + self.attrs['Scale_x'] = 1.0 + self.attrs['Scale_y'] = 1.0 + self.attrs['Scale_out'] = 1.0 + + def test_check_output(self): + self.init_scales() + self.check_output() + + def test_check_grad_normal(self): + pass + + def test_check_grad_ignore_x(self): + pass + + def test_check_grad_ignore_y(self): + pass + + +if __name__ == '__main__': + enable_static() + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/mkldnn/test_fill_constant_mkldnn_op.py b/python/paddle/fluid/tests/unittests/mkldnn/test_fill_constant_mkldnn_op.py index 27400abcf7f..74daa9c712e 100644 --- a/python/paddle/fluid/tests/unittests/mkldnn/test_fill_constant_mkldnn_op.py +++ b/python/paddle/fluid/tests/unittests/mkldnn/test_fill_constant_mkldnn_op.py @@ -1,126 +1,126 @@ -# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from __future__ import print_function - -import unittest -import numpy as np -from paddle.fluid.tests.unittests.op_test import OpTest, OpTestTool -import paddle - - -@OpTestTool.skip_if_not_cpu_bf16() -class TestFillConstant2DOneDNNOp(OpTest): - - def setUp(self): - self.op_type = "fill_constant" - self.dtype = np.float32 - - self.shape_tensor_list = None - self.shape_tensor = None - self.str_value = "" - real_shape = [] - self.value = 0.1 - - self.set_inputs() - self.set_attrs() - - if 'value' in self.attrs: - self.value = self.attrs['value'] - if self.str_value != "": - self.value = float(self.str_value) - if 'ValueTensor' in self.inputs: - self.value = self.inputs['ValueTensor'] - - if 'shape' in self.attrs: - real_shape = self.attrs['shape'] - if 'ShapeTensor' in self.inputs: - real_shape = list(self.inputs['ShapeTensor']) - if 'ShapeTensorList' in self.inputs: - real_shape = [] - for shape_tensor in self.inputs['ShapeTensorList']: - real_shape.append(shape_tensor[1].item()) - - self.outputs = {'Out': np.full(real_shape, self.value)} - - def set_inputs(self): - self.inputs = {} - - def set_attrs(self): - self.attrs = {'shape': (3, 5), 'use_mkldnn': True, 'value': self.value} - - def test_check_output(self): - self.check_output() - - -class TestFillZerosLike4DShapeTensorPriorityOneDNNOp(TestFillConstant2DOneDNNOp - ): - - def set_inputs(self): - self.inputs = {'ShapeTensor': np.array([5, 6, 7, 8]).astype("int32")} - - -class TestFillZerosLike4DShapeTensorListPriorityOneDNNOp( - TestFillConstant2DOneDNNOp): - - def set_inputs(self): - shape = (4, 5, 6, 7) - self.shape_tensor_list = [] - for index, elem in enumerate(shape): - self.shape_tensor_list.append(("x" + str(index), np.ones( - (1)).astype('int32') * elem)) - - self.inputs = {'ShapeTensorList': self.shape_tensor_list} - - -class TestFillZerosLike2DStringValueInfOneDNNOp(TestFillConstant2DOneDNNOp): - - def set_attrs(self): - self.str_value = "inf" - self.attrs = {'shape': (10, 13), 'use_mkldnn': True, 'str_value': "inf"} - - -class TestFillZerosLike2DStringValueMinusInfOneDNNOp(TestFillConstant2DOneDNNOp - ): - - def set_attrs(self): - self.str_value = "-inf" - self.attrs = { - 'shape': (10, 13), - 'use_mkldnn': True, - 'str_value': "-inf" - } - - -class TestFillZerosLike2DStringValueFloatOneDNNOp(TestFillConstant2DOneDNNOp): - - def set_attrs(self): - self.str_value = "0.123" - self.attrs = { - 'shape': (10, 13), - 'use_mkldnn': True, - 'str_value': "0.123" - } - - -class TestFillZerosLike2DValueTensorPriorityOneDNNOp( - TestFillZerosLike2DStringValueFloatOneDNNOp): - - def set_inputs(self): - self.inputs = {'ValueTensor': np.atleast_1d(2.25).astype("float32")} - - -if __name__ == "__main__": - paddle.enable_static() - unittest.main() +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import unittest +import numpy as np +from paddle.fluid.tests.unittests.op_test import OpTest, OpTestTool +import paddle + + +@OpTestTool.skip_if_not_cpu_bf16() +class TestFillConstant2DOneDNNOp(OpTest): + + def setUp(self): + self.op_type = "fill_constant" + self.dtype = np.float32 + + self.shape_tensor_list = None + self.shape_tensor = None + self.str_value = "" + real_shape = [] + self.value = 0.1 + + self.set_inputs() + self.set_attrs() + + if 'value' in self.attrs: + self.value = self.attrs['value'] + if self.str_value != "": + self.value = float(self.str_value) + if 'ValueTensor' in self.inputs: + self.value = self.inputs['ValueTensor'] + + if 'shape' in self.attrs: + real_shape = self.attrs['shape'] + if 'ShapeTensor' in self.inputs: + real_shape = list(self.inputs['ShapeTensor']) + if 'ShapeTensorList' in self.inputs: + real_shape = [] + for shape_tensor in self.inputs['ShapeTensorList']: + real_shape.append(shape_tensor[1].item()) + + self.outputs = {'Out': np.full(real_shape, self.value)} + + def set_inputs(self): + self.inputs = {} + + def set_attrs(self): + self.attrs = {'shape': (3, 5), 'use_mkldnn': True, 'value': self.value} + + def test_check_output(self): + self.check_output() + + +class TestFillZerosLike4DShapeTensorPriorityOneDNNOp(TestFillConstant2DOneDNNOp + ): + + def set_inputs(self): + self.inputs = {'ShapeTensor': np.array([5, 6, 7, 8]).astype("int32")} + + +class TestFillZerosLike4DShapeTensorListPriorityOneDNNOp( + TestFillConstant2DOneDNNOp): + + def set_inputs(self): + shape = (4, 5, 6, 7) + self.shape_tensor_list = [] + for index, elem in enumerate(shape): + self.shape_tensor_list.append(("x" + str(index), np.ones( + (1)).astype('int32') * elem)) + + self.inputs = {'ShapeTensorList': self.shape_tensor_list} + + +class TestFillZerosLike2DStringValueInfOneDNNOp(TestFillConstant2DOneDNNOp): + + def set_attrs(self): + self.str_value = "inf" + self.attrs = {'shape': (10, 13), 'use_mkldnn': True, 'str_value': "inf"} + + +class TestFillZerosLike2DStringValueMinusInfOneDNNOp(TestFillConstant2DOneDNNOp + ): + + def set_attrs(self): + self.str_value = "-inf" + self.attrs = { + 'shape': (10, 13), + 'use_mkldnn': True, + 'str_value': "-inf" + } + + +class TestFillZerosLike2DStringValueFloatOneDNNOp(TestFillConstant2DOneDNNOp): + + def set_attrs(self): + self.str_value = "0.123" + self.attrs = { + 'shape': (10, 13), + 'use_mkldnn': True, + 'str_value': "0.123" + } + + +class TestFillZerosLike2DValueTensorPriorityOneDNNOp( + TestFillZerosLike2DStringValueFloatOneDNNOp): + + def set_inputs(self): + self.inputs = {'ValueTensor': np.atleast_1d(2.25).astype("float32")} + + +if __name__ == "__main__": + paddle.enable_static() + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/sequence/test_sequence_first_step.py b/python/paddle/fluid/tests/unittests/sequence/test_sequence_first_step.py index 8d21ad789ea..aee72167f5b 100644 --- a/python/paddle/fluid/tests/unittests/sequence/test_sequence_first_step.py +++ b/python/paddle/fluid/tests/unittests/sequence/test_sequence_first_step.py @@ -1,51 +1,51 @@ -# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import paddle.fluid as fluid -from paddle.fluid.framework import convert_np_dtype_to_dtype_, Program, program_guard -import paddle.fluid.core as core -import numpy as np -import copy -import unittest -import sys - -sys.path.append("../") -from op_test import OpTest - - -class TestSequenceFirstStepOpError(unittest.TestCase): - - def test_errors(self): - with program_guard(Program(), Program()): - - def test_Variable(): - # the input must be Variable - input_data = np.random.randint(1, 5, [4]).astype("int64") - fluid.layers.sequence_last_step(input_data) - - self.assertRaises(TypeError, test_Variable) - - def test_input_dtype(): - # the dtype of input must be int64 - type_data = fluid.layers.data(name='type_data', - shape=[7, 1], - append_batch_size=False, - dtype='int64', - lod_level=1) - fluid.layers.sequence_last_step(type_data) - - self.assertRaises(TypeError, test_input_dtype) - - -if __name__ == '__main__': - unittest.main() +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import paddle.fluid as fluid +from paddle.fluid.framework import convert_np_dtype_to_dtype_, Program, program_guard +import paddle.fluid.core as core +import numpy as np +import copy +import unittest +import sys + +sys.path.append("../") +from op_test import OpTest + + +class TestSequenceFirstStepOpError(unittest.TestCase): + + def test_errors(self): + with program_guard(Program(), Program()): + + def test_Variable(): + # the input must be Variable + input_data = np.random.randint(1, 5, [4]).astype("int64") + fluid.layers.sequence_last_step(input_data) + + self.assertRaises(TypeError, test_Variable) + + def test_input_dtype(): + # the dtype of input must be int64 + type_data = fluid.layers.data(name='type_data', + shape=[7, 1], + append_batch_size=False, + dtype='int64', + lod_level=1) + fluid.layers.sequence_last_step(type_data) + + self.assertRaises(TypeError, test_input_dtype) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/sequence/test_sequence_last_step.py b/python/paddle/fluid/tests/unittests/sequence/test_sequence_last_step.py index 0e8fe66d749..4def8bc3c7b 100644 --- a/python/paddle/fluid/tests/unittests/sequence/test_sequence_last_step.py +++ b/python/paddle/fluid/tests/unittests/sequence/test_sequence_last_step.py @@ -1,51 +1,51 @@ -# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import paddle.fluid as fluid -from paddle.fluid.framework import convert_np_dtype_to_dtype_, Program, program_guard -import paddle.fluid.core as core -import numpy as np -import copy -import unittest -import sys - -sys.path.append("../") -from op_test import OpTest - - -class TestSequenceLastStepOpError(unittest.TestCase): - - def test_errors(self): - with program_guard(Program(), Program()): - - def test_Variable(): - # the input must be Variable - input_data = np.random.randint(1, 5, [4]).astype("int64") - fluid.layers.sequence_last_step(input_data) - - self.assertRaises(TypeError, test_Variable) - - def test_input_dtype(): - # the dtype of input must be int64 - type_data = fluid.layers.data(name='type_data', - shape=[7, 1], - append_batch_size=False, - dtype='int64', - lod_level=1) - fluid.layers.sequence_last_step(type_data) - - self.assertRaises(TypeError, test_input_dtype) - - -if __name__ == '__main__': - unittest.main() +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import paddle.fluid as fluid +from paddle.fluid.framework import convert_np_dtype_to_dtype_, Program, program_guard +import paddle.fluid.core as core +import numpy as np +import copy +import unittest +import sys + +sys.path.append("../") +from op_test import OpTest + + +class TestSequenceLastStepOpError(unittest.TestCase): + + def test_errors(self): + with program_guard(Program(), Program()): + + def test_Variable(): + # the input must be Variable + input_data = np.random.randint(1, 5, [4]).astype("int64") + fluid.layers.sequence_last_step(input_data) + + self.assertRaises(TypeError, test_Variable) + + def test_input_dtype(): + # the dtype of input must be int64 + type_data = fluid.layers.data(name='type_data', + shape=[7, 1], + append_batch_size=False, + dtype='int64', + lod_level=1) + fluid.layers.sequence_last_step(type_data) + + self.assertRaises(TypeError, test_input_dtype) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_lstm_cudnn_op.py b/python/paddle/fluid/tests/unittests/test_lstm_cudnn_op.py index cdde705475e..bc830e65bc9 100644 --- a/python/paddle/fluid/tests/unittests/test_lstm_cudnn_op.py +++ b/python/paddle/fluid/tests/unittests/test_lstm_cudnn_op.py @@ -1,589 +1,589 @@ -# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from __future__ import print_function - -import unittest -import numpy as np -import math - -import paddle.fluid.core as core -from op_test import OpTest -import paddle -import paddle.fluid as fluid -import paddle.fluid.layers as layers -import random - -random.seed(2) -np.set_printoptions(threshold=np.inf) -paddle.enable_static() - -SIGMOID_THRESHOLD_MIN = -40.0 -SIGMOID_THRESHOLD_MAX = 13.0 -EXP_MAX_INPUT = 40.0 - - -class RandomWeight: - - def __init__(self): - pass - - def updata_weight(self, hidden_size, input_size, dtype): - std = 1.0 / math.sqrt(hidden_size) - self.hidden_size = hidden_size - self.input_size = input_size - self.dtype = dtype - - self.weight_ih = np.random.uniform(low=-std, - high=std, - size=(4 * self.hidden_size, - self.input_size)).astype(dtype) - self.weight_hh = np.random.uniform( - low=-std, high=std, - size=(4 * self.hidden_size, self.hidden_size)).astype(dtype) - self.bias_ih = np.random.uniform(low=-std, - high=std, - size=(4 * - self.hidden_size)).astype(dtype) - self.bias_hh = np.random.uniform(low=-std, - high=std, - size=(4 * - self.hidden_size)).astype(dtype) - - -weight = RandomWeight() - - -class LayerMixin(object): - - def __call__(self, *args, **kwargs): - return self.forward(*args, **kwargs) - - -class LayerListMixin(LayerMixin): - - def __init__(self, layers=None): - self._layers = list(layers) if layers else [] - - def append(self, layer): - self._layers.append(layer) - - def __iter__(self): - return iter(self._layers) - - -class LSTMCell(LayerMixin): - - def __init__(self, input_size, hidden_size, bias=True): - self.input_size = input_size - self.hidden_size = hidden_size - self.bias = bias - self.dtype = np.float64 - self.parameters = dict() - self.weight_ih = weight.weight_ih - self.weight_hh = weight.weight_hh - self.parameters['weight_ih'] = self.weight_ih - self.parameters['weight_hh'] = self.weight_hh - if bias: - self.bias_ih = weight.bias_ih - self.bias_hh = weight.bias_hh - self.parameters['bias_ih'] = self.bias_ih - self.parameters['bias_hh'] = self.bias_hh - else: - self.bias_ih = None - self.bias_hh = None - - def init_state(self, inputs): - batch_size = inputs.shape[0] - init_h = np.zeros((batch_size, self.hidden_size), dtype=inputs.dtype) - init_c = np.zeros((batch_size, self.hidden_size), dtype=inputs.dtype) - return init_h, init_c - - def forward(self, inputs, hx=None): - if hx is None: - hx = self.init_state(inputs) - pre_hidden, pre_cell = hx - gates = np.matmul(inputs, self.weight_ih.T) - if self.bias_ih is not None: - gates = gates + self.bias_ih - gates += np.matmul(pre_hidden, self.weight_hh.T) - if self.bias_hh is not None: - gates = gates + self.bias_hh - - chunked_gates = np.split(gates, 4, -1) - - i = 1.0 / (1.0 + np.exp(-chunked_gates[0])) - f = 1.0 / (1.0 + np.exp(-chunked_gates[1])) - o = 1.0 / (1.0 + np.exp(-chunked_gates[3])) - c = f * pre_cell + i * np.tanh(chunked_gates[2]) - h = o * np.tanh(c) - - return h, (h, c) - - -def sequence_mask(lengths, max_len=None): - if max_len is None: - max_len = np.max(lengths) - else: - assert max_len >= np.max(lengths) - return np.arange(max_len) < np.expand_dims(lengths, -1) - - -def update_state(mask, new, old): - if not isinstance(old, (tuple, list)): - return np.where(mask, new, old) - else: - return tuple(map(lambda x, y: np.where(mask, x, y), new, old)) - - -def rnn(cell, - inputs, - initial_states, - sequence_length=None, - time_major=False, - is_reverse=False): - if not time_major: - inputs = np.transpose(inputs, [1, 0, 2]) - if is_reverse: - inputs = np.flip(inputs, 0) - - if sequence_length is None: - mask = None - else: - mask = np.transpose(sequence_mask(sequence_length), [1, 0]) - mask = np.expand_dims(mask, -1) - if is_reverse: - mask = np.flip(mask, 0) - - time_steps = inputs.shape[0] - state = initial_states - outputs = [] - for t in range(time_steps): - x_t = inputs[t] - if mask is not None: - m_t = mask[t] - y, new_state = cell(x_t, state) - y = np.where(m_t, y, 0.) - outputs.append(y) - state = update_state(m_t, new_state, state) - else: - y, new_state = cell(x_t, state) - outputs.append(y) - state = new_state - - outputs = np.stack(outputs) - final_state = state - - if is_reverse: - outputs = np.flip(outputs, 0) - if not time_major: - outputs = np.transpose(outputs, [1, 0, 2]) - return outputs, final_state - - -def birnn(cell_fw, - cell_bw, - inputs, - initial_states, - sequence_length=None, - time_major=False): - states_fw, states_bw = initial_states - outputs_fw, states_fw = rnn(cell_fw, - inputs, - states_fw, - sequence_length, - time_major=time_major) - - outputs_bw, states_bw = rnn(cell_bw, - inputs, - states_bw, - sequence_length, - time_major=time_major, - is_reverse=True) - - outputs = np.concatenate((outputs_fw, outputs_bw), -1) - final_states = (states_fw, states_bw) - return outputs, final_states - - -def flatten(nested): - return list(_flatten(nested)) - - -def _flatten(nested): - for item in nested: - if isinstance(item, (list, tuple)): - for subitem in _flatten(item): - yield subitem - else: - yield item - - -def unstack(array, axis=0): - num = array.shape[axis] - sub_arrays = np.split(array, num, axis) - return [np.squeeze(sub_array, axis) for sub_array in sub_arrays] - - -def dropout(array, p=0.0): - if p == 0.0: - return array - - mask = (np.random.uniform(size=array.shape) < (1 - p)).astype(array.dtype) - return array * (mask / (1 - p)) - - -def split_states(states, bidirectional=False, state_components=1): - if state_components == 1: - states = unstack(states) - if not bidirectional: - return states - else: - return list(zip(states[::2], states[1::2])) - else: - assert len(states) == state_components - states = tuple([unstack(item) for item in states]) - if not bidirectional: - return list(zip(*states)) - else: - states = list(zip(*states)) - return list(zip(states[::2], states[1::2])) - - -def concat_states(states, bidirectional=False, state_components=1): - if state_components == 1: - return np.stack(flatten(states)) - else: - states = flatten(states) - componnets = [] - for i in range(state_components): - componnets.append(states[i::state_components]) - return [np.stack(item) for item in componnets] - - -class RNN(LayerMixin): - - def __init__(self, cell, is_reverse=False, time_major=False): - super(RNN, self).__init__() - self.cell = cell - if not hasattr(self.cell, "call"): - # for non-dygraph mode, `rnn` api uses cell.call - self.cell.call = self.cell.forward - self.is_reverse = is_reverse - self.time_major = time_major - - def forward(self, inputs, initial_states=None, sequence_length=None): - final_outputs, final_states = rnn(self.cell, - inputs, - initial_states=initial_states, - sequence_length=sequence_length, - time_major=self.time_major, - is_reverse=self.is_reverse) - return final_outputs, final_states - - -class BiRNN(LayerMixin): - - def __init__(self, cell_fw, cell_bw, time_major=False): - super(BiRNN, self).__init__() - self.cell_fw = cell_fw - self.cell_bw = cell_bw - self.time_major = time_major - - def forward(self, - inputs, - initial_states=None, - sequence_length=None, - **kwargs): - if isinstance(initial_states, (list, tuple)): - assert len(initial_states) == 2, \ - "length of initial_states should be 2 when it is a list/tuple" - else: - initial_states = [initial_states, initial_states] - - outputs, final_states = birnn(self.cell_fw, self.cell_bw, inputs, - initial_states, sequence_length, - self.time_major) - return outputs, final_states - - -class RNNMixin(LayerListMixin): - - def forward(self, inputs, initial_states=None, sequence_length=None): - batch_index = 1 if self.time_major else 0 - batch_size = inputs.shape[batch_index] - dtype = inputs.dtype - if initial_states is None: - state_shape = (self.num_layers * self.num_directions, batch_size, - self.hidden_size) - if self.state_components == 1: - initial_states = np.zeros(state_shape, dtype) - else: - initial_states = tuple([ - np.zeros(state_shape, dtype) - for _ in range(self.state_components) - ]) - - states = split_states(initial_states, self.num_directions == 2, - self.state_components) - final_states = [] - - for i, rnn_layer in enumerate(self): - if i > 0: - inputs = dropout(inputs, self.dropout) - outputs, final_state = rnn_layer(inputs, states[i], sequence_length) - final_states.append(final_state) - inputs = outputs - - final_states = concat_states(final_states, self.num_directions == 2, - self.state_components) - return outputs, final_states - - -class LSTM(RNNMixin): - - def __init__(self, - input_size, - hidden_size, - num_layers=1, - direction="forward", - dropout=0., - time_major=False): - super(LSTM, self).__init__() - - if direction in ["forward", "backward"]: - is_reverse = direction == "backward" - cell = LSTMCell(input_size, hidden_size) - self.append(RNN(cell, is_reverse, time_major)) - for i in range(1, num_layers): - cell = LSTMCell(hidden_size, hidden_size) - self.append(RNN(cell, is_reverse, time_major)) - elif direction == "bidirectional": - cell_fw = LSTMCell(input_size, hidden_size) - cell_bw = LSTMCell(input_size, hidden_size) - self.append(BiRNN(cell_fw, cell_bw, time_major)) - for i in range(1, num_layers): - cell_fw = LSTMCell(2 * hidden_size, hidden_size) - cell_bw = LSTMCell(2 * hidden_size, hidden_size) - self.append(BiRNN(cell_fw, cell_bw, time_major)) - else: - raise ValueError( - "direction should be forward, backward or bidirectional, " - "received direction = {}".format(direction)) - - self.input_size = input_size - self.hidden_size = hidden_size - self.dropout = dropout - self.num_directions = 2 if direction == "bidirectional" else 1 - self.time_major = time_major - self.num_layers = num_layers - self.state_components = 2 - - -@unittest.skipIf(not core.is_compiled_with_cuda(), - "core is not compiled with CUDA") -class TestCUDNNLstmOp(OpTest): - - def get_weight_names(self): - weight_names = [] - for i in range(2 * self.num_layers): - weight_names.append('weight{}'.format(i)) - for i in range(2 * self.num_layers): - weight_names.append('bias{}'.format(i)) - return weight_names - - def setUp(self): - self.op_type = "cudnn_lstm" - self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64 - self.sequence_length = None if core.is_compiled_with_rocm( - ) else np.array([12, 11, 10, 9, 8], dtype=np.int32) - self.num_layers = 1 - self.set_attrs() - - seq_length = 12 - batch_size = 5 - input_size = 21 - hidden_size = 21 - - input = np.random.uniform(low=-0.1, - high=0.1, - size=(seq_length, batch_size, - input_size)).astype(self.dtype) - input[11][1:][:] = 0 - input[10][2:][:] = 0 - input[9][3:][:] = 0 - input[8][4:][:] = 0 - - weight.updata_weight(hidden_size, input_size, self.dtype) - rnn1 = LSTM(input_size, - hidden_size, - num_layers=self.num_layers, - time_major=True, - direction="forward") - - output, (last_hidden, - last_cell) = rnn1(input, sequence_length=self.sequence_length) - - flat_w = [] - num = 0 - for i in range(self.num_layers): - if i == 0: - weight_ih = weight.weight_ih - else: - weight_ih = weight.weight_hh - flat_w.append(("weight" + str(num), weight_ih)) - num += 1 - for i in range(self.num_layers): - weight_hh = weight.weight_hh - flat_w.append(("weight" + str(num), weight_hh)) - num += 1 - num = 0 - for i in range(self.num_layers): - bias_ih = weight.bias_ih - flat_w.append(("bias" + str(num), bias_ih)) - num += 1 - for i in range(self.num_layers): - bias_hh = weight.bias_hh - flat_w.append(("bias" + str(num), bias_hh)) - num += 1 - init_h = np.zeros( - (self.num_layers, batch_size, hidden_size)).astype(self.dtype) - init_c = np.zeros( - (self.num_layers, batch_size, hidden_size)).astype(self.dtype) - state_out = np.ndarray((300)).astype("uint8") - - if core.is_compiled_with_rocm(): - for i in range(len(flat_w)): - w = np.split(flat_w[i][1], 4, 0) - w = [w[0], w[1], w[3], w[2]] - w = np.concatenate(w) - flat_w[i] = (flat_w[i][0], w) - - self.inputs = { - 'Input': input, - 'WeightList': flat_w, - 'InitH': init_h, - 'InitC': init_c, - 'SequenceLength': self.sequence_length - } - if self.sequence_length is None: - self.inputs = { - 'Input': input, - 'WeightList': flat_w, - 'InitH': init_h, - 'InitC': init_c, - } - self.attrs = { - 'dropout_prob': 0.0, - 'is_bidirec': False, - 'input_size': input_size, - 'hidden_size': hidden_size, - 'num_layers': self.num_layers, - } - self.outputs = { - 'Out': output, - "LastH": last_hidden, - 'LastC': last_cell, - 'Reserve': np.ndarray((400)).astype("uint8"), - 'StateOut': state_out - } - - def set_attrs(self): - pass - - def test_output_with_place(self): - place = core.CUDAPlace(0) - if core.is_compiled_with_rocm(): - self.check_output_with_place(place, - atol=1e-5, - no_check_set=['Reserve', 'StateOut']) - else: - self.check_output_with_place(place, - no_check_set=['Reserve', 'StateOut']) - - def test_grad_with_place(self): - place = core.CUDAPlace(0) - var_name_list = self.get_weight_names() - for var_name in var_name_list: - self.check_grad_with_place( - place, set(['Input', var_name, 'InitH', 'InitC']), - ['Out', 'LastH', 'LastC']) - - -@unittest.skipIf(not core.is_compiled_with_cuda(), - "core is not compiled with CUDA") -class TestCUDNNlstmAPI(unittest.TestCase): - - def test_lstm(self): - seq_len = 20 - batch_size = 5 - hidden_size = 20 - dropout_prob = 0.0 - num_layers = 1 - dtype = 'float32' if core.is_compiled_with_rocm() else 'float64' - input = fluid.data(name='input', - shape=[seq_len, batch_size, hidden_size], - dtype=dtype) - init_h = layers.fill_constant([num_layers, batch_size, hidden_size], - dtype, 0.0) - init_c = layers.fill_constant([num_layers, batch_size, hidden_size], - dtype, 0.0) - rnn_out, last_h, last_c = layers.lstm(input, init_h, init_c, seq_len, - hidden_size, num_layers, - dropout_prob, False) - exe = fluid.Executor(fluid.CUDAPlace(0)) - exe.run(fluid.default_startup_program()) - input_i = np.random.uniform(low=-0.1, - high=0.1, - size=(seq_len, batch_size, - hidden_size)).astype("float64") - out = exe.run(fluid.default_main_program(), - feed={'input': input_i}, - fetch_list=[rnn_out, last_h, last_c, 'cudnn_lstm_0.w_0']) - - -@unittest.skipIf(not core.is_compiled_with_cuda(), - "core is not compiled with CUDA") -class TestCUDNNlstmAPI(unittest.TestCase): - - def test_lstm(self): - seq_len = 20 - batch_size = 5 - hidden_size = 20 - dropout_prob = 0.0 - num_layers = 2 - dtype = 'float32' if core.is_compiled_with_rocm() else 'float64' - input = fluid.data(name='input', - shape=[seq_len, batch_size, hidden_size], - dtype=dtype) - init_h = layers.fill_constant([num_layers, batch_size, hidden_size], - dtype, 0.0) - init_c = layers.fill_constant([num_layers, batch_size, hidden_size], - dtype, 0.0) - rnn_out, last_h, last_c = layers.lstm(input, init_h, init_c, seq_len, - hidden_size, num_layers, - dropout_prob, False, True) - exe = fluid.Executor(fluid.CUDAPlace(0)) - exe.run(fluid.default_startup_program()) - input_i = np.random.uniform(low=-0.1, - high=0.1, - size=(seq_len, batch_size, - hidden_size)).astype(dtype) - out = exe.run(fluid.default_main_program(), - feed={'input': input_i}, - fetch_list=[rnn_out, last_h, last_c, 'cudnn_lstm_0.w_0']) - - -if __name__ == '__main__': - unittest.main() +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import unittest +import numpy as np +import math + +import paddle.fluid.core as core +from op_test import OpTest +import paddle +import paddle.fluid as fluid +import paddle.fluid.layers as layers +import random + +random.seed(2) +np.set_printoptions(threshold=np.inf) +paddle.enable_static() + +SIGMOID_THRESHOLD_MIN = -40.0 +SIGMOID_THRESHOLD_MAX = 13.0 +EXP_MAX_INPUT = 40.0 + + +class RandomWeight: + + def __init__(self): + pass + + def updata_weight(self, hidden_size, input_size, dtype): + std = 1.0 / math.sqrt(hidden_size) + self.hidden_size = hidden_size + self.input_size = input_size + self.dtype = dtype + + self.weight_ih = np.random.uniform(low=-std, + high=std, + size=(4 * self.hidden_size, + self.input_size)).astype(dtype) + self.weight_hh = np.random.uniform( + low=-std, high=std, + size=(4 * self.hidden_size, self.hidden_size)).astype(dtype) + self.bias_ih = np.random.uniform(low=-std, + high=std, + size=(4 * + self.hidden_size)).astype(dtype) + self.bias_hh = np.random.uniform(low=-std, + high=std, + size=(4 * + self.hidden_size)).astype(dtype) + + +weight = RandomWeight() + + +class LayerMixin(object): + + def __call__(self, *args, **kwargs): + return self.forward(*args, **kwargs) + + +class LayerListMixin(LayerMixin): + + def __init__(self, layers=None): + self._layers = list(layers) if layers else [] + + def append(self, layer): + self._layers.append(layer) + + def __iter__(self): + return iter(self._layers) + + +class LSTMCell(LayerMixin): + + def __init__(self, input_size, hidden_size, bias=True): + self.input_size = input_size + self.hidden_size = hidden_size + self.bias = bias + self.dtype = np.float64 + self.parameters = dict() + self.weight_ih = weight.weight_ih + self.weight_hh = weight.weight_hh + self.parameters['weight_ih'] = self.weight_ih + self.parameters['weight_hh'] = self.weight_hh + if bias: + self.bias_ih = weight.bias_ih + self.bias_hh = weight.bias_hh + self.parameters['bias_ih'] = self.bias_ih + self.parameters['bias_hh'] = self.bias_hh + else: + self.bias_ih = None + self.bias_hh = None + + def init_state(self, inputs): + batch_size = inputs.shape[0] + init_h = np.zeros((batch_size, self.hidden_size), dtype=inputs.dtype) + init_c = np.zeros((batch_size, self.hidden_size), dtype=inputs.dtype) + return init_h, init_c + + def forward(self, inputs, hx=None): + if hx is None: + hx = self.init_state(inputs) + pre_hidden, pre_cell = hx + gates = np.matmul(inputs, self.weight_ih.T) + if self.bias_ih is not None: + gates = gates + self.bias_ih + gates += np.matmul(pre_hidden, self.weight_hh.T) + if self.bias_hh is not None: + gates = gates + self.bias_hh + + chunked_gates = np.split(gates, 4, -1) + + i = 1.0 / (1.0 + np.exp(-chunked_gates[0])) + f = 1.0 / (1.0 + np.exp(-chunked_gates[1])) + o = 1.0 / (1.0 + np.exp(-chunked_gates[3])) + c = f * pre_cell + i * np.tanh(chunked_gates[2]) + h = o * np.tanh(c) + + return h, (h, c) + + +def sequence_mask(lengths, max_len=None): + if max_len is None: + max_len = np.max(lengths) + else: + assert max_len >= np.max(lengths) + return np.arange(max_len) < np.expand_dims(lengths, -1) + + +def update_state(mask, new, old): + if not isinstance(old, (tuple, list)): + return np.where(mask, new, old) + else: + return tuple(map(lambda x, y: np.where(mask, x, y), new, old)) + + +def rnn(cell, + inputs, + initial_states, + sequence_length=None, + time_major=False, + is_reverse=False): + if not time_major: + inputs = np.transpose(inputs, [1, 0, 2]) + if is_reverse: + inputs = np.flip(inputs, 0) + + if sequence_length is None: + mask = None + else: + mask = np.transpose(sequence_mask(sequence_length), [1, 0]) + mask = np.expand_dims(mask, -1) + if is_reverse: + mask = np.flip(mask, 0) + + time_steps = inputs.shape[0] + state = initial_states + outputs = [] + for t in range(time_steps): + x_t = inputs[t] + if mask is not None: + m_t = mask[t] + y, new_state = cell(x_t, state) + y = np.where(m_t, y, 0.) + outputs.append(y) + state = update_state(m_t, new_state, state) + else: + y, new_state = cell(x_t, state) + outputs.append(y) + state = new_state + + outputs = np.stack(outputs) + final_state = state + + if is_reverse: + outputs = np.flip(outputs, 0) + if not time_major: + outputs = np.transpose(outputs, [1, 0, 2]) + return outputs, final_state + + +def birnn(cell_fw, + cell_bw, + inputs, + initial_states, + sequence_length=None, + time_major=False): + states_fw, states_bw = initial_states + outputs_fw, states_fw = rnn(cell_fw, + inputs, + states_fw, + sequence_length, + time_major=time_major) + + outputs_bw, states_bw = rnn(cell_bw, + inputs, + states_bw, + sequence_length, + time_major=time_major, + is_reverse=True) + + outputs = np.concatenate((outputs_fw, outputs_bw), -1) + final_states = (states_fw, states_bw) + return outputs, final_states + + +def flatten(nested): + return list(_flatten(nested)) + + +def _flatten(nested): + for item in nested: + if isinstance(item, (list, tuple)): + for subitem in _flatten(item): + yield subitem + else: + yield item + + +def unstack(array, axis=0): + num = array.shape[axis] + sub_arrays = np.split(array, num, axis) + return [np.squeeze(sub_array, axis) for sub_array in sub_arrays] + + +def dropout(array, p=0.0): + if p == 0.0: + return array + + mask = (np.random.uniform(size=array.shape) < (1 - p)).astype(array.dtype) + return array * (mask / (1 - p)) + + +def split_states(states, bidirectional=False, state_components=1): + if state_components == 1: + states = unstack(states) + if not bidirectional: + return states + else: + return list(zip(states[::2], states[1::2])) + else: + assert len(states) == state_components + states = tuple([unstack(item) for item in states]) + if not bidirectional: + return list(zip(*states)) + else: + states = list(zip(*states)) + return list(zip(states[::2], states[1::2])) + + +def concat_states(states, bidirectional=False, state_components=1): + if state_components == 1: + return np.stack(flatten(states)) + else: + states = flatten(states) + componnets = [] + for i in range(state_components): + componnets.append(states[i::state_components]) + return [np.stack(item) for item in componnets] + + +class RNN(LayerMixin): + + def __init__(self, cell, is_reverse=False, time_major=False): + super(RNN, self).__init__() + self.cell = cell + if not hasattr(self.cell, "call"): + # for non-dygraph mode, `rnn` api uses cell.call + self.cell.call = self.cell.forward + self.is_reverse = is_reverse + self.time_major = time_major + + def forward(self, inputs, initial_states=None, sequence_length=None): + final_outputs, final_states = rnn(self.cell, + inputs, + initial_states=initial_states, + sequence_length=sequence_length, + time_major=self.time_major, + is_reverse=self.is_reverse) + return final_outputs, final_states + + +class BiRNN(LayerMixin): + + def __init__(self, cell_fw, cell_bw, time_major=False): + super(BiRNN, self).__init__() + self.cell_fw = cell_fw + self.cell_bw = cell_bw + self.time_major = time_major + + def forward(self, + inputs, + initial_states=None, + sequence_length=None, + **kwargs): + if isinstance(initial_states, (list, tuple)): + assert len(initial_states) == 2, \ + "length of initial_states should be 2 when it is a list/tuple" + else: + initial_states = [initial_states, initial_states] + + outputs, final_states = birnn(self.cell_fw, self.cell_bw, inputs, + initial_states, sequence_length, + self.time_major) + return outputs, final_states + + +class RNNMixin(LayerListMixin): + + def forward(self, inputs, initial_states=None, sequence_length=None): + batch_index = 1 if self.time_major else 0 + batch_size = inputs.shape[batch_index] + dtype = inputs.dtype + if initial_states is None: + state_shape = (self.num_layers * self.num_directions, batch_size, + self.hidden_size) + if self.state_components == 1: + initial_states = np.zeros(state_shape, dtype) + else: + initial_states = tuple([ + np.zeros(state_shape, dtype) + for _ in range(self.state_components) + ]) + + states = split_states(initial_states, self.num_directions == 2, + self.state_components) + final_states = [] + + for i, rnn_layer in enumerate(self): + if i > 0: + inputs = dropout(inputs, self.dropout) + outputs, final_state = rnn_layer(inputs, states[i], sequence_length) + final_states.append(final_state) + inputs = outputs + + final_states = concat_states(final_states, self.num_directions == 2, + self.state_components) + return outputs, final_states + + +class LSTM(RNNMixin): + + def __init__(self, + input_size, + hidden_size, + num_layers=1, + direction="forward", + dropout=0., + time_major=False): + super(LSTM, self).__init__() + + if direction in ["forward", "backward"]: + is_reverse = direction == "backward" + cell = LSTMCell(input_size, hidden_size) + self.append(RNN(cell, is_reverse, time_major)) + for i in range(1, num_layers): + cell = LSTMCell(hidden_size, hidden_size) + self.append(RNN(cell, is_reverse, time_major)) + elif direction == "bidirectional": + cell_fw = LSTMCell(input_size, hidden_size) + cell_bw = LSTMCell(input_size, hidden_size) + self.append(BiRNN(cell_fw, cell_bw, time_major)) + for i in range(1, num_layers): + cell_fw = LSTMCell(2 * hidden_size, hidden_size) + cell_bw = LSTMCell(2 * hidden_size, hidden_size) + self.append(BiRNN(cell_fw, cell_bw, time_major)) + else: + raise ValueError( + "direction should be forward, backward or bidirectional, " + "received direction = {}".format(direction)) + + self.input_size = input_size + self.hidden_size = hidden_size + self.dropout = dropout + self.num_directions = 2 if direction == "bidirectional" else 1 + self.time_major = time_major + self.num_layers = num_layers + self.state_components = 2 + + +@unittest.skipIf(not core.is_compiled_with_cuda(), + "core is not compiled with CUDA") +class TestCUDNNLstmOp(OpTest): + + def get_weight_names(self): + weight_names = [] + for i in range(2 * self.num_layers): + weight_names.append('weight{}'.format(i)) + for i in range(2 * self.num_layers): + weight_names.append('bias{}'.format(i)) + return weight_names + + def setUp(self): + self.op_type = "cudnn_lstm" + self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64 + self.sequence_length = None if core.is_compiled_with_rocm( + ) else np.array([12, 11, 10, 9, 8], dtype=np.int32) + self.num_layers = 1 + self.set_attrs() + + seq_length = 12 + batch_size = 5 + input_size = 21 + hidden_size = 21 + + input = np.random.uniform(low=-0.1, + high=0.1, + size=(seq_length, batch_size, + input_size)).astype(self.dtype) + input[11][1:][:] = 0 + input[10][2:][:] = 0 + input[9][3:][:] = 0 + input[8][4:][:] = 0 + + weight.updata_weight(hidden_size, input_size, self.dtype) + rnn1 = LSTM(input_size, + hidden_size, + num_layers=self.num_layers, + time_major=True, + direction="forward") + + output, (last_hidden, + last_cell) = rnn1(input, sequence_length=self.sequence_length) + + flat_w = [] + num = 0 + for i in range(self.num_layers): + if i == 0: + weight_ih = weight.weight_ih + else: + weight_ih = weight.weight_hh + flat_w.append(("weight" + str(num), weight_ih)) + num += 1 + for i in range(self.num_layers): + weight_hh = weight.weight_hh + flat_w.append(("weight" + str(num), weight_hh)) + num += 1 + num = 0 + for i in range(self.num_layers): + bias_ih = weight.bias_ih + flat_w.append(("bias" + str(num), bias_ih)) + num += 1 + for i in range(self.num_layers): + bias_hh = weight.bias_hh + flat_w.append(("bias" + str(num), bias_hh)) + num += 1 + init_h = np.zeros( + (self.num_layers, batch_size, hidden_size)).astype(self.dtype) + init_c = np.zeros( + (self.num_layers, batch_size, hidden_size)).astype(self.dtype) + state_out = np.ndarray((300)).astype("uint8") + + if core.is_compiled_with_rocm(): + for i in range(len(flat_w)): + w = np.split(flat_w[i][1], 4, 0) + w = [w[0], w[1], w[3], w[2]] + w = np.concatenate(w) + flat_w[i] = (flat_w[i][0], w) + + self.inputs = { + 'Input': input, + 'WeightList': flat_w, + 'InitH': init_h, + 'InitC': init_c, + 'SequenceLength': self.sequence_length + } + if self.sequence_length is None: + self.inputs = { + 'Input': input, + 'WeightList': flat_w, + 'InitH': init_h, + 'InitC': init_c, + } + self.attrs = { + 'dropout_prob': 0.0, + 'is_bidirec': False, + 'input_size': input_size, + 'hidden_size': hidden_size, + 'num_layers': self.num_layers, + } + self.outputs = { + 'Out': output, + "LastH": last_hidden, + 'LastC': last_cell, + 'Reserve': np.ndarray((400)).astype("uint8"), + 'StateOut': state_out + } + + def set_attrs(self): + pass + + def test_output_with_place(self): + place = core.CUDAPlace(0) + if core.is_compiled_with_rocm(): + self.check_output_with_place(place, + atol=1e-5, + no_check_set=['Reserve', 'StateOut']) + else: + self.check_output_with_place(place, + no_check_set=['Reserve', 'StateOut']) + + def test_grad_with_place(self): + place = core.CUDAPlace(0) + var_name_list = self.get_weight_names() + for var_name in var_name_list: + self.check_grad_with_place( + place, set(['Input', var_name, 'InitH', 'InitC']), + ['Out', 'LastH', 'LastC']) + + +@unittest.skipIf(not core.is_compiled_with_cuda(), + "core is not compiled with CUDA") +class TestCUDNNlstmAPI(unittest.TestCase): + + def test_lstm(self): + seq_len = 20 + batch_size = 5 + hidden_size = 20 + dropout_prob = 0.0 + num_layers = 1 + dtype = 'float32' if core.is_compiled_with_rocm() else 'float64' + input = fluid.data(name='input', + shape=[seq_len, batch_size, hidden_size], + dtype=dtype) + init_h = layers.fill_constant([num_layers, batch_size, hidden_size], + dtype, 0.0) + init_c = layers.fill_constant([num_layers, batch_size, hidden_size], + dtype, 0.0) + rnn_out, last_h, last_c = layers.lstm(input, init_h, init_c, seq_len, + hidden_size, num_layers, + dropout_prob, False) + exe = fluid.Executor(fluid.CUDAPlace(0)) + exe.run(fluid.default_startup_program()) + input_i = np.random.uniform(low=-0.1, + high=0.1, + size=(seq_len, batch_size, + hidden_size)).astype("float64") + out = exe.run(fluid.default_main_program(), + feed={'input': input_i}, + fetch_list=[rnn_out, last_h, last_c, 'cudnn_lstm_0.w_0']) + + +@unittest.skipIf(not core.is_compiled_with_cuda(), + "core is not compiled with CUDA") +class TestCUDNNlstmAPI(unittest.TestCase): + + def test_lstm(self): + seq_len = 20 + batch_size = 5 + hidden_size = 20 + dropout_prob = 0.0 + num_layers = 2 + dtype = 'float32' if core.is_compiled_with_rocm() else 'float64' + input = fluid.data(name='input', + shape=[seq_len, batch_size, hidden_size], + dtype=dtype) + init_h = layers.fill_constant([num_layers, batch_size, hidden_size], + dtype, 0.0) + init_c = layers.fill_constant([num_layers, batch_size, hidden_size], + dtype, 0.0) + rnn_out, last_h, last_c = layers.lstm(input, init_h, init_c, seq_len, + hidden_size, num_layers, + dropout_prob, False, True) + exe = fluid.Executor(fluid.CUDAPlace(0)) + exe.run(fluid.default_startup_program()) + input_i = np.random.uniform(low=-0.1, + high=0.1, + size=(seq_len, batch_size, + hidden_size)).astype(dtype) + out = exe.run(fluid.default_main_program(), + feed={'input': input_i}, + fetch_list=[rnn_out, last_h, last_c, 'cudnn_lstm_0.w_0']) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_rnn_op.py b/python/paddle/fluid/tests/unittests/test_rnn_op.py index f03215a480a..e18fc211017 100644 --- a/python/paddle/fluid/tests/unittests/test_rnn_op.py +++ b/python/paddle/fluid/tests/unittests/test_rnn_op.py @@ -1,212 +1,212 @@ -# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from __future__ import print_function - -import unittest -import numpy as np -import math -import paddle.fluid.core as core -import paddle -import paddle.fluid as fluid -import paddle.fluid.layers as layers -import random -import sys - -from op_test import OpTest - -sys.path.append("./rnn") -from rnn_numpy import SimpleRNN, LSTM, GRU -from convert import get_params_for_net - -random.seed(2) -np.set_printoptions(threshold=np.inf) -paddle.enable_static() - - -class TestRNNOp(OpTest): - - def get_weight_names(self): - weight_names = [] - for i in range(self.num_layers): - for j in range(0, 2 * self.direction_num): - weight_names.append("{}.weight_{}".format(i, j)) - for i in range(self.num_layers): - for j in range(0, 2 * self.direction_num): - weight_names.append("{}.bias_{}".format(i, j)) - return weight_names - - def setUp(self): - self.op_type = "rnn" - self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64 - self.sequence_length = None if core.is_compiled_with_rocm( - ) else np.array([12, 11, 10, 9, 8], dtype=np.int32) - self.num_layers = 1 - self.is_bidirec = False - self.mode = "LSTM" - self.is_test = False - self.dropout = 0.0 - self.set_attrs() - - self.direction_num = 2 if self.is_bidirec else 1 - direction = "bidirectional" if self.is_bidirec else "forward" - seq_length = 12 - batch_size = 5 - input_size = 3 - hidden_size = 2 - - input = np.random.uniform(low=-0.1, - high=0.1, - size=(seq_length, batch_size, - input_size)).astype(self.dtype) - if self.sequence_length is not None: - input[11][1:][:] = 0 - input[10][2:][:] = 0 - input[9][3:][:] = 0 - input[8][4:][:] = 0 - - rnn1 = LSTM(input_size, - hidden_size, - num_layers=self.num_layers, - time_major=True, - direction=direction, - dropout=self.dropout, - dtype=self.dtype) - - flat_w = get_params_for_net(rnn1) - output, (last_hidden, - last_cell) = rnn1(input, sequence_length=self.sequence_length) - - if core.is_compiled_with_rocm(): - - def rocm_rnn_get_place(): - places = [core.CUDAPlace(0)] - return places - - self._get_places = rocm_rnn_get_place - - init_h = np.zeros((self.num_layers * self.direction_num, batch_size, - hidden_size)).astype(self.dtype) - init_c = np.zeros((self.num_layers * self.direction_num, batch_size, - hidden_size)).astype(self.dtype) - state_out = np.ndarray((300)).astype("uint8") - - self.inputs = { - 'Input': input, - 'WeightList': flat_w, - 'PreState': [('init_h', init_h), ('init_c', init_c)], - 'SequenceLength': self.sequence_length - } - if self.sequence_length is None: - self.inputs = { - 'Input': input, - 'WeightList': flat_w, - 'PreState': [('init_h', init_h), ('init_c', init_c)], - } - self.attrs = { - 'dropout_prob': self.dropout, - 'is_bidirec': self.is_bidirec, - 'input_size': input_size, - 'hidden_size': hidden_size, - 'num_layers': self.num_layers, - 'mode': self.mode, - 'is_test': self.is_test - } - self.outputs = { - 'Out': output, - "State": [('last_hidden', last_hidden), ('last_cell', last_cell)], - 'Reserve': np.ndarray((400)).astype("uint8"), - 'DropoutState': state_out - } - - def test_output(self): - self.check_output(no_check_set=['Reserve', 'DropoutState']) - - def set_attrs(self): - pass - - def test_grad(self): - if not self.is_test: - var_name_list = self.get_weight_names() - grad_check_list = ['Input', 'init_h', 'init_c'] - grad_check_list.extend(var_name_list) - self.check_grad(set(grad_check_list), - ['Out', 'last_hidden', 'last_cell']) - - -class TestRNNOp1(TestRNNOp): - - def set_attrs(self): - self.sequence_length = None - - -class TestRNNOp2(TestRNNOp): - - def set_attrs(self): - self.sequence_length = None - self.is_bidirec = True - - -class TestRNNOp3(TestRNNOp): - - def set_attrs(self): - self.is_test = True - self.sequence_length = None - - -class TestRNNOp4(TestRNNOp): - - def set_attrs(self): - self.is_test = True - self.sequence_length = None - self.is_bidirec = True - - -class TestRNNOp5(TestRNNOp): - - def set_attrs(self): - self.num_layers = 2 - - -class TestRNNOp6(TestRNNOp): - - def set_attrs(self): - self.num_layers = 2 - self.is_bidirec = True - - -class TestRNNOp7(TestRNNOp): - - def set_attrs(self): - self.num_layers = 2 - self.is_bidirec = True - self.is_test = True - - -class TestRNNOp8(TestRNNOp): - - def set_attrs(self): - self.num_layers = 2 - self.is_bidirec = True - self.sequence_length = None - - -class TestRNNOp9(TestRNNOp): - - def set_attrs(self): - self.num_layers = 3 - - -if __name__ == '__main__': - unittest.main() +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import unittest +import numpy as np +import math +import paddle.fluid.core as core +import paddle +import paddle.fluid as fluid +import paddle.fluid.layers as layers +import random +import sys + +from op_test import OpTest + +sys.path.append("./rnn") +from rnn_numpy import SimpleRNN, LSTM, GRU +from convert import get_params_for_net + +random.seed(2) +np.set_printoptions(threshold=np.inf) +paddle.enable_static() + + +class TestRNNOp(OpTest): + + def get_weight_names(self): + weight_names = [] + for i in range(self.num_layers): + for j in range(0, 2 * self.direction_num): + weight_names.append("{}.weight_{}".format(i, j)) + for i in range(self.num_layers): + for j in range(0, 2 * self.direction_num): + weight_names.append("{}.bias_{}".format(i, j)) + return weight_names + + def setUp(self): + self.op_type = "rnn" + self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64 + self.sequence_length = None if core.is_compiled_with_rocm( + ) else np.array([12, 11, 10, 9, 8], dtype=np.int32) + self.num_layers = 1 + self.is_bidirec = False + self.mode = "LSTM" + self.is_test = False + self.dropout = 0.0 + self.set_attrs() + + self.direction_num = 2 if self.is_bidirec else 1 + direction = "bidirectional" if self.is_bidirec else "forward" + seq_length = 12 + batch_size = 5 + input_size = 3 + hidden_size = 2 + + input = np.random.uniform(low=-0.1, + high=0.1, + size=(seq_length, batch_size, + input_size)).astype(self.dtype) + if self.sequence_length is not None: + input[11][1:][:] = 0 + input[10][2:][:] = 0 + input[9][3:][:] = 0 + input[8][4:][:] = 0 + + rnn1 = LSTM(input_size, + hidden_size, + num_layers=self.num_layers, + time_major=True, + direction=direction, + dropout=self.dropout, + dtype=self.dtype) + + flat_w = get_params_for_net(rnn1) + output, (last_hidden, + last_cell) = rnn1(input, sequence_length=self.sequence_length) + + if core.is_compiled_with_rocm(): + + def rocm_rnn_get_place(): + places = [core.CUDAPlace(0)] + return places + + self._get_places = rocm_rnn_get_place + + init_h = np.zeros((self.num_layers * self.direction_num, batch_size, + hidden_size)).astype(self.dtype) + init_c = np.zeros((self.num_layers * self.direction_num, batch_size, + hidden_size)).astype(self.dtype) + state_out = np.ndarray((300)).astype("uint8") + + self.inputs = { + 'Input': input, + 'WeightList': flat_w, + 'PreState': [('init_h', init_h), ('init_c', init_c)], + 'SequenceLength': self.sequence_length + } + if self.sequence_length is None: + self.inputs = { + 'Input': input, + 'WeightList': flat_w, + 'PreState': [('init_h', init_h), ('init_c', init_c)], + } + self.attrs = { + 'dropout_prob': self.dropout, + 'is_bidirec': self.is_bidirec, + 'input_size': input_size, + 'hidden_size': hidden_size, + 'num_layers': self.num_layers, + 'mode': self.mode, + 'is_test': self.is_test + } + self.outputs = { + 'Out': output, + "State": [('last_hidden', last_hidden), ('last_cell', last_cell)], + 'Reserve': np.ndarray((400)).astype("uint8"), + 'DropoutState': state_out + } + + def test_output(self): + self.check_output(no_check_set=['Reserve', 'DropoutState']) + + def set_attrs(self): + pass + + def test_grad(self): + if not self.is_test: + var_name_list = self.get_weight_names() + grad_check_list = ['Input', 'init_h', 'init_c'] + grad_check_list.extend(var_name_list) + self.check_grad(set(grad_check_list), + ['Out', 'last_hidden', 'last_cell']) + + +class TestRNNOp1(TestRNNOp): + + def set_attrs(self): + self.sequence_length = None + + +class TestRNNOp2(TestRNNOp): + + def set_attrs(self): + self.sequence_length = None + self.is_bidirec = True + + +class TestRNNOp3(TestRNNOp): + + def set_attrs(self): + self.is_test = True + self.sequence_length = None + + +class TestRNNOp4(TestRNNOp): + + def set_attrs(self): + self.is_test = True + self.sequence_length = None + self.is_bidirec = True + + +class TestRNNOp5(TestRNNOp): + + def set_attrs(self): + self.num_layers = 2 + + +class TestRNNOp6(TestRNNOp): + + def set_attrs(self): + self.num_layers = 2 + self.is_bidirec = True + + +class TestRNNOp7(TestRNNOp): + + def set_attrs(self): + self.num_layers = 2 + self.is_bidirec = True + self.is_test = True + + +class TestRNNOp8(TestRNNOp): + + def set_attrs(self): + self.num_layers = 2 + self.is_bidirec = True + self.sequence_length = None + + +class TestRNNOp9(TestRNNOp): + + def set_attrs(self): + self.num_layers = 3 + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/fluid/transpiler/memory_optimization_transpiler.py b/python/paddle/fluid/transpiler/memory_optimization_transpiler.py index e91f2043683..0aa4a9d8f54 100755 --- a/python/paddle/fluid/transpiler/memory_optimization_transpiler.py +++ b/python/paddle/fluid/transpiler/memory_optimization_transpiler.py @@ -21,7 +21,7 @@ def memory_optimize(input_program, level=0, skip_grads=True): """ - :api_attr: Static Graph + :api_attr: Static Graph This API is deprecated since 1.6. Please do not use it. The better memory optimization strategies are enabled by default. @@ -43,7 +43,7 @@ def memory_optimize(input_program, def release_memory(input_program, skip_opt_set=None): """ - :api_attr: Static Graph + :api_attr: Static Graph This API is deprecated since 1.6. Please do not use it. The better memory optimization strategies are enabled by default. -- GitLab