Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
c50fb58c
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c50fb58c
编写于
6月 18, 2019
作者:
C
cjt222
提交者:
GitHub
6月 18, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test=release/1.5 (#18134)
cherry pick for deform roi pooling
上级
1810bfb4
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
1786 addition
and
0 deletion
+1786
-0
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/operators/deformable_psroi_pooling_op.cc
paddle/fluid/operators/deformable_psroi_pooling_op.cc
+270
-0
paddle/fluid/operators/deformable_psroi_pooling_op.cu
paddle/fluid/operators/deformable_psroi_pooling_op.cu
+523
-0
paddle/fluid/operators/deformable_psroi_pooling_op.h
paddle/fluid/operators/deformable_psroi_pooling_op.h
+479
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+115
-0
python/paddle/fluid/tests/unittests/test_deformable_psroi_pooling.py
...le/fluid/tests/unittests/test_deformable_psroi_pooling.py
+369
-0
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+29
-0
未找到文件。
paddle/fluid/API.spec
浏览文件 @
c50fb58c
...
...
@@ -238,6 +238,7 @@ paddle.fluid.layers.continuous_value_model (ArgSpec(args=['input', 'cvm', 'use_c
paddle.fluid.layers.where (ArgSpec(args=['condition'], varargs=None, keywords=None, defaults=None), ('document', '3126e3039e752ce26077f1efaca355c6'))
paddle.fluid.layers.sign (ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None), ('document', 'ccf6bb7912afd2818d24bc45461e807a'))
paddle.fluid.layers.deformable_conv (ArgSpec(args=['input', 'offset', 'mask', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'deformable_groups', 'im2col_step', 'param_attr', 'bias_attr', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, None, None, None)), ('document', 'c896b66265a60bd3c5510f66e6e02919'))
paddle.fluid.layers.deformable_roi_pooling (ArgSpec(args=['input', 'rois', 'trans', 'no_trans', 'spatial_scale', 'group_size', 'pooled_height', 'pooled_width', 'part_size', 'sample_per_part', 'trans_std', 'position_sensitive', 'name'], varargs=None, keywords=None, defaults=(False, 1.0, [1, 1], 1, 1, None, 1, 0.1, False, None)), ('document', '65b8dbe13e00c4dc8224652f6ff89540'))
paddle.fluid.layers.data (ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True)), ('document', '9e87163ba32003f21d2c9d8c6a605ada'))
paddle.fluid.layers.open_files (ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None)), ('document', 'dce69a78638da8f7ad80b1fc00ed2029'))
paddle.fluid.layers.read_file (ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None), ('document', '32181f6037e387fb6e68a5beaafe33b6'))
...
...
paddle/fluid/operators/deformable_psroi_pooling_op.cc
0 → 100644
浏览文件 @
c50fb58c
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/deformable_psroi_pooling_op.h"
#include <iostream>
#include <memory>
#include <vector>
#include "paddle/fluid/operators/math/blas.h"
namespace
paddle
{
namespace
operators
{
class
DeformablePSROIPoolOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"Input"
,
"(Tensor), "
"the input of Deformable PSROIPooling. "
"The shape of input tensor is [N,C,H,W]. Where N is batch size, "
"C is number of input channels, "
"H is height of the feature, and "
"W is the width of the feature."
);
AddInput
(
"ROIs"
,
"(LoDTensor), "
"ROIs (Regions of Interest) to pool over. "
"ROIs should be a 2-D LoDTensor of shape (num_rois, 4) "
"given as [[x1, y1, x2, y2], ...]. "
"(x1, y1) is the top left coordinates, and "
"(x2, y2) is the bottom right coordinates."
);
AddInput
(
"Trans"
,
"(Tensor),"
"offset of features on ROIs while pooling. "
"The format is NCHW, where N is number of ROIs, "
"C is number of channels, which indicate the offset distance "
"in the x and y directions, "
"H is pooled height, and "
"W is pooled width."
);
AddAttr
<
bool
>
(
"no_trans"
,
"(bool), "
"whether add offset to get new value or not while roi "
"pooling, which value is True or False"
);
AddAttr
<
float
>
(
"spatial_scale"
,
"(float), "
"ratio of input feature map height (or width) to "
"raw image height (or width). Equals the reciprocal "
"of total stride in convolutional layers."
);
AddAttr
<
int
>
(
"output_dim"
,
"(int), "
"the number of output channels, which should be less than "
"input channels. Deformable roi_pooling requires "
"output_channels = input_channels, while deformable "
"psroi_pooling requires output_channels = input_channels "
"* pooled_height * pooled_width"
);
AddAttr
<
std
::
vector
<
int
>>
(
"group_size"
,
"(vector<int>), "
"the number of groups which input channels are divided."
"(eg.number of input channels is k1*k2*(C+1), which k1 and k2 "
"are group width and height and C+1 is number of output "
"chanels. eg.(4, 6), which 4 is height of group and 6 is "
"width of group"
);
AddAttr
<
int
>
(
"pooled_height"
,
"(int), "
"the pooled output height."
);
AddAttr
<
int
>
(
"pooled_width"
,
"(int), "
"the pooled output width."
);
AddAttr
<
std
::
vector
<
int
>>
(
"part_size"
,
"(vector<int>), "
"the height and width of offset, eg.(4, 6), which height is 4 "
" and width is 6"
);
AddAttr
<
int
>
(
"sample_per_part"
,
"(int), "
"the number of samples in each bin"
);
AddAttr
<
float
>
(
"trans_std"
,
"(float), "
"Coefficient of offset"
);
AddOutput
(
"TopCount"
,
"(Tensor), "
"record the number of pixel in average pooling to in each bin. "
"The format is NCHW, where N is the number of ROIs, "
"C is the number of output channels, "
"H is the height of output, and "
"W is the width of output."
);
AddOutput
(
"Output"
,
"(Tensor), "
"the output of Deformable PSROIPooling. "
"The format is NCHW, where N is the number of ROIs, "
"C is the number of output channels, "
"H is the height of output, and "
"W is thewidth of output. "
);
AddComment
(
R"DOC(
**DeformablePSROIPooling Operator**
DeformablePSROIPooling is a new method based Region of interest pooling
(also known as RoI pooling).
The operator has four steps:
1. Dividing each region proposal into equal-sized sections with
the pooled_width and pooled_height.
2. Add offset to pixel in ROI to get new location and the new value which are
computed directly through bilinear interpolation with four nearest pixel.
3. Sample several points to get average values in each bin.
4. Copying these average values to the output buffer.
DeformablePSROIPooling is part of Deformable Convolutional Networks,
please refer to https://arxiv.org/abs/1703.06211 for more details.
)DOC"
);
}
};
class
DeformablePSROIPoolOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Input"
),
"Input(Input) of DeformablePSROIPoolOp"
"should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"ROIs"
),
"Input(ROIs) of DeformablePSROIPoolOp "
"should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Trans"
),
"Input(Trans) of DeformablePSROIPoolOp "
"should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Output"
),
"Output(Output) of DeformablePSROIPoolOp "
"should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"TopCount"
),
"Output(TopCount) of DeformablePSROIPoolOp "
"should not be null."
);
auto
input_dims
=
ctx
->
GetInputDim
(
"Input"
);
auto
rois_dims
=
ctx
->
GetInputDim
(
"ROIs"
);
auto
trans_dims
=
ctx
->
GetInputDim
(
"Trans"
);
PADDLE_ENFORCE
(
rois_dims
.
size
()
==
2
,
"ROIs should be a 2-D LoDTensor of shape (num_rois, 4)"
"given as [[ x1, y1, x2, y2], ...]."
);
PADDLE_ENFORCE
(
trans_dims
.
size
()
==
4
,
"The format of Input Trans is (N, 2, H, W)."
);
auto
pooled_height
=
ctx
->
Attrs
().
Get
<
int
>
(
"pooled_height"
);
auto
pooled_width
=
ctx
->
Attrs
().
Get
<
int
>
(
"pooled_width"
);
auto
spatial_scale
=
ctx
->
Attrs
().
Get
<
float
>
(
"spatial_scale"
);
auto
output_channels
=
ctx
->
Attrs
().
Get
<
int
>
(
"output_dim"
);
auto
group_size
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"group_size"
);
auto
group_height
=
group_size
[
0
];
auto
group_width
=
group_size
[
1
];
auto
part_size
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"part_size"
);
auto
part_height
=
part_size
[
0
];
auto
part_width
=
part_size
[
1
];
auto
sample_per_part
=
ctx
->
Attrs
().
Get
<
int
>
(
"sample_per_part"
);
auto
trans_std
=
ctx
->
Attrs
().
Get
<
float
>
(
"trans_std"
);
PADDLE_ENFORCE
(
trans_std
>=
0.0
f
,
"trans_std must greater than 0.0"
);
PADDLE_ENFORCE
(
input_dims
[
1
]
>=
output_channels
,
"input channels must greater than out_channels"
);
PADDLE_ENFORCE_GT
(
pooled_height
,
0
,
"The pooled height must greater than 0"
);
PADDLE_ENFORCE_GT
(
pooled_width
,
0
,
"The pooled width must greater than 0"
);
PADDLE_ENFORCE_GT
(
spatial_scale
,
0.0
f
,
"The spatial scale must greater than 0"
);
PADDLE_ENFORCE_EQ
(
group_size
.
size
(),
2
,
"The size of group_size should be 2."
);
PADDLE_ENFORCE_GT
(
group_height
,
0
,
"The group_height in group_size must greater than 0"
);
PADDLE_ENFORCE_GT
(
group_width
,
0
,
"The group_width in group_size must greater than 0"
);
PADDLE_ENFORCE_EQ
(
part_size
.
size
(),
2
,
"The size of part_size should be 2."
);
PADDLE_ENFORCE_GT
(
part_height
,
0
,
"The part_height in part_size must greater than 0"
);
PADDLE_ENFORCE_GT
(
part_width
,
0
,
"The part_width in part_size must greater than 0"
);
PADDLE_ENFORCE
(
part_height
<=
trans_dims
[
2
],
"The height of trans must greater than part_height"
);
PADDLE_ENFORCE
(
part_width
<=
trans_dims
[
3
],
"The width of trans must greater than part_width"
);
PADDLE_ENFORCE_GT
(
sample_per_part
,
0
,
"The sample_per_part must greater than 0"
);
auto
out_dims
=
input_dims
;
out_dims
[
0
]
=
rois_dims
[
0
];
out_dims
[
1
]
=
output_channels
;
out_dims
[
2
]
=
pooled_height
;
out_dims
[
3
]
=
pooled_width
;
ctx
->
SetOutputDim
(
"Output"
,
out_dims
);
ctx
->
SetOutputDim
(
"TopCount"
,
out_dims
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
"Input"
)
->
type
(),
ctx
.
device_context
());
}
};
class
DeformablePSROIPoolGradOpDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std
::
unique_ptr
<
framework
::
OpDesc
>
op
(
new
framework
::
OpDesc
());
op
->
SetType
(
"deformable_psroi_pooling_grad"
);
op
->
SetInput
(
"Input"
,
Input
(
"Input"
));
op
->
SetInput
(
"Trans"
,
Input
(
"Trans"
));
op
->
SetInput
(
"ROIs"
,
Input
(
"ROIs"
));
op
->
SetInput
(
"TopCount"
,
Output
(
"TopCount"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Output"
),
OutputGrad
(
"Output"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"Input"
),
InputGrad
(
"Input"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"Trans"
),
InputGrad
(
"Trans"
));
op
->
SetAttrMap
(
Attrs
());
return
op
;
}
};
class
DeformablePSROIPoolGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Output"
)),
"The gradient of Output should not be null."
);
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Input"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Input"
),
ctx
->
GetInputDim
(
"Input"
));
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Trans"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Trans"
),
ctx
->
GetInputDim
(
"Trans"
));
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
"Trans"
)
->
type
(),
ctx
.
device_context
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
using
CPU
=
paddle
::
platform
::
CPUDeviceContext
;
REGISTER_OPERATOR
(
deformable_psroi_pooling
,
ops
::
DeformablePSROIPoolOp
,
ops
::
DeformablePSROIPoolOpMaker
,
ops
::
DeformablePSROIPoolGradOpDescMaker
);
REGISTER_OPERATOR
(
deformable_psroi_pooling_grad
,
ops
::
DeformablePSROIPoolGradOp
);
REGISTER_OP_CPU_KERNEL
(
deformable_psroi_pooling
,
ops
::
DeformablePSROIPoolCPUKernel
<
CPU
,
float
>
,
ops
::
DeformablePSROIPoolCPUKernel
<
CPU
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
deformable_psroi_pooling_grad
,
ops
::
DeformablePSROIPoolGradCPUKernel
<
CPU
,
float
>
,
ops
::
DeformablePSROIPoolGradCPUKernel
<
CPU
,
double
>
);
paddle/fluid/operators/deformable_psroi_pooling_op.cu
0 → 100644
浏览文件 @
c50fb58c
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stdio.h>
#include <algorithm>
#include <iostream>
#include <limits>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/deformable_psroi_pooling_op.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/cuda_primitives.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
#define CUDA_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
i += blockDim.x * gridDim.x)
const
int
CUDA_NUM_THREADS
=
1024
;
static
inline
int
GET_BLOCKS
(
const
int
N
)
{
return
(
N
+
CUDA_NUM_THREADS
-
1
)
/
CUDA_NUM_THREADS
;
}
template
<
typename
T
>
__device__
T
bilinear_interpolation
(
const
T
*
data
,
const
T
x
,
const
T
y
,
const
int
width
,
const
int
height
)
{
int
x1
=
floor
(
x
);
int
x2
=
ceil
(
x
);
int
y1
=
floor
(
y
);
int
y2
=
ceil
(
y
);
T
dist_x
=
static_cast
<
T
>
(
x
-
x1
);
T
dist_y
=
static_cast
<
T
>
(
y
-
y1
);
T
value11
=
data
[
y1
*
width
+
x1
];
T
value12
=
data
[
y2
*
width
+
x1
];
T
value21
=
data
[
y1
*
width
+
x2
];
T
value22
=
data
[
y2
*
width
+
x2
];
T
value
=
(
1
-
dist_x
)
*
(
1
-
dist_y
)
*
value11
+
(
1
-
dist_x
)
*
dist_y
*
value12
+
dist_x
*
(
1
-
dist_y
)
*
value21
+
dist_x
*
dist_y
*
value22
;
return
value
;
}
template
<
typename
T
>
__global__
void
DeformablePSROIPoolForwardKernel
(
const
int
count
,
const
T
*
bottom_data
,
const
T
spatial_scale
,
const
int
channels
,
const
int
height
,
const
int
width
,
const
int
pooled_height
,
const
int
pooled_width
,
const
T
*
bottom_rois
,
const
T
*
bottom_trans
,
const
bool
no_trans
,
const
T
trans_std
,
const
int
sample_per_part
,
const
int
output_dim
,
const
int
group_height
,
const
int
group_width
,
const
int
part_height
,
const
int
part_width
,
const
int
num_classes
,
const
int
channels_each_class
,
T
*
top_data
,
T
*
top_count
,
int
*
roi_batch_id_data
)
{
CUDA_KERNEL_LOOP
(
index
,
count
)
{
// The output is in order (n, ctop, ph, pw)
int
pw
=
index
%
pooled_width
;
int
ph
=
(
index
/
pooled_width
)
%
pooled_height
;
int
ctop
=
(
index
/
pooled_width
/
pooled_height
)
%
output_dim
;
int
n
=
index
/
pooled_width
/
pooled_height
/
output_dim
;
const
T
*
offset_bottom_rois
=
bottom_rois
+
n
*
4
;
int
roi_batch_ind
=
roi_batch_id_data
[
n
];
// location of roi on feature map
T
roi_start_w
=
static_cast
<
T
>
(
round
(
offset_bottom_rois
[
0
]))
*
spatial_scale
-
0.5
;
T
roi_start_h
=
static_cast
<
T
>
(
round
(
offset_bottom_rois
[
1
]))
*
spatial_scale
-
0.5
;
T
roi_end_w
=
static_cast
<
T
>
(
round
(
offset_bottom_rois
[
2
])
+
1.
)
*
spatial_scale
-
0.5
;
T
roi_end_h
=
static_cast
<
T
>
(
round
(
offset_bottom_rois
[
3
])
+
1.
)
*
spatial_scale
-
0.5
;
// width and height of roi
T
roi_width
=
max
(
roi_end_w
-
roi_start_w
,
0.1
);
// avoid 0
T
roi_height
=
max
(
roi_end_h
-
roi_start_h
,
0.1
);
// width and height of each bin
T
bin_size_h
=
roi_height
/
static_cast
<
T
>
(
pooled_height
);
T
bin_size_w
=
roi_width
/
static_cast
<
T
>
(
pooled_width
);
// sampling interval ineach bin
T
sub_bin_size_h
=
bin_size_h
/
static_cast
<
T
>
(
sample_per_part
);
T
sub_bin_size_w
=
bin_size_w
/
static_cast
<
T
>
(
sample_per_part
);
// obtain offset of roi
int
part_h
=
floor
(
static_cast
<
T
>
(
ph
)
/
pooled_height
*
part_height
);
int
part_w
=
floor
(
static_cast
<
T
>
(
pw
)
/
pooled_width
*
part_width
);
int
class_id
=
ctop
/
channels_each_class
;
T
trans_x
=
no_trans
?
static_cast
<
T
>
(
0
)
:
bottom_trans
[(((
n
*
num_classes
+
class_id
)
*
2
)
*
part_height
+
part_h
)
*
part_width
+
part_w
]
*
static_cast
<
T
>
(
trans_std
);
T
trans_y
=
no_trans
?
static_cast
<
T
>
(
0
)
:
bottom_trans
[(((
n
*
num_classes
+
class_id
)
*
2
+
1
)
*
part_height
+
part_h
)
*
part_width
+
part_w
]
*
static_cast
<
T
>
(
trans_std
);
// location of start after adding offset
T
wstart
=
static_cast
<
T
>
(
pw
)
*
bin_size_w
+
roi_start_w
;
wstart
+=
trans_x
*
roi_width
;
T
hstart
=
static_cast
<
T
>
(
ph
)
*
bin_size_h
+
roi_start_h
;
hstart
+=
trans_y
*
roi_height
;
T
sum
=
0
;
int
count
=
0
;
int
gw
=
floor
(
static_cast
<
T
>
(
pw
)
*
group_width
/
pooled_width
);
int
gh
=
floor
(
static_cast
<
T
>
(
ph
)
*
group_height
/
pooled_height
);
gw
=
min
(
max
(
gw
,
0
),
group_width
-
1
);
gh
=
min
(
max
(
gh
,
0
),
group_height
-
1
);
const
T
*
offset_bottom_data
=
bottom_data
+
(
roi_batch_ind
*
channels
)
*
height
*
width
;
// sampling in each bin
for
(
int
ih
=
0
;
ih
<
sample_per_part
;
ih
++
)
{
for
(
int
iw
=
0
;
iw
<
sample_per_part
;
iw
++
)
{
T
w
=
wstart
+
iw
*
sub_bin_size_w
;
T
h
=
hstart
+
ih
*
sub_bin_size_h
;
if
(
w
<
-
0.5
||
w
>
width
-
0.5
||
h
<
-
0.5
||
h
>
height
-
0.5
)
{
continue
;
}
w
=
min
(
max
(
w
,
0.
),
width
-
1.
);
h
=
min
(
max
(
h
,
0.
),
height
-
1.
);
int
c
=
(
ctop
*
group_height
+
gh
)
*
group_width
+
gw
;
// bilinear interpolation
T
val
=
bilinear_interpolation
(
offset_bottom_data
+
c
*
height
*
width
,
w
,
h
,
width
,
height
);
sum
+=
val
;
count
++
;
}
}
top_data
[
index
]
=
count
==
0
?
static_cast
<
T
>
(
0
)
:
sum
/
count
;
top_count
[
index
]
=
count
;
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
DeformablePSROIPoolCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
Tensor
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
const
LoDTensor
*
rois
=
ctx
.
Input
<
LoDTensor
>
(
"ROIs"
);
const
Tensor
*
trans
=
ctx
.
Input
<
Tensor
>
(
"Trans"
);
Tensor
*
out
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
Tensor
*
top_count
=
ctx
.
Output
<
Tensor
>
(
"TopCount"
);
top_count
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
no_trans
=
ctx
.
Attr
<
bool
>
(
"no_trans"
);
auto
spatial_scale
=
ctx
.
Attr
<
float
>
(
"spatial_scale"
);
auto
output_dim
=
ctx
.
Attr
<
int
>
(
"output_dim"
);
auto
group_size
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"group_size"
);
auto
group_height
=
group_size
[
0
];
auto
group_width
=
group_size
[
1
];
auto
pooled_height
=
ctx
.
Attr
<
int
>
(
"pooled_height"
);
auto
pooled_width
=
ctx
.
Attr
<
int
>
(
"pooled_width"
);
auto
part_size
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"part_size"
);
auto
part_height
=
part_size
[
0
];
auto
part_width
=
part_size
[
1
];
auto
sample_per_part
=
ctx
.
Attr
<
int
>
(
"sample_per_part"
);
auto
trans_std
=
ctx
.
Attr
<
float
>
(
"trans_std"
);
const
int
batch
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
channels
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
int
height
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
width
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
channels_trans
=
no_trans
?
2
:
trans
->
dims
()[
1
];
const
int
num_rois
=
rois
->
dims
()[
0
];
PADDLE_ENFORCE_EQ
(
num_rois
,
out
->
dims
()[
0
],
"number of rois should be same with number of output"
);
const
int
count
=
num_rois
*
output_dim
*
pooled_height
*
pooled_width
;
const
int
num_classes
=
no_trans
?
1
:
channels_trans
/
2
;
const
int
channels_each_class
=
no_trans
?
output_dim
:
output_dim
/
num_classes
;
PADDLE_ENFORCE
(
channels_each_class
>=
1
,
"channels_each must greater than 1"
);
const
T
*
bottom_data
=
input
->
data
<
T
>
();
const
T
*
bottom_rois
=
rois
->
data
<
T
>
();
const
T
*
bottom_trans
=
no_trans
?
NULL
:
trans
->
data
<
T
>
();
framework
::
Tensor
roi_batch_id_list
;
roi_batch_id_list
.
Resize
({
num_rois
});
auto
cplace
=
platform
::
CPUPlace
();
int
*
roi_batch_id_data
=
roi_batch_id_list
.
mutable_data
<
int
>
(
cplace
);
auto
rois_lod
=
rois
->
lod
().
back
();
int
rois_batch_size
=
rois_lod
.
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
rois_batch_size
,
batch
,
"The rois_batch_size and imgs batch_size must be the same."
);
int
rois_num_with_lod
=
rois_lod
[
rois_batch_size
];
PADDLE_ENFORCE_EQ
(
num_rois
,
rois_num_with_lod
,
"The rois_num from input and lod must be the same."
);
for
(
int
n
=
0
;
n
<
rois_batch_size
;
++
n
)
{
for
(
size_t
i
=
rois_lod
[
n
];
i
<
rois_lod
[
n
+
1
];
++
i
)
{
roi_batch_id_data
[
i
]
=
n
;
}
}
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
auto
&
allocator
=
platform
::
DeviceTemporaryAllocator
::
Instance
().
Get
(
dev_ctx
);
int
bytes
=
roi_batch_id_list
.
numel
()
*
sizeof
(
int
);
auto
roi_ptr
=
allocator
.
Allocate
(
bytes
);
int
*
roi_id_data
=
reinterpret_cast
<
int
*>
(
roi_ptr
->
ptr
());
const
auto
gplace
=
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx
.
GetPlace
());
memory
::
Copy
(
gplace
,
roi_id_data
,
cplace
,
roi_batch_id_data
,
bytes
,
dev_ctx
.
stream
());
T
*
top_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
top_count_data
=
top_count
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
DeformablePSROIPoolForwardKernel
<<<
GET_BLOCKS
(
count
),
CUDA_NUM_THREADS
,
0
,
dev_ctx
.
stream
()
>>>
(
count
,
bottom_data
,
(
T
)
spatial_scale
,
channels
,
height
,
width
,
pooled_height
,
pooled_width
,
bottom_rois
,
bottom_trans
,
no_trans
,
(
T
)
trans_std
,
sample_per_part
,
output_dim
,
group_height
,
group_width
,
part_height
,
part_width
,
num_classes
,
channels_each_class
,
top_data
,
top_count_data
,
roi_id_data
);
}
};
template
<
typename
T
>
__global__
void
DeformablePSROIPoolBackwardAccKernel
(
const
int
count
,
const
T
*
top_diff
,
const
T
*
top_count
,
const
int
num_rois
,
const
T
spatial_scale
,
const
int
channels
,
const
int
height
,
const
int
width
,
const
int
pooled_height
,
const
int
pooled_width
,
const
int
output_dim
,
T
*
bottom_data_diff
,
T
*
bottom_trans_diff
,
const
T
*
bottom_data
,
const
T
*
bottom_rois
,
const
T
*
bottom_trans
,
const
bool
no_trans
,
const
T
trans_std
,
const
int
sample_per_part
,
const
int
group_height
,
const
int
group_width
,
const
int
part_height
,
const
int
part_width
,
const
int
num_classes
,
const
int
channels_each_class
,
int
*
roi_batch_id_data
)
{
CUDA_KERNEL_LOOP
(
index
,
count
)
{
// The output is in order (n, ctop, ph, pw)
int
pw
=
index
%
pooled_width
;
int
ph
=
(
index
/
pooled_width
)
%
pooled_height
;
int
ctop
=
(
index
/
pooled_width
/
pooled_height
)
%
output_dim
;
int
n
=
index
/
pooled_width
/
pooled_height
/
output_dim
;
int
num_box
=
count
/
pooled_height
/
pooled_width
/
output_dim
;
const
T
*
offset_bottom_rois
=
bottom_rois
+
n
*
4
;
int
roi_batch_ind
=
roi_batch_id_data
[
n
];
// location of roi on feature map
T
roi_start_w
=
static_cast
<
T
>
(
round
(
offset_bottom_rois
[
0
]))
*
spatial_scale
-
0.5
;
T
roi_start_h
=
static_cast
<
T
>
(
round
(
offset_bottom_rois
[
1
]))
*
spatial_scale
-
0.5
;
T
roi_end_w
=
static_cast
<
T
>
(
round
(
offset_bottom_rois
[
2
])
+
1.
)
*
spatial_scale
-
0.5
;
T
roi_end_h
=
static_cast
<
T
>
(
round
(
offset_bottom_rois
[
3
])
+
1.
)
*
spatial_scale
-
0.5
;
// width and height of roi
T
roi_width
=
max
(
roi_end_w
-
roi_start_w
,
0.1
);
T
roi_height
=
max
(
roi_end_h
-
roi_start_h
,
0.1
);
// width and height of each bin
T
bin_size_h
=
roi_height
/
static_cast
<
T
>
(
pooled_height
);
T
bin_size_w
=
roi_width
/
static_cast
<
T
>
(
pooled_width
);
// sampling interval in each bin
T
sub_bin_size_h
=
bin_size_h
/
static_cast
<
T
>
(
sample_per_part
);
T
sub_bin_size_w
=
bin_size_w
/
static_cast
<
T
>
(
sample_per_part
);
// obtain offset of roi
int
part_h
=
floor
(
static_cast
<
T
>
(
ph
)
/
pooled_height
*
part_height
);
int
part_w
=
floor
(
static_cast
<
T
>
(
pw
)
/
pooled_width
*
part_width
);
int
class_id
=
ctop
/
channels_each_class
;
T
trans_x
=
no_trans
?
static_cast
<
T
>
(
0
)
:
bottom_trans
[(((
n
*
num_classes
+
class_id
)
*
2
)
*
part_height
+
part_h
)
*
part_width
+
part_w
]
*
static_cast
<
T
>
(
trans_std
);
T
trans_y
=
no_trans
?
static_cast
<
T
>
(
0
)
:
bottom_trans
[(((
n
*
num_classes
+
class_id
)
*
2
+
1
)
*
part_height
+
part_h
)
*
part_width
+
part_w
]
*
static_cast
<
T
>
(
trans_std
);
// location of start after adding offset
T
wstart
=
static_cast
<
T
>
(
pw
)
*
bin_size_w
+
roi_start_w
;
wstart
+=
trans_x
*
roi_width
;
T
hstart
=
static_cast
<
T
>
(
ph
)
*
bin_size_h
+
roi_start_h
;
hstart
+=
trans_y
*
roi_height
;
if
(
top_count
[
index
]
<=
0
)
{
continue
;
}
T
diff_val
=
top_diff
[
index
]
/
top_count
[
index
];
const
T
*
offset_bottom_data
=
bottom_data
+
roi_batch_ind
*
channels
*
height
*
width
;
int
gw
=
floor
(
static_cast
<
T
>
(
pw
)
*
group_width
/
pooled_width
);
int
gh
=
floor
(
static_cast
<
T
>
(
ph
)
*
group_height
/
pooled_height
);
gw
=
min
(
max
(
gw
,
0
),
group_width
-
1
);
gh
=
min
(
max
(
gh
,
0
),
group_height
-
1
);
// sampling in each bin
for
(
int
ih
=
0
;
ih
<
sample_per_part
;
ih
++
)
{
for
(
int
iw
=
0
;
iw
<
sample_per_part
;
iw
++
)
{
T
w
=
wstart
+
iw
*
sub_bin_size_w
;
T
h
=
hstart
+
ih
*
sub_bin_size_h
;
if
(
w
<
-
0.5
||
w
>
width
-
0.5
||
h
<
-
0.5
||
h
>
height
-
0.5
)
{
continue
;
}
w
=
min
(
max
(
w
,
0.
),
width
-
1.
);
h
=
min
(
max
(
h
,
0.
),
height
-
1.
);
int
c
=
(
ctop
*
group_height
+
gh
)
*
group_width
+
gw
;
int
x0
=
floor
(
w
);
int
x1
=
ceil
(
w
);
int
y0
=
floor
(
h
);
int
y1
=
ceil
(
h
);
// compute coefficient of gradient
T
dist_x
=
w
-
x0
,
dist_y
=
h
-
y0
;
T
q00
=
(
1
-
dist_x
)
*
(
1
-
dist_y
);
T
q01
=
(
1
-
dist_x
)
*
dist_y
;
T
q10
=
dist_x
*
(
1
-
dist_y
);
T
q11
=
dist_x
*
dist_y
;
int
bottom_index_base
=
c
*
height
*
width
;
// compute gradient of input
if
(
bottom_data_diff
)
{
platform
::
CudaAtomicAdd
(
bottom_data_diff
+
roi_batch_ind
*
channels
*
height
*
width
+
bottom_index_base
+
y0
*
width
+
x0
,
q00
*
diff_val
);
platform
::
CudaAtomicAdd
(
bottom_data_diff
+
roi_batch_ind
*
channels
*
height
*
width
+
bottom_index_base
+
y1
*
width
+
x0
,
q01
*
diff_val
);
platform
::
CudaAtomicAdd
(
bottom_data_diff
+
roi_batch_ind
*
channels
*
height
*
width
+
bottom_index_base
+
y0
*
width
+
x1
,
q10
*
diff_val
);
platform
::
CudaAtomicAdd
(
bottom_data_diff
+
roi_batch_ind
*
channels
*
height
*
width
+
bottom_index_base
+
y1
*
width
+
x1
,
q11
*
diff_val
);
}
// compute gradient of trans
if
(
no_trans
||
bottom_trans_diff
==
NULL
)
{
continue
;
}
T
u00
=
offset_bottom_data
[
bottom_index_base
+
y0
*
width
+
x0
];
T
u01
=
offset_bottom_data
[
bottom_index_base
+
y1
*
width
+
x0
];
T
u10
=
offset_bottom_data
[
bottom_index_base
+
y0
*
width
+
x1
];
T
u11
=
offset_bottom_data
[
bottom_index_base
+
y1
*
width
+
x1
];
T
diff_x
=
(
u11
*
dist_y
+
u10
*
(
1
-
dist_y
)
-
u01
*
dist_y
-
u00
*
(
1
-
dist_y
))
*
trans_std
*
diff_val
;
diff_x
*=
roi_width
;
T
diff_y
=
(
u11
*
dist_x
+
u01
*
(
1
-
dist_x
)
-
u10
*
dist_x
-
u00
*
(
1
-
dist_x
))
*
trans_std
*
diff_val
;
diff_y
*=
roi_height
;
platform
::
CudaAtomicAdd
(
bottom_trans_diff
+
(((
n
*
num_classes
+
class_id
)
*
2
)
*
part_height
+
part_h
)
*
part_width
+
part_w
,
diff_x
);
platform
::
CudaAtomicAdd
(
bottom_trans_diff
+
(((
n
*
num_classes
+
class_id
)
*
2
+
1
)
*
part_height
+
part_h
)
*
part_width
+
part_w
,
diff_y
);
}
}
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
DeformablePSROIPoolGradCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
Tensor
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
const
LoDTensor
*
rois
=
ctx
.
Input
<
LoDTensor
>
(
"ROIs"
);
const
Tensor
*
trans
=
ctx
.
Input
<
Tensor
>
(
"Trans"
);
const
Tensor
*
top_count
=
ctx
.
Input
<
Tensor
>
(
"TopCount"
);
const
Tensor
*
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
Tensor
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
Tensor
*
trans_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Trans"
));
math
::
SetConstant
<
DeviceContext
,
T
>
set_zero
;
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
if
(
input_grad
)
{
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
input_grad
,
static_cast
<
T
>
(
0
));
}
if
(
trans_grad
)
{
trans_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
trans_grad
,
static_cast
<
T
>
(
0
));
}
auto
no_trans
=
ctx
.
Attr
<
bool
>
(
"no_trans"
);
auto
spatial_scale
=
ctx
.
Attr
<
float
>
(
"spatial_scale"
);
auto
output_dim
=
ctx
.
Attr
<
int
>
(
"output_dim"
);
auto
group_size
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"group_size"
);
auto
group_height
=
group_size
[
0
];
auto
group_width
=
group_size
[
1
];
auto
pooled_height
=
ctx
.
Attr
<
int
>
(
"pooled_height"
);
auto
pooled_width
=
ctx
.
Attr
<
int
>
(
"pooled_width"
);
auto
part_size
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"part_size"
);
auto
part_height
=
part_size
[
0
];
auto
part_width
=
part_size
[
1
];
auto
sample_per_part
=
ctx
.
Attr
<
int
>
(
"sample_per_part"
);
auto
trans_std
=
ctx
.
Attr
<
float
>
(
"trans_std"
);
const
int
batch
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
channels
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
int
height
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
width
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
channels_trans
=
no_trans
?
2
:
trans
->
dims
()[
1
];
const
int
num_rois
=
rois
->
dims
()[
0
];
const
int
count
=
num_rois
*
output_dim
*
pooled_height
*
pooled_width
;
const
int
num_classes
=
no_trans
?
1
:
channels_trans
/
2
;
const
int
channels_each_class
=
no_trans
?
output_dim
:
output_dim
/
num_classes
;
const
T
*
top_diff
=
output_grad
->
data
<
T
>
();
const
T
*
bottom_data
=
input
->
data
<
T
>
();
const
T
*
bottom_rois
=
rois
->
data
<
T
>
();
const
T
*
bottom_trans
=
no_trans
?
NULL
:
trans
->
data
<
T
>
();
T
*
bottom_data_diff
=
NULL
;
T
*
bottom_trans_diff
=
NULL
;
if
(
input_grad
)
{
bottom_data_diff
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
if
(
trans_grad
)
{
bottom_trans_diff
=
no_trans
?
NULL
:
trans_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
const
T
*
top_count_data
=
top_count
->
data
<
T
>
();
framework
::
Tensor
roi_batch_id_list
;
roi_batch_id_list
.
Resize
({
num_rois
});
auto
cplace
=
platform
::
CPUPlace
();
int
*
roi_batch_id_data
=
roi_batch_id_list
.
mutable_data
<
int
>
(
cplace
);
auto
rois_lod
=
rois
->
lod
().
back
();
int
rois_batch_size
=
rois_lod
.
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
rois_batch_size
,
batch
,
"The rois_batch_size and imgs batch_size must be the same."
);
int
rois_num_with_lod
=
rois_lod
[
rois_batch_size
];
PADDLE_ENFORCE_EQ
(
num_rois
,
rois_num_with_lod
,
"The rois_num from input and lod must be the same."
);
for
(
int
n
=
0
;
n
<
rois_batch_size
;
++
n
)
{
for
(
size_t
i
=
rois_lod
[
n
];
i
<
rois_lod
[
n
+
1
];
++
i
)
{
roi_batch_id_data
[
i
]
=
n
;
}
}
auto
&
allocator
=
platform
::
DeviceTemporaryAllocator
::
Instance
().
Get
(
dev_ctx
);
int
bytes
=
roi_batch_id_list
.
numel
()
*
sizeof
(
int
);
auto
roi_ptr
=
allocator
.
Allocate
(
bytes
);
int
*
roi_id_data
=
reinterpret_cast
<
int
*>
(
roi_ptr
->
ptr
());
const
auto
gplace
=
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx
.
GetPlace
());
memory
::
Copy
(
gplace
,
roi_id_data
,
cplace
,
roi_batch_id_data
,
bytes
,
dev_ctx
.
stream
());
DeformablePSROIPoolBackwardAccKernel
<<<
GET_BLOCKS
(
count
),
CUDA_NUM_THREADS
,
0
,
dev_ctx
.
stream
()
>>>
(
count
,
top_diff
,
top_count_data
,
num_rois
,
(
T
)
spatial_scale
,
channels
,
height
,
width
,
pooled_height
,
pooled_width
,
output_dim
,
bottom_data_diff
,
bottom_trans_diff
,
bottom_data
,
bottom_rois
,
bottom_trans
,
no_trans
,
(
T
)
trans_std
,
sample_per_part
,
group_height
,
group_width
,
part_height
,
part_width
,
num_classes
,
channels_each_class
,
roi_id_data
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
using
CUDA
=
paddle
::
platform
::
CUDADeviceContext
;
REGISTER_OP_CUDA_KERNEL
(
deformable_psroi_pooling
,
ops
::
DeformablePSROIPoolCUDAKernel
<
CUDA
,
float
>
,
ops
::
DeformablePSROIPoolCUDAKernel
<
CUDA
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
deformable_psroi_pooling_grad
,
ops
::
DeformablePSROIPoolGradCUDAKernel
<
CUDA
,
float
>
,
ops
::
DeformablePSROIPoolGradCUDAKernel
<
CUDA
,
double
>
);
paddle/fluid/operators/deformable_psroi_pooling_op.h
0 → 100644
浏览文件 @
c50fb58c
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <iostream>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
typename
T
>
T
bilinear_interp
(
const
T
*
data
,
const
T
x
,
const
T
y
,
const
int
width
,
const
int
height
)
{
int
x1
=
floor
(
x
);
int
x2
=
ceil
(
x
);
int
y1
=
floor
(
y
);
int
y2
=
ceil
(
y
);
T
dist_x
=
static_cast
<
T
>
(
x
-
x1
);
T
dist_y
=
static_cast
<
T
>
(
y
-
y1
);
T
value11
=
data
[
y1
*
width
+
x1
];
T
value12
=
data
[
y2
*
width
+
x1
];
T
value21
=
data
[
y1
*
width
+
x2
];
T
value22
=
data
[
y2
*
width
+
x2
];
T
value
=
(
1
-
dist_x
)
*
(
1
-
dist_y
)
*
value11
+
(
1
-
dist_x
)
*
dist_y
*
value12
+
dist_x
*
(
1
-
dist_y
)
*
value21
+
dist_x
*
dist_y
*
value22
;
return
value
;
}
template
<
typename
T
>
void
DeformablePSROIPoolForwardCPUKernel
(
const
int
count
,
const
T
*
bottom_data
,
const
T
spatial_scale
,
const
int
channels
,
const
int
height
,
const
int
width
,
const
int
pooled_height
,
const
int
pooled_width
,
const
T
*
bottom_rois
,
const
T
*
bottom_trans
,
const
bool
no_trans
,
const
float
trans_std
,
const
int
sample_per_part
,
const
int
output_dim
,
const
int
group_height
,
const
int
group_width
,
const
int
part_height
,
const
int
part_width
,
const
int
num_classes
,
const
int
channels_each_class
,
T
*
top_data
,
T
*
top_count
,
const
int
batch_size
,
int
*
roi_batch_id_data
,
const
LoDTensor
*
rois
)
{
for
(
int
ix
=
0
;
ix
<
count
;
ix
++
)
{
int
pw
=
ix
%
pooled_width
;
int
ph
=
(
ix
/
pooled_width
)
%
pooled_height
;
int
ctop
=
(
ix
/
pooled_width
/
pooled_height
)
%
output_dim
;
int
n
=
ix
/
pooled_width
/
pooled_height
/
output_dim
;
const
T
*
offset_bottom_rois
=
bottom_rois
+
n
*
4
;
int
roi_batch_ind
=
roi_batch_id_data
[
n
];
T
roi_start_w
=
static_cast
<
T
>
(
round
(
offset_bottom_rois
[
0
]))
*
spatial_scale
-
0.5
;
T
roi_start_h
=
static_cast
<
T
>
(
round
(
offset_bottom_rois
[
1
]))
*
spatial_scale
-
0.5
;
T
roi_end_w
=
static_cast
<
T
>
(
round
(
offset_bottom_rois
[
2
])
+
1.
)
*
spatial_scale
-
0.5
;
T
roi_end_h
=
static_cast
<
T
>
(
round
(
offset_bottom_rois
[
3
])
+
1.
)
*
spatial_scale
-
0.5
;
// width and height of roi
T
roi_width
=
std
::
max
(
roi_end_w
-
roi_start_w
,
T
(
0.1
));
T
roi_height
=
std
::
max
(
roi_end_h
-
roi_start_h
,
T
(
0.1
));
// width and height of each bin
T
bin_size_h
=
roi_height
/
static_cast
<
T
>
(
pooled_height
);
T
bin_size_w
=
roi_width
/
static_cast
<
T
>
(
pooled_width
);
// sampling interval in each bin
T
sub_bin_size_h
=
bin_size_h
/
static_cast
<
T
>
(
sample_per_part
);
T
sub_bin_size_w
=
bin_size_w
/
static_cast
<
T
>
(
sample_per_part
);
// obtain offset of roi
int
part_h
=
floor
(
static_cast
<
T
>
(
ph
)
/
pooled_height
*
part_height
);
int
part_w
=
floor
(
static_cast
<
T
>
(
pw
)
/
pooled_width
*
part_width
);
int
class_id
=
ctop
/
channels_each_class
;
T
trans_x
=
no_trans
?
static_cast
<
T
>
(
0
)
:
bottom_trans
[(((
n
*
num_classes
+
class_id
)
*
2
)
*
part_height
+
part_h
)
*
part_width
+
part_w
]
*
static_cast
<
T
>
(
trans_std
);
T
trans_y
=
no_trans
?
static_cast
<
T
>
(
0
)
:
bottom_trans
[(((
n
*
num_classes
+
class_id
)
*
2
+
1
)
*
part_height
+
part_h
)
*
part_width
+
part_w
]
*
static_cast
<
T
>
(
trans_std
);
// location of start after adding offset
T
wstart
=
static_cast
<
T
>
(
pw
)
*
bin_size_w
+
roi_start_w
;
wstart
+=
trans_x
*
roi_width
;
T
hstart
=
static_cast
<
T
>
(
ph
)
*
bin_size_h
+
roi_start_h
;
hstart
+=
trans_y
*
roi_height
;
T
sum
=
0
;
int
num_sample
=
0
;
int
gw
=
floor
(
static_cast
<
T
>
(
pw
)
*
group_width
/
pooled_width
);
int
gh
=
floor
(
static_cast
<
T
>
(
ph
)
*
group_height
/
pooled_height
);
gw
=
std
::
min
(
std
::
max
(
gw
,
0
),
group_width
-
1
);
gh
=
std
::
min
(
std
::
max
(
gh
,
0
),
group_height
-
1
);
const
T
*
offset_bottom_data
=
bottom_data
+
(
roi_batch_ind
*
channels
)
*
height
*
width
;
// sampling in each bin
for
(
int
ih
=
0
;
ih
<
sample_per_part
;
ih
++
)
{
for
(
int
iw
=
0
;
iw
<
sample_per_part
;
iw
++
)
{
T
w
=
wstart
+
iw
*
sub_bin_size_w
;
T
h
=
hstart
+
ih
*
sub_bin_size_h
;
if
(
w
<
-
0.5
||
w
>
width
-
0.5
||
h
<
-
0.5
||
h
>
height
-
0.5
)
{
continue
;
}
w
=
std
::
min
(
std
::
max
(
w
,
T
(
0.
)),
T
(
width
-
1.
));
h
=
std
::
min
(
std
::
max
(
h
,
T
(
0.
)),
height
-
T
(
1.
));
int
c
=
(
ctop
*
group_height
+
gh
)
*
group_width
+
gw
;
// bilinear interpolation to get value
T
val
=
bilinear_interp
(
offset_bottom_data
+
c
*
height
*
width
,
w
,
h
,
width
,
height
);
sum
+=
val
;
num_sample
++
;
}
}
top_data
[
ix
]
=
num_sample
==
0
?
static_cast
<
T
>
(
0
)
:
sum
/
num_sample
;
top_count
[
ix
]
=
num_sample
;
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
DeformablePSROIPoolCPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
*
rois
=
ctx
.
Input
<
LoDTensor
>
(
"ROIs"
);
auto
*
trans
=
ctx
.
Input
<
Tensor
>
(
"Trans"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
top_count
=
ctx
.
Output
<
Tensor
>
(
"TopCount"
);
top_count
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
math
::
SetConstant
<
DeviceContext
,
T
>
set_zero
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
set_zero
(
dev_ctx
,
out
,
static_cast
<
T
>
(
0
));
set_zero
(
dev_ctx
,
top_count
,
static_cast
<
T
>
(
0
));
const
int
num_rois
=
rois
->
dims
()[
0
];
PADDLE_ENFORCE_EQ
(
num_rois
,
out
->
dims
()[
0
],
"number of rois should be same with number of output"
);
framework
::
Tensor
roi_batch_id_list
;
roi_batch_id_list
.
Resize
({
num_rois
});
int
*
roi_batch_id_data
=
roi_batch_id_list
.
mutable_data
<
int
>
(
ctx
.
GetPlace
());
auto
no_trans
=
ctx
.
Attr
<
bool
>
(
"no_trans"
);
auto
spatial_scale
=
ctx
.
Attr
<
float
>
(
"spatial_scale"
);
auto
output_dim
=
ctx
.
Attr
<
int
>
(
"output_dim"
);
auto
group_size
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"group_size"
);
auto
group_height
=
group_size
[
0
];
auto
group_width
=
group_size
[
1
];
auto
pooled_height
=
ctx
.
Attr
<
int
>
(
"pooled_height"
);
auto
pooled_width
=
ctx
.
Attr
<
int
>
(
"pooled_width"
);
auto
part_size
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"part_size"
);
auto
part_height
=
part_size
[
0
];
auto
part_width
=
part_size
[
1
];
auto
sample_per_part
=
ctx
.
Attr
<
int
>
(
"sample_per_part"
);
auto
trans_std
=
ctx
.
Attr
<
float
>
(
"trans_std"
);
int
batch
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
int
channels
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
int
height
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
int
width
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
int
channels_trans
=
no_trans
?
2
:
trans
->
dims
()[
1
];
auto
count
=
num_rois
*
output_dim
*
pooled_height
*
pooled_width
;
auto
num_classes
=
no_trans
?
1
:
channels_trans
/
2
;
auto
channels_each_class
=
no_trans
?
output_dim
:
output_dim
/
num_classes
;
PADDLE_ENFORCE
(
channels_each_class
>=
1
,
"channels_each must greater than 1"
);
const
T
*
bottom_data
=
input
->
data
<
T
>
();
const
T
*
bottom_rois
=
rois
->
data
<
T
>
();
const
T
*
bottom_trans
=
no_trans
?
NULL
:
trans
->
data
<
T
>
();
T
*
top_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
top_count_data
=
top_count
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
rois_lod
=
rois
->
lod
().
back
();
int
rois_batch_size
=
rois_lod
.
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
rois_batch_size
,
batch
,
"The rois_batch_size must equal to batch_size of img."
);
int
rois_num_with_lod
=
rois_lod
[
rois_batch_size
];
PADDLE_ENFORCE_EQ
(
num_rois
,
rois_num_with_lod
,
"The rois_num from input and lod must be the same."
);
for
(
int
n
=
0
;
n
<
rois_batch_size
;
++
n
)
{
for
(
size_t
i
=
rois_lod
[
n
];
i
<
rois_lod
[
n
+
1
];
++
i
)
{
roi_batch_id_data
[
i
]
=
n
;
}
}
DeformablePSROIPoolForwardCPUKernel
(
count
,
bottom_data
,
(
T
)
spatial_scale
,
channels
,
height
,
width
,
pooled_height
,
pooled_width
,
bottom_rois
,
bottom_trans
,
no_trans
,
trans_std
,
sample_per_part
,
output_dim
,
group_height
,
group_width
,
part_height
,
part_width
,
num_classes
,
channels_each_class
,
top_data
,
top_count_data
,
batch
,
roi_batch_id_data
,
rois
);
}
};
template
<
typename
T
>
void
DeformablePSROIPoolBackwardAccCPUKernel
(
const
int
count
,
const
T
*
top_diff
,
const
T
*
top_count
,
const
int
num_rois
,
const
T
spatial_scale
,
const
int
channels
,
const
int
height
,
const
int
width
,
const
int
pooled_height
,
const
int
pooled_width
,
const
int
output_dim
,
T
*
bottom_data_diff
,
T
*
bottom_trans_diff
,
const
T
*
bottom_data
,
const
T
*
bottom_rois
,
const
T
*
bottom_trans
,
const
bool
no_trans
,
const
float
trans_std
,
const
int
sample_per_part
,
const
int
group_height
,
const
int
group_width
,
const
int
part_height
,
const
int
part_width
,
const
int
num_classes
,
const
int
channels_each_class
,
const
int
batch_size
,
int
*
roi_batch_id_data
,
const
LoDTensor
*
rois
)
{
for
(
int
index
=
0
;
index
<
count
;
index
++
)
{
int
pw
=
index
%
pooled_width
;
int
ph
=
(
index
/
pooled_width
)
%
pooled_height
;
int
ctop
=
(
index
/
pooled_width
/
pooled_height
)
%
output_dim
;
int
n
=
index
/
pooled_width
/
pooled_height
/
output_dim
;
// location of roi on feature map
const
T
*
offset_bottom_rois
=
bottom_rois
+
n
*
4
;
int
roi_batch_ind
=
roi_batch_id_data
[
n
];
T
roi_start_w
=
static_cast
<
T
>
(
round
(
offset_bottom_rois
[
0
]))
*
spatial_scale
-
0.5
;
T
roi_start_h
=
static_cast
<
T
>
(
round
(
offset_bottom_rois
[
1
]))
*
spatial_scale
-
0.5
;
T
roi_end_w
=
static_cast
<
T
>
(
round
(
offset_bottom_rois
[
2
])
+
1.
)
*
spatial_scale
-
0.5
;
T
roi_end_h
=
static_cast
<
T
>
(
round
(
offset_bottom_rois
[
3
])
+
1.
)
*
spatial_scale
-
0.5
;
// width and height of roi
T
roi_width
=
std
::
max
(
roi_end_w
-
roi_start_w
,
T
(
0.1
));
T
roi_height
=
std
::
max
(
roi_end_h
-
roi_start_h
,
T
(
0.1
));
// width and height of each bin
T
bin_size_h
=
roi_height
/
static_cast
<
T
>
(
pooled_height
);
T
bin_size_w
=
roi_width
/
static_cast
<
T
>
(
pooled_width
);
// sampling interval in each bin
T
sub_bin_size_h
=
bin_size_h
/
static_cast
<
T
>
(
sample_per_part
);
T
sub_bin_size_w
=
bin_size_w
/
static_cast
<
T
>
(
sample_per_part
);
// obtain offset of roi
int
part_h
=
floor
(
static_cast
<
T
>
(
ph
)
/
pooled_height
*
part_height
);
int
part_w
=
floor
(
static_cast
<
T
>
(
pw
)
/
pooled_width
*
part_height
);
int
class_id
=
ctop
/
channels_each_class
;
T
trans_x
=
no_trans
?
static_cast
<
T
>
(
0
)
:
bottom_trans
[(((
n
*
num_classes
+
class_id
)
*
2
)
*
part_height
+
part_h
)
*
part_width
+
part_w
]
*
static_cast
<
T
>
(
trans_std
);
T
trans_y
=
no_trans
?
static_cast
<
T
>
(
0
)
:
bottom_trans
[(((
n
*
num_classes
+
class_id
)
*
2
+
1
)
*
part_height
+
part_h
)
*
part_width
+
part_w
]
*
static_cast
<
T
>
(
trans_std
);
// location of start after adding offset
T
wstart
=
static_cast
<
T
>
(
pw
)
*
bin_size_w
+
roi_start_w
;
wstart
+=
trans_x
*
roi_width
;
T
hstart
=
static_cast
<
T
>
(
ph
)
*
bin_size_h
+
roi_start_h
;
hstart
+=
trans_y
*
roi_height
;
if
(
top_count
[
index
]
<=
0
)
{
continue
;
}
T
diff_val
=
top_diff
[
index
]
/
top_count
[
index
];
const
T
*
offset_bottom_data
=
bottom_data
+
roi_batch_ind
*
channels
*
height
*
width
;
int
gw
=
floor
(
static_cast
<
T
>
(
pw
)
*
group_width
/
pooled_width
);
int
gh
=
floor
(
static_cast
<
T
>
(
ph
)
*
group_height
/
pooled_height
);
gw
=
std
::
min
(
std
::
max
(
gw
,
0
),
group_width
-
1
);
gh
=
std
::
min
(
std
::
max
(
gh
,
0
),
group_height
-
1
);
// sampling in each bin
for
(
int
ih
=
0
;
ih
<
sample_per_part
;
ih
++
)
{
for
(
int
iw
=
0
;
iw
<
sample_per_part
;
iw
++
)
{
T
w
=
wstart
+
iw
*
sub_bin_size_w
;
T
h
=
hstart
+
ih
*
sub_bin_size_h
;
if
(
w
<
-
0.5
||
w
>
width
-
0.5
||
h
<
-
0.5
||
h
>
height
-
0.5
)
{
continue
;
}
w
=
std
::
min
(
std
::
max
(
w
,
T
(
0.
)),
T
(
width
-
1.
));
h
=
std
::
min
(
std
::
max
(
h
,
T
(
0.
)),
T
(
height
-
1.
));
int
c
=
(
ctop
*
group_height
+
gh
)
*
group_width
+
gw
;
int
x0
=
floor
(
w
);
int
x1
=
ceil
(
w
);
int
y0
=
floor
(
h
);
int
y1
=
ceil
(
h
);
// compute coefficient of gradient
T
dist_x
=
w
-
x0
,
dist_y
=
h
-
y0
;
T
q00
=
(
1
-
dist_x
)
*
(
1
-
dist_y
);
T
q01
=
(
1
-
dist_x
)
*
dist_y
;
T
q10
=
dist_x
*
(
1
-
dist_y
);
T
q11
=
dist_x
*
dist_y
;
int
bottom_index_base
=
c
*
height
*
width
;
// compute gradient of input
if
(
bottom_data_diff
!=
NULL
)
{
T
*
offset_bottom_data_diff_addr00
=
bottom_data_diff
+
roi_batch_ind
*
channels
*
height
*
width
+
bottom_index_base
+
y0
*
width
+
x0
;
T
*
offset_bottom_data_diff_addr01
=
bottom_data_diff
+
roi_batch_ind
*
channels
*
height
*
width
+
bottom_index_base
+
y1
*
width
+
x0
;
T
*
offset_bottom_data_diff_addr10
=
bottom_data_diff
+
roi_batch_ind
*
channels
*
height
*
width
+
bottom_index_base
+
y0
*
width
+
x1
;
T
*
offset_bottom_data_diff_addr11
=
bottom_data_diff
+
roi_batch_ind
*
channels
*
height
*
width
+
bottom_index_base
+
y1
*
width
+
x1
;
*
offset_bottom_data_diff_addr00
=
*
offset_bottom_data_diff_addr00
+
q00
*
diff_val
;
*
offset_bottom_data_diff_addr01
=
*
offset_bottom_data_diff_addr01
+
q01
*
diff_val
;
*
offset_bottom_data_diff_addr10
=
*
offset_bottom_data_diff_addr10
+
q10
*
diff_val
;
*
offset_bottom_data_diff_addr11
=
*
offset_bottom_data_diff_addr11
+
q11
*
diff_val
;
}
// compute gradient of trans
if
(
no_trans
||
bottom_trans_diff
==
NULL
)
{
continue
;
}
T
u00
=
offset_bottom_data
[
bottom_index_base
+
y0
*
width
+
x0
];
T
u01
=
offset_bottom_data
[
bottom_index_base
+
y1
*
width
+
x0
];
T
u10
=
offset_bottom_data
[
bottom_index_base
+
y0
*
width
+
x1
];
T
u11
=
offset_bottom_data
[
bottom_index_base
+
y1
*
width
+
x1
];
T
diff_x
=
(
u11
*
dist_y
+
u10
*
(
1
-
dist_y
)
-
u01
*
dist_y
-
u00
*
(
1
-
dist_y
))
*
trans_std
*
diff_val
;
diff_x
*=
roi_width
;
T
diff_y
=
(
u11
*
dist_x
+
u01
*
(
1
-
dist_x
)
-
u10
*
dist_x
-
u00
*
(
1
-
dist_x
))
*
trans_std
*
diff_val
;
diff_y
*=
roi_height
;
T
*
offset_bottom_trans_diff_x
=
bottom_trans_diff
+
(((
n
*
num_classes
+
class_id
)
*
2
)
*
part_height
+
part_h
)
*
part_width
+
part_w
;
T
*
offset_bottom_trans_diff_y
=
bottom_trans_diff
+
(((
n
*
num_classes
+
class_id
)
*
2
+
1
)
*
part_height
+
part_h
)
*
part_width
+
part_w
;
*
offset_bottom_trans_diff_x
=
*
offset_bottom_trans_diff_x
+
diff_x
;
*
offset_bottom_trans_diff_y
=
*
offset_bottom_trans_diff_y
+
diff_y
;
}
}
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
DeformablePSROIPoolGradCPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
*
rois
=
ctx
.
Input
<
LoDTensor
>
(
"ROIs"
);
auto
*
trans
=
ctx
.
Input
<
Tensor
>
(
"Trans"
);
auto
*
top_count
=
ctx
.
Input
<
Tensor
>
(
"TopCount"
);
auto
*
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
math
::
SetConstant
<
DeviceContext
,
T
>
set_zero
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
if
(
input_grad
)
{
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
input_grad
,
static_cast
<
T
>
(
.0
));
}
auto
*
trans_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Trans"
));
if
(
trans_grad
)
{
trans_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
trans_grad
,
static_cast
<
T
>
(
.0
));
}
auto
no_trans
=
ctx
.
Attr
<
bool
>
(
"no_trans"
);
auto
spatial_scale
=
ctx
.
Attr
<
float
>
(
"spatial_scale"
);
auto
output_dim
=
ctx
.
Attr
<
int
>
(
"output_dim"
);
auto
group_size
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"group_size"
);
auto
group_height
=
group_size
[
0
];
auto
group_width
=
group_size
[
1
];
auto
pooled_height
=
ctx
.
Attr
<
int
>
(
"pooled_height"
);
auto
pooled_width
=
ctx
.
Attr
<
int
>
(
"pooled_width"
);
auto
part_size
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"part_size"
);
auto
part_height
=
part_size
[
0
];
auto
part_width
=
part_size
[
1
];
auto
sample_per_part
=
ctx
.
Attr
<
int
>
(
"sample_per_part"
);
auto
trans_std
=
ctx
.
Attr
<
float
>
(
"trans_std"
);
const
int
batch
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
channels
=
static_cast
<
int
>
(
input
->
dims
()[
1
]);
const
int
height
=
static_cast
<
int
>
(
input
->
dims
()[
2
]);
const
int
width
=
static_cast
<
int
>
(
input
->
dims
()[
3
]);
const
int
channels_trans
=
no_trans
?
2
:
trans
->
dims
()[
1
];
const
int
num_rois
=
rois
->
dims
()[
0
];
const
int
count
=
num_rois
*
output_dim
*
pooled_height
*
pooled_width
;
const
int
num_classes
=
no_trans
?
1
:
channels_trans
/
2
;
const
int
channels_each_class
=
no_trans
?
output_dim
:
output_dim
/
num_classes
;
Tensor
roi_batch_id_list
;
roi_batch_id_list
.
Resize
({
num_rois
});
int
*
roi_batch_id_data
=
roi_batch_id_list
.
mutable_data
<
int
>
(
ctx
.
GetPlace
());
const
T
*
top_diff
=
output_grad
->
data
<
T
>
();
const
T
*
bottom_data
=
input
->
data
<
T
>
();
const
T
*
bottom_rois
=
rois
->
data
<
T
>
();
const
T
*
bottom_trans
=
no_trans
?
NULL
:
trans
->
data
<
T
>
();
T
*
bottom_data_diff
=
NULL
;
T
*
bottom_trans_diff
=
NULL
;
if
(
input_grad
)
{
bottom_data_diff
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
if
(
trans_grad
)
{
bottom_trans_diff
=
no_trans
?
NULL
:
trans_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
const
T
*
top_count_data
=
top_count
->
data
<
T
>
();
auto
rois_lod
=
rois
->
lod
().
back
();
int
rois_batch_size
=
rois_lod
.
size
()
-
1
;
int
rois_num_with_lod
=
rois_lod
[
rois_batch_size
];
PADDLE_ENFORCE_EQ
(
num_rois
,
rois_num_with_lod
,
"The rois_num from input and lod must be the same."
);
for
(
int
n
=
0
;
n
<
rois_batch_size
;
++
n
)
{
for
(
size_t
i
=
rois_lod
[
n
];
i
<
rois_lod
[
n
+
1
];
++
i
)
{
roi_batch_id_data
[
i
]
=
n
;
}
}
DeformablePSROIPoolBackwardAccCPUKernel
(
count
,
top_diff
,
top_count_data
,
num_rois
,
(
T
)
spatial_scale
,
channels
,
height
,
width
,
pooled_height
,
pooled_width
,
output_dim
,
bottom_data_diff
,
bottom_trans_diff
,
bottom_data
,
bottom_rois
,
bottom_trans
,
no_trans
,
(
T
)
trans_std
,
sample_per_part
,
group_height
,
group_width
,
part_height
,
part_width
,
num_classes
,
channels_each_class
,
batch
,
roi_batch_id_data
,
rois
);
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/layers/nn.py
浏览文件 @
c50fb58c
...
...
@@ -203,6 +203,7 @@ __all__ = [
'where'
,
'sign'
,
'deformable_conv'
,
'deformable_roi_pooling'
,
]
kIgnoreIndex
=
-
100
...
...
@@ -12088,3 +12089,117 @@ def deformable_conv(input,
output
=
helper
.
append_bias_op
(
pre_bias
,
dim_start
=
1
,
dim_end
=
2
)
return
output
def
deformable_roi_pooling
(
input
,
rois
,
trans
,
no_trans
=
False
,
spatial_scale
=
1.0
,
group_size
=
[
1
,
1
],
pooled_height
=
1
,
pooled_width
=
1
,
part_size
=
None
,
sample_per_part
=
1
,
trans_std
=
0.1
,
position_sensitive
=
False
,
name
=
None
):
"""
Deformable PSROI Pooling Layer
Args:
input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is
[N,C,H,W]. Where N is batch size,C is number of input channels,H
is height of the feature, and W is the width of the feature.
rois (Variable): ROIs (Regions of Interest) to pool over.It should be
a 2-D LoDTensor of shape (num_rois, 4), the lod level
is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
the top left coordinates, and (x2, y2) is the bottom
right coordinates.
trans (Variable): Offset of features on ROIs while pooling.The format is NCHW, where
N is number of ROIs, C is number of channels, which indicate the offset distance
in the x and y directions, H is pooled height, and W is pooled width.
no_trans (bool): Whether to add offset to get new value or not while roi pooling, which
value is True or False. Default: False.
spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
group_size (list|tuple): The number of groups which input channels are divided.(eg.number of input channels
is k1*k2*(C+1), which k1 and k2 are group width and height and C+1 is number of output
chanels. eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
pooled_height (integer): The pooled output height. Default: 1.
pooled_width (integer): The pooled output width. Default: 1.
part_size (list|tuple): The height and width of offset, eg.(4, 6), which height is 4 and width is 6, Default:
if None, default value is [pooled_height, pooled_width].
sample_per_part (integer): The number of samples in each bin. Default: 1.
trans_std (float): Coefficient of offset. Default: 0.1.
position_sensitive (bool): Whether to choose deformable psroi pooling mode or not. Default: False.
name (str): Name of layer. Default: None.
Returns:
Variable: The tensor variable storing the deformable psroi pooling
\
result.
Examples:
.. code-block:: python
input = fluid.layers.data(name="input",
shape=[2, 192, 64, 64],
dtype='float32',
append_batch_size=False)
rois = fluid.layers.data(name="rois",
shape=[4],
dtype='float32',
lod_level=1)
trans = fluid.layers.data(name="trans",
shape=[2, 384, 64, 64],
dtype='float32',
append_batch_size=False)
x = fluid.layers.nn.deformable_roi_pooling(input=input,
rois=rois,
trans=trans,
no_trans=False,
spatial_scale=1.0,
group_size=(1, 1),
pooled_height=8,
pooled_width=8,
part_size=(8, 8),
sample_per_part=4,
trans_std=0.1,
position_sensitive=False)
"""
input_channels
=
input
.
shape
[
1
]
if
position_sensitive
==
False
:
output_channels
=
input_channels
else
:
output_channels
=
input_channels
/
pooled_height
/
pooled_width
if
part_size
is
None
:
part_height
=
pooled_height
part_width
=
pooled_width
part_size
=
[
part_height
,
part_width
]
part_size
=
utils
.
convert_to_list
(
part_size
,
2
,
'part_size'
)
group_size
=
utils
.
convert_to_list
(
group_size
,
2
,
'group_size'
)
helper
=
LayerHelper
(
'deformable_psroi_pooling'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
output
=
helper
.
create_variable_for_type_inference
(
dtype
)
top_count
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
helper
.
append_op
(
type
=
"deformable_psroi_pooling"
,
inputs
=
{
"Input"
:
input
,
"ROIs"
:
rois
,
"Trans"
:
trans
},
outputs
=
{
"Output"
:
output
,
"TopCount"
:
top_count
},
attrs
=
{
"no_trans"
:
no_trans
,
"spatial_scale"
:
spatial_scale
,
"output_dim"
:
output_channels
,
"group_size"
:
group_size
,
"pooled_height"
:
pooled_height
,
"pooled_width"
:
pooled_width
,
"part_size"
:
part_size
,
"sample_per_part"
:
sample_per_part
,
"trans_std"
:
trans_std
})
return
output
python/paddle/fluid/tests/unittests/test_deformable_psroi_pooling.py
0 → 100644
浏览文件 @
c50fb58c
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
def
set_input
(
input
,
rois
,
trans
):
inputs
=
{
'Input'
:
input
,
"ROIs"
:
rois
,
"Trans"
:
trans
}
return
inputs
def
set_attrs
(
no_trans
,
spatial_scale
,
output_channels
,
group_size
,
pooled_height
,
pooled_width
,
part_size
,
sample_per_part
,
trans_std
):
attrs
=
{
'no_trans'
:
no_trans
,
'spatial_scale'
:
spatial_scale
,
'output_dim'
:
output_channels
,
'group_size'
:
group_size
,
'pooled_height'
:
pooled_height
,
'pooled_width'
:
pooled_width
,
'part_size'
:
part_size
,
'sample_per_part'
:
sample_per_part
,
'trans_std'
:
trans_std
}
return
attrs
def
set_outputs
(
output
,
top_count
):
outputs
=
{
'Output'
:
output
.
astype
(
'float32'
),
'TopCount'
:
top_count
.
astype
(
'float32'
)
}
return
outputs
class
TestDeformablePSROIPoolOp
(
OpTest
):
def
set_data
(
self
):
self
.
start_test1
()
self
.
start_test2
()
self
.
start_test3
()
self
.
start_test4
()
def
start_test1
(
self
):
self
.
init_test_case1
()
self
.
make_rois
()
self
.
calc_deformable_psroi_pooling
()
inputs
=
self
.
input
rois
=
(
self
.
rois
[:,
1
:
5
],
self
.
rois_lod
)
trans
=
self
.
trans
self
.
inputs
=
set_input
(
inputs
,
rois
,
trans
)
no_trans
=
self
.
no_trans
spatial_scale
=
self
.
spatial_scale
output_channels
=
self
.
output_channels
group_size
=
self
.
group_size
pooled_height
=
self
.
pooled_height
pooled_width
=
self
.
pooled_width
part_size
=
self
.
part_size
sample_per_part
=
self
.
sample_per_part
trans_std
=
self
.
trans_std
self
.
attrs
=
set_attrs
(
no_trans
,
spatial_scale
,
output_channels
,
group_size
,
pooled_height
,
pooled_width
,
part_size
,
sample_per_part
,
trans_std
)
output
=
self
.
out
.
astype
(
'float32'
)
top_count
=
self
.
top_count
.
astype
(
'float32'
)
self
.
outputs
=
set_outputs
(
output
,
top_count
)
def
start_test2
(
self
):
self
.
init_test_case2
()
self
.
make_rois
()
self
.
calc_deformable_psroi_pooling
()
inputs
=
self
.
input
rois
=
(
self
.
rois
[:,
1
:
5
],
self
.
rois_lod
)
trans
=
self
.
trans
self
.
inputs
=
set_input
(
inputs
,
rois
,
trans
)
no_trans
=
self
.
no_trans
spatial_scale
=
self
.
spatial_scale
output_channels
=
self
.
output_channels
group_size
=
self
.
group_size
pooled_height
=
self
.
pooled_height
pooled_width
=
self
.
pooled_width
part_size
=
self
.
part_size
sample_per_part
=
self
.
sample_per_part
trans_std
=
self
.
trans_std
self
.
attrs
=
set_attrs
(
no_trans
,
spatial_scale
,
output_channels
,
group_size
,
pooled_height
,
pooled_width
,
part_size
,
sample_per_part
,
trans_std
)
output
=
self
.
out
.
astype
(
'float32'
)
top_count
=
self
.
top_count
.
astype
(
'float32'
)
self
.
outputs
=
set_outputs
(
output
,
top_count
)
def
start_test3
(
self
):
self
.
init_test_case3
()
self
.
make_rois
()
self
.
calc_deformable_psroi_pooling
()
inputs
=
self
.
input
rois
=
(
self
.
rois
[:,
1
:
5
],
self
.
rois_lod
)
trans
=
self
.
trans
self
.
inputs
=
set_input
(
inputs
,
rois
,
trans
)
no_trans
=
self
.
no_trans
spatial_scale
=
self
.
spatial_scale
output_channels
=
self
.
output_channels
group_size
=
self
.
group_size
pooled_height
=
self
.
pooled_height
pooled_width
=
self
.
pooled_width
part_size
=
self
.
part_size
sample_per_part
=
self
.
sample_per_part
trans_std
=
self
.
trans_std
self
.
attrs
=
set_attrs
(
no_trans
,
spatial_scale
,
output_channels
,
group_size
,
pooled_height
,
pooled_width
,
part_size
,
sample_per_part
,
trans_std
)
output
=
self
.
out
.
astype
(
'float32'
)
top_count
=
self
.
top_count
.
astype
(
'float32'
)
self
.
outputs
=
set_outputs
(
output
,
top_count
)
def
start_test4
(
self
):
self
.
init_test_case4
()
self
.
make_rois
()
self
.
calc_deformable_psroi_pooling
()
inputs
=
self
.
input
rois
=
(
self
.
rois
[:,
1
:
5
],
self
.
rois_lod
)
trans
=
self
.
trans
self
.
inputs
=
set_input
(
inputs
,
rois
,
trans
)
no_trans
=
self
.
no_trans
spatial_scale
=
self
.
spatial_scale
output_channels
=
self
.
output_channels
group_size
=
self
.
group_size
pooled_height
=
self
.
pooled_height
pooled_width
=
self
.
pooled_width
part_size
=
self
.
part_size
sample_per_part
=
self
.
sample_per_part
trans_std
=
self
.
trans_std
self
.
attrs
=
set_attrs
(
no_trans
,
spatial_scale
,
output_channels
,
group_size
,
pooled_height
,
pooled_width
,
part_size
,
sample_per_part
,
trans_std
)
output
=
self
.
out
.
astype
(
'float32'
)
top_count
=
self
.
top_count
.
astype
(
'float32'
)
self
.
outputs
=
set_outputs
(
output
,
top_count
)
def
init_test_case1
(
self
):
self
.
batch_size
=
3
self
.
channels
=
3
*
2
*
2
self
.
height
=
12
self
.
width
=
12
self
.
input_dim
=
[
self
.
batch_size
,
self
.
channels
,
self
.
height
,
self
.
width
]
self
.
no_trans
=
False
self
.
spatial_scale
=
1.0
/
4.0
self
.
output_channels
=
12
self
.
group_size
=
[
1
,
1
]
self
.
pooled_height
=
4
self
.
pooled_width
=
4
self
.
part_size
=
[
4
,
4
]
self
.
sample_per_part
=
2
self
.
trans_std
=
0.1
self
.
input
=
np
.
random
.
random
(
self
.
input_dim
).
astype
(
'float32'
)
def
init_test_case2
(
self
):
self
.
batch_size
=
2
self
.
channels
=
3
*
2
*
2
self
.
height
=
12
self
.
width
=
12
self
.
input_dim
=
[
self
.
batch_size
,
self
.
channels
,
self
.
height
,
self
.
width
]
self
.
no_trans
=
True
self
.
spatial_scale
=
1.0
/
2.0
self
.
output_channels
=
12
self
.
group_size
=
[
1
,
1
]
self
.
pooled_height
=
7
self
.
pooled_width
=
7
self
.
part_size
=
[
7
,
7
]
self
.
sample_per_part
=
4
self
.
trans_std
=
0.1
self
.
input
=
np
.
random
.
random
(
self
.
input_dim
).
astype
(
'float32'
)
def
init_test_case3
(
self
):
self
.
batch_size
=
2
self
.
channels
=
3
*
2
*
2
self
.
height
=
12
self
.
width
=
12
self
.
input_dim
=
[
self
.
batch_size
,
self
.
channels
,
self
.
height
,
self
.
width
]
self
.
no_trans
=
False
self
.
spatial_scale
=
1.0
/
4.0
self
.
output_channels
=
12
self
.
group_size
=
[
1
,
1
]
self
.
pooled_height
=
3
self
.
pooled_width
=
3
self
.
part_size
=
[
3
,
3
]
self
.
sample_per_part
=
3
self
.
trans_std
=
0.2
self
.
input
=
np
.
random
.
random
(
self
.
input_dim
).
astype
(
'float32'
)
def
init_test_case4
(
self
):
self
.
batch_size
=
2
self
.
channels
=
3
*
2
*
2
self
.
height
=
12
self
.
width
=
12
self
.
input_dim
=
[
self
.
batch_size
,
self
.
channels
,
self
.
height
,
self
.
width
]
self
.
no_trans
=
True
self
.
spatial_scale
=
1.0
/
2.0
self
.
output_channels
=
12
self
.
group_size
=
[
1
,
1
]
self
.
pooled_height
=
6
self
.
pooled_width
=
2
self
.
part_size
=
[
6
,
6
]
self
.
sample_per_part
=
6
self
.
trans_std
=
0.4
self
.
input
=
np
.
random
.
random
(
self
.
input_dim
).
astype
(
'float32'
)
def
make_rois
(
self
):
rois
=
[]
self
.
rois_lod
=
[[]]
for
bno
in
range
(
self
.
batch_size
):
self
.
rois_lod
[
0
].
append
(
bno
+
1
)
for
i
in
range
(
bno
+
1
):
x_1
=
np
.
random
.
random_integers
(
0
,
self
.
width
//
self
.
spatial_scale
-
self
.
pooled_width
)
y_1
=
np
.
random
.
random_integers
(
0
,
self
.
height
//
self
.
spatial_scale
-
self
.
pooled_height
)
x_2
=
np
.
random
.
random_integers
(
x_1
+
self
.
pooled_width
,
self
.
width
//
self
.
spatial_scale
)
y_2
=
np
.
random
.
random_integers
(
y_1
+
self
.
pooled_height
,
self
.
height
//
self
.
spatial_scale
)
roi
=
[
bno
,
x_1
,
y_1
,
x_2
,
y_2
]
rois
.
append
(
roi
)
self
.
rois_num
=
len
(
rois
)
self
.
rois
=
np
.
array
(
rois
).
astype
(
"float32"
)
def
dmc_bilinear
(
self
,
data_im
,
p_h
,
p_w
):
h_low
=
int
(
np
.
floor
(
p_h
))
w_low
=
int
(
np
.
floor
(
p_w
))
h_high
=
h_low
+
1
w_high
=
w_low
+
1
l_h
=
p_h
-
h_low
l_w
=
p_w
-
w_low
h_h
=
1
-
l_h
h_w
=
1
-
l_w
v_1
=
0
if
h_low
>=
0
and
w_low
>=
0
:
v_1
=
data_im
[
h_low
,
w_low
]
v_2
=
0
if
h_low
>=
0
and
w_high
<=
self
.
width
-
1
:
v_2
=
data_im
[
h_low
,
w_high
]
v_3
=
0
if
h_high
<=
self
.
height
-
1
and
w_low
>=
0
:
v_3
=
data_im
[
h_high
,
w_low
]
v_4
=
0
if
h_high
<=
self
.
height
-
1
and
w_high
<=
self
.
width
-
1
:
v_4
=
data_im
[
h_high
,
w_high
]
w_1
,
w_2
,
w_3
,
w_4
=
h_h
*
h_w
,
h_h
*
l_w
,
l_h
*
h_w
,
l_h
*
l_w
val
=
w_1
*
v_1
+
w_2
*
v_2
+
w_3
*
v_3
+
w_4
*
v_4
return
val
def
calc_deformable_psroi_pooling
(
self
):
output_shape
=
(
self
.
rois_num
,
self
.
output_channels
,
self
.
pooled_height
,
self
.
pooled_width
)
self
.
out
=
np
.
zeros
(
output_shape
)
self
.
trans
=
np
.
random
.
rand
(
self
.
rois_num
,
2
,
self
.
part_size
[
0
],
self
.
part_size
[
1
]).
astype
(
'float32'
)
self
.
top_count
=
np
.
random
.
random
((
output_shape
)).
astype
(
'float32'
)
count
=
self
.
rois_num
*
self
.
output_channels
*
self
.
pooled_height
*
self
.
pooled_width
for
index
in
range
(
count
):
p_w
=
int
(
index
%
self
.
pooled_width
)
p_h
=
int
(
index
/
self
.
pooled_width
%
self
.
pooled_height
)
ctop
=
int
(
index
/
self
.
pooled_width
/
self
.
pooled_height
%
self
.
output_channels
)
n_out
=
int
(
index
/
self
.
pooled_width
/
self
.
pooled_height
/
self
.
output_channels
)
roi
=
self
.
rois
[
n_out
]
roi_batch_id
=
int
(
roi
[
0
])
roi_start_w
=
int
(
np
.
round
(
roi
[
1
]))
*
self
.
spatial_scale
-
0.5
roi_start_h
=
int
(
np
.
round
(
roi
[
2
]))
*
self
.
spatial_scale
-
0.5
roi_end_w
=
int
(
np
.
round
(
roi
[
3
]
+
1
))
*
self
.
spatial_scale
-
0.5
roi_end_h
=
int
(
np
.
round
(
roi
[
4
]
+
1
))
*
self
.
spatial_scale
-
0.5
roi_width
=
max
(
roi_end_w
-
roi_start_w
,
0.1
)
roi_height
=
max
(
roi_end_h
-
roi_start_h
,
0.1
)
bin_size_h
=
float
(
roi_height
)
/
float
(
self
.
pooled_height
)
bin_size_w
=
float
(
roi_width
)
/
float
(
self
.
pooled_width
)
sub_bin_size_h
=
bin_size_h
/
self
.
sample_per_part
sub_bin_size_w
=
bin_size_w
/
self
.
sample_per_part
part_h
=
int
(
np
.
floor
(
p_h
)
/
self
.
pooled_height
*
self
.
part_size
[
0
])
part_w
=
int
(
np
.
floor
(
p_w
)
/
self
.
pooled_width
*
self
.
part_size
[
1
])
if
self
.
no_trans
:
trans_x
=
0
trans_y
=
0
else
:
trans_x
=
self
.
trans
[
n_out
][
0
][
part_h
][
part_w
]
*
self
.
trans_std
trans_y
=
self
.
trans
[
n_out
][
1
][
part_h
][
part_w
]
*
self
.
trans_std
wstart
=
p_w
*
bin_size_w
+
roi_start_w
wstart
=
wstart
+
trans_x
*
roi_width
hstart
=
p_h
*
bin_size_h
+
roi_start_h
hstart
=
hstart
+
trans_y
*
roi_height
sum
=
0
num_sample
=
0
g_w
=
np
.
floor
(
p_w
*
self
.
group_size
[
0
]
/
self
.
pooled_height
)
g_h
=
np
.
floor
(
p_h
*
self
.
group_size
[
1
]
/
self
.
pooled_width
)
g_w
=
min
(
max
(
g_w
,
0
),
self
.
group_size
[
0
]
-
1
)
g_h
=
min
(
max
(
g_h
,
0
),
self
.
group_size
[
1
]
-
1
)
input_i
=
self
.
input
[
roi_batch_id
]
for
i_w
in
range
(
self
.
sample_per_part
):
for
i_h
in
range
(
self
.
sample_per_part
):
w_sample
=
wstart
+
i_w
*
sub_bin_size_w
h_sample
=
hstart
+
i_h
*
sub_bin_size_h
if
w_sample
<
-
0.5
or
w_sample
>
self
.
width
-
0.5
or
\
h_sample
<
-
0.5
or
h_sample
>
self
.
height
-
0.5
:
continue
w_sample
=
min
(
max
(
w_sample
,
0.
),
self
.
width
-
1.
)
h_sample
=
min
(
max
(
h_sample
,
0.
),
self
.
height
-
1.
)
c_sample
=
int
((
ctop
*
self
.
group_size
[
0
]
+
g_h
)
*
self
.
group_size
[
1
]
+
g_w
)
val
=
self
.
dmc_bilinear
(
input_i
[
c_sample
],
h_sample
,
w_sample
)
sum
=
sum
+
val
num_sample
=
num_sample
+
1
if
num_sample
==
0
:
self
.
out
[
n_out
][
ctop
][
p_h
][
p_w
]
=
0
else
:
self
.
out
[
n_out
][
ctop
][
p_h
][
p_w
]
=
sum
/
num_sample
self
.
top_count
[
n_out
][
ctop
][
p_h
][
p_w
]
=
num_sample
def
setUp
(
self
):
self
.
op_type
=
"deformable_psroi_pooling"
self
.
set_data
()
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'Input'
],
'Output'
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
c50fb58c
...
...
@@ -1989,6 +1989,35 @@ class TestBook(LayerTest):
padding
=
1
)
return
(
out
)
def
test_deform_roi_pooling
(
self
):
with
program_guard
(
fluid
.
default_main_program
(),
fluid
.
default_startup_program
()):
input
=
layers
.
data
(
name
=
'input'
,
shape
=
[
2
,
3
,
32
,
32
],
dtype
=
'float32'
,
append_batch_size
=
False
)
rois
=
layers
.
data
(
name
=
"rois"
,
shape
=
[
4
],
dtype
=
'float32'
,
lod_level
=
1
)
trans
=
layers
.
data
(
name
=
"trans"
,
shape
=
[
2
,
3
,
32
,
32
],
dtype
=
'float32'
,
append_batch_size
=
False
)
out
=
layers
.
deformable_roi_pooling
(
input
=
input
,
rois
=
rois
,
trans
=
trans
,
no_trans
=
False
,
spatial_scale
=
1.0
,
group_size
=
(
1
,
1
),
pooled_height
=
8
,
pooled_width
=
8
,
part_size
=
(
8
,
8
),
sample_per_part
=
4
,
trans_std
=
0.1
)
return
(
out
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录