diff --git a/python/paddle/fluid/tests/unittests/test_mul_nn_grad.py b/python/paddle/fluid/tests/unittests/test_mul_nn_grad.py new file mode 100644 index 0000000000000000000000000000000000000000..c862c555c897aa23074c064a4e9992bcd30b775e --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_mul_nn_grad.py @@ -0,0 +1,143 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import unittest +import numpy as np + +import paddle +import paddle.fluid as fluid +import paddle.fluid.layers as layers +import paddle.fluid.core as core +import gradient_checker +from decorator_helper import prog_scope +paddle.enable_static() + + +class TestMulGradCheck(unittest.TestCase): + @prog_scope() + def func(self, place): + prog = fluid.Program() + with fluid.program_guard(prog): + x = layers.create_parameter(dtype="float64", shape=[2, 8], name='x') + y = layers.create_parameter(dtype="float64", shape=[8, 4], name='y') + z = layers.mul(x=x, y=y) + gradient_checker.grad_check([x, y], z, place=place) + + def test_grad(self): + places = [fluid.CPUPlace()] + if core.is_compiled_with_cuda(): + places.append(fluid.CUDAPlace(0)) + for p in places: + self.func(p) + + +class TestMulDoubleGradCheck(unittest.TestCase): + @prog_scope() + def func(self, place): + # the shape of input variable should be clearly specified, not inlcude -1. + x_shape = [7, 11] + y_shape = [11, 9] + eps = 0.005 + dtype = np.float64 + + x = layers.data('x', x_shape, False, dtype) + x.persistable = True + y = layers.data('y', y_shape, False, dtype) + y.persistable = True + out = layers.mul(x, y) + x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype) + y_arr = np.random.uniform(-1, 1, y_shape).astype(dtype) + + gradient_checker.double_grad_check( + [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) + + def test_grad(self): + places = [fluid.CPUPlace()] + if core.is_compiled_with_cuda(): + places.append(fluid.CUDAPlace(0)) + for p in places: + self.func(p) + + +class TestMatmulDoubleGradCheck(unittest.TestCase): + def setUp(self): + self.init_test() + + def init_test(self): + self.x_shape = [2] + self.y_shape = [2] + self.transpose_x = False + self.transpose_y = False + + @prog_scope() + def func(self, place): + eps = 0.005 + dtype = np.float64 + typename = "float64" + x = layers.create_parameter( + dtype=typename, shape=self.x_shape, name='x') + y = layers.create_parameter( + dtype=typename, shape=self.y_shape, name='y') + out = layers.matmul( + x, y, self.transpose_x, self.transpose_y, name='out') + + x_arr = np.random.uniform(-1, 1, self.x_shape).astype(dtype) + y_arr = np.random.uniform(-1, 1, self.y_shape).astype(dtype) + gradient_checker.double_grad_check( + [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) + + def test_grad(self): + places = [fluid.CPUPlace()] + if core.is_compiled_with_cuda(): + places.append(fluid.CUDAPlace(0)) + for p in places: + self.func(p) + + +def TestMatmulDoubleGradCheckCase1(TestMatmulDoubleGradCheck): + def init_test(self): + self.x_shape = [2, 3] + self.y_shape = [3, 2] + self.transpose_x = True + self.transpose_y = True + + +def TestMatmulDoubleGradCheckCase2(TestMatmulDoubleGradCheck): + def init_test(self): + self.x_shape = [2, 4, 3] + self.y_shape = [2, 4, 5] + self.transpose_x = True + self.transpose_y = False + + +def TestMatmulDoubleGradCheckCase3(TestMatmulDoubleGradCheck): + def init_test(self): + self.x_shape = [2, 3, 4, 5] + self.y_shape = [2, 3, 3, 5] + self.transpose_x = False + self.transpose_y = True + + +def TestMatmulDoubleGradCheckCase4(TestMatmulDoubleGradCheck): + def init_test(self): + self.x_shape = [2, 3, 4] + self.y_shape = [4, 3] + self.transpose_x = False + self.transpose_y = False + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_nn_grad.py b/python/paddle/fluid/tests/unittests/test_nn_grad.py index d7bbc355d5d104ebff50d45601c917505cceeda1..33d313e709e92eb56b6e564ce98cc78270349303 100644 --- a/python/paddle/fluid/tests/unittests/test_nn_grad.py +++ b/python/paddle/fluid/tests/unittests/test_nn_grad.py @@ -26,24 +26,6 @@ from decorator_helper import prog_scope paddle.enable_static() -class TestMulGradCheck(unittest.TestCase): - @prog_scope() - def func(self, place): - prog = fluid.Program() - with fluid.program_guard(prog): - x = layers.create_parameter(dtype="float64", shape=[2, 8], name='x') - y = layers.create_parameter(dtype="float64", shape=[8, 4], name='y') - z = layers.mul(x=x, y=y) - gradient_checker.grad_check([x, y], z, place=place) - - def test_grad(self): - places = [fluid.CPUPlace()] - if core.is_compiled_with_cuda(): - places.append(fluid.CUDAPlace(0)) - for p in places: - self.func(p) - - class TestSliceOpDoubleGradCheck(unittest.TestCase): def func(self, place): self.config() @@ -125,66 +107,6 @@ class TestReduceSumWithDimDoubleGradCheck(unittest.TestCase): self.func(p) -class TestMulDoubleGradCheck(unittest.TestCase): - @prog_scope() - def func(self, place): - # the shape of input variable should be clearly specified, not inlcude -1. - x_shape = [7, 11] - y_shape = [11, 9] - eps = 0.005 - dtype = np.float64 - - x = layers.data('x', x_shape, False, dtype) - x.persistable = True - y = layers.data('y', y_shape, False, dtype) - y.persistable = True - out = layers.mul(x, y) - x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype) - y_arr = np.random.uniform(-1, 1, y_shape).astype(dtype) - - gradient_checker.double_grad_check( - [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) - - def test_grad(self): - places = [fluid.CPUPlace()] - if core.is_compiled_with_cuda(): - places.append(fluid.CUDAPlace(0)) - for p in places: - self.func(p) - - -class TestMatmulDoubleGradCheck(unittest.TestCase): - @prog_scope() - def func(self, place): - eps = 0.005 - x_shapes = [[2], [2, 3], [2, 4, 3], [2, 3, 4, 5], [2, 3, 4]] - y_shapes = [[2], [3, 2], [2, 4, 5], [2, 3, 3, 5], [4, 3]] - transpose_xs = [False, True, True, False, False] - transpose_ys = [False, True, False, True, False] - dtype = np.float64 - typename = "float64" - for i, (x_shape, y_shape, transpose_x, transpose_y) \ - in enumerate(zip(x_shapes, y_shapes, transpose_xs, transpose_ys)): - x = layers.create_parameter( - dtype=typename, shape=x_shape, name='x{}'.format(i)) - y = layers.create_parameter( - dtype=typename, shape=y_shape, name='y{}'.format(i)) - out = layers.matmul( - x, y, transpose_x, transpose_y, name='out{}'.format(i)) - - x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype) - y_arr = np.random.uniform(-1, 1, y_shape).astype(dtype) - gradient_checker.double_grad_check( - [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) - - def test_grad(self): - places = [fluid.CPUPlace()] - if core.is_compiled_with_cuda(): - places.append(fluid.CUDAPlace(0)) - for p in places: - self.func(p) - - class TestReshapeDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place):