未验证 提交 c43995ed 编写于 作者: C chengduo 提交者: GitHub

Merge pull request #8810 from chengduoZH/feature/refine_elementwise_mul

[Speed]Refine elementwise_mul_op
...@@ -40,80 +40,14 @@ class ElementwiseMulKernel : public framework::OpKernel<T> { ...@@ -40,80 +40,14 @@ class ElementwiseMulKernel : public framework::OpKernel<T> {
}; };
template <typename T> template <typename T>
struct ElementwiseMulGradFunctor { struct IdentityGrad_DX {
template <typename Device, typename X, typename Y, typename Z, typename dX, HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * y; }
typename dY, typename dZ>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = dz_e * y_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = x_e * dz_e;
}
}
}; };
template <typename T> template <typename T>
struct ElementwiseMulBroadCastGradFunctor { struct IdentityGrad_DY {
template <typename Device, typename X, typename Y, typename Z, typename dX, HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * x; }
typename dY, typename dZ, typename Pre, typename N>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
.broadcast(Eigen::DSizes<int, 2>(pre, 1))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = dz_e * y_e_bcast;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = (x_e * dz_e)
.reshape(Eigen::DSizes<int, 2>(pre, n))
.sum(Eigen::array<int, 1>{{0}});
}
}
}; };
template <typename T>
struct ElementwiseMulBroadCast2GradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ, typename Pre, typename N, typename Post>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
Post post) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = dz_e * y_e_bcast;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = (x_e * dz_e)
.reshape(Eigen::DSizes<int, 3>(pre, n, post))
.sum(Eigen::array<int, 2>{{0, 2}});
}
}
};
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
class ElementwiseMulGradKernel : public framework::OpKernel<T> { class ElementwiseMulGradKernel : public framework::OpKernel<T> {
public: public:
...@@ -127,12 +61,11 @@ class ElementwiseMulGradKernel : public framework::OpKernel<T> { ...@@ -127,12 +61,11 @@ class ElementwiseMulGradKernel : public framework::OpKernel<T> {
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X")); auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y")); auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
int axis = ctx.Attr<int>("axis"); int axis = ctx.Attr<int>("axis");
ElementwiseGradCompute<DeviceContext, T, ElementwiseMulGradFunctor<T>, ElemwiseGradCompute<DeviceContext, T, IdentityGrad_DX<T>,
ElementwiseMulBroadCastGradFunctor<T>, IdentityGrad_DY<T>>(ctx, *x, *y, *out, *dout, axis, dx,
ElementwiseMulBroadCast2GradFunctor<T>>( dy, IdentityGrad_DX<T>(),
ctx, x, y, out, dout, axis, dx, dy); IdentityGrad_DY<T>());
} }
}; };
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -301,7 +301,7 @@ struct ElemwiseGradNoBroadcast { ...@@ -301,7 +301,7 @@ struct ElemwiseGradNoBroadcast {
dx_[i] = dx_op_(x_[i], y_[i], out_[i], dout_[i]); dx_[i] = dx_op_(x_[i], y_[i], out_[i], dout_[i]);
} }
if (dy_ != nullptr) { if (dy_ != nullptr) {
dy_[i] = dx_op_(x_[i], y_[i], out_[i], dout_[i]); dy_[i] = dy_op_(x_[i], y_[i], out_[i], dout_[i]);
} }
} }
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册