未验证 提交 c5f2802d 编写于 作者: C Chengmo 提交者: GitHub

【paddle.fleet】Update fleetrun & ps-heter (#27472)

* refine fleetrun.ps_launch

* update fleet run for multi device support

* ps_graph support ps-gpu

* fix heter save

* add heter save unittest

* fix unittest & simple code

* update fleetrun

* fix fleetrun

* fix launch barrier

* fix role maker

* add paddlecloud rolemaker unittest

* rename heter_worker_device_guard
上级 bbc837ee
......@@ -98,6 +98,7 @@ message AsyncConfig {
optional int32 send_wait_times = 7 [ default = 1 ];
optional bool runtime_split_send_recv = 8 [ default = false ];
optional bool launch_barrier = 9 [ default = true ];
optional string heter_worker_device_guard = 10 [ default = 'cpu' ];
}
message PipelineConfig { optional int32 micro_batch = 1 [ default = 1 ]; }
......
......@@ -530,13 +530,6 @@ class RoleMakerBase(object):
return self._heter_trainer_endpoints[(self._current_id) %
self._heter_worker_num()]
def _get_heter_worker_device(self):
"""
Returns:
string: heter_trainer's device of current node, e.g: CPU/GPU/XPU
"""
return self._heter_trainer_device.upper()
class PaddleCloudRoleMaker(RoleMakerBase):
def __init__(self, is_collective=False, **kwargs):
......@@ -677,10 +670,9 @@ class PaddleCloudRoleMaker(RoleMakerBase):
return self._role == Role.HETER_WORKER
def _ps_env(self):
try:
# Environment variable PADDLE_PSERVERS_IP_PORT_LIST must be set
# format: string(ip:port,ip:port), eg. 127.0.0.1:6001,127.0.0.1:6002
self._server_endpoints = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")
self._server_endpoints = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST", None)
if self._server_endpoints is None:
# back to non_distributed execution.
......@@ -696,14 +688,23 @@ class PaddleCloudRoleMaker(RoleMakerBase):
self._server_endpoints = self._server_endpoints.split(",")
self._worker_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS")
if self._worker_endpoints:
self._worker_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS", None)
if self._worker_endpoints != None:
self._worker_endpoints = self._worker_endpoints.split(",")
else:
self._worker_endpoints = []
trainers_num = int(os.environ["PADDLE_TRAINERS_NUM"])
training_role = os.environ["TRAINING_ROLE"]
trainers_num = os.getenv("PADDLE_TRAINERS_NUM", None)
if trainers_num == None:
raise ValueError(
"Can not find PADDLE_TRAINERS_NUM, please check your environment."
)
trainers_num = int(trainers_num)
training_role = os.getenv("TRAINING_ROLE", None)
if training_role == None:
raise ValueError(
"Can not find TRAINING_ROLE, please check your environment.")
if training_role not in ["TRAINER", "PSERVER", "HETER_TRAINER"]:
raise ValueError(
......@@ -711,11 +712,9 @@ class PaddleCloudRoleMaker(RoleMakerBase):
format(training_role))
# For heter parameter server env setting
heter_trainer_eplist = os.getenv(
"PADDLE_HETER_TRAINER_IP_PORT_LIST", None)
heter_trainer_device = os.getenv("PADDLE_HETER_TRAINER_DEVICE",
None)
if heter_trainer_eplist and heter_trainer_device:
heter_trainer_eplist = os.getenv("PADDLE_HETER_TRAINER_IP_PORT_LIST",
"")
if heter_trainer_eplist != "":
try:
heter_trainer_eplist = os.environ[
"PADDLE_HETER_TRAINER_IP_PORT_LIST"].split(",")
......@@ -726,39 +725,44 @@ class PaddleCloudRoleMaker(RoleMakerBase):
self._is_heter_parameter_server_mode = True
heter_trainers_num = len(heter_trainer_eplist)
current_node_device = heter_trainer_device.upper()
if current_node_device not in ["CPU", "GPU", "XPU"]:
raise ValueError(
"Heter Trainer doesn't support {} device now, please use CPU / GPU / XPU(KunLun)".
format(heter_trainer_device))
self._heter_trainer_device = current_node_device
else:
self._is_heter_parameter_server_mode = False
heter_trainers_num = 0
if training_role == "TRAINER":
role = Role.WORKER
current_id = int(os.environ["PADDLE_TRAINER_ID"])
current_id = os.getenv("PADDLE_TRAINER_ID", None)
if current_id == None:
raise ValueError(
"Can not find PADDLE_TRAINER_ID, please check your environment."
)
current_id = int(current_id)
if len(self._worker_endpoints) > 0:
self._cur_endpoint = self._worker_endpoints[current_id]
elif training_role == "PSERVER":
role = Role.SERVER
port = os.environ["PADDLE_PORT"]
ip = os.environ["POD_IP"]
port = os.getenv("PADDLE_PORT", None)
if port == None:
raise ValueError(
"Can not find PADDLE_PORT, please check your environment.")
ip = os.getenv("POD_IP", None)
if ip == None:
raise ValueError(
"Can not find POD_IP, please check your environment.")
self._cur_endpoint = ip + ":" + port
current_id = self._server_endpoints.index(self._cur_endpoint)
elif training_role == "HETER_TRAINER":
role = Role.HETER_WORKER
cur_ip = os.environ["POD_IP"]
cur_port = os.environ["PADDLE_PORT"]
curr_endpoint = ":".join([cur_ip, cur_port])
current_id = heter_trainer_eplist.index(curr_endpoint)
else:
cur_port = os.getenv("PADDLE_PORT", None)
if cur_port == None:
raise ValueError(
"TRAINING_ROLE must be PSERVER or TRAINER or HETER_TRAINER")
except ValueError as e:
"Can not find PADDLE_PORT, please check your environment.")
cur_ip = os.getenv("POD_IP", None)
if cur_ip == None:
raise ValueError(
"Something wrong with PaddleCloud, please check environment")
"Can not find POD_IP, please check your environment.")
curr_endpoint = ":".join([cur_ip, cur_port])
current_id = heter_trainer_eplist.index(curr_endpoint)
self._trainers_num = trainers_num
self._role = role
......
......@@ -89,14 +89,16 @@ def _parse_args():
description='''start paddle training using multi-process mode.
see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/training/cluster_howto.html#permalink-8--nccl2-
''')
base_group = parser.add_argument_group("Base Parameters")
# Optional arguments for the launch helper
parser.add_argument(
"--ips",
base_group.add_argument(
"--log_dir",
type=str,
default="127.0.0.1",
help="Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..")
parser.add_argument(
default="log",
help="The path for each process's log.If it's not set, the log will printed to default pipe."
)
base_group.add_argument(
"--gpus",
type=str,
default=None,
......@@ -104,22 +106,7 @@ see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/tra
"each process is bound to a single GPU. And if it's not set, this module will use all the gpu cards for training."
)
parser.add_argument(
"--servers", type=str, default="", help="User defined servers ip:port")
parser.add_argument(
"--workers", type=str, default="", help="User defined workers ip:port")
parser.add_argument("--worker_num", type=int, help="number of workers")
parser.add_argument("--server_num", type=int, help="number of servers")
parser.add_argument(
"--log_dir",
type=str,
default="log",
help="The path for each process's log.If it's not set, the log will printed to default pipe."
)
# positional
parser.add_argument(
base_group.add_argument(
"training_script",
type=str,
help="The full path to the single GPU training "
......@@ -127,8 +114,34 @@ see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/tra
"followed by all the arguments for the "
"training script")
# rest from the training program
parser.add_argument('training_script_args', nargs=REMAINDER)
base_group.add_argument('training_script_args', nargs=REMAINDER)
# Optional arguments for the launch helper
# for collective
collective_group = parser.add_argument_group("Collective Parameters")
collective_group.add_argument(
"--ips",
type=str,
default="127.0.0.1",
help="Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..")
ps_group = parser.add_argument_group("Parameter-Server Parameters")
# for parameter server
ps_group.add_argument(
"--servers", type=str, default="", help="User defined servers ip:port")
ps_group.add_argument(
"--workers", type=str, default="", help="User defined workers ip:port")
ps_group.add_argument(
"--heter_workers",
type=str,
default="",
help="User defined heter workers ip:port")
ps_group.add_argument("--worker_num", type=int, help="number of workers")
ps_group.add_argument("--server_num", type=int, help="number of servers")
ps_group.add_argument(
"--heter_worker_num", type=int, help="number of heter_workers")
return parser.parse_args()
......@@ -166,35 +179,6 @@ def get_cluster_from_args(args, gpus):
return get_cluster(node_ips, node_ip, trainer_endpoints, gpus)
def get_gpus(gpus):
if gpus is None:
gpus_num = fluid.core.get_cuda_device_count()
res_gpus = [str(x) for x in range(0, gpus_num)]
else:
cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")
if cuda_visible_devices is None or cuda_visible_devices == "":
res_gpus = [x.strip() for x in gpus.split(',')]
else:
# change gpus into relative values
# e.g. CUDA_VISIBLE_DEVICES=4,5,6,7; args.gpus=4,5,6,7;
# therefore gpus=0,1,2,3
cuda_visible_devices_list = cuda_visible_devices.split(',')
for x in gpus.split(','):
assert x in cuda_visible_devices_list, "Can't find "\
"your gpus %s in CUDA_VISIBLE_DEVICES[%s]."\
% (x, cuda_visible_devices)
res_gpus = [
cuda_visible_devices_list.index(x.strip())
for x in gpus.split(',')
]
logger.info("Change selected_gpus into reletive values. --ips:{} "
"will change into relative_ips:{} according to your "
"CUDA_VISIBLE_DEVICES:{}".format(
gpus, res_gpus, cuda_visible_devices_list))
return res_gpus
def launch_collective(args):
# parse arguments, used for cloud-single-machine and local
gpus = get_gpus(args.gpus)
......@@ -245,209 +229,37 @@ def launch_collective(args):
shutil.rmtree(gloo_rendezvous_dir)
def launch_ps(args):
ports = None
start_port = 6170
if args.server_num:
server_num = args.server_num
ports = get_ports(server_num, 0)
server_endpoints = ",".join(["127.0.0.1:" + str(x) for x in ports])
else:
assert args.servers != "", "The setting of CPU mode must be either server_num or servers."
server_endpoints = args.servers
server_endpoints_ips = [
x.strip().split(":")[0] for x in server_endpoints.split(",")
def launch_ps(args, distribute_mode):
cloud_flag = cloud_utils.use_paddlecloud()
# for ps-cpu on paddlecloud
if cloud_flag and distribute_mode == DistributeMode.PS:
direct_start(args)
return
elif cloud_flag and distribute_mode == DistributeMode.PS_HETER:
cloud_ps_heter_env_set(args)
args.workers = os.getenv("PADDLE_TRAINER_ENDPOINTS")
args.servers = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")
args.heter_workers = os.getenv("PADDLE_HETER_TRAINER_IP_PORT_LIST")
ps_launcher = ParameterServerLauncher(args, distribute_mode)
ps_launcher.start_ps()
return
def which_distributed_mode(args):
ps_args = [
'--worker_num',
'--server_num',
'--heter_worker_num',
'--servers',
'--workers',
'--heter_workers',
]
server_endpoints_port = [
x.strip().split(":")[1] for x in server_endpoints.split(",")
]
server_num = len(server_endpoints_ips)
collective_args = ['--ips']
if args.worker_num:
worker_num = args.worker_num
ports = get_ports(worker_num, server_num)
worker_endpoints = ",".join(["127.0.0.1:" + str(x) for x in ports])
else:
assert args.workers != "", "The setting of CPU mode must be either worker_num or workers."
worker_endpoints = args.workers
worker_endpoints_ips = [
x.strip().split(":")[0] for x in worker_endpoints.split(",")
]
worker_num = len(worker_endpoints_ips)
node_ips = list(set(server_endpoints_ips + worker_endpoints_ips))
worker_endpoints_len = [
len(x.strip().split(":")) for x in worker_endpoints.split(",")
]
if 1 in worker_endpoints_len:
# if no port value in worker_endpoints, will set default port values.
worker_endpoints_port = range(start_port + server_num,
start_port + server_num + worker_num, 1)
else:
worker_endpoints_port = [
x.strip().split(":")[1] for x in worker_endpoints.split(",")
]
# local train
if len(set(node_ips)) == 1:
current_node_ip = node_ips[0]
else:
_, current_node_ip = get_host_name_ip()
assert current_node_ip in node_ips, "Can't find your local ip {%s} in args.servers and args.workers ips: {%s}" \
% (current_node_ip, node_ips)
node_rank = node_ips.index(current_node_ip)
logger.debug(
"parsed from args: node_ips:{} current_node_ip:{} node_rank:{}, server_ports:{}".
format(node_ips, current_node_ip, node_rank, server_endpoints_port))
cluster = Cluster(hdfs=None)
server_rank = 0
worker_rank = 0
for node_rank, ip in enumerate(node_ips):
pod = Pod()
pod.rank = node_rank
pod.addr = ip
for i in range(len(server_endpoints_ips)):
if ip == server_endpoints_ips[i]:
server = Trainer()
server.endpoint = "%s:%s" % (ip, server_endpoints_port[i])
server.rank = server_rank
server_rank += 1
pod.servers.append(server)
for j in range(len(worker_endpoints_ips)):
if ip == worker_endpoints_ips[j]:
worker = Trainer()
worker.endpoint = "%s:%s" % (ip, worker_endpoints_port[i])
worker.rank = worker_rank
worker_rank += 1
pod.workers.append(worker)
cluster.pods.append(pod)
pod_rank = node_ips.index(current_node_ip)
pod = cluster.pods[pod_rank]
default_env = os.environ.copy()
current_env = copy.copy(default_env)
gloo_rendezvous_dir = tempfile.mkdtemp()
# add gloo env
current_env["PADDLE_WITH_GLOO"] = "1"
current_env["PADDLE_GLOO_RENDEZVOUS"] = "3"
current_env["PADDLE_GLOO_FS_PATH"] = gloo_rendezvous_dir
current_env.pop("http_proxy", None)
current_env.pop("https_proxy", None)
procs = []
cmds = []
log_fns = []
for idx, cur_server in enumerate(pod.servers):
proc_env = {
"PADDLE_PSERVERS_IP_PORT_LIST": server_endpoints,
"PADDLE_TRAINER_ENDPOINTS": worker_endpoints,
"PADDLE_PORT": cur_server.endpoint.split(":")[1],
"TRAINING_ROLE": "PSERVER",
"PADDLE_TRAINERS_NUM": str(worker_num),
"POD_IP": cur_server.endpoint.split(":")[0]
}
current_env.update(proc_env)
cmd = [sys.executable, "-u", args.training_script
] + args.training_script_args
cmds.append(cmd)
if idx == 0:
logger.info(
"Local server start {} processes. First process distributed "
"environment info (Only For Debug): {}".format(
len(pod.servers),
pretty_print_envs(proc_env, ("Distributed Envs", "Value"))))
if args.log_dir is not None:
os.system("mkdir -p {}".format(args.log_dir))
fn = open("%s/serverlog.%d" % (args.log_dir, idx), "w")
log_fns.append(fn)
proc = subprocess.Popen(cmd, env=current_env, stdout=fn, stderr=fn)
else:
proc = subprocess.Popen(cmd, env=current_env)
tp = TrainerProc()
tp.proc = proc
tp.rank = cur_server.rank
tp.local_rank = idx
tp.log_fn = fn
tp.log_offset = fn.tell() if fn else None
tp.cmd = cmd
procs.append(tp)
for idx, cur_worker in enumerate(pod.workers):
proc_env = {
"PADDLE_PSERVERS_IP_PORT_LIST": server_endpoints,
"PADDLE_TRAINER_ENDPOINTS": worker_endpoints,
"PADDLE_TRAINERS_NUM": str(worker_num),
"TRAINING_ROLE": "TRAINER",
"PADDLE_TRAINER_ID": str(cur_worker.rank)
}
current_env.update(proc_env)
cmd = [sys.executable, "-u", args.training_script
] + args.training_script_args
cmds.append(cmd)
if idx == 0:
logger.info(
"Local worker start {} processes. First process distributed "
"environment info (Only For Debug): {}".format(
len(pod.workers),
pretty_print_envs(proc_env, ("Distributed Envs", "Value"))))
if args.log_dir is not None:
os.system("mkdir -p {}".format(args.log_dir))
fn = open("%s/workerlog.%d" % (args.log_dir, idx), "w")
log_fns.append(fn)
proc = subprocess.Popen(cmd, env=current_env, stdout=fn, stderr=fn)
else:
proc = subprocess.Popen(cmd, env=current_env)
tp = TrainerProc()
tp.proc = proc
tp.rank = cur_worker.rank
tp.local_rank = idx
tp.log_fn = fn
tp.log_offset = fn.tell() if fn else None
tp.cmd = cmd
procs.append(tp)
logger.info(
"Please check servers and workers logs in {}/workerlog.* and {}/serverlog.*".
format(args.log_dir, args.log_dir))
# only wait worker to finish here
for i, proc in enumerate(procs):
if i < len(pod.servers):
continue
procs[i].proc.wait()
if len(log_fns) > 0:
log_fns[i].close()
print("all workers exit, going to finish parameter server", file=sys.stderr)
for i in range(len(pod.servers)):
if len(log_fns) > 0:
log_fns[i].close()
procs[i].proc.terminate()
print("all parameter server are killed", file=sys.stderr)
if os.path.exists(gloo_rendezvous_dir):
shutil.rmtree(gloo_rendezvous_dir)
ps_heter_args = ["--heter_worker_num", "--heter_workers"]
def launch():
args = _parse_args()
logger = get_logger()
_print_arguments(args)
ps_args = ['--worker_num', '--server_num', '--servers', '--workers']
collective_args = ['--ips', '--gpus']
has_ps_args = [
ps_arg for ps_arg in ps_args if ps_arg in " ".join(sys.argv[1:-1])
]
......@@ -455,23 +267,46 @@ def launch():
co_arg for co_arg in collective_args
if co_arg in " ".join(sys.argv[1:-1])
]
if len(has_ps_args) > 1 and len(has_collective_args) > 1:
raise ValueError(
"Only one mode(Collective or Parameter-Server) can be selected at the same time, but more than one configuration was received."
)
if fluid.core.is_compiled_with_cuda():
cuda_device_num = fluid.core.get_cuda_device_count()
else:
cuda_device_num = 0
if len(has_ps_args) > 0 or cuda_device_num == 0:
logger.info("Run parameter-sever cpu mode. pserver arguments:{}".format(
has_ps_args))
launch_ps(args)
if len(has_ps_args) > 0:
logger.info(
"Run parameter-sever mode. pserver arguments:{}, cuda count:{}".
format(has_ps_args, cuda_device_num))
has_ps_heter_args = list(set(has_ps_args) & set(ps_heter_args))
if len(has_ps_heter_args) > 0:
return DistributeMode.PS_HETER
else:
return DistributeMode.PS
elif len(has_collective_args) > 0:
logger.info("Run collective gpu mode. gpu arguments:{}, cuda count:{}".
format(has_collective_args, cuda_device_num))
launch_collective(args)
return DistributeMode.COLLECTIVE
else:
logger.warning(
"Not found distinct arguments. Default use gpu collective mode")
return DistributeMode.COLLECTIVE
def launch():
args = _parse_args()
logger = get_logger()
_print_arguments(args)
distribute_mode = which_distributed_mode(args)
if distribute_mode == DistributeMode.COLLECTIVE:
launch_collective(args)
else:
launch_ps(args, distribute_mode)
if __name__ == "__main__":
......
......@@ -21,13 +21,27 @@ import signal
import copy
import sys
import subprocess
import tempfile
import shutil
from contextlib import closing
import socket
import warnings
import paddle
import paddle.fluid as fluid
logger = logging.getLogger("root")
logger.propagate = False
class DistributeMode:
"""
There are various mode for fleetrun, each of them is designed for different model.
"""
COLLECTIVE = 0
PS = 1
PS_HETER = 2
class Cluster(object):
def __init__(self, hdfs):
self.job_server = None
......@@ -144,14 +158,16 @@ class Pod(object):
self.trainers = []
self.servers = []
self.workers = []
self.heter_workers = []
self.gpus = []
def __str__(self):
return "rank:{} id:{} addr:{} port:{} visible_gpu:{} trainers:{} servers:{} \
workers:{}".format(self.rank, self.id, self.addr, self.port,
self.gpus, [str(t) for t in self.trainers],
[str(s) for s in self.servers],
[str(w) for w in self.workers])
workers:{} heter_workers:{}".format(
self.rank, self.id, self.addr, self.port, self.gpus, [
str(t) for t in self.trainers
], [str(s) for s in self.servers], [str(w) for w in self.workers],
[str(h) for h in self.heter_workers])
def __eq__(self, pod):
if self.rank != pod.rank or \
......@@ -262,7 +278,7 @@ def terminate_local_procs(procs):
p.log_fn.close()
logger.debug("terminate process id:{}".format(p.proc.pid))
#wait all process terminiated
# wait all process terminiated
time.sleep(3)
for step in range(0, 50):
alive = False
......@@ -406,10 +422,10 @@ def start_local_trainers(cluster,
else:
current_env = copy.copy(envs)
#paddle broadcast ncclUniqueId use socket, and
#proxy maybe make trainers unreachable, so delete them.
#if we set them to "", grpc will log error message "bad uri"
#so just delete them.
# paddle broadcast ncclUniqueId use socket, and
# proxy maybe make trainers unreachable, so delete them.
# if we set them to "", grpc will log error message "bad uri"
# so just delete them.
current_env.pop("http_proxy", None)
current_env.pop("https_proxy", None)
......@@ -518,3 +534,524 @@ def watch_local_trainers(procs, nranks):
raise
return alive
def get_gpus(gpus):
if gpus is None:
gpus_num = fluid.core.get_cuda_device_count()
res_gpus = [str(x) for x in range(0, gpus_num)]
else:
cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")
if cuda_visible_devices is None or cuda_visible_devices == "":
res_gpus = [x.strip() for x in gpus.split(',')]
else:
# change gpus into relative values
# e.g. CUDA_VISIBLE_DEVICES=4,5,6,7; args.gpus=4,5,6,7;
# therefore gpus=0,1,2,3
cuda_visible_devices_list = cuda_visible_devices.split(',')
for x in gpus.split(','):
assert x in cuda_visible_devices_list, "Can't find "\
"your gpus %s in CUDA_VISIBLE_DEVICES[%s]."\
% (x, cuda_visible_devices)
res_gpus = [
cuda_visible_devices_list.index(x.strip())
for x in gpus.split(',')
]
logger.info("Change selected_gpus into reletive values. --ips:{} "
"will change into relative_ips:{} according to your "
"CUDA_VISIBLE_DEVICES:{}".format(
gpus, res_gpus, cuda_visible_devices_list))
return res_gpus
def direct_start(args):
# run ps-cpu mode on paddlecloud, using given envs
cmd = [sys.executable, "-u", args.training_script] + \
args.training_script_args
proc = subprocess.Popen(cmd)
proc.wait()
return
def get_custom_endpoints(origin_endpoints, offset=0):
"""
origin_endpoint: ip:port
user_define_endpoint: ip:(port+offset)
"""
assert origin_endpoints != None
paddle_user_define_endpoints_list = []
for ip_port in origin_endpoints.split(","):
ip = ip_port.split(":")[0]
port = ip_port.split(":")[1]
new_port = int(port) + offset
paddle_user_define_endpoints_list.append(":".join((ip, str(new_port))))
paddle_user_define_endpoints = ",".join(paddle_user_define_endpoints_list)
return paddle_user_define_endpoints
def cloud_ps_heter_env_set(args):
environs = {}
paddle_trainer_endpoints = os.getenv("TRAINER_IP_PORT_LIST", "")
assert paddle_trainer_endpoints != None
paddle_pserver_endpoints = os.getenv("PSERVER_IP_PORT_LIST", "")
assert paddle_pserver_endpoints != None
# hard code for paddlecloud custom-framework
avilable_ports = os.getenv("TRAINER_PORTS", "").split(",")
assert len(
avilable_ports
) > 3, "set paddle_ports_num >= 2 in config.ini for paddlecloud job submit"
# hard code for paddlecloud custom-framework
trainers_num = len(paddle_pserver_endpoints.split(","))
assert trainers_num != 0
environs["PADDLE_TRAINERS_NUM"] = trainers_num
environs["TRAINERS_NUM"] = trainers_num
# hard code for paddlecloud custom-framework
environs["PADDLE_HETER_TRAINER_IP_PORT_LIST"] = paddle_trainer_endpoints
environs["PADDLE_PSERVERS_IP_PORT_LIST"] = paddle_pserver_endpoints
environs["PADDLE_TRAINER_ENDPOINTS"] = get_custom_endpoints(
paddle_pserver_endpoints, 1)
heter_worker_num = len(paddle_trainer_endpoints.split(","))
if (args.heter_worker_num != None) and (
heter_worker_num != args.heter_worker_num):
warnings.warn(
"Your fleetrun setting: heter_worker_num is {}, but we find {} device can be used, this setting has been changed.".
format(args.heter_worker_num, heter_worker_num))
args.heter_worker_num = heter_worker_num
for k, v in environs.items():
os.environ[k] = str(v)
logger.info("Set heter parameter server env: {}".format(
pretty_print_envs(environs)))
class ParameterServerLauncher(object):
def __init__(self, args, distribute_mode):
self.args = args
self.distribute_mode = distribute_mode
self.server_num = 0
self.worker_num = 0
self.heter_worker_num = 0
self.server_endpoints = ""
self.server_endpoints_ips = []
self.server_endpoints_port = []
self.worker_endpoints = ""
self.worker_endpoints_ips = []
self.worker_endpoints_port = []
self.heter_worker_endpoints = ""
self.heter_worker_endpoints_ips = []
self.heter_worker_endpoints_port = []
self.is_local = True
self.current_node_ip = ""
self.get_role_endpoints(args)
def get_role_endpoints(self, args):
# get server envs
if args.server_num:
self.server_num = args.server_num
if args.servers:
assert len(
args.servers.split(",")
) == self.server_num, "The server_num and servers doesn't match. Expect servers endpoints num epual to server_num, but received servers enpoint num: {} and server_num {}".format(
len(args.servers.split(",")), self.server_num)
self.server_endpoints = args.servers
else:
ports = get_ports(self.server_num, 0)
self.server_endpoints = ",".join(
["127.0.0.1:" + str(x) for x in ports])
else:
assert args.servers != "", "The setting of Parameter-Server must has server_num or servers."
self.server_endpoints = args.servers
self.server_num = len(self.server_endpoints.split(","))
# get worker envs
if args.worker_num:
self.worker_num = args.worker_num
if args.workers:
assert len(
args.workers.split(",")
) == self.worker_num, "The worker_num and workers doesn't match. Expect workers endpoints num epual to worker_num, but received workers enpoint num: {} and worker_num {}".format(
len(args.workers.split(",")), self.worker_num)
self.worker_endpoints = args.workers
else:
ports = get_ports(self.worker_num, self.server_num)
self.worker_endpoints = ",".join(
["127.0.0.1:" + str(x) for x in ports])
else:
assert args.workers != "", "The setting of Parameter-Server must has worker_num or workers."
worker_endpoints_ips = [
x.strip().split(":")[0] for x in args.workers.split(",")
]
self.worker_num = len(worker_endpoints_ips)
worker_endpoints_len = [
len(x.strip().split(":")) for x in args.workers.split(",")
]
if 1 in worker_endpoints_len:
# if no port value in worker_endpoints, will set default port values.
start_port = 6170
worker_endpoints_port = range(
start_port + self.server_num,
start_port + self.server_num + self.worker_num, 1)
# create endpoints str
worker_endpoints = []
for i in range(self.worker_num):
worker_endpoints.append(":".join((worker_endpoints_ips[
i], str(worker_endpoints_port[i]))))
self.worker_endpoints = ",".join(worker_endpoints)
else:
self.worker_endpoints = args.workers
# get heter worker envs
if self.distribute_mode == DistributeMode.PS_HETER:
if args.heter_worker_num:
self.heter_worker_num = args.heter_worker_num
if args.heter_workers:
assert len(
args.heter_workers.split(",")
) == self.heter_worker_num, "The heter_worker_num and heter_workers doesn't match. Expect heter_workers endpoints num epual to heter_worker_num, but received heter_workers enpoint num: {} and heter_worker_num {}".format(
len(args.heter_workers.split(",")),
self.heter_worker_num)
self.heter_worker_endpoints = args.heter_workers
else:
ports = get_ports(self.heter_worker_num,
self.server_num + self.worker_num)
self.heter_worker_endpoints = ",".join(
["127.0.0.1:" + str(x) for x in ports])
else:
assert args.heter_workers != "", "The setting of Parameter-Server heter mode must has heter_worker_num or heter_workers."
self.heter_worker_endpoints = args.heter_workers
self.heter_worker_num = len(
self.heter_worker_endpoints.split(","))
# check local or user define
self.server_endpoints_ips = [
x.strip().split(":")[0] for x in self.server_endpoints.split(",")
]
self.worker_endpoints_ips = [
x.strip().split(":")[0] for x in self.worker_endpoints.split(",")
]
self.server_endpoints_port = [
x.strip().split(":")[1] for x in self.server_endpoints.split(",")
]
self.worker_endpoints_port = [
x.strip().split(":")[1] for x in self.worker_endpoints.split(",")
]
self.node_ips = list(
set(self.server_endpoints_ips + self.worker_endpoints_ips))
if self.distribute_mode == DistributeMode.PS_HETER:
self.heter_worker_endpoints_ips = [
x.strip().split(":")[0]
for x in self.heter_worker_endpoints.split(",")
]
self.heter_worker_endpoints_port = [
x.strip().split(":")[1]
for x in self.heter_worker_endpoints.split(",")
]
self.node_ips = list(
set(self.node_ips + self.heter_worker_endpoints_ips))
if len(set(self.node_ips)) == 1:
self.is_local = True
self.current_node_ip = self.node_ips[0]
else:
self.is_local = False
pod_ip = os.getenv("POD_IP", None)
if pod_ip == None:
_, self.current_node_ip = get_host_name_ip()
else:
self.current_node_ip = pod_ip
assert self.current_node_ip in self.node_ips, "Can't find your local ip {%s} in args.servers and args.workers ips: {%s}" \
% (self.current_node_ip, self.node_ips)
self.node_rank = self.node_ips.index(self.current_node_ip)
logger.debug(
"parsed from args: node_ips:{} current_node_ip:{} node_rank:{}".
format(self.node_ips, self.current_node_ip, self.node_rank))
def start_ps(self):
cluster = Cluster(hdfs=None)
server_rank = 0
worker_rank = 0
heter_worker_rank = 0
for node_rank, ip in enumerate(self.node_ips):
pod = Pod()
pod.rank = node_rank
pod.addr = ip
for i in range(len(self.server_endpoints_ips)):
if ip == self.server_endpoints_ips[i]:
server = Trainer()
server.endpoint = "%s:%s" % (ip,
self.server_endpoints_port[i])
server.rank = server_rank
server_rank += 1
pod.servers.append(server)
for j in range(len(self.worker_endpoints_ips)):
if ip == self.worker_endpoints_ips[j]:
worker = Trainer()
worker.endpoint = "%s:%s" % (ip,
self.worker_endpoints_port[j])
worker.rank = worker_rank
worker_rank += 1
pod.workers.append(worker)
for k in range(len(self.heter_worker_endpoints_ips)):
if ip == self.heter_worker_endpoints_ips[k]:
heter_worker = Trainer()
heter_worker.endpoint = "%s:%s" % (
ip, self.heter_worker_endpoints_port[k])
heter_worker.rank = heter_worker_rank
heter_worker_rank += 1
pod.heter_workers.append(heter_worker)
cluster.pods.append(pod)
pod = cluster.pods[self.node_rank]
self.gloo_rendezvous_dir = tempfile.mkdtemp()
# 3. subproces start
self.procs = {"worker": [], "server": [], "heter_worker": []}
self.cmds = {"worker": [], "server": [], "heter_worker": []}
self.log_fns = {"worker": [], "server": [], "heter_worker": []}
self.start_pod_server(self.args, pod)
self.start_pod_worker(self.args, pod)
self.start_pod_heter_worker(self.args, pod)
logger.info(
"Please check servers, workers and heter_worker logs in {}/workerlog.*, {}/serverlog.* and {}/heterlog.*".
format(self.args.log_dir, self.args.log_dir, self.args.log_dir))
# 4. wait for finish training
if len(self.procs["worker"]) > 0:
# if node has worker procs
# only wait worker to finish here
for i, proc in enumerate(self.procs["worker"]):
self.procs["worker"][i].proc.wait()
if len(self.log_fns["worker"]) > 0:
self.log_fns["worker"][i].close()
logger.info(
"all workers exit, going to finish parameter server and heter_worker."
)
if len(self.procs["heter_worker"]) > 0:
for i, proc in enumerate(self.procs["heter_worker"]):
self.log_fns["heter_worker"][i].close()
self.procs["heter_worker"][i].proc.terminate()
logger.info("all heter_worker are killed")
if len(self.procs["server"]) > 0:
for i, proc in enumerate(self.procs["server"]):
self.log_fns["server"][i].close()
self.procs["server"][i].proc.terminate()
logger.info("all parameter server are killed")
else:
# if node has not worker procs
# blocking training process
if len(self.procs["server"]) > 0:
for i, proc in enumerate(self.procs["server"]):
self.procs["server"][i].proc.wait()
if len(self.procs["heter_worker"]) > 0:
for i, proc in enumerate(self.procs["heter_worker"]):
self.procs["heter_worker"][i].proc.wait()
if os.path.exists(self.gloo_rendezvous_dir):
shutil.rmtree(self.gloo_rendezvous_dir)
def start_pod_server(self, args, pod):
default_env = os.environ.copy()
current_env = copy.copy(default_env)
current_env.pop("http_proxy", None)
current_env.pop("https_proxy", None)
for idx, cur_server in enumerate(pod.servers):
proc_env = {
"PADDLE_PSERVERS_IP_PORT_LIST": self.server_endpoints,
"PADDLE_TRAINER_ENDPOINTS": self.worker_endpoints,
"PADDLE_HETER_TRAINER_IP_PORT_LIST":
self.heter_worker_endpoints,
"PADDLE_PORT": cur_server.endpoint.split(":")[1],
"TRAINING_ROLE": "PSERVER",
"PADDLE_TRAINERS_NUM": str(self.worker_num),
"POD_IP": cur_server.endpoint.split(":")[0],
"PADDLE_WITH_GLOO": "1",
"PADDLE_GLOO_RENDEZVOUS": "2",
"PADDLE_GLOO_FS_PATH": self.gloo_rendezvous_dir
}
current_env.update(proc_env)
cmd = [sys.executable, "-u", args.training_script
] + args.training_script_args
self.cmds["server"].append(cmd)
if idx == 0:
logger.info(
"Local server start {} processes. First process distributed "
"environment info (Only For Debug): {}".format(
len(pod.servers),
pretty_print_envs(proc_env, ("Distributed Envs", "Value"
))))
if args.log_dir is not None:
os.system("mkdir -p {}".format(args.log_dir))
fn = open("%s/serverlog.%d" % (args.log_dir, idx), "w")
self.log_fns["server"].append(fn)
proc = subprocess.Popen(
cmd, env=current_env, stdout=fn, stderr=fn)
else:
proc = subprocess.Popen(cmd, env=current_env)
tp = TrainerProc()
tp.proc = proc
tp.rank = cur_server.rank
tp.local_rank = idx
tp.log_fn = fn
tp.log_offset = fn.tell() if fn else None
tp.cmd = cmd
self.procs["server"].append(tp)
def start_pod_worker(self, args, pod):
default_env = os.environ.copy()
current_env = copy.copy(default_env)
current_env.pop("http_proxy", None)
current_env.pop("https_proxy", None)
heter_device_num = 0
device_list = []
if fluid.core.is_compiled_with_cuda():
device_list = get_gpus(args.gpus)
heter_device_num = len(device_list)
elif fluid.core.is_compiled_with_xpu():
heter_device_num = fluid.core.get_xpu_device_count()
device_list = [str(x) for x in range(0, heter_device_num)]
for idx, cur_worker in enumerate(pod.workers):
device_id = str(device_list[idx % heter_device_num])
proc_env = {
"PADDLE_PSERVERS_IP_PORT_LIST": self.server_endpoints,
"PADDLE_TRAINER_ENDPOINTS": self.worker_endpoints,
"PADDLE_TRAINERS_NUM": str(self.worker_num),
"PADDLE_HETER_TRAINER_IP_PORT_LIST":
self.heter_worker_endpoints,
"TRAINING_ROLE": "TRAINER",
"PADDLE_TRAINER_ID": str(cur_worker.rank),
"PADDLE_WITH_GLOO": "1",
"PADDLE_GLOO_RENDEZVOUS": "2",
"PADDLE_GLOO_FS_PATH": self.gloo_rendezvous_dir,
"FLAGS_selected_gpus": "0",
"FLAGS_selected_xpus": "0",
"CUDA_VISIBLE_DEVICES": device_id,
"XPU_VISIBLE_DEVICES": device_id,
}
current_env.update(proc_env)
cmd = [sys.executable, "-u", args.training_script
] + args.training_script_args
self.cmds["worker"].append(cmd)
if idx == 0:
logger.info(
"Local worker start {} processes. First process distributed "
"environment info (Only For Debug): {}".format(
len(pod.workers),
pretty_print_envs(proc_env, ("Distributed Envs", "Value"
))))
if args.log_dir is not None:
os.system("mkdir -p {}".format(args.log_dir))
fn = open("%s/workerlog.%d" % (args.log_dir, idx), "w")
self.log_fns["worker"].append(fn)
proc = subprocess.Popen(
cmd, env=current_env, stdout=fn, stderr=fn)
else:
proc = subprocess.Popen(cmd, env=current_env)
tp = TrainerProc()
tp.proc = proc
tp.rank = cur_worker.rank
tp.local_rank = idx
tp.log_fn = fn
tp.log_offset = fn.tell() if fn else None
tp.cmd = cmd
self.procs["worker"].append(tp)
def start_pod_heter_worker(self, args, pod):
default_env = os.environ.copy()
current_env = copy.copy(default_env)
current_env.pop("http_proxy", None)
current_env.pop("https_proxy", None)
heter_device_num = 0
device_list = []
if fluid.core.is_compiled_with_cuda():
device_list = get_gpus(args.gpus)
heter_device_num = len(device_list)
elif fluid.core.is_compiled_with_xpu():
heter_device_num = fluid.core.get_xpu_device_count()
device_list = [str(x) for x in range(0, heter_device_num)]
assert heter_device_num != 0
for idx, cur_heter_worker in enumerate(pod.heter_workers):
device_id = str(device_list[idx % heter_device_num])
proc_env = {
"PADDLE_PSERVERS_IP_PORT_LIST": self.server_endpoints,
"PADDLE_TRAINER_ENDPOINTS": self.worker_endpoints,
"PADDLE_HETER_TRAINER_IP_PORT_LIST":
self.heter_worker_endpoints,
"PADDLE_PORT": cur_heter_worker.endpoint.split(":")[1],
"TRAINING_ROLE": "HETER_TRAINER",
"PADDLE_TRAINERS_NUM": str(self.worker_num),
"POD_IP": cur_heter_worker.endpoint.split(":")[0],
"PADDLE_WITH_GLOO": "1",
"PADDLE_GLOO_RENDEZVOUS": "2",
"PADDLE_GLOO_FS_PATH": self.gloo_rendezvous_dir,
"FLAGS_selected_gpus": "0",
"FLAGS_selected_xpus": "0",
"CUDA_VISIBLE_DEVICES": device_id,
"XPU_VISIBLE_DEVICES": device_id,
}
current_env.update(proc_env)
cmd = [sys.executable, "-u", args.training_script
] + args.training_script_args
self.cmds["heter_worker"].append(cmd)
if idx == 0:
logger.info(
"Local heter_worker start {} processes. First process distributed "
"environment info (Only For Debug): {}".format(
len(pod.heter_workers),
pretty_print_envs(proc_env, ("Distributed Envs", "Value"
))))
if args.log_dir is not None:
os.system("mkdir -p {}".format(args.log_dir))
fn = open("%s/heterlog.%d" % (args.log_dir, idx), "w")
self.log_fns["heter_worker"].append(fn)
proc = subprocess.Popen(
cmd, env=current_env, stdout=fn, stderr=fn)
else:
proc = subprocess.Popen(cmd, env=current_env)
tp = TrainerProc()
tp.proc = proc
tp.rank = cur_heter_worker.rank
tp.local_rank = idx
tp.log_fn = fn
tp.log_offset = fn.tell() if fn else None
tp.cmd = cmd
self.procs["heter_worker"].append(tp)
......@@ -74,6 +74,8 @@ class ParameterServerOptimizer(MetaOptimizerBase):
_startup = worker.delet_extra_optimizes_pass(_startup,
compiled_config)
compiled_config.set_origin_ps_main_program(_main)
compiled_config.set_origin_ps_startup_program(_startup)
# for heter program
if self.role_maker._is_heter_parameter_server_mode:
from paddle.fluid.incubate.fleet.parameter_server.ir import heter_trainer_pass as heter_worker
......@@ -91,6 +93,8 @@ class ParameterServerOptimizer(MetaOptimizerBase):
else:
_main = worker.append_send_ops_pass(_main, compiled_config)
_startup = _startup
compiled_config.set_origin_ps_main_program(_main)
compiled_config.set_origin_ps_startup_program(_startup)
return _main, _startup
......
......@@ -210,18 +210,23 @@ class ParameterServerRuntime(RuntimeBase):
warnings.warn("communicator has been initialized, skip")
def _get_executor(self):
if self.role_maker._is_heter_worker():
if self.role_maker._get_heter_worker_device() == "GPU":
gpu_id = int(os.getenv("FLAGS_selected_gpus", "0"))
executor = Executor(fluid.CUDAPlace(gpu_id))
elif self.role_maker._get_heter_worker_device() == "XPU":
xpu_id = int(os.getenv("FLAGS_selected_xpus", "0"))
executor = Executor(fluid.XPUPlace(xpu_id))
else:
raise ValueError("Not Support Device {}".format(
self.role_maker._get_heter_worker_device()))
else:
executor = fluid.Executor(fluid.CPUPlace())
if self.role_maker._is_heter_parameter_server_mode:
heter_worker_device_guard = self.context[
"valid_strategy"].a_sync_configs[
"heter_worker_device_guard"].upper()
if heter_worker_device_guard not in ["GPU", "XPU", "CPU"]:
raise ValueError("Heter Worker Not Support Device {}".format(
heter_worker_device_guard))
if self.role_maker._is_heter_worker():
if heter_worker_device_guard == "GPU":
executor = Executor(
fluid.CUDAPlace(
int(os.getenv("FLAGS_selected_gpus", "0"))))
elif heter_worker_device_guard == "XPU":
executor = Executor(
fluid.XPUPlace(
int(os.getenv("FLAGS_selected_xpus", "0"))))
return executor
def _init_server(self, *args, **kwargs):
......@@ -233,12 +238,14 @@ class ParameterServerRuntime(RuntimeBase):
model_dirname = None
executor = self._get_executor()
if self.role_maker._is_heter_worker() and self.context[
"valid_strategy"].a_sync_configs["launch_barrier"]:
# for heter trainer wait server ready
wait_server_ready(self.role_maker._get_pserver_endpoints())
executor.run(fluid.default_startup_program())
if self.role_maker._is_heter_worker():
self._init_worker()
if self.role_maker._is_heter_worker():
return
if not model_dirname:
......@@ -470,13 +477,13 @@ class ParameterServerRuntime(RuntimeBase):
def _save_distributed_persistables(self, executor, dirname, main_program):
dense_ctx = self.compiled_strategy.get_communicator_recv_context(
recv_type=1)
recv_type=1, use_origin_program=True)
sparse_ctx = self.compiled_strategy.get_communicator_recv_context(
recv_type=2)
recv_type=2, use_origin_program=True)
distributed_ctx = self.compiled_strategy.get_communicator_recv_context(
recv_type=3)
recv_type=3, use_origin_program=True)
recv_dense_varnames = self._save_dense_params(executor, dirname,
dense_ctx, main_program)
......@@ -528,7 +535,7 @@ class ParameterServerRuntime(RuntimeBase):
)
if main_program is None:
main_program = fluid.default_main_program()
main_program = self.compiled_strategy.get_origin_ps_main_program()
if isinstance(main_program, CompiledProgram):
raise TypeError(
......
......@@ -133,6 +133,8 @@ class CompileTimeStrategy(object):
self.origin_main_program = main_program
self.origin_startup_program = startup_program
self.origin_ps_main_program = main_program
self.origin_ps_startup_program = startup_program
self.strategy = strategy
self.role_maker = role_maker
......@@ -153,6 +155,11 @@ class CompileTimeStrategy(object):
self._build_var_distributed()
# for heter-ps save variables
self.origin_merged_variables_pairs = list(self.merged_variables_pairs)
self.origin_merged_dense_pairs = list(self.merged_dense_pairs)
self.origin_merged_sparse_pairs = list(self.merged_sparse_pairs)
def get_distributed_mode(self):
trainer = self.strategy.get_trainer_runtime_config()
return trainer.mode
......@@ -214,6 +221,18 @@ class CompileTimeStrategy(object):
def get_origin_startup_program(self):
return self.origin_startup_program
def set_origin_ps_main_program(self, program):
self.origin_ps_main_program = program
def set_origin_ps_startup_program(self, program):
self.origin_ps_startup_program = program
def get_origin_ps_main_program(self):
return self.origin_ps_main_program
def get_origin_ps_startup_program(self):
return self.origin_ps_startup_program
def get_sparse_varname_on_ps(self, is_distributed, endpoint=None):
if not endpoint:
endpoint = self.get_ps_endpoint()
......@@ -378,7 +397,9 @@ class CompileTimeStrategy(object):
send_ctx[name] = ctx
return send_ctx
def get_communicator_recv_context(self, recv_type=1):
def get_communicator_recv_context(self,
recv_type=1,
use_origin_program=False):
# recv_type
# 1 : DENSE 2. SPARSE 3. DISTRIBUTED 4. ALL
distibuted_varnames = get_sparse_tablenames(self.origin_main_program,
......@@ -392,7 +413,8 @@ class CompileTimeStrategy(object):
sparse_recv_ctx = {}
distributed_recv_ctx = {}
for merged in self.merged_variables_pairs:
variables_pairs = self.merged_variables_pairs if not use_origin_program else self.origin_merged_variables_pairs
for merged in variables_pairs:
params = merged[0]
if params.merged_var.name in sparse_varnames:
continue
......
......@@ -169,6 +169,10 @@ class TestHeterPsCTR2x2(FleetDistHeterRunnerBase):
except fluid.core.EOFException:
self.reader.reset()
if fleet.is_first_worker():
model_path = tempfile.mkdtemp()
fleet.save_persistables(executor=exe, dirname=model_path)
shutil.rmtree(model_path)
fleet.stop_worker()
def do_dataset_training(self, fleet):
......
......@@ -20,8 +20,12 @@ from paddle.fluid.incubate.fleet.base import role_maker
input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
input_y = fluid.layers.cast(input_y, dtype="float32")
with fluid.device_guard("gpu"):
input_y = fluid.layers.cast(input_y, dtype="int64")
cost = mlp(input_x, input_y)
cost = mlp(input_x, input_y)
optimizer = fluid.optimizer.Adagrad(learning_rate=0.01)
role = role_maker.PaddleCloudRoleMaker()
......
......@@ -288,7 +288,7 @@ class TestFleetHeterBase(unittest.TestCase):
print("tr end communicate")
tr0_ret = tr0.returncode
tr1_ret = tr0.returncode
tr1_ret = tr1.returncode
# close trainer file
tr0_pipe.close()
......
......@@ -50,6 +50,10 @@ class TestDistFleetHeterProgram(unittest.TestCase):
def build_strategy(self):
self.strategy = paddle.distributed.fleet.DistributedStrategy()
self.strategy.a_sync = True
self.strategy.a_sync_configs = {
"launch_barrier": False,
"heter_worker_device_guard": "gpu"
}
return self.strategy
def build_input(self):
......
......@@ -28,13 +28,27 @@ function test_launch_ps(){
fi
}
function test_launch_ps_heter(){
fleetrun --server_num=2 --worker_num=2 --heter_worker_num=2 fleet_ps_training.py 2> ut.elog
if grep -q "server are killed" ut.elog; then
echo "test heter pserver launch succeed"
else
echo "test pserver launch failed"
exit -1
fi
}
if [[ ${WITH_GPU} == "OFF" ]]; then
echo "in cpu test mode"
test_launch_ps
exit 0
fi
echo "No.1 unittest"
test_launch_ps
test_launch_ps_heter
# use default values
echo "No.2 unittest"
fleetrun multi_process.py fleetrun
# use paddlecloud
......@@ -48,6 +62,7 @@ export PADDLE_TRAINER_ID=0
export PADDLE_PORT=35789
export TRAINER_PORTS_NUM=2
echo "No.3 unittest"
distributed_args="--ips=${cluster_node_ips} --gpus=0,1 --log_dir=testlog"
CUDA_VISIBLE_DEVICES=0,1 fleetrun ${distributed_args} multi_process.py fleetrun
......@@ -83,7 +98,7 @@ fi
unset PADDLE_PORT
export DISTRIBUTED_TRAINER_ENDPOINTS=127.0.0.1:6170,127.0.0.1:6171,127.0.0.2:6170,127.0.0.2:6171
echo ""
echo "No.4 unittest"
echo "paddle.distributed.launch async poll process test"
if ! CUDA_VISIBLE_DEVICES=0,1 fleetrun ${distributed_args} multi_process.py fleetrun abort; then
echo "train abort as planned"
......@@ -112,5 +127,6 @@ rm -rf $file_0_0 $file_0_1
distributed_args="--gpus=0,1 --log_dir=testlog"
export PADDLE_LAUNCH_LOG="test_launch_filelock_0"
echo "No.5 unittest"
CUDA_VISIBLE_DEVICES=0,1 fleetrun ${distributed_args} find_ports.py
str_0="worker_endpoints:127.0.0.1:6070,127.0.0.1:6071"
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test cloud role maker."""
from __future__ import print_function
import os
import platform
import shutil
import tempfile
import unittest
import paddle
import paddle.distributed.fleet.base.role_maker as role_maker
class TestPSCloudRoleMakerCase1(unittest.TestCase):
"""
Test cases for PaddleCloudRoleMake Parameter Server.
"""
def setUp(self):
os.environ[
"PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:4001,127.0.0.1:4002"
def test_paddle_trainers_num(self):
# PADDLE_TRAINERS_NUM
ro = role_maker.PaddleCloudRoleMaker(is_collective=False)
self.assertRaises(ValueError, ro._generate_role)
class TestPSCloudRoleMakerCase2(unittest.TestCase):
"""
Test cases for PaddleCloudRoleMake Parameter Server.
"""
def setUp(self):
os.environ[
"PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:4001,127.0.0.1:4002"
os.environ["PADDLE_TRAINERS_NUM"] = str(2)
def test_training_role(self):
# TRAINING_ROLE
ro = role_maker.PaddleCloudRoleMaker(is_collective=False)
self.assertRaises(ValueError, ro._generate_role)
class TestPSCloudRoleMakerCase3(unittest.TestCase):
"""
Test cases for PaddleCloudRoleMake Parameter Server.
"""
def setUp(self):
os.environ[
"PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:4001,127.0.0.1:4002"
os.environ["PADDLE_TRAINERS_NUM"] = str(2)
os.environ["TRAINING_ROLE"] = 'TRAINER'
def test_trainer_id(self):
# PADDLE_TRAINER_ID
ro = role_maker.PaddleCloudRoleMaker(is_collective=False)
self.assertRaises(ValueError, ro._generate_role)
class TestPSCloudRoleMakerCase4(unittest.TestCase):
"""
Test cases for PaddleCloudRoleMake Parameter Server.
"""
def setUp(self):
os.environ[
"PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:4001,127.0.0.1:4002"
os.environ["PADDLE_TRAINERS_NUM"] = str(2)
os.environ["TRAINING_ROLE"] = 'PSERVER'
def test_ps_port(self):
# PADDLE_PORT
ro = role_maker.PaddleCloudRoleMaker(is_collective=False)
self.assertRaises(ValueError, ro._generate_role)
class TestPSCloudRoleMakerCase5(unittest.TestCase):
"""
Test cases for PaddleCloudRoleMake Parameter Server.
"""
def setUp(self):
os.environ[
"PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:4001,127.0.0.1:4002"
os.environ["PADDLE_TRAINERS_NUM"] = str(2)
os.environ["TRAINING_ROLE"] = 'PSERVER'
os.environ["PADDLE_PORT"] = str(4001)
def test_ps_ip(self):
# POD_IP
ro = role_maker.PaddleCloudRoleMaker(is_collective=False)
self.assertRaises(ValueError, ro._generate_role)
class TestPSCloudRoleMakerCase6(unittest.TestCase):
"""
Test cases for PaddleCloudRoleMake Parameter Server.
"""
def setUp(self):
os.environ[
"PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:4001,127.0.0.1:4002"
os.environ[
"PADDLE_HETER_TRAINER_IP_PORT_LIST"] = "127.0.0.1:4003,127.0.0.1:4004"
os.environ["PADDLE_TRAINERS_NUM"] = str(2)
os.environ["TRAINING_ROLE"] = 'HETER_TRAINER'
def test_heter_port(self):
# PADDLE_PORT
ro = role_maker.PaddleCloudRoleMaker(is_collective=False)
self.assertRaises(ValueError, ro._generate_role)
class TestPSCloudRoleMakerCase7(unittest.TestCase):
"""
Test cases for PaddleCloudRoleMake Parameter Server.
"""
def setUp(self):
os.environ[
"PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:4001,127.0.0.1:4002"
os.environ[
"PADDLE_HETER_TRAINER_IP_PORT_LIST"] = "127.0.0.1:4003,127.0.0.1:4004"
os.environ["PADDLE_TRAINERS_NUM"] = str(2)
os.environ["TRAINING_ROLE"] = 'HETER_TRAINER'
os.environ["PADDLE_PORT"] = str(4003)
def test_heter_ip(self):
# POD_IP
ro = role_maker.PaddleCloudRoleMaker(is_collective=False)
self.assertRaises(ValueError, ro._generate_role)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册