diff --git a/develop/doc/_sources/api/v2/model_configs.rst.txt b/develop/doc/_sources/api/v2/model_configs.rst.txt index a9f33b33ef61bf846013364672ec26ae075d0300..b848bd7045a701a1a0d6e6b53da971ada2c569f5 100644 --- a/develop/doc/_sources/api/v2/model_configs.rst.txt +++ b/develop/doc/_sources/api/v2/model_configs.rst.txt @@ -4,3 +4,32 @@ Layers .. automodule:: paddle.v2.layer :members: + + +========== +Attributes +========== + +.. automodule:: paddle.v2.attr + :members: + +=========== +Activations +=========== + +.. automodule:: paddle.v2.activation + :members: + +======== +Poolings +======== + +.. automodule:: paddle.v2.pooling + :members: + +======== +Networks +======== + +.. automodule:: paddle.v2.networks + :members: diff --git a/develop/doc/about/index_en.html b/develop/doc/about/index_en.html index 80afa3b86e0e863af5664055e7fc3038db8e1f4d..cb16162c65990c094bbc0772224564c769fce283 100644 --- a/develop/doc/about/index_en.html +++ b/develop/doc/about/index_en.html @@ -154,6 +154,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/api/index_en.html b/develop/doc/api/index_en.html index fa3731084a673ecdb9fc1080bbd342f269b4d4ae..ed130a2b3cf2341a6b437b14bf4c4a189f8f7c96 100644 --- a/develop/doc/api/index_en.html +++ b/develop/doc/api/index_en.html @@ -155,6 +155,10 @@
  • API
  • ABOUT
  • @@ -202,6 +206,10 @@
    diff --git a/develop/doc/api/v1/data_provider/dataprovider_en.html b/develop/doc/api/v1/data_provider/dataprovider_en.html index 1f4e70441d7dcba0ef22731b49b48800d7aa8ab5..89307b6f55d4add6c8ac869c6b4eb3a1b43ece58 100644 --- a/develop/doc/api/v1/data_provider/dataprovider_en.html +++ b/develop/doc/api/v1/data_provider/dataprovider_en.html @@ -153,6 +153,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/api/v1/data_provider/pydataprovider2_en.html b/develop/doc/api/v1/data_provider/pydataprovider2_en.html index 6bcc98b4387855a8abb71867fb0b668a5f688262..1b09d7a746f92eed258dc00ad77463800aa99db1 100644 --- a/develop/doc/api/v1/data_provider/pydataprovider2_en.html +++ b/develop/doc/api/v1/data_provider/pydataprovider2_en.html @@ -153,6 +153,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/api/v1/index_en.html b/develop/doc/api/v1/index_en.html index 54ca426d1722f6a555b97bef7fa4759073a00675..17480f661d70ec74946b31a84716fde8ecce40ed 100644 --- a/develop/doc/api/v1/index_en.html +++ b/develop/doc/api/v1/index_en.html @@ -153,6 +153,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/api/v1/predict/swig_py_paddle_en.html b/develop/doc/api/v1/predict/swig_py_paddle_en.html index 2637d3cd5aa068e9a5ddc70aff63c50ae8f5dace..a0ac90b1dae2485f0cf9cf66d6b1e2c43fd3179b 100644 --- a/develop/doc/api/v1/predict/swig_py_paddle_en.html +++ b/develop/doc/api/v1/predict/swig_py_paddle_en.html @@ -153,6 +153,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/api/v1/trainer_config_helpers/activations.html b/develop/doc/api/v1/trainer_config_helpers/activations.html index 3a760787a4dab0fb05be93dfb31ae582dd129644..cb4a86b999976b56a353ea7a47fbb5c9fab4d078 100644 --- a/develop/doc/api/v1/trainer_config_helpers/activations.html +++ b/develop/doc/api/v1/trainer_config_helpers/activations.html @@ -153,6 +153,10 @@
  • API
  • ABOUT
  • @@ -211,61 +215,37 @@

    Activations

    BaseActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.BaseActivation(name, support_hppl)
    -

    A mark for activation class. -Each activation inherit BaseActivation, which has two parameters.

    - --- - - - -
    Parameters:
      -
    • name (basestring) – activation name in paddle config.
    • -
    • support_hppl (bool) – True if supported by hppl. HPPL is a library used by paddle -internally. Currently, lstm layer can only use activations -supported by hppl.
    • -
    -
    +paddle.trainer_config_helpers.activations.BaseActivation +

    alias of Base

    AbsActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.AbsActivation
    -

    Abs Activation.

    -

    Forward: \(f(z) = abs(z)\)

    -

    Derivative:

    -
    -\[\begin{split}1 &\quad if \quad z > 0 \\ --1 &\quad if \quad z < 0 \\ -0 &\quad if \quad z = 0\end{split}\]
    +paddle.trainer_config_helpers.activations.AbsActivation +

    alias of Abs

    ExpActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.ExpActivation
    -

    Exponential Activation.

    -
    -\[f(z) = e^z.\]
    +paddle.trainer_config_helpers.activations.ExpActivation +

    alias of Exp

    IdentityActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.IdentityActivation
    -

    Identity Activation.

    -

    Just do nothing for output both forward/backward.

    +paddle.trainer_config_helpers.activations.IdentityActivation +

    alias of Linear

    @@ -274,125 +254,97 @@ supported by hppl.
    paddle.trainer_config_helpers.activations.LinearActivation
    -

    alias of IdentityActivation

    +

    alias of Linear

    LogActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.LogActivation
    -

    Logarithm Activation.

    -
    -\[f(z) = log(z)\]
    +paddle.trainer_config_helpers.activations.LogActivation +

    alias of Log

    SquareActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.SquareActivation
    -

    Square Activation.

    -
    -\[f(z) = z^2.\]
    +paddle.trainer_config_helpers.activations.SquareActivation +

    alias of Square

    SigmoidActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.SigmoidActivation
    -

    Sigmoid activation.

    -
    -\[f(z) = \frac{1}{1+exp(-z)}\]
    +paddle.trainer_config_helpers.activations.SigmoidActivation +

    alias of Sigmoid

    SoftmaxActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.SoftmaxActivation
    -

    Softmax activation for simple input

    -
    -\[P(y=j|x) = \frac{e^{x_j}} {\sum^K_{k=1} e^{x_j} }\]
    +paddle.trainer_config_helpers.activations.SoftmaxActivation +

    alias of Softmax

    SequenceSoftmaxActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.SequenceSoftmaxActivation
    -

    Softmax activation for one sequence. The dimension of input feature must be -1 and a sequence.

    -
    result = softmax(for each_feature_vector[0] in input_feature)
    -for i, each_time_step_output in enumerate(output):
    -    each_time_step_output = result[i]
    -
    -
    +paddle.trainer_config_helpers.activations.SequenceSoftmaxActivation +

    alias of SequenceSoftmax

    ReluActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.ReluActivation
    -

    Relu activation.

    -

    forward. \(y = max(0, z)\)

    -

    derivative:

    -
    -\[\begin{split}1 &\quad if z > 0 \\ -0 &\quad\mathrm{otherwize}\end{split}\]
    +paddle.trainer_config_helpers.activations.ReluActivation +

    alias of Relu

    BReluActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.BReluActivation
    -

    BRelu Activation.

    -

    forward. \(y = min(24, max(0, z))\)

    -

    derivative:

    -
    -\[\begin{split}1 &\quad if 0 < z < 24 \\ -0 &\quad \mathrm{otherwise}\end{split}\]
    +paddle.trainer_config_helpers.activations.BReluActivation +

    alias of BRelu

    SoftReluActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.SoftReluActivation
    -

    SoftRelu Activation.

    +paddle.trainer_config_helpers.activations.SoftReluActivation +

    alias of SoftRelu

    TanhActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.TanhActivation
    -

    Tanh activation.

    -
    -\[f(z)=tanh(z)=\frac{e^z-e^{-z}}{e^z+e^{-z}}\]
    +paddle.trainer_config_helpers.activations.TanhActivation +

    alias of Tanh

    STanhActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.STanhActivation
    -

    Scaled Tanh Activation.

    -
    -\[f(z) = 1.7159 * tanh(2/3*z)\]
    +paddle.trainer_config_helpers.activations.STanhActivation +

    alias of STanh

    diff --git a/develop/doc/api/v1/trainer_config_helpers/attrs.html b/develop/doc/api/v1/trainer_config_helpers/attrs.html index 651cb5840a9b3c2ccf8bac394bff7266a6d1bcca..f5483ae4c288608427e78d41113362a7961d517d 100644 --- a/develop/doc/api/v1/trainer_config_helpers/attrs.html +++ b/develop/doc/api/v1/trainer_config_helpers/attrs.html @@ -153,6 +153,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/api/v1/trainer_config_helpers/data_sources.html b/develop/doc/api/v1/trainer_config_helpers/data_sources.html index 9e7e6384c848cb59ac96fbbf28e8dc3dfd8248d0..91a83cdcd48fd5b4bd2f7c84320629bac6d29514 100644 --- a/develop/doc/api/v1/trainer_config_helpers/data_sources.html +++ b/develop/doc/api/v1/trainer_config_helpers/data_sources.html @@ -153,6 +153,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/api/v1/trainer_config_helpers/evaluators.html b/develop/doc/api/v1/trainer_config_helpers/evaluators.html index 68da87a9d4d877dfe74eb4a35fe7c53cdf879136..423b83a484adfc45835463598dbdc7f3e24ac01e 100644 --- a/develop/doc/api/v1/trainer_config_helpers/evaluators.html +++ b/develop/doc/api/v1/trainer_config_helpers/evaluators.html @@ -153,6 +153,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/api/v1/trainer_config_helpers/layers.html b/develop/doc/api/v1/trainer_config_helpers/layers.html index f51ba69bb0b1922bdfb420520963c850fe8b9641..05d2b209864d208026e3128a8108acf5bca96636 100644 --- a/develop/doc/api/v1/trainer_config_helpers/layers.html +++ b/develop/doc/api/v1/trainer_config_helpers/layers.html @@ -153,6 +153,10 @@
  • API
  • ABOUT
  • @@ -390,8 +394,7 @@ reasons.

    paddle.trainer_config_helpers.layers.data_layer(*args, **kwargs)

    Define DataLayer For NeuralNetwork.

    The example usage is:

    -
    data = data_layer(name="input",
    -                  size=1000)
    +
    data = data_layer(name="input", size=1000)
     
    @@ -400,9 +403,9 @@ reasons.

    @@ -647,7 +650,7 @@ the right size (which is the end of array) to the left.
  • name (basestring) – layer name
  • a (LayerOutput) – Input layer a.
  • b (LayerOutput) – input layer b.
  • -
  • layer_attr (ExtraLayerAttribute) – layer’s extra attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – layer’s extra attribute.
  • @@ -720,7 +723,7 @@ False means no bias. automatically from previous output.
  • param_attr (ParameterAttribute) – Convolution param attribute. None means default attribute
  • shared_biases (bool) – Is biases will be shared between filters or not.
  • -
  • layer_attr (ExtraLayerAttribute) – Layer Extra Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Layer Extra Attribute.
  • trans (bool) – true if it is a convTransLayer, false if it is a convLayer
  • layer_type (String) – specify the layer_type, default is None. If trans=True, layer_type has to be “exconvt”, otherwise layer_type @@ -829,7 +832,7 @@ h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride MaxPooling.
  • stride (int) – stride width of pooling.
  • stride_y (int|None) – stride height of pooling. It is equal to stride by default.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer attribute.
  • ceil_mode (bool) – Wether to use ceil mode to calculate output height and with. Defalut is True. If set false, Otherwise use floor.
  • @@ -871,7 +874,7 @@ The details please refer to
  • num_channels (int) – number of input channel.
  • pool_type – Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
  • pyramid_height (int) – pyramid height.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • @@ -925,7 +928,7 @@ to devided by groups.

    automatically from previous output.
  • groups (int) – The group number of input layer.
  • name (None|basestring.) – The name of this layer, which can not specify.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer attribute.
  • @@ -967,7 +970,7 @@ The details please refer to
  • power (float) – The hyper-parameter.
  • num_channels – input layer’s filers number or channels. If num_channels is None, it will be set automatically.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • @@ -1029,7 +1032,7 @@ input. initial_std=0, initial_mean=1 is best practice.
  • param_attr (ParameterAttribute) – \(\gamma\), better be one when initialize. So the initial_std=0, initial_mean=1 is best practice.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • use_global_stats (bool|None.) – whether use moving mean/variance statistics during testing peroid. If None or True, it will use moving mean/variance statistics during @@ -1119,7 +1122,7 @@ out_{i} = act(in_{i} + out_{i+1} * W) \ \ \text{for} \ start <= i < end\en
  • bias_attr (ParameterAttribute) – bias attribute.
  • param_attr (ParameterAttribute) – parameter attribute.
  • name (basestring) – name of the layer
  • -
  • layer_attr (ExtraLayerAttribute) – Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Layer Attribute.
  • @@ -1411,7 +1414,7 @@ be sigmoid only.
  • state_act (BaseActivation) – State Activation Type. Default is sigmoid, and should be sigmoid only.
  • bias_attr (ParameterAttribute) – Bias Attribute.
  • -
  • layer_attr (ExtraLayerAttribute) – layer’s extra attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – layer’s extra attribute.
  • @@ -1607,7 +1610,7 @@ then this function will just return layer’s name.
  • bias_attr (ParameterAttribute or None or bool) – The Bias Attribute. If no bias, then pass False or something not type of ParameterAttribute. None will get a default Bias.
  • -
  • layer_attr (ExtraLayerAttribute) – The extra layer config. Default is None.
  • +
  • layer_attr (ExtraLayerAttribute) – The extra layer config. Default is None.
  • @@ -2067,7 +2070,7 @@ Inputs can be list of LayerOutput or list of projection.

  • name (basestring) – Layer name.
  • input (list|tuple|collections.Sequence) – input layers or projections
  • act (BaseActivation) – Activation type.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • @@ -2111,7 +2114,7 @@ Inputs can be list of LayerOutput or list of projection.

  • a (LayerOutput) – input sequence layer
  • b (LayerOutput) – input sequence layer
  • act (BaseActivation) – Activation type.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • bias_attr (ParameterAttribute or None or bool) – The Bias Attribute. If no bias, then pass False or something not type of ParameterAttribute. None will get a default Bias.
  • @@ -2384,7 +2387,7 @@ LayerOutput.
  • act (BaseActivation) – Activation Type, default is tanh.
  • bias_attr (ParameterAttribute|bool) – Bias attribute. If False, means no bias. None is default bias.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer attribute.
  • @@ -2521,7 +2524,7 @@ which is used in NEURAL TURING MACHINE.

  • out_size_x (int|None) – bilinear interpolation output width.
  • out_size_y (int|None) – bilinear interpolation output height.
  • name (None|basestring) – The layer’s name, which cna not be specified.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer attribute.
  • @@ -2731,7 +2734,7 @@ processed in one batch.

  • b (LayerOutput) – input layer b
  • scale (float) – scale for cosine value. default is 5.
  • size (int) – layer size. NOTE size_a * size should equal size_b.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • @@ -2903,7 +2906,7 @@ in width dimension.

  • pad_c (list|None) – padding size in channel dimension.
  • pad_h (list|None) – padding size in height dimension.
  • pad_w (list|None) – padding size in width dimension.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • name (basestring) – layer name.
  • @@ -2941,7 +2944,7 @@ in width dimension.

  • label – The input label.
  • name (None|basestring.) – The name of this layers. It is not necessary.
  • coeff (float.) – The coefficient affects the gradient in the backward.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • @@ -2977,7 +2980,7 @@ Input should be a vector of positive numbers, without normalization.

  • name (None|basestring.) – The name of this layers. It is not necessary.
  • coeff (float.) – The coefficient affects the gradient in the backward.
  • softmax_selfnorm_alpha (float.) – The scale factor affects the cost.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • @@ -3012,7 +3015,7 @@ Input should be a vector of positive numbers, without normalization.

  • type (basestring) – The type of cost.
  • name (None|basestring) – The name of this layers. It is not necessary.
  • coeff (float) – The coefficient affects the gradient in the backward.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • @@ -3046,7 +3049,7 @@ Input should be a vector of positive numbers, without normalization.

  • label – The input label.
  • name (None|basestring.) – The name of this layers. It is not necessary.
  • coeff (float.) – The coefficient affects the gradient in the backward.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • @@ -3092,7 +3095,7 @@ equal to NDCG_num. And if max_sort_size is greater than the size of a list, the algorithm will sort the entire list of get gradient.
  • name (None|basestring) – The name of this layers. It is not necessary.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • @@ -3147,7 +3150,7 @@ Their dimension is one. It is an optional argument.
  • name (None|basestring) – The name of this layers. It is not necessary.
  • coeff (float) – The coefficient affects the gradient in the backward.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • @@ -3381,7 +3384,7 @@ A fast and simple algorithm for training neural probabilistic language models.
  • bias_attr (ParameterAttribute|None|False) – Bias parameter attribute. True if no bias.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • @@ -3423,7 +3426,7 @@ LayerOutput.
  • name (basestring) – layer name
  • bias_attr (ParameterAttribute|False) – Bias attribute. None means default bias. False means no bias.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • @@ -3454,7 +3457,7 @@ False means no bias. diff --git a/develop/doc/api/v1/trainer_config_helpers/networks.html b/develop/doc/api/v1/trainer_config_helpers/networks.html index 2ec1ca8cba9747f04d9797af5e4882384adfd615..3146817f8f945a88d21443c298a99583dae86dc6 100644 --- a/develop/doc/api/v1/trainer_config_helpers/networks.html +++ b/develop/doc/api/v1/trainer_config_helpers/networks.html @@ -153,6 +153,10 @@
  • API
  • ABOUT
  • @@ -262,9 +266,9 @@ None if user don’t care.
  • fc_act (BaseActivation) – fc layer activation type. None means tanh
  • pool_bias_attr (ParameterAttribute or None.) – pooling layer bias attr. None if don’t care. False if no bias.
  • -
  • fc_attr (ExtraLayerAttribute) – fc layer extra attribute.
  • -
  • context_attr (ExtraLayerAttribute) – context projection layer extra attribute.
  • -
  • pool_attr (ExtraLayerAttribute) – pooling layer extra attribute.
  • +
  • fc_attr (ExtraLayerAttribute) – fc layer extra attribute.
  • +
  • context_attr (ExtraLayerAttribute) – context projection layer extra attribute.
  • +
  • pool_attr (ExtraLayerAttribute) – pooling layer extra attribute.
  • @@ -310,9 +314,9 @@ None if user don’t care.
  • fc_act (BaseActivation) – fc layer activation type. None means tanh
  • pool_bias_attr (ParameterAttribute or None.) – pooling layer bias attr. None if don’t care. False if no bias.
  • -
  • fc_attr (ExtraLayerAttribute) – fc layer extra attribute.
  • -
  • context_attr (ExtraLayerAttribute) – context projection layer extra attribute.
  • -
  • pool_attr (ExtraLayerAttribute) – pooling layer extra attribute.
  • +
  • fc_attr (ExtraLayerAttribute) – fc layer extra attribute.
  • +
  • context_attr (ExtraLayerAttribute) – context projection layer extra attribute.
  • +
  • pool_attr (ExtraLayerAttribute) – pooling layer extra attribute.
  • @@ -361,7 +365,7 @@ False if no bias.
  • bn_layer_attr – ParameterAttribute.
  • pool_stride (int) – see img_pool_layer’s document.
  • pool_padding (int) – see img_pool_layer’s document.
  • -
  • pool_layer_attr (ExtraLayerAttribute) – see img_pool_layer’s document.
  • +
  • pool_layer_attr (ExtraLayerAttribute) – see img_pool_layer’s document.
  • @@ -436,10 +440,10 @@ False if no bias.
  • num_channel (int) – see img_conv_layer for details
  • param_attr (ParameterAttribute) – see img_conv_layer for details
  • shared_bias (bool) – see img_conv_layer for details
  • -
  • conv_layer_attr (ExtraLayerAttribute) – see img_conv_layer for details
  • +
  • conv_layer_attr (ExtraLayerAttribute) – see img_conv_layer for details
  • pool_stride (int) – see img_pool_layer for details
  • pool_padding (int) – see img_pool_layer for details
  • -
  • pool_layer_attr (ExtraLayerAttribute) – see img_pool_layer for details
  • +
  • pool_layer_attr (ExtraLayerAttribute) – see img_pool_layer for details
  • @@ -523,9 +527,9 @@ for more details about LSTM. The link goes as follows: False means no bias, None means default bias.
  • lstm_bias_attr (ParameterAttribute|False) – bias parameter attribute of lstm layer. False means no bias, None means default bias.
  • -
  • mixed_layer_attr (ExtraLayerAttribute) – mixed layer’s extra attribute.
  • -
  • lstm_layer_attr (ExtraLayerAttribute) – lstm layer’s extra attribute.
  • -
  • get_output_layer_attr (ExtraLayerAttribute) – get output layer’s extra attribute.
  • +
  • mixed_layer_attr (ExtraLayerAttribute) – mixed layer’s extra attribute.
  • +
  • lstm_layer_attr (ExtraLayerAttribute) – lstm layer’s extra attribute.
  • +
  • get_output_layer_attr (ExtraLayerAttribute) – get output layer’s extra attribute.
  • @@ -584,9 +588,9 @@ full_matrix_projection must be included before lstmemory_unit is called.

    False means no bias, None means default bias.
  • lstm_bias_attr (ParameterAttribute|False) – bias parameter attribute of lstm layer. False means no bias, None means default bias.
  • -
  • mixed_layer_attr (ExtraLayerAttribute) – mixed layer’s extra attribute.
  • -
  • lstm_layer_attr (ExtraLayerAttribute) – lstm layer’s extra attribute.
  • -
  • get_output_layer_attr (ExtraLayerAttribute) – get output layer’s extra attribute.
  • +
  • mixed_layer_attr (ExtraLayerAttribute) – mixed layer’s extra attribute.
  • +
  • lstm_layer_attr (ExtraLayerAttribute) – lstm layer’s extra attribute.
  • +
  • get_output_layer_attr (ExtraLayerAttribute) – get output layer’s extra attribute.
  • @@ -629,8 +633,8 @@ means default bias.
  • act (BaseActivation) – lstm final activiation type
  • gate_act (BaseActivation) – lstm gate activiation type
  • state_act (BaseActivation) – lstm state activiation type.
  • -
  • mixed_layer_attr (ExtraLayerAttribute) – mixed layer’s extra attribute.
  • -
  • lstm_cell_attr (ExtraLayerAttribute) – lstm layer’s extra attribute.
  • +
  • mixed_layer_attr (ExtraLayerAttribute) – mixed layer’s extra attribute.
  • +
  • lstm_cell_attr (ExtraLayerAttribute) – lstm layer’s extra attribute.
  • diff --git a/develop/doc/api/v1/trainer_config_helpers/optimizers.html b/develop/doc/api/v1/trainer_config_helpers/optimizers.html index 001cb4c5db34c8737b5dbaa2ec5df62965ccabdb..24973babdf539387cbabff389ebf6dda8a86fa49 100644 --- a/develop/doc/api/v1/trainer_config_helpers/optimizers.html +++ b/develop/doc/api/v1/trainer_config_helpers/optimizers.html @@ -153,6 +153,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/api/v1/trainer_config_helpers/poolings.html b/develop/doc/api/v1/trainer_config_helpers/poolings.html index 9e60e21055b45cdbca3f80ef2428b259cc23e7cb..26e89e0cb8c0e99d51ae6ad7f86e18c02261f0b5 100644 --- a/develop/doc/api/v1/trainer_config_helpers/poolings.html +++ b/develop/doc/api/v1/trainer_config_helpers/poolings.html @@ -153,6 +153,10 @@
  • API
  • ABOUT
  • @@ -201,77 +205,46 @@

    Poolings

    BasePoolingType

    -
    +
    -class paddle.trainer_config_helpers.poolings.BasePoolingType(name)
    -

    Base Pooling Type. -Note these pooling types are used for sequence input, not for images. -Each PoolingType contains one parameter:

    -
    Parameters:
    • name (basestring) – Name of this data layer.
    • -
    • size (int|None) – Size of this data layer.
    • -
    • height – Height of this data layer, used for image
    • -
    • width – Width of this data layer, used for image
    • +
    • size (int) – Size of this data layer.
    • +
    • height (int|None) – Height of this data layer, used for image
    • +
    • width (int|None) – Width of this data layer, used for image
    • layer_attr (ExtraLayerAttribute.) – Extra Layer Attribute.
    Parameters:
    • input (LayerOutput.) – The first input layer.
    • name (None|basestring.) – The name of this layers. It is not necessary.
    • -
    • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
    • +
    • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
    --- - - - -
    Parameters:name (basestring) – pooling layer type name used by paddle.
    +paddle.trainer_config_helpers.poolings.BasePoolingType +

    alias of BasePool

    AvgPooling

    -
    +
    -class paddle.trainer_config_helpers.poolings.AvgPooling(strategy='average')
    -

    Average pooling.

    -

    Return the average values for each dimension in sequence or time steps.

    -
    -\[sum(samples\_of\_a\_sequence)/sample\_num\]
    +paddle.trainer_config_helpers.poolings.AvgPooling +

    alias of Avg

    MaxPooling

    -
    +
    -class paddle.trainer_config_helpers.poolings.MaxPooling(output_max_index=None)
    -

    Max pooling.

    -

    Return the very large values for each dimension in sequence or time steps.

    -
    -\[max(samples\_of\_a\_sequence)\]
    - --- - - - -
    Parameters:output_max_index (bool|None) – True if output sequence max index instead of max -value. None means use default value in proto.
    +paddle.trainer_config_helpers.poolings.MaxPooling +

    alias of Max

    SumPooling

    -
    +
    -class paddle.trainer_config_helpers.poolings.SumPooling
    -

    Sum pooling.

    -

    Return the sum values of each dimension in sequence or time steps.

    -
    -\[sum(samples\_of\_a\_sequence)\]
    +paddle.trainer_config_helpers.poolings.SumPooling +

    alias of Sum

    SquareRootNPooling

    -
    +
    -class paddle.trainer_config_helpers.poolings.SquareRootNPooling
    -

    Square Root Pooling.

    -

    Return the square root values of each dimension in sequence or time steps.

    -
    -\[sum(samples\_of\_a\_sequence)/sqrt(sample\_num)\]
    +paddle.trainer_config_helpers.poolings.SquareRootNPooling +

    alias of SquareRootN

    diff --git a/develop/doc/api/v2/model_configs.html b/develop/doc/api/v2/model_configs.html index 5749ba4443cb61447c536eb92dc09ec73ebc3da0..ebeb3acf84a2955dc882c089f2ca21e2d4777eb2 100644 --- a/develop/doc/api/v2/model_configs.html +++ b/develop/doc/api/v2/model_configs.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • @@ -166,6 +170,10 @@ @@ -209,15 +217,3921 @@ the way how to configure a neural network topology in Paddle Python code.

    act=paddle.activation.Softmax()) # use prediction instance where needed. -parameters = paddle.v2.parameters.create(cost) +parameters = paddle.parameters.create(cost)
    paddle.v2.layer.parse_network(*outputs)
    -

    parse all output layers and then generate a model config proto. -:param outputs: -:return:

    +

    Parse all output layers and then generate a ModelConfig object.

    +
    +

    Note

    +

    This function is used internally in paddle.v2 module. User should never +invoke this method.

    +
    + +++ + + + + + + + +
    Parameters:outputs (Layer) – Output layers.
    Returns:A ModelConfig object instance.
    Return type:ModelConfig
    +
    + +
    +
    +class paddle.v2.layer.data(name, type, **kwargs)
    +

    Define DataLayer For NeuralNetwork.

    +

    The example usage is:

    +
    data = paddle.layer.data(name="input", type=paddle.data_type.dense_vector(1000))
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – Name of this data layer.
    • +
    • type – Data type of this data layer
    • +
    • height (int|None) – Height of this data layer, used for image
    • +
    • width (int|None) – Width of this data layer, used for image
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.addto(*args, **kwargs)
    +

    AddtoLayer.

    +
    +\[y = f(\sum_{i} x_i + b)\]
    +

    where \(y\) is output, \(x\) is input, \(b\) is bias, +and \(f\) is activation function.

    +

    The example usage is:

    +
    addto = addto(input=[layer1, layer2],
    +                    act=paddle.v2.Activation.Relu(),
    +                    bias_attr=False)
    +
    +
    +

    This layer just simply add all input layers together, then activate the sum +inputs. Each input of this layer should be the same size, which is also the +output size of this layer.

    +

    There is no weight matrix for each input, because it just a simple add +operation. If you want a complicated operation before add, please use +mixed.

    +

    It is a very good way to set dropout outside the layers. Since not all +PaddlePaddle layer support dropout, you can add an add_to layer, set +dropout here. +Please refer to dropout for details.

    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – Layer name.
    • +
    • input (paddle.v2.config_base.Layer|list|tuple) – Input layers. It could be a paddle.v2.config_base.Layer or list/tuple of +paddle.v2.config_base.Layer.
    • +
    • act (paddle.v2.Activation.Base) – Activation Type, default is tanh.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute|bool) – Bias attribute. If False, means no bias. None is default +bias.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer attribute.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.batch_norm(*args, **kwargs)
    +

    Batch Normalization Layer. The notation of this layer as follow.

    +

    \(x\) is the input features over a mini-batch.

    +
    +\[\begin{split}\mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\ +\ mini-batch\ mean \\ +\sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \ +\mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\ +\hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\ +\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\ +y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift\end{split}\]
    +

    The details of batch normalization please refer to this +paper.

    +

    The example usage is:

    +
    norm = batch_norm(input=net, act=paddle.v2.Activation.Relu())
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – layer name.
    • +
    • input (paddle.v2.config_base.Layer) – batch normalization input. Better be linear activation. +Because there is an activation inside batch_normalization.
    • +
    • batch_norm_type (None|string, None or "batch_norm" or "cudnn_batch_norm") – We have batch_norm and cudnn_batch_norm. batch_norm +supports both CPU and GPU. cudnn_batch_norm requires +cuDNN version greater or equal to v4 (>=v4). But +cudnn_batch_norm is faster and needs less memory +than batch_norm. By default (None), we will +automaticly select cudnn_batch_norm for GPU and +batch_norm for CPU. Otherwise, select batch norm +type based on the specified type. If you use cudnn_batch_norm, +we suggested you use latest version, such as v5.1.
    • +
    • act (paddle.v2.Activation.Base) – Activation Type. Better be relu. Because batch +normalization will normalize input near zero.
    • +
    • num_channels (int) – num of image channels or previous layer’s number of +filters. None will automatically get from layer’s +input.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute) – \(\beta\), better be zero when initialize. So the +initial_std=0, initial_mean=1 is best practice.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – \(\gamma\), better be one when initialize. So the +initial_std=0, initial_mean=1 is best practice.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    • use_global_stats (bool|None.) – whether use moving mean/variance statistics +during testing peroid. If None or True, +it will use moving mean/variance statistics during +testing. If False, it will use the mean +and variance of current batch of test data for +testing.
    • +
    • moving_average_fraction (float.) – Factor used in the moving average +computation, referred to as facotr, +\(runningMean = newMean*(1-factor) ++ runningMean*factor\)
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.bilinear_interp(*args, **kwargs)
    +

    This layer is to implement bilinear interpolation on conv layer output.

    +

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    +

    The simple usage is:

    +
    bilinear = bilinear_interp(input=layer1, out_size_x=64, out_size_y=64)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer.) – A input layer.
    • +
    • out_size_x (int|None) – bilinear interpolation output width.
    • +
    • out_size_y (int|None) – bilinear interpolation output height.
    • +
    • name (None|basestring) – The layer’s name, which cna not be specified.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer attribute.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.block_expand(*args, **kwargs)
    +
    +
    Expand feature map to minibatch matrix.
    +
      +
    • matrix width is: block_y * block_x * num_channels
    • +
    • matirx height is: outputH * outputW
    • +
    +
    +
    +
    +\[ \begin{align}\begin{aligned}outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y\\outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x\end{aligned}\end{align} \]
    +

    The expand method is the same with ExpandConvLayer, but saved the transposed +value. After expanding, output.sequenceStartPositions will store timeline. +The number of time steps are outputH * outputW and the dimension of each +time step is block_y * block_x * num_channels. This layer can be used after +convolution neural network, and before recurrent neural network.

    +

    The simple usage is:

    +
    block_expand = block_expand(input=layer,
    +                                  num_channels=128,
    +                                  stride_x=1,
    +                                  stride_y=1,
    +                                  block_x=1,
    +                                  block_x=3)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – The input layer.
    • +
    • num_channels (int|None) – The channel number of input layer.
    • +
    • block_x (int) – The width of sub block.
    • +
    • block_y (int) – The width of sub block.
    • +
    • stride_x (int) – The stride size in horizontal direction.
    • +
    • stride_y (int) – The stride size in vertical direction.
    • +
    • padding_x (int) – The padding size in horizontal direction.
    • +
    • padding_y (int) – The padding size in vertical direction.
    • +
    • name (None|basestring.) – The name of this layer, which can not specify.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer config.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.classification_cost(*args, **kwargs)
    +

    classification cost Layer.

    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – layer name.
    • +
    • input (paddle.v2.config_base.Layer) – input layer name. network output.
    • +
    • label (paddle.v2.config_base.Layer) – label layer name. data often.
    • +
    • weight (paddle.v2.config_base.Layer) – The weight affects the cost, namely the scale of cost. +It is an optional argument.
    • +
    • top_k (int) – number k in top-k error rate
    • +
    • evaluator – Evaluator method.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – layer’s extra attribute.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.concat(*args, **kwargs)
    +

    Concat all input vector into one huge vector. +Inputs can be list of paddle.v2.config_base.Layer or list of projection.

    +

    The example usage is:

    +
    concat = concat(input=[layer1, layer2])
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – Layer name.
    • +
    • input (list|tuple|collections.Sequence) – input layers or projections
    • +
    • act (paddle.v2.Activation.Base) – Activation type.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.conv_shift(*args, **kwargs)
    +
    +
    This layer performs cyclic convolution for two input. For example:
    +
      +
    • a[in]: contains M elements.
    • +
    • b[in]: contains N elements (N should be odd).
    • +
    • c[out]: contains M elements.
    • +
    +
    +
    +
    +\[c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}\]
    +
    +
    In this formular:
    +
      +
    • a’s index is computed modulo M. When it is negative, then get item from +the right side (which is the end of array) to the left.
    • +
    • b’s index is computed modulo N. When it is negative, then get item from +the right size (which is the end of array) to the left.
    • +
    +
    +
    +

    The example usage is:

    +
    conv_shift = conv_shift(a=layer1, b=layer2)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – layer name
    • +
    • a (paddle.v2.config_base.Layer) – Input layer a.
    • +
    • b (paddle.v2.config_base.Layer) – input layer b.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – layer’s extra attribute.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.convex_comb(*args, **kwargs)
    +
    +
    A layer for weighted sum of vectors takes two inputs.
    +
      +
    • +
      Input: size of weights is M
      +
      size of vectors is M*N
      +
      +
    • +
    • Output: a vector of size=N
    • +
    +
    +
    +
    +\[z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)\]
    +

    where \(0 \le i \le N-1\)

    +

    Or in the matrix notation:

    +
    +\[z = x^\mathrm{T} Y\]
    +
    +
    In this formular:
    +
      +
    • \(x\): weights
    • +
    • \(y\): vectors.
    • +
    • \(z\): the output.
    • +
    +
    +
    +

    Note that the above computation is for one sample. Multiple samples are +processed in one batch.

    +

    The simple usage is:

    +
    linear_comb = linear_comb(weights=weight, vectors=vectors,
    +                                size=elem_dim)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • weights (paddle.v2.config_base.Layer) – The weight layer.
    • +
    • vectors (paddle.v2.config_base.Layer) – The vector layer.
    • +
    • size (int) – the dimension of this layer.
    • +
    • name (basestring) – The Layer Name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer config.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.cos_sim(*args, **kwargs)
    +

    Cosine Similarity Layer. The cosine similarity equation is here.

    +
    +\[similarity = cos(\theta) = {\mathbf{a} \cdot \mathbf{b} +\over \|\mathbf{a}\| \|\mathbf{b}\|}\]
    +

    The size of a is M, size of b is M*N, +Similarity will be calculated N times by step M. The output size is +N. The scale will be multiplied to similarity.

    +

    Note that the above computation is for one sample. Multiple samples are +processed in one batch.

    +

    The example usage is:

    +
    cos = cos_sim(a=layer1, b=layer2, size=3)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – layer name
    • +
    • a (paddle.v2.config_base.Layer) – input layer a
    • +
    • b (paddle.v2.config_base.Layer) – input layer b
    • +
    • scale (float) – scale for cosine value. default is 5.
    • +
    • size (int) – layer size. NOTE size_a * size should equal size_b.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.crf_decoding(*args, **kwargs)
    +

    A layer for calculating the decoding sequence of sequential conditional +random field model. The decoding sequence is stored in output.ids. +If a second input is provided, it is treated as the ground-truth label, and +this layer will also calculate error. output.value[i] is 1 for incorrect +decoding or 0 for correct decoding.

    +

    The simple usage:

    +
    crf_decoding = crf_decoding(input=input,
    +                                  size=label_dim)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – The first input layer.
    • +
    • size (int) – size of this layer.
    • +
    • label (paddle.v2.config_base.Layer or None) – None or ground-truth label.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – Parameter attribute. None means default attribute
    • +
    • name (None|basestring) – The name of this layers. It is not necessary.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer config.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.crf(*args, **kwargs)
    +

    A layer for calculating the cost of sequential conditional random +field model.

    +

    The simple usage:

    +
    crf = crf(input=input,
    +                label=label,
    +                size=label_dim)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – The first input layer is the feature.
    • +
    • label (paddle.v2.config_base.Layer) – The second input layer is label.
    • +
    • size (int) – The category number.
    • +
    • weight (paddle.v2.config_base.Layer) – The third layer is “weight” of each sample, which is an +optional argument.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – Parameter attribute. None means default attribute
    • +
    • name (None|basestring) – The name of this layers. It is not necessary.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer config.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.cross_entropy_cost(*args, **kwargs)
    +

    A loss layer for multi class entropy.

    +
    cost = cross_entropy(input=input,
    +                     label=label)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer.) – The first input layer.
    • +
    • label – The input label.
    • +
    • name (None|basestring.) – The name of this layers. It is not necessary.
    • +
    • coeff (float.) – The coefficient affects the gradient in the backward.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer.

    +
    +
    + +
    +
    +class paddle.v2.layer.cross_entropy_with_selfnorm_cost(*args, **kwargs)
    +

    A loss layer for multi class entropy with selfnorm. +Input should be a vector of positive numbers, without normalization.

    +
    cost = cross_entropy_with_selfnorm(input=input,
    +                                   label=label)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer.) – The first input layer.
    • +
    • label – The input label.
    • +
    • name (None|basestring.) – The name of this layers. It is not necessary.
    • +
    • coeff (float.) – The coefficient affects the gradient in the backward.
    • +
    • softmax_selfnorm_alpha (float.) – The scale factor affects the cost.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer.

    +
    +
    + +
    +
    +class paddle.v2.layer.ctc(*args, **kwargs)
    +

    Connectionist Temporal Classification (CTC) is designed for temporal +classication task. That is, for sequence labeling problems where the +alignment between the inputs and the target labels is unknown.

    +

    More details can be found by referring to Connectionist Temporal +Classification: Labelling Unsegmented Sequence Data with Recurrent +Neural Networks

    +
    +

    Note

    +

    Considering the ‘blank’ label needed by CTC, you need to use +(num_classes + 1) as the input size. num_classes is the category number. +And the ‘blank’ is the last category index. So the size of ‘input’ layer, such as +fc with softmax activation, should be num_classes + 1. The size of ctc +should also be num_classes + 1.

    +
    +

    The simple usage:

    +
    ctc = ctc(input=input,
    +                label=label,
    +                size=9055,
    +                norm_by_times=True)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – The input layer.
    • +
    • label (paddle.v2.config_base.Layer) – The data layer of label with variable length.
    • +
    • size (int) – category numbers + 1.
    • +
    • name (basestring|None) – The name of this layer
    • +
    • norm_by_times (bool) – Whether to normalization by times. False by default.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer config.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.dropout(*args, **kwargs)
    +

    @TODO(yuyang18): Add comments.

    + +++ + + + + + +
    Parameters:
      +
    • name
    • +
    • input
    • +
    • dropout_rate
    • +
    +
    Returns:

    +
    +
    + +
    +
    +class paddle.v2.layer.embedding(*args, **kwargs)
    +

    Define a embedding Layer.

    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – Name of this embedding layer.
    • +
    • input (paddle.v2.config_base.Layer) – The input layer for this embedding. NOTE: must be Index Data.
    • +
    • size (int) – The embedding dimension.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute|None) – The embedding parameter attribute. See paddle.v2.attr.ParameterAttribute +for details.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra layer Config. Default is None.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.eos(*args, **kwargs)
    +

    A layer for checking EOS for each sample: +- output_id = (input_id == conf.eos_id)

    +

    The result is stored in output_.ids. +It is used by recurrent layer group.

    +

    The example usage is:

    +
    eos = eos(input=layer, eos_id=id)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – Layer name.
    • +
    • input (paddle.v2.config_base.Layer) – Input layer name.
    • +
    • eos_id (int) – end id of sequence
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.expand(*args, **kwargs)
    +

    A layer for “Expand Dense data or (sequence data where the length of each +sequence is one) to sequence data.”

    +

    The example usage is:

    +
    expand = expand(input=layer1,
    +                      expand_as=layer2,
    +                      expand_level=ExpandLevel.FROM_TIMESTEP)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – Input layer
    • +
    • expand_as (paddle.v2.config_base.Layer) – Expand as this layer’s sequence info.
    • +
    • name (basestring) – Layer name.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute|None|False) – Bias attribute. None means default bias. False means no +bias.
    • +
    • expand_level (ExpandLevel) – whether input layer is timestep(default) or sequence.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.fc(*args, **kwargs)
    +

    Helper for declare fully connected layer.

    +

    The example usage is:

    +
    fc = fc(input=layer,
    +              size=1024,
    +              act=paddle.v2.Activation.Linear(),
    +              bias_attr=False)
    +
    +
    +

    which is equal to:

    +
    with mixed(size=1024) as fc:
    +    fc += full_matrix_projection(input=layer)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – The Layer Name.
    • +
    • input (paddle.v2.config_base.Layer|list|tuple) – The input layer. Could be a list/tuple of input layer.
    • +
    • size (int) – The layer dimension.
    • +
    • act (paddle.v2.Activation.Base) – Activation Type. Default is tanh.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – The Parameter Attribute|list.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute|None|Any) – The Bias Attribute. If no bias, then pass False or +something not type of paddle.v2.attr.ParameterAttribute. None will get a +default Bias.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer config.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.first_seq(*args, **kwargs)
    +

    Get First Timestamp Activation of a sequence.

    +

    The simple usage is:

    +
    seq = first_seq(input=layer)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • agg_level – aggregation level
    • +
    • name (basestring) – Layer name.
    • +
    • input (paddle.v2.config_base.Layer) – Input layer name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.get_output(*args, **kwargs)
    +

    Get layer’s output by name. In PaddlePaddle, a layer might return multiple +values, but returns one layer’s output. If the user wants to use another +output besides the default one, please use get_output first to get +the output from input.

    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – Layer’s name.
    • +
    • input (paddle.v2.config_base.Layer) – get output layer’s input. And this layer should contains +multiple outputs.
    • +
    • arg_name (basestring) – Output name from input.
    • +
    • layer_attr – Layer’s extra attribute.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.gru_step(*args, **kwargs)
    +
    +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) –
    • +
    • output_mem
    • +
    • size
    • +
    • act
    • +
    • name
    • +
    • gate_act
    • +
    • bias_attr
    • +
    • param_attr – the parameter_attribute for transforming the output_mem +from previous step.
    • +
    • layer_attr
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.grumemory(*args, **kwargs)
    +

    Gate Recurrent Unit Layer.

    +

    The memory cell was implemented as follow equations.

    +

    1. update gate \(z\): defines how much of the previous memory to +keep around or the unit updates its activations. The update gate +is computed by:

    +
    +\[z_t = \sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)\]
    +

    2. reset gate \(r\): determines how to combine the new input with the +previous memory. The reset gate is computed similarly to the update gate:

    +
    +\[r_t = \sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)\]
    +

    3. The candidate activation \(\tilde{h_t}\) is computed similarly to +that of the traditional recurrent unit:

    +
    +\[{\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)\]
    +

    4. The hidden activation \(h_t\) of the GRU at time t is a linear +interpolation between the previous activation \(h_{t-1}\) and the +candidate activation \(\tilde{h_t}\):

    +
    +\[h_t = (1 - z_t) h_{t-1} + z_t {\tilde{h_t}}\]
    +

    NOTE: In PaddlePaddle’s implementation, the multiplication operations +\(W_{r}x_{t}\), \(W_{z}x_{t}\) and \(W x_t\) are not computed in +gate_recurrent layer. Consequently, an additional mixed with +full_matrix_projection or a fc must be included before grumemory +is called.

    +

    More details can be found by referring to Empirical Evaluation of Gated +Recurrent Neural Networks on Sequence Modeling.

    +

    The simple usage is:

    +
    gru = grumemory(input)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • name (None|basestring) – The gru layer name.
    • +
    • input (paddle.v2.config_base.Layer.) – input layer.
    • +
    • reverse (bool) – Whether sequence process is reversed or not.
    • +
    • act (paddle.v2.Activation.Base) – activation type, paddle.v2.Activation.Tanh by default. This activation +affects the \({\tilde{h_t}}\).
    • +
    • gate_act (paddle.v2.Activation.Base) – gate activation type, paddle.v2.Activation.Sigmoid by default. +This activation affects the \(z_t\) and \(r_t\). It is the +\(\sigma\) in the above formula.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute|None|False) – Bias attribute. None means default bias. False means no +bias.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute|None|False) – Parameter Attribute.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer attribute
    • +
    • size (None) – Stub parameter of size, but actually not used. If set this size +will get a warning.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.hsigmoid(*args, **kwargs)
    +

    Organize the classes into a binary tree. At each node, a sigmoid function +is used to calculate the probability of belonging to the right branch. +This idea is from “F. Morin, Y. Bengio (AISTATS 05): +Hierarchical Probabilistic Neural Network Language Model.”

    +

    The example usage is:

    +
    cost = hsigmoid(input=[layer1, layer2],
    +                label=data,
    +                num_classes=3)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer|list|tuple) – Input layers. It could be a paddle.v2.config_base.Layer or list/tuple of +paddle.v2.config_base.Layer.
    • +
    • label (paddle.v2.config_base.Layer) – Label layer.
    • +
    • num_classes (int) – number of classes.
    • +
    • name (basestring) – layer name
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute|False) – Bias attribute. None means default bias. +False means no bias.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.huber_cost(*args, **kwargs)
    +

    A loss layer for huber loss.

    +
    cost = huber_cost(input=input,
    +                  label=label)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer.) – The first input layer.
    • +
    • label – The input label.
    • +
    • name (None|basestring.) – The name of this layers. It is not necessary.
    • +
    • coeff (float.) – The coefficient affects the gradient in the backward.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer.

    +
    +
    + +
    +
    +class paddle.v2.layer.img_cmrnorm(*args, **kwargs)
    +

    Response normalization across feature maps. +The details please refer to +Alex’s paper.

    +

    The example usage is:

    +
    norm = img_cmrnorm(input=net, size=5)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • name (None|basestring) – layer name.
    • +
    • input (paddle.v2.config_base.Layer) – layer’s input.
    • +
    • size (int) – Normalize in number of \(size\) feature maps.
    • +
    • scale (float) – The hyper-parameter.
    • +
    • power (float) – The hyper-parameter.
    • +
    • num_channels – input layer’s filers number or channels. If +num_channels is None, it will be set automatically.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.img_conv(*args, **kwargs)
    +

    Convolution layer for image. Paddle can support both square and non-square +input currently.

    +

    The details of convolution layer, please refer UFLDL’s convolution .

    +

    Convolution Transpose (deconv) layer for image. Paddle can support both square +and non-square input currently.

    +

    The details of convolution transpose layer, +please refer to the following explanation and references therein +<http://datascience.stackexchange.com/questions/6107/ +what-are-deconvolutional-layers/>`_ . +The num_channel means input image’s channel number. It may be 1 or 3 when +input is raw pixels of image(mono or RGB), or it may be the previous layer’s +num_filters * num_group.

    +

    There are several group of filter in PaddlePaddle implementation. +Each group will process some channel of the inputs. For example, if an input +num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create +32*4 = 128 filters to process inputs. The channels will be split into 4 +pieces. First 256/4 = 64 channels will process by first 32 filters. The +rest channels will be processed by rest group of filters.

    +

    The example usage is:

    +
    conv = img_conv(input=data, filter_size=1, filter_size_y=1,
    +                      num_channels=8,
    +                      num_filters=16, stride=1,
    +                      bias_attr=False,
    +                      act=paddle.v2.Activation.Relu())
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – Layer name.
    • +
    • input (paddle.v2.config_base.Layer) – Layer Input.
    • +
    • filter_size (int|tuple|list) – The x dimension of a filter kernel. Or input a tuple for +two image dimension.
    • +
    • filter_size_y (int|None) – The y dimension of a filter kernel. Since PaddlePaddle +currently supports rectangular filters, the filter’s +shape will be (filter_size, filter_size_y).
    • +
    • num_filters – Each filter group’s number of filter
    • +
    • act (paddle.v2.Activation.Base) – Activation type. Default is tanh
    • +
    • groups (int) – Group size of filters.
    • +
    • stride (int|tuple|list) – The x dimension of the stride. Or input a tuple for two image +dimension.
    • +
    • stride_y (int) – The y dimension of the stride.
    • +
    • padding (int|tuple|list) – The x dimension of the padding. Or input a tuple for two +image dimension
    • +
    • padding_y (int) – The y dimension of the padding.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute|False) – Convolution bias attribute. None means default bias. +False means no bias.
    • +
    • num_channels (int) – number of input channels. If None will be set +automatically from previous output.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – Convolution param attribute. None means default attribute
    • +
    • shared_biases (bool) – Is biases will be shared between filters or not.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Layer Extra Attribute.
    • +
    • trans (bool) – true if it is a convTransLayer, false if it is a convLayer
    • +
    • layer_type (String) – specify the layer_type, default is None. If trans=True, +layer_type has to be “exconvt”, otherwise layer_type +has to be either “exconv” or “cudnn_conv”
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.img_pool(*args, **kwargs)
    +

    Image pooling Layer.

    +

    The details of pooling layer, please refer ufldl’s pooling .

    +
      +
    • ceil_mode=True:
    • +
    +
    +\[w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride)) +h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))\]
    +
      +
    • ceil_mode=False:
    • +
    +
    +\[w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride)) +h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))\]
    +

    The example usage is:

    +
    maxpool = img_pool(input=conv,
    +                         pool_size=3,
    +                         pool_size_y=5,
    +                         num_channels=8,
    +                         stride=1,
    +                         stride_y=2,
    +                         padding=1,
    +                         padding_y=2,
    +                         pool_type=MaxPooling())
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • padding (int) – pooling padding width.
    • +
    • padding_y (int|None) – pooling padding height. It’s equal to padding by default.
    • +
    • name (basestring.) – name of pooling layer
    • +
    • input (paddle.v2.config_base.Layer) – layer’s input
    • +
    • pool_size (int) – pooling window width
    • +
    • pool_size_y (int|None) – pooling window height. It’s eaqual to pool_size by default.
    • +
    • num_channels (int) – number of input channel.
    • +
    • pool_type (BasePoolingType) – pooling type. MaxPooling or AvgPooling. Default is +MaxPooling.
    • +
    • stride (int) – stride width of pooling.
    • +
    • stride_y (int|None) – stride height of pooling. It is equal to stride by default.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer attribute.
    • +
    • ceil_mode (bool) – Wether to use ceil mode to calculate output height and with. +Defalut is True. If set false, Otherwise use floor.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.interpolation(*args, **kwargs)
    +

    This layer is for linear interpolation with two inputs, +which is used in NEURAL TURING MACHINE.

    +
    +\[y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]\]
    +

    where \(x_1\) and \(x_2\) are two (batchSize x dataDim) inputs, +\(w\) is (batchSize x 1) weight vector, and \(y\) is +(batchSize x dataDim) output.

    +

    The example usage is:

    +
    interpolation = interpolation(input=[layer1, layer2], weight=layer3)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (list|tuple) – Input layer.
    • +
    • weight (paddle.v2.config_base.Layer) – Weight layer.
    • +
    • name (basestring) – Layer name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.lambda_cost(*args, **kwargs)
    +

    lambdaCost for lambdaRank LTR approach.

    +

    The simple usage:

    +
    cost = lambda_cost(input=input,
    +                   score=score,
    +                   NDCG_num=8,
    +                   max_sort_size=-1)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – Samples of the same query should be loaded as sequence.
    • +
    • score – The 2nd input. Score of each sample.
    • +
    • NDCG_num (int) – The size of NDCG (Normalized Discounted Cumulative Gain), +e.g., 5 for NDCG@5. It must be less than for equal to the +minimum size of lists.
    • +
    • max_sort_size (int) – The size of partial sorting in calculating gradient. +If max_sort_size = -1, then for each list, the +algorithm will sort the entire list to get gradient. +In other cases, max_sort_size must be greater than or +equal to NDCG_num. And if max_sort_size is greater +than the size of a list, the algorithm will sort the +entire list of get gradient.
    • +
    • name (None|basestring) – The name of this layers. It is not necessary.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.last_seq(*args, **kwargs)
    +

    Get Last Timestamp Activation of a sequence.

    +

    The simple usage is:

    +
    seq = last_seq(input=layer)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • agg_level – Aggregated level
    • +
    • name (basestring) – Layer name.
    • +
    • input (paddle.v2.config_base.Layer) – Input layer name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.linear_comb(*args, **kwargs)
    +
    +
    A layer for weighted sum of vectors takes two inputs.
    +
      +
    • +
      Input: size of weights is M
      +
      size of vectors is M*N
      +
      +
    • +
    • Output: a vector of size=N
    • +
    +
    +
    +
    +\[z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)\]
    +

    where \(0 \le i \le N-1\)

    +

    Or in the matrix notation:

    +
    +\[z = x^\mathrm{T} Y\]
    +
    +
    In this formular:
    +
      +
    • \(x\): weights
    • +
    • \(y\): vectors.
    • +
    • \(z\): the output.
    • +
    +
    +
    +

    Note that the above computation is for one sample. Multiple samples are +processed in one batch.

    +

    The simple usage is:

    +
    linear_comb = linear_comb(weights=weight, vectors=vectors,
    +                                size=elem_dim)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • weights (paddle.v2.config_base.Layer) – The weight layer.
    • +
    • vectors (paddle.v2.config_base.Layer) – The vector layer.
    • +
    • size (int) – the dimension of this layer.
    • +
    • name (basestring) – The Layer Name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer config.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.lstm_step(*args, **kwargs)
    +

    LSTM Step Layer. It used in recurrent_group. The lstm equations are shown +as follow.

    +
    +\[ \begin{align}\begin{aligned}i_t & = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)\\f_t & = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)\\c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)\\o_t & = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)\\h_t & = o_t tanh(c_t)\end{aligned}\end{align} \]
    +

    The input of lstm step is \(Wx_t + Wh_{t-1}\), and user should use +mixed and full_matrix_projection to calculate these +input vector.

    +

    The state of lstm step is \(c_{t-1}\). And lstm step layer will do

    +
    +\[ \begin{align}\begin{aligned}i_t = \sigma(input + W_{ci}c_{t-1} + b_i)\\...\end{aligned}\end{align} \]
    +

    This layer contains two outputs. Default output is \(h_t\). The other +output is \(o_t\), which name is ‘state’ and can use +get_output to extract this output.

    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – Layer’s name.
    • +
    • size (int) – Layer’s size. NOTE: lstm layer’s size, should be equal as +input.size/4, and should be equal as +state.size.
    • +
    • input (paddle.v2.config_base.Layer) – input layer. \(Wx_t + Wh_{t-1}\)
    • +
    • state (paddle.v2.config_base.Layer) – State Layer. \(c_{t-1}\)
    • +
    • act (paddle.v2.Activation.Base) – Activation type. Default is tanh
    • +
    • gate_act (paddle.v2.Activation.Base) – Gate Activation Type. Default is sigmoid, and should +be sigmoid only.
    • +
    • state_act (paddle.v2.Activation.Base) – State Activation Type. Default is sigmoid, and should +be sigmoid only.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute) – Bias Attribute.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – layer’s extra attribute.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.lstmemory(*args, **kwargs)
    +

    Long Short-term Memory Cell.

    +

    The memory cell was implemented as follow equations.

    +
    +\[ \begin{align}\begin{aligned}i_t & = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)\\f_t & = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)\\c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)\\o_t & = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)\\h_t & = o_t tanh(c_t)\end{aligned}\end{align} \]
    +

    NOTE: In PaddlePaddle’s implementation, the multiplications +\(W_{xi}x_{t}\) , \(W_{xf}x_{t}\), +\(W_{xc}x_t\), \(W_{xo}x_{t}\) are not done in the lstmemory layer, +so an additional mixed with full_matrix_projection or a fc must +be included in the configuration file to complete the input-to-hidden +mappings before lstmemory is called.

    +

    NOTE: This is a low level user interface. You can use network.simple_lstm +to config a simple plain lstm layer.

    +

    Please refer to Generating Sequences With Recurrent Neural Networks for +more details about LSTM.

    +

    Link goes as below.

    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – The lstmemory layer name.
    • +
    • input (paddle.v2.config_base.Layer) – input layer name.
    • +
    • reverse (bool) – is sequence process reversed or not.
    • +
    • act (paddle.v2.Activation.Base) – activation type, paddle.v2.Activation.Tanh by default. \(h_t\)
    • +
    • gate_act (paddle.v2.Activation.Base) – gate activation type, paddle.v2.Activation.Sigmoid by default.
    • +
    • state_act (paddle.v2.Activation.Base) – state activation type, paddle.v2.Activation.Tanh by default.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute|None|False) – Bias attribute. None means default bias. False means no +bias.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute|None|False) – Parameter Attribute.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer attribute
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.max_id(*args, **kwargs)
    +

    A layer for finding the id which has the maximal value for each sample. +The result is stored in output.ids.

    +

    The example usage is:

    +
    maxid = maxid(input=layer)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – Input layer name.
    • +
    • name (basestring) – Layer name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.maxout(*args, **kwargs)
    +
    +
    A layer to do max out on conv layer output.
    +
      +
    • Input: output of a conv layer.
    • +
    • Output: feature map size same as input. Channel is (input channel) / groups.
    • +
    +
    +
    +

    So groups should be larger than 1, and the num of channels should be able +to devided by groups.

    +
    +
    Please refer to Paper:
    +
    +
    +
    +

    The simple usage is:

    +
    maxout = maxout(input,
    +                      num_channels=128,
    +                      groups=4)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – The input layer.
    • +
    • num_channels (int|None) – The channel number of input layer. If None will be set +automatically from previous output.
    • +
    • groups (int) – The group number of input layer.
    • +
    • name (None|basestring.) – The name of this layer, which can not specify.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer attribute.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.multi_binary_label_cross_entropy_cost(*args, **kwargs)
    +

    A loss layer for multi binary label cross entropy.

    +
    cost = multi_binary_label_cross_entropy(input=input,
    +                                        label=label)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – The first input layer.
    • +
    • label – The input label.
    • +
    • type (basestring) – The type of cost.
    • +
    • name (None|basestring) – The name of this layers. It is not necessary.
    • +
    • coeff (float) – The coefficient affects the gradient in the backward.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.nce(*args, **kwargs)
    +

    Noise-contrastive estimation. +Implements the method in the following paper: +A fast and simple algorithm for training neural probabilistic language models.

    +

    The example usage is:

    +
    cost = nce(input=layer1, label=layer2, weight=layer3,
    +                 num_classes=3, neg_distribution=[0.1,0.3,0.6])
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – layer name
    • +
    • input (paddle.v2.config_base.Layer|list|tuple|collections.Sequence) – input layers. It could be a paddle.v2.config_base.Layer of list/tuple of paddle.v2.config_base.Layer.
    • +
    • label (paddle.v2.config_base.Layer) – label layer
    • +
    • weight (paddle.v2.config_base.Layer) – weight layer, can be None(default)
    • +
    • num_classes (int) – number of classes.
    • +
    • num_neg_samples (int) – number of negative samples. Default is 10.
    • +
    • neg_distribution (list|tuple|collections.Sequence|None) – The distribution for generating the random negative labels. +A uniform distribution will be used if not provided. +If not None, its length must be equal to num_classes.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute|None|False) – Bias parameter attribute. True if no bias.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    Returns:

    layer name.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.out_prod(*args, **kwargs)
    +

    A layer for computing the outer product of two vectors +The result is a matrix of size(input1) x size(input2)

    +

    The example usage is:

    +
    out_prod = out_prod(input1=vec1, input2=vec2)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – Layer name.
    • +
    • input1 – The first input layer name.
    • +
    • input2 (paddle.v2.config_base.Layer) – The second input layer name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.pad(*args, **kwargs)
    +

    This operation pads zeros to the input data according to pad_c,pad_h +and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size +of padding. And the input data shape is NCHW.

    +

    For example, pad_c=[2,3] means padding 2 zeros before the +input data and 3 zeros after the input data in channel dimension. +pad_h means padding zeros in height dimension. pad_w means padding zeros +in width dimension.

    +

    For example,

    +
    input(2,2,2,3)  = [
    +                    [ [[1,2,3], [3,4,5]],
    +                      [[2,3,5], [1,6,7]] ],
    +                    [ [[4,3,1], [1,8,7]],
    +                      [[3,8,9], [2,3,5]] ]
    +                  ]
    +
    +pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]
    +
    +output(2,4,2,3) = [
    +                    [ [[0,0,0], [0,0,0]],
    +                      [[1,2,3], [3,4,5]],
    +                      [[2,3,5], [1,6,7]],
    +                      [[0,0,0], [0,0,0]] ],
    +                    [ [[0,0,0], [0,0,0]],
    +                      [[4,3,1], [1,8,7]],
    +                      [[3,8,9], [2,3,5]],
    +                      [[0,0,0], [0,0,0]] ]
    +                  ]
    +
    +
    +

    The simply usage is:

    +
    pad = pad(input=ipt,
    +                pad_c=[4,4],
    +                pad_h=[0,0],
    +                pad_w=[2,2])
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – layer’s input.
    • +
    • pad_c (list|None) – padding size in channel dimension.
    • +
    • pad_h (list|None) – padding size in height dimension.
    • +
    • pad_w (list|None) – padding size in width dimension.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    • name (basestring) – layer name.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.pooling(*args, **kwargs)
    +

    Pooling layer for sequence inputs, not used for Image.

    +

    The example usage is:

    +
    seq_pool = pooling(input=layer,
    +                         pooling_type=AvgPooling(),
    +                         agg_level=AggregateLevel.EACH_SEQUENCE)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • agg_level (AggregateLevel) – AggregateLevel.EACH_TIMESTEP or +AggregateLevel.EACH_SEQUENCE
    • +
    • name (basestring) – layer name.
    • +
    • input (paddle.v2.config_base.Layer) – input layer name.
    • +
    • pooling_type (BasePoolingType|None) – Type of pooling, MaxPooling(default), AvgPooling, +SumPooling, SquareRootNPooling.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute|None|False) – Bias parameter attribute. False if no bias.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – The Extra Attributes for layer, such as dropout.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.power(*args, **kwargs)
    +

    This layer applies a power function to a vector element-wise, +which is used in NEURAL TURING MACHINE.

    +
    +\[y = x^w\]
    +

    where \(x\) is a input vector, \(w\) is scalar weight, +and \(y\) is a output vector.

    +

    The example usage is:

    +
    power = power(input=layer1, weight=layer2)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – Input layer.
    • +
    • weight (paddle.v2.config_base.Layer) – Weight layer.
    • +
    • name (basestring) – Layer name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.print(*args, **kwargs)
    +

    Print the output value of input layers. This layer is useful for debugging.

    + +++ + + + + + +
    Parameters:
      +
    • name (basestring) – The Layer Name.
    • +
    • input (paddle.v2.config_base.Layer|list|tuple) – The input layer. Could be a list/tuple of input layer.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.priorbox(*args, **kwargs)
    +

    Compute the priorbox and set the variance. This layer is necessary for ssd.

    + +++ + + + + + +
    Parameters:
      +
    • name (basestring) – The Layer Name.
    • +
    • input (paddle.v2.config_base.Layer) – The input layer.
    • +
    • image (paddle.v2.config_base.Layer) – The network input image.
    • +
    • aspect_ratio (list) – The aspect ratio.
    • +
    • variance – The bounding box variance.
    • +
    • min_size (The min size of the priorbox width/height.) – list
    • +
    • max_size (The max size of the priorbox width/height. Could be NULL.) – list
    • +
    +
    Returns:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.rank_cost(*args, **kwargs)
    +

    A cost Layer for learning to rank using gradient descent. Details can refer +to papers. +This layer contains at least three inputs. The weight is an optional +argument, which affects the cost.

    +
    +\[ \begin{align}\begin{aligned}C_{i,j} & = -\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})\\o_{i,j} & = o_i - o_j\\\tilde{P_{i,j}} & = \{0, 0.5, 1\} \ or \ \{0, 1\}\end{aligned}\end{align} \]
    +
    +
    In this formula:
    +
      +
    • \(C_{i,j}\) is the cross entropy cost.
    • +
    • \(\tilde{P_{i,j}}\) is the label. 1 means positive order +and 0 means reverse order.
    • +
    • \(o_i\) and \(o_j\): the left output and right output. +Their dimension is one.
    • +
    +
    +
    +

    The simple usage:

    +
    cost = rank_cost(left=out_left,
    +                 right=out_right,
    +                 label=label)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • left (paddle.v2.config_base.Layer) – The first input, the size of this layer is 1.
    • +
    • right (paddle.v2.config_base.Layer) – The right input, the size of this layer is 1.
    • +
    • label (paddle.v2.config_base.Layer) – Label is 1 or 0, means positive order and reverse order.
    • +
    • weight (paddle.v2.config_base.Layer) – The weight affects the cost, namely the scale of cost. +It is an optional argument.
    • +
    • name (None|basestring) – The name of this layers. It is not necessary.
    • +
    • coeff (float) – The coefficient affects the gradient in the backward.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.recurrent(*args, **kwargs)
    +

    Simple recurrent unit layer. It is just a fully connect layer through both +time and neural network.

    +

    For each sequence [start, end] it performs the following computation:

    +
    +\[\begin{split}out_{i} = act(in_{i}) \ \ \text{for} \ i = start \\ +out_{i} = act(in_{i} + out_{i-1} * W) \ \ \text{for} \ start < i <= end\end{split}\]
    +

    If reversed is true, the order is reversed:

    +
    +\[\begin{split}out_{i} = act(in_{i}) \ \ \text{for} \ i = end \\ +out_{i} = act(in_{i} + out_{i+1} * W) \ \ \text{for} \ start <= i < end\end{split}\]
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – Input Layer
    • +
    • act (paddle.v2.Activation.Base) – activation.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute) – bias attribute.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – parameter attribute.
    • +
    • name (basestring) – name of the layer
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Layer Attribute.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.regression_cost(*args, **kwargs)
    +

    Regression Layer.

    +

    TODO(yuyang18): Complete this method.

    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – layer name.
    • +
    • input (paddle.v2.config_base.Layer) – Network prediction.
    • +
    • label (paddle.v2.config_base.Layer) – Data label.
    • +
    • weight (paddle.v2.config_base.Layer) – The weight affects the cost, namely the scale of cost. +It is an optional argument.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – layer’s extra attribute.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.repeat(*args, **kwargs)
    +

    A layer for repeating the input for num_repeats times. This is equivalent +to apply concat() with num_repeats same input.

    +
    +\[y = [x, x, \cdots, x]\]
    +

    The example usage is:

    +
    expand = repeat(input=layer, num_repeats=4)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – Input layer
    • +
    • num_repeats (int) – Repeat the input so many times
    • +
    • name (basestring) – Layer name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.rotate(*args, **kwargs)
    +

    A layer for rotating 90 degrees (clock-wise) for each feature channel, +usually used when the input sample is some image or feature map.

    +
    +\[y(j,i,:) = x(M-i-1,j,:)\]
    +

    where \(x\) is (M x N x C) input, and \(y\) is (N x M x C) output.

    +

    The example usage is:

    +
    rot = rotate(input=layer,
    +                   height=100,
    +                   width=100)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – Input layer.
    • +
    • height (int) – The height of the sample matrix
    • +
    • name (basestring) – Layer name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.sampling_id(*args, **kwargs)
    +

    A layer for sampling id from multinomial distribution from the input layer. +Sampling one id for one sample.

    +

    The simple usage is:

    +
    samping_id = sampling_id(input=input)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – The input layer.
    • +
    • name (basestring) – The Layer Name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer config.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.scaling(*args, **kwargs)
    +

    A layer for multiplying input vector by weight scalar.

    +
    +\[y = w x\]
    +

    where \(x\) is size=dataDim input, \(w\) is size=1 weight, +and \(y\) is size=dataDim output.

    +

    Note that the above computation is for one sample. Multiple samples are +processed in one batch.

    +

    The example usage is:

    +
    scale = scaling(input=layer1, weight=layer2)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – Input layer.
    • +
    • weight (paddle.v2.config_base.Layer) – Weight layer.
    • +
    • name (basestring) – Layer name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.selective_fc(*args, **kwargs)
    +

    Selectived fully connected layer. Different from fc, the output +of this layer maybe sparse. It requires an additional input to indicate +several selected columns for output. If the selected columns is not +specified, selective_fc acts exactly like fc.

    +

    The simple usage is:

    +
    sel_fc = selective_fc(input=input, size=128, act=paddle.v2.Activation.Tanh())
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – The Layer Name.
    • +
    • input (paddle.v2.config_base.Layer|list|tuple) – The input layer.
    • +
    • select (paddle.v2.config_base.Layer) – The select layer. The output of select layer should be a +sparse binary matrix, and treat as the mask of selective fc. +If is None, acts exactly like fc.
    • +
    • size (int) – The layer dimension.
    • +
    • act (paddle.v2.Activation.Base) – Activation Type. Default is tanh.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – The Parameter Attribute.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute|None|Any) – The Bias Attribute. If no bias, then pass False or +something not type of paddle.v2.attr.ParameterAttribute. None will get a +default Bias.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer config.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.seq_concat(*args, **kwargs)
    +

    Concat sequence a with sequence b.

    +
    +
    Inputs:
    +
      +
    • a = [a1, a2, ..., an]
    • +
    • b = [b1, b2, ..., bn]
    • +
    • Note that the length of a and b should be the same.
    • +
    +
    +
    +

    Output: [a1, b1, a2, b2, ..., an, bn]

    +

    The example usage is:

    +
    concat = seq_concat(a=layer1, b=layer2)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – Layer name.
    • +
    • a (paddle.v2.config_base.Layer) – input sequence layer
    • +
    • b (paddle.v2.config_base.Layer) – input sequence layer
    • +
    • act (paddle.v2.Activation.Base) – Activation type.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute or None or bool) – The Bias Attribute. If no bias, then pass False or +something not type of paddle.v2.attr.ParameterAttribute. None will get a +default Bias.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.seq_reshape(*args, **kwargs)
    +

    A layer for reshaping the sequence. Assume the input sequence has T instances, +the dimension of each instance is M, and the input reshape_size is N, then the +output sequence has T*M/N instances, the dimension of each instance is N.

    +

    Note that T*M/N must be an integer.

    +

    The example usage is:

    +
    reshape = seq_reshape(input=layer, reshape_size=4)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – Input layer.
    • +
    • reshape_size (int) – the size of reshaped sequence.
    • +
    • name (basestring) – Layer name.
    • +
    • act (paddle.v2.Activation.Base) – Activation type.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute or None or bool) – The Bias Attribute. If no bias, then pass False or +something not type of paddle.v2.attr.ParameterAttribute. None will get a +default Bias.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.slope_intercept(*args, **kwargs)
    +

    This layer for applying a slope and an intercept to the input +element-wise. There is no activation and weight.

    +
    +\[y = slope * x + intercept\]
    +

    The simple usage is:

    +
    scale = slope_intercept(input=input, slope=-1.0, intercept=1.0)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – The input layer.
    • +
    • name (basestring) – The Layer Name.
    • +
    • slope (float.) – the scale factor.
    • +
    • intercept (float.) – the offset.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer config.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.spp(*args, **kwargs)
    +

    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. +The details please refer to +Kaiming He’s paper.

    +

    The example usage is:

    +
    spp = spp(input=data,
    +                pyramid_height=2,
    +                num_channels=16,
    +                pool_type=MaxPooling())
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – layer name.
    • +
    • input (paddle.v2.config_base.Layer) – layer’s input.
    • +
    • num_channels (int) – number of input channel.
    • +
    • pool_type – Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    • +
    • pyramid_height (int) – pyramid height.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.sum_cost(*args, **kwargs)
    +

    A loss layer which calculate the sum of the input as loss

    +
    cost = sum_cost(input=input)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer.) – The first input layer.
    • +
    • name (None|basestring.) – The name of this layers. It is not necessary.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer.

    +
    +
    + +
    +
    +class paddle.v2.layer.sum_to_one_norm(*args, **kwargs)
    +

    A layer for sum-to-one normalization, +which is used in NEURAL TURING MACHINE.

    +
    +\[out[i] = \frac {in[i]} {\sum_{k=1}^N in[k]}\]
    +

    where \(in\) is a (batchSize x dataDim) input vector, +and \(out\) is a (batchSize x dataDim) output vector.

    +

    The example usage is:

    +
    sum_to_one_norm = sum_to_one_norm(input=layer)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – Input layer.
    • +
    • name (basestring) – Layer name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.tensor(*args, **kwargs)
    +

    This layer performs tensor operation for two input. +For example, each sample:

    +
    +\[y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1\]
    +
    +
    In this formular:
    +
      +
    • \(a\): the first input contains M elements.
    • +
    • \(b\): the second input contains N elements.
    • +
    • \(y_{i}\): the i-th element of y.
    • +
    • \(W_{i}\): the i-th learned weight, shape if [M, N]
    • +
    • \(b^\mathrm{T}\): the transpose of \(b_{2}\).
    • +
    +
    +
    +

    The simple usage is:

    +
    tensor = tensor(a=layer1, b=layer2, size=1000)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – layer name
    • +
    • a (paddle.v2.config_base.Layer) – Input layer a.
    • +
    • b (paddle.v2.config_base.Layer) – input layer b.
    • +
    • size (int.) – the layer dimension.
    • +
    • act (paddle.v2.Activation.Base) – Activation Type. Default is tanh.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – The Parameter Attribute.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute|None|Any) – The Bias Attribute. If no bias, then pass False or +something not type of paddle.v2.attr.ParameterAttribute. None will get a +default Bias.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer config.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.trans(*args, **kwargs)
    +

    A layer for transposing a minibatch matrix.

    +
    +\[y = x^\mathrm{T}\]
    +

    where \(x\) is (M x N) input, and \(y\) is (N x M) output.

    +

    The example usage is:

    +
    trans = trans(input=layer)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – Input layer.
    • +
    • name (basestring) – Layer name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.warp_ctc(*args, **kwargs)
    +

    A layer intergrating the open-source warp-ctc +<https://github.com/baidu-research/warp-ctc> library, which is used in +Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin +<https://arxiv.org/pdf/1512.02595v1.pdf>, to compute Connectionist Temporal +Classification (CTC) loss.

    +

    More details of CTC can be found by referring to Connectionist Temporal +Classification: Labelling Unsegmented Sequence Data with Recurrent +Neural Networks

    +
    +

    Note

    +
      +
    • Let num_classes represent the category number. Considering the ‘blank’ +label needed by CTC, you need to use (num_classes + 1) as the input +size. Thus, the size of both warp_ctc and ‘input’ layer should +be set to num_classes + 1.
    • +
    • You can set ‘blank’ to any value ranged in [0, num_classes], which +should be consistent as that used in your labels.
    • +
    • As a native ‘softmax’ activation is interated to the warp-ctc library, +‘linear’ activation is expected instead in the ‘input’ layer.
    • +
    +
    +

    The simple usage:

    +
    ctc = warp_ctc(input=input,
    +                     label=label,
    +                     size=1001,
    +                     blank=1000,
    +                     norm_by_times=False)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – The input layer.
    • +
    • label (paddle.v2.config_base.Layer) – The data layer of label with variable length.
    • +
    • size (int) – category numbers + 1.
    • +
    • name (basestring|None) – The name of this layer, which can not specify.
    • +
    • blank (int) – the ‘blank’ label used in ctc
    • +
    • norm_by_times (bool) – Whether to normalization by times. False by default.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer config.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.context_projection(**kwargs)
    +

    Context Projection.

    +

    It just simply reorganizes input sequence, combines “context_len” sequence +to one context from context_start. “context_start” will be set to +-(context_len - 1) / 2 by default. If context position out of sequence +length, padding will be filled as zero if padding_attr = False, otherwise +it is trainable.

    +

    For example, origin sequence is [A B C D E F G], context len is 3, then +after context projection and not set padding_attr, sequence will +be [ 0AB ABC BCD CDE DEF EFG FG0 ].

    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – Input Sequence.
    • +
    • context_len (int) – context length.
    • +
    • context_start (int) – context start position. Default is +-(context_len - 1)/2
    • +
    • padding_attr (bool|paddle.v2.attr.ParameterAttribute) – Padding Parameter Attribute. If false, it means padding +always be zero. Otherwise Padding is learnable, and +parameter attribute is set by this parameter.
    • +
    +
    Returns:

    Projection

    +
    Return type:

    Projection

    +
    +
    + +
    +
    +class paddle.v2.layer.conv_projection(**kwargs)
    +

    Different from img_conv and conv_op, conv_projection is an Projection, +which can be used in mixed and conat. It use cudnn to implement +conv and only support GPU mode.

    +

    The example usage is:

    +
    proj = conv_projection(input=input1,
    +                       filter_size=3,
    +                       num_filters=64,
    +                       num_channels=64)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – input layer
    • +
    • filter_size (int) – The x dimension of a filter kernel.
    • +
    • filter_size_y (int) – The y dimension of a filter kernel. Since +PaddlePaddle now supports rectangular filters, +the filter’s shape can be (filter_size, filter_size_y).
    • +
    • num_filters (int) – channel of output data.
    • +
    • num_channels (int) – channel of input data.
    • +
    • stride (int) – The x dimension of the stride.
    • +
    • stride_y (int) – The y dimension of the stride.
    • +
    • padding (int) – The x dimension of padding.
    • +
    • padding_y (int) – The y dimension of padding.
    • +
    • groups (int) – The group number.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – Convolution param attribute. None means default attribute
    • +
    +
    Returns:

    A DotMulProjection Object.

    +
    Return type:

    DotMulProjection

    +
    +
    + +
    +
    +class paddle.v2.layer.dotmul_projection(**kwargs)
    +

    DotMulProjection with a layer as input. +It performs element-wise multiplication with weight.

    +
    +\[out.row[i] += in.row[i] .* weight\]
    +

    where \(.*\) means element-wise multiplication.

    +

    The example usage is:

    +
    proj = dotmul_projection(input=layer)
    +
    +
    + +++ + + + + + + + +
    Parameters: +
    Returns:

    A DotMulProjection Object.

    +
    Return type:

    DotMulProjection

    +
    +
    + +
    +
    +class paddle.v2.layer.full_matrix_projection(**kwargs)
    +

    Full Matrix Projection. It performs full matrix multiplication.

    +
    +\[out.row[i] += in.row[i] * weight\]
    +

    There are two styles of usage.

    +
      +
    1. When used in mixed like this, you can only set the input:
    2. +
    +
    with mixed(size=100) as m:
    +    m += full_matrix_projection(input=layer)
    +
    +
    +
      +
    1. When used as an independant object like this, you must set the size:
    2. +
    +
    proj = full_matrix_projection(input=layer,
    +                              size=100,
    +                              param_attr=ParamAttr(name='_proj'))
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – input layer
    • +
    • size (int) – The parameter size. Means the width of parameter.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – Parameter config, None if use default.
    • +
    +
    Returns:

    A FullMatrixProjection Object.

    +
    Return type:

    FullMatrixProjection

    +
    +
    + +
    +
    +class paddle.v2.layer.identity_projection(**kwargs)
    +
      +
    1. IdentityProjection if offset=None. It performs:
    2. +
    +
    +\[out.row[i] += in.row[i]\]
    +

    The example usage is:

    +
    proj = identity_projection(input=layer)
    +
    +
    +

    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection, +but layer size may be smaller than input size. +It select dimesions [offset, offset+layer_size) from input:

    +
    +\[out.row[i] += in.row[i + \textrm{offset}]\]
    +

    The example usage is:

    +
    proj = identity_projection(input=layer,
    +                           offset=10)
    +
    +
    +

    Note that both of two projections should not have any parameter.

    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – Input Layer.
    • +
    • offset (int) – Offset, None if use default.
    • +
    +
    Returns:

    A IdentityProjection or IdentityOffsetProjection object

    +
    Return type:

    IdentityProjection or IdentityOffsetProjection

    +
    +
    + +
    +
    +class paddle.v2.layer.scaling_projection(**kwargs)
    +

    scaling_projection multiplies the input with a scalar parameter and add to +the output.

    +
    +\[out += w * in\]
    +

    The example usage is:

    +
    proj = scaling_projection(input=layer)
    +
    +
    + +++ + + + + + + + +
    Parameters: +
    Returns:

    A ScalingProjection object

    +
    Return type:

    ScalingProjection

    +
    +
    + +
    +
    +class paddle.v2.layer.table_projection(**kwargs)
    +

    Table Projection. It selects rows from parameter where row_id +is in input_ids.

    +
    +\[out.row[i] += table.row[ids[i]]\]
    +

    where \(out\) is output, \(table\) is parameter, \(ids\) is input_ids, +and \(i\) is row_id.

    +

    There are two styles of usage.

    +
      +
    1. When used in mixed like this, you can only set the input:
    2. +
    +
    with mixed(size=100) as m:
    +    m += table_projection(input=layer)
    +
    +
    +
      +
    1. When used as an independant object like this, you must set the size:
    2. +
    +
    proj = table_projection(input=layer,
    +                        size=100,
    +                        param_attr=ParamAttr(name='_proj'))
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – Input layer, which must contains id fields.
    • +
    • size (int) – The parameter size. Means the width of parameter.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – Parameter config, None if use default.
    • +
    +
    Returns:

    A TableProjection Object.

    +
    Return type:

    TableProjection

    +
    +
    + +
    +
    +class paddle.v2.layer.trans_full_matrix_projection(**kwargs)
    +

    Different from full_matrix_projection, this projection performs matrix +multiplication, using transpose of weight.

    +
    +\[out.row[i] += in.row[i] * w^\mathrm{T}\]
    +

    \(w^\mathrm{T}\) means transpose of weight. +The simply usage is:

    +
    proj = trans_full_matrix_projection(input=layer,
    +                                    size=100,
    +                                    param_attr=ParamAttr(
    +                                         name='_proj',
    +                                         initial_mean=0.0,
    +                                         initial_std=0.01))
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – input layer
    • +
    • size (int) – The parameter size. Means the width of parameter.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – Parameter config, None if use default.
    • +
    +
    Returns:

    A TransposedFullMatrixProjection Object.

    +
    Return type:

    TransposedFullMatrixProjection

    +
    +
    + +
    +
    +class paddle.v2.layer.conv_operator(**kwargs)
    +

    Different from img_conv, conv_op is an Operator, which can be used +in mixed. And conv_op takes two inputs to perform convolution. +The first input is the image and the second is filter kernel. It only +support GPU mode.

    +

    The example usage is:

    +
    op = conv_operator(img=input1,
    +                   filter=input2,
    +                   filter_size=3,
    +                   num_filters=64,
    +                   num_channels=64)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • img (paddle.v2.config_base.Layer) – input image
    • +
    • filter (paddle.v2.config_base.Layer) – input filter
    • +
    • filter_size (int) – The x dimension of a filter kernel.
    • +
    • filter_size_y (int) – The y dimension of a filter kernel. Since +PaddlePaddle now supports rectangular filters, +the filter’s shape can be (filter_size, filter_size_y).
    • +
    • num_filters (int) – channel of output data.
    • +
    • num_channels (int) – channel of input data.
    • +
    • stride (int) – The x dimension of the stride.
    • +
    • stride_y (int) – The y dimension of the stride.
    • +
    • padding (int) – The x dimension of padding.
    • +
    • padding_y (int) – The y dimension of padding.
    • +
    +
    Returns:

    A ConvOperator Object.

    +
    Return type:

    ConvOperator

    +
    +
    + +
    +
    +class paddle.v2.layer.dotmul_operator(**kwargs)
    +

    DotMulOperator takes two inputs and performs element-wise multiplication:

    +
    +\[out.row[i] += scale * (x.row[i] .* y.row[i])\]
    +

    where \(.*\) means element-wise multiplication, and +scale is a config scalar, its default value is one.

    +

    The example usage is:

    +
    op = dotmul_operator(x=layer1, y=layer2, scale=0.5)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • a (paddle.v2.config_base.Layer) – Input layer1
    • +
    • b (paddle.v2.config_base.Layer) – Input layer2
    • +
    • scale (float) – config scalar, default value is one.
    • +
    +
    Returns:

    A DotMulOperator Object.

    +
    Return type:

    DotMulOperator

    +
    +
    + + +
    +

    Attributes

    +
    +
    +paddle.v2.attr.Param
    +

    alias of ParameterAttribute

    +
    + +
    +
    +paddle.v2.attr.Extra
    +

    alias of ExtraLayerAttribute

    +
    + +
    +
    +paddle.v2.attr.ParamAttr
    +

    alias of ParameterAttribute

    +
    + +
    +
    +paddle.v2.attr.ExtraAttr
    +

    alias of ExtraLayerAttribute

    +
    + +
    +
    +class paddle.v2.attr.ParameterAttribute(name=None, is_static=False, initial_std=None, initial_mean=None, initial_max=None, initial_min=None, l1_rate=None, l2_rate=None, learning_rate=None, momentum=None, gradient_clipping_threshold=None, sparse_update=False)
    +

    Parameter Attributes object. To fine-tuning network training process, user +can set attribute to control training details, such as l1,l2 rate / learning +rate / how to init param.

    +

    NOTE: IT IS A HIGH LEVEL USER INTERFACE.

    + +++ + + + +
    Parameters:
      +
    • is_static (bool) – True if this parameter will be fixed while training.
    • +
    • initial_std (float or None) – Gauss Random initialization standard deviation. +None if not using Gauss Random initialize parameter.
    • +
    • initial_mean (float or None) – Gauss Random initialization mean. +None if not using Gauss Random initialize parameter.
    • +
    • initial_max (float or None) – Uniform initialization max value.
    • +
    • initial_min (float or None) – Uniform initialization min value.
    • +
    • l1_rate (float or None) – the l1 regularization factor
    • +
    • l2_rate (float or None) – the l2 regularization factor
    • +
    • learning_rate (float or None) – The parameter learning rate. None means 1. +The learning rate when optimize is LEARNING_RATE = +GLOBAL_LEARNING_RATE * PARAMETER_LEARNING_RATE +* SCHEDULER_FACTOR.
    • +
    • momentum (float or None) – The parameter momentum. None means use global value.
    • +
    • gradient_clipping_threshold (float) – gradient clipping threshold. If gradient +value larger than some value, will be +clipped.
    • +
    • sparse_update (bool) – Enable sparse update for this parameter. It will +enable both local and remote sparse update.
    • +
    +
    +
    +
    +set_default_parameter_name(name)
    +

    Set default parameter name. If parameter not set, then will use default +parameter name.

    + +++ + + + +
    Parameters:name (basestring) – default parameter name.
    +
    + +
    + +
    +
    +class paddle.v2.attr.ExtraLayerAttribute(error_clipping_threshold=None, drop_rate=None, device=None)
    +

    Some high level layer attributes config. You can set all attributes here, +but some layer doesn’t support all attributes. If you set an attribute to a +layer that not support this attribute, paddle will print an error and core.

    + +++ + + + +
    Parameters:
      +
    • error_clipping_threshold (float) – Error clipping threshold.
    • +
    • drop_rate (float) – Dropout rate. Dropout will create a mask on layer output. +The dropout rate is the zero rate of this mask. The +details of what dropout is please refer to here.
    • +
    • device (int) –

      device ID of layer. device=-1, use CPU. device>0, use GPU. +The details allocation in parallel_nn please refer to here.

      +
    • +
    +
    +
    + +
    +
    +

    Activations

    +
    +
    +class paddle.v2.activation.Tanh
    +

    Tanh activation.

    +
    +\[f(z)=tanh(z)=\frac{e^z-e^{-z}}{e^z+e^{-z}}\]
    +
    + +
    +
    +class paddle.v2.activation.Sigmoid
    +

    Sigmoid activation.

    +
    +\[f(z) = \frac{1}{1+exp(-z)}\]
    +
    + +
    +
    +class paddle.v2.activation.Softmax
    +

    Softmax activation for simple input

    +
    +\[P(y=j|x) = \frac{e^{x_j}} {\sum^K_{k=1} e^{x_j} }\]
    +
    + +
    +
    +paddle.v2.activation.Identity
    +

    alias of Linear

    +
    + +
    +
    +class paddle.v2.activation.Linear
    +

    Identity Activation.

    +

    Just do nothing for output both forward/backward.

    +
    + +
    +
    +class paddle.v2.activation.SequenceSoftmax
    +

    Softmax activation for one sequence. The dimension of input feature must be +1 and a sequence.

    +
    result = softmax(for each_feature_vector[0] in input_feature)
    +for i, each_time_step_output in enumerate(output):
    +    each_time_step_output = result[i]
    +
    +
    +
    + +
    +
    +class paddle.v2.activation.Exp
    +

    Exponential Activation.

    +
    +\[f(z) = e^z.\]
    +
    + +
    +
    +class paddle.v2.activation.Relu
    +

    Relu activation.

    +

    forward. \(y = max(0, z)\)

    +

    derivative:

    +
    +\[\begin{split}1 &\quad if z > 0 \\ +0 &\quad\mathrm{otherwize}\end{split}\]
    +
    + +
    +
    +class paddle.v2.activation.BRelu
    +

    BRelu Activation.

    +

    forward. \(y = min(24, max(0, z))\)

    +

    derivative:

    +
    +\[\begin{split}1 &\quad if 0 < z < 24 \\ +0 &\quad \mathrm{otherwise}\end{split}\]
    +
    + +
    +
    +class paddle.v2.activation.SoftRelu
    +

    SoftRelu Activation.

    +
    + +
    +
    +class paddle.v2.activation.STanh
    +

    Scaled Tanh Activation.

    +
    +\[f(z) = 1.7159 * tanh(2/3*z)\]
    +
    + +
    +
    +class paddle.v2.activation.Abs
    +

    Abs Activation.

    +

    Forward: \(f(z) = abs(z)\)

    +

    Derivative:

    +
    +\[\begin{split}1 &\quad if \quad z > 0 \\ +-1 &\quad if \quad z < 0 \\ +0 &\quad if \quad z = 0\end{split}\]
    +
    + +
    +
    +class paddle.v2.activation.Square
    +

    Square Activation.

    +
    +\[f(z) = z^2.\]
    +
    + +
    +
    +class paddle.v2.activation.Base(name, support_hppl)
    +

    A mark for activation class. +Each activation inherit BaseActivation, which has two parameters.

    + +++ + + + +
    Parameters:
      +
    • name (basestring) – activation name in paddle config.
    • +
    • support_hppl (bool) – True if supported by hppl. HPPL is a library used by paddle +internally. Currently, lstm layer can only use activations +supported by hppl.
    • +
    +
    +
    + +
    +
    +class paddle.v2.activation.Log
    +

    Logarithm Activation.

    +
    +\[f(z) = log(z)\]
    +
    + +
    +
    +

    Poolings

    +
    +
    +class paddle.v2.pooling.BasePool(name)
    +

    Base Pooling Type. +Note these pooling types are used for sequence input, not for images. +Each PoolingType contains one parameter:

    + +++ + + + +
    Parameters:name (basestring) – pooling layer type name used by paddle.
    +
    + +
    +
    +class paddle.v2.pooling.Max(output_max_index=None)
    +

    Max pooling.

    +

    Return the very large values for each dimension in sequence or time steps.

    +
    +\[max(samples\_of\_a\_sequence)\]
    + +++ + + + +
    Parameters:output_max_index (bool|None) – True if output sequence max index instead of max +value. None means use default value in proto.
    +
    + +
    +
    +class paddle.v2.pooling.Avg(strategy='average')
    +

    Average pooling.

    +

    Return the average values for each dimension in sequence or time steps.

    +
    +\[sum(samples\_of\_a\_sequence)/sample\_num\]
    +
    + +
    +
    +class paddle.v2.pooling.CudnnMax
    +

    Cudnn max pooling only support GPU. Return the maxinum value in the +pooling window.

    +
    + +
    +
    +class paddle.v2.pooling.CudnnAvg
    +

    Cudnn average pooling only support GPU. Return the average value in the +pooling window.

    +
    + +
    +
    +class paddle.v2.pooling.Sum
    +

    Sum pooling.

    +

    Return the sum values of each dimension in sequence or time steps.

    +
    +\[sum(samples\_of\_a\_sequence)\]
    +
    + +
    +
    +class paddle.v2.pooling.SquareRootN
    +

    Square Root Pooling.

    +

    Return the square root values of each dimension in sequence or time steps.

    +
    +\[sum(samples\_of\_a\_sequence)/sqrt(sample\_num)\]
    +
    + +
    +
    +

    Networks

    +
    +
    +class paddle.v2.networks.sequence_conv_pool(*args, **kwargs)
    +

    Text convolution pooling layers helper.

    +

    Text input => Context Projection => FC Layer => Pooling => Output.

    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – name of output layer(pooling layer name)
    • +
    • input (paddle.v2.config_base.Layer) – name of input layer
    • +
    • context_len (int) – context projection length. See +context_projection’s document.
    • +
    • hidden_size (int) – FC Layer size.
    • +
    • context_start (int or None) – context projection length. See +context_projection’s context_start.
    • +
    • pool_type (BasePoolingType.) – pooling layer type. See pooling’s document.
    • +
    • context_proj_name (basestring) – context projection layer name. +None if user don’t care.
    • +
    • context_proj_param_attr (paddle.v2.attr.ParameterAttribute or None.) – context projection parameter attribute. +None if user don’t care.
    • +
    • fc_name (basestring) – fc layer name. None if user don’t care.
    • +
    • fc_param_attr (paddle.v2.attr.ParameterAttribute or None) – fc layer parameter attribute. None if user don’t care.
    • +
    • fc_bias_attr (paddle.v2.attr.ParameterAttribute or None) – fc bias parameter attribute. False if no bias, +None if user don’t care.
    • +
    • fc_act (paddle.v2.Activation.Base) – fc layer activation type. None means tanh
    • +
    • pool_bias_attr (paddle.v2.attr.ParameterAttribute or None.) – pooling layer bias attr. None if don’t care. +False if no bias.
    • +
    • fc_attr (paddle.v2.attr.ExtraAttribute) – fc layer extra attribute.
    • +
    • context_attr (paddle.v2.attr.ExtraAttribute) – context projection layer extra attribute.
    • +
    • pool_attr (paddle.v2.attr.ExtraAttribute) – pooling layer extra attribute.
    • +
    +
    Returns:

    output layer name.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.networks.simple_lstm(*args, **kwargs)
    +

    Simple LSTM Cell.

    +

    It just combine a mixed layer with fully_matrix_projection and a lstmemory +layer. The simple lstm cell was implemented as follow equations.

    +
    +\[ \begin{align}\begin{aligned}i_t & = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)\\f_t & = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)\\c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)\\o_t & = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)\\h_t & = o_t tanh(c_t)\end{aligned}\end{align} \]
    +

    Please refer Generating Sequences With Recurrent Neural Networks if you +want to know what lstm is. Link is here.

    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – lstm layer name.
    • +
    • input (paddle.v2.config_base.Layer) – input layer name.
    • +
    • size (int) – lstm layer size.
    • +
    • reverse (bool) – whether to process the input data in a reverse order
    • +
    • mat_param_attr (paddle.v2.attr.ParameterAttribute) – mixed layer’s matrix projection parameter attribute.
    • +
    • bias_param_attr (paddle.v2.attr.ParameterAttribute|False) – bias parameter attribute. False means no bias, None +means default bias.
    • +
    • inner_param_attr (paddle.v2.attr.ParameterAttribute) – lstm cell parameter attribute.
    • +
    • act (paddle.v2.Activation.Base) – lstm final activiation type
    • +
    • gate_act (paddle.v2.Activation.Base) – lstm gate activiation type
    • +
    • state_act (paddle.v2.Activation.Base) – lstm state activiation type.
    • +
    • mixed_attr (paddle.v2.attr.ExtraAttribute) – mixed layer’s extra attribute.
    • +
    • lstm_cell_attr (paddle.v2.attr.ExtraAttribute) – lstm layer’s extra attribute.
    • +
    +
    Returns:

    lstm layer name.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.networks.simple_img_conv_pool(*args, **kwargs)
    +

    Simple image convolution and pooling group.

    +

    Input => conv => pooling

    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – group name
    • +
    • input (paddle.v2.config_base.Layer) – input layer name.
    • +
    • filter_size (int) – see img_conv for details
    • +
    • num_filters (int) – see img_conv for details
    • +
    • pool_size (int) – see img_pool for details
    • +
    • pool_type (BasePoolingType) – see img_pool for details
    • +
    • act (paddle.v2.Activation.Base) – see img_conv for details
    • +
    • groups (int) – see img_conv for details
    • +
    • conv_stride (int) – see img_conv for details
    • +
    • conv_padding (int) – see img_conv for details
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute) – see img_conv for details
    • +
    • num_channel (int) – see img_conv for details
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – see img_conv for details
    • +
    • shared_bias (bool) – see img_conv for details
    • +
    • conv_attr (paddle.v2.attr.ExtraAttribute) – see img_conv for details
    • +
    • pool_stride (int) – see img_pool for details
    • +
    • pool_padding (int) – see img_pool for details
    • +
    • pool_attr (paddle.v2.attr.ExtraAttribute) – see img_pool for details
    • +
    +
    Returns:

    Layer’s output

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.networks.img_conv_bn_pool(*args, **kwargs)
    +

    Convolution, batch normalization, pooling group.

    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – group name
    • +
    • input (paddle.v2.config_base.Layer) – layer’s input
    • +
    • filter_size (int) – see img_conv’s document
    • +
    • num_filters (int) – see img_conv’s document
    • +
    • pool_size (int) – see img_pool’s document.
    • +
    • pool_type (BasePoolingType) – see img_pool’s document.
    • +
    • act (paddle.v2.Activation.Base) – see batch_norm’s document.
    • +
    • groups (int) – see img_conv’s document
    • +
    • conv_stride (int) – see img_conv’s document.
    • +
    • conv_padding (int) – see img_conv’s document.
    • +
    • conv_bias_attr (paddle.v2.attr.ParameterAttribute) – see img_conv’s document.
    • +
    • num_channel (int) – see img_conv’s document.
    • +
    • conv_param_attr (paddle.v2.attr.ParameterAttribute) – see img_conv’s document.
    • +
    • shared_bias (bool) – see img_conv’s document.
    • +
    • conv_attr (Extrapaddle.v2.config_base.Layer) – see img_conv’s document.
    • +
    • bn_param_attr (paddle.v2.attr.ParameterAttribute.) – see batch_norm’s document.
    • +
    • bn_bias_attr – see batch_norm’s document.
    • +
    • bn_attr – paddle.v2.attr.ParameterAttribute.
    • +
    • pool_stride (int) – see img_pool’s document.
    • +
    • pool_padding (int) – see img_pool’s document.
    • +
    • pool_attr (paddle.v2.attr.ExtraAttribute) – see img_pool’s document.
    • +
    +
    Returns:

    Layer groups output

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.networks.dropout_layer(*args, **kwargs)
    +

    @TODO(yuyang18): Add comments.

    + +++ + + + + + +
    Parameters:
      +
    • name
    • +
    • input
    • +
    • dropout_rate
    • +
    +
    Returns:

    +
    +
    + +
    +
    +class paddle.v2.networks.lstmemory_group(*args, **kwargs)
    +

    lstm_group is a recurrent layer group version of Long Short Term Memory. It +does exactly the same calculation as the lstmemory layer (see lstmemory in +layers.py for the maths) does. A promising benefit is that LSTM memory +cell states, or hidden states in every time step are accessible to the +user. This is especially useful in attention model. If you do not need to +access the internal states of the lstm, but merely use its outputs, +it is recommended to use the lstmemory, which is relatively faster than +lstmemory_group.

    +

    NOTE: In PaddlePaddle’s implementation, the following input-to-hidden +multiplications: +\(W_{xi}x_{t}\) , \(W_{xf}x_{t}\), +\(W_{xc}x_t\), \(W_{xo}x_{t}\) are not done in lstmemory_unit to +speed up the calculations. Consequently, an additional mixed with +full_matrix_projection must be included before lstmemory_unit is called.

    +

    The example usage is:

    +
    lstm_step = lstmemory_group(input=[layer1],
    +                            size=256,
    +                            act=paddle.v2.Activation.Tanh(),
    +                            gate_act=paddle.v2.Activation.Sigmoid(),
    +                            state_act=paddle.v2.Activation.Tanh())
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – input layer name.
    • +
    • name (basestring) – lstmemory group name.
    • +
    • size (int) – lstmemory group size.
    • +
    • reverse (bool) – is lstm reversed
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – Parameter config, None if use default.
    • +
    • act (paddle.v2.Activation.Base) – lstm final activiation type
    • +
    • gate_act (paddle.v2.Activation.Base) – lstm gate activiation type
    • +
    • state_act (paddle.v2.Activation.Base) – lstm state activiation type.
    • +
    • mixed_bias_attr (paddle.v2.attr.ParameterAttribute|False) – bias parameter attribute of mixed layer. +False means no bias, None means default bias.
    • +
    • lstm_bias_attr (paddle.v2.attr.ParameterAttribute|False) – bias parameter attribute of lstm layer. +False means no bias, None means default bias.
    • +
    • mixed_attr (paddle.v2.attr.ExtraAttribute) – mixed layer’s extra attribute.
    • +
    • lstm_attr (paddle.v2.attr.ExtraAttribute) – lstm layer’s extra attribute.
    • +
    • get_output_attr (paddle.v2.attr.ExtraAttribute) – get output layer’s extra attribute.
    • +
    +
    Returns:

    the lstmemory group.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.networks.lstmemory_unit(*args, **kwargs)
    +

    Define calculations that a LSTM unit performs in a single time step. +This function itself is not a recurrent layer, so that it can not be +directly applied to sequence input. This function is always used in +recurrent_group (see layers.py for more details) to implement attention +mechanism.

    +

    Please refer to Generating Sequences With Recurrent Neural Networks +for more details about LSTM. The link goes as follows: +.. _Link: https://arxiv.org/abs/1308.0850

    +
    +\[ \begin{align}\begin{aligned}i_t & = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)\\f_t & = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)\\c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)\\o_t & = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)\\h_t & = o_t tanh(c_t)\end{aligned}\end{align} \]
    +

    The example usage is:

    +
    lstm_step = lstmemory_unit(input=[layer1],
    +                           size=256,
    +                           act=paddle.v2.Activation.Tanh(),
    +                           gate_act=paddle.v2.Activation.Sigmoid(),
    +                           state_act=paddle.v2.Activation.Tanh())
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – input layer name.
    • +
    • name (basestring) – lstmemory unit name.
    • +
    • size (int) – lstmemory unit size.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – Parameter config, None if use default.
    • +
    • act (paddle.v2.Activation.Base) – lstm final activiation type
    • +
    • gate_act (paddle.v2.Activation.Base) – lstm gate activiation type
    • +
    • state_act (paddle.v2.Activation.Base) – lstm state activiation type.
    • +
    • mixed_bias_attr (paddle.v2.attr.ParameterAttribute|False) – bias parameter attribute of mixed layer. +False means no bias, None means default bias.
    • +
    • lstm_bias_attr (paddle.v2.attr.ParameterAttribute|False) – bias parameter attribute of lstm layer. +False means no bias, None means default bias.
    • +
    • mixed_attr (paddle.v2.attr.ExtraAttribute) – mixed layer’s extra attribute.
    • +
    • lstm_attr (paddle.v2.attr.ExtraAttribute) – lstm layer’s extra attribute.
    • +
    • get_output_attr (paddle.v2.attr.ExtraAttribute) – get output layer’s extra attribute.
    • +
    +
    Returns:

    lstmemory unit name.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.networks.img_conv_group(**kwargs)
    +

    Image Convolution Group, Used for vgg net.

    +

    TODO(yuyang18): Complete docs

    + +++ + + + + + +
    Parameters:
      +
    • conv_batchnorm_drop_rate
    • +
    • input
    • +
    • conv_num_filter
    • +
    • pool_size
    • +
    • num_channels
    • +
    • conv_padding
    • +
    • conv_filter_size
    • +
    • conv_act
    • +
    • conv_with_batchnorm
    • +
    • pool_stride
    • +
    • pool_type
    • +
    +
    Returns:

    +
    +
    + +
    +
    +class paddle.v2.networks.vgg_16_network(**kwargs)
    +

    Same model from https://gist.github.com/ksimonyan/211839e770f7b538e2d8

    + +++ + + + + + +
    Parameters:
      +
    • num_classes
    • +
    • input_image (paddle.v2.config_base.Layer) –
    • +
    • num_channels (int) –
    • +
    +
    Returns:

    +
    +
    + +
    +
    +class paddle.v2.networks.gru_unit(*args, **kwargs)
    +

    Define calculations that a gated recurrent unit performs in a single time +step. This function itself is not a recurrent layer, so that it can not be +directly applied to sequence input. This function is almost always used in +the recurrent_group (see layers.py for more details) to implement attention +mechanism.

    +

    Please see grumemory in layers.py for the details about the maths.

    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – input layer name.
    • +
    • name (basestring) – name of the gru group.
    • +
    • size (int) – hidden size of the gru.
    • +
    • act (paddle.v2.Activation.Base) – type of the activation
    • +
    • gate_act (paddle.v2.Activation.Base) – type of the gate activation
    • +
    • gru_attr (paddle.v2.attr.ParameterAttribute|False) – Extra parameter attribute of the gru layer.
    • +
    +
    Returns:

    the gru output layer.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.networks.gru_group(*args, **kwargs)
    +

    gru_group is a recurrent layer group version of Gated Recurrent Unit. It +does exactly the same calculation as the grumemory layer does. A promising +benefit is that gru hidden states are accessible to the user. This is +especially useful in attention model. If you do not need to access +any internal state, but merely use the outputs of a GRU, it is recommended +to use the grumemory, which is relatively faster.

    +

    Please see grumemory in layers.py for more detail about the maths.

    +

    The example usage is:

    +
    gru = gur_group(input=[layer1],
    +                size=256,
    +                act=paddle.v2.Activation.Tanh(),
    +                gate_act=paddle.v2.Activation.Sigmoid())
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – input layer name.
    • +
    • name (basestring) – name of the gru group.
    • +
    • size (int) – hidden size of the gru.
    • +
    • reverse (bool) – whether to process the input data in a reverse order
    • +
    • act (paddle.v2.Activation.Base) – type of the activiation
    • +
    • gate_act (paddle.v2.Activation.Base) – type of the gate activiation
    • +
    • gru_bias_attr (paddle.v2.attr.ParameterAttribute|False) – bias. False means no bias, None means default bias.
    • +
    • gru_attr (paddle.v2.attr.ParameterAttribute|False) – Extra parameter attribute of the gru layer.
    • +
    +
    Returns:

    the gru group.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.networks.simple_gru(*args, **kwargs)
    +

    You maybe see gru_step, grumemory in layers.py, gru_unit, gru_group, +simple_gru in network.py. The reason why there are so many interfaces is +that we have two ways to implement recurrent neural network. One way is to +use one complete layer to implement rnn (including simple rnn, gru and lstm) +with multiple time steps, such as recurrent, lstmemory, grumemory. But, +the multiplication operation \(W x_t\) is not computed in these layers. +See details in their interfaces in layers.py. +The other implementation is to use an recurrent group which can ensemble a +series of layers to compute rnn step by step. This way is flexible for +attenion mechanism or other complex connections.

    +
      +
    • gru_step: only compute rnn by one step. It needs an memory as input +and can be used in recurrent group.
    • +
    • gru_unit: a wrapper of gru_step with memory.
    • +
    • gru_group: a GRU cell implemented by a combination of multiple layers in +recurrent group. +But \(W x_t\) is not done in group.
    • +
    • gru_memory: a GRU cell implemented by one layer, which does same calculation +with gru_group and is faster than gru_group.
    • +
    • simple_gru: a complete GRU implementation inlcuding \(W x_t\) and +gru_group. \(W\) contains \(W_r\), \(W_z\) and \(W\), see +formula in grumemory.
    • +
    +

    The computational speed is that, grumemory is relatively better than +gru_group, and gru_group is relatively better than simple_gru.

    +

    The example usage is:

    +
    gru = simple_gru(input=[layer1], size=256)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – input layer name.
    • +
    • name (basestring) – name of the gru group.
    • +
    • size (int) – hidden size of the gru.
    • +
    • reverse (bool) – whether to process the input data in a reverse order
    • +
    • act (paddle.v2.Activation.Base) – type of the activiation
    • +
    • gate_act (paddle.v2.Activation.Base) – type of the gate activiation
    • +
    • gru_bias_attr (paddle.v2.attr.ParameterAttribute|False) – bias. False means no bias, None means default bias.
    • +
    • gru_attr (paddle.v2.attr.ParameterAttribute|False) – Extra parameter attribute of the gru layer.
    • +
    +
    Returns:

    the gru group.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.networks.simple_attention(*args, **kwargs)
    +

    Calculate and then return a context vector by attention machanism. +Size of the context vector equals to size of the encoded_sequence.

    +
    +\[ \begin{align}\begin{aligned}a(s_{i-1},h_{j}) & = v_{a}f(W_{a}s_{t-1} + U_{a}h_{j})\\e_{i,j} & = a(s_{i-1}, h_{j})\\a_{i,j} & = \frac{exp(e_{i,j})}{\sum_{k=1}^{T_x}{exp(e_{i,k})}}\\c_{i} & = \sum_{j=1}^{T_{x}}a_{i,j}h_{j}\end{aligned}\end{align} \]
    +

    where \(h_{j}\) is the jth element of encoded_sequence, +\(U_{a}h_{j}\) is the jth element of encoded_proj +\(s_{i-1}\) is decoder_state +\(f\) is weight_act, and is set to tanh by default.

    +

    Please refer to Neural Machine Translation by Jointly Learning to +Align and Translate for more details. The link is as follows: +https://arxiv.org/abs/1409.0473.

    +

    The example usage is:

    +
    context = simple_attention(encoded_sequence=enc_seq,
    +                           encoded_proj=enc_proj,
    +                           decoder_state=decoder_prev,)
    +
    +
    + +++ + + + + + +
    Parameters:
      +
    • name (basestring) – name of the attention model.
    • +
    • softmax_param_attr (paddle.v2.attr.ParameterAttribute) – parameter attribute of sequence softmax +that is used to produce attention weight
    • +
    • weight_act (Activation) – activation of the attention model
    • +
    • encoded_sequence (paddle.v2.config_base.Layer) – output of the encoder
    • +
    • encoded_proj (paddle.v2.config_base.Layer) – attention weight is computed by a feed forward neural +network which has two inputs : decoder’s hidden state +of previous time step and encoder’s output. +encoded_proj is output of the feed-forward network for +encoder’s output. Here we pre-compute it outside +simple_attention for speed consideration.
    • +
    • decoder_state (paddle.v2.config_base.Layer) – hidden state of decoder in previous time step
    • +
    • transform_param_attr (paddle.v2.attr.ParameterAttribute) – parameter attribute of the feed-forward +network that takes decoder_state as inputs to +compute attention weight.
    • +
    +
    Returns:

    a context vector

    +
    +
    + +
    +
    +class paddle.v2.networks.simple_gru2(*args, **kwargs)
    +

    simple_gru2 is the same with simple_gru, but using grumemory instead +Please see grumemory in layers.py for more detail about the maths. +simple_gru2 is faster than simple_gru.

    +

    The example usage is:

    +
    gru = simple_gru2(input=[layer1], size=256)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • input (paddle.v2.config_base.Layer) – input layer name.
    • +
    • name (basestring) – name of the gru group.
    • +
    • size (int) – hidden size of the gru.
    • +
    • reverse (bool) – whether to process the input data in a reverse order
    • +
    • act (paddle.v2.Activation.Base) – type of the activiation
    • +
    • gate_act (paddle.v2.Activation.Base) – type of the gate activiation
    • +
    • gru_bias_attr (paddle.v2.attr.ParameterAttribute|False) – bias. False means no bias, None means default bias.
    • +
    • gru_attr (paddle.v2.attr.ParameterAttribute|False) – Extra parameter attribute of the gru layer.
    • +
    +
    Returns:

    the gru group.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.networks.bidirectional_gru(*args, **kwargs)
    +

    A bidirectional_gru is a recurrent unit that iterates over the input +sequence both in forward and bardward orders, and then concatenate two +outputs to form a final output. However, concatenation of two outputs +is not the only way to form the final output, you can also, for example, +just add them together.

    +

    The example usage is:

    +
    bi_gru = bidirectional_gru(input=[input1], size=512)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – bidirectional gru layer name.
    • +
    • input (paddle.v2.config_base.Layer) – input layer.
    • +
    • size (int) – gru layer size.
    • +
    • return_seq (bool) – If set False, outputs of the last time step are +concatenated and returned. +If set True, the entire output sequences that are +processed in forward and backward directions are +concatenated and returned.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.networks.text_conv_pool(*args, **kwargs)
    +

    Text convolution pooling layers helper.

    +

    Text input => Context Projection => FC Layer => Pooling => Output.

    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – name of output layer(pooling layer name)
    • +
    • input (paddle.v2.config_base.Layer) – name of input layer
    • +
    • context_len (int) – context projection length. See +context_projection’s document.
    • +
    • hidden_size (int) – FC Layer size.
    • +
    • context_start (int or None) – context projection length. See +context_projection’s context_start.
    • +
    • pool_type (BasePoolingType.) – pooling layer type. See pooling’s document.
    • +
    • context_proj_name (basestring) – context projection layer name. +None if user don’t care.
    • +
    • context_proj_param_attr (paddle.v2.attr.ParameterAttribute or None.) – context projection parameter attribute. +None if user don’t care.
    • +
    • fc_name (basestring) – fc layer name. None if user don’t care.
    • +
    • fc_param_attr (paddle.v2.attr.ParameterAttribute or None) – fc layer parameter attribute. None if user don’t care.
    • +
    • fc_bias_attr (paddle.v2.attr.ParameterAttribute or None) – fc bias parameter attribute. False if no bias, +None if user don’t care.
    • +
    • fc_act (paddle.v2.Activation.Base) – fc layer activation type. None means tanh
    • +
    • pool_bias_attr (paddle.v2.attr.ParameterAttribute or None.) – pooling layer bias attr. None if don’t care. +False if no bias.
    • +
    • fc_attr (paddle.v2.attr.ExtraAttribute) – fc layer extra attribute.
    • +
    • context_attr (paddle.v2.attr.ExtraAttribute) – context projection layer extra attribute.
    • +
    • pool_attr (paddle.v2.attr.ExtraAttribute) – pooling layer extra attribute.
    • +
    +
    Returns:

    output layer name.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.networks.bidirectional_lstm(*args, **kwargs)
    +

    A bidirectional_lstm is a recurrent unit that iterates over the input +sequence both in forward and bardward orders, and then concatenate two +outputs form a final output. However, concatenation of two outputs +is not the only way to form the final output, you can also, for example, +just add them together.

    +

    Please refer to Neural Machine Translation by Jointly Learning to Align +and Translate for more details about the bidirectional lstm. +The link goes as follows: +.. _Link: https://arxiv.org/pdf/1409.0473v3.pdf

    +

    The example usage is:

    +
    bi_lstm = bidirectional_lstm(input=[input1], size=512)
    +
    +
    + +++ + + + + + + + +
    Parameters:
      +
    • name (basestring) – bidirectional lstm layer name.
    • +
    • input (paddle.v2.config_base.Layer) – input layer.
    • +
    • size (int) – lstm layer size.
    • +
    • return_seq (bool) – If set False, outputs of the last time step are +concatenated and returned. +If set True, the entire output sequences that are +processed in forward and backward directions are +concatenated and returned.
    • +
    +
    Returns:

    paddle.v2.config_base.Layer object accroding to the return_seq.

    +
    Return type:

    paddle.v2.config_base.Layer

    +
    diff --git a/develop/doc/design/api.html b/develop/doc/design/api.html index 6c88d3e0472d46a7ad81847ef5d9e133d681135a..a22e11a3e4602bf16f873f9042350b3d551e46f7 100644 --- a/develop/doc/design/api.html +++ b/develop/doc/design/api.html @@ -153,6 +153,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/design/reader/README.html b/develop/doc/design/reader/README.html index b2f81a77451a550e7d434939e3d149a92c4dd468..ee292ed3a1f85d20a1b3c7895b9d8f577f868add 100644 --- a/develop/doc/design/reader/README.html +++ b/develop/doc/design/reader/README.html @@ -153,6 +153,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/genindex.html b/develop/doc/genindex.html index da7fd377f10eb1345863cc8277c3c38d29eba8d6..1adf85601e2191e54653044a37e696f8e534fb05 100644 --- a/develop/doc/genindex.html +++ b/develop/doc/genindex.html @@ -154,6 +154,10 @@
  • API
  • ABOUT
  • @@ -190,16 +194,119 @@

    Index

    - D + A + | B + | C + | D | E + | F + | G + | H + | I + | L + | M + | N + | O | P + | R | S + | T + | V + | W
    +

    A

    + + + +
    + +

    B

    + + + +
    + +

    C

    + + + +
    +

    D

    +
    @@ -207,11 +314,155 @@

    E

    +
    + +

    F

    + + + +
    + +

    G

    + + + +
    + +

    H

    + + + +
    + +

    I

    + + + +
    + +

    L

    + + + +
    + +

    M

    + + + +
    + +

    N

    + + +
    + +

    O

    + +
    @@ -219,29 +470,167 @@

    P

    +

    R

    + + + +
    +

    S

    + +
    + +

    T

    + + + +
    + +

    V

    + + +
    + +

    W

    + +
    diff --git a/develop/doc/getstarted/basic_usage/index_en.html b/develop/doc/getstarted/basic_usage/index_en.html index f786854d6f24ddd17e20a8061b5711124bf7fb67..fdbc50f5aa1b311a480659f546992b91bbb884ab 100644 --- a/develop/doc/getstarted/basic_usage/index_en.html +++ b/develop/doc/getstarted/basic_usage/index_en.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/getstarted/build_and_install/build_from_source_en.html b/develop/doc/getstarted/build_and_install/build_from_source_en.html index e2c6a40b92f066ddd0a3eb585b786d8575e1150d..1bf363e368d8b12c7476a383667a590eb0249cf2 100644 --- a/develop/doc/getstarted/build_and_install/build_from_source_en.html +++ b/develop/doc/getstarted/build_and_install/build_from_source_en.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/getstarted/build_and_install/docker_install_en.html b/develop/doc/getstarted/build_and_install/docker_install_en.html index 038fbdb45257aa7a8e4fb8417a99a4a08f66c6f7..5d2df17876095d21eff768a2ce3370cf262329c8 100644 --- a/develop/doc/getstarted/build_and_install/docker_install_en.html +++ b/develop/doc/getstarted/build_and_install/docker_install_en.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/getstarted/build_and_install/index_en.html b/develop/doc/getstarted/build_and_install/index_en.html index c019fb99da775f00318a9a5bd7c3ed13ffa552e0..2c3d113a1794d0bcdd45f222a7590f6aae9269a0 100644 --- a/develop/doc/getstarted/build_and_install/index_en.html +++ b/develop/doc/getstarted/build_and_install/index_en.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/getstarted/build_and_install/ubuntu_install_en.html b/develop/doc/getstarted/build_and_install/ubuntu_install_en.html index abed3ab522615fcd88bb2e9aabb40649be0087e1..36ed59bd39155dda8762bc082a920de6ea8ea011 100644 --- a/develop/doc/getstarted/build_and_install/ubuntu_install_en.html +++ b/develop/doc/getstarted/build_and_install/ubuntu_install_en.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/getstarted/index_en.html b/develop/doc/getstarted/index_en.html index 41770ed5362b6c9005d74ca1a9ad7e04e1b1ee64..7a3da2308304f4954b05bd30598c97c6cfedb667 100644 --- a/develop/doc/getstarted/index_en.html +++ b/develop/doc/getstarted/index_en.html @@ -155,6 +155,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/howto/deep_model/rnn/index_en.html b/develop/doc/howto/deep_model/rnn/index_en.html index 1c684d6c2767e411eec95be3d34afe65ee507587..76d46de907afd516e3f2df01c2fdca2f482dfd0a 100644 --- a/develop/doc/howto/deep_model/rnn/index_en.html +++ b/develop/doc/howto/deep_model/rnn/index_en.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/howto/deep_model/rnn/rnn_config_en.html b/develop/doc/howto/deep_model/rnn/rnn_config_en.html index 14769b2fba5fed67e1ca77a36266f9c1200d54da..5d7c5b849c0bb46511588561fbad4456d3129a51 100644 --- a/develop/doc/howto/deep_model/rnn/rnn_config_en.html +++ b/develop/doc/howto/deep_model/rnn/rnn_config_en.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/howto/dev/contribute_to_paddle_en.html b/develop/doc/howto/dev/contribute_to_paddle_en.html index 447b1073520cc45f695f4b2c6aa2a047ceb4d895..70d42a80be22dbcc3872694148a33678cdca031e 100644 --- a/develop/doc/howto/dev/contribute_to_paddle_en.html +++ b/develop/doc/howto/dev/contribute_to_paddle_en.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/howto/dev/new_layer_en.html b/develop/doc/howto/dev/new_layer_en.html index f186571d6754f2d153200d35c4e52a8fc9721ed2..480edcc591458535d301b730363b02d8bd8d3fbf 100644 --- a/develop/doc/howto/dev/new_layer_en.html +++ b/develop/doc/howto/dev/new_layer_en.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/howto/index_en.html b/develop/doc/howto/index_en.html index 32a8630c4afc24e2ac4a5ded1a173744d134149b..1e752b46e710cbdbb760bc68aa4c9aed39c43ec8 100644 --- a/develop/doc/howto/index_en.html +++ b/develop/doc/howto/index_en.html @@ -155,6 +155,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/howto/optimization/gpu_profiling_en.html b/develop/doc/howto/optimization/gpu_profiling_en.html index 3b1754dbb029be28e3dca8c6e93873f7580f120c..5aa150bee84195d9381334ee4dbe60b58b5e5efa 100644 --- a/develop/doc/howto/optimization/gpu_profiling_en.html +++ b/develop/doc/howto/optimization/gpu_profiling_en.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/howto/usage/cluster/cluster_train_en.html b/develop/doc/howto/usage/cluster/cluster_train_en.html index a6412a3f259f0c25bc621baf8378ccb2ea9914fe..2c9cfae7f13cebb7909b339b376d5fc5019fc5cc 100644 --- a/develop/doc/howto/usage/cluster/cluster_train_en.html +++ b/develop/doc/howto/usage/cluster/cluster_train_en.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/howto/usage/cmd_parameter/arguments_en.html b/develop/doc/howto/usage/cmd_parameter/arguments_en.html index 050da87fbb3cef649f239913b9de4c1808b8f60a..c79a4d64b3f4805b1b51f9a043c2768a475ca486 100644 --- a/develop/doc/howto/usage/cmd_parameter/arguments_en.html +++ b/develop/doc/howto/usage/cmd_parameter/arguments_en.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/howto/usage/cmd_parameter/detail_introduction_en.html b/develop/doc/howto/usage/cmd_parameter/detail_introduction_en.html index 8453381cd24e04f0c748ffa006d58df29c67e894..d08c319693ae7b8c0926b0d61a2ac4cc974f8f99 100644 --- a/develop/doc/howto/usage/cmd_parameter/detail_introduction_en.html +++ b/develop/doc/howto/usage/cmd_parameter/detail_introduction_en.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/howto/usage/cmd_parameter/index_en.html b/develop/doc/howto/usage/cmd_parameter/index_en.html index 23539b9deb75a985f6daee00cdb4730465d023c8..d6288d9766fbd1502c8dca6c597cf693171732f5 100644 --- a/develop/doc/howto/usage/cmd_parameter/index_en.html +++ b/develop/doc/howto/usage/cmd_parameter/index_en.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/howto/usage/cmd_parameter/use_case_en.html b/develop/doc/howto/usage/cmd_parameter/use_case_en.html index 7362ca487e248bff16d6f26fb0bf3fd9a1c85c8c..16a891f9854578c52e5b0847f12c390196fd0114 100644 --- a/develop/doc/howto/usage/cmd_parameter/use_case_en.html +++ b/develop/doc/howto/usage/cmd_parameter/use_case_en.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/howto/usage/k8s/k8s_aws_en.html b/develop/doc/howto/usage/k8s/k8s_aws_en.html index 3ff597b44c8b417a80c380855fa5ea9c1021d169..a1e54c62fdb7ba83b94d64c74442fc2ffd2cec42 100644 --- a/develop/doc/howto/usage/k8s/k8s_aws_en.html +++ b/develop/doc/howto/usage/k8s/k8s_aws_en.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/howto/usage/k8s/k8s_en.html b/develop/doc/howto/usage/k8s/k8s_en.html index a5553cc9b99005c1f3389c834ace9c5b587ad969..adb3545fdcd46e37ca38b63621fd6252f502b5c9 100644 --- a/develop/doc/howto/usage/k8s/k8s_en.html +++ b/develop/doc/howto/usage/k8s/k8s_en.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/howto/usage/k8s/src/k8s_data/README.html b/develop/doc/howto/usage/k8s/src/k8s_data/README.html index 115a96cbe5d31c338a3cd555cf06865789694386..ecbbbe557d7056d6222a50858cdab3757dd2776c 100644 --- a/develop/doc/howto/usage/k8s/src/k8s_data/README.html +++ b/develop/doc/howto/usage/k8s/src/k8s_data/README.html @@ -153,6 +153,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/howto/usage/k8s/src/k8s_train/README.html b/develop/doc/howto/usage/k8s/src/k8s_train/README.html index e81c92f97dec04c811978a476c553e0ce9bc53b2..1c0c5425d28aa1267008ec58eb2f74e446ff58fb 100644 --- a/develop/doc/howto/usage/k8s/src/k8s_train/README.html +++ b/develop/doc/howto/usage/k8s/src/k8s_train/README.html @@ -153,6 +153,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/index_en.html b/develop/doc/index_en.html index c3be8f4dd6cedef3feb78036aa1b365cffff2e1b..88914f5c2a60f6a55afc7da6248c4dd84a8db1ba 100644 --- a/develop/doc/index_en.html +++ b/develop/doc/index_en.html @@ -154,6 +154,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/objects.inv b/develop/doc/objects.inv index 7eaffdf62cf38ee39459f9eaa8c9380678778e33..372d4cad8865453a0f7865d9e9d7a212e3e02315 100644 Binary files a/develop/doc/objects.inv and b/develop/doc/objects.inv differ diff --git a/develop/doc/py-modindex.html b/develop/doc/py-modindex.html index 38e7ef1fe89c0ffcc27a608201f3dd87466cf0bf..b7b6ff8cdf3dabba739a0f7c016f2cfcd1fde46b 100644 --- a/develop/doc/py-modindex.html +++ b/develop/doc/py-modindex.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • @@ -215,11 +219,31 @@     paddle.trainer_config_helpers.data_sources + + +     + paddle.v2.activation + + + +     + paddle.v2.attr +     paddle.v2.layer + + +     + paddle.v2.networks + + + +     + paddle.v2.pooling + diff --git a/develop/doc/search.html b/develop/doc/search.html index 8fbec31ad5f2bf83d82e8182502ac3e3d3f340d1..e346ca2c590007fd325a13fb1d635b0e256590cb 100644 --- a/develop/doc/search.html +++ b/develop/doc/search.html @@ -153,6 +153,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/searchindex.js b/develop/doc/searchindex.js index a5145aa1989d47005f67d48ee74783dbdaf636a9..a1b7923e673422cdb4a8103e3aba23cc22f37880 100644 --- a/develop/doc/searchindex.js +++ b/develop/doc/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["about/index_en","api/index_en","api/v1/data_provider/dataprovider_en","api/v1/data_provider/pydataprovider2_en","api/v1/index_en","api/v1/predict/swig_py_paddle_en","api/v1/trainer_config_helpers/activations","api/v1/trainer_config_helpers/attrs","api/v1/trainer_config_helpers/data_sources","api/v1/trainer_config_helpers/evaluators","api/v1/trainer_config_helpers/layers","api/v1/trainer_config_helpers/networks","api/v1/trainer_config_helpers/optimizers","api/v1/trainer_config_helpers/poolings","api/v2/model_configs","design/api","design/reader/README","getstarted/basic_usage/index_en","getstarted/build_and_install/build_from_source_en","getstarted/build_and_install/docker_install_en","getstarted/build_and_install/index_en","getstarted/build_and_install/ubuntu_install_en","getstarted/index_en","howto/deep_model/rnn/index_en","howto/deep_model/rnn/rnn_config_en","howto/dev/contribute_to_paddle_en","howto/dev/new_layer_en","howto/index_en","howto/optimization/gpu_profiling_en","howto/usage/cluster/cluster_train_en","howto/usage/cmd_parameter/arguments_en","howto/usage/cmd_parameter/detail_introduction_en","howto/usage/cmd_parameter/index_en","howto/usage/cmd_parameter/use_case_en","howto/usage/k8s/k8s_aws_en","howto/usage/k8s/k8s_en","howto/usage/k8s/src/k8s_data/README","howto/usage/k8s/src/k8s_train/README","index_en","tutorials/embedding_model/index_en","tutorials/gan/index_en","tutorials/image_classification/index_en","tutorials/imagenet_model/resnet_model_en","tutorials/index_en","tutorials/quick_start/index_en","tutorials/rec/ml_dataset_en","tutorials/rec/ml_regression_en","tutorials/semantic_role_labeling/index_en","tutorials/sentiment_analysis/index_en","tutorials/text_generation/index_en"],envversion:50,filenames:["about/index_en.rst","api/index_en.rst","api/v1/data_provider/dataprovider_en.rst","api/v1/data_provider/pydataprovider2_en.rst","api/v1/index_en.rst","api/v1/predict/swig_py_paddle_en.rst","api/v1/trainer_config_helpers/activations.rst","api/v1/trainer_config_helpers/attrs.rst","api/v1/trainer_config_helpers/data_sources.rst","api/v1/trainer_config_helpers/evaluators.rst","api/v1/trainer_config_helpers/layers.rst","api/v1/trainer_config_helpers/networks.rst","api/v1/trainer_config_helpers/optimizers.rst","api/v1/trainer_config_helpers/poolings.rst","api/v2/model_configs.rst","design/api.md","design/reader/README.md","getstarted/basic_usage/index_en.rst","getstarted/build_and_install/build_from_source_en.md","getstarted/build_and_install/docker_install_en.rst","getstarted/build_and_install/index_en.rst","getstarted/build_and_install/ubuntu_install_en.rst","getstarted/index_en.rst","howto/deep_model/rnn/index_en.rst","howto/deep_model/rnn/rnn_config_en.rst","howto/dev/contribute_to_paddle_en.md","howto/dev/new_layer_en.rst","howto/index_en.rst","howto/optimization/gpu_profiling_en.rst","howto/usage/cluster/cluster_train_en.md","howto/usage/cmd_parameter/arguments_en.md","howto/usage/cmd_parameter/detail_introduction_en.md","howto/usage/cmd_parameter/index_en.rst","howto/usage/cmd_parameter/use_case_en.md","howto/usage/k8s/k8s_aws_en.md","howto/usage/k8s/k8s_en.md","howto/usage/k8s/src/k8s_data/README.md","howto/usage/k8s/src/k8s_train/README.md","index_en.rst","tutorials/embedding_model/index_en.md","tutorials/gan/index_en.md","tutorials/image_classification/index_en.md","tutorials/imagenet_model/resnet_model_en.md","tutorials/index_en.md","tutorials/quick_start/index_en.md","tutorials/rec/ml_dataset_en.md","tutorials/rec/ml_regression_en.rst","tutorials/semantic_role_labeling/index_en.md","tutorials/sentiment_analysis/index_en.md","tutorials/text_generation/index_en.md"],objects:{"paddle.trainer.PyDataProvider2":{provider:[3,0,1,""]},"paddle.trainer_config_helpers":{attrs:[7,1,0,"-"],data_sources:[8,1,0,"-"]},"paddle.trainer_config_helpers.attrs":{ExtraAttr:[7,2,1,""],ExtraLayerAttribute:[7,3,1,""],ParamAttr:[7,2,1,""],ParameterAttribute:[7,3,1,""]},"paddle.trainer_config_helpers.attrs.ParameterAttribute":{set_default_parameter_name:[7,4,1,""]},"paddle.trainer_config_helpers.data_sources":{define_py_data_sources2:[8,0,1,""]},"paddle.v2":{layer:[14,1,0,"-"]},"paddle.v2.layer":{parse_network:[14,0,1,""]}},objnames:{"0":["py","function","Python function"],"1":["py","module","Python module"],"2":["py","attribute","Python attribute"],"3":["py","class","Python class"],"4":["py","method","Python method"]},objtypes:{"0":"py:function","1":"py:module","2":"py:attribute","3":"py:class","4":"py:method"},terms:{"0000x":44,"00186201e":5,"00m":28,"02595v1":10,"03m":28,"0424m":28,"0473v3":11,"055ee37d":34,"05d":41,"0630u":28,"06u":28,"0810u":28,"08823112e":5,"0957m":28,"0ab":10,"0th":49,"10007_10":48,"10014_7":48,"100gb":28,"100gi":34,"10m":28,"1150u":28,"11e6":35,"12194102e":5,"124n":28,"13m":35,"1490u":28,"15501715e":5,"1550u":28,"15mb":44,"1636k":49,"16mb":44,"16u":28,"173m":42,"173n":28,"1770u":28,"18ad":34,"18e457ce3d362ff5f3febf8e7f85ffec852f70f3b629add10aed84f930a68750":35,"197u":28,"1gb":28,"1st":[39,42,48,49],"202mb":49,"210u":28,"211839e770f7b538e2d8":11,"215n":28,"228u":28,"234m":42,"2520u":28,"252kb":44,"25639710e":5,"25k":44,"2680u":28,"27787406e":5,"279n":28,"27m":28,"285m":28,"2863m":28,"28m":28,"28x28":3,"2977m":28,"2cbf7385":34,"2nd":[10,48,49],"302n":28,"30u":28,"32777140e":5,"328n":28,"32u":28,"32x32":41,"331n":28,"3320u":28,"36540484e":5,"365e":34,"36u":28,"3710m":28,"3768m":28,"387u":28,"38u":28,"3920u":28,"39u":28,"3rd":[46,48,49],"4035m":28,"4090u":28,"4096mb":31,"4279m":28,"43630644e":5,"43u":28,"448a5b355b84":35,"4560u":28,"4563m":28,"45u":28,"4650u":28,"4726m":28,"473m":35,"48565123e":5,"48684503e":5,"49316648e":5,"4gb":31,"50bd":34,"50gi":34,"51111044e":5,"514u":28,"525n":28,"526u":28,"53018653e":5,"536u":28,"5460u":28,"5470u":28,"54u":28,"55g":49,"5690m":28,"573u":28,"578n":28,"5798m":28,"586u":28,"58s":35,"5969m":28,"6080u":28,"6082v4":10,"6140u":28,"6305m":28,"639u":28,"655u":28,"6780u":28,"6810u":28,"682u":28,"6970u":28,"6ce9":34,"6node":29,"6th":49,"704u":28,"70634608e":5,"7090u":28,"72296313e":5,"72u":28,"73u":28,"75u":28,"760u":28,"767u":28,"783n":28,"784u":28,"78m":28,"7kb":35,"8250u":28,"8300u":28,"830n":28,"849m":28,"85625684e":5,"861u":28,"864k":49,"8661m":28,"892m":28,"901n":28,"90u":28,"918u":28,"9247m":28,"924n":28,"9261m":28,"93137714e":5,"9330m":28,"94u":28,"9530m":28,"96644767e":5,"983m":28,"988u":28,"997u":28,"99982715e":5,"99m":42,"99u":28,"9f18":35,"\u7ea2\u697c\u68a6":39,"\ufb01xed":49,"abstract":[26,31],"break":44,"case":[10,16,17,24,25,26,28,32,34,40,44],"char":46,"class":[5,6,7,10,12,13,15,30,41,48],"const":26,"default":[3,7,9,10,11,12,13,15,19,29,31,33,34,35,44,46,48,49],"export":[18,19,41],"final":[11,17,18,26,46,48],"float":[3,7,9,10,12,17,26,28,33,39,42,46],"function":[3,5,8,10,11,12,15,16,17,24,26,28,29,31,40,41,44,47,48,49],"import":[3,5,9,10,14,15,17,19,24,28,34,39,40,41,42,44,46,48,49],"int":[3,7,9,10,11,12,16,26,33,44,46,47],"long":[2,10,11,19,28,47,48],"new":[3,10,16,25,27,34,35,40,44,47,48],"null":[10,26,31,46],"public":[26,29,34,35,48],"return":[3,8,9,10,11,13,14,15,17,24,26,34,40,42,44,45,46,49],"short":[10,11,17,46,47,48],"static":[10,34],"super":26,"switch":[34,48],"throw":34,"true":[3,6,7,9,10,11,12,13,15,16,17,24,26,31,33,34,42,46,47,48,49],"try":[12,16,28,40,46],"void":26,"while":[2,3,7,9,16,24,31,40,44,48,49],AGE:[34,35],AND:46,ARE:46,AWS:[27,36,37],Abs:6,Age:45,And:[3,9,10,12,16,19,21,25,33,34,35,39,42,46,48,49],But:[3,10,11],EOS:10,For:[2,3,8,9,10,12,15,16,17,18,19,24,26,28,29,30,31,33,39,41,42,44,48,49],Going:48,Has:3,IDs:44,Ids:44,Into:34,Its:[3,24,34,46],Not:[15,29],ONE:3,One:[9,10,11,24,26,31,40,44,48,49],QoS:35,THE:3,TLS:[15,34],That:[10,16,31,33],The:[2,3,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,24,25,26,28,29,31,33,34,35,39,40,41,42,44,45,46,47,48,49],Their:[3,10],Then:[5,10,18,19,24,25,26,28,34,35,39,41,46,47,48],There:[9,10,15,17,21,28,34,40,41,42,43,44,46,49],These:[29,33,41,47],USE:46,USING:46,Use:[3,15,16,26,28,31,32,34,46],Used:11,Useful:3,Using:[35,48],VPS:34,WITH:25,With:[3,10,11,17,40,47],Yes:19,___fc_layer_0__:34,__init__:26,__list_to_map__:46,__main__:42,__meta__:46,__name__:42,__rnn_step__:24,_error:40,_link:11,_proj:10,_res2_1_branch1_bn:42,_source_language_embed:[24,39],_target_language_embed:[24,39],aaaaaaaaaaaaa:34,abc:10,abl:[10,15,40,48],about:[5,10,11,17,19,28,30,31,34,38,47,48,49],abov:[3,5,10,15,17,19,28,34,35,40,42,44,47],abs:[11,40],absolut:[2,29],academ:45,acceler:33,accept:[3,5,15,16,44,47],acceptor:47,access:[2,10,11,15,24,49],accessmod:34,accident:45,accord:[2,3,9,10,24,25,29,30,31,33],accordingli:[5,26],accordingto:47,accrod:11,accuraci:[9,26,44,45,48],achiev:[28,41],ack:31,acl:48,aclimdb:48,across:10,act:[10,11,14,17,24,44],act_typ:44,action:[34,45],activ:[0,4,5,10,11,14,17,18,26,31,44,48],activi:11,actual:[3,10,17,19],adadelta:[12,44],adagrad:[12,44],adam:[12,15,44,48,49],adamax:[12,44],adamoptim:[39,44,48,49],adapt:[9,12,17,48,49],add:[3,10,11,17,18,25,26,28,33,44,46],add_input:26,add_test:26,add_to:10,add_unittest_without_exec:26,addbia:26,added:[3,9,26],adding:42,addit:[10,11,19,44],address:[28,31],addrow:26,addtion:29,addto:10,addtolay:10,adject:48,adjust:17,admin:45,adopt:47,advanc:[24,28,31],advantag:[19,48],adventur:45,adverb:48,adversari:16,advic:28,affect:10,afi:3,aforement:29,after:[10,18,21,24,26,29,31,33,34,35,40,41,42,44,46,47,48,49],again:[15,28],against:34,age:46,agg_level:10,aggreg:34,aggregatelevel:10,aid:28,aim:[48,49],aircraft:49,airplan:41,aistat:10,alex:[10,48],alexnet_pass1:33,alexnet_pass2:33,algorithm:[10,12,17,24,39,41,48,49],alia:[6,7],align:[10,11,49],all:[0,3,7,9,10,12,14,15,17,19,24,25,26,28,29,30,31,33,34,35,39,40,42,44,45,46,47,48,49],alloc:[7,26,33],allow:[15,19,25,26,28,31,34,44],allow_only_one_model_on_one_gpu:[30,31,33],almost:[11,17,29,39],along:48,alreadi:[28,29,31,34,35,48],alreali:[30,49],also:[2,3,9,10,11,15,16,18,19,24,26,28,29,35,40,41,42,44,47,48],although:17,alwai:[5,10,11,16,17,31,34,49],amaz:41,amazon:[34,35,44,48],amazonaw:34,amazonec2fullaccess:34,amazonelasticfilesystemfullaccess:34,amazonroute53domainsfullaccess:34,amazonroute53fullaccess:34,amazons3fullaccess:34,amazonvpcfullaccess:34,ambigu:[16,47],amd64:34,amend:25,american:41,among:[34,48],amount:[28,48],analysi:[17,28,43,47],analyz:[44,48],andd:34,ani:[2,3,10,11,15,16,24,25,28,34,44,46,49],anim:45,annot:47,annual:47,anoth:[3,10,15,19,31,34,47,48],ans:34,answer:[17,34,47],anyth:[16,25,34,47],api:[14,15,18,26,28,34,38,40,44,46,48],apiserv:34,apivers:[34,35],apo:49,appar:49,appear:47,append:[3,16,24,26,29,46],appleclang:18,appleyard:28,appli:[0,10,11,24,26,41,44],applic:[28,34,35,48],appreci:[25,48],approach:10,apt:[18,21,41],arbitrari:10,architectur:[39,47,48,49],architecur:48,arg:[3,8,9,10,11,12,17,19,30,40,41,42,44,46,47,48],arg_nam:10,argu:47,argument:[3,5,8,10,24,26,31,32,39,40,41,42,46,47,48,49],argv:42,arn:34,around:[3,10,34],arrai:[5,10,16,17,42],art:[17,47],articl:[29,35],artifact:34,artifici:40,artist:45,arxiv:[10,11,40,48],aspect:48,assign:[10,31,34],associ:[47,48,49],assum:[10,24,33,39],assur:2,astyp:[16,40],async:[12,30],async_count:31,async_lagged_grad_discard_ratio:31,async_lagged_ratio_default:[30,31],async_lagged_ratio_min:[30,31],asynchron:31,atla:18,atlas_root:18,attenion:11,attent:[10,11,49],attitud:48,attr:[7,11],attribut:[3,4,10,11,26,39,47],auc:[9,30],aucvalidationlay:31,authent:34,author:[34,42],authorized_kei:29,autmot:25,auto:[26,28,43,46],autom:[34,49],automak:18,automat:[10,15,18,19,24,26,29,30,31,34,46,47,49],automaticli:10,automobil:41,avail:[18,34],availabel:18,averag:[9,10,12,13,31,42,44,46,47,48,49],average_test_period:[30,31,47],average_window:48,averagepool:10,avg:[28,44],avgcost:[9,44,46,48,49],avgpool:[10,44],avoid:28,avx:[18,21],await:35,awar:[15,19,34],aws_account_id:34,awsaccountid:34,awskeymanagementservicepowerus:34,b2t:39,b363:35,b8561f5c79193550d64fa47418a9e67ebdd71546186e840f88de5026b8097465:35,ba5f:34,back:3,background:22,backward:[6,10,11,24,26,31,33],backward_first:24,backwardactiv:26,bag:[44,48],baidu:[0,10,17,21,25,35,39],baik:39,balanc:[31,34,40],balasubramanyan:48,bank:47,bardward:11,bare:35,barrier:31,barrierstatset:28,base:[12,13,15,17,21,24,25,26,28,29,31,34,39,40,44,46,48,49],baseactiv:[10,11],basematrix:26,basenam:9,basepoolingtyp:[10,11],baseregular:12,basestr:[6,7,8,9,10,11,13,46],bash:[19,34,35],bashrc:18,basic:[3,10,25,26,44,45,48],batch:[3,9,10,11,12,15,26,29,31,34,35,40,41,42,44,46,47,48,49],batch_0:42,batch_norm:10,batch_norm_lay:11,batch_norm_typ:10,batch_read:16,batch_siz:[3,12,17,29,39,40,41,44,46,48,49],batchsiz:[10,26],bcd:10,beam:[10,24,31,47,49],beam_gen:[10,24],beam_search:24,beam_siz:[10,24,30,31,33],beamsiz:49,becaus:[5,10,15,16,24,25,26,33,34,41,44,47],becom:[25,28],been:[3,18,25,41,44,47,48,49],befor:[5,10,11,16,19,25,29,34,41,46,48,49],begin:[5,9,10,26],beginiter:15,beginn:24,beginpass:15,begintrain:15,behavior:28,being:[16,40],belong:[10,49],below:[3,10,14,16,24,26,28,29,34,40,41,44,46],benefit:11,bengio:10,bertolami:48,besid:[2,10,49],best:[8,10,18,31,44,46,48,49],best_model_path:47,besteffort:35,beta1:12,beta2:12,beta:42,better:[10,11,17,29,34,40,46],between:[10,12,17,25,34,40,44,45,48,49],bgr:42,bi_lstm:11,bia:[10,11,12,24,26,42],bias:[10,26],bias_attr:[10,11,17,24],bias_param_attr:11,biases_:26,biasparameter_:26,biassiz:26,bidi:35,bidirect:[11,24,47,49],bidirectional_lstm_net:48,big:28,biggest:48,bilinear:10,bilinear_interpol:10,bilinearfwdbwd:28,bin:[18,19,29,34,35,46],binari:[3,9,10,28,34,39,44,48],bird:41,bison:18,bit:44,bitext:49,bla:18,blank:[10,34],block:[10,17,26,28,31,42,48],block_expand:10,block_i:10,block_x:10,blog:48,bn_bias_attr:11,bn_layer_attr:11,bn_param_attr:11,bollen:48,bool:[3,6,7,9,10,11,12,13,26,31,33,44,46,48],boot:[10,24],boot_bia:10,boot_bias_active_typ:10,boot_lay:[10,24],boot_with_const_id:10,bootstrap:18,bos_id:[10,24],both:[0,6,7,10,11,15,19,24,26,28,34,40,42,44],bottleneck:[28,42],bottom:48,bow:[44,48],box:28,branch:[10,15,25],breadth:[31,49],brelu:6,brendan:48,brew:18,briefli:28,brows:19,browser:[19,34],bryan:48,bucket_nam:34,buffer:[3,16,31],buffered_read:16,bug:34,bui:48,build:[0,17,19,22,31,34,36,37,39,41,42,44,46,48,49],build_and_instal:19,built:[0,18,40,47],bunch:[28,44],bunk:48,button:[25,34],c99e:34,cach:[44,46,47],cache_pass_in_mem:[3,44,46,47],cachetyp:[3,44,46,47],calc_batch_s:[3,47],calcul:[3,9,10,11,12,24,26,28,31,33,40,46],call:[3,10,11,15,17,24,26,28,31,34,41,42,44,48,49],callabl:[3,10],callback:26,caller:34,caltech:41,can:[2,3,5,6,7,8,9,10,11,15,16,17,18,19,21,24,25,26,28,29,30,31,33,34,35,39,40,41,42,44,46,47,48,49],can_over_batch_s:[3,47],candid:10,cannot:26,caoi:49,capabl:[18,48],capac:34,caption:[17,49],captur:[17,29],card:29,care:[11,16,30,31,45],carefulli:[29,31,42],cat:[19,41,42,48],categor:47,categori:[10,44,48],categoryfil:35,caution:[34,35],ccb2_pc30:49,cde:10,ceil:10,ceil_mod:10,cell:[10,11,48],center:3,ceph:35,certain:[2,30,47],certif:[15,34],cfg:35,chain:26,chanc:[15,26,44],chang:[10,16,17,19,24,25,26,28,31,34,44,48],channel:[10,28,29,42],channl:[29,42],char_bas:46,charact:[44,46],character:17,characterist:[33,41],check:[3,17,18,19,25,31,33,34,45],check_eq:26,check_fail_continu:3,check_l:26,check_sparse_distribution_batch:[30,31],check_sparse_distribution_in_pserv:[30,31],check_sparse_distribution_ratio:[30,31],check_sparse_distribution_unbalance_degre:[30,31],checkgrad:31,checkgrad_ep:31,checkout:25,children:45,chines:43,chmod:[18,34],choic:45,choos:[31,44,46],chosen:[2,45,49],chunk:[9,40,47],chunk_schem:9,chunktyp:9,cifar:[40,41],cifar_vgg_model:41,claim:34,claimnam:34,clang:[18,25],class1:48,class2:48,class_dim:48,classfic:[42,48],classfiic:41,classic:[10,17],classif:[3,5,10,33,42,43,44,48,49],classifc:48,classifi:[9,40,41,42,44,48],classification_cost:[41,44],classification_error_evalu:[40,44,48,49],classification_threshold:9,claster:34,clean:[5,46],cleric:45,cli:34,click:[25,28,34],client:25,clip:[7,12,31,44,48],clock:10,clone:[18,19],close:[3,16],closer:17,cls:44,cludform:34,cluster:[15,30,31,35,44,49],cluster_train:29,cm469:34,cmake3:18,cmake:[18,26,28],cmakelist:26,cmd:35,cna:10,cname:34,cnn:[35,42,44],code:[0,3,5,14,15,16,17,18,19,20,24,26,27,28,29,34,35,40,44,45],coeff:10,coeffici:10,collect:[10,17,45],collectbia:26,colleg:45,color:[41,42],column:[9,10,16,26,39,49],colunm:49,com:[10,11,18,19,21,25,34,35,42],combin:[10,11,40,46,48],come:48,comedi:45,comma:[31,39],command:[2,5,17,18,19,21,25,26,27,28,29,34,35,36,37,39,40,41,42,46,47,48],commandlin:[28,48],commenc:44,comment:[11,25,44,48],commnun:29,common:[24,26,30],common_util:[29,46],commonli:[24,28,33],commun:[0,26,29,34],compani:48,compar:[26,40,44],compat:3,compet:48,competit:40,compil:[18,25,26],complet:[0,5,10,11,26,34,35,44],complex:[2,3,11,16,24,28,44],complic:10,compon:26,compos:[15,40,47],comput:[10,11,15,17,18,19,24,26,28,33,34,44,46,47,48],computation:24,conat_lay:10,concat:[10,49],concat_lay:24,concaten:11,concept:[3,15,24],concern:15,concurrentremoteparameterupdat:31,condit:[10,24,29,35,49],conduct:28,conf:[5,10,29,39,40,42,49],conf_paddle_gradient_num:34,conf_paddle_n:34,conf_paddle_port:34,conf_paddle_ports_num:34,conf_paddle_ports_num_spars:34,confid:48,config:[3,6,7,10,11,14,17,26,29,30,31,34,35,39,40,41,42,44,48,49],config_:31,config_arg:[30,31,33,42,44,47,48],config_fil:47,config_gener:[29,46],config_lay:26,config_pars:[5,26],configur:[2,3,5,8,10,14,17,19,23,25,26,28,31,39,41,42,48,49],conflict:25,confront:49,congest:31,conll05st:47,conll:47,connect:[2,11,17,19,26,34,35,40,41,42,44,46,48],connectionist:[10,48],connor:48,consequ:[10,11],consid:[9,10,12,18,28,33,41],consider:[3,11],consist:[10,16,19,41,42,44,47,49],consol:[28,34],constant:26,construct:[3,5,15,24,46],construct_featur:46,constructor:26,consum:48,contain:[3,8,9,10,11,13,15,20,21,24,25,29,34,41,42,44,45,48,49],containerport:34,contemporan:48,content:[35,47,48],context:[10,11,24,39,44,46,47,48,49],context_attr:11,context_len:[10,11,44,46],context_proj_layer_nam:11,context_proj_param_attr:11,context_project:[11,46],context_start:[10,11,44],contibut:25,contin:34,continu:[3,21,31],contrast:[10,49],contribut:[0,20,27,48],contributor:0,control:[7,31,34,35,49],conv:11,conv_act:11,conv_batchnorm_drop_r:11,conv_bias_attr:11,conv_filter_s:11,conv_layer_attr:11,conv_num_filt:11,conv_op:10,conv_pad:11,conv_param_attr:11,conv_shift:10,conv_strid:11,conv_with_batchnorm:11,conveni:[15,29],converg:[29,40,48],convert:[3,5,16,24,39,41,42,44,46],convlay:10,convolut:[10,11,40,42,46],convoper:10,convtranslay:10,cool:[3,25],copi:[15,34,40,46],copy_shared_paramet:40,copytonumpymat:40,core:[3,7,31,49],coreo:34,corespond:47,corpora:49,corpu:47,correct:[3,9,10,26,34],correctli:[9,26,40],correl:[17,41,48],correspoind:15,correspond:[3,5,15,17,24,26,41,45,47,48,49],corss_entropi:15,cos:10,cos_sim:46,cosin:[10,46],cost:[5,12,14,15,17,31,40,44,46,48,49],cost_id:10,could:[3,5,9,10,15,16,28,29,34,44,46],count:[16,28,31,33,35,39,46,47,48,49],coupl:17,coverag:18,coveral:18,coveralls_uploadpackag:18,cpickl:[42,46],cpp:[25,26,28,44,46,49],cpu:[2,3,7,10,18,21,28,31,35,40,47,48,49],cpuinfo:19,craftsman:45,crash:[28,29,31],crazi:29,creat:[5,7,10,14,15,17,18,26,29,31,39,40,41,49],create_bias_paramet:26,create_input_paramet:26,createargu:40,createfromconfigproto:[5,40],createstack:34,creation:34,creationd:34,credit:40,crf:[10,47],crf_decod:10,crime:45,critic:48,crop:42,crop_siz:42,cross:[10,44,47],cross_entropi:[15,40],csc:26,cslm:49,csr:26,csv:45,ctc:10,ctc_layer:9,ctest:19,ctrl:[29,46],ctx:47,ctx_0:47,ctx_0_slot:47,ctx_n1:47,ctx_n1_slot:47,ctx_n2:47,ctx_n2_slot:47,ctx_p1:47,ctx_p1_slot:47,ctx_p2:47,ctx_p2_slot:47,cub:41,cuda:[18,19,21,28,29,31],cuda_dir:[30,31],cuda_so:19,cudaconfigurecal:28,cudadevicegetattribut:28,cudaeventcr:28,cudaeventcreatewithflag:28,cudafre:28,cudagetdevic:28,cudagetdevicecount:28,cudagetdeviceproperti:28,cudagetlasterror:28,cudahostalloc:28,cudalaunch:28,cudamalloc:28,cudamemcpi:28,cudaprofilerstart:28,cudaprofilerstop:28,cudaruntimegetvers:28,cudasetdevic:28,cudasetupargu:28,cudastreamcr:28,cudastreamcreatewithflag:28,cudastreamsynchron:28,cudeviceget:28,cudevicegetattribut:28,cudevicegetcount:28,cudevicegetnam:28,cudevicetotalmem:28,cudnn:[10,18,21,31],cudnn_batch_norm:10,cudnn_conv:10,cudnn_conv_workspace_limit_in_mb:[30,31],cudnn_dir:[30,31],cudrivergetvers:28,cuinit:28,cumul:10,curl:[18,34],current:[3,6,10,12,17,19,24,25,26,29,31,34,44,48,49],current_word:24,currentcost:[9,44,46,48,49],currentev:[9,44,46,48,49],curv:[15,41,47],custom:[2,3,15,26,34,45,48],custom_batch_read:16,cyclic:10,d3e0:34,daemon:19,dai:49,daili:48,dalla:3,dan:47,danger:3,darwin:34,dat:[29,46],data:[2,3,5,8,11,12,14,15,18,22,26,28,29,30,31,33,36,42,45],data_batch_gen:40,data_dir:[39,41,48,49],data_fil:17,data_initialz:44,data_lay:[3,9,17,24,40,41,44,46,47],data_provid:8,data_read:16,data_reader_creator_random_imag:16,data_server_port:[30,31],data_sourc:[8,40],data_typ:14,databas:48,datadim:10,datalay:10,dataprovid:[2,8,17,24,29,46,47],dataprovider_bow:44,dataprovider_emb:44,dataproviderconvert:5,datasci:10,dataset:[3,16,17,31,39,41,42,44,47,48],datasourc:[4,46],date:47,db_lstm:47,dcgan:40,dcmake_install_prefix:18,deal:[25,40],deb:[20,21],debian:20,debug:3,decai:[12,41],decid:[15,16],declar:[10,11,46],decod:[10,11,24,47,49],decoder_boot:24,decoder_group_nam:24,decoder_input:24,decoder_mem:24,decoder_prev:11,decoder_s:24,decoder_st:[11,24],deconv:10,deconvolut:10,decor:[3,26],decreas:17,decrypt:34,deep:[0,10,17,28,40,41,42,44,47],deeper:[17,42],deer:41,def:[3,10,15,16,17,24,26,40,42,44,46,47],defalut:[10,31,33],default_devic:33,default_valu:33,defferenct:3,defin:[2,3,8,9,10,11,14,15,16,17,24,26,29,31,39,40,41,46,47],define_py_data_sources2:[3,8,17,41,42,44,46],defini:49,definit:[3,17,39,44,48],degre:10,del:46,delai:31,delar:44,deletestack:34,delimit:[9,45,46],demo:[10,24,29,35,36,39,40,41,42,43,44,45,46,47,48,49],demograph:45,demolish:35,demonstr:[17,24,40,46],denot:[33,44,45,47],dens:[3,10,26,34,44,46],dense_vector:[3,5,14,17,46],depend:[17,21,29,33,41,45],deploi:[29,33],deploy:[29,34],deriv:[6,15],descent:[10,12],describ:[15,17,26,34,35,40,44,47],describestack:34,describestackev:34,describestackresourc:34,descript:[5,18,24,32,34,41,46],design:[3,10,48],desir:[34,35,39],destructor:26,detail:[3,5,7,10,11,12,24,25,26,28,29,32,33,34,35,39,40,42,44,46,48,49],detect:9,determin:[3,10,26,40],dev:[18,19,41,46,49],devel:18,develop:[0,18,25,30,31,49],deverlop:31,deviat:7,devic:[7,19,31,49],deviceid:33,devid:[10,31],dez:48,dfs:11,diagnos:29,diagram:42,dict:[3,8,44,46,48,49],dict_dim:48,dict_fil:[9,24,44,47],dict_nam:8,dictionai:44,dictionari:[3,8,9,10,15,24,33,42,44,46,47,48,49],dictsiz:49,did:3,differ:[3,8,9,10,17,19,24,25,26,29,31,34,35,39,41,42,44,48,49],difficult:17,dig:[28,34],digit:[3,10],dim:[26,39,42,44,48],dimens:[6,10,13,26,33,39,44,46,48],dimension:[3,17,24,26,40,44],dimenst:39,dimes:10,din:46,dir:[29,42,44,46,47,48,49],direct:[10,11,19,42,47],directli:[2,3,11,17,29,35,48],directori:[2,18,25,28,29,31,35,41,42,44,46,47,48,49],diretcoti:42,dis_conf:40,dis_train:40,dis_training_machin:40,disabl:3,discard:31,discount:10,discov:47,discoveri:34,discrep:28,discrimin:40,discriminator_train:40,discuss:15,disk:35,dispatch:[29,31],disput:49,dist_train:15,distanc:9,distibut:39,distinguish:[29,40,49],distribut:[10,18,27,35,36,37,40,44,47],distribute_test:[30,31],distributedli:26,disucss:15,divid:[12,30,41,49],diy_beam_search_prob_so:[30,31],dmkl_root:18,dns:34,do_forward_backward:16,doc:[5,11,18,19,29],docker:[20,34,36,37],docker_build:15,docker_push:15,dockerfil:19,dockerhub:19,doctor:45,document:[3,5,11,18,25,33,41,44,46,47,48],documentari:[3,45],doe:[3,5,11,16,17,21,24,26,28,44,46,47],doesn:[7,10,15,16,19,25,28,35,49],dog:[41,42],doing:28,domain:34,don:[11,15,16,17,19,34,48],done:[10,11,24,28,34,40,48],dopenblas_root:18,dot:[31,42,49],dot_period:[31,33,40,41,46,48,49],dotmuloper:10,dotmulproject:10,doubl:[3,18,31],down:[28,44],download:[21,40,41,44,47,48],download_cifar:41,downsampl:41,doxygen:[18,25],dpkg:21,drama:45,driver:19,drop:3,drop_rat:7,dropout:[7,10,26,44],dropout_lay:10,dropout_r:11,drwxr:35,dserver:31,dtoh:28,dtype:[5,17,42],dubai:49,due:[45,46],duplic:45,durat:28,dure:[2,3,10,17,25,26,30,31,34,44,46,47,49],durn:3,dwith_doc:18,dwith_profil:28,dwith_tim:28,dynam:[2,3,16,18,28,31],dynamic_cast:26,each:[2,3,5,6,9,10,13,16,17,19,24,25,26,29,31,33,34,39,41,42,44,45,46,47,48,49],each_feature_vector:6,each_meta:46,each_pixel_str:3,each_sequ:10,each_time_step_output:6,each_timestep:10,each_word:3,eaqual:10,eas:[16,42],easi:[0,16,19,26,29,44],easier:[15,16,26],easili:[15,16,17],echo:[19,46,48],edit:[9,34],editor:25,edu:[34,35,41],educ:45,eeoi3ezpr86c:34,effect:[3,31,34],effici:[0,2,3,24,26],efg:10,efs:34,efs_dns_nam:34,efsvol:34,eight:47,either:[10,15,28,44,46],elb:34,elbapis:34,elec:44,electron:[35,44],elem_dim:10,element:[3,5,9,10,11,16,44,48,49],elif:[15,46],elimin:47,els:[10,15,19,26,42,44,46],emac:25,emb:[35,44],embed:[10,15,24,43,46,48],embedd:47,embedding_lay:[24,44,46],embedding_nam:24,embedding_s:24,emphas:28,empir:10,emplace_back:26,emploi:[24,45],empti:[9,17],emul:49,enabl:[3,7,28,29,31,34],enable_grad_shar:[30,31],enable_parallel_vector:31,enc_proj:[11,24],enc_seq:11,enc_vec:24,encod:[11,24,49],encoded_proj:[11,24],encoded_sequ:[11,24],encoded_vector:24,encoder_last:10,encoder_proj:24,encoder_s:24,encrypt:34,encrypt_decrypt:34,end:[3,9,10,16,17,24,31,39,47,48,49],end_pass:15,enditer:15,endpass:15,endpoint:34,endtrain:15,engin:[0,28,45],english:[3,10,49],enough:17,ensembl:11,ensur:[3,26],enter:45,entir:[10,11,48],entri:[19,26,34,45],entropi:[10,44,47],enumer:[6,10,44,46],env:[25,34],environ:[15,18,19,21,28,29,30,31,34,35,40,41,46],eol:25,eos:10,eos_id:[10,24],epel:18,epoch:45,epsilon:12,equal:[10,11,12,31],equat:[10,11,12],equilibrium:40,equip:[18,24],equival:[10,15],error:[7,9,10,12,15,17,21,26,29,31,34,41,42,44,45,46,48,49],error_clipping_threshold:7,errorr:9,especi:[3,11,47],essenc:15,essenti:[10,15,18,47,49],estat:17,estim:[10,15],eta:35,etc:[12,16,29,30,33,34,48,49],eth0:[29,34],ethternet:29,eval:[9,44,46,48,49],eval_bleu:49,evalu:[2,4,10,22,28,29,44,48,49],evaluate_pass:48,evaluator_bas:9,evalut:[17,49],even:[15,16,28,31,48],evenli:34,event:35,event_handl:15,everi:[2,3,9,10,11,15,24,25,26,31,44,47,48,49],everyth:[17,19,25],exactli:[3,9,10,11,34,47],exampl:[2,3,8,9,10,11,12,16,17,18,19,24,26,28,29,30,31,33,34,35,41,42,43,44,48,49],exceed:10,except:[3,33,39,46,48],excluded_chunk_typ:9,exconv:10,exconvt:10,exec:31,execut:[26,28,34,45,47,48],exist:[15,16,26,31,34,45,48],exit:[31,35],expand:[10,26,47,48,49],expand_a:10,expand_level:10,expandconvlay:10,expandlevel:10,expect:[10,28,48],expens:49,experi:33,explain:[3,9,29,40,48],explan:[10,44,49],explanatori:17,explicit:26,explicitli:[3,15],exploit:41,explor:10,exponenti:6,expos:34,express:[15,34,48],extend:[0,46],extens:[12,45,46,49],extern:[3,31],extra:[10,11,17],extraattr:[7,33],extract:[10,34,41,47,48],extract_fea_c:42,extract_fea_pi:42,extract_para:39,extralayerattribut:[7,10,11],extralayeroutput:11,extrem:[10,28],extremli:2,f120da72:35,f7e3:34,fa0wx:35,fabric:29,facotr:10,fact:42,factor:[7,10,12],fail:[3,31,33,35,41],fake:40,fake_imag:16,fals:[3,7,9,10,11,12,16,17,24,26,31,33,35,39,44,46,47,48,49],false_label:16,false_read:16,famili:49,familiar:[3,17],fanscin:3,fantasi:45,fantast:44,far:0,farmer:45,fascinatingli:2,fast:[10,25,28],faster:[10,11,24,28,48],favorit:25,fbd1f2bb71f4:35,fc1:[26,33],fc2:33,fc3:33,fc4:33,fc8a365:34,fc8a:34,fc_act:11,fc_attr:11,fc_bias_attr:11,fc_layer:[17,26,33,44,46],fc_layer_nam:11,fc_param_attr:11,fclayer:26,fdata:47,fea:42,fea_output:42,feat:48,featur:[3,6,10,25,31,41,44,48,49],feature_map:46,feed:[11,15,17,48],feedback:0,feedforward:41,femal:45,fernan:48,festiv:3,fetch:[24,26],few:[3,16],fewer:10,fg0:10,field:[10,28,34],figur:[15,24,26,28,39,40,41,42,47,48,49],file1:49,file2:49,file:[2,3,5,9,10,15,16,17,18,24,25,26,29,31,39,41,42,47,48,49],file_list:3,file_nam:[3,17,42,44,47],filenam:[3,46],filer:10,filesystem:34,fill:[10,34,44],film:45,filter:[10,42],filter_s:[10,11],filter_size_i:10,finali:29,find:[10,12,28,41,48,49],fine:[7,46],fingerprint:34,finish:[3,29,34,35,41],finit:26,first:[3,10,15,17,21,24,25,26,28,31,33,34,39,40,41,42,44,46,47,48,49],first_seq:24,firstseen:35,fit:[2,25],five:[28,44],fix:[3,7,49],flag:[31,40,41,47],flexiabl:16,flexibl:[0,2,10,11,15,24],flight:49,float32:[5,16,17,40,42],floor:10,flow:25,fly:[17,44],fnt03:34,focu:[3,28],folder:[18,34,41,48,49],follow:[2,3,9,10,11,12,15,16,18,19,21,24,25,26,28,29,33,34,35,36,37,39,40,41,42,44,45,46,47,48,49],fool:40,forbid:15,forecast:48,forget:[12,15,19,48],form:[2,3,11,12,28,47],format:[2,3,9,17,25,26,31,34,39,41,45,46,48],former:[15,49],formula:[10,11],formular:10,forward:[6,11,24,25,26,33,40,47,48],forwardactiv:26,forwardtest:5,found:[3,5,10,18,24,40,41,44,48],four:[3,21,39,42,44,46,47,48],frame:9,framework:[15,26,42,44,48],free:49,french:49,frequenc:[28,39,44,48],frequent:[16,29,49],frog:41,from:[0,3,5,10,11,16,17,19,22,24,25,26,28,29,31,33,34,35,39,40,41,42,44,45,46,47,48,49],from_timestep:10,fromfil:[16,17,42],fulfil:28,full:[10,19,24,26],full_matrix_project:[11,24],fulli:[17,25,26,28,40,41,42,44,46,48],fullmatrixproject:10,fully_matrix_project:11,fullyconnect:39,fullyconnectedlay:26,fundament:17,further:10,fusion:46,gain:10,game:40,gamma:42,gan:15,gan_train:40,gap:31,gate:[10,11,48],gate_act:[10,11],gate_recurr:10,gather:[10,26,46],gauss:7,gaussian:40,gcc:18,gdebi:21,gen:[10,49],gen_conf:[40,49],gen_data:49,gen_result:49,gen_train:40,gen_training_machin:40,gen_trans_fil:24,gender:[45,46],gener:[2,3,5,9,10,11,14,15,16,17,18,19,28,29,31,33,34,39,42,43,44,46,48],generatedinput:24,generator_conf:40,generator_machin:40,generator_train:40,genert:3,genr:[45,46],gereat:9,get:[3,10,11,17,18,21,24,26,28,29,34,38,41,42,44,46,47,48],get_batch_s:47,get_best_pass:48,get_config_arg:[33,44,46,48],get_data:[35,44,47],get_imdb:48,get_input_lay:26,get_mnist_data:40,get_model:42,get_nois:40,get_output_layer_attr:11,get_training_loss:40,getbatchs:26,getenv:15,getinput:26,getinputgrad:26,getinputvalu:26,getoutputgrad:26,getoutputvalu:26,getparameterptr:26,getsiz:26,getslotvalu:40,gettempl:34,gettranspos:26,getw:26,getweight:26,getwgrad:26,gfortran:18,gildea:47,gist:11,git:[18,19,25],github:[10,11,18,19,21,42],give:[3,17,19,26,28,34,44],given:[3,16,26,31,40,44,47,48,49],global:[3,7,12,15,28,31,34,46,48],global_learning_r:7,globalstat:28,globalstatinfo:28,globe:3,goal:[28,47],goe:[10,11,17],going:[44,48],good:[10,16,28,48,49],goodfellow13:10,googl:15,googleapi:34,got:19,gpg2:34,gpg:34,gpu:[2,3,7,10,12,18,21,27,29,40,41,42,46,47,48,49],gpu_id:[31,33,40],gpugpu_id:30,grab:48,grad:[31,45],grad_share_block_num:[30,31],gradient:[7,9,10,12,31,44,48],gradient_clipping_threshold:[7,12,44,48],gradientmachin:[5,40,46,49],gradual:[17,28],grai:41,gram:[39,48],grant:34,graph:[10,39],graphviz:42,grave:48,grayscal:3,greater:10,grep:[19,48],groudtruth:24,ground:[9,10,44,49],group:[11,48],group_id:46,group_input:24,grouplen:45,gru:[10,24,44,49],gru_bias_attr:11,gru_decod:24,gru_decoder_with_attent:24,gru_encoder_decod:[39,49],gru_layer_attr:11,gru_memori:11,gru_siz:44,gru_step:24,gru_step_lay:[11,24],grumemori:[11,24],gserver:[10,26],gsizex:28,guarante:26,guess:[17,48],gui:28,guid:[20,24,25,26,28,34,35,39,41,48,49],guidenc:17,gur_group:11,gzip:35,hack:[20,29],hadoop:15,half:34,hand:[45,46,48],handl:[15,16,29,46,48],handwrit:[3,48],hard:[34,44],hardwar:[19,28],has:[3,5,6,10,11,12,15,24,26,28,34,35,39,41,44,45,46,47,48,49],have:[2,3,5,9,10,11,15,16,17,18,24,25,26,28,29,31,33,34,39,41,44,45,46,48,49],hdf:2,head:[25,39,48],header:[17,26,39,42,46],health:45,heavi:29,height:[10,16,26,41],hello:15,help:[3,5,25,29],helper:[8,10,11,26],here:[3,5,7,10,11,15,16,17,18,24,29,30,33,34,35,39,41,42,43,44,45,46,47,48,49],heurist:[10,31,49],hidden:[10,11,14,24,34,44,46,48],hidden_s:[11,46],hierarch:[10,24],high:[7,26,40],higher:2,highest:49,highli:[2,3,24,33,46,48],him:15,hint:17,histor:48,hl_get_sync_flag:26,hold:[15,34],home:[29,34,35],homemak:45,hook:[3,46,47],hope:0,horizont:[10,42],horror:45,hors:41,horst:48,host:[18,29,34,35],hostnam:[29,34],hostpath:35,hostport:34,hot:46,hour:49,hous:[3,17,39],how:[2,3,7,10,14,15,17,24,29,31,34,35,38,41,42,44,46],howev:[3,11,16,17,24,25,30,31,34,48,49],hppl:6,html:[19,41],htod:28,http:[10,11,18,19,21,25,34,35,40,41,42,49],huber:10,huge:[10,25],huina:48,human:49,hyper:[10,26],i0601:46,i0706:49,i0719:49,i1117:28,iamfullaccess:34,iamusersshkei:34,ib0:29,icwsm:48,id_input:[9,24],idea:[10,16],ident:[6,17,34,45],identifi:[24,26],identityoffsetproject:10,identityproject:10,ids:[9,10,26,44,46],idx:26,ieee:48,ignor:[3,9,31],ijcnlp:48,illustr:[3,24,26,28,44],ilsvrc:42,imag:[3,13,15,16,17,20,33,34,36,37,40,42,43,49],image_a:16,image_b:16,image_classif:41,image_fil:16,image_lay:16,image_list_provid:42,image_nam:15,image_path:16,image_provid:41,image_reader_cr:16,image_s:42,imagenet:43,imagepullpolici:34,imageri:10,images_reader_cr:16,imdb:45,imdber:48,img:[3,10,14,41],img_conv_lay:11,img_featur:3,img_norm_typ:10,img_pool_lay:11,img_siz:41,imgsiz:28,imgsizei:28,imgsizex:28,immedi:34,immutable_paramet:15,implement:[3,10,11,12,24,44,47],importerror:46,improv:[0,28,34,48,49],inbound:34,includ:[2,3,10,11,15,18,19,24,26,28,31,34,35,39,44,45,47,49],inconsist:45,incorrect:10,increas:[31,49],increment:31,incupd:26,inde:16,independ:[10,44],index:[3,9,10,13,24,29,34,46],indexslot:[10,47],indic:[3,9,10,17,29,34,47],individu:[17,34],infer:[15,18],infiniband:29,info:[9,10,26,29],infom:25,inform:[5,9,26,28,31,34,45,46,47,48,49],infrastructur:[34,40],ingor:31,inherit:6,ininst:15,init:[7,26,33,34,40,44,46,47],init_hook:[44,46,47],init_hook_wrapp:8,init_model_path:[30,31,33,39,44,47],initi:[3,5,7,10,24,26,31,39,40,44,47],initial_max:7,initial_mean:[7,10],initial_min:7,initial_std:[7,10],initpaddl:[5,40],inlcud:11,inlin:34,inner:26,inner_param_attr:11,input1:[10,11],input2:10,input:[3,5,6,9,10,11,13,14,16,17,24,26,33,39,40,41,42,44,46,47,48,49],input_data:26,input_data_target:26,input_featur:6,input_fil:[17,47],input_hassub_sequence_data:26,input_id:10,input_imag:[11,41],input_index:26,input_label:26,input_lay:[10,26],input_nam:15,input_sequence_data:26,input_sequence_label:26,input_sparse_float_value_data:26,input_sparse_non_value_data:26,input_t:26,input_typ:[17,24,44,46],inputdef:26,inputlayers_:26,inputtyp:3,insid:[9,10,16,34],inspir:39,instal:[19,22,25,29,35,41,42,46,47,48],instanc:[10,12,14,24,26,28,31,47],instance_ip:34,instead:[10,13,16,25,29,44,49],instruct:[19,21,28,44],int32:31,integ:[3,9,10,24,26,44,48],integer_valu:[3,44],integer_value_sequ:[3,24,44,47],integr:[18,47],intend:0,inter:[10,29],interact:[19,34],intercept:10,interest:[28,48],interfac:[5,7,10,11,29,34,41,46,48],interg:44,intergr:10,intermedi:47,intern:[6,10,11,34],internet:48,interpol:10,interpret:[3,9,18,19,28],interv:48,intrins:18,introduc:[3,35,46,48],introduct:[4,40],invalid:16,invari:41,invok:[3,10,28,34,46],involv:40,iob:9,ioe:9,ips:34,ipt:[10,24],ipython:15,is_async:12,is_discriminator_train:40,is_gener:[10,39,40,49],is_generator_train:40,is_kei:46,is_layer_typ:10,is_predict:[44,46,48],is_seq:[10,24,46],is_sequ:46,is_stat:7,is_test:[42,47,48],is_train:3,isn:28,isspars:26,issu:[18,28],item:[10,16],iter:[10,11,12,15,16,41,47,48],its:[3,9,10,11,15,26,28,31,34,39,40,41,44,48,49],itself:11,jeremi:28,jie:[47,48],jmlr:10,job:[5,9,30,31,33,42,44,46,47,48,49],job_dispatch_packag:29,job_mod:39,job_nam:34,job_namespac:34,job_path:34,job_workspac:29,jobpath:34,jobport0:34,jobport1:34,jobport2:34,jobport3:34,johan:48,joint:[39,49],jointli:[11,49],journal:[47,48],jpeg:41,jpg:42,json:[29,34,35,46],jth:11,judg:49,just:[3,6,9,10,11,17,19,25,29,33,34,41,46,47,48],jx4xr:34,jypyt:15,k8s_data:34,k8s_job:15,k8s_token:15,k8s_train:34,k8s_user:15,kaim:10,kaimingh:42,kebilinearinterpbw:28,kebilinearinterpfw:28,keep:[3,10],kei:[3,28,29,46,48],kernel:[10,28,44],key1:31,key2:31,key_pair_nam:34,keyid:34,keymetadata:34,keypair:34,keyserv:34,keystat:34,keyusag:34,keyword:3,kill:34,kind:[2,3,15,17,34,35,40,44,46],kingsburi:47,kms:34,know:[3,11,15,17,19,26,28,34,46],knowledg:48,known:[40,48,49],kriz:41,ksimonyan:11,kube_cluster_tl:15,kube_ctrl_start_job:15,kube_list_containers_in_job_and_return_current_containers_rank:15,kubeconfig:34,kubectl:35,kuberent:34,kubernet:[15,27,29,36,37],kubernetes_service_host:15,kwarg:[3,9,10,11,12,44,46,47],l1_rate:7,l2_rate:7,l2regular:[41,44,48],label:[3,5,9,10,12,16,17,24,35,40,41,42,43,44,46,48],label_dict:47,label_dim:[10,44],label_fil:[16,47],label_lay:[10,16],label_list:47,label_path:16,label_slot:47,labeledbow:48,labl:48,lag:31,lake:3,lambdacost:10,lambdarank:10,languag:[10,33,39,47,48,49],laptop:19,larg:[13,47,48,49],larger:[3,7,9,10,12,29],last:[9,10,11,17,24,29,31,44,48,49],last_time_step_output:10,lastseen:35,late:48,latenc:[29,34],later:[18,25,34,44],latest:[10,19,25,35,48],latter:49,launch:[31,34,48],launcher:15,lawyer:45,layer1:[10,11],layer2:10,layer3:10,layer:[1,4,5,6,7,9,11,13,16,17,24,27,30,31,39,40,41,42,44,46,47,48],layer_0:26,layer_attr:[10,24,33],layer_num:[33,42],layer_s:10,layer_typ:10,layerbas:26,layerconfig:26,layergradutil:26,layermap:26,layeroutput:[9,11,46],lbl:[9,41],ld_library_path:[18,21,29],lead:28,learn:[0,7,9,10,11,12,15,16,17,24,26,28,41,42,44,47,48,49],learnabl:10,learning_method:[12,17,39,41,44,46,48,49],learning_r:[7,12,17,39,41,44,46,48,49],learningextern:30,least:[9,10,18,45],leav:[3,34],left:[10,17,42],leman:49,len:[3,10,24,26,44,46,47],length:[10,11,24,31,35,48,49],less:[10,15,29,49],less_than:15,let02:35,let:[5,10,15,17,19,34,46],level:[7,10,29,31,40,46,48,49],lib64:[18,19,29,31],libcuda:19,libcudnn:18,libjpeg:41,libnvidia:19,libpython:18,librari:[6,10,18,29,31,46],licens:47,like:[3,9,10,16,17,18,24,28,29,30,33,34,39,42,44,46,48,49],limit:[10,28,31],line:[2,3,5,9,17,25,27,28,29,33,34,39,41,42,46,47,48,49],linear:[10,22],linear_comb:10,linearactiv:[10,17],linguist:47,link:[10,11,18,34,44,48],linux:[18,19,21,34,49],lipeng:39,lipton:48,list:[2,3,8,9,10,11,15,17,24,26,29,31,33,34,41,42,44,46,47,48,49],listen:[19,31],literatur:48,littl:[2,3,31,44,48],lium:49,liwicki:48,load:[2,3,5,10,15,17,31,34,42,46,47,48,49],load_featur:42,load_feature_c:42,load_feature_pi:42,load_missing_parameter_strategi:[30,31,33,39,47],load_uniform_data:40,loadparamet:5,loadsave_parameters_in_pserv:[30,31],local:[7,18,19,25,29,30,31,35,41,48],localhost:19,locat:[24,26,44,47],log:[3,19,25,26,29,31,34,35,41,46,47,48,49],log_barrier_abstract:31,log_barrier_lowest_nod:[30,31],log_barrier_show_log:[30,31],log_clip:[30,31],log_error_clip:[30,31],log_period:[31,33,35,40,41,44,46,47,48,49],log_period_serv:[30,31],logarithm:6,logger:3,logic:[3,29],longer:49,look:[3,9,17,29,30,34,35,40,44],lookup:44,loop:16,loss:[10,26,40,44,48,49],lot:30,low:10,lower:29,lowest:31,lst:46,lstm:[6,10,24,35,44],lstm_bias_attr:11,lstm_cell_attr:11,lstm_group:11,lstm_layer_attr:11,lstm_size:44,lstm_step:11,lstmemori:[11,24],lstmemory_group:10,ltr:10,lucki:17,mac:[18,19],machan:11,machin:[10,11,12,17,25,26,30,31,33,34,35,44,46,48,49],made:[3,17,24,45],mai:[3,8,9,10,16,25,28,34,45],main:[3,5,25,34,41,47,48],mainli:31,maintain:[10,34],major:[19,25,40,42,48,49],make:[3,10,14,15,16,18,19,25,26,28,29,34,41,44,46,48],male:45,malloc:26,manag:[25,29],manageri:45,mandarin:10,mani:[0,10,11,17,31,44,45,46,48],mannal:29,manual:[19,25],manufactur:49,mao:48,map:[3,10,15,31,41,42,46],mapreduc:15,marcu:48,mark:[3,6,24,47],mark_slot:47,market:[17,45,48],martha:47,mask:[7,10],master:[15,25,31,48],mat_param_attr:11,match:28,math:[11,26,28],matirx:10,matplotlib:41,matric:[5,24,26],matrix:[9,10,11,24,26,30,33,42,47],matrixptr:26,matter:3,max:[3,7,10,13,28,31,33,41,44,46],max_id:44,max_length:[10,24],max_sort_s:10,maxid:[9,10,44],maxid_lay:[9,44],maxim:[10,49],maximum:[9,24,28,31,44,47,48],maxout:10,maxpool:10,mayb:[10,11,41],mean:[3,7,9,10,11,12,13,16,17,24,28,29,31,33,34,39,40,41,42,44,46,47,48,49],mean_img_s:41,mean_meta:42,mean_meta_224:42,mean_valu:42,measur:[17,28],mechan:[10,11,24,34,48],media:48,meet:47,member:15,memcpi:28,memor:48,memori:[2,3,11,24,26,28,31,33,35,44,47,48,49],memory_threshold_on_load_data:31,mere:11,merg:[25,31,39,49],mergedict:[39,49],messag:[17,31,35,46,48,49],meta:[29,41,42,44],meta_config:[29,46],meta_fil:46,meta_gener:[29,46],meta_path:41,meta_to_head:46,metadata:[34,35],metaplotlib:15,method:[3,8,10,11,12,19,26,28,31,33,44,46,48,49],metric:30,might:[10,26,34],mileag:28,million:[33,45],min:[7,28,33,34,46],min_pool_s:3,mind:29,mini:[3,10],mini_batch:16,minibatch:10,minim:[3,12,17,31],minimum:10,minimun:31,minst:3,minut:[34,49],miss:[31,39,47],mit:34,mix:[11,24,47],mixed_bias_attr:11,mixed_lay:[11,24,47],mixed_layer_attr:11,mixedlayertyp:10,mkdir:[18,34],mkl:18,mkl_path:18,mkl_root:18,ml_data:[29,46],mnist:[3,5,16],mnist_provid:3,mnist_random_image_batch_read:16,mnist_train:[3,16],mnist_train_batch_read:16,mod:47,modal:47,mode:[10,31,40,41,42,46,48,49],model:[2,5,8,10,11,12,14,22,25,26,27,31,34,46,47,48],model_averag:12,model_config:[5,40],model_list:[31,33,47,48],model_output:48,model_path:33,model_zoo:[39,42],modelaverag:12,modifi:[5,24,25,26,29,34],modul:[2,3,5,8,11,17,18,41,42,44,46,47],modulo:10,momentum:[7,12,17,44],momentumoptim:[17,41],mon:35,monitor:[44,48],mono:10,month:[44,49],mood:48,more:[2,3,5,9,10,11,15,16,17,19,24,26,28,29,33,35,41,44,47,48,49],morin:10,mose:[48,49],moses_bleu:49,mosesdecod:48,most:[3,5,10,15,16,17,24,26,28,30,46,47,48,49],mostli:[41,45],mount:[19,34,35],mountpath:[34,35],move:[10,28,34,46,48],movement:[28,48],movi:[3,48],movie_featur:46,movie_head:46,movie_id:46,movie_meta:46,movie_nam:46,movieid:45,movielen:43,moving_average_fract:10,mpi:29,mse:10,much:[10,16,28],mul:26,mulit:29,multi:[10,26,30,31,42,49],multi_crop:42,multinomi:10,multipl:[9,10,11,15,24,26,31,33,34,40,44,46,48],multipli:[9,10,26,41],multithread:3,music:45,must:[3,6,9,10,11,16,18,24,25,26,29,31,33,34,49],my_cluster_nam:34,my_cool_stuff_branch:25,my_external_dns_nam:34,mypaddl:35,mysteri:45,name:[3,6,7,8,9,10,11,13,14,15,17,19,24,26,28,29,31,33,35,36,37,39,40,41,42,44,46,48,49],namespac:[26,35],nano:25,nativ:10,natur:[33,47,48],nchw:10,ndcg:10,ndcg_num:10,nearest:44,necessari:[3,10,18,26,29,44,48],necessarili:26,need:[3,10,11,14,15,17,18,19,21,24,25,26,29,30,31,33,34,35,40,41,42,44,46,47,48,49],neg:[3,9,10,44,47,48],neg_distribut:10,negat:47,neighbor:44,nest:3,net:[10,11],net_conf:48,net_diagram:42,network:[2,3,4,5,7,9,10,12,14,15,16,17,26,28,29,31,39,48,49],network_config:33,networkadministr:34,neural:[3,5,10,11,12,14,15,17,28,31,39,40,42,48,49],neuralnetwork:[10,22],neuron:[5,26,44,48],never:[16,34,35],newest:25,newtork:48,next:[10,24,26,28,31,34,35,47,48,49],nfs4:34,nfs:34,nfsver:34,nginx:19,nic:[29,30,31],nine:47,nlp:[3,10],nmt:49,nnz:26,no_cach:3,no_sequ:[3,46],noah:48,noavx:[19,21],node:[10,26,29,31,34,35,48,49],node_0:34,node_1:34,node_2:34,nodefil:29,noir:45,nois:[10,40],noise_dim:40,non:[10,26,31,34],none:[2,3,5,7,8,9,10,11,12,13,15,17,24,42,44],nonlinear:26,norm:40,norm_by_tim:10,normal:[3,5,10,11,21,24,26,29,31,35,39,40,42],normzal:42,north:41,notat:10,note:[3,5,7,10,11,12,13,15,16,18,19,28,31,33,34,39,41,46,48],noth:[6,31],notic:[24,26],novel:48,now:[0,3,10,17,19,25,31,34,40,46,47],nproc:18,ntst1213:49,ntst14:49,nullptr:26,num:[10,29,31,44,47,48,49],num_channel:[10,11,41],num_chunk_typ:9,num_class:[10,11,41],num_filt:[10,11],num_gradient_serv:[30,31],num_group:10,num_neg_sampl:10,num_parameter_serv:15,num_pass:[17,30,31,33,35,44,46,47,48,49],num_repeat:10,num_result:9,num_results_per_sampl:10,number:[3,9,10,16,17,26,29,31,34,39,41,42,44,47,48,49],numchunktyp:9,numdevices_:33,numlogicaldevices_:33,numofallsampl:9,numofwrongpredict:9,numpi:[16,17,18,40,42],numsampl:28,numtagtyp:9,nvidia:[18,19,28,31],obj:[3,8,17,41,42,44,46],object:[3,5,7,8,9,10,11,12,15,28,40,41,42,44,47],observ:[12,17,26,28,49],obtain:[44,47,48],occup:[45,46],occur:25,oct:35,odd:10,off:19,offer:[5,47],offici:[19,34,41],offset:[10,46],often:[9,29,44,49],ograd:26,old:[19,25,31],omit:44,on_coverallscompil:18,on_init:3,on_travisexclud:18,onc:[3,10,19,25,26,34,44],one:[3,6,8,9,10,11,12,13,15,16,17,19,25,26,29,31,33,34,35,39,40,41,42,44,46,47,48,49],one_host_dens:46,one_hot_dens:46,onli:[2,3,5,6,9,10,11,15,17,18,24,25,26,28,30,31,33,34,35,39,42,44,45,48,49],onlin:[12,16],onto:34,open:[0,3,10,15,16,17,34,42,44,46,47],openbla:18,openblas_path:18,openblas_root:18,oper:[10,11,12,19,24,26,28,31,34,39,41,46],opinion:48,opt:[15,18],optim:[3,4,7,17,26,28,48],option:[3,9,10,15,17,25,26,29,33],order:[3,10,11,16,26,31,34,35,40,42,44,48,49],ordinari:48,oregon:34,org:[10,11,18,40],organ:[10,41,48,49],origin:[0,2,3,10,25,40,47,49],other:[3,9,10,11,12,18,21,24,25,33,34,35,39,40,41,42,44,45,46,47,48,49],otherchunktyp:9,otherwis:[2,8,10,15,16,24,29,33,46,49],our:[15,19,24,26,34,35,39,41,44,47,48,49],out:[10,15,17,24,28,31,34,35,41,48],out_dir:34,out_left:10,out_mem:24,out_right:10,out_size_i:10,out_size_x:10,outlin:32,outperform:47,output:[5,6,7,9,10,13,14,15,16,17,24,26,28,31,33,35,39,40,41,42,44,46,47,48,49],output_:[10,26],output_dir:42,output_fil:47,output_id:10,output_lay:42,output_max_index:13,output_mem:[10,24],outputh:10,outputw:10,outsid:[3,10,11],outter_kwarg:3,outv:26,over:[2,10,11,15,25,26,28,44,47,48],overcom:48,overhead:28,overlap:26,overrid:26,owe:0,own:[25,29,34],pacakg:21,packag:[3,14,20,34],pad:[10,24,44],pad_c:10,pad_h:10,pad_w:10,paddepaddl:2,padding_attr:10,padding_i:10,padding_x:10,paddl:[3,5,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,25,26,27,28,29,31,33,34,40,41,44,46,47,48,49],paddle_n:29,paddle_output:35,paddle_port:29,paddle_ports_num:29,paddle_ports_num_for_spars:29,paddle_pserver2:29,paddle_root:39,paddle_source_root:39,paddle_train:29,paddledev:[19,34,35],paddlepaddl:[0,2,3,5,10,11,12,16,17,18,21,22,24,25,26,27,28,29,36,37,42,44,46,47,48],paddlepadl:3,paddlpaddl:0,paddpepaddl:3,page:[25,34,46],pair:[9,47],palmer:47,paper:[10,39,40,42,47,48,49],paraconvert:39,paragraph:48,parallel:[28,31,33,34,35,49],parallel_nn:[7,30,31],param:[7,10,14,46],param_attr:[10,11,17,24],paramattr:[7,10,17,24],paramet:[2,3,4,5,6,8,9,10,11,12,13,14,16,17,26,27,33,40,41,44,46,47,48,49],parameter_attribut:10,parameter_block_s:[30,31],parameter_block_size_for_spars:[30,31],parameter_learning_r:7,parameter_nam:15,parameter_serv:15,parameterattribut:[7,10,11],parametermap:26,parameters_:26,parameterset:15,parametris:12,paramt:[34,39],paramutil:46,paraphras:49,paraphrase_data:39,paraphrase_model:39,paraspars:26,parent:[10,26],pars:[5,14,33,34,40,46,47],parse_config:[5,40],parse_network:14,parser:46,part:[3,14,17,24,25,26,28,40,44,46,47,48,49],parti:[28,46],partial:[10,40],participl:39,particular:28,partit:34,pass:[3,8,10,16,17,25,26,28,29,31,34,35,40,41,44,46,47,48,49],pass_idx:16,pass_test:40,passtyp:26,password:[19,29],past:[15,34],path:[2,3,9,16,17,18,24,29,31,33,34,35,39,41,42,44,47,48,49],pattern:[17,34,46,48],paul:47,pave:49,pdf:[10,11],pem:[15,34],penn:47,per:[10,16,31,41,44],perfom:[31,33],perform:[2,10,11,17,24,25,26,27,29,30,40,41,44,48,49],period:[2,31,44,46,47,48,49],perl:[48,49],permiss:34,peroid:10,persist:34,persistentvolum:34,persistentvolumeclaim:34,person:15,perspect:28,perturb:26,pgp:34,phase:17,photo:41,pick:[3,34],pickl:46,picklabl:8,pictur:44,piec:[10,11,17],pillow:41,pip:[18,25,29,41,46],pipe:45,pipelin:47,pixel:[3,10],pixels_float:3,pixels_str:3,place:[2,3,26,28,29,42,49],placehold:17,plai:[47,48],plain:[2,9,10,14],plan:26,platform:[0,17,19,34],pleas:[3,5,7,10,11,12,15,16,18,19,20,24,25,26,34,39,41,44,46,47],plot:[15,41],plotcurv:41,png:[41,42],pnpairvalidationlay:31,pnpairvalidationpredict_fil:30,pod:[34,35],pod_nam:34,point:[17,19,28],polar:48,polici:34,polit:48,poll:48,poo:41,pool3:26,pool:[3,4,11,41,44,46],pool_attr:11,pool_bias_attr:11,pool_layer_attr:11,pool_pad:11,pool_siz:[3,10,11],pool_size_i:10,pool_strid:11,pool_typ:[10,11],pooling_lay:[11,44,46],pooling_typ:[10,44],poolingtyp:13,popular:[17,42],port:[19,29,30,31,34,35],port_num:30,ports_num:31,ports_num_for_spars:[30,31,33],pos:[46,48],posit:[3,9,10,44,47,48,49],positive_label:9,possibl:[15,25,28,40],post1:18,potenti:28,power:[10,44,49],practic:[8,10,17,24,26],pre:[3,10,11,15,34,35,39,41,47,48,49],pre_dictandmodel:39,precis:[9,18],pred:[44,47],predefin:48,predetermin:[10,31,49],predic:47,predicate_dict:47,predicate_dict_fil:47,predicate_slot:47,predict:[3,4,9,12,14,17,24,29,31,39,44,49],predict_fil:31,predict_output_dir:[30,31,44],predict_sampl:5,predicted_label_id:44,predictor:46,predin:41,prefer:48,prefetch:26,prefix:34,pregrad:26,preinstal:18,premodel:39,prepar:[5,22,36,44],preprcess:48,preprocess:[24,29,35,48],prerequisit:18,present:[15,42,47,49],pretti:17,prev_batch_st:[30,31],prevent:[2,12,15],previou:[10,11,26,31,34,47,49],previous:[35,42],price:17,primari:14,primarili:48,principl:15,print:[7,15,17,24,31,39,44,46,47,48,49],printallstatu:28,printer:9,printstatu:28,prite:9,privileg:34,prob:[9,40],probabilist:[10,39],probability_of_label_0:44,probability_of_label_1:44,probabl:[9,10,24,25,42,44,47],problem:[5,10,12,15,22,44,47,48],proc:19,proc_from_raw_data:44,proce:[16,34],procedur:[39,47,49],proceed:[10,47],process:[2,3,5,7,8,10,11,12,15,17,24,29,31,33,34,35,39,41,42,44,46,47,48,49],process_pr:44,process_test:8,process_train:8,processdata:[41,42],processor:28,produc:[11,16,19,42,44],product:[0,26,34,44,48],productgraph:35,profil:18,proflier:28,program:[2,15,16,28,29,31],programm:45,progress:31,proivid:3,proj:10,project:[10,11,18,24,26,46],promis:[10,11],prompt:25,prone:15,prop:47,propag:[12,31,33],properli:44,properti:[3,31],propos:49,proposit:47,protect:26,proto:[13,14],protobuf:18,protocol:31,prove:44,proven:49,provid:[0,8,10,15,17,24,28,29,34,39,40,41,42,45,48],providermemory_threshold_on_load_data:30,provis:34,provod:3,prune:10,pserver:[29,30,31,34],pserver_num_thread:[30,31],pserverstart_pserv:30,pseudo:15,psize:26,pull:[39,49],punctuat:48,purchas:44,purpos:[0,28],push_back:26,put:[26,29,35,44],pvc:34,pwd:19,py_paddl:[5,40],pydataprovid:[2,3,44],pydataprovider2:[4,5,17,24,44,46,48],pydataproviderwrapp:8,pyramid:10,pyramid_height:10,python:[2,3,4,8,14,15,17,18,19,25,29,39,40,41,47,48,49],pythonpath:41,pzo:48,qualifi:18,qualiti:44,queri:[10,34,49],question:[10,15,34,47],quick:[31,35,43,49],quick_start:[34,35,36,44],quick_start_data:35,quickli:17,quickstart:35,quit:28,quot:45,ramnath:48,ran:28,rand:[28,31,33,40,47],random:[3,7,10,16,17,31,40,41,47],randomli:48,randomnumberse:30,rang:[3,10,16,31,33,41,45,47],rank:[10,15,34,42,44],rare:3,rate:[7,9,12,26,29,41,44,46,48,49],rather:[5,34,48],ratio:31,raw:[10,17,44,48],raw_meta:46,rdma:[18,31],rdma_tcp:[30,31],reach:[28,47],read:[2,3,15,16,17,24,29,34,42,44,46],read_from_realistic_imag:15,read_from_rng:15,read_mnist_imag:15,read_ranking_model_data:15,reader:49,reader_creator_bool:16,reader_creator_random_imag:16,reader_creator_random_imageand_label:16,readi:[17,34,35,41],readm:[45,46,48],readonesamplefromfil:3,readwritemani:34,real:[3,16,17,40],realist:15,reason:[10,11,15,19,35],rebas:25,recal:9,receiv:8,recent:49,reciev:31,recogn:41,recognit:[3,10,42,48],recommand:3,recommend:[2,11,15,24,26,29,31,46],recommonmark:18,recompil:28,record:[34,46,47],recordio:15,recov:[17,40],rectangular:10,recurr:[47,48],recurrent_group:[11,24],recurrent_lay:11,recurrentgroup:9,recurrentlay:31,recurs:19,recv:34,reduc:[12,29,31,33],refer:[2,5,7,8,10,11,12,24,26,29,35,39,41,44,46,49],referenc:10,regard:47,regardless:49,regex:46,region:[28,47],regist:[26,28],register_gpu_profil:28,register_lay:26,register_timer_info:28,registri:35,regress:[9,22,43],regression_cost:[17,46],regular:[7,12,26,34,41,44,48],rel:[2,11,29],relat:[3,8,21,35,46,48],relationship:[17,40],releas:[18,19,21,34,45,47],relev:[47,49],reli:18,relu:[6,10,26],reluactiv:10,remain:44,remot:[7,19,25,26,29,31,33,34],remoteparameterupdat:31,remov:[29,31,48],renam:49,reorgan:10,repeat:10,replac:48,repo:25,report:[28,29],repositori:25,repres:[3,5,10,12,24,26,34,41,44,45],represent:[44,48],reproduc:49,request:[34,35,39,49],requir:[2,9,10,15,26,29,34,35,40,41,44,46],requrest:25,res5_3_branch2c_bn:42,res5_3_branch2c_conv:42,res:47,research:[10,41,45,48],resembl:48,reserv:3,reserveoutput:26,reset:10,reshap:16,reshape_s:10,residu:42,resnet:43,resnet_101:42,resnet_152:42,resnet_50:42,resolv:[25,35],resourc:[19,34],respect:[3,17,24,26,31,41,42,47,49],respons:[10,34,35],rest:[3,10,17],restart:[34,35],restartpolici:[34,35],restrict:31,resu:16,result:[5,6,9,10,24,28,31,34,41,42,44,46,47,48],result_fil:[9,24],ret_val:46,retir:45,retran:34,retriev:[26,35],return_seq:11,reus:[16,26],reveal:15,revers:[10,11,24,47,48],review:[25,35,44,48],reviews_electronics_5:35,revis:44,rewrit:49,rgb:10,rgen:48,rho:12,rich:17,right:[3,10,42],rmsprop:[12,44],rmspropoptim:46,rnn:[10,11,27,30,44,48],rnn_bias_attr:24,rnn_layer_attr:24,rnn_out:24,rnn_step:10,rnn_use_batch:[30,31],robot:41,role:[15,24,34,43,48],roman:48,romanc:45,root:[12,13,19,29,34,35],root_dir:29,rot:10,rotat:10,roughli:[3,40],routin:46,routledg:48,row:[5,9,10,26,42],row_id:10,rsize:34,rtype:46,rule:[26,34],run:[15,19,25,26,27,28,31,34,36,37,39,41,42,44,46,48,49],runinitfunct:28,runtim:[2,3,18,29],s_fusion:46,s_id:46,s_param:40,s_recurrent_group:24,sacrif:2,sai:[17,31,33],sake:26,sale:45,same:[3,5,8,9,10,11,15,24,29,33,34,39,44,46,47,48,49],samping_id:10,sampl:[3,5,9,29,31,33,39,40,42,44,46,47,48,49],sample_dim:40,sample_id:9,sample_num:9,santiago:48,satisfi:[29,34,44],save:[3,10,17,31,33,34,35,41,42,44,46,47,48,49],save_dir:[17,31,33,35,40,41,44,46,47,48,49],save_only_on:[30,31],saving_period:[30,31],saving_period_by_batch:[30,31,33,44],saw:3,scalabl:0,scalar:[3,10],scale:[0,6,10,42,45,46],scalingproject:10,scatter:10,scenario:[17,30],scene:30,schdule:34,schedul:[34,40],scheduler_factor:7,schema:39,scheme:[9,12,47],schmidhub:48,schwenk:49,sci:45,scienc:48,scientist:[0,45],score:[9,10,46,48,49],screen:46,scrip:44,script:[5,19,29,34,41,42,44,47,48,49],seaplane_s_000978:41,search:[10,18,24,31,47,49],seat:49,second:[3,10,15,16,17,25,29,39,42,44,45,46,48],secret:34,section:[3,24,26,29,34,44],sed:48,see:[3,5,10,11,15,17,25,28,34,39,40,42,44,46,48,49],seed:[28,31],segment:9,segmentor:39,sel_fc:10,select:[10,25,34,45,49],selectiv:10,selector:35,self:[17,26,45,48],selfnorm:10,semant:[15,24,43,48],semat:15,sen_len:47,send:[31,34],sens:10,sent:[15,35],sent_id:24,sentenc:[3,10,24,44,47,48,49],sentiment:[3,17,43,44,47],sentiment_data:48,sentiment_net:48,sentimental_provid:3,separ:[3,9,31,39,44,45,46,47,49],seq:[10,46],seq_pool:10,seq_text_print:9,seq_to_seq_data:[39,49],seq_typ:[3,46],seqtext_printer_evalu:24,seqtoseq:[10,24,39,49],seqtoseq_net:[10,24,39,49],sequel:3,sequenc:[3,6,9,10,11,13,26,39,44,46,47,48,49],sequence_conv_pool:44,sequence_layer_group:10,sequence_nest_layer_group:10,sequencestartposit:10,sequencetextprint:9,sequencetyp:3,sequenti:[8,10,24,44,47],seri:[11,48],serial:3,serv:[19,28,34,40],server:[15,19,26,29,30],servic:45,session:28,set:[2,3,5,7,9,10,11,15,17,18,19,21,24,26,27,28,29,30,31,33,34,35,39,41,42,44,45,46,47,48,49],set_active_typ:26,set_default_parameter_nam:7,set_drop_r:26,set_siz:26,set_typ:26,setp:34,settup:26,setup:[3,26,44],sever:[3,10,29,33,34,43,44,46,47,48,49],sgd:[12,15,29,40,48,49],sgdasync_count:30,shallow:47,shape:[10,42],shard:34,share:[10,18,28,31,35,47],shared_bia:11,shared_bias:10,shell:[34,42],shift:42,ship:41,shold:48,shop:48,shorter:42,should:[3,5,9,10,12,15,16,17,21,24,25,29,34,41,44,46,47,48,49],should_be_fals:15,should_be_tru:15,should_shuffl:[3,47],shouldn:25,show:[5,12,14,17,25,31,34,35,39,42,44,46,47,48,49],show_check_sparse_distribution_log:[30,31],show_layer_stat:[30,31],show_parameter_stats_period:[30,31,33,35,44,47,48,49],shown:[3,9,10,15,24,26,28,34,40,41,42,44,46,48,49],shrink:26,shuf:46,shuffl:[3,46,48],sid:34,side:[10,42],sig:34,sigint:29,sigmoid:[6,10,26],sigmoidactiv:[10,11],sign:34,signal:29,signatur:34,signific:28,similar:[10,16,34,44,46],similarli:[10,47],simpl:[2,3,6,9,10,11,18,22,25,28,31,44,46,47,48],simple_attent:24,simple_gru:44,simple_lstm:[10,44],simple_rnn:[10,24],simplest:34,simpli:[2,10,15,18,24,25,28,39,42,46,48,49],simplifi:[15,26,35],simultan:34,sinc:[10,16,17,28,34,40,44,45,49],sincer:[25,48],singl:[3,9,11,12,26,29,35,42,44,47,49],site:34,six:[39,47,49],size:[3,9,10,11,12,14,16,17,24,26,29,31,40,41,42,44,45,46,47,48,49],size_a:10,size_b:10,size_t:26,sizeof:39,skill:49,skip:[16,17,29,34,42],slide:12,slightli:41,slope:10,slot:[46,47],slot_dim:46,slot_nam:46,slottyp:46,slow:[3,28],small:[3,26,29,31,41,49],small_messag:[30,31],small_vgg:41,smaller:10,smith:48,snap:35,snapshot:34,snippet:[24,26,28,34,44],social:48,sock_recv_buf_s:[30,31],sock_send_buf_s:[30,31],socket:31,softmax:[6,10,11,14,15,24,26,39,44,47,48],softmax_param_attr:11,softmax_selfnorm_alpha:10,softmaxactiv:[24,44],softrelu:6,softwar:28,solv:[15,47],solver:49,some:[3,7,10,12,15,17,18,25,26,28,30,31,33,34,40,44,45,46,47,48,49],someth:[3,10],sometim:[12,16,28,48],sophist:[17,26,29],sort:[10,31,34,46,48,49],sourc:[0,8,10,16,17,19,22,24,25,34,35,39,44,46,49],source_dict_dim:24,source_language_word:24,space:[9,24,28],space_seperated_tokens_from_dictionary_according_to_seq:9,space_seperated_tokens_from_dictionary_according_to_sub_seq:9,spars:[3,7,10,12,26,29,31,34,44],sparse_binary_vector:[3,44],sparse_float_vector:3,sparse_upd:7,sparseparam:26,sparseprefetchrowcpumatrix:26,spatial:[10,41],speak:[24,49],spec:[34,35],specfii:31,speci:41,special:[10,18,39,44,49],specif:[2,33,41,44,46],specifi:[2,3,9,10,15,17,18,24,26,31,34,40,41,42,44,45,46,48,49],speech:10,speed:11,spefici:42,sphinx:18,sphinx_rtd_them:18,split:[3,10,29,33,34,39,42,44,47],split_count:34,spp:10,sql:2,squar:[6,10,12,13,17],squarerootnpool:10,squash:49,srand:31,src:49,src_backward:24,src_dict:24,src_embed:24,src_forward:24,src_id:24,src_root:5,src_word_id:24,srl:47,ssh:[19,29,34,35],sshd:19,ssl:18,sstabl:15,stabl:34,stack:[17,34,44,47],stacked_lstm_net:48,stacked_num:48,stackexchang:10,stage:29,stake:49,stale:25,stamp:28,standard:[7,39,41,47,48,49],stanford:35,star:45,start:[10,17,19,24,25,28,29,31,38,39,43,46,49],start_pass:[30,31],start_pserv:31,startup:34,stat:[18,28,31,47,48,49],state:[10,11,17,24,31,35,40,47,49],state_act:[10,11],statement:[26,34],staticinput:[10,24],statist:[10,31,44,47,48,49],statset:28,statu:[9,25,28,34,35],status:35,std:[26,31],stderr:29,stdout:29,step:[5,10,11,12,13,24,26,28,29,34,35,44,46,47,48,49],still:42,stmt1482205552000:34,stmt1482205746000:34,stochast:12,stock:48,stop:[10,29,31,35,46],storag:[34,35,41],store:[9,10,26,29,31,34,35,39,41,42,44,46,47,48,49],str:33,straight:25,strategi:[3,13,31,47],street:[10,47],strength:40,strict:16,stride:10,stride_i:10,stride_x:10,string:[2,3,8,9,10,26,31,34,48],strip:[44,46,47],structur:[29,34,39,41,44,46,47,48,49],sts:34,stub:10,student:45,stuff:25,stun:3,style:[3,10,18,25],sub:[9,10,15,24,26,41,44,49],sub_sequ:3,subgradi:12,submit:[25,30,31,34],subnet0:34,subnet:[15,34],subobjectpath:35,subsequenceinput:10,subset:[26,49],substanti:42,substitut:49,succe:48,succeed:35,success:[34,35,42,47],successfulcr:35,successfuli:48,successfulli:[42,46,48],successor:[31,49],sucessfulli:49,sudo:[18,21,34,41],suffic:[16,17],suffici:31,suffix:49,suggest:[10,28],suitabl:[25,31,41],sum:[9,10,12,13,24,26],sum_to_one_norm:10,summar:[44,48],sumpool:10,support:[6,7,9,10,12,16,18,19,21,24,26,28,31,34,47],support_hppl:6,suppos:[17,26,44],sure:[25,26,34,41,48],survei:48,swap_channel:42,swig:[5,18],swig_paddl:[5,40],symbol:10,sync:[25,31,40],syncflag:26,synchron:[12,29,31,34],syntact:47,syntax:[16,46],synthect:17,synthes:40,synthet:17,sys:42,system:[18,19,29,35,44,47,48,49],t2b:39,tab:44,tabl:[3,10,42,44,49],tableproject:10,tag:[9,24],tagtyp:9,take:[3,5,9,10,11,15,24,26,28,34,35,40,47,49],taken:[3,47],tanh:[6,10,11,26],tanhactiv:[10,11,24],taobao:48,tar:[18,34],tarbal:34,target:[10,24,39,44,49],target_dict_dim:24,target_language_word:24,targetinlink:10,task:[3,9,10,17,24,33,39,42,47,48,49],tconf:48,tcp:[31,34],teach:44,tear:28,technician:45,techniqu:[24,26],tee:[35,41,46,47,48,49],tell:[28,46],tellig:48,templat:[35,47],tempor:[10,44,47],tensor:10,term:[10,11,47,48],termin:[19,35],terminolog:17,tese:2,tesh:47,test:[2,3,8,9,10,15,16,18,19,21,25,28,29,30,39,41,42,44,45,49],test_all_data_in_one_period:[35,41,46,47,48],test_data:49,test_fcgrad:26,test_gpuprofil:28,test_layergrad:26,test_list:[3,8,17,41,44],test_part_000:48,test_pass:[30,31,33,49],test_period:[30,31,33],test_ratio:46,test_wait:[30,31],testa:15,testb:15,testbilinearfwdbwd:28,testconfig:26,tester:[46,49],testfcgrad:26,testfclay:26,testlayergrad:26,testmodel_list:30,testq:15,testsave_dir:30,testutil:26,text:[2,3,9,11,15,24,34,39,43,44,46,48],text_conv:44,text_conv_pool:46,text_fil:48,tflop:28,tgz:18,than:[3,5,7,9,10,11,12,18,19,24,26,29,34,42,47,48,49],thank:[0,39,49],thei:[3,15,17,24,26,28,29,30,34,42,48],them:[2,3,11,15,16,17,19,24,28,30,31,34,41,42,44,46,48,49],theori:28,therefor:18,therein:10,therun:42,thi:[2,3,7,8,9,10,11,12,15,16,17,18,19,21,24,25,26,28,29,31,33,34,35,39,40,41,42,44,45,46,47,48,49],thing:[3,17,24,25,28,46,47],think:15,third:[10,28,42,48],those:[42,47],thought:28,thread:[26,28,31,33,46,47,48,49],thread_local_rand_use_global_se:[30,31],threadid:33,threadloc:28,three:[3,9,10,12,16,17,24,31,40,42,48,49],threshold:[7,9,12,31,48],thriller:45,through:[5,10,24,26,28,29,39,40,41,48,49],throughout:44,throughput:28,thu:[3,10,17,26,34,49],tier:35,tight:18,time:[3,10,11,13,15,16,17,24,28,31,33,35,44,45,47,48,49],timelin:[10,28],timeo:34,timer:18,timestamp:[10,45],timestep:[3,10],titil:46,titl:[25,45,46],tmall:48,todo:[9,11],toend:10,togeth:[3,10,11,24],token:[9,10,15,24,39,48,49],too:[19,21],tool:[24,25,34,48],toolchain:18,toolkit:[18,21],top:[9,42,47],top_k:9,topolog:[14,15],toronto:41,total:[9,16,28,29,35,39,49],total_pass:16,touch:48,tourism:48,tourist:49,toward:17,tra:49,track:10,tractabl:10,tradesman:45,tradit:10,train:[2,3,5,7,8,9,10,12,22,24,26,27,28,30,36,37,42],train_conf:[39,49],train_config_dir:34,train_data:49,train_id:34,train_list:[3,8,17,41,42,44],train_part_000:48,trainabl:10,traindot_period:30,trainer:[3,5,15,17,26,29,31,33,40,44,47,48,49],trainer_config:[2,3,17,29,34,35,44,46,48],trainer_config_help:[3,6,7,8,9,10,11,12,13,17,26,41,44,46],trainer_count:[30,31,33,34,35,46,47,48,49],trainer_id:[31,34],trainerintern:[44,46,49],training_machin:40,trainingtest_period:30,trainonedatabatch:40,tran:[10,26,31],trane:3,transact:48,transfer:[2,3],transform:[10,24,26,40,41,44,47],transform_param_attr:11,translat:[10,11,17,39,46,48,49],transpar:29,transport:31,transpos:[10,26,40],transposedfullmatrixproject:10,travel:[3,11],travi:[18,25],treat:[10,24],tree:[10,19,25,31,49],trg:49,trg_dict:24,trg_dict_path:24,trg_embed:24,trg_id:24,trg_ids_next:24,triain:2,trivial:3,trn:44,truck:41,true_imag:16,true_label:16,true_read:16,truth:[9,10,44,49],tst:44,tune:[7,27,44,46,49],tuninglog_barrier_abstract:30,tupl:[3,8,10,11,16],ture:10,turn:[10,16,40],tutori:[24,25,26,28,29,34,35,36,37,38,42,44],tweet:48,twelv:49,twitter:48,two:[2,3,6,10,11,15,16,17,24,28,29,33,34,39,40,41,42,44,46,47,48,49],txt:[3,26,29,34,44,46,48],type:[3,8,9,10,11,12,13,14,15,16,17,24,26,31,33,34,35,41,42,44,46,47],type_nam:[10,46],typic:[5,9,28,48],ubuntu:21,ubyt:16,ufldl:10,uid:35,unbalanc:31,unbound:24,unconstrain:48,under:[17,18,34,45,48],underli:17,understand:[19,28,39,41,48],understudi:49,undeterminist:28,unemploi:45,unexist:47,uniform:[7,10,16,31,40],uniqu:[15,25,31,34],unique_ptr:26,unit:[10,11,17,18,19,24,25,47],unittestcheckgrad_ep:30,univ:49,unix:29,unk:[39,49],unk_idx:[44,47],unknown:10,unlabel:48,unlik:[47,48,49],unseg:10,unsup:48,unsupbow:48,until:[29,34,47],unus:46,unzip:46,updat:[7,10,12,18,26,29,31,33,48],updatecallback:26,updatestack:34,upon:[0,47],upstream:25,uri:34,url:[21,48],urls_neg:48,urls_po:48,urls_unsup:48,usag:[2,3,9,10,11,14,17,28,39,40,46],use:[0,2,3,5,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,24,25,26,28,29,31,33,34,35,39,40,41,42,44,45,46,47,48,49],use_global_stat:10,use_gpu:[30,31,33,35,40,41,42,44,46,47,48,49],use_jpeg:41,use_old_updat:[30,31],use_seq:[17,46],use_seq_or_not:46,used:[2,3,5,6,9,10,11,12,13,15,16,17,20,21,24,26,28,29,30,31,33,34,39,41,42,44,46,47,48,49],useful:[2,3,10,11,24,26,33,44,47,48],usegpu:[26,40],useless:29,user:[2,3,7,9,10,11,15,16,17,19,25,29,30,31,34,42,44,47],user_featur:46,user_head:46,user_id:46,user_meta:46,user_nam:46,userid:45,usernam:25,uses:[3,24,25,26,31,34,41,42,44,46,49],using:[2,3,5,7,8,10,15,16,17,19,24,25,26,28,31,33,34,35,39,40,41,42,44,47,48],usr:[18,19,29,31,34],usrdict:39,usrmodel:39,usual:[10,17,18,19,28,31,33,34,48],utf:39,util:[5,18,24,26,28,41,46,48],v28:10,valid:[16,34,42,48],valu:[3,5,7,9,10,12,13,17,24,26,31,33,34,40,41,42,47,48],value1:31,value2:31,vanilla:24,vanish:48,vari:[28,34],variabl:[3,10,15,17,18,21,26,29,34,35,48],varianc:[10,42],vast:25,vector:[3,10,11,15,24,26,39,44,46,48,49],vectorenable_parallel_vector:30,verb:47,veri:[3,10,13,24,28,41,44,48],verifi:[25,26],versa:18,version:[10,11,18,19,21,26,28,29,30,31,34,35,39,41,45,47,48,49],versu:15,vertic:[10,42],vgg:[11,41],vgg_16_cifar:41,via:[16,18,28,29,34,44],vice:18,view:10,vim:25,virtualenv:46,vision:41,visipedia:41,visual:[10,28],viterbi:47,voc_dim:44,vocab:48,volum:[19,35],volumemount:[34,35],volumn:34,voluntarili:45,wai:[3,10,11,14,15,17,19,24,26,29,33,46,47,49],wait:[12,31],walk:[5,40],wall:47,want:[3,10,11,14,15,16,17,18,19,26,31,33,39,42,44,46,47,48],war:45,warn:10,warp:[10,28],wbia:[34,42],web:19,websit:[41,44,47,48],wei:[47,48],weight:[9,10,11,12,24,26,31,33,41,42],weight_act:11,weightlist:26,weights_:26,weights_t:26,welcom:[46,48],well:[26,31,34,41,44],west:34,western:45,wether:10,what:[7,10,11,12,17,29,44,46],wheel:18,when:[2,3,7,9,10,12,21,24,25,26,28,31,33,34,35,39,40,41,47,48,49],whenev:46,where:[3,10,11,12,14,15,17,24,26,28,29,31,33,39,42,47,49],whether:[9,10,11,16,26,31,40,41,46,48,49],which:[0,2,3,5,6,9,10,11,12,15,16,17,21,24,26,28,29,31,33,34,40,41,42,44,45,46,47,48,49],whichev:40,whl:18,who:[39,42,45],whole:[3,9,34,35,44,45,46,49],whole_cont:46,whose:[3,24,46,47],why:11,wide:47,widht:16,width:[9,10,16,26,41,49],wiki:10,wikipedia:10,wilder:3,window:[10,19,48],wise:10,with_avx:19,with_avxcompil:18,with_doccompil:18,with_doubl:26,with_doublecompil:18,with_dsocompil:18,with_gpucompil:18,with_profil:28,with_profilercompil:18,with_pythoncompil:18,with_rdmacompil:18,with_style_checkcompil:18,with_swig_pycompil:18,with_testingcompil:18,with_tim:28,with_timercompil:18,within:[10,17],without:[9,10,16,29,48],wmt14:49,wmt14_data:49,wmt14_model:49,wmt:49,woboq:19,won:[28,42],wonder:3,word:[3,9,10,24,33,43,46,47,48,49],word_dict:[44,47],word_dim:44,word_id:3,word_slot:47,word_vector:44,word_vector_dim:[24,39],work:[3,5,15,16,18,19,24,25,26,28,29,31,34,35,44,46],worker:34,workercount:34,workflow:[25,34],workspac:[31,46],worri:17,wors:40,would:[16,29,34,40,44,47],wouldn:19,wrap:47,wrapper:[11,28],writ:46,write:[3,15,16,24,25,27,29,34,41,46,47,49],writelin:17,writer:[15,45],written:[46,48],wrong:[3,16],wsize:34,wsj:47,www:[10,19,41,49],x64:18,xarg:[19,26],xgbe0:31,xgbe1:31,xiaojun:48,xrang:[16,17,26],xxbow:48,xxx:[15,19,42,49],xxxxxxxxx:34,xxxxxxxxxx:34,xxxxxxxxxxxxx:34,xxxxxxxxxxxxxxxxxxx:34,xzf:18,y_predict:17,yaml:[34,46],year:45,yeild:41,yield:[3,15,16,17,24,44,46,47,48],you:[2,3,5,7,10,11,12,17,18,19,21,24,25,26,28,29,31,33,34,39,40,41,42,44,46,47,48,49],your:[3,10,15,18,19,26,28,29,33,34,44,48],your_access_key_id:34,your_secrete_access_kei:34,yum:18,yuyang18:11,yyi:19,zachari:48,zeng:48,zero:[3,7,10,12,26,31,34,44],zhidao:39,zhou:[47,48],zip:45,zone:34,zxvf:34,zzz:19},titles:["ABOUT","API","Introduction","PyDataProvider2","API","Python Prediction","Activations","Parameter Attributes","DataSources","Evaluators","Layers","Networks","Optimizers","Poolings","Layers","PaddlePaddle Design Doc","Python Data Reader Design Doc","Simple Linear Regression","Installing from Sources","PaddlePaddle in Docker Containers","Install and Build","Debian Package installation guide","GET STARTED","RNN Models","RNN Configuration","Contribute Code","Write New Layers","HOW TO","Tune GPU Performance","Run Distributed Training","Argument Outline","Detail Description","Set Command-line Parameters","Use Case","Distributed PaddlePaddle Training on AWS with Kubernetes","Paddle On Kubernetes","<no title>","<no title>","PaddlePaddle Documentation","Chinese Word Embedding Model Tutorial","Generative Adversarial Networks (GAN)","Image Classification Tutorial","Model Zoo - ImageNet","TUTORIALS","Quick Start","MovieLens Dataset","Regression MovieLens Ratting","Semantic Role labeling Tutorial","Sentiment Analysis Tutorial","Text generation Tutorial"],titleterms:{"case":33,"class":26,"function":39,"new":26,"return":16,AWS:34,DNS:34,EFS:34,For:35,KMS:34,Use:[33,35],Using:[19,25],about:0,absactiv:6,access:34,account:34,activ:6,adadeltaoptim:12,adagradoptim:12,adamaxoptim:12,adamoptim:12,add:34,address:34,addto_lay:10,adversari:40,aggreg:10,algorithm:44,analysi:48,api:[1,4],appendix:44,applic:4,approach:28,architectur:[24,44],argument:[16,30,33,44],asset:34,associ:34,async:31,attent:24,attribut:7,auc_evalu:9,avgpool:13,avx:19,aws:34,background:17,base:[9,10],baseactiv:6,basepoolingtyp:13,basesgdoptim:12,batch:16,batch_norm_lay:10,batch_siz:16,beam_search:10,between:15,bidirect:48,bidirectional_lstm:11,bilinear_interp_lay:10,bleu:49,block_expand_lay:10,breluactiv:6,bucket:34,build:[18,20,35],built:28,cach:3,cento:18,check:[10,26,29],chines:39,choos:34,chunk_evalu:9,classif:[9,41],classification_error_evalu:9,classification_error_printer_evalu:9,clone:25,cloudform:34,cluster:[29,33,34],code:25,column_sum_evalu:9,command:[32,33,44,49],commit:[25,35],common:31,commun:31,compos:16,concat_lay:10,concept:34,config:[1,4,33,46,47],configur:[24,27,29,34,44,46],connect:10,contain:[19,35],content:[28,34],context_project:10,contribut:25,conv:10,conv_oper:10,conv_project:10,conv_shift_lay:10,convolut:[41,44],core:34,cos_sim:10,cost:10,cpu:[19,33],creat:[16,25,34,35],creator:16,credenti:34,credit:0,crf_decoding_lay:10,crf_layer:10,cross_entropi:10,cross_entropy_with_selfnorm:10,ctc_error_evalu:9,ctc_layer:10,custom:16,dat:45,data:[10,16,17,24,34,35,39,40,41,44,46,47,48,49],data_lay:10,dataprovid:[3,4,31],dataset:[45,46,49],datasourc:8,date:25,debian:21,decayedadagradoptim:12,decor:16,defin:[34,44,48,49],delet:34,delv:41,demo:34,depend:18,deriv:26,descript:[31,40,45,47],design:[15,16],destroi:34,detail:[31,41],develop:[19,27],devic:33,dictionari:[16,39],differ:33,directori:34,distribut:[15,29,31,34],doc:[15,16],docker:[19,35],document:[19,38],dotmul_oper:10,dotmul_project:10,down:34,download:[18,34,35,39,42,46,49],dropout_lay:11,ec2:34,elast:34,embed:[39,44],embedding_lay:10,entri:16,eos_lay:10,equat:26,evalu:[9,17,46],evalutaion:49,event:15,exampl:[15,39,40],exercis:41,expactiv:6,expand_lay:10,extern:34,extract:[39,42,46,49],fc_layer:10,featur:[42,45,46,47],field:46,file:[34,35,44,45,46],find:34,first_seq:10,fork:25,format:44,from:[15,18,20],full_matrix_project:10,fulli:10,gan:40,gate:24,gener:[24,40,49],get:[22,35],get_output_lay:10,github:25,gpu:[19,28,31,33],gradient:26,gradient_printer_evalu:9,group:[10,34],gru:[11,31],gru_group:11,gru_step_lay:10,gru_unit:11,grumemori:10,guid:21,hand:28,handler:15,hook:25,how:[16,27,28],hsigmoid:10,huber_cost:10,iam:34,identity_project:10,identityactiv:6,imag:[10,11,19,35,41],imagenet:42,imdb:48,img_cmrnorm_lay:10,img_conv_bn_pool:11,img_conv_group:11,img_conv_lay:10,img_pool_lay:10,implement:[16,26,40],infer:44,info:42,ingredi:15,init_hook:3,initi:[33,34],input_typ:3,inspect:34,instal:[18,20,21,34,44],instanc:34,integr:34,interfac:[16,42],interpolation_lay:10,introduct:[2,39,42,48,49],isn:16,job:[29,34,35],join:10,keep:25,kei:34,kill:29,kube:34,kubectl:34,kubernet:[34,35],label:47,lambda_cost:10,last_seq:10,lastest:25,launch:29,layer:[10,14,15,26,33],layeroutput:10,layertyp:10,learn:31,line:[32,44],linear:17,linear_comb_lay:10,linearactiv:6,list:16,local:[33,34],log:44,logactiv:6,logist:44,lstm:[11,31,47,48],lstm_step_lay:10,lstmemori:10,lstmemory_group:11,lstmemory_unit:11,map:16,math:10,matrix:31,maxframe_printer_evalu:9,maxid_lay:10,maxid_printer_evalu:9,maxout_lay:10,maxpool:13,memori:10,meta:46,metric:31,mini:16,misc:11,mix:[10,33],mixed_lay:10,mnist:40,model:[1,3,4,15,17,23,24,29,33,39,40,41,42,43,44,49],modifi:35,momentumoptim:12,movi:[45,46],movielen:[45,46],multi_binary_label_cross_entropi:10,multipl:16,name:34,nce_lay:10,need:[16,28],network:[11,24,33,40,41,42,44,46,47],neural:[24,41,44,46,47],neuralnetwork:17,nlp:[11,31],non:[3,19],norm:10,nvprof:28,nvvp:28,object:46,observ:[39,42],onli:[16,19],optim:[12,27,44],option:[18,39],outlin:30,output:[11,29,34],overview:44,packag:21,pad_lay:10,paddl:[16,35],paddlepaddl:[15,19,20,34,38,39,49],pair:34,parallel_nn:33,paramet:[7,15,31,32,34,39,42],paraphras:39,pass:33,perform:[28,31],pnpair_evalu:9,point:34,pool:[10,13],pooling_lay:10,power_lay:10,pre:25,precision_recall_evalu:9,predict:[5,41,42,46,47,48],prefetch:16,prepar:[17,24,29,34,39,40,41,46,48,49],preprocess:[39,41,44,46,49],prerequisit:29,pretrain:[39,49],print:9,privat:34,problem:17,profil:28,provid:[3,16,44,46,47],pull:25,push:25,pydataprovider2:3,python:[5,16,26,42,44,46],quick:44,randomnumb:31,rank:9,rank_cost:10,rat:46,rate:45,reader:[15,16],recurr:[10,11,24,44],recurrent_group:10,recurrent_lay:10,refer:[3,28,47,48],region:34,regress:[17,44,46],reluactiv:6,render:34,repeat_lay:10,request:25,requir:[18,25],reshap:10,resnet:42,result:[29,35,49],revis:[25,39],rmspropoptim:12,rnn:[23,24,31],role:47,rotate_lay:10,route53:34,run:[29,35,47],sampl:10,sampling_id_lay:10,scaling_lay:10,scaling_project:10,script:35,secur:34,selective_fc_lay:10,semant:47,sentiment:48,seq_concat_lay:10,seq_reshape_lay:10,seqtext_printer_evalu:9,sequenc:24,sequence_conv_pool:11,sequencesoftmaxactiv:6,sequenti:3,server:[31,34],servic:34,set:[12,32],setup:[18,34],sgd:31,share:15,shuffl:16,sigmoidactiv:6,simpl:[17,24],simple_attent:11,simple_gru:11,simple_img_conv_pool:11,simple_lstm:11,singl:16,slice:10,slope_intercept_lay:10,softmaxactiv:6,softreluactiv:6,sourc:[18,20],span:18,spars:33,specifi:[33,39],split:46,spp_layer:10,squareactiv:6,squarerootnpool:13,stack:48,standard:44,stanhactiv:6,start:[15,22,34,35,44],startup:35,structur:40,suffici:16,sum_cost:10,sum_evalu:9,sum_to_one_norm_lay:10,summar:15,summari:44,sumpool:13,system:34,table_project:10,take:16,tanhactiv:6,tear:34,templat:34,tensor_lay:10,test:[26,31,33,46,47,48],text:49,text_conv_pool:11,timer:28,tip:28,toi:40,tool:28,train:[15,16,17,29,31,33,34,35,39,40,41,44,46,47,48,49],trainer:[34,46],trans_full_matrix_project:10,trans_lay:10,transfer:44,tune:[28,31],tutori:[39,41,43,47,48,49],ubuntu:18,unit:[26,31],updat:[15,25,34],usag:[16,27],use:16,user:[39,45,46,48,49],util:9,value_printer_evalu:9,vector:31,verifi:34,version:25,vgg_16_network:11,visual:42,volum:34,vpc:34,warp_ctc_lay:10,what:28,why:[16,28],word:[39,44],workflow:49,workspac:29,wrapper:26,write:[26,44],yaml:35,your:25,zoo:[42,43]}}) \ No newline at end of file +Search.setIndex({docnames:["about/index_en","api/index_en","api/v1/data_provider/dataprovider_en","api/v1/data_provider/pydataprovider2_en","api/v1/index_en","api/v1/predict/swig_py_paddle_en","api/v1/trainer_config_helpers/activations","api/v1/trainer_config_helpers/attrs","api/v1/trainer_config_helpers/data_sources","api/v1/trainer_config_helpers/evaluators","api/v1/trainer_config_helpers/layers","api/v1/trainer_config_helpers/networks","api/v1/trainer_config_helpers/optimizers","api/v1/trainer_config_helpers/poolings","api/v2/model_configs","design/api","design/reader/README","getstarted/basic_usage/index_en","getstarted/build_and_install/build_from_source_en","getstarted/build_and_install/docker_install_en","getstarted/build_and_install/index_en","getstarted/build_and_install/ubuntu_install_en","getstarted/index_en","howto/deep_model/rnn/index_en","howto/deep_model/rnn/rnn_config_en","howto/dev/contribute_to_paddle_en","howto/dev/new_layer_en","howto/index_en","howto/optimization/gpu_profiling_en","howto/usage/cluster/cluster_train_en","howto/usage/cmd_parameter/arguments_en","howto/usage/cmd_parameter/detail_introduction_en","howto/usage/cmd_parameter/index_en","howto/usage/cmd_parameter/use_case_en","howto/usage/k8s/k8s_aws_en","howto/usage/k8s/k8s_en","howto/usage/k8s/src/k8s_data/README","howto/usage/k8s/src/k8s_train/README","index_en","tutorials/embedding_model/index_en","tutorials/gan/index_en","tutorials/image_classification/index_en","tutorials/imagenet_model/resnet_model_en","tutorials/index_en","tutorials/quick_start/index_en","tutorials/rec/ml_dataset_en","tutorials/rec/ml_regression_en","tutorials/semantic_role_labeling/index_en","tutorials/sentiment_analysis/index_en","tutorials/text_generation/index_en"],envversion:50,filenames:["about/index_en.rst","api/index_en.rst","api/v1/data_provider/dataprovider_en.rst","api/v1/data_provider/pydataprovider2_en.rst","api/v1/index_en.rst","api/v1/predict/swig_py_paddle_en.rst","api/v1/trainer_config_helpers/activations.rst","api/v1/trainer_config_helpers/attrs.rst","api/v1/trainer_config_helpers/data_sources.rst","api/v1/trainer_config_helpers/evaluators.rst","api/v1/trainer_config_helpers/layers.rst","api/v1/trainer_config_helpers/networks.rst","api/v1/trainer_config_helpers/optimizers.rst","api/v1/trainer_config_helpers/poolings.rst","api/v2/model_configs.rst","design/api.md","design/reader/README.md","getstarted/basic_usage/index_en.rst","getstarted/build_and_install/build_from_source_en.md","getstarted/build_and_install/docker_install_en.rst","getstarted/build_and_install/index_en.rst","getstarted/build_and_install/ubuntu_install_en.rst","getstarted/index_en.rst","howto/deep_model/rnn/index_en.rst","howto/deep_model/rnn/rnn_config_en.rst","howto/dev/contribute_to_paddle_en.md","howto/dev/new_layer_en.rst","howto/index_en.rst","howto/optimization/gpu_profiling_en.rst","howto/usage/cluster/cluster_train_en.md","howto/usage/cmd_parameter/arguments_en.md","howto/usage/cmd_parameter/detail_introduction_en.md","howto/usage/cmd_parameter/index_en.rst","howto/usage/cmd_parameter/use_case_en.md","howto/usage/k8s/k8s_aws_en.md","howto/usage/k8s/k8s_en.md","howto/usage/k8s/src/k8s_data/README.md","howto/usage/k8s/src/k8s_train/README.md","index_en.rst","tutorials/embedding_model/index_en.md","tutorials/gan/index_en.md","tutorials/image_classification/index_en.md","tutorials/imagenet_model/resnet_model_en.md","tutorials/index_en.md","tutorials/quick_start/index_en.md","tutorials/rec/ml_dataset_en.md","tutorials/rec/ml_regression_en.rst","tutorials/semantic_role_labeling/index_en.md","tutorials/sentiment_analysis/index_en.md","tutorials/text_generation/index_en.md"],objects:{"paddle.trainer.PyDataProvider2":{provider:[3,0,1,""]},"paddle.trainer_config_helpers":{attrs:[7,1,0,"-"],data_sources:[8,1,0,"-"]},"paddle.trainer_config_helpers.attrs":{ExtraAttr:[7,2,1,""],ExtraLayerAttribute:[7,3,1,""],ParamAttr:[7,2,1,""],ParameterAttribute:[7,3,1,""]},"paddle.trainer_config_helpers.attrs.ParameterAttribute":{set_default_parameter_name:[7,4,1,""]},"paddle.trainer_config_helpers.data_sources":{define_py_data_sources2:[8,0,1,""]},"paddle.v2":{activation:[14,1,0,"-"],attr:[14,1,0,"-"],layer:[14,1,0,"-"],networks:[14,1,0,"-"],pooling:[14,1,0,"-"]},"paddle.v2.activation":{Abs:[14,3,1,""],BRelu:[14,3,1,""],Base:[14,3,1,""],Exp:[14,3,1,""],Identity:[14,2,1,""],Linear:[14,3,1,""],Log:[14,3,1,""],Relu:[14,3,1,""],STanh:[14,3,1,""],SequenceSoftmax:[14,3,1,""],Sigmoid:[14,3,1,""],SoftRelu:[14,3,1,""],Softmax:[14,3,1,""],Square:[14,3,1,""],Tanh:[14,3,1,""]},"paddle.v2.attr":{Extra:[14,2,1,""],ExtraAttr:[14,2,1,""],ExtraLayerAttribute:[14,3,1,""],Param:[14,2,1,""],ParamAttr:[14,2,1,""],ParameterAttribute:[14,3,1,""]},"paddle.v2.attr.ParameterAttribute":{set_default_parameter_name:[14,4,1,""]},"paddle.v2.layer":{addto:[14,3,1,""],batch_norm:[14,3,1,""],bilinear_interp:[14,3,1,""],block_expand:[14,3,1,""],classification_cost:[14,3,1,""],concat:[14,3,1,""],context_projection:[14,3,1,""],conv_operator:[14,3,1,""],conv_projection:[14,3,1,""],conv_shift:[14,3,1,""],convex_comb:[14,3,1,""],cos_sim:[14,3,1,""],crf:[14,3,1,""],crf_decoding:[14,3,1,""],cross_entropy_cost:[14,3,1,""],cross_entropy_with_selfnorm_cost:[14,3,1,""],ctc:[14,3,1,""],data:[14,3,1,""],dotmul_operator:[14,3,1,""],dotmul_projection:[14,3,1,""],dropout:[14,3,1,""],embedding:[14,3,1,""],eos:[14,3,1,""],expand:[14,3,1,""],fc:[14,3,1,""],first_seq:[14,3,1,""],full_matrix_projection:[14,3,1,""],get_output:[14,3,1,""],gru_step:[14,3,1,""],grumemory:[14,3,1,""],hsigmoid:[14,3,1,""],huber_cost:[14,3,1,""],identity_projection:[14,3,1,""],img_cmrnorm:[14,3,1,""],img_conv:[14,3,1,""],img_pool:[14,3,1,""],interpolation:[14,3,1,""],lambda_cost:[14,3,1,""],last_seq:[14,3,1,""],linear_comb:[14,3,1,""],lstm_step:[14,3,1,""],lstmemory:[14,3,1,""],max_id:[14,3,1,""],maxout:[14,3,1,""],multi_binary_label_cross_entropy_cost:[14,3,1,""],nce:[14,3,1,""],out_prod:[14,3,1,""],pad:[14,3,1,""],parse_network:[14,0,1,""],pooling:[14,3,1,""],power:[14,3,1,""],print:[14,3,1,""],priorbox:[14,3,1,""],rank_cost:[14,3,1,""],recurrent:[14,3,1,""],regression_cost:[14,3,1,""],repeat:[14,3,1,""],rotate:[14,3,1,""],sampling_id:[14,3,1,""],scaling:[14,3,1,""],scaling_projection:[14,3,1,""],selective_fc:[14,3,1,""],seq_concat:[14,3,1,""],seq_reshape:[14,3,1,""],slope_intercept:[14,3,1,""],spp:[14,3,1,""],sum_cost:[14,3,1,""],sum_to_one_norm:[14,3,1,""],table_projection:[14,3,1,""],tensor:[14,3,1,""],trans:[14,3,1,""],trans_full_matrix_projection:[14,3,1,""],warp_ctc:[14,3,1,""]},"paddle.v2.networks":{bidirectional_gru:[14,3,1,""],bidirectional_lstm:[14,3,1,""],dropout_layer:[14,3,1,""],gru_group:[14,3,1,""],gru_unit:[14,3,1,""],img_conv_bn_pool:[14,3,1,""],img_conv_group:[14,3,1,""],lstmemory_group:[14,3,1,""],lstmemory_unit:[14,3,1,""],sequence_conv_pool:[14,3,1,""],simple_attention:[14,3,1,""],simple_gru2:[14,3,1,""],simple_gru:[14,3,1,""],simple_img_conv_pool:[14,3,1,""],simple_lstm:[14,3,1,""],text_conv_pool:[14,3,1,""],vgg_16_network:[14,3,1,""]},"paddle.v2.pooling":{Avg:[14,3,1,""],BasePool:[14,3,1,""],CudnnAvg:[14,3,1,""],CudnnMax:[14,3,1,""],Max:[14,3,1,""],SquareRootN:[14,3,1,""],Sum:[14,3,1,""]}},objnames:{"0":["py","function","Python function"],"1":["py","module","Python module"],"2":["py","attribute","Python attribute"],"3":["py","class","Python class"],"4":["py","method","Python method"]},objtypes:{"0":"py:function","1":"py:module","2":"py:attribute","3":"py:class","4":"py:method"},terms:{"0000x":44,"00186201e":5,"00m":28,"02595v1":[10,14],"03m":28,"0424m":28,"0473v3":[11,14],"055ee37d":34,"05d":41,"0630u":28,"06u":28,"0810u":28,"08823112e":5,"0957m":28,"0ab":[10,14],"0th":49,"10007_10":48,"10014_7":48,"100gb":28,"100gi":34,"10m":28,"1150u":28,"11e6":35,"12194102e":5,"124n":28,"13m":35,"1490u":28,"15501715e":5,"1550u":28,"15mb":44,"1636k":49,"16mb":44,"16u":28,"173m":42,"173n":28,"1770u":28,"18ad":34,"18e457ce3d362ff5f3febf8e7f85ffec852f70f3b629add10aed84f930a68750":35,"197u":28,"1gb":28,"1st":[39,42,48,49],"202mb":49,"210u":28,"211839e770f7b538e2d8":[11,14],"215n":28,"228u":28,"234m":42,"2520u":28,"252kb":44,"25639710e":5,"25k":44,"2680u":28,"27787406e":5,"279n":28,"27m":28,"285m":28,"2863m":28,"28m":28,"28x28":3,"2977m":28,"2cbf7385":34,"2nd":[10,14,48,49],"302n":28,"30u":28,"32777140e":5,"328n":28,"32u":28,"32x32":41,"331n":28,"3320u":28,"36540484e":5,"365e":34,"36u":28,"3710m":28,"3768m":28,"387u":28,"38u":28,"3920u":28,"39u":28,"3rd":[46,48,49],"4035m":28,"4090u":28,"4096mb":31,"4279m":28,"43630644e":5,"43u":28,"448a5b355b84":35,"4560u":28,"4563m":28,"45u":28,"4650u":28,"4726m":28,"473m":35,"48565123e":5,"48684503e":5,"49316648e":5,"4gb":31,"50bd":34,"50gi":34,"51111044e":5,"514u":28,"525n":28,"526u":28,"53018653e":5,"536u":28,"5460u":28,"5470u":28,"54u":28,"55g":49,"5690m":28,"573u":28,"578n":28,"5798m":28,"586u":28,"58s":35,"5969m":28,"6080u":28,"6082v4":[10,14],"6140u":28,"6305m":28,"639u":28,"655u":28,"6780u":28,"6810u":28,"682u":28,"6970u":28,"6ce9":34,"6node":29,"6th":49,"704u":28,"70634608e":5,"7090u":28,"72296313e":5,"72u":28,"73u":28,"75u":28,"760u":28,"767u":28,"783n":28,"784u":28,"78m":28,"7kb":35,"8250u":28,"8300u":28,"830n":28,"849m":28,"85625684e":5,"861u":28,"864k":49,"8661m":28,"892m":28,"901n":28,"90u":28,"918u":28,"9247m":28,"924n":28,"9261m":28,"93137714e":5,"9330m":28,"94u":28,"9530m":28,"96644767e":5,"983m":28,"988u":28,"997u":28,"99982715e":5,"99m":42,"99u":28,"9f18":35,"\u7ea2\u697c\u68a6":39,"\ufb01xed":49,"abstract":[26,31],"break":44,"case":[10,14,16,17,24,25,26,28,32,34,40,44],"char":46,"class":[5,7,10,12,14,15,30,41,48],"const":26,"default":[3,7,9,10,11,12,14,15,19,29,31,33,34,35,44,46,48,49],"export":[18,19,41],"final":[11,14,17,18,26,46,48],"float":[3,7,9,10,12,14,17,26,28,33,39,42,46],"function":[3,5,8,10,11,12,14,15,16,17,24,26,28,29,31,40,41,44,47,48,49],"import":[3,5,9,10,14,15,17,19,24,28,34,39,40,41,42,44,46,48,49],"int":[3,7,9,10,11,12,14,16,26,33,44,46,47],"long":[2,10,11,14,19,28,47,48],"new":[3,10,14,16,25,27,34,35,40,44,47,48],"null":[10,14,26,31,46],"public":[26,29,34,35,48],"return":[3,8,9,10,11,14,15,17,24,26,34,40,42,44,45,46,49],"short":[10,11,14,17,46,47,48],"static":[10,34],"super":26,"switch":[34,48],"throw":34,"true":[3,7,9,10,11,12,14,15,16,17,24,26,31,33,34,42,46,47,48,49],"try":[12,16,28,40,46],"void":26,"while":[2,3,7,9,14,16,24,31,40,44,48,49],AGE:[34,35],AND:46,ARE:46,AWS:[27,36,37],Abs:[6,14],Age:45,And:[3,9,10,12,14,16,19,21,25,33,34,35,39,42,46,48,49],But:[3,10,11,14],EOS:[10,14],For:[2,3,8,9,10,12,14,15,16,17,18,19,24,26,28,29,30,31,33,39,41,42,44,48,49],Going:48,Has:3,IDs:44,Ids:44,Into:34,Its:[3,24,34,46],Not:[15,29],ONE:3,One:[9,10,11,14,24,26,31,40,44,48,49],QoS:35,THE:3,TLS:[15,34],That:[10,14,16,31,33],The:[2,3,5,7,8,9,10,11,12,14,15,16,17,18,19,20,21,24,25,26,28,29,31,33,34,35,39,40,41,42,44,45,46,47,48,49],Their:[3,10,14],Then:[5,10,18,19,24,25,26,28,34,35,39,41,46,47,48],There:[9,10,14,15,17,21,28,34,40,41,42,43,44,46,49],These:[29,33,41,47],USE:46,USING:46,Use:[3,15,16,26,28,31,32,34,46],Used:[11,14],Useful:3,Using:[35,48],VPS:34,WITH:25,With:[3,10,11,14,17,40,47],Yes:19,___fc_layer_0__:34,__init__:26,__list_to_map__:46,__main__:42,__meta__:46,__name__:42,__rnn_step__:24,_error:40,_link:[11,14],_proj:[10,14],_res2_1_branch1_bn:42,_source_language_embed:[24,39],_target_language_embed:[24,39],aaaaaaaaaaaaa:34,abc:[10,14],abl:[10,14,15,40,48],about:[5,10,11,14,17,19,28,30,31,34,38,47,48,49],abov:[3,5,10,14,15,17,19,28,34,35,40,42,44,47],abs:[11,14,40],absolut:[2,29],academ:45,acceler:33,accept:[3,5,15,16,44,47],acceptor:47,access:[2,10,11,14,15,24,49],accessmod:34,accident:45,accord:[2,3,9,10,14,24,25,29,30,31,33],accordingli:[5,26],accordingto:47,accrod:[11,14],accuraci:[9,26,44,45,48],achiev:[28,41],ack:31,acl:48,aclimdb:48,across:[10,14],act:[10,11,14,17,24,44],act_typ:44,action:[34,45],activ:[0,1,4,5,10,11,17,18,26,31,44,48],activi:[11,14],actual:[3,10,14,17,19],adadelta:[12,44],adagrad:[12,44],adam:[12,15,44,48,49],adamax:[12,44],adamoptim:[39,44,48,49],adapt:[9,12,17,48,49],add:[3,10,11,14,17,18,25,26,28,33,44,46],add_input:26,add_test:26,add_to:[10,14],add_unittest_without_exec:26,addbia:26,added:[3,9,26],adding:42,addit:[10,11,14,19,44],address:[28,31],addrow:26,addtion:29,addto:[10,14],addtolay:[10,14],adject:48,adjust:17,admin:45,adopt:47,advanc:[24,28,31],advantag:[19,48],adventur:45,adverb:48,adversari:16,advic:28,affect:[10,14],afi:3,aforement:29,after:[10,14,18,21,24,26,29,31,33,34,35,40,41,42,44,46,47,48,49],again:[15,28],against:34,age:46,agg_level:[10,14],aggreg:[14,34],aggregatelevel:[10,14],aid:28,aim:[48,49],aircraft:49,airplan:41,aistat:[10,14],alex:[10,14,48],alexnet_pass1:33,alexnet_pass2:33,algorithm:[10,12,14,17,24,39,41,48,49],alia:[6,7,13,14],align:[10,11,14,49],all:[0,3,7,9,10,12,14,15,17,19,24,25,26,28,29,30,31,33,34,35,39,40,42,44,45,46,47,48,49],alloc:[7,14,26,33],allow:[15,19,25,26,28,31,34,44],allow_only_one_model_on_one_gpu:[30,31,33],almost:[11,14,17,29,39],along:48,alreadi:[28,29,31,34,35,48],alreali:[30,49],also:[2,3,9,10,11,14,15,16,18,19,24,26,28,29,35,40,41,42,44,47,48],although:17,alwai:[5,10,11,14,16,17,31,34,49],amaz:41,amazon:[34,35,44,48],amazonaw:34,amazonec2fullaccess:34,amazonelasticfilesystemfullaccess:34,amazonroute53domainsfullaccess:34,amazonroute53fullaccess:34,amazons3fullaccess:34,amazonvpcfullaccess:34,ambigu:[16,47],amd64:34,amend:25,american:41,among:[34,48],amount:[28,48],analysi:[17,28,43,47],analyz:[44,48],andd:34,ani:[2,3,10,11,14,15,16,24,25,28,34,44,46,49],anim:45,annot:47,annual:47,anoth:[3,10,14,15,19,31,34,47,48],ans:34,answer:[17,34,47],anyth:[16,25,34,47],api:[14,15,18,26,28,34,38,40,44,46,48],apiserv:34,apivers:[34,35],apo:49,appar:49,appear:47,append:[3,16,24,26,29,46],appleclang:18,appleyard:28,appli:[0,10,11,14,24,26,41,44],applic:[28,34,35,48],appreci:[25,48],approach:[10,14],apt:[18,21,41],arbitrari:10,architectur:[39,47,48,49],architecur:48,arg:[3,8,9,10,11,12,14,17,19,30,40,41,42,44,46,47,48],arg_nam:[10,14],argu:47,argument:[3,5,8,10,14,24,26,31,32,39,40,41,42,46,47,48,49],argv:42,arn:34,around:[3,10,14,34],arrai:[5,10,14,16,17,42],art:[17,47],articl:[29,35],artifact:34,artifici:40,artist:45,arxiv:[10,11,14,40,48],aspect:[14,48],aspect_ratio:14,assign:[10,31,34],associ:[47,48,49],assum:[10,14,24,33,39],assur:2,astyp:[16,40],async:[12,30],async_count:31,async_lagged_grad_discard_ratio:31,async_lagged_ratio_default:[30,31],async_lagged_ratio_min:[30,31],asynchron:31,atla:18,atlas_root:18,attenion:[11,14],attent:[10,11,14,49],attitud:48,attr:[7,11,14],attribut:[1,3,4,10,11,26,39,47],auc:[9,30],aucvalidationlay:31,authent:34,author:[34,42],authorized_kei:29,autmot:25,auto:[26,28,43,46],autom:[34,49],automak:18,automat:[10,14,15,18,19,24,26,29,30,31,34,46,47,49],automaticli:[10,14],automobil:41,avail:[18,34],availabel:18,averag:[9,10,12,14,31,42,44,46,47,48,49],average_test_period:[30,31,47],average_window:48,averagepool:[10,14],avg:[13,14,28,44],avgcost:[9,44,46,48,49],avgpool:[10,14,44],avoid:28,avx:[18,21],await:35,awar:[15,19,34],aws_account_id:34,awsaccountid:34,awskeymanagementservicepowerus:34,b2t:39,b363:35,b8561f5c79193550d64fa47418a9e67ebdd71546186e840f88de5026b8097465:35,ba5f:34,back:3,background:22,backward:[10,11,14,24,26,31,33],backward_first:24,backwardactiv:26,bag:[44,48],baidu:[0,10,14,17,21,25,35,39],baik:39,balanc:[31,34,40],balasubramanyan:48,bank:47,bardward:[11,14],bare:35,barrier:31,barrierstatset:28,base:[6,12,14,15,17,21,24,25,26,28,29,31,34,39,40,44,46,48,49],baseactiv:[10,11,14],basematrix:26,basenam:9,basepool:[13,14],basepoolingtyp:[10,11,14],baseregular:12,basestr:[7,8,9,10,11,14,46],bash:[19,34,35],bashrc:18,basic:[3,10,25,26,44,45,48],batch:[3,9,10,11,12,14,15,26,29,31,34,35,40,41,42,44,46,47,48,49],batch_0:42,batch_norm:[10,14],batch_norm_lay:11,batch_norm_typ:[10,14],batch_read:16,batch_siz:[3,12,17,29,39,40,41,44,46,48,49],batchsiz:[10,14,26],bcd:[10,14],beam:[10,24,31,47,49],beam_gen:[10,24],beam_search:24,beam_siz:[10,24,30,31,33],beamsiz:49,becaus:[5,10,14,15,16,24,25,26,33,34,41,44,47],becom:[25,28],been:[3,18,25,41,44,47,48,49],befor:[5,10,11,14,16,19,25,29,34,41,46,48,49],begin:[5,9,10,26],beginiter:15,beginn:24,beginpass:15,begintrain:15,behavior:28,being:[16,40],belong:[10,14,49],below:[3,10,14,16,24,26,28,29,34,40,41,44,46],benefit:[11,14],bengio:[10,14],bertolami:48,besid:[2,10,14,49],best:[8,10,14,18,31,44,46,48,49],best_model_path:47,besteffort:35,beta1:12,beta2:12,beta:42,better:[10,11,14,17,29,34,40,46],between:[10,12,14,17,25,34,40,44,45,48,49],bgr:42,bi_gru:14,bi_lstm:[11,14],bia:[10,11,12,14,24,26,42],bias:[10,14,26],bias_attr:[10,11,14,17,24],bias_param_attr:[11,14],biases_:26,biasparameter_:26,biassiz:26,bidi:35,bidirect:[11,14,24,47,49],bidirectional_gru:14,bidirectional_lstm:14,bidirectional_lstm_net:48,big:28,biggest:48,bilinear:[10,14],bilinear_interp:14,bilinear_interpol:[10,14],bilinearfwdbwd:28,bin:[18,19,29,34,35,46],binari:[3,9,10,14,28,34,39,44,48],bird:41,bison:18,bit:44,bitext:49,bla:18,blank:[10,14,34],block:[10,14,17,26,28,31,42,48],block_expand:[10,14],block_i:[10,14],block_x:[10,14],blog:48,bn_attr:14,bn_bias_attr:[11,14],bn_layer_attr:11,bn_param_attr:[11,14],bollen:48,bool:[3,7,9,10,11,12,14,26,31,33,44,46,48],boot:[10,24],boot_bia:10,boot_bias_active_typ:10,boot_lay:[10,24],boot_with_const_id:10,bootstrap:18,bos_id:[10,24],both:[0,7,10,11,14,15,19,24,26,28,34,40,42,44],bottleneck:[28,42],bottom:48,bound:14,bow:[44,48],box:[14,28],branch:[10,14,15,25],breadth:[31,49],brelu:[6,14],brendan:48,brew:18,briefli:28,brows:19,browser:[19,34],bryan:48,bucket_nam:34,buffer:[3,16,31],buffered_read:16,bug:34,bui:48,build:[0,17,19,22,31,34,36,37,39,41,42,44,46,48,49],build_and_instal:19,built:[0,18,40,47],bunch:[28,44],bunk:48,button:[25,34],c99e:34,cach:[44,46,47],cache_pass_in_mem:[3,44,46,47],cachetyp:[3,44,46,47],calc_batch_s:[3,47],calcul:[3,9,10,11,12,14,24,26,28,31,33,40,46],call:[3,10,11,14,15,17,24,26,28,31,34,41,42,44,48,49],callabl:[3,10],callback:26,caller:34,caltech:41,can:[2,3,5,7,8,9,10,11,14,15,16,17,18,19,21,24,25,26,28,29,30,31,33,34,35,39,40,41,42,44,46,47,48,49],can_over_batch_s:[3,47],candid:[10,14],cannot:26,caoi:49,capabl:[18,48],capac:34,caption:[17,49],captur:[17,29],card:29,care:[11,14,16,30,31,45],carefulli:[29,31,42],cat:[19,41,42,48],categor:47,categori:[10,14,44,48],categoryfil:35,caution:[34,35],ccb2_pc30:49,cde:[10,14],ceil:[10,14],ceil_mod:[10,14],cell:[10,11,14,48],center:3,ceph:35,certain:[2,30,47],certif:[15,34],cfg:35,chain:26,chanc:[15,26,44],chang:[10,16,17,19,24,25,26,28,31,34,44,48],channel:[10,14,28,29,42],channl:[29,42],char_bas:46,charact:[44,46],character:17,characterist:[33,41],check:[3,14,17,18,19,25,31,33,34,45],check_eq:26,check_fail_continu:3,check_l:26,check_sparse_distribution_batch:[30,31],check_sparse_distribution_in_pserv:[30,31],check_sparse_distribution_ratio:[30,31],check_sparse_distribution_unbalance_degre:[30,31],checkgrad:31,checkgrad_ep:31,checkout:25,children:45,chines:43,chmod:[18,34],choic:45,choos:[31,44,46],chosen:[2,45,49],chunk:[9,40,47],chunk_schem:9,chunktyp:9,cifar:[40,41],cifar_vgg_model:41,claim:34,claimnam:34,clang:[18,25],class1:48,class2:48,class_dim:48,classfic:[42,48],classfiic:41,classic:[10,14,17],classif:[3,5,10,14,33,42,43,44,48,49],classifc:48,classifi:[9,40,41,42,44,48],classification_cost:[14,41,44],classification_error_evalu:[40,44,48,49],classification_threshold:9,claster:34,clean:[5,46],cleric:45,cli:34,click:[25,28,34],client:25,clip:[7,12,14,31,44,48],clock:[10,14],clone:[18,19],close:[3,16],closer:17,cls:44,cludform:34,cluster:[15,30,31,35,44,49],cluster_train:29,cm469:34,cmake3:18,cmake:[18,26,28],cmakelist:26,cmd:35,cna:[10,14],cname:34,cnn:[35,42,44],code:[0,3,5,14,15,16,17,18,19,20,24,26,27,28,29,34,35,40,44,45],coeff:[10,14],coeffici:[10,14],collect:[10,14,17,45],collectbia:26,colleg:45,color:[41,42],column:[9,10,14,16,26,39,49],colunm:49,com:[10,11,14,18,19,21,25,34,35,42],combin:[10,11,14,40,46,48],come:48,comedi:45,comma:[31,39],command:[2,5,17,18,19,21,25,26,27,28,29,34,35,36,37,39,40,41,42,46,47,48],commandlin:[28,48],commenc:44,comment:[11,14,25,44,48],commnun:29,common:[24,26,30],common_util:[29,46],commonli:[24,28,33],commun:[0,26,29,34],compani:48,compar:[26,40,44],compat:3,compet:48,competit:40,compil:[18,25,26],complet:[0,5,10,11,14,26,34,35,44],complex:[2,3,11,14,16,24,28,44],complic:[10,14],compon:26,compos:[15,40,47],comput:[10,11,14,15,17,18,19,24,26,28,33,34,44,46,47,48],computation:24,conat:14,conat_lay:10,concat:[10,14,49],concat_lay:24,concaten:[11,14],concept:[3,15,24],concern:15,concurrentremoteparameterupdat:31,condit:[10,14,24,29,35,49],conduct:28,conf:[5,10,14,29,39,40,42,49],conf_paddle_gradient_num:34,conf_paddle_n:34,conf_paddle_port:34,conf_paddle_ports_num:34,conf_paddle_ports_num_spars:34,confid:48,config:[3,7,10,11,14,17,26,29,30,31,34,35,39,40,41,42,44,48,49],config_:31,config_arg:[30,31,33,42,44,47,48],config_bas:14,config_fil:47,config_gener:[29,46],config_lay:26,config_pars:[5,26],configur:[2,3,5,8,10,14,17,19,23,25,26,28,31,39,41,42,48,49],conflict:25,confront:49,congest:31,conll05st:47,conll:47,connect:[2,11,14,17,19,26,34,35,40,41,42,44,46,48],connectionist:[10,14,48],connor:48,consequ:[10,11,14],consid:[9,10,12,14,18,28,33,41],consider:[3,11,14],consist:[10,14,16,19,41,42,44,47,49],consol:[28,34],constant:26,construct:[3,5,15,24,46],construct_featur:46,constructor:26,consum:48,contain:[3,8,9,10,11,14,15,20,21,24,25,29,34,41,42,44,45,48,49],containerport:34,contemporan:48,content:[35,47,48],context:[10,11,14,24,39,44,46,47,48,49],context_attr:[11,14],context_len:[10,11,14,44,46],context_proj_layer_nam:11,context_proj_nam:14,context_proj_param_attr:[11,14],context_project:[11,14,46],context_start:[10,11,14,44],contibut:25,contin:34,continu:[3,21,31],contrast:[10,14,49],contribut:[0,20,27,48],contributor:0,control:[7,14,31,34,35,49],conv:[11,14],conv_act:[11,14],conv_attr:14,conv_batchnorm_drop_r:[11,14],conv_bias_attr:[11,14],conv_filter_s:[11,14],conv_layer_attr:11,conv_num_filt:[11,14],conv_op:[10,14],conv_oper:14,conv_pad:[11,14],conv_param_attr:[11,14],conv_project:14,conv_shift:[10,14],conv_strid:[11,14],conv_with_batchnorm:[11,14],conveni:[15,29],converg:[29,40,48],convert:[3,5,16,24,39,41,42,44,46],convex_comb:14,convlay:[10,14],convolut:[10,11,14,40,42,46],convoper:[10,14],convtranslay:[10,14],cool:[3,25],copi:[15,34,40,46],copy_shared_paramet:40,copytonumpymat:40,core:[3,7,14,31,49],coreo:34,corespond:47,corpora:49,corpu:47,correct:[3,9,10,14,26,34],correctli:[9,26,40],correl:[17,41,48],correspoind:15,correspond:[3,5,15,17,24,26,41,45,47,48,49],corss_entropi:15,cos:[10,14],cos_sim:[14,46],cosin:[10,14,46],cost:[5,12,14,15,17,31,40,44,46,48,49],cost_id:10,could:[3,5,9,10,14,15,16,28,29,34,44,46],count:[16,28,31,33,35,39,46,47,48,49],coupl:17,coverag:18,coveral:18,coveralls_uploadpackag:18,cpickl:[42,46],cpp:[25,26,28,44,46,49],cpu:[2,3,7,10,14,18,21,28,31,35,40,47,48,49],cpuinfo:19,craftsman:45,crash:[28,29,31],crazi:29,creat:[5,7,10,14,15,17,18,26,29,31,39,40,41,49],create_bias_paramet:26,create_input_paramet:26,createargu:40,createfromconfigproto:[5,40],createstack:34,creation:34,creationd:34,credit:40,crf:[10,14,47],crf_decod:[10,14],crime:45,critic:48,crop:42,crop_siz:42,cross:[10,14,44,47],cross_entropi:[14,15,40],cross_entropy_cost:14,cross_entropy_with_selfnorm:14,cross_entropy_with_selfnorm_cost:14,csc:26,cslm:49,csr:26,csv:45,ctc:[10,14],ctc_layer:9,ctest:19,ctrl:[29,46],ctx:47,ctx_0:47,ctx_0_slot:47,ctx_n1:47,ctx_n1_slot:47,ctx_n2:47,ctx_n2_slot:47,ctx_p1:47,ctx_p1_slot:47,ctx_p2:47,ctx_p2_slot:47,cub:41,cuda:[18,19,21,28,29,31],cuda_dir:[30,31],cuda_so:19,cudaconfigurecal:28,cudadevicegetattribut:28,cudaeventcr:28,cudaeventcreatewithflag:28,cudafre:28,cudagetdevic:28,cudagetdevicecount:28,cudagetdeviceproperti:28,cudagetlasterror:28,cudahostalloc:28,cudalaunch:28,cudamalloc:28,cudamemcpi:28,cudaprofilerstart:28,cudaprofilerstop:28,cudaruntimegetvers:28,cudasetdevic:28,cudasetupargu:28,cudastreamcr:28,cudastreamcreatewithflag:28,cudastreamsynchron:28,cudeviceget:28,cudevicegetattribut:28,cudevicegetcount:28,cudevicegetnam:28,cudevicetotalmem:28,cudnn:[10,14,18,21,31],cudnn_batch_norm:[10,14],cudnn_conv:[10,14],cudnn_conv_workspace_limit_in_mb:[30,31],cudnn_dir:[30,31],cudnnavg:14,cudnnmax:14,cudrivergetvers:28,cuinit:28,cumul:[10,14],curl:[18,34],current:[3,10,12,14,17,19,24,25,26,29,31,34,44,48,49],current_word:24,currentcost:[9,44,46,48,49],currentev:[9,44,46,48,49],curv:[15,41,47],custom:[2,3,15,26,34,45,48],custom_batch_read:16,cyclic:[10,14],d3e0:34,daemon:19,dai:49,daili:48,dalla:3,dan:47,danger:3,darwin:34,dat:[29,46],data:[2,3,5,8,11,12,14,15,18,22,26,28,29,30,31,33,36,42,45],data_batch_gen:40,data_dir:[39,41,48,49],data_fil:17,data_initialz:44,data_lay:[3,9,17,24,40,41,44,46,47],data_provid:8,data_read:16,data_reader_creator_random_imag:16,data_server_port:[30,31],data_sourc:[8,40],data_typ:14,databas:48,datadim:[10,14],datalay:[10,14],dataprovid:[2,8,17,24,29,46,47],dataprovider_bow:44,dataprovider_emb:44,dataproviderconvert:5,datasci:[10,14],dataset:[3,16,17,31,39,41,42,44,47,48],datasourc:[4,46],date:47,db_lstm:47,dcgan:40,dcmake_install_prefix:18,deal:[25,40],deb:[20,21],debian:20,debug:[3,14],decai:[12,41],decid:[15,16],declar:[10,11,14,46],decod:[10,11,14,24,47,49],decoder_boot:24,decoder_group_nam:24,decoder_input:24,decoder_mem:24,decoder_prev:[11,14],decoder_s:24,decoder_st:[11,14,24],deconv:[10,14],deconvolut:[10,14],decor:[3,26],decreas:17,decrypt:34,deep:[0,10,14,17,28,40,41,42,44,47],deeper:[17,42],deer:41,def:[3,10,14,15,16,17,24,26,40,42,44,46,47],defalut:[10,14,31,33],default_devic:33,default_valu:33,defferenct:3,defin:[2,3,8,9,10,11,14,15,16,17,24,26,29,31,39,40,41,46,47],define_py_data_sources2:[3,8,17,41,42,44,46],defini:49,definit:[3,17,39,44,48],degre:[10,14],del:46,delai:31,delar:44,deletestack:34,delimit:[9,45,46],demo:[10,24,29,35,36,39,40,41,42,43,44,45,46,47,48,49],demograph:45,demolish:35,demonstr:[17,24,40,46],denot:[33,44,45,47],dens:[3,10,14,26,34,44,46],dense_vector:[3,5,14,17,46],depend:[17,21,29,33,41,45],deploi:[29,33],deploy:[29,34],deriv:[14,15],descent:[10,12,14],describ:[15,17,26,34,35,40,44,47],describestack:34,describestackev:34,describestackresourc:34,descript:[5,18,24,32,34,41,46],design:[3,10,14,48],desir:[34,35,39],destructor:26,detail:[3,5,7,10,11,12,14,24,25,26,28,29,32,33,34,35,39,40,42,44,46,48,49],detect:9,determin:[3,10,14,26,40],dev:[18,19,41,46,49],devel:18,develop:[0,18,25,30,31,49],deverlop:31,deviat:[7,14],devic:[7,14,19,31,49],deviceid:33,devid:[10,14,31],dez:48,dfs:11,diagnos:29,diagram:42,dict:[3,8,44,46,48,49],dict_dim:48,dict_fil:[9,24,44,47],dict_nam:8,dictionai:44,dictionari:[3,8,9,10,15,24,33,42,44,46,47,48,49],dictsiz:49,did:3,differ:[3,8,9,10,14,17,19,24,25,26,29,31,34,35,39,41,42,44,48,49],difficult:17,dig:[28,34],digit:[3,10,14],dim:[26,39,42,44,48],dimens:[10,14,26,33,39,44,46,48],dimension:[3,17,24,26,40,44],dimenst:39,dimes:[10,14],din:46,dir:[29,42,44,46,47,48,49],direct:[10,11,14,19,42,47],directli:[2,3,11,14,17,29,35,48],directori:[2,18,25,28,29,31,35,41,42,44,46,47,48,49],diretcoti:42,dis_conf:40,dis_train:40,dis_training_machin:40,disabl:3,discard:31,discount:[10,14],discov:47,discoveri:34,discrep:28,discrimin:40,discriminator_train:40,discuss:15,disk:35,dispatch:[29,31],disput:49,dist_train:15,distanc:9,distibut:39,distinguish:[29,40,49],distribut:[10,14,18,27,35,36,37,40,44,47],distribute_test:[30,31],distributedli:26,disucss:15,divid:[12,30,41,49],diy_beam_search_prob_so:[30,31],dmkl_root:18,dns:34,do_forward_backward:16,doc:[5,11,14,18,19,29],docker:[20,34,36,37],docker_build:15,docker_push:15,dockerfil:19,dockerhub:19,doctor:45,document:[3,5,11,14,18,25,33,41,44,46,47,48],documentari:[3,45],doe:[3,5,11,14,16,17,21,24,26,28,44,46,47],doesn:[7,10,14,15,16,19,25,28,35,49],dog:[41,42],doing:28,domain:34,don:[11,14,15,16,17,19,34,48],done:[10,11,14,24,28,34,40,48],dopenblas_root:18,dot:[31,42,49],dot_period:[31,33,40,41,46,48,49],dotmul_oper:14,dotmul_project:14,dotmuloper:[10,14],dotmulproject:[10,14],doubl:[3,18,31],down:[28,44],download:[21,40,41,44,47,48],download_cifar:41,downsampl:41,doxygen:[18,25],dpkg:21,drama:45,driver:19,drop:3,drop_rat:[7,14],dropout:[7,10,14,26,44],dropout_lay:[10,14],dropout_r:[11,14],drwxr:35,dserver:31,dtoh:28,dtype:[5,17,42],dubai:49,due:[45,46],duplic:45,durat:28,dure:[2,3,10,14,17,25,26,30,31,34,44,46,47,49],durn:3,dwith_doc:18,dwith_profil:28,dwith_tim:28,dynam:[2,3,16,18,28,31],dynamic_cast:26,each:[2,3,5,9,10,14,16,17,19,24,25,26,29,31,33,34,39,41,42,44,45,46,47,48,49],each_feature_vector:14,each_meta:46,each_pixel_str:3,each_sequ:[10,14],each_time_step_output:14,each_timestep:[10,14],each_word:3,eaqual:[10,14],eas:[16,42],easi:[0,16,19,26,29,44],easier:[15,16,26],easili:[15,16,17],echo:[19,46,48],edit:[9,34],editor:25,edu:[34,35,41],educ:45,eeoi3ezpr86c:34,effect:[3,31,34],effici:[0,2,3,24,26],efg:[10,14],efs:34,efs_dns_nam:34,efsvol:34,eight:47,either:[10,14,15,28,44,46],elb:34,elbapis:34,elec:44,electron:[35,44],elem_dim:[10,14],element:[3,5,9,10,11,14,16,44,48,49],elif:[15,46],elimin:47,els:[10,15,19,26,42,44,46],emac:25,emb:[35,44],embed:[10,14,15,24,43,46,48],embedd:47,embedding_lay:[24,44,46],embedding_nam:24,embedding_s:24,emphas:28,empir:[10,14],emplace_back:26,emploi:[24,45],empti:[9,17],emul:49,enabl:[3,7,14,28,29,31,34],enable_grad_shar:[30,31],enable_parallel_vector:31,enc_proj:[11,14,24],enc_seq:[11,14],enc_vec:24,encod:[11,14,24,49],encoded_proj:[11,14,24],encoded_sequ:[11,14,24],encoded_vector:24,encoder_last:10,encoder_proj:24,encoder_s:24,encrypt:34,encrypt_decrypt:34,end:[3,9,10,14,16,17,24,31,39,47,48,49],end_pass:15,enditer:15,endpass:15,endpoint:34,endtrain:15,engin:[0,28,45],english:[3,10,14,49],enough:17,ensembl:[11,14],ensur:[3,26],enter:45,entir:[10,11,14,48],entri:[19,26,34,45],entropi:[10,14,44,47],enumer:[10,14,44,46],env:[25,34],environ:[15,18,19,21,28,29,30,31,34,35,40,41,46],eol:25,eos:[10,14],eos_id:[10,14,24],epel:18,epoch:45,epsilon:12,equal:[10,11,12,14,31],equat:[10,11,12,14],equilibrium:40,equip:[18,24],equival:[10,14,15],error:[7,9,10,12,14,15,17,21,26,29,31,34,41,42,44,45,46,48,49],error_clipping_threshold:[7,14],errorr:9,especi:[3,11,14,47],essenc:15,essenti:[10,15,18,47,49],estat:17,estim:[10,14,15],eta:35,etc:[12,16,29,30,33,34,48,49],eth0:[29,34],ethternet:29,eval:[9,44,46,48,49],eval_bleu:49,evalu:[2,4,10,14,22,28,29,44,48,49],evaluate_pass:48,evaluator_bas:9,evalut:[17,49],even:[15,16,28,31,48],evenli:34,event:35,event_handl:15,everi:[2,3,9,10,11,14,15,24,25,26,31,44,47,48,49],everyth:[17,19,25],exactli:[3,9,10,11,14,34,47],exampl:[2,3,8,9,10,11,12,14,16,17,18,19,24,26,28,29,30,31,33,34,35,41,42,43,44,48,49],exceed:10,except:[3,33,39,46,48],excluded_chunk_typ:9,exconv:[10,14],exconvt:[10,14],exec:31,execut:[26,28,34,45,47,48],exist:[15,16,26,31,34,45,48],exit:[31,35],exp:[6,14],expand:[10,14,26,47,48,49],expand_a:[10,14],expand_level:[10,14],expandconvlay:[10,14],expandlevel:[10,14],expect:[10,14,28,48],expens:49,experi:33,explain:[3,9,29,40,48],explan:[10,14,44,49],explanatori:17,explicit:26,explicitli:[3,15],exploit:41,explor:10,exponenti:14,expos:34,express:[15,34,48],extend:[0,46],extens:[12,45,46,49],extern:[3,31],extra:[10,11,14,17],extraattr:[7,14,33],extraattribut:14,extraattributenon:14,extract:[10,14,34,41,47,48],extract_fea_c:42,extract_fea_pi:42,extract_para:39,extralayerattribut:[7,10,11,14],extralayeroutput:11,extrapaddl:14,extrem:[10,28],extremli:2,f120da72:35,f7e3:34,fa0wx:35,fabric:29,facotr:[10,14],fact:42,factor:[7,10,12,14],fail:[3,31,33,35,41],fake:40,fake_imag:16,fals:[3,7,9,10,11,12,14,16,17,24,26,31,33,35,39,44,46,47,48,49],false_label:16,false_read:16,famili:49,familiar:[3,17],fanscin:3,fantasi:45,fantast:44,far:0,farmer:45,fascinatingli:2,fast:[10,14,25,28],faster:[10,11,14,24,28,48],favorit:25,fbd1f2bb71f4:35,fc1:[26,33],fc2:33,fc3:33,fc4:33,fc8a365:34,fc8a:34,fc_act:[11,14],fc_attr:[11,14],fc_bias_attr:[11,14],fc_layer:[17,26,33,44,46],fc_layer_nam:11,fc_name:14,fc_param_attr:[11,14],fclayer:26,fdata:47,fea:42,fea_output:42,feat:48,featur:[3,10,14,25,31,41,44,48,49],feature_map:46,feed:[11,14,15,17,48],feedback:0,feedforward:41,femal:45,fernan:48,festiv:3,fetch:[24,26],few:[3,16],fewer:10,fg0:[10,14],field:[10,14,28,34],figur:[15,24,26,28,39,40,41,42,47,48,49],file1:49,file2:49,file:[2,3,5,9,10,14,15,16,17,18,24,25,26,29,31,39,41,42,47,48,49],file_list:3,file_nam:[3,17,42,44,47],filenam:[3,46],filer:[10,14],filesystem:34,fill:[10,14,34,44],film:45,filter:[10,14,42],filter_s:[10,11,14],filter_size_i:[10,14],finali:29,find:[10,12,14,28,41,48,49],fine:[7,14,46],fingerprint:34,finish:[3,29,34,35,41],finit:26,first:[3,10,14,15,17,21,24,25,26,28,31,33,34,39,40,41,42,44,46,47,48,49],first_seq:[14,24],firstseen:35,fit:[2,25],five:[28,44],fix:[3,7,14,49],flag:[31,40,41,47],flexiabl:16,flexibl:[0,2,10,11,14,15,24],flight:49,float32:[5,16,17,40,42],floor:[10,14],flow:25,fly:[17,44],fnt03:34,focu:[3,28],folder:[18,34,41,48,49],follow:[2,3,9,10,11,12,14,15,16,18,19,21,24,25,26,28,29,33,34,35,36,37,39,40,41,42,44,45,46,47,48,49],fool:40,forbid:15,forecast:48,forget:[12,15,19,48],form:[2,3,11,12,14,28,47],format:[2,3,9,17,25,26,31,34,39,41,45,46,48],former:[15,49],formula:[10,11,14],formular:[10,14],forward:[11,14,24,25,26,33,40,47,48],forwardactiv:26,forwardtest:5,found:[3,5,10,14,18,24,40,41,44,48],four:[3,21,39,42,44,46,47,48],frame:9,framework:[15,26,42,44,48],free:49,french:49,frequenc:[28,39,44,48],frequent:[16,29,49],frog:41,from:[0,3,5,10,11,14,16,17,19,22,24,25,26,28,29,31,33,34,35,39,40,41,42,44,45,46,47,48,49],from_timestep:[10,14],fromfil:[16,17,42],fulfil:28,full:[10,14,19,24,26],full_matrix_project:[11,14,24],fulli:[14,17,25,26,28,40,41,42,44,46,48],fullmatrixproject:[10,14],fully_matrix_project:[11,14],fullyconnect:39,fullyconnectedlay:26,fundament:17,further:10,fusion:46,gain:[10,14],game:40,gamma:42,gan:15,gan_train:40,gap:31,gate:[10,11,14,48],gate_act:[10,11,14],gate_recurr:[10,14],gather:[10,26,46],gauss:[7,14],gaussian:40,gcc:18,gdebi:21,gen:[10,49],gen_conf:[40,49],gen_data:49,gen_result:49,gen_train:40,gen_training_machin:40,gen_trans_fil:24,gender:[45,46],gener:[2,3,5,9,10,11,14,15,16,17,18,19,28,29,31,33,34,39,42,43,44,46,48],generatedinput:24,generator_conf:40,generator_machin:40,generator_train:40,genert:3,genr:[45,46],gereat:9,get:[3,10,11,14,17,18,21,24,26,28,29,34,38,41,42,44,46,47,48],get_batch_s:47,get_best_pass:48,get_config_arg:[33,44,46,48],get_data:[35,44,47],get_imdb:48,get_input_lay:26,get_mnist_data:40,get_model:42,get_nois:40,get_output:14,get_output_attr:14,get_output_layer_attr:11,get_training_loss:40,getbatchs:26,getenv:15,getinput:26,getinputgrad:26,getinputvalu:26,getoutputgrad:26,getoutputvalu:26,getparameterptr:26,getsiz:26,getslotvalu:40,gettempl:34,gettranspos:26,getw:26,getweight:26,getwgrad:26,gfortran:18,gildea:47,gist:[11,14],git:[18,19,25],github:[10,11,14,18,19,21,42],give:[3,17,19,26,28,34,44],given:[3,16,26,31,40,44,47,48,49],global:[3,7,12,14,15,28,31,34,46,48],global_learning_r:[7,14],globalstat:28,globalstatinfo:28,globe:3,goal:[28,47],goe:[10,11,14,17],going:[44,48],good:[10,14,16,28,48,49],goodfellow13:[10,14],googl:15,googleapi:34,got:19,gpg2:34,gpg:34,gpu:[2,3,7,10,12,14,18,21,27,29,40,41,42,46,47,48,49],gpu_id:[31,33,40],gpugpu_id:30,grab:48,grad:[31,45],grad_share_block_num:[30,31],gradient:[7,9,10,12,14,31,44,48],gradient_clipping_threshold:[7,12,14,44,48],gradientmachin:[5,40,46,49],gradual:[17,28],grai:41,gram:[39,48],grant:34,graph:[10,39],graphviz:42,grave:48,grayscal:3,greater:[10,14],grep:[19,48],groudtruth:24,ground:[9,10,14,44,49],group:[11,14,48],group_id:46,group_input:24,grouplen:45,gru:[10,14,24,44,49],gru_attr:14,gru_bias_attr:[11,14],gru_decod:24,gru_decoder_with_attent:24,gru_encoder_decod:[39,49],gru_group:14,gru_layer_attr:11,gru_memori:[11,14],gru_siz:44,gru_step:[14,24],gru_step_lay:[11,24],gru_unit:14,grumemori:[11,14,24],gserver:[10,26],gsizex:28,guarante:26,guess:[17,48],gui:28,guid:[20,24,25,26,28,34,35,39,41,48,49],guidenc:17,gur_group:[11,14],gzip:35,hack:[20,29],hadoop:15,half:34,hand:[45,46,48],handl:[15,16,29,46,48],handwrit:[3,48],hard:[34,44],hardwar:[19,28],has:[3,5,10,11,12,14,15,24,26,28,34,35,39,41,44,45,46,47,48,49],have:[2,3,5,9,10,11,14,15,16,17,18,24,25,26,28,29,31,33,34,39,41,44,45,46,48,49],hdf:2,head:[25,39,48],header:[17,26,39,42,46],health:45,heavi:29,height:[10,14,16,26,41],hello:15,help:[3,5,25,29],helper:[8,10,11,14,26],here:[3,5,7,10,11,14,15,16,17,18,24,29,30,33,34,35,39,41,42,43,44,45,46,47,48,49],heurist:[10,31,49],hidden:[10,11,14,24,34,44,46,48],hidden_s:[11,14,46],hierarch:[10,14,24],high:[7,14,26,40],higher:2,highest:49,highli:[2,3,24,33,46,48],him:15,hint:17,histor:48,hl_get_sync_flag:26,hold:[15,34],home:[29,34,35],homemak:45,hook:[3,46,47],hope:0,horizont:[10,14,42],horror:45,hors:41,horst:48,host:[18,29,34,35],hostnam:[29,34],hostpath:35,hostport:34,hot:46,hour:49,hous:[3,17,39],how:[2,3,7,10,14,15,17,24,29,31,34,35,38,41,42,44,46],howev:[3,11,14,16,17,24,25,30,31,34,48,49],hppl:14,hsigmoid:14,html:[19,41],htod:28,http:[10,11,14,18,19,21,25,34,35,40,41,42,49],huber:[10,14],huber_cost:14,huge:[10,14,25],huina:48,human:49,hyper:[10,14,26],i0601:46,i0706:49,i0719:49,i1117:28,iamfullaccess:34,iamusersshkei:34,ib0:29,icwsm:48,id_input:[9,24],idea:[10,14,16],ident:[14,17,34,45],identifi:[24,26],identity_project:14,identityoffsetproject:[10,14],identityproject:[10,14],ids:[9,10,14,26,44,46],idx:26,ieee:48,ignor:[3,9,31],ijcnlp:48,illustr:[3,24,26,28,44],ilsvrc:42,imag:[3,14,15,16,17,20,33,34,36,37,40,42,43,49],image_a:16,image_b:16,image_classif:41,image_fil:16,image_lay:16,image_list_provid:42,image_nam:15,image_path:16,image_provid:41,image_reader_cr:16,image_s:42,imagenet:43,imagepullpolici:34,imageri:[10,14],images_reader_cr:16,imdb:45,imdber:48,img:[3,10,14,41],img_cmrnorm:14,img_conv:14,img_conv_bn_pool:14,img_conv_group:14,img_conv_lay:11,img_featur:3,img_norm_typ:10,img_pool:14,img_pool_lay:11,img_siz:41,imgsiz:28,imgsizei:28,imgsizex:28,immedi:34,immutable_paramet:15,implement:[3,10,11,12,14,24,44,47],importerror:46,improv:[0,28,34,48,49],inbound:34,includ:[2,3,10,11,14,15,18,19,24,26,28,31,34,35,39,44,45,47,49],inconsist:45,incorrect:[10,14],increas:[31,49],increment:31,incupd:26,inde:16,independ:[10,14,44],index:[3,9,10,14,24,29,34,46],indexslot:[10,47],indic:[3,9,10,14,17,29,34,47],individu:[17,34],infer:[15,18],infiniband:29,info:[9,10,14,26,29],infom:25,inform:[5,9,26,28,31,34,45,46,47,48,49],infrastructur:[34,40],ingor:31,inherit:14,ininst:15,init:[7,14,26,33,34,40,44,46,47],init_hook:[44,46,47],init_hook_wrapp:8,init_model_path:[30,31,33,39,44,47],initi:[3,5,7,10,14,24,26,31,39,40,44,47],initial_max:[7,14],initial_mean:[7,10,14],initial_min:[7,14],initial_std:[7,10,14],initpaddl:[5,40],inlcud:[11,14],inlin:34,inner:26,inner_param_attr:[11,14],input1:[10,11,14],input2:[10,14],input:[3,5,9,10,11,14,16,17,24,26,33,39,40,41,42,44,46,47,48,49],input_data:26,input_data_target:26,input_featur:14,input_fil:[17,47],input_hassub_sequence_data:26,input_id:[10,14],input_imag:[11,14,41],input_index:26,input_label:26,input_lay:[10,26],input_nam:15,input_sequence_data:26,input_sequence_label:26,input_sparse_float_value_data:26,input_sparse_non_value_data:26,input_t:26,input_typ:[17,24,44,46],inputdef:26,inputlayers_:26,inputtyp:3,insid:[9,10,14,16,34],inspir:39,instal:[19,22,25,29,35,41,42,46,47,48],instanc:[10,12,14,24,26,28,31,47],instance_ip:34,instead:[10,14,16,25,29,44,49],instruct:[19,21,28,44],int32:31,integ:[3,9,10,14,24,26,44,48],integer_valu:[3,44],integer_value_sequ:[3,24,44,47],integr:[18,47],intend:0,inter:[10,14,29],interact:[19,34],intercept:[10,14],interest:[28,48],interfac:[5,7,10,11,14,29,34,41,46,48],interg:44,intergr:[10,14],intermedi:47,intern:[10,11,14,34],internet:48,interpol:[10,14],interpret:[3,9,18,19,28],interv:48,intrins:18,introduc:[3,35,46,48],introduct:[4,40],invalid:16,invari:41,invok:[3,10,14,28,34,46],involv:40,iob:9,ioe:9,ips:34,ipt:[10,14,24],ipython:15,is_async:12,is_discriminator_train:40,is_gener:[10,39,40,49],is_generator_train:40,is_kei:46,is_layer_typ:10,is_predict:[44,46,48],is_seq:[10,24,46],is_sequ:46,is_stat:[7,14],is_test:[42,47,48],is_train:3,isn:28,isspars:26,issu:[18,28],item:[10,14,16],iter:[10,11,12,14,15,16,41,47,48],its:[3,9,10,11,14,15,26,28,31,34,39,40,41,44,48,49],itself:[11,14],jeremi:28,jie:[47,48],jmlr:[10,14],job:[5,9,30,31,33,42,44,46,47,48,49],job_dispatch_packag:29,job_mod:39,job_nam:34,job_namespac:34,job_path:34,job_workspac:29,jobpath:34,jobport0:34,jobport1:34,jobport2:34,jobport3:34,johan:48,joint:[39,49],jointli:[11,14,49],journal:[47,48],jpeg:41,jpg:42,json:[29,34,35,46],jth:[11,14],judg:49,just:[3,9,10,11,14,17,19,25,29,33,34,41,46,47,48],jx4xr:34,jypyt:15,k8s_data:34,k8s_job:15,k8s_token:15,k8s_train:34,k8s_user:15,kaim:[10,14],kaimingh:42,kebilinearinterpbw:28,kebilinearinterpfw:28,keep:[3,10,14],kei:[3,28,29,46,48],kernel:[10,14,28,44],key1:31,key2:31,key_pair_nam:34,keyid:34,keymetadata:34,keypair:34,keyserv:34,keystat:34,keyusag:34,keyword:3,kill:34,kind:[2,3,15,17,34,35,40,44,46],kingsburi:47,kms:34,know:[3,11,14,15,17,19,26,28,34,46],knowledg:48,known:[40,48,49],kriz:41,ksimonyan:[11,14],kube_cluster_tl:15,kube_ctrl_start_job:15,kube_list_containers_in_job_and_return_current_containers_rank:15,kubeconfig:34,kubectl:35,kuberent:34,kubernet:[15,27,29,36,37],kubernetes_service_host:15,kwarg:[3,9,10,11,12,14,44,46,47],l1_rate:[7,14],l2_rate:[7,14],l2regular:[41,44,48],label:[3,5,9,10,12,14,16,17,24,35,40,41,42,43,44,46,48],label_dict:47,label_dim:[10,14,44],label_fil:[16,47],label_lay:[10,16],label_list:47,label_path:16,label_slot:47,labeledbow:48,labl:48,lag:31,lake:3,lambda_cost:14,lambdacost:[10,14],lambdarank:[10,14],languag:[10,14,33,39,47,48,49],laptop:19,larg:[14,47,48,49],larger:[3,7,9,10,12,14,29],last:[9,10,11,14,17,24,29,31,44,48,49],last_seq:14,last_time_step_output:10,lastseen:35,late:48,latenc:[29,34],later:[18,25,34,44],latest:[10,14,19,25,35,48],latter:49,launch:[31,34,48],launcher:15,lawyer:45,layer1:[10,11,14],layer2:[10,14],layer3:[10,14],layer:[1,4,5,7,9,11,16,17,24,27,30,31,39,40,41,42,44,46,47,48],layer_0:26,layer_attr:[10,14,24,33],layer_num:[33,42],layer_s:[10,14],layer_typ:[10,14],layerbas:26,layerconfig:26,layergradutil:26,layermap:26,layeroutput:[9,11,46],lbl:[9,41],ld_library_path:[18,21,29],lead:28,learn:[0,7,9,10,11,12,14,15,16,17,24,26,28,41,42,44,47,48,49],learnabl:[10,14],learning_method:[12,17,39,41,44,46,48,49],learning_r:[7,12,14,17,39,41,44,46,48,49],learningextern:30,least:[9,10,14,18,45],leav:[3,34],left:[10,14,17,42],leman:49,len:[3,10,14,24,26,44,46,47],length:[10,11,14,24,31,35,48,49],less:[10,14,15,29,49],less_than:15,let02:35,let:[5,10,14,15,17,19,34,46],level:[7,10,14,29,31,40,46,48,49],lib64:[18,19,29,31],libcuda:19,libcudnn:18,libjpeg:41,libnvidia:19,libpython:18,librari:[10,14,18,29,31,46],licens:47,like:[3,9,10,14,16,17,18,24,28,29,30,33,34,39,42,44,46,48,49],limit:[10,28,31],line:[2,3,5,9,17,25,27,28,29,33,34,39,41,42,46,47,48,49],linear:[6,10,14,22],linear_comb:[10,14],linearactiv:[10,17],linguist:47,link:[10,11,14,18,34,44,48],linux:[18,19,21,34,49],lipeng:39,lipton:48,list:[2,3,8,9,10,11,14,15,17,24,26,29,31,33,34,41,42,44,46,47,48,49],listen:[19,31],literatur:48,littl:[2,3,31,44,48],lium:49,liwicki:48,load:[2,3,5,10,14,15,17,31,34,42,46,47,48,49],load_featur:42,load_feature_c:42,load_feature_pi:42,load_missing_parameter_strategi:[30,31,33,39,47],load_uniform_data:40,loadparamet:5,loadsave_parameters_in_pserv:[30,31],local:[7,14,18,19,25,29,30,31,35,41,48],localhost:19,locat:[24,26,44,47],log:[3,6,14,19,25,26,29,31,34,35,41,46,47,48,49],log_barrier_abstract:31,log_barrier_lowest_nod:[30,31],log_barrier_show_log:[30,31],log_clip:[30,31],log_error_clip:[30,31],log_period:[31,33,35,40,41,44,46,47,48,49],log_period_serv:[30,31],logarithm:14,logger:3,logic:[3,29],longer:49,look:[3,9,17,29,30,34,35,40,44],lookup:44,loop:16,loss:[10,14,26,40,44,48,49],lot:30,low:[10,14],lower:29,lowest:31,lst:46,lstm:[10,14,24,35,44],lstm_attr:14,lstm_bias_attr:[11,14],lstm_cell_attr:[11,14],lstm_group:[11,14],lstm_layer_attr:11,lstm_size:44,lstm_step:[11,14],lstmemori:[11,14,24],lstmemory_group:[10,14],lstmemory_unit:14,ltr:[10,14],lucki:17,mac:[18,19],machan:[11,14],machin:[10,11,12,14,17,25,26,30,31,33,34,35,44,46,48,49],made:[3,17,24,45],mai:[3,8,9,10,14,16,25,28,34,45],main:[3,5,25,34,41,47,48],mainli:31,maintain:[10,34],major:[19,25,40,42,48,49],make:[3,10,14,15,16,18,19,25,26,28,29,34,41,44,46,48],male:45,malloc:26,manag:[25,29],manageri:45,mandarin:[10,14],mani:[0,10,11,14,17,31,44,45,46,48],mannal:29,manual:[19,25],manufactur:49,mao:48,map:[3,10,14,15,31,41,42,46],mapreduc:15,marcu:48,mark:[3,14,24,47],mark_slot:47,market:[17,45,48],martha:47,mask:[7,10,14],master:[15,25,31,48],mat_param_attr:[11,14],match:28,math:[11,14,26,28],matirx:[10,14],matplotlib:41,matric:[5,24,26],matrix:[9,10,11,14,24,26,30,33,42,47],matrixptr:26,matter:3,max:[3,7,10,13,14,28,31,33,41,44,46],max_id:[14,44],max_length:[10,24],max_siz:14,max_sort_s:[10,14],maxid:[9,10,14,44],maxid_lay:[9,44],maxim:[10,14,49],maximum:[9,24,28,31,44,47,48],maxinum:14,maxout:[10,14],maxpool:[10,14],mayb:[10,11,14,41],mean:[3,7,9,10,11,12,14,16,17,24,28,29,31,33,34,39,40,41,42,44,46,47,48,49],mean_img_s:41,mean_meta:42,mean_meta_224:42,mean_valu:42,measur:[17,28],mechan:[10,11,14,24,34,48],media:48,meet:47,member:15,memcpi:28,memor:48,memori:[2,3,11,14,24,26,28,31,33,35,44,47,48,49],memory_threshold_on_load_data:31,mere:[11,14],merg:[25,31,39,49],mergedict:[39,49],messag:[17,31,35,46,48,49],meta:[29,41,42,44],meta_config:[29,46],meta_fil:46,meta_gener:[29,46],meta_path:41,meta_to_head:46,metadata:[34,35],metaplotlib:15,method:[3,8,10,11,12,14,19,26,28,31,33,44,46,48,49],metric:30,might:[10,14,26,34],mileag:28,million:[33,45],min:[7,14,28,33,34,46],min_pool_s:3,min_siz:14,mind:29,mini:[3,10,14],mini_batch:16,minibatch:[10,14],minim:[3,12,17,31],minimum:[10,14],minimun:31,minst:3,minut:[34,49],miss:[31,39,47],mit:34,mix:[11,14,24,47],mixed_attr:14,mixed_bias_attr:[11,14],mixed_lay:[11,24,47],mixed_layer_attr:11,mixedlayertyp:10,mkdir:[18,34],mkl:18,mkl_path:18,mkl_root:18,ml_data:[29,46],mnist:[3,5,16],mnist_provid:3,mnist_random_image_batch_read:16,mnist_train:[3,16],mnist_train_batch_read:16,mod:47,modal:47,mode:[10,14,31,40,41,42,46,48,49],model:[2,5,8,10,11,12,14,22,25,26,27,31,34,46,47,48],model_averag:12,model_config:[5,40],model_list:[31,33,47,48],model_output:48,model_path:33,model_zoo:[39,42],modelaverag:12,modelconfig:14,modifi:[5,24,25,26,29,34],modul:[2,3,5,8,11,14,17,18,41,42,44,46,47],modulo:[10,14],momentum:[7,12,14,17,44],momentumoptim:[17,41],mon:35,monitor:[44,48],mono:[10,14],month:[44,49],mood:48,more:[2,3,5,9,10,11,14,15,16,17,19,24,26,28,29,33,35,41,44,47,48,49],morin:[10,14],mose:[48,49],moses_bleu:49,mosesdecod:48,most:[3,5,10,15,16,17,24,26,28,30,46,47,48,49],mostli:[41,45],mount:[19,34,35],mountpath:[34,35],move:[10,14,28,34,46,48],movement:[28,48],movi:[3,48],movie_featur:46,movie_head:46,movie_id:46,movie_meta:46,movie_nam:46,movieid:45,movielen:43,moving_average_fract:[10,14],mpi:29,mse:10,much:[10,14,16,28],mul:26,mulit:29,multi:[10,14,26,30,31,42,49],multi_binary_label_cross_entropi:14,multi_binary_label_cross_entropy_cost:14,multi_crop:42,multinomi:[10,14],multipl:[9,10,11,14,15,24,26,31,33,34,40,44,46,48],multipli:[9,10,14,26,41],multithread:3,music:45,must:[3,9,10,11,14,16,18,24,25,26,29,31,33,34,49],my_cluster_nam:34,my_cool_stuff_branch:25,my_external_dns_nam:34,mypaddl:35,mysteri:45,name:[3,7,8,9,10,11,14,15,17,19,24,26,28,29,31,33,35,36,37,39,40,41,42,44,46,48,49],namespac:[26,35],nano:25,nativ:[10,14],natur:[33,47,48],nce:14,nchw:[10,14],ndcg:[10,14],ndcg_num:[10,14],nearest:44,necessari:[3,10,14,18,26,29,44,48],necessarili:26,need:[3,10,11,14,15,17,18,19,21,24,25,26,29,30,31,33,34,35,40,41,42,44,46,47,48,49],neg:[3,9,10,14,44,47,48],neg_distribut:[10,14],negat:47,neighbor:44,nest:3,net:[10,11,14],net_conf:48,net_diagram:42,network:[1,2,3,4,5,7,9,10,12,15,16,17,26,28,29,31,39,48,49],network_config:33,networkadministr:34,neural:[3,5,10,11,12,14,15,17,28,31,39,40,42,48,49],neuralnetwork:[10,14,22],neuron:[5,26,44,48],never:[14,16,34,35],newest:25,newtork:48,next:[10,24,26,28,31,34,35,47,48,49],nfs4:34,nfs:34,nfsver:34,nginx:19,nic:[29,30,31],nine:47,nlp:[3,10],nmt:49,nnz:26,no_cach:3,no_sequ:[3,46],noah:48,noavx:[19,21],node:[10,14,26,29,31,34,35,48,49],node_0:34,node_1:34,node_2:34,nodefil:29,noir:45,nois:[10,14,40],noise_dim:40,non:[10,14,26,31,34],none:[2,3,5,7,8,9,10,11,12,14,15,17,24,42,44],nonlinear:26,norm:[14,40],norm_by_tim:[10,14],normal:[3,5,10,11,14,21,24,26,29,31,35,39,40,42],normzal:42,north:41,notat:[10,14],note:[3,5,7,10,11,12,14,15,16,18,19,28,31,33,34,39,41,46,48],noth:[14,31],notic:[24,26],novel:48,now:[0,3,10,14,17,19,25,31,34,40,46,47],nproc:18,ntst1213:49,ntst14:49,nullptr:26,num:[10,14,29,31,44,47,48,49],num_channel:[10,11,14,41],num_chunk_typ:9,num_class:[10,11,14,41],num_filt:[10,11,14],num_gradient_serv:[30,31],num_group:[10,14],num_neg_sampl:[10,14],num_parameter_serv:15,num_pass:[17,30,31,33,35,44,46,47,48,49],num_repeat:[10,14],num_result:9,num_results_per_sampl:10,number:[3,9,10,14,16,17,26,29,31,34,39,41,42,44,47,48,49],numchunktyp:9,numdevices_:33,numlogicaldevices_:33,numofallsampl:9,numofwrongpredict:9,numpi:[16,17,18,40,42],numsampl:28,numtagtyp:9,nvidia:[18,19,28,31],obj:[3,8,17,41,42,44,46],object:[3,5,7,8,9,10,11,12,14,15,28,40,41,42,44,47],observ:[12,17,26,28,49],obtain:[44,47,48],occup:[45,46],occur:25,oct:35,odd:[10,14],off:19,offer:[5,47],offici:[19,34,41],offset:[10,14,46],often:[9,14,29,44,49],ograd:26,old:[19,25,31],omit:44,on_coverallscompil:18,on_init:3,on_travisexclud:18,onc:[3,10,19,25,26,34,44],one:[3,8,9,10,11,12,14,15,16,17,19,25,26,29,31,33,34,35,39,40,41,42,44,46,47,48,49],one_host_dens:46,one_hot_dens:46,onli:[2,3,5,9,10,11,14,15,17,18,24,25,26,28,30,31,33,34,35,39,42,44,45,48,49],onlin:[12,16],onto:34,open:[0,3,10,14,15,16,17,34,42,44,46,47],openbla:18,openblas_path:18,openblas_root:18,oper:[10,11,12,14,19,24,26,28,31,34,39,41,46],opinion:48,opt:[15,18],optim:[3,4,7,14,17,26,28,48],option:[3,9,10,14,15,17,25,26,29,33],order:[3,10,11,14,16,26,31,34,35,40,42,44,48,49],ordinari:48,oregon:34,org:[10,11,14,18,40],organ:[10,14,41,48,49],origin:[0,2,3,10,14,25,40,47,49],other:[3,9,10,11,12,14,18,21,24,25,33,34,35,39,40,41,42,44,45,46,47,48,49],otherchunktyp:9,otherwis:[2,8,10,14,15,16,24,29,33,46,49],our:[15,19,24,26,34,35,39,41,44,47,48,49],out:[10,14,15,17,24,28,31,34,35,41,48],out_dir:34,out_left:[10,14],out_mem:24,out_prod:14,out_right:[10,14],out_size_i:[10,14],out_size_x:[10,14],outer:14,outlin:32,outperform:47,output:[5,7,9,10,14,15,16,17,24,26,28,31,33,35,39,40,41,42,44,46,47,48,49],output_:[10,14,26],output_dir:42,output_fil:47,output_id:[10,14],output_lay:42,output_max_index:14,output_mem:[10,14,24],outputh:[10,14],outputw:[10,14],outsid:[3,10,11,14],outter_kwarg:3,outv:26,over:[2,10,11,14,15,25,26,28,44,47,48],overcom:48,overhead:28,overlap:26,overrid:26,owe:0,own:[25,29,34],pacakg:21,packag:[3,14,20,34],pad:[10,14,24,44],pad_c:[10,14],pad_h:[10,14],pad_w:[10,14],paddepaddl:2,padding_attr:[10,14],padding_i:[10,14],padding_x:[10,14],paddl:[3,5,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,25,26,27,28,29,31,33,34,40,41,44,46,47,48,49],paddle_n:29,paddle_output:35,paddle_port:29,paddle_ports_num:29,paddle_ports_num_for_spars:29,paddle_pserver2:29,paddle_root:39,paddle_source_root:39,paddle_train:29,paddledev:[19,34,35],paddlepaddl:[0,2,3,5,10,11,12,14,16,17,18,21,22,24,25,26,27,28,29,36,37,42,44,46,47,48],paddlepadl:3,paddlpaddl:0,paddpepaddl:3,page:[25,34,46],pair:[9,47],palmer:47,paper:[10,14,39,40,42,47,48,49],paraconvert:39,paragraph:48,parallel:[28,31,33,34,35,49],parallel_nn:[7,14,30,31],param:[7,10,14,46],param_attr:[10,11,14,17,24],paramattr:[7,10,14,17,24],paramet:[2,3,4,5,8,9,10,11,12,14,16,17,26,27,33,40,41,44,46,47,48,49],parameter_attribut:[10,14],parameter_block_s:[30,31],parameter_block_size_for_spars:[30,31],parameter_learning_r:[7,14],parameter_nam:15,parameter_serv:15,parameterattribut:[7,10,11,14],parametermap:26,parameters_:26,parameterset:15,parametris:12,paramt:[34,39],paramutil:46,paraphras:49,paraphrase_data:39,paraphrase_model:39,paraspars:26,parent:[10,26],pars:[5,14,33,34,40,46,47],parse_config:[5,40],parse_network:14,parser:46,part:[3,14,17,24,25,26,28,40,44,46,47,48,49],parti:[28,46],partial:[10,14,40],participl:39,particular:28,partit:34,pass:[3,8,10,14,16,17,25,26,28,29,31,34,35,40,41,44,46,47,48,49],pass_idx:16,pass_test:40,passtyp:26,password:[19,29],past:[15,34],path:[2,3,9,16,17,18,24,29,31,33,34,35,39,41,42,44,47,48,49],pattern:[17,34,46,48],paul:47,pave:49,pdf:[10,11,14],pem:[15,34],penn:47,per:[10,16,31,41,44],perfom:[31,33],perform:[2,10,11,14,17,24,25,26,27,29,30,40,41,44,48,49],period:[2,31,44,46,47,48,49],perl:[48,49],permiss:34,peroid:[10,14],persist:34,persistentvolum:34,persistentvolumeclaim:34,person:15,perspect:28,perturb:26,pgp:34,phase:17,photo:41,pick:[3,34],pickl:46,picklabl:8,pictur:44,piec:[10,11,14,17],pillow:41,pip:[18,25,29,41,46],pipe:45,pipelin:47,pixel:[3,10,14],pixels_float:3,pixels_str:3,place:[2,3,26,28,29,42,49],placehold:17,plai:[47,48],plain:[2,9,10,14],plan:26,platform:[0,17,19,34],pleas:[3,5,7,10,11,12,14,15,16,18,19,20,24,25,26,34,39,41,44,46,47],plot:[15,41],plotcurv:41,png:[41,42],pnpairvalidationlay:31,pnpairvalidationpredict_fil:30,pod:[34,35],pod_nam:34,point:[17,19,28],polar:48,polici:34,polit:48,poll:48,poo:41,pool3:26,pool:[1,3,4,11,41,44,46],pool_attr:[11,14],pool_bias_attr:[11,14],pool_layer_attr:11,pool_pad:[11,14],pool_siz:[3,10,11,14],pool_size_i:[10,14],pool_strid:[11,14],pool_typ:[10,11,14],pooling_lay:[11,44,46],pooling_typ:[10,14,44],poolingtyp:14,popular:[17,42],port:[19,29,30,31,34,35],port_num:30,ports_num:31,ports_num_for_spars:[30,31,33],pos:[46,48],posit:[3,9,10,14,44,47,48,49],positive_label:9,possibl:[15,25,28,40],post1:18,potenti:28,power:[10,14,44,49],practic:[8,10,14,17,24,26],pre:[3,10,11,14,15,34,35,39,41,47,48,49],pre_dictandmodel:39,precis:[9,18],pred:[44,47],predefin:48,predetermin:[10,31,49],predic:47,predicate_dict:47,predicate_dict_fil:47,predicate_slot:47,predict:[3,4,9,12,14,17,24,29,31,39,44,49],predict_fil:31,predict_output_dir:[30,31,44],predict_sampl:5,predicted_label_id:44,predictor:46,predin:41,prefer:48,prefetch:26,prefix:34,pregrad:26,preinstal:18,premodel:39,prepar:[5,22,36,44],preprcess:48,preprocess:[24,29,35,48],prerequisit:18,present:[15,42,47,49],pretti:17,prev_batch_st:[30,31],prevent:[2,12,15],previou:[10,11,14,26,31,34,47,49],previous:[35,42],price:17,primari:14,primarili:48,principl:15,print:[7,14,15,17,24,31,39,44,46,47,48,49],printallstatu:28,printer:9,printstatu:28,priorbox:14,prite:9,privileg:34,prob:[9,40],probabilist:[10,14,39],probability_of_label_0:44,probability_of_label_1:44,probabl:[9,10,14,24,25,42,44,47],problem:[5,10,12,14,15,22,44,47,48],proc:19,proc_from_raw_data:44,proce:[16,34],procedur:[39,47,49],proceed:[10,14,47],process:[2,3,5,7,8,10,11,12,14,15,17,24,29,31,33,34,35,39,41,42,44,46,47,48,49],process_pr:44,process_test:8,process_train:8,processdata:[41,42],processor:28,produc:[11,14,16,19,42,44],product:[0,14,26,34,44,48],productgraph:35,profil:18,proflier:28,program:[2,15,16,28,29,31],programm:45,progress:31,proivid:3,proj:[10,14],project:[10,11,14,18,24,26,46],promis:[10,11,14],prompt:25,prone:15,prop:47,propag:[12,31,33],properli:44,properti:[3,31],propos:49,proposit:47,protect:26,proto:14,protobuf:18,protocol:31,prove:44,proven:49,provid:[0,8,10,14,15,17,24,28,29,34,39,40,41,42,45,48],providermemory_threshold_on_load_data:30,provis:34,provod:3,prune:10,pserver:[29,30,31,34],pserver_num_thread:[30,31],pserverstart_pserv:30,pseudo:15,psize:26,pull:[39,49],punctuat:48,purchas:44,purpos:[0,28],push_back:26,put:[26,29,35,44],pvc:34,pwd:19,py_paddl:[5,40],pydataprovid:[2,3,44],pydataprovider2:[4,5,17,24,44,46,48],pydataproviderwrapp:8,pyramid:[10,14],pyramid_height:[10,14],python:[2,3,4,8,14,15,17,18,19,25,29,39,40,41,47,48,49],pythonpath:41,pzo:48,qualifi:18,qualiti:44,queri:[10,14,34,49],question:[10,14,15,34,47],quick:[31,35,43,49],quick_start:[34,35,36,44],quick_start_data:35,quickli:17,quickstart:35,quit:28,quot:45,ramnath:48,ran:28,rand:[28,31,33,40,47],random:[3,7,10,14,16,17,31,40,41,47],randomli:48,randomnumberse:30,rang:[3,10,14,16,31,33,41,45,47],rank:[10,14,15,34,42,44],rank_cost:14,rare:3,rate:[7,9,12,14,26,29,41,44,46,48,49],rather:[5,34,48],ratio:[14,31],raw:[10,14,17,44,48],raw_meta:46,rdma:[18,31],rdma_tcp:[30,31],reach:[28,47],read:[2,3,15,16,17,24,29,34,42,44,46],read_from_realistic_imag:15,read_from_rng:15,read_mnist_imag:15,read_ranking_model_data:15,reader:49,reader_creator_bool:16,reader_creator_random_imag:16,reader_creator_random_imageand_label:16,readi:[17,34,35,41],readm:[45,46,48],readonesamplefromfil:3,readwritemani:34,real:[3,16,17,40],realist:15,reason:[10,11,14,15,19,35],rebas:25,recal:9,receiv:8,recent:49,reciev:31,recogn:41,recognit:[3,10,14,42,48],recommand:3,recommend:[2,11,14,15,24,26,29,31,46],recommonmark:18,recompil:28,record:[34,46,47],recordio:15,recov:[17,40],rectangular:[10,14],recurr:[14,47,48],recurrent_group:[11,14,24],recurrent_lay:11,recurrentgroup:9,recurrentlay:31,recurs:19,recv:34,reduc:[12,29,31,33],refer:[2,5,7,8,10,11,12,14,24,26,29,35,39,41,44,46,49],referenc:10,regard:47,regardless:49,regex:46,region:[28,47],regist:[26,28],register_gpu_profil:28,register_lay:26,register_timer_info:28,registri:35,regress:[9,14,22,43],regression_cost:[14,17,46],regular:[7,12,14,26,34,41,44,48],rel:[2,11,14,29],relat:[3,8,21,35,46,48],relationship:[17,40],releas:[18,19,21,34,45,47],relev:[47,49],reli:18,relu:[6,10,14,26],reluactiv:10,remain:44,remot:[7,14,19,25,26,29,31,33,34],remoteparameterupdat:31,remov:[29,31,48],renam:49,reorgan:[10,14],repeat:[10,14],replac:48,repo:25,report:[28,29],repositori:25,repres:[3,5,10,12,14,24,26,34,41,44,45],represent:[44,48],reproduc:49,request:[34,35,39,49],requir:[2,9,10,14,15,26,29,34,35,40,41,44,46],requrest:25,res5_3_branch2c_bn:42,res5_3_branch2c_conv:42,res:47,research:[10,14,41,45,48],resembl:48,reserv:3,reserveoutput:26,reset:[10,14],reshap:[14,16],reshape_s:[10,14],residu:42,resnet:43,resnet_101:42,resnet_152:42,resnet_50:42,resolv:[25,35],resourc:[19,34],respect:[3,17,24,26,31,41,42,47,49],respons:[10,14,34,35],rest:[3,10,14,17],restart:[34,35],restartpolici:[34,35],restrict:31,resu:16,result:[5,9,10,14,24,28,31,34,41,42,44,46,47,48],result_fil:[9,24],ret_val:46,retir:45,retran:34,retriev:[26,35],return_seq:[11,14],reus:[16,26],reveal:15,revers:[10,11,14,24,47,48],review:[25,35,44,48],reviews_electronics_5:35,revis:44,rewrit:49,rgb:[10,14],rgen:48,rho:12,rich:17,right:[3,10,14,42],rmsprop:[12,44],rmspropoptim:46,rnn:[10,11,14,27,30,44,48],rnn_bias_attr:24,rnn_layer_attr:24,rnn_out:24,rnn_step:10,rnn_use_batch:[30,31],robot:41,role:[15,24,34,43,48],roman:48,romanc:45,root:[12,14,19,29,34,35],root_dir:29,rot:[10,14],rotat:[10,14],roughli:[3,40],routin:46,routledg:48,row:[5,9,10,14,26,42],row_id:[10,14],rsize:34,rtype:46,rule:[26,34],run:[15,19,25,26,27,28,31,34,36,37,39,41,42,44,46,48,49],runinitfunct:28,runtim:[2,3,18,29],s_fusion:46,s_id:46,s_param:40,s_recurrent_group:24,sacrif:2,sai:[17,31,33],sake:26,sale:45,same:[3,5,8,9,10,11,14,15,24,29,33,34,39,44,46,47,48,49],samping_id:[10,14],sampl:[3,5,9,14,29,31,33,39,40,42,44,46,47,48,49],sample_dim:40,sample_id:9,sample_num:9,sampling_id:14,santiago:48,satisfi:[29,34,44],save:[3,10,14,17,31,33,34,35,41,42,44,46,47,48,49],save_dir:[17,31,33,35,40,41,44,46,47,48,49],save_only_on:[30,31],saving_period:[30,31],saving_period_by_batch:[30,31,33,44],saw:3,scalabl:0,scalar:[3,10,14],scale:[0,10,14,42,45,46],scaling_project:14,scalingproject:[10,14],scatter:10,scenario:[17,30],scene:30,schdule:34,schedul:[34,40],scheduler_factor:[7,14],schema:39,scheme:[9,12,47],schmidhub:48,schwenk:49,sci:45,scienc:48,scientist:[0,45],score:[9,10,14,46,48,49],screen:46,scrip:44,script:[5,19,29,34,41,42,44,47,48,49],seaplane_s_000978:41,search:[10,18,24,31,47,49],seat:49,second:[3,10,14,15,16,17,25,29,39,42,44,45,46,48],secret:34,section:[3,24,26,29,34,44],sed:48,see:[3,5,10,11,14,15,17,25,28,34,39,40,42,44,46,48,49],seed:[28,31],segment:9,segmentor:39,sel_fc:[10,14],select:[10,14,25,34,45,49],selectiv:[10,14],selective_fc:14,selector:35,self:[17,26,45,48],selfnorm:[10,14],semant:[15,24,43,48],semat:15,sen_len:47,send:[31,34],sens:10,sent:[15,35],sent_id:24,sentenc:[3,10,24,44,47,48,49],sentiment:[3,17,43,44,47],sentiment_data:48,sentiment_net:48,sentimental_provid:3,separ:[3,9,31,39,44,45,46,47,49],seq:[10,14,46],seq_concat:14,seq_pool:[10,14],seq_reshap:14,seq_text_print:9,seq_to_seq_data:[39,49],seq_typ:[3,46],seqtext_printer_evalu:24,seqtoseq:[10,24,39,49],seqtoseq_net:[10,24,39,49],sequel:3,sequenc:[3,9,10,11,14,26,39,44,46,47,48,49],sequence_conv_pool:[14,44],sequence_layer_group:10,sequence_nest_layer_group:10,sequencesoftmax:[6,14],sequencestartposit:[10,14],sequencetextprint:9,sequencetyp:3,sequenti:[8,10,14,24,44,47],seri:[11,14,48],serial:3,serv:[19,28,34,40],server:[15,19,26,29,30],servic:45,session:28,set:[2,3,5,7,9,10,11,14,15,17,18,19,21,24,26,27,28,29,30,31,33,34,35,39,41,42,44,45,46,47,48,49],set_active_typ:26,set_default_parameter_nam:[7,14],set_drop_r:26,set_siz:26,set_typ:26,setp:34,settup:26,setup:[3,26,44],sever:[3,10,14,29,33,34,43,44,46,47,48,49],sgd:[12,15,29,40,48,49],sgdasync_count:30,shallow:47,shape:[10,14,42],shard:34,share:[10,14,18,28,31,35,47],shared_bia:[11,14],shared_bias:[10,14],shell:[34,42],shift:42,ship:41,shold:48,shop:48,shorter:42,should:[3,5,9,10,12,14,15,16,17,21,24,25,29,34,41,44,46,47,48,49],should_be_fals:15,should_be_tru:15,should_shuffl:[3,47],shouldn:25,show:[5,12,14,17,25,31,34,35,39,42,44,46,47,48,49],show_check_sparse_distribution_log:[30,31],show_layer_stat:[30,31],show_parameter_stats_period:[30,31,33,35,44,47,48,49],shown:[3,9,10,14,15,24,26,28,34,40,41,42,44,46,48,49],shrink:26,shuf:46,shuffl:[3,46,48],sid:34,side:[10,14,42],sig:34,sigint:29,sigmoid:[6,10,14,26],sigmoidactiv:[10,11],sign:34,signal:29,signatur:34,signific:28,similar:[10,14,16,34,44,46],similarli:[10,14,47],simpl:[2,3,9,10,11,14,18,22,25,28,31,44,46,47,48],simple_attent:[14,24],simple_gru2:14,simple_gru:[14,44],simple_img_conv_pool:14,simple_lstm:[10,14,44],simple_rnn:[10,24],simplest:34,simpli:[2,10,14,15,18,24,25,28,39,42,46,48,49],simplifi:[15,26,35],simultan:34,sinc:[10,14,16,17,28,34,40,44,45,49],sincer:[25,48],singl:[3,9,11,12,14,26,29,35,42,44,47,49],site:34,six:[39,47,49],size:[3,9,10,11,12,14,16,17,24,26,29,31,40,41,42,44,45,46,47,48,49],size_a:[10,14],size_b:[10,14],size_t:26,sizeof:39,skill:49,skip:[16,17,29,34,42],slide:12,slightli:41,slope:[10,14],slope_intercept:14,slot:[46,47],slot_dim:46,slot_nam:46,slottyp:46,slow:[3,28],small:[3,26,29,31,41,49],small_messag:[30,31],small_vgg:41,smaller:[10,14],smith:48,snap:35,snapshot:34,snippet:[24,26,28,34,44],social:48,sock_recv_buf_s:[30,31],sock_send_buf_s:[30,31],socket:31,softmax:[6,10,11,14,15,24,26,39,44,47,48],softmax_param_attr:[11,14],softmax_selfnorm_alpha:[10,14],softmaxactiv:[24,44],softrelu:[6,14],softwar:28,solv:[15,47],solver:49,some:[3,7,10,12,14,15,17,18,25,26,28,30,31,33,34,40,44,45,46,47,48,49],someth:[3,10,14],sometim:[12,16,28,48],sophist:[17,26,29],sort:[10,14,31,34,46,48,49],sourc:[0,8,10,14,16,17,19,22,24,25,34,35,39,44,46,49],source_dict_dim:24,source_language_word:24,space:[9,24,28],space_seperated_tokens_from_dictionary_according_to_seq:9,space_seperated_tokens_from_dictionary_according_to_sub_seq:9,spars:[3,7,10,12,14,26,29,31,34,44],sparse_binary_vector:[3,44],sparse_float_vector:3,sparse_upd:[7,14],sparseparam:26,sparseprefetchrowcpumatrix:26,spatial:[10,14,41],speak:[24,49],spec:[34,35],specfii:31,speci:41,special:[10,18,39,44,49],specif:[2,33,41,44,46],specifi:[2,3,9,10,14,15,17,18,24,26,31,34,40,41,42,44,45,46,48,49],speech:[10,14],speed:[11,14],spefici:42,sphinx:18,sphinx_rtd_them:18,split:[3,10,14,29,33,34,39,42,44,47],split_count:34,spp:[10,14],sql:2,squar:[6,10,12,14,17],squarerootn:[13,14],squarerootnpool:[10,14],squash:49,srand:31,src:49,src_backward:24,src_dict:24,src_embed:24,src_forward:24,src_id:24,src_root:5,src_word_id:24,srl:47,ssd:14,ssh:[19,29,34,35],sshd:19,ssl:18,sstabl:15,stabl:34,stack:[17,34,44,47],stacked_lstm_net:48,stacked_num:48,stackexchang:[10,14],stage:29,stake:49,stale:25,stamp:28,standard:[7,14,39,41,47,48,49],stanford:35,stanh:[6,14],star:45,start:[10,14,17,19,24,25,28,29,31,38,39,43,46,49],start_pass:[30,31],start_pserv:31,startup:34,stat:[18,28,31,47,48,49],state:[10,11,14,17,24,31,35,40,47,49],state_act:[10,11,14],statement:[26,34],staticinput:[10,24],statist:[10,14,31,44,47,48,49],statset:28,statu:[9,25,28,34,35],status:35,std:[26,31],stderr:29,stdout:29,step:[5,10,11,12,14,24,26,28,29,34,35,44,46,47,48,49],still:42,stmt1482205552000:34,stmt1482205746000:34,stochast:12,stock:48,stop:[10,29,31,35,46],storag:[34,35,41],store:[9,10,14,26,29,31,34,35,39,41,42,44,46,47,48,49],str:33,straight:25,strategi:[3,14,31,47],street:[10,14,47],strength:40,strict:16,stride:[10,14],stride_i:[10,14],stride_x:[10,14],string:[2,3,8,9,10,14,26,31,34,48],strip:[44,46,47],structur:[29,34,39,41,44,46,47,48,49],sts:34,stub:[10,14],student:45,stuff:25,stun:3,style:[3,10,14,18,25],sub:[9,10,14,15,24,26,41,44,49],sub_sequ:3,subgradi:12,submit:[25,30,31,34],subnet0:34,subnet:[15,34],subobjectpath:35,subsequenceinput:10,subset:[26,49],substanti:42,substitut:49,succe:48,succeed:35,success:[34,35,42,47],successfulcr:35,successfuli:48,successfulli:[42,46,48],successor:[31,49],sucessfulli:49,sudo:[18,21,34,41],suffic:[16,17],suffici:31,suffix:49,suggest:[10,14,28],suitabl:[25,31,41],sum:[9,10,12,13,14,24,26],sum_cost:14,sum_to_one_norm:[10,14],summar:[44,48],sumpool:[10,14],support:[7,9,10,12,14,16,18,19,21,24,26,28,31,34,47],support_hppl:14,suppos:[17,26,44],sure:[25,26,34,41,48],survei:48,swap_channel:42,swig:[5,18],swig_paddl:[5,40],symbol:10,sync:[25,31,40],syncflag:26,synchron:[12,29,31,34],syntact:47,syntax:[16,46],synthect:17,synthes:40,synthet:17,sys:42,system:[18,19,29,35,44,47,48,49],t2b:39,tab:44,tabl:[3,10,14,42,44,49],table_project:14,tableproject:[10,14],tag:[9,24],tagtyp:9,take:[3,5,9,10,11,14,15,24,26,28,34,35,40,47,49],taken:[3,47],tanh:[6,10,11,14,26],tanhactiv:[10,11,24],taobao:48,tar:[18,34],tarbal:34,target:[10,14,24,39,44,49],target_dict_dim:24,target_language_word:24,targetinlink:10,task:[3,9,10,14,17,24,33,39,42,47,48,49],tconf:48,tcp:[31,34],teach:44,tear:28,technician:45,techniqu:[24,26],tee:[35,41,46,47,48,49],tell:[28,46],tellig:48,templat:[35,47],tempor:[10,14,44,47],tensor:[10,14],term:[10,11,14,47,48],termin:[19,35],terminolog:17,tese:2,tesh:47,test:[2,3,8,9,10,14,15,16,18,19,21,25,28,29,30,39,41,42,44,45,49],test_all_data_in_one_period:[35,41,46,47,48],test_data:49,test_fcgrad:26,test_gpuprofil:28,test_layergrad:26,test_list:[3,8,17,41,44],test_part_000:48,test_pass:[30,31,33,49],test_period:[30,31,33],test_ratio:46,test_wait:[30,31],testa:15,testb:15,testbilinearfwdbwd:28,testconfig:26,tester:[46,49],testfcgrad:26,testfclay:26,testlayergrad:26,testmodel_list:30,testq:15,testsave_dir:30,testutil:26,text:[2,3,9,11,14,15,24,34,39,43,44,46,48],text_conv:44,text_conv_pool:[14,46],text_fil:48,tflop:28,tgz:18,than:[3,5,7,9,10,11,12,14,18,19,24,26,29,34,42,47,48,49],thank:[0,39,49],thei:[3,15,17,24,26,28,29,30,34,42,48],them:[2,3,11,14,15,16,17,19,24,28,30,31,34,41,42,44,46,48,49],theori:28,therefor:18,therein:[10,14],therun:42,thi:[2,3,7,8,9,10,11,12,14,15,16,17,18,19,21,24,25,26,28,29,31,33,34,35,39,40,41,42,44,45,46,47,48,49],thing:[3,17,24,25,28,46,47],think:15,third:[10,14,28,42,48],those:[42,47],thought:28,thread:[26,28,31,33,46,47,48,49],thread_local_rand_use_global_se:[30,31],threadid:33,threadloc:28,three:[3,9,10,12,14,16,17,24,31,40,42,48,49],threshold:[7,9,12,14,31,48],thriller:45,through:[5,10,14,24,26,28,29,39,40,41,48,49],throughout:44,throughput:28,thu:[3,10,14,17,26,34,49],tier:35,tight:18,time:[3,10,11,14,15,16,17,24,28,31,33,35,44,45,47,48,49],timelin:[10,14,28],timeo:34,timer:18,timestamp:[10,14,45],timestep:[3,10,14],titil:46,titl:[25,45,46],tmall:48,todo:[9,11,14],toend:[10,14],togeth:[3,10,11,14,24],token:[9,10,15,24,39,48,49],too:[19,21],tool:[24,25,34,48],toolchain:18,toolkit:[18,21],top:[9,14,42,47],top_k:[9,14],topolog:[14,15],toronto:41,total:[9,16,28,29,35,39,49],total_pass:16,touch:48,tourism:48,tourist:49,toward:17,tra:49,track:10,tractabl:10,tradesman:45,tradit:[10,14],train:[2,3,5,7,8,9,10,12,14,22,24,26,27,28,30,36,37,42],train_conf:[39,49],train_config_dir:34,train_data:49,train_id:34,train_list:[3,8,17,41,42,44],train_part_000:48,trainabl:[10,14],traindot_period:30,trainer:[3,5,15,17,26,29,31,33,40,44,47,48,49],trainer_config:[2,3,17,29,34,35,44,46,48],trainer_config_help:[3,6,7,8,9,10,11,12,13,17,26,41,44,46],trainer_count:[30,31,33,34,35,46,47,48,49],trainer_id:[31,34],trainerintern:[44,46,49],training_machin:40,trainingtest_period:30,trainonedatabatch:40,tran:[10,14,26,31],trane:3,trans_full_matrix_project:14,transact:48,transfer:[2,3],transform:[10,14,24,26,40,41,44,47],transform_param_attr:[11,14],translat:[10,11,14,17,39,46,48,49],transpar:29,transport:31,transpos:[10,14,26,40],transposedfullmatrixproject:[10,14],travel:[3,11],travi:[18,25],treat:[10,14,24],tree:[10,14,19,25,31,49],trg:49,trg_dict:24,trg_dict_path:24,trg_embed:24,trg_id:24,trg_ids_next:24,triain:2,trivial:3,trn:44,truck:41,true_imag:16,true_label:16,true_read:16,truth:[9,10,14,44,49],tst:44,tune:[7,14,27,44,46,49],tuninglog_barrier_abstract:30,tupl:[3,8,10,11,14,16],ture:[10,14],turn:[10,16,40],tutori:[24,25,26,28,29,34,35,36,37,38,42,44],tweet:48,twelv:49,twitter:48,two:[2,3,10,11,14,15,16,17,24,28,29,33,34,39,40,41,42,44,46,47,48,49],txt:[3,26,29,34,44,46,48],type:[3,8,9,10,11,12,14,15,16,17,24,26,31,33,34,35,41,42,44,46,47],type_nam:[10,46],typic:[5,9,28,48],ubuntu:21,ubyt:16,ufldl:[10,14],uid:35,unbalanc:31,unbound:24,unconstrain:48,under:[17,18,34,45,48],underli:17,understand:[19,28,39,41,48],understudi:49,undeterminist:28,unemploi:45,unexist:47,uniform:[7,10,14,16,31,40],uniqu:[15,25,31,34],unique_ptr:26,unit:[10,11,14,17,18,19,24,25,47],unittestcheckgrad_ep:30,univ:49,unix:29,unk:[39,49],unk_idx:[44,47],unknown:[10,14],unlabel:48,unlik:[47,48,49],unseg:[10,14],unsup:48,unsupbow:48,until:[29,34,47],unus:46,unzip:46,updat:[7,10,12,14,18,26,29,31,33,48],updatecallback:26,updatestack:34,upon:[0,47],upstream:25,uri:34,url:[21,48],urls_neg:48,urls_po:48,urls_unsup:48,usag:[2,3,9,10,11,14,17,28,39,40,46],use:[0,2,3,5,7,8,9,10,11,12,14,15,17,18,19,20,21,24,25,26,28,29,31,33,34,35,39,40,41,42,44,45,46,47,48,49],use_global_stat:[10,14],use_gpu:[30,31,33,35,40,41,42,44,46,47,48,49],use_jpeg:41,use_old_updat:[30,31],use_seq:[17,46],use_seq_or_not:46,used:[2,3,5,9,10,11,12,14,15,16,17,20,21,24,26,28,29,30,31,33,34,39,41,42,44,46,47,48,49],useful:[2,3,10,11,14,24,26,33,44,47,48],usegpu:[26,40],useless:29,user:[2,3,7,9,10,11,14,15,16,17,19,25,29,30,31,34,42,44,47],user_featur:46,user_head:46,user_id:46,user_meta:46,user_nam:46,userid:45,usernam:25,uses:[3,24,25,26,31,34,41,42,44,46,49],using:[2,3,5,7,8,10,14,15,16,17,19,24,25,26,28,31,33,34,35,39,40,41,42,44,47,48],usr:[18,19,29,31,34],usrdict:39,usrmodel:39,usual:[10,14,17,18,19,28,31,33,34,48],utf:39,util:[5,18,24,26,28,41,46,48],v28:[10,14],valid:[16,34,42,48],valu:[3,5,7,9,10,12,14,17,24,26,31,33,34,40,41,42,47,48],value1:31,value2:31,vanilla:24,vanish:48,vari:[28,34],variabl:[3,10,14,15,17,18,21,26,29,34,35,48],varianc:[10,14,42],vast:25,vec1:14,vec2:14,vector:[3,10,11,14,15,24,26,39,44,46,48,49],vectorenable_parallel_vector:30,verb:47,veri:[3,10,14,24,28,41,44,48],verifi:[25,26],versa:18,version:[10,11,14,18,19,21,26,28,29,30,31,34,35,39,41,45,47,48,49],versu:15,vertic:[10,14,42],vgg:[11,14,41],vgg_16_cifar:41,vgg_16_network:14,via:[16,18,28,29,34,44],vice:18,view:[10,14],vim:25,virtualenv:46,vision:41,visipedia:41,visual:[10,14,28],viterbi:47,voc_dim:44,vocab:48,volum:[19,35],volumemount:[34,35],volumn:34,voluntarili:45,wai:[3,10,11,14,15,17,19,24,26,29,33,46,47,49],wait:[12,31],walk:[5,40],wall:47,want:[3,10,11,14,15,16,17,18,19,26,31,33,39,42,44,46,47,48],war:45,warn:[10,14],warp:[10,14,28],warp_ctc:14,wbia:[34,42],web:19,websit:[41,44,47,48],wei:[47,48],weight:[9,10,11,12,14,24,26,31,33,41,42],weight_act:[11,14],weightlist:26,weights_:26,weights_t:26,welcom:[46,48],well:[26,31,34,41,44],west:34,western:45,wether:[10,14],what:[7,10,11,12,14,17,29,44,46],wheel:18,when:[2,3,7,9,10,12,14,21,24,25,26,28,31,33,34,35,39,40,41,47,48,49],whenev:46,where:[3,10,11,12,14,15,17,24,26,28,29,31,33,39,42,47,49],whether:[9,10,11,14,16,26,31,40,41,46,48,49],which:[0,2,3,5,9,10,11,12,14,15,16,17,21,24,26,28,29,31,33,34,40,41,42,44,45,46,47,48,49],whichev:40,whl:18,who:[39,42,45],whole:[3,9,34,35,44,45,46,49],whole_cont:46,whose:[3,24,46,47],why:[11,14],wide:47,widht:16,width:[9,10,14,16,26,41,49],wiki:[10,14],wikipedia:[10,14],wilder:3,window:[10,14,19,48],wise:[10,14],with_avx:19,with_avxcompil:18,with_doccompil:18,with_doubl:26,with_doublecompil:18,with_dsocompil:18,with_gpucompil:18,with_profil:28,with_profilercompil:18,with_pythoncompil:18,with_rdmacompil:18,with_style_checkcompil:18,with_swig_pycompil:18,with_testingcompil:18,with_tim:28,with_timercompil:18,within:[10,17],without:[9,10,14,16,29,48],wmt14:49,wmt14_data:49,wmt14_model:49,wmt:49,woboq:19,won:[28,42],wonder:3,word:[3,9,10,24,33,43,46,47,48,49],word_dict:[44,47],word_dim:44,word_id:3,word_slot:47,word_vector:44,word_vector_dim:[24,39],work:[3,5,15,16,18,19,24,25,26,28,29,31,34,35,44,46],worker:34,workercount:34,workflow:[25,34],workspac:[31,46],worri:17,wors:40,would:[16,29,34,40,44,47],wouldn:19,wrap:47,wrapper:[11,14,28],writ:46,write:[3,15,16,24,25,27,29,34,41,46,47,49],writelin:17,writer:[15,45],written:[46,48],wrong:[3,16],wsize:34,wsj:47,www:[10,14,19,41,49],x64:18,xarg:[19,26],xgbe0:31,xgbe1:31,xiaojun:48,xrang:[16,17,26],xxbow:48,xxx:[15,19,42,49],xxxxxxxxx:34,xxxxxxxxxx:34,xxxxxxxxxxxxx:34,xxxxxxxxxxxxxxxxxxx:34,xzf:18,y_predict:17,yaml:[34,46],year:45,yeild:41,yield:[3,15,16,17,24,44,46,47,48],you:[2,3,5,7,10,11,12,14,17,18,19,21,24,25,26,28,29,31,33,34,39,40,41,42,44,46,47,48,49],your:[3,10,14,15,18,19,26,28,29,33,34,44,48],your_access_key_id:34,your_secrete_access_kei:34,yum:18,yuyang18:[11,14],yyi:19,zachari:48,zeng:48,zero:[3,7,10,12,14,26,31,34,44],zhidao:39,zhou:[47,48],zip:45,zone:34,zxvf:34,zzz:19},titles:["ABOUT","API","Introduction","PyDataProvider2","API","Python Prediction","Activations","Parameter Attributes","DataSources","Evaluators","Layers","Networks","Optimizers","Poolings","Layers","PaddlePaddle Design Doc","Python Data Reader Design Doc","Simple Linear Regression","Installing from Sources","PaddlePaddle in Docker Containers","Install and Build","Debian Package installation guide","GET STARTED","RNN Models","RNN Configuration","Contribute Code","Write New Layers","HOW TO","Tune GPU Performance","Run Distributed Training","Argument Outline","Detail Description","Set Command-line Parameters","Use Case","Distributed PaddlePaddle Training on AWS with Kubernetes","Paddle On Kubernetes","<no title>","<no title>","PaddlePaddle Documentation","Chinese Word Embedding Model Tutorial","Generative Adversarial Networks (GAN)","Image Classification Tutorial","Model Zoo - ImageNet","TUTORIALS","Quick Start","MovieLens Dataset","Regression MovieLens Ratting","Semantic Role labeling Tutorial","Sentiment Analysis Tutorial","Text generation Tutorial"],titleterms:{"case":33,"class":26,"function":39,"new":26,"return":16,AWS:34,DNS:34,EFS:34,For:35,KMS:34,Use:[33,35],Using:[19,25],about:0,absactiv:6,access:34,account:34,activ:[6,14],adadeltaoptim:12,adagradoptim:12,adamaxoptim:12,adamoptim:12,add:34,address:34,addto_lay:10,adversari:40,aggreg:10,algorithm:44,analysi:48,api:[1,4],appendix:44,applic:4,approach:28,architectur:[24,44],argument:[16,30,33,44],asset:34,associ:34,async:31,attent:24,attribut:[7,14],auc_evalu:9,avgpool:13,avx:19,aws:34,background:17,base:[9,10],baseactiv:6,basepoolingtyp:13,basesgdoptim:12,batch:16,batch_norm_lay:10,batch_siz:16,beam_search:10,between:15,bidirect:48,bidirectional_lstm:11,bilinear_interp_lay:10,bleu:49,block_expand_lay:10,breluactiv:6,bucket:34,build:[18,20,35],built:28,cach:3,cento:18,check:[10,26,29],chines:39,choos:34,chunk_evalu:9,classif:[9,41],classification_error_evalu:9,classification_error_printer_evalu:9,clone:25,cloudform:34,cluster:[29,33,34],code:25,column_sum_evalu:9,command:[32,33,44,49],commit:[25,35],common:31,commun:31,compos:16,concat_lay:10,concept:34,config:[1,4,33,46,47],configur:[24,27,29,34,44,46],connect:10,contain:[19,35],content:[28,34],context_project:10,contribut:25,conv:10,conv_oper:10,conv_project:10,conv_shift_lay:10,convolut:[41,44],core:34,cos_sim:10,cost:10,cpu:[19,33],creat:[16,25,34,35],creator:16,credenti:34,credit:0,crf_decoding_lay:10,crf_layer:10,cross_entropi:10,cross_entropy_with_selfnorm:10,ctc_error_evalu:9,ctc_layer:10,custom:16,dat:45,data:[10,16,17,24,34,35,39,40,41,44,46,47,48,49],data_lay:10,dataprovid:[3,4,31],dataset:[45,46,49],datasourc:8,date:25,debian:21,decayedadagradoptim:12,decor:16,defin:[34,44,48,49],delet:34,delv:41,demo:34,depend:18,deriv:26,descript:[31,40,45,47],design:[15,16],destroi:34,detail:[31,41],develop:[19,27],devic:33,dictionari:[16,39],differ:33,directori:34,distribut:[15,29,31,34],doc:[15,16],docker:[19,35],document:[19,38],dotmul_oper:10,dotmul_project:10,down:34,download:[18,34,35,39,42,46,49],dropout_lay:11,ec2:34,elast:34,embed:[39,44],embedding_lay:10,entri:16,eos_lay:10,equat:26,evalu:[9,17,46],evalutaion:49,event:15,exampl:[15,39,40],exercis:41,expactiv:6,expand_lay:10,extern:34,extract:[39,42,46,49],fc_layer:10,featur:[42,45,46,47],field:46,file:[34,35,44,45,46],find:34,first_seq:10,fork:25,format:44,from:[15,18,20],full_matrix_project:10,fulli:10,gan:40,gate:24,gener:[24,40,49],get:[22,35],get_output_lay:10,github:25,gpu:[19,28,31,33],gradient:26,gradient_printer_evalu:9,group:[10,34],gru:[11,31],gru_group:11,gru_step_lay:10,gru_unit:11,grumemori:10,guid:21,hand:28,handler:15,hook:25,how:[16,27,28],hsigmoid:10,huber_cost:10,iam:34,identity_project:10,identityactiv:6,imag:[10,11,19,35,41],imagenet:42,imdb:48,img_cmrnorm_lay:10,img_conv_bn_pool:11,img_conv_group:11,img_conv_lay:10,img_pool_lay:10,implement:[16,26,40],infer:44,info:42,ingredi:15,init_hook:3,initi:[33,34],input_typ:3,inspect:34,instal:[18,20,21,34,44],instanc:34,integr:34,interfac:[16,42],interpolation_lay:10,introduct:[2,39,42,48,49],isn:16,job:[29,34,35],join:10,keep:25,kei:34,kill:29,kube:34,kubectl:34,kubernet:[34,35],label:47,lambda_cost:10,last_seq:10,lastest:25,launch:29,layer:[10,14,15,26,33],layeroutput:10,layertyp:10,learn:31,line:[32,44],linear:17,linear_comb_lay:10,linearactiv:6,list:16,local:[33,34],log:44,logactiv:6,logist:44,lstm:[11,31,47,48],lstm_step_lay:10,lstmemori:10,lstmemory_group:11,lstmemory_unit:11,map:16,math:10,matrix:31,maxframe_printer_evalu:9,maxid_lay:10,maxid_printer_evalu:9,maxout_lay:10,maxpool:13,memori:10,meta:46,metric:31,mini:16,misc:11,mix:[10,33],mixed_lay:10,mnist:40,model:[1,3,4,15,17,23,24,29,33,39,40,41,42,43,44,49],modifi:35,momentumoptim:12,movi:[45,46],movielen:[45,46],multi_binary_label_cross_entropi:10,multipl:16,name:34,nce_lay:10,need:[16,28],network:[11,14,24,33,40,41,42,44,46,47],neural:[24,41,44,46,47],neuralnetwork:17,nlp:[11,31],non:[3,19],norm:10,nvprof:28,nvvp:28,object:46,observ:[39,42],onli:[16,19],optim:[12,27,44],option:[18,39],outlin:30,output:[11,29,34],overview:44,packag:21,pad_lay:10,paddl:[16,35],paddlepaddl:[15,19,20,34,38,39,49],pair:34,parallel_nn:33,paramet:[7,15,31,32,34,39,42],paraphras:39,pass:33,perform:[28,31],pnpair_evalu:9,point:34,pool:[10,13,14],pooling_lay:10,power_lay:10,pre:25,precision_recall_evalu:9,predict:[5,41,42,46,47,48],prefetch:16,prepar:[17,24,29,34,39,40,41,46,48,49],preprocess:[39,41,44,46,49],prerequisit:29,pretrain:[39,49],print:9,privat:34,problem:17,profil:28,provid:[3,16,44,46,47],pull:25,push:25,pydataprovider2:3,python:[5,16,26,42,44,46],quick:44,randomnumb:31,rank:9,rank_cost:10,rat:46,rate:45,reader:[15,16],recurr:[10,11,24,44],recurrent_group:10,recurrent_lay:10,refer:[3,28,47,48],region:34,regress:[17,44,46],reluactiv:6,render:34,repeat_lay:10,request:25,requir:[18,25],reshap:10,resnet:42,result:[29,35,49],revis:[25,39],rmspropoptim:12,rnn:[23,24,31],role:47,rotate_lay:10,route53:34,run:[29,35,47],sampl:10,sampling_id_lay:10,scaling_lay:10,scaling_project:10,script:35,secur:34,selective_fc_lay:10,semant:47,sentiment:48,seq_concat_lay:10,seq_reshape_lay:10,seqtext_printer_evalu:9,sequenc:24,sequence_conv_pool:11,sequencesoftmaxactiv:6,sequenti:3,server:[31,34],servic:34,set:[12,32],setup:[18,34],sgd:31,share:15,shuffl:16,sigmoidactiv:6,simpl:[17,24],simple_attent:11,simple_gru:11,simple_img_conv_pool:11,simple_lstm:11,singl:16,slice:10,slope_intercept_lay:10,softmaxactiv:6,softreluactiv:6,sourc:[18,20],span:18,spars:33,specifi:[33,39],split:46,spp_layer:10,squareactiv:6,squarerootnpool:13,stack:48,standard:44,stanhactiv:6,start:[15,22,34,35,44],startup:35,structur:40,suffici:16,sum_cost:10,sum_evalu:9,sum_to_one_norm_lay:10,summar:15,summari:44,sumpool:13,system:34,table_project:10,take:16,tanhactiv:6,tear:34,templat:34,tensor_lay:10,test:[26,31,33,46,47,48],text:49,text_conv_pool:11,timer:28,tip:28,toi:40,tool:28,train:[15,16,17,29,31,33,34,35,39,40,41,44,46,47,48,49],trainer:[34,46],trans_full_matrix_project:10,trans_lay:10,transfer:44,tune:[28,31],tutori:[39,41,43,47,48,49],ubuntu:18,unit:[26,31],updat:[15,25,34],usag:[16,27],use:16,user:[39,45,46,48,49],util:9,value_printer_evalu:9,vector:31,verifi:34,version:25,vgg_16_network:11,visual:42,volum:34,vpc:34,warp_ctc_lay:10,what:28,why:[16,28],word:[39,44],workflow:49,workspac:29,wrapper:26,write:[26,44],yaml:35,your:25,zoo:[42,43]}}) \ No newline at end of file diff --git a/develop/doc/tutorials/embedding_model/index_en.html b/develop/doc/tutorials/embedding_model/index_en.html index 2e76be4b2e83a6cb7d01f0b0e40de102f0dad728..ddd1f13fb2b3008776bae74411cff9616ea977ef 100644 --- a/develop/doc/tutorials/embedding_model/index_en.html +++ b/develop/doc/tutorials/embedding_model/index_en.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/tutorials/gan/index_en.html b/develop/doc/tutorials/gan/index_en.html index 19c0e722b5e3e429c902766078d8d50035a3fccb..3cbd2d64c3d0f8df5d9e4f2ca5b3a950aded2f8b 100644 --- a/develop/doc/tutorials/gan/index_en.html +++ b/develop/doc/tutorials/gan/index_en.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/tutorials/image_classification/index_en.html b/develop/doc/tutorials/image_classification/index_en.html index 2e49f36454accb15d77c229746b9e3314ac093c5..f1045656e120a25c7862842cb49b7cce6942efa9 100644 --- a/develop/doc/tutorials/image_classification/index_en.html +++ b/develop/doc/tutorials/image_classification/index_en.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/tutorials/imagenet_model/resnet_model_en.html b/develop/doc/tutorials/imagenet_model/resnet_model_en.html index 6d9e630cbf0af6997bb5026e1240a6b40c020823..970ae9171a930ebded9b39d865a59a719b0d448f 100644 --- a/develop/doc/tutorials/imagenet_model/resnet_model_en.html +++ b/develop/doc/tutorials/imagenet_model/resnet_model_en.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/tutorials/index_en.html b/develop/doc/tutorials/index_en.html index 9125d323c5b26a3982b2bac22c1e1e966aea79ab..170e872a3064936cf8e9dfd28b48d3ce2b8fd134 100644 --- a/develop/doc/tutorials/index_en.html +++ b/develop/doc/tutorials/index_en.html @@ -155,6 +155,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/tutorials/quick_start/index_en.html b/develop/doc/tutorials/quick_start/index_en.html index 38da432a6a32d1491df1ff07aa1760660355645f..495d609d7d2554728062db1535c161b02fe9e1eb 100644 --- a/develop/doc/tutorials/quick_start/index_en.html +++ b/develop/doc/tutorials/quick_start/index_en.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/tutorials/rec/ml_dataset_en.html b/develop/doc/tutorials/rec/ml_dataset_en.html index 0484f27d9e7770e6b656a2ce8c04e08803f055e2..f1dead6e3c1b6f32a7f6ececc6d78fac4920dee1 100644 --- a/develop/doc/tutorials/rec/ml_dataset_en.html +++ b/develop/doc/tutorials/rec/ml_dataset_en.html @@ -153,6 +153,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/tutorials/rec/ml_regression_en.html b/develop/doc/tutorials/rec/ml_regression_en.html index fe506fc239bbe6a1e8d7079867ed5243270792ec..85e771be786ff5fd218c20ca0e7fd0e41d43406a 100644 --- a/develop/doc/tutorials/rec/ml_regression_en.html +++ b/develop/doc/tutorials/rec/ml_regression_en.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/tutorials/semantic_role_labeling/index_en.html b/develop/doc/tutorials/semantic_role_labeling/index_en.html index 65ad520152d41d63ca9d11b2b039e129a737e0de..4e521c0a09f3010239545592b00f6d00ad933abc 100644 --- a/develop/doc/tutorials/semantic_role_labeling/index_en.html +++ b/develop/doc/tutorials/semantic_role_labeling/index_en.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/tutorials/sentiment_analysis/index_en.html b/develop/doc/tutorials/sentiment_analysis/index_en.html index 45f91219120d4affc7822dbe8bd34312bec17a92..d3cdcc44f242d74fae8e2f6069c952344f62b1bb 100644 --- a/develop/doc/tutorials/sentiment_analysis/index_en.html +++ b/develop/doc/tutorials/sentiment_analysis/index_en.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc/tutorials/text_generation/index_en.html b/develop/doc/tutorials/text_generation/index_en.html index 5ef2404acbfce99859cf93d45c141e14ee91c982..5814327785edcb16465618d4ec62b26d4e7800ac 100644 --- a/develop/doc/tutorials/text_generation/index_en.html +++ b/develop/doc/tutorials/text_generation/index_en.html @@ -156,6 +156,10 @@
  • API
  • ABOUT
  • diff --git a/develop/doc_cn/_sources/api/v2/model_configs.rst.txt b/develop/doc_cn/_sources/api/v2/model_configs.rst.txt index a9f33b33ef61bf846013364672ec26ae075d0300..b848bd7045a701a1a0d6e6b53da971ada2c569f5 100644 --- a/develop/doc_cn/_sources/api/v2/model_configs.rst.txt +++ b/develop/doc_cn/_sources/api/v2/model_configs.rst.txt @@ -4,3 +4,32 @@ Layers .. automodule:: paddle.v2.layer :members: + + +========== +Attributes +========== + +.. automodule:: paddle.v2.attr + :members: + +=========== +Activations +=========== + +.. automodule:: paddle.v2.activation + :members: + +======== +Poolings +======== + +.. automodule:: paddle.v2.pooling + :members: + +======== +Networks +======== + +.. automodule:: paddle.v2.networks + :members: diff --git a/develop/doc_cn/api/v1/trainer_config_helpers/activations.html b/develop/doc_cn/api/v1/trainer_config_helpers/activations.html index 32e91455a6bc84719c89561aef1e1c42fcec1571..b632055a70cbf4c9ad868ac1930a76d37fc76f4f 100644 --- a/develop/doc_cn/api/v1/trainer_config_helpers/activations.html +++ b/develop/doc_cn/api/v1/trainer_config_helpers/activations.html @@ -215,61 +215,37 @@

    Activations

    BaseActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.BaseActivation(name, support_hppl)
    -

    A mark for activation class. -Each activation inherit BaseActivation, which has two parameters.

    - --- - - - -
    参数:
      -
    • name (basestring) – activation name in paddle config.
    • -
    • support_hppl (bool) – True if supported by hppl. HPPL is a library used by paddle -internally. Currently, lstm layer can only use activations -supported by hppl.
    • -
    -
    +paddle.trainer_config_helpers.activations.BaseActivation +

    Base 的别名

    AbsActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.AbsActivation
    -

    Abs Activation.

    -

    Forward: \(f(z) = abs(z)\)

    -

    Derivative:

    -
    -\[\begin{split}1 &\quad if \quad z > 0 \\ --1 &\quad if \quad z < 0 \\ -0 &\quad if \quad z = 0\end{split}\]
    +paddle.trainer_config_helpers.activations.AbsActivation +

    Abs 的别名

    ExpActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.ExpActivation
    -

    Exponential Activation.

    -
    -\[f(z) = e^z.\]
    +paddle.trainer_config_helpers.activations.ExpActivation +

    Exp 的别名

    IdentityActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.IdentityActivation
    -

    Identity Activation.

    -

    Just do nothing for output both forward/backward.

    +paddle.trainer_config_helpers.activations.IdentityActivation +

    Linear 的别名

    @@ -278,125 +254,97 @@ supported by hppl.
    paddle.trainer_config_helpers.activations.LinearActivation
    -

    IdentityActivation 的别名

    +

    Linear 的别名

    LogActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.LogActivation
    -

    Logarithm Activation.

    -
    -\[f(z) = log(z)\]
    +paddle.trainer_config_helpers.activations.LogActivation +

    Log 的别名

    SquareActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.SquareActivation
    -

    Square Activation.

    -
    -\[f(z) = z^2.\]
    +paddle.trainer_config_helpers.activations.SquareActivation +

    Square 的别名

    SigmoidActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.SigmoidActivation
    -

    Sigmoid activation.

    -
    -\[f(z) = \frac{1}{1+exp(-z)}\]
    +paddle.trainer_config_helpers.activations.SigmoidActivation +

    Sigmoid 的别名

    SoftmaxActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.SoftmaxActivation
    -

    Softmax activation for simple input

    -
    -\[P(y=j|x) = \frac{e^{x_j}} {\sum^K_{k=1} e^{x_j} }\]
    +paddle.trainer_config_helpers.activations.SoftmaxActivation +

    Softmax 的别名

    SequenceSoftmaxActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.SequenceSoftmaxActivation
    -

    Softmax activation for one sequence. The dimension of input feature must be -1 and a sequence.

    -
    result = softmax(for each_feature_vector[0] in input_feature)
    -for i, each_time_step_output in enumerate(output):
    -    each_time_step_output = result[i]
    -
    -
    +paddle.trainer_config_helpers.activations.SequenceSoftmaxActivation +

    SequenceSoftmax 的别名

    ReluActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.ReluActivation
    -

    Relu activation.

    -

    forward. \(y = max(0, z)\)

    -

    derivative:

    -
    -\[\begin{split}1 &\quad if z > 0 \\ -0 &\quad\mathrm{otherwize}\end{split}\]
    +paddle.trainer_config_helpers.activations.ReluActivation +

    Relu 的别名

    BReluActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.BReluActivation
    -

    BRelu Activation.

    -

    forward. \(y = min(24, max(0, z))\)

    -

    derivative:

    -
    -\[\begin{split}1 &\quad if 0 < z < 24 \\ -0 &\quad \mathrm{otherwise}\end{split}\]
    +paddle.trainer_config_helpers.activations.BReluActivation +

    BRelu 的别名

    SoftReluActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.SoftReluActivation
    -

    SoftRelu Activation.

    +paddle.trainer_config_helpers.activations.SoftReluActivation +

    SoftRelu 的别名

    TanhActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.TanhActivation
    -

    Tanh activation.

    -
    -\[f(z)=tanh(z)=\frac{e^z-e^{-z}}{e^z+e^{-z}}\]
    +paddle.trainer_config_helpers.activations.TanhActivation +

    Tanh 的别名

    STanhActivation

    -
    +
    -class paddle.trainer_config_helpers.activations.STanhActivation
    -

    Scaled Tanh Activation.

    -
    -\[f(z) = 1.7159 * tanh(2/3*z)\]
    +paddle.trainer_config_helpers.activations.STanhActivation +

    STanh 的别名

    diff --git a/develop/doc_cn/api/v1/trainer_config_helpers/layers.html b/develop/doc_cn/api/v1/trainer_config_helpers/layers.html index 7178584c3d67145fb89dab18941001d3f3a97ae9..7ec8d120b44cf288af626fbce7255221588ce887 100644 --- a/develop/doc_cn/api/v1/trainer_config_helpers/layers.html +++ b/develop/doc_cn/api/v1/trainer_config_helpers/layers.html @@ -394,8 +394,7 @@ reasons.

    paddle.trainer_config_helpers.layers.data_layer(*args, **kwargs)

    Define DataLayer For NeuralNetwork.

    The example usage is:

    -
    data = data_layer(name="input",
    -                  size=1000)
    +
    data = data_layer(name="input", size=1000)
     
    @@ -404,9 +403,9 @@ reasons.

    @@ -651,7 +650,7 @@ the right size (which is the end of array) to the left.
  • name (basestring) – layer name
  • a (LayerOutput) – Input layer a.
  • b (LayerOutput) – input layer b.
  • -
  • layer_attr (ExtraLayerAttribute) – layer’s extra attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – layer’s extra attribute.
  • @@ -724,7 +723,7 @@ False means no bias. automatically from previous output.
  • param_attr (ParameterAttribute) – Convolution param attribute. None means default attribute
  • shared_biases (bool) – Is biases will be shared between filters or not.
  • -
  • layer_attr (ExtraLayerAttribute) – Layer Extra Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Layer Extra Attribute.
  • trans (bool) – true if it is a convTransLayer, false if it is a convLayer
  • layer_type (String) – specify the layer_type, default is None. If trans=True, layer_type has to be “exconvt”, otherwise layer_type @@ -833,7 +832,7 @@ h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride MaxPooling.
  • stride (int) – stride width of pooling.
  • stride_y (int|None) – stride height of pooling. It is equal to stride by default.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer attribute.
  • ceil_mode (bool) – Wether to use ceil mode to calculate output height and with. Defalut is True. If set false, Otherwise use floor.
  • @@ -875,7 +874,7 @@ The details please refer to
  • num_channels (int) – number of input channel.
  • pool_type – Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
  • pyramid_height (int) – pyramid height.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • @@ -929,7 +928,7 @@ to devided by groups.

    automatically from previous output.
  • groups (int) – The group number of input layer.
  • name (None|basestring.) – The name of this layer, which can not specify.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer attribute.
  • @@ -971,7 +970,7 @@ The details please refer to
  • power (float) – The hyper-parameter.
  • num_channels – input layer’s filers number or channels. If num_channels is None, it will be set automatically.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • @@ -1033,7 +1032,7 @@ input. initial_std=0, initial_mean=1 is best practice.
  • param_attr (ParameterAttribute) – \(\gamma\), better be one when initialize. So the initial_std=0, initial_mean=1 is best practice.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • use_global_stats (bool|None.) – whether use moving mean/variance statistics during testing peroid. If None or True, it will use moving mean/variance statistics during @@ -1123,7 +1122,7 @@ out_{i} = act(in_{i} + out_{i+1} * W) \ \ \text{for} \ start <= i < end\en
  • bias_attr (ParameterAttribute) – bias attribute.
  • param_attr (ParameterAttribute) – parameter attribute.
  • name (basestring) – name of the layer
  • -
  • layer_attr (ExtraLayerAttribute) – Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Layer Attribute.
  • @@ -1415,7 +1414,7 @@ be sigmoid only.
  • state_act (BaseActivation) – State Activation Type. Default is sigmoid, and should be sigmoid only.
  • bias_attr (ParameterAttribute) – Bias Attribute.
  • -
  • layer_attr (ExtraLayerAttribute) – layer’s extra attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – layer’s extra attribute.
  • @@ -1611,7 +1610,7 @@ then this function will just return layer’s name.
  • bias_attr (ParameterAttribute or None or bool) – The Bias Attribute. If no bias, then pass False or something not type of ParameterAttribute. None will get a default Bias.
  • -
  • layer_attr (ExtraLayerAttribute) – The extra layer config. Default is None.
  • +
  • layer_attr (ExtraLayerAttribute) – The extra layer config. Default is None.
  • @@ -2071,7 +2070,7 @@ Inputs can be list of LayerOutput or list of projection.

  • name (basestring) – Layer name.
  • input (list|tuple|collections.Sequence) – input layers or projections
  • act (BaseActivation) – Activation type.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • @@ -2115,7 +2114,7 @@ Inputs can be list of LayerOutput or list of projection.

  • a (LayerOutput) – input sequence layer
  • b (LayerOutput) – input sequence layer
  • act (BaseActivation) – Activation type.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • bias_attr (ParameterAttribute or None or bool) – The Bias Attribute. If no bias, then pass False or something not type of ParameterAttribute. None will get a default Bias.
  • @@ -2388,7 +2387,7 @@ LayerOutput.
  • act (BaseActivation) – Activation Type, default is tanh.
  • bias_attr (ParameterAttribute|bool) – Bias attribute. If False, means no bias. None is default bias.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer attribute.
  • @@ -2525,7 +2524,7 @@ which is used in NEURAL TURING MACHINE.

  • out_size_x (int|None) – bilinear interpolation output width.
  • out_size_y (int|None) – bilinear interpolation output height.
  • name (None|basestring) – The layer’s name, which cna not be specified.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer attribute.
  • @@ -2735,7 +2734,7 @@ processed in one batch.

  • b (LayerOutput) – input layer b
  • scale (float) – scale for cosine value. default is 5.
  • size (int) – layer size. NOTE size_a * size should equal size_b.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • @@ -2907,7 +2906,7 @@ in width dimension.

  • pad_c (list|None) – padding size in channel dimension.
  • pad_h (list|None) – padding size in height dimension.
  • pad_w (list|None) – padding size in width dimension.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • name (basestring) – layer name.
  • @@ -2945,7 +2944,7 @@ in width dimension.

  • label – The input label.
  • name (None|basestring.) – The name of this layers. It is not necessary.
  • coeff (float.) – The coefficient affects the gradient in the backward.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • @@ -2981,7 +2980,7 @@ Input should be a vector of positive numbers, without normalization.

  • name (None|basestring.) – The name of this layers. It is not necessary.
  • coeff (float.) – The coefficient affects the gradient in the backward.
  • softmax_selfnorm_alpha (float.) – The scale factor affects the cost.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • @@ -3016,7 +3015,7 @@ Input should be a vector of positive numbers, without normalization.

  • type (basestring) – The type of cost.
  • name (None|basestring) – The name of this layers. It is not necessary.
  • coeff (float) – The coefficient affects the gradient in the backward.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • @@ -3050,7 +3049,7 @@ Input should be a vector of positive numbers, without normalization.

  • label – The input label.
  • name (None|basestring.) – The name of this layers. It is not necessary.
  • coeff (float.) – The coefficient affects the gradient in the backward.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • @@ -3096,7 +3095,7 @@ equal to NDCG_num. And if max_sort_size is greater than the size of a list, the algorithm will sort the entire list of get gradient.
  • name (None|basestring) – The name of this layers. It is not necessary.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • @@ -3151,7 +3150,7 @@ Their dimension is one. It is an optional argument.
  • name (None|basestring) – The name of this layers. It is not necessary.
  • coeff (float) – The coefficient affects the gradient in the backward.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • @@ -3385,7 +3384,7 @@ A fast and simple algorithm for training neural probabilistic language models.
  • bias_attr (ParameterAttribute|None|False) – Bias parameter attribute. True if no bias.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • @@ -3427,7 +3426,7 @@ LayerOutput.
  • name (basestring) – layer name
  • bias_attr (ParameterAttribute|False) – Bias attribute. None means default bias. False means no bias.
  • -
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • +
  • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
  • @@ -3458,7 +3457,7 @@ False means no bias. diff --git a/develop/doc_cn/api/v1/trainer_config_helpers/networks.html b/develop/doc_cn/api/v1/trainer_config_helpers/networks.html index fbd06cdc828f4d9f1d75c6da37ffd63978eae068..6fafc01ded3841d7b0d6250660304bbd3ce652c1 100644 --- a/develop/doc_cn/api/v1/trainer_config_helpers/networks.html +++ b/develop/doc_cn/api/v1/trainer_config_helpers/networks.html @@ -266,9 +266,9 @@ None if user don’t care.
  • fc_act (BaseActivation) – fc layer activation type. None means tanh
  • pool_bias_attr (ParameterAttribute or None.) – pooling layer bias attr. None if don’t care. False if no bias.
  • -
  • fc_attr (ExtraLayerAttribute) – fc layer extra attribute.
  • -
  • context_attr (ExtraLayerAttribute) – context projection layer extra attribute.
  • -
  • pool_attr (ExtraLayerAttribute) – pooling layer extra attribute.
  • +
  • fc_attr (ExtraLayerAttribute) – fc layer extra attribute.
  • +
  • context_attr (ExtraLayerAttribute) – context projection layer extra attribute.
  • +
  • pool_attr (ExtraLayerAttribute) – pooling layer extra attribute.
  • @@ -314,9 +314,9 @@ None if user don’t care.
  • fc_act (BaseActivation) – fc layer activation type. None means tanh
  • pool_bias_attr (ParameterAttribute or None.) – pooling layer bias attr. None if don’t care. False if no bias.
  • -
  • fc_attr (ExtraLayerAttribute) – fc layer extra attribute.
  • -
  • context_attr (ExtraLayerAttribute) – context projection layer extra attribute.
  • -
  • pool_attr (ExtraLayerAttribute) – pooling layer extra attribute.
  • +
  • fc_attr (ExtraLayerAttribute) – fc layer extra attribute.
  • +
  • context_attr (ExtraLayerAttribute) – context projection layer extra attribute.
  • +
  • pool_attr (ExtraLayerAttribute) – pooling layer extra attribute.
  • @@ -365,7 +365,7 @@ False if no bias.
  • bn_layer_attr – ParameterAttribute.
  • pool_stride (int) – see img_pool_layer’s document.
  • pool_padding (int) – see img_pool_layer’s document.
  • -
  • pool_layer_attr (ExtraLayerAttribute) – see img_pool_layer’s document.
  • +
  • pool_layer_attr (ExtraLayerAttribute) – see img_pool_layer’s document.
  • @@ -440,10 +440,10 @@ False if no bias.
  • num_channel (int) – see img_conv_layer for details
  • param_attr (ParameterAttribute) – see img_conv_layer for details
  • shared_bias (bool) – see img_conv_layer for details
  • -
  • conv_layer_attr (ExtraLayerAttribute) – see img_conv_layer for details
  • +
  • conv_layer_attr (ExtraLayerAttribute) – see img_conv_layer for details
  • pool_stride (int) – see img_pool_layer for details
  • pool_padding (int) – see img_pool_layer for details
  • -
  • pool_layer_attr (ExtraLayerAttribute) – see img_pool_layer for details
  • +
  • pool_layer_attr (ExtraLayerAttribute) – see img_pool_layer for details
  • @@ -527,9 +527,9 @@ for more details about LSTM. The link goes as follows: False means no bias, None means default bias.
  • lstm_bias_attr (ParameterAttribute|False) – bias parameter attribute of lstm layer. False means no bias, None means default bias.
  • -
  • mixed_layer_attr (ExtraLayerAttribute) – mixed layer’s extra attribute.
  • -
  • lstm_layer_attr (ExtraLayerAttribute) – lstm layer’s extra attribute.
  • -
  • get_output_layer_attr (ExtraLayerAttribute) – get output layer’s extra attribute.
  • +
  • mixed_layer_attr (ExtraLayerAttribute) – mixed layer’s extra attribute.
  • +
  • lstm_layer_attr (ExtraLayerAttribute) – lstm layer’s extra attribute.
  • +
  • get_output_layer_attr (ExtraLayerAttribute) – get output layer’s extra attribute.
  • @@ -588,9 +588,9 @@ full_matrix_projection must be included before lstmemory_unit is called.

    False means no bias, None means default bias.
  • lstm_bias_attr (ParameterAttribute|False) – bias parameter attribute of lstm layer. False means no bias, None means default bias.
  • -
  • mixed_layer_attr (ExtraLayerAttribute) – mixed layer’s extra attribute.
  • -
  • lstm_layer_attr (ExtraLayerAttribute) – lstm layer’s extra attribute.
  • -
  • get_output_layer_attr (ExtraLayerAttribute) – get output layer’s extra attribute.
  • +
  • mixed_layer_attr (ExtraLayerAttribute) – mixed layer’s extra attribute.
  • +
  • lstm_layer_attr (ExtraLayerAttribute) – lstm layer’s extra attribute.
  • +
  • get_output_layer_attr (ExtraLayerAttribute) – get output layer’s extra attribute.
  • @@ -633,8 +633,8 @@ means default bias.
  • act (BaseActivation) – lstm final activiation type
  • gate_act (BaseActivation) – lstm gate activiation type
  • state_act (BaseActivation) – lstm state activiation type.
  • -
  • mixed_layer_attr (ExtraLayerAttribute) – mixed layer’s extra attribute.
  • -
  • lstm_cell_attr (ExtraLayerAttribute) – lstm layer’s extra attribute.
  • +
  • mixed_layer_attr (ExtraLayerAttribute) – mixed layer’s extra attribute.
  • +
  • lstm_cell_attr (ExtraLayerAttribute) – lstm layer’s extra attribute.
  • diff --git a/develop/doc_cn/api/v1/trainer_config_helpers/poolings.html b/develop/doc_cn/api/v1/trainer_config_helpers/poolings.html index b4b884827b44881a606bfbecb68baf4c71c189a0..f607d482302b805a2304d2596a080c6fc176e2d1 100644 --- a/develop/doc_cn/api/v1/trainer_config_helpers/poolings.html +++ b/develop/doc_cn/api/v1/trainer_config_helpers/poolings.html @@ -205,77 +205,46 @@

    Poolings

    BasePoolingType

    -
    +
    -class paddle.trainer_config_helpers.poolings.BasePoolingType(name)
    -

    Base Pooling Type. -Note these pooling types are used for sequence input, not for images. -Each PoolingType contains one parameter:

    -
    参数:
    • name (basestring) – Name of this data layer.
    • -
    • size (int|None) – Size of this data layer.
    • -
    • height – Height of this data layer, used for image
    • -
    • width – Width of this data layer, used for image
    • +
    • size (int) – Size of this data layer.
    • +
    • height (int|None) – Height of this data layer, used for image
    • +
    • width (int|None) – Width of this data layer, used for image
    • layer_attr (ExtraLayerAttribute.) – Extra Layer Attribute.
    参数:
    • input (LayerOutput.) – The first input layer.
    • name (None|basestring.) – The name of this layers. It is not necessary.
    • -
    • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
    • +
    • layer_attr (ExtraLayerAttribute) – Extra Layer Attribute.
    --- - - - -
    参数:name (basestring) – pooling layer type name used by paddle.
    +paddle.trainer_config_helpers.poolings.BasePoolingType +

    BasePool 的别名

    AvgPooling

    -
    +
    -class paddle.trainer_config_helpers.poolings.AvgPooling(strategy='average')
    -

    Average pooling.

    -

    Return the average values for each dimension in sequence or time steps.

    -
    -\[sum(samples\_of\_a\_sequence)/sample\_num\]
    +paddle.trainer_config_helpers.poolings.AvgPooling +

    Avg 的别名

    MaxPooling

    -
    +
    -class paddle.trainer_config_helpers.poolings.MaxPooling(output_max_index=None)
    -

    Max pooling.

    -

    Return the very large values for each dimension in sequence or time steps.

    -
    -\[max(samples\_of\_a\_sequence)\]
    - --- - - - -
    参数:output_max_index (bool|None) – True if output sequence max index instead of max -value. None means use default value in proto.
    +paddle.trainer_config_helpers.poolings.MaxPooling +

    Max 的别名

    SumPooling

    -
    +
    -class paddle.trainer_config_helpers.poolings.SumPooling
    -

    Sum pooling.

    -

    Return the sum values of each dimension in sequence or time steps.

    -
    -\[sum(samples\_of\_a\_sequence)\]
    +paddle.trainer_config_helpers.poolings.SumPooling +

    Sum 的别名

    SquareRootNPooling

    -
    +
    -class paddle.trainer_config_helpers.poolings.SquareRootNPooling
    -

    Square Root Pooling.

    -

    Return the square root values of each dimension in sequence or time steps.

    -
    -\[sum(samples\_of\_a\_sequence)/sqrt(sample\_num)\]
    +paddle.trainer_config_helpers.poolings.SquareRootNPooling +

    SquareRootN 的别名

    diff --git a/develop/doc_cn/api/v2/model_configs.html b/develop/doc_cn/api/v2/model_configs.html index 8d01f4d8e91fc88f1fcdc80effd50a629870ed80..b4ebe5bcac37986e9dfc4f28b17ed8009a2098be 100644 --- a/develop/doc_cn/api/v2/model_configs.html +++ b/develop/doc_cn/api/v2/model_configs.html @@ -167,6 +167,10 @@ @@ -208,15 +212,3921 @@ the way how to configure a neural network topology in Paddle Python code.

    act=paddle.activation.Softmax()) # use prediction instance where needed. -parameters = paddle.v2.parameters.create(cost) +parameters = paddle.parameters.create(cost)
    paddle.v2.layer.parse_network(*outputs)
    -

    parse all output layers and then generate a model config proto. -:param outputs: -:return:

    +

    Parse all output layers and then generate a ModelConfig object.

    +
    +

    注解

    +

    This function is used internally in paddle.v2 module. User should never +invoke this method.

    +
    + +++ + + + + + + + +
    参数:outputs (Layer) – Output layers.
    返回:A ModelConfig object instance.
    返回类型:ModelConfig
    +
    + +
    +
    +class paddle.v2.layer.data(name, type, **kwargs)
    +

    Define DataLayer For NeuralNetwork.

    +

    The example usage is:

    +
    data = paddle.layer.data(name="input", type=paddle.data_type.dense_vector(1000))
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – Name of this data layer.
    • +
    • type – Data type of this data layer
    • +
    • height (int|None) – Height of this data layer, used for image
    • +
    • width (int|None) – Width of this data layer, used for image
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.addto(*args, **kwargs)
    +

    AddtoLayer.

    +
    +\[y = f(\sum_{i} x_i + b)\]
    +

    where \(y\) is output, \(x\) is input, \(b\) is bias, +and \(f\) is activation function.

    +

    The example usage is:

    +
    addto = addto(input=[layer1, layer2],
    +                    act=paddle.v2.Activation.Relu(),
    +                    bias_attr=False)
    +
    +
    +

    This layer just simply add all input layers together, then activate the sum +inputs. Each input of this layer should be the same size, which is also the +output size of this layer.

    +

    There is no weight matrix for each input, because it just a simple add +operation. If you want a complicated operation before add, please use +mixed.

    +

    It is a very good way to set dropout outside the layers. Since not all +PaddlePaddle layer support dropout, you can add an add_to layer, set +dropout here. +Please refer to dropout for details.

    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – Layer name.
    • +
    • input (paddle.v2.config_base.Layer|list|tuple) – Input layers. It could be a paddle.v2.config_base.Layer or list/tuple of +paddle.v2.config_base.Layer.
    • +
    • act (paddle.v2.Activation.Base) – Activation Type, default is tanh.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute|bool) – Bias attribute. If False, means no bias. None is default +bias.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer attribute.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.batch_norm(*args, **kwargs)
    +

    Batch Normalization Layer. The notation of this layer as follow.

    +

    \(x\) is the input features over a mini-batch.

    +
    +\[\begin{split}\mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\ +\ mini-batch\ mean \\ +\sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \ +\mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\ +\hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\ +\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\ +y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift\end{split}\]
    +

    The details of batch normalization please refer to this +paper.

    +

    The example usage is:

    +
    norm = batch_norm(input=net, act=paddle.v2.Activation.Relu())
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – layer name.
    • +
    • input (paddle.v2.config_base.Layer) – batch normalization input. Better be linear activation. +Because there is an activation inside batch_normalization.
    • +
    • batch_norm_type (None|string, None or "batch_norm" or "cudnn_batch_norm") – We have batch_norm and cudnn_batch_norm. batch_norm +supports both CPU and GPU. cudnn_batch_norm requires +cuDNN version greater or equal to v4 (>=v4). But +cudnn_batch_norm is faster and needs less memory +than batch_norm. By default (None), we will +automaticly select cudnn_batch_norm for GPU and +batch_norm for CPU. Otherwise, select batch norm +type based on the specified type. If you use cudnn_batch_norm, +we suggested you use latest version, such as v5.1.
    • +
    • act (paddle.v2.Activation.Base) – Activation Type. Better be relu. Because batch +normalization will normalize input near zero.
    • +
    • num_channels (int) – num of image channels or previous layer’s number of +filters. None will automatically get from layer’s +input.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute) – \(\beta\), better be zero when initialize. So the +initial_std=0, initial_mean=1 is best practice.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – \(\gamma\), better be one when initialize. So the +initial_std=0, initial_mean=1 is best practice.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    • use_global_stats (bool|None.) – whether use moving mean/variance statistics +during testing peroid. If None or True, +it will use moving mean/variance statistics during +testing. If False, it will use the mean +and variance of current batch of test data for +testing.
    • +
    • moving_average_fraction (float.) – Factor used in the moving average +computation, referred to as facotr, +\(runningMean = newMean*(1-factor) ++ runningMean*factor\)
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.bilinear_interp(*args, **kwargs)
    +

    This layer is to implement bilinear interpolation on conv layer output.

    +

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    +

    The simple usage is:

    +
    bilinear = bilinear_interp(input=layer1, out_size_x=64, out_size_y=64)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer.) – A input layer.
    • +
    • out_size_x (int|None) – bilinear interpolation output width.
    • +
    • out_size_y (int|None) – bilinear interpolation output height.
    • +
    • name (None|basestring) – The layer’s name, which cna not be specified.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer attribute.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.block_expand(*args, **kwargs)
    +
    +
    Expand feature map to minibatch matrix.
    +
      +
    • matrix width is: block_y * block_x * num_channels
    • +
    • matirx height is: outputH * outputW
    • +
    +
    +
    +
    +\[ \begin{align}\begin{aligned}outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y\\outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x\end{aligned}\end{align} \]
    +

    The expand method is the same with ExpandConvLayer, but saved the transposed +value. After expanding, output.sequenceStartPositions will store timeline. +The number of time steps are outputH * outputW and the dimension of each +time step is block_y * block_x * num_channels. This layer can be used after +convolution neural network, and before recurrent neural network.

    +

    The simple usage is:

    +
    block_expand = block_expand(input=layer,
    +                                  num_channels=128,
    +                                  stride_x=1,
    +                                  stride_y=1,
    +                                  block_x=1,
    +                                  block_x=3)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – The input layer.
    • +
    • num_channels (int|None) – The channel number of input layer.
    • +
    • block_x (int) – The width of sub block.
    • +
    • block_y (int) – The width of sub block.
    • +
    • stride_x (int) – The stride size in horizontal direction.
    • +
    • stride_y (int) – The stride size in vertical direction.
    • +
    • padding_x (int) – The padding size in horizontal direction.
    • +
    • padding_y (int) – The padding size in vertical direction.
    • +
    • name (None|basestring.) – The name of this layer, which can not specify.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer config.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.classification_cost(*args, **kwargs)
    +

    classification cost Layer.

    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – layer name.
    • +
    • input (paddle.v2.config_base.Layer) – input layer name. network output.
    • +
    • label (paddle.v2.config_base.Layer) – label layer name. data often.
    • +
    • weight (paddle.v2.config_base.Layer) – The weight affects the cost, namely the scale of cost. +It is an optional argument.
    • +
    • top_k (int) – number k in top-k error rate
    • +
    • evaluator – Evaluator method.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – layer’s extra attribute.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.concat(*args, **kwargs)
    +

    Concat all input vector into one huge vector. +Inputs can be list of paddle.v2.config_base.Layer or list of projection.

    +

    The example usage is:

    +
    concat = concat(input=[layer1, layer2])
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – Layer name.
    • +
    • input (list|tuple|collections.Sequence) – input layers or projections
    • +
    • act (paddle.v2.Activation.Base) – Activation type.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.conv_shift(*args, **kwargs)
    +
    +
    This layer performs cyclic convolution for two input. For example:
    +
      +
    • a[in]: contains M elements.
    • +
    • b[in]: contains N elements (N should be odd).
    • +
    • c[out]: contains M elements.
    • +
    +
    +
    +
    +\[c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}\]
    +
    +
    In this formular:
    +
      +
    • a’s index is computed modulo M. When it is negative, then get item from +the right side (which is the end of array) to the left.
    • +
    • b’s index is computed modulo N. When it is negative, then get item from +the right size (which is the end of array) to the left.
    • +
    +
    +
    +

    The example usage is:

    +
    conv_shift = conv_shift(a=layer1, b=layer2)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – layer name
    • +
    • a (paddle.v2.config_base.Layer) – Input layer a.
    • +
    • b (paddle.v2.config_base.Layer) – input layer b.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – layer’s extra attribute.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.convex_comb(*args, **kwargs)
    +
    +
    A layer for weighted sum of vectors takes two inputs.
    +
      +
    • +
      Input: size of weights is M
      +
      size of vectors is M*N
      +
      +
    • +
    • Output: a vector of size=N
    • +
    +
    +
    +
    +\[z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)\]
    +

    where \(0 \le i \le N-1\)

    +

    Or in the matrix notation:

    +
    +\[z = x^\mathrm{T} Y\]
    +
    +
    In this formular:
    +
      +
    • \(x\): weights
    • +
    • \(y\): vectors.
    • +
    • \(z\): the output.
    • +
    +
    +
    +

    Note that the above computation is for one sample. Multiple samples are +processed in one batch.

    +

    The simple usage is:

    +
    linear_comb = linear_comb(weights=weight, vectors=vectors,
    +                                size=elem_dim)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • weights (paddle.v2.config_base.Layer) – The weight layer.
    • +
    • vectors (paddle.v2.config_base.Layer) – The vector layer.
    • +
    • size (int) – the dimension of this layer.
    • +
    • name (basestring) – The Layer Name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer config.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.cos_sim(*args, **kwargs)
    +

    Cosine Similarity Layer. The cosine similarity equation is here.

    +
    +\[similarity = cos(\theta) = {\mathbf{a} \cdot \mathbf{b} +\over \|\mathbf{a}\| \|\mathbf{b}\|}\]
    +

    The size of a is M, size of b is M*N, +Similarity will be calculated N times by step M. The output size is +N. The scale will be multiplied to similarity.

    +

    Note that the above computation is for one sample. Multiple samples are +processed in one batch.

    +

    The example usage is:

    +
    cos = cos_sim(a=layer1, b=layer2, size=3)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – layer name
    • +
    • a (paddle.v2.config_base.Layer) – input layer a
    • +
    • b (paddle.v2.config_base.Layer) – input layer b
    • +
    • scale (float) – scale for cosine value. default is 5.
    • +
    • size (int) – layer size. NOTE size_a * size should equal size_b.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.crf_decoding(*args, **kwargs)
    +

    A layer for calculating the decoding sequence of sequential conditional +random field model. The decoding sequence is stored in output.ids. +If a second input is provided, it is treated as the ground-truth label, and +this layer will also calculate error. output.value[i] is 1 for incorrect +decoding or 0 for correct decoding.

    +

    The simple usage:

    +
    crf_decoding = crf_decoding(input=input,
    +                                  size=label_dim)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – The first input layer.
    • +
    • size (int) – size of this layer.
    • +
    • label (paddle.v2.config_base.Layer or None) – None or ground-truth label.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – Parameter attribute. None means default attribute
    • +
    • name (None|basestring) – The name of this layers. It is not necessary.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer config.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.crf(*args, **kwargs)
    +

    A layer for calculating the cost of sequential conditional random +field model.

    +

    The simple usage:

    +
    crf = crf(input=input,
    +                label=label,
    +                size=label_dim)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – The first input layer is the feature.
    • +
    • label (paddle.v2.config_base.Layer) – The second input layer is label.
    • +
    • size (int) – The category number.
    • +
    • weight (paddle.v2.config_base.Layer) – The third layer is “weight” of each sample, which is an +optional argument.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – Parameter attribute. None means default attribute
    • +
    • name (None|basestring) – The name of this layers. It is not necessary.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer config.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.cross_entropy_cost(*args, **kwargs)
    +

    A loss layer for multi class entropy.

    +
    cost = cross_entropy(input=input,
    +                     label=label)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer.) – The first input layer.
    • +
    • label – The input label.
    • +
    • name (None|basestring.) – The name of this layers. It is not necessary.
    • +
    • coeff (float.) – The coefficient affects the gradient in the backward.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer.

    +
    +
    + +
    +
    +class paddle.v2.layer.cross_entropy_with_selfnorm_cost(*args, **kwargs)
    +

    A loss layer for multi class entropy with selfnorm. +Input should be a vector of positive numbers, without normalization.

    +
    cost = cross_entropy_with_selfnorm(input=input,
    +                                   label=label)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer.) – The first input layer.
    • +
    • label – The input label.
    • +
    • name (None|basestring.) – The name of this layers. It is not necessary.
    • +
    • coeff (float.) – The coefficient affects the gradient in the backward.
    • +
    • softmax_selfnorm_alpha (float.) – The scale factor affects the cost.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer.

    +
    +
    + +
    +
    +class paddle.v2.layer.ctc(*args, **kwargs)
    +

    Connectionist Temporal Classification (CTC) is designed for temporal +classication task. That is, for sequence labeling problems where the +alignment between the inputs and the target labels is unknown.

    +

    More details can be found by referring to Connectionist Temporal +Classification: Labelling Unsegmented Sequence Data with Recurrent +Neural Networks

    +
    +

    注解

    +

    Considering the ‘blank’ label needed by CTC, you need to use +(num_classes + 1) as the input size. num_classes is the category number. +And the ‘blank’ is the last category index. So the size of ‘input’ layer, such as +fc with softmax activation, should be num_classes + 1. The size of ctc +should also be num_classes + 1.

    +
    +

    The simple usage:

    +
    ctc = ctc(input=input,
    +                label=label,
    +                size=9055,
    +                norm_by_times=True)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – The input layer.
    • +
    • label (paddle.v2.config_base.Layer) – The data layer of label with variable length.
    • +
    • size (int) – category numbers + 1.
    • +
    • name (basestring|None) – The name of this layer
    • +
    • norm_by_times (bool) – Whether to normalization by times. False by default.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer config.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.dropout(*args, **kwargs)
    +

    @TODO(yuyang18): Add comments.

    + +++ + + + + + +
    参数:
      +
    • name
    • +
    • input
    • +
    • dropout_rate
    • +
    +
    返回:

    +
    +
    + +
    +
    +class paddle.v2.layer.embedding(*args, **kwargs)
    +

    Define a embedding Layer.

    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – Name of this embedding layer.
    • +
    • input (paddle.v2.config_base.Layer) – The input layer for this embedding. NOTE: must be Index Data.
    • +
    • size (int) – The embedding dimension.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute|None) – The embedding parameter attribute. See paddle.v2.attr.ParameterAttribute +for details.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra layer Config. Default is None.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.eos(*args, **kwargs)
    +

    A layer for checking EOS for each sample: +- output_id = (input_id == conf.eos_id)

    +

    The result is stored in output_.ids. +It is used by recurrent layer group.

    +

    The example usage is:

    +
    eos = eos(input=layer, eos_id=id)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – Layer name.
    • +
    • input (paddle.v2.config_base.Layer) – Input layer name.
    • +
    • eos_id (int) – end id of sequence
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.expand(*args, **kwargs)
    +

    A layer for “Expand Dense data or (sequence data where the length of each +sequence is one) to sequence data.”

    +

    The example usage is:

    +
    expand = expand(input=layer1,
    +                      expand_as=layer2,
    +                      expand_level=ExpandLevel.FROM_TIMESTEP)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – Input layer
    • +
    • expand_as (paddle.v2.config_base.Layer) – Expand as this layer’s sequence info.
    • +
    • name (basestring) – Layer name.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute|None|False) – Bias attribute. None means default bias. False means no +bias.
    • +
    • expand_level (ExpandLevel) – whether input layer is timestep(default) or sequence.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.fc(*args, **kwargs)
    +

    Helper for declare fully connected layer.

    +

    The example usage is:

    +
    fc = fc(input=layer,
    +              size=1024,
    +              act=paddle.v2.Activation.Linear(),
    +              bias_attr=False)
    +
    +
    +

    which is equal to:

    +
    with mixed(size=1024) as fc:
    +    fc += full_matrix_projection(input=layer)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – The Layer Name.
    • +
    • input (paddle.v2.config_base.Layer|list|tuple) – The input layer. Could be a list/tuple of input layer.
    • +
    • size (int) – The layer dimension.
    • +
    • act (paddle.v2.Activation.Base) – Activation Type. Default is tanh.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – The Parameter Attribute|list.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute|None|Any) – The Bias Attribute. If no bias, then pass False or +something not type of paddle.v2.attr.ParameterAttribute. None will get a +default Bias.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer config.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.first_seq(*args, **kwargs)
    +

    Get First Timestamp Activation of a sequence.

    +

    The simple usage is:

    +
    seq = first_seq(input=layer)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • agg_level – aggregation level
    • +
    • name (basestring) – Layer name.
    • +
    • input (paddle.v2.config_base.Layer) – Input layer name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.get_output(*args, **kwargs)
    +

    Get layer’s output by name. In PaddlePaddle, a layer might return multiple +values, but returns one layer’s output. If the user wants to use another +output besides the default one, please use get_output first to get +the output from input.

    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – Layer’s name.
    • +
    • input (paddle.v2.config_base.Layer) – get output layer’s input. And this layer should contains +multiple outputs.
    • +
    • arg_name (basestring) – Output name from input.
    • +
    • layer_attr – Layer’s extra attribute.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.gru_step(*args, **kwargs)
    +
    +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) –
    • +
    • output_mem
    • +
    • size
    • +
    • act
    • +
    • name
    • +
    • gate_act
    • +
    • bias_attr
    • +
    • param_attr – the parameter_attribute for transforming the output_mem +from previous step.
    • +
    • layer_attr
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.grumemory(*args, **kwargs)
    +

    Gate Recurrent Unit Layer.

    +

    The memory cell was implemented as follow equations.

    +

    1. update gate \(z\): defines how much of the previous memory to +keep around or the unit updates its activations. The update gate +is computed by:

    +
    +\[z_t = \sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)\]
    +

    2. reset gate \(r\): determines how to combine the new input with the +previous memory. The reset gate is computed similarly to the update gate:

    +
    +\[r_t = \sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)\]
    +

    3. The candidate activation \(\tilde{h_t}\) is computed similarly to +that of the traditional recurrent unit:

    +
    +\[{\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)\]
    +

    4. The hidden activation \(h_t\) of the GRU at time t is a linear +interpolation between the previous activation \(h_{t-1}\) and the +candidate activation \(\tilde{h_t}\):

    +
    +\[h_t = (1 - z_t) h_{t-1} + z_t {\tilde{h_t}}\]
    +

    NOTE: In PaddlePaddle’s implementation, the multiplication operations +\(W_{r}x_{t}\), \(W_{z}x_{t}\) and \(W x_t\) are not computed in +gate_recurrent layer. Consequently, an additional mixed with +full_matrix_projection or a fc must be included before grumemory +is called.

    +

    More details can be found by referring to Empirical Evaluation of Gated +Recurrent Neural Networks on Sequence Modeling.

    +

    The simple usage is:

    +
    gru = grumemory(input)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • name (None|basestring) – The gru layer name.
    • +
    • input (paddle.v2.config_base.Layer.) – input layer.
    • +
    • reverse (bool) – Whether sequence process is reversed or not.
    • +
    • act (paddle.v2.Activation.Base) – activation type, paddle.v2.Activation.Tanh by default. This activation +affects the \({\tilde{h_t}}\).
    • +
    • gate_act (paddle.v2.Activation.Base) – gate activation type, paddle.v2.Activation.Sigmoid by default. +This activation affects the \(z_t\) and \(r_t\). It is the +\(\sigma\) in the above formula.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute|None|False) – Bias attribute. None means default bias. False means no +bias.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute|None|False) – Parameter Attribute.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer attribute
    • +
    • size (None) – Stub parameter of size, but actually not used. If set this size +will get a warning.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.hsigmoid(*args, **kwargs)
    +

    Organize the classes into a binary tree. At each node, a sigmoid function +is used to calculate the probability of belonging to the right branch. +This idea is from “F. Morin, Y. Bengio (AISTATS 05): +Hierarchical Probabilistic Neural Network Language Model.”

    +

    The example usage is:

    +
    cost = hsigmoid(input=[layer1, layer2],
    +                label=data,
    +                num_classes=3)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer|list|tuple) – Input layers. It could be a paddle.v2.config_base.Layer or list/tuple of +paddle.v2.config_base.Layer.
    • +
    • label (paddle.v2.config_base.Layer) – Label layer.
    • +
    • num_classes (int) – number of classes.
    • +
    • name (basestring) – layer name
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute|False) – Bias attribute. None means default bias. +False means no bias.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.huber_cost(*args, **kwargs)
    +

    A loss layer for huber loss.

    +
    cost = huber_cost(input=input,
    +                  label=label)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer.) – The first input layer.
    • +
    • label – The input label.
    • +
    • name (None|basestring.) – The name of this layers. It is not necessary.
    • +
    • coeff (float.) – The coefficient affects the gradient in the backward.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer.

    +
    +
    + +
    +
    +class paddle.v2.layer.img_cmrnorm(*args, **kwargs)
    +

    Response normalization across feature maps. +The details please refer to +Alex’s paper.

    +

    The example usage is:

    +
    norm = img_cmrnorm(input=net, size=5)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • name (None|basestring) – layer name.
    • +
    • input (paddle.v2.config_base.Layer) – layer’s input.
    • +
    • size (int) – Normalize in number of \(size\) feature maps.
    • +
    • scale (float) – The hyper-parameter.
    • +
    • power (float) – The hyper-parameter.
    • +
    • num_channels – input layer’s filers number or channels. If +num_channels is None, it will be set automatically.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.img_conv(*args, **kwargs)
    +

    Convolution layer for image. Paddle can support both square and non-square +input currently.

    +

    The details of convolution layer, please refer UFLDL’s convolution .

    +

    Convolution Transpose (deconv) layer for image. Paddle can support both square +and non-square input currently.

    +

    The details of convolution transpose layer, +please refer to the following explanation and references therein +<http://datascience.stackexchange.com/questions/6107/ +what-are-deconvolutional-layers/>`_ . +The num_channel means input image’s channel number. It may be 1 or 3 when +input is raw pixels of image(mono or RGB), or it may be the previous layer’s +num_filters * num_group.

    +

    There are several group of filter in PaddlePaddle implementation. +Each group will process some channel of the inputs. For example, if an input +num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create +32*4 = 128 filters to process inputs. The channels will be split into 4 +pieces. First 256/4 = 64 channels will process by first 32 filters. The +rest channels will be processed by rest group of filters.

    +

    The example usage is:

    +
    conv = img_conv(input=data, filter_size=1, filter_size_y=1,
    +                      num_channels=8,
    +                      num_filters=16, stride=1,
    +                      bias_attr=False,
    +                      act=paddle.v2.Activation.Relu())
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – Layer name.
    • +
    • input (paddle.v2.config_base.Layer) – Layer Input.
    • +
    • filter_size (int|tuple|list) – The x dimension of a filter kernel. Or input a tuple for +two image dimension.
    • +
    • filter_size_y (int|None) – The y dimension of a filter kernel. Since PaddlePaddle +currently supports rectangular filters, the filter’s +shape will be (filter_size, filter_size_y).
    • +
    • num_filters – Each filter group’s number of filter
    • +
    • act (paddle.v2.Activation.Base) – Activation type. Default is tanh
    • +
    • groups (int) – Group size of filters.
    • +
    • stride (int|tuple|list) – The x dimension of the stride. Or input a tuple for two image +dimension.
    • +
    • stride_y (int) – The y dimension of the stride.
    • +
    • padding (int|tuple|list) – The x dimension of the padding. Or input a tuple for two +image dimension
    • +
    • padding_y (int) – The y dimension of the padding.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute|False) – Convolution bias attribute. None means default bias. +False means no bias.
    • +
    • num_channels (int) – number of input channels. If None will be set +automatically from previous output.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – Convolution param attribute. None means default attribute
    • +
    • shared_biases (bool) – Is biases will be shared between filters or not.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Layer Extra Attribute.
    • +
    • trans (bool) – true if it is a convTransLayer, false if it is a convLayer
    • +
    • layer_type (String) – specify the layer_type, default is None. If trans=True, +layer_type has to be “exconvt”, otherwise layer_type +has to be either “exconv” or “cudnn_conv”
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.img_pool(*args, **kwargs)
    +

    Image pooling Layer.

    +

    The details of pooling layer, please refer ufldl’s pooling .

    +
      +
    • ceil_mode=True:
    • +
    +
    +\[w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride)) +h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))\]
    +
      +
    • ceil_mode=False:
    • +
    +
    +\[w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride)) +h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))\]
    +

    The example usage is:

    +
    maxpool = img_pool(input=conv,
    +                         pool_size=3,
    +                         pool_size_y=5,
    +                         num_channels=8,
    +                         stride=1,
    +                         stride_y=2,
    +                         padding=1,
    +                         padding_y=2,
    +                         pool_type=MaxPooling())
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • padding (int) – pooling padding width.
    • +
    • padding_y (int|None) – pooling padding height. It’s equal to padding by default.
    • +
    • name (basestring.) – name of pooling layer
    • +
    • input (paddle.v2.config_base.Layer) – layer’s input
    • +
    • pool_size (int) – pooling window width
    • +
    • pool_size_y (int|None) – pooling window height. It’s eaqual to pool_size by default.
    • +
    • num_channels (int) – number of input channel.
    • +
    • pool_type (BasePoolingType) – pooling type. MaxPooling or AvgPooling. Default is +MaxPooling.
    • +
    • stride (int) – stride width of pooling.
    • +
    • stride_y (int|None) – stride height of pooling. It is equal to stride by default.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer attribute.
    • +
    • ceil_mode (bool) – Wether to use ceil mode to calculate output height and with. +Defalut is True. If set false, Otherwise use floor.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.interpolation(*args, **kwargs)
    +

    This layer is for linear interpolation with two inputs, +which is used in NEURAL TURING MACHINE.

    +
    +\[y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]\]
    +

    where \(x_1\) and \(x_2\) are two (batchSize x dataDim) inputs, +\(w\) is (batchSize x 1) weight vector, and \(y\) is +(batchSize x dataDim) output.

    +

    The example usage is:

    +
    interpolation = interpolation(input=[layer1, layer2], weight=layer3)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (list|tuple) – Input layer.
    • +
    • weight (paddle.v2.config_base.Layer) – Weight layer.
    • +
    • name (basestring) – Layer name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.lambda_cost(*args, **kwargs)
    +

    lambdaCost for lambdaRank LTR approach.

    +

    The simple usage:

    +
    cost = lambda_cost(input=input,
    +                   score=score,
    +                   NDCG_num=8,
    +                   max_sort_size=-1)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – Samples of the same query should be loaded as sequence.
    • +
    • score – The 2nd input. Score of each sample.
    • +
    • NDCG_num (int) – The size of NDCG (Normalized Discounted Cumulative Gain), +e.g., 5 for NDCG@5. It must be less than for equal to the +minimum size of lists.
    • +
    • max_sort_size (int) – The size of partial sorting in calculating gradient. +If max_sort_size = -1, then for each list, the +algorithm will sort the entire list to get gradient. +In other cases, max_sort_size must be greater than or +equal to NDCG_num. And if max_sort_size is greater +than the size of a list, the algorithm will sort the +entire list of get gradient.
    • +
    • name (None|basestring) – The name of this layers. It is not necessary.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.last_seq(*args, **kwargs)
    +

    Get Last Timestamp Activation of a sequence.

    +

    The simple usage is:

    +
    seq = last_seq(input=layer)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • agg_level – Aggregated level
    • +
    • name (basestring) – Layer name.
    • +
    • input (paddle.v2.config_base.Layer) – Input layer name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.linear_comb(*args, **kwargs)
    +
    +
    A layer for weighted sum of vectors takes two inputs.
    +
      +
    • +
      Input: size of weights is M
      +
      size of vectors is M*N
      +
      +
    • +
    • Output: a vector of size=N
    • +
    +
    +
    +
    +\[z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)\]
    +

    where \(0 \le i \le N-1\)

    +

    Or in the matrix notation:

    +
    +\[z = x^\mathrm{T} Y\]
    +
    +
    In this formular:
    +
      +
    • \(x\): weights
    • +
    • \(y\): vectors.
    • +
    • \(z\): the output.
    • +
    +
    +
    +

    Note that the above computation is for one sample. Multiple samples are +processed in one batch.

    +

    The simple usage is:

    +
    linear_comb = linear_comb(weights=weight, vectors=vectors,
    +                                size=elem_dim)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • weights (paddle.v2.config_base.Layer) – The weight layer.
    • +
    • vectors (paddle.v2.config_base.Layer) – The vector layer.
    • +
    • size (int) – the dimension of this layer.
    • +
    • name (basestring) – The Layer Name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer config.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.lstm_step(*args, **kwargs)
    +

    LSTM Step Layer. It used in recurrent_group. The lstm equations are shown +as follow.

    +
    +\[ \begin{align}\begin{aligned}i_t & = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)\\f_t & = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)\\c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)\\o_t & = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)\\h_t & = o_t tanh(c_t)\end{aligned}\end{align} \]
    +

    The input of lstm step is \(Wx_t + Wh_{t-1}\), and user should use +mixed and full_matrix_projection to calculate these +input vector.

    +

    The state of lstm step is \(c_{t-1}\). And lstm step layer will do

    +
    +\[ \begin{align}\begin{aligned}i_t = \sigma(input + W_{ci}c_{t-1} + b_i)\\...\end{aligned}\end{align} \]
    +

    This layer contains two outputs. Default output is \(h_t\). The other +output is \(o_t\), which name is ‘state’ and can use +get_output to extract this output.

    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – Layer’s name.
    • +
    • size (int) – Layer’s size. NOTE: lstm layer’s size, should be equal as +input.size/4, and should be equal as +state.size.
    • +
    • input (paddle.v2.config_base.Layer) – input layer. \(Wx_t + Wh_{t-1}\)
    • +
    • state (paddle.v2.config_base.Layer) – State Layer. \(c_{t-1}\)
    • +
    • act (paddle.v2.Activation.Base) – Activation type. Default is tanh
    • +
    • gate_act (paddle.v2.Activation.Base) – Gate Activation Type. Default is sigmoid, and should +be sigmoid only.
    • +
    • state_act (paddle.v2.Activation.Base) – State Activation Type. Default is sigmoid, and should +be sigmoid only.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute) – Bias Attribute.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – layer’s extra attribute.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.lstmemory(*args, **kwargs)
    +

    Long Short-term Memory Cell.

    +

    The memory cell was implemented as follow equations.

    +
    +\[ \begin{align}\begin{aligned}i_t & = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)\\f_t & = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)\\c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)\\o_t & = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)\\h_t & = o_t tanh(c_t)\end{aligned}\end{align} \]
    +

    NOTE: In PaddlePaddle’s implementation, the multiplications +\(W_{xi}x_{t}\) , \(W_{xf}x_{t}\), +\(W_{xc}x_t\), \(W_{xo}x_{t}\) are not done in the lstmemory layer, +so an additional mixed with full_matrix_projection or a fc must +be included in the configuration file to complete the input-to-hidden +mappings before lstmemory is called.

    +

    NOTE: This is a low level user interface. You can use network.simple_lstm +to config a simple plain lstm layer.

    +

    Please refer to Generating Sequences With Recurrent Neural Networks for +more details about LSTM.

    +

    Link goes as below.

    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – The lstmemory layer name.
    • +
    • input (paddle.v2.config_base.Layer) – input layer name.
    • +
    • reverse (bool) – is sequence process reversed or not.
    • +
    • act (paddle.v2.Activation.Base) – activation type, paddle.v2.Activation.Tanh by default. \(h_t\)
    • +
    • gate_act (paddle.v2.Activation.Base) – gate activation type, paddle.v2.Activation.Sigmoid by default.
    • +
    • state_act (paddle.v2.Activation.Base) – state activation type, paddle.v2.Activation.Tanh by default.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute|None|False) – Bias attribute. None means default bias. False means no +bias.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute|None|False) – Parameter Attribute.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer attribute
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.max_id(*args, **kwargs)
    +

    A layer for finding the id which has the maximal value for each sample. +The result is stored in output.ids.

    +

    The example usage is:

    +
    maxid = maxid(input=layer)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – Input layer name.
    • +
    • name (basestring) – Layer name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.maxout(*args, **kwargs)
    +
    +
    A layer to do max out on conv layer output.
    +
      +
    • Input: output of a conv layer.
    • +
    • Output: feature map size same as input. Channel is (input channel) / groups.
    • +
    +
    +
    +

    So groups should be larger than 1, and the num of channels should be able +to devided by groups.

    +
    +
    Please refer to Paper:
    +
    +
    +
    +

    The simple usage is:

    +
    maxout = maxout(input,
    +                      num_channels=128,
    +                      groups=4)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – The input layer.
    • +
    • num_channels (int|None) – The channel number of input layer. If None will be set +automatically from previous output.
    • +
    • groups (int) – The group number of input layer.
    • +
    • name (None|basestring.) – The name of this layer, which can not specify.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer attribute.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.multi_binary_label_cross_entropy_cost(*args, **kwargs)
    +

    A loss layer for multi binary label cross entropy.

    +
    cost = multi_binary_label_cross_entropy(input=input,
    +                                        label=label)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – The first input layer.
    • +
    • label – The input label.
    • +
    • type (basestring) – The type of cost.
    • +
    • name (None|basestring) – The name of this layers. It is not necessary.
    • +
    • coeff (float) – The coefficient affects the gradient in the backward.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.nce(*args, **kwargs)
    +

    Noise-contrastive estimation. +Implements the method in the following paper: +A fast and simple algorithm for training neural probabilistic language models.

    +

    The example usage is:

    +
    cost = nce(input=layer1, label=layer2, weight=layer3,
    +                 num_classes=3, neg_distribution=[0.1,0.3,0.6])
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – layer name
    • +
    • input (paddle.v2.config_base.Layer|list|tuple|collections.Sequence) – input layers. It could be a paddle.v2.config_base.Layer of list/tuple of paddle.v2.config_base.Layer.
    • +
    • label (paddle.v2.config_base.Layer) – label layer
    • +
    • weight (paddle.v2.config_base.Layer) – weight layer, can be None(default)
    • +
    • num_classes (int) – number of classes.
    • +
    • num_neg_samples (int) – number of negative samples. Default is 10.
    • +
    • neg_distribution (list|tuple|collections.Sequence|None) – The distribution for generating the random negative labels. +A uniform distribution will be used if not provided. +If not None, its length must be equal to num_classes.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute|None|False) – Bias parameter attribute. True if no bias.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    返回:

    layer name.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.out_prod(*args, **kwargs)
    +

    A layer for computing the outer product of two vectors +The result is a matrix of size(input1) x size(input2)

    +

    The example usage is:

    +
    out_prod = out_prod(input1=vec1, input2=vec2)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – Layer name.
    • +
    • input1 – The first input layer name.
    • +
    • input2 (paddle.v2.config_base.Layer) – The second input layer name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.pad(*args, **kwargs)
    +

    This operation pads zeros to the input data according to pad_c,pad_h +and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size +of padding. And the input data shape is NCHW.

    +

    For example, pad_c=[2,3] means padding 2 zeros before the +input data and 3 zeros after the input data in channel dimension. +pad_h means padding zeros in height dimension. pad_w means padding zeros +in width dimension.

    +

    For example,

    +
    input(2,2,2,3)  = [
    +                    [ [[1,2,3], [3,4,5]],
    +                      [[2,3,5], [1,6,7]] ],
    +                    [ [[4,3,1], [1,8,7]],
    +                      [[3,8,9], [2,3,5]] ]
    +                  ]
    +
    +pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]
    +
    +output(2,4,2,3) = [
    +                    [ [[0,0,0], [0,0,0]],
    +                      [[1,2,3], [3,4,5]],
    +                      [[2,3,5], [1,6,7]],
    +                      [[0,0,0], [0,0,0]] ],
    +                    [ [[0,0,0], [0,0,0]],
    +                      [[4,3,1], [1,8,7]],
    +                      [[3,8,9], [2,3,5]],
    +                      [[0,0,0], [0,0,0]] ]
    +                  ]
    +
    +
    +

    The simply usage is:

    +
    pad = pad(input=ipt,
    +                pad_c=[4,4],
    +                pad_h=[0,0],
    +                pad_w=[2,2])
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – layer’s input.
    • +
    • pad_c (list|None) – padding size in channel dimension.
    • +
    • pad_h (list|None) – padding size in height dimension.
    • +
    • pad_w (list|None) – padding size in width dimension.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    • name (basestring) – layer name.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.pooling(*args, **kwargs)
    +

    Pooling layer for sequence inputs, not used for Image.

    +

    The example usage is:

    +
    seq_pool = pooling(input=layer,
    +                         pooling_type=AvgPooling(),
    +                         agg_level=AggregateLevel.EACH_SEQUENCE)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • agg_level (AggregateLevel) – AggregateLevel.EACH_TIMESTEP or +AggregateLevel.EACH_SEQUENCE
    • +
    • name (basestring) – layer name.
    • +
    • input (paddle.v2.config_base.Layer) – input layer name.
    • +
    • pooling_type (BasePoolingType|None) – Type of pooling, MaxPooling(default), AvgPooling, +SumPooling, SquareRootNPooling.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute|None|False) – Bias parameter attribute. False if no bias.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – The Extra Attributes for layer, such as dropout.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.power(*args, **kwargs)
    +

    This layer applies a power function to a vector element-wise, +which is used in NEURAL TURING MACHINE.

    +
    +\[y = x^w\]
    +

    where \(x\) is a input vector, \(w\) is scalar weight, +and \(y\) is a output vector.

    +

    The example usage is:

    +
    power = power(input=layer1, weight=layer2)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – Input layer.
    • +
    • weight (paddle.v2.config_base.Layer) – Weight layer.
    • +
    • name (basestring) – Layer name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.print(*args, **kwargs)
    +

    Print the output value of input layers. This layer is useful for debugging.

    + +++ + + + + + +
    参数:
      +
    • name (basestring) – The Layer Name.
    • +
    • input (paddle.v2.config_base.Layer|list|tuple) – The input layer. Could be a list/tuple of input layer.
    • +
    +
    返回:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.priorbox(*args, **kwargs)
    +

    Compute the priorbox and set the variance. This layer is necessary for ssd.

    + +++ + + + + + +
    参数:
      +
    • name (basestring) – The Layer Name.
    • +
    • input (paddle.v2.config_base.Layer) – The input layer.
    • +
    • image (paddle.v2.config_base.Layer) – The network input image.
    • +
    • aspect_ratio (list) – The aspect ratio.
    • +
    • variance – The bounding box variance.
    • +
    • min_size (The min size of the priorbox width/height.) – list
    • +
    • max_size (The max size of the priorbox width/height. Could be NULL.) – list
    • +
    +
    返回:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.rank_cost(*args, **kwargs)
    +

    A cost Layer for learning to rank using gradient descent. Details can refer +to papers. +This layer contains at least three inputs. The weight is an optional +argument, which affects the cost.

    +
    +\[ \begin{align}\begin{aligned}C_{i,j} & = -\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})\\o_{i,j} & = o_i - o_j\\\tilde{P_{i,j}} & = \{0, 0.5, 1\} \ or \ \{0, 1\}\end{aligned}\end{align} \]
    +
    +
    In this formula:
    +
      +
    • \(C_{i,j}\) is the cross entropy cost.
    • +
    • \(\tilde{P_{i,j}}\) is the label. 1 means positive order +and 0 means reverse order.
    • +
    • \(o_i\) and \(o_j\): the left output and right output. +Their dimension is one.
    • +
    +
    +
    +

    The simple usage:

    +
    cost = rank_cost(left=out_left,
    +                 right=out_right,
    +                 label=label)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • left (paddle.v2.config_base.Layer) – The first input, the size of this layer is 1.
    • +
    • right (paddle.v2.config_base.Layer) – The right input, the size of this layer is 1.
    • +
    • label (paddle.v2.config_base.Layer) – Label is 1 or 0, means positive order and reverse order.
    • +
    • weight (paddle.v2.config_base.Layer) – The weight affects the cost, namely the scale of cost. +It is an optional argument.
    • +
    • name (None|basestring) – The name of this layers. It is not necessary.
    • +
    • coeff (float) – The coefficient affects the gradient in the backward.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.recurrent(*args, **kwargs)
    +

    Simple recurrent unit layer. It is just a fully connect layer through both +time and neural network.

    +

    For each sequence [start, end] it performs the following computation:

    +
    +\[\begin{split}out_{i} = act(in_{i}) \ \ \text{for} \ i = start \\ +out_{i} = act(in_{i} + out_{i-1} * W) \ \ \text{for} \ start < i <= end\end{split}\]
    +

    If reversed is true, the order is reversed:

    +
    +\[\begin{split}out_{i} = act(in_{i}) \ \ \text{for} \ i = end \\ +out_{i} = act(in_{i} + out_{i+1} * W) \ \ \text{for} \ start <= i < end\end{split}\]
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – Input Layer
    • +
    • act (paddle.v2.Activation.Base) – activation.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute) – bias attribute.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – parameter attribute.
    • +
    • name (basestring) – name of the layer
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Layer Attribute.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.regression_cost(*args, **kwargs)
    +

    Regression Layer.

    +

    TODO(yuyang18): Complete this method.

    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – layer name.
    • +
    • input (paddle.v2.config_base.Layer) – Network prediction.
    • +
    • label (paddle.v2.config_base.Layer) – Data label.
    • +
    • weight (paddle.v2.config_base.Layer) – The weight affects the cost, namely the scale of cost. +It is an optional argument.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – layer’s extra attribute.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.repeat(*args, **kwargs)
    +

    A layer for repeating the input for num_repeats times. This is equivalent +to apply concat() with num_repeats same input.

    +
    +\[y = [x, x, \cdots, x]\]
    +

    The example usage is:

    +
    expand = repeat(input=layer, num_repeats=4)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – Input layer
    • +
    • num_repeats (int) – Repeat the input so many times
    • +
    • name (basestring) – Layer name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.rotate(*args, **kwargs)
    +

    A layer for rotating 90 degrees (clock-wise) for each feature channel, +usually used when the input sample is some image or feature map.

    +
    +\[y(j,i,:) = x(M-i-1,j,:)\]
    +

    where \(x\) is (M x N x C) input, and \(y\) is (N x M x C) output.

    +

    The example usage is:

    +
    rot = rotate(input=layer,
    +                   height=100,
    +                   width=100)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – Input layer.
    • +
    • height (int) – The height of the sample matrix
    • +
    • name (basestring) – Layer name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.sampling_id(*args, **kwargs)
    +

    A layer for sampling id from multinomial distribution from the input layer. +Sampling one id for one sample.

    +

    The simple usage is:

    +
    samping_id = sampling_id(input=input)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – The input layer.
    • +
    • name (basestring) – The Layer Name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer config.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.scaling(*args, **kwargs)
    +

    A layer for multiplying input vector by weight scalar.

    +
    +\[y = w x\]
    +

    where \(x\) is size=dataDim input, \(w\) is size=1 weight, +and \(y\) is size=dataDim output.

    +

    Note that the above computation is for one sample. Multiple samples are +processed in one batch.

    +

    The example usage is:

    +
    scale = scaling(input=layer1, weight=layer2)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – Input layer.
    • +
    • weight (paddle.v2.config_base.Layer) – Weight layer.
    • +
    • name (basestring) – Layer name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.selective_fc(*args, **kwargs)
    +

    Selectived fully connected layer. Different from fc, the output +of this layer maybe sparse. It requires an additional input to indicate +several selected columns for output. If the selected columns is not +specified, selective_fc acts exactly like fc.

    +

    The simple usage is:

    +
    sel_fc = selective_fc(input=input, size=128, act=paddle.v2.Activation.Tanh())
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – The Layer Name.
    • +
    • input (paddle.v2.config_base.Layer|list|tuple) – The input layer.
    • +
    • select (paddle.v2.config_base.Layer) – The select layer. The output of select layer should be a +sparse binary matrix, and treat as the mask of selective fc. +If is None, acts exactly like fc.
    • +
    • size (int) – The layer dimension.
    • +
    • act (paddle.v2.Activation.Base) – Activation Type. Default is tanh.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – The Parameter Attribute.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute|None|Any) – The Bias Attribute. If no bias, then pass False or +something not type of paddle.v2.attr.ParameterAttribute. None will get a +default Bias.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer config.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.seq_concat(*args, **kwargs)
    +

    Concat sequence a with sequence b.

    +
    +
    Inputs:
    +
      +
    • a = [a1, a2, ..., an]
    • +
    • b = [b1, b2, ..., bn]
    • +
    • Note that the length of a and b should be the same.
    • +
    +
    +
    +

    Output: [a1, b1, a2, b2, ..., an, bn]

    +

    The example usage is:

    +
    concat = seq_concat(a=layer1, b=layer2)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – Layer name.
    • +
    • a (paddle.v2.config_base.Layer) – input sequence layer
    • +
    • b (paddle.v2.config_base.Layer) – input sequence layer
    • +
    • act (paddle.v2.Activation.Base) – Activation type.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute or None or bool) – The Bias Attribute. If no bias, then pass False or +something not type of paddle.v2.attr.ParameterAttribute. None will get a +default Bias.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.seq_reshape(*args, **kwargs)
    +

    A layer for reshaping the sequence. Assume the input sequence has T instances, +the dimension of each instance is M, and the input reshape_size is N, then the +output sequence has T*M/N instances, the dimension of each instance is N.

    +

    Note that T*M/N must be an integer.

    +

    The example usage is:

    +
    reshape = seq_reshape(input=layer, reshape_size=4)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – Input layer.
    • +
    • reshape_size (int) – the size of reshaped sequence.
    • +
    • name (basestring) – Layer name.
    • +
    • act (paddle.v2.Activation.Base) – Activation type.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute or None or bool) – The Bias Attribute. If no bias, then pass False or +something not type of paddle.v2.attr.ParameterAttribute. None will get a +default Bias.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.slope_intercept(*args, **kwargs)
    +

    This layer for applying a slope and an intercept to the input +element-wise. There is no activation and weight.

    +
    +\[y = slope * x + intercept\]
    +

    The simple usage is:

    +
    scale = slope_intercept(input=input, slope=-1.0, intercept=1.0)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – The input layer.
    • +
    • name (basestring) – The Layer Name.
    • +
    • slope (float.) – the scale factor.
    • +
    • intercept (float.) – the offset.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer config.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.spp(*args, **kwargs)
    +

    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. +The details please refer to +Kaiming He’s paper.

    +

    The example usage is:

    +
    spp = spp(input=data,
    +                pyramid_height=2,
    +                num_channels=16,
    +                pool_type=MaxPooling())
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – layer name.
    • +
    • input (paddle.v2.config_base.Layer) – layer’s input.
    • +
    • num_channels (int) – number of input channel.
    • +
    • pool_type – Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    • +
    • pyramid_height (int) – pyramid height.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.sum_cost(*args, **kwargs)
    +

    A loss layer which calculate the sum of the input as loss

    +
    cost = sum_cost(input=input)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer.) – The first input layer.
    • +
    • name (None|basestring.) – The name of this layers. It is not necessary.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – Extra Layer Attribute.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer.

    +
    +
    + +
    +
    +class paddle.v2.layer.sum_to_one_norm(*args, **kwargs)
    +

    A layer for sum-to-one normalization, +which is used in NEURAL TURING MACHINE.

    +
    +\[out[i] = \frac {in[i]} {\sum_{k=1}^N in[k]}\]
    +

    where \(in\) is a (batchSize x dataDim) input vector, +and \(out\) is a (batchSize x dataDim) output vector.

    +

    The example usage is:

    +
    sum_to_one_norm = sum_to_one_norm(input=layer)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – Input layer.
    • +
    • name (basestring) – Layer name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.tensor(*args, **kwargs)
    +

    This layer performs tensor operation for two input. +For example, each sample:

    +
    +\[y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1\]
    +
    +
    In this formular:
    +
      +
    • \(a\): the first input contains M elements.
    • +
    • \(b\): the second input contains N elements.
    • +
    • \(y_{i}\): the i-th element of y.
    • +
    • \(W_{i}\): the i-th learned weight, shape if [M, N]
    • +
    • \(b^\mathrm{T}\): the transpose of \(b_{2}\).
    • +
    +
    +
    +

    The simple usage is:

    +
    tensor = tensor(a=layer1, b=layer2, size=1000)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – layer name
    • +
    • a (paddle.v2.config_base.Layer) – Input layer a.
    • +
    • b (paddle.v2.config_base.Layer) – input layer b.
    • +
    • size (int.) – the layer dimension.
    • +
    • act (paddle.v2.Activation.Base) – Activation Type. Default is tanh.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – The Parameter Attribute.
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute|None|Any) – The Bias Attribute. If no bias, then pass False or +something not type of paddle.v2.attr.ParameterAttribute. None will get a +default Bias.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer config.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.trans(*args, **kwargs)
    +

    A layer for transposing a minibatch matrix.

    +
    +\[y = x^\mathrm{T}\]
    +

    where \(x\) is (M x N) input, and \(y\) is (N x M) output.

    +

    The example usage is:

    +
    trans = trans(input=layer)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – Input layer.
    • +
    • name (basestring) – Layer name.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttribute) – extra layer attributes.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.warp_ctc(*args, **kwargs)
    +

    A layer intergrating the open-source warp-ctc +<https://github.com/baidu-research/warp-ctc> library, which is used in +Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin +<https://arxiv.org/pdf/1512.02595v1.pdf>, to compute Connectionist Temporal +Classification (CTC) loss.

    +

    More details of CTC can be found by referring to Connectionist Temporal +Classification: Labelling Unsegmented Sequence Data with Recurrent +Neural Networks

    +
    +

    注解

    +
      +
    • Let num_classes represent the category number. Considering the ‘blank’ +label needed by CTC, you need to use (num_classes + 1) as the input +size. Thus, the size of both warp_ctc and ‘input’ layer should +be set to num_classes + 1.
    • +
    • You can set ‘blank’ to any value ranged in [0, num_classes], which +should be consistent as that used in your labels.
    • +
    • As a native ‘softmax’ activation is interated to the warp-ctc library, +‘linear’ activation is expected instead in the ‘input’ layer.
    • +
    +
    +

    The simple usage:

    +
    ctc = warp_ctc(input=input,
    +                     label=label,
    +                     size=1001,
    +                     blank=1000,
    +                     norm_by_times=False)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – The input layer.
    • +
    • label (paddle.v2.config_base.Layer) – The data layer of label with variable length.
    • +
    • size (int) – category numbers + 1.
    • +
    • name (basestring|None) – The name of this layer, which can not specify.
    • +
    • blank (int) – the ‘blank’ label used in ctc
    • +
    • norm_by_times (bool) – Whether to normalization by times. False by default.
    • +
    • layer_attr (paddle.v2.attr.ExtraAttributeNone) – Extra Layer config.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.layer.context_projection(**kwargs)
    +

    Context Projection.

    +

    It just simply reorganizes input sequence, combines “context_len” sequence +to one context from context_start. “context_start” will be set to +-(context_len - 1) / 2 by default. If context position out of sequence +length, padding will be filled as zero if padding_attr = False, otherwise +it is trainable.

    +

    For example, origin sequence is [A B C D E F G], context len is 3, then +after context projection and not set padding_attr, sequence will +be [ 0AB ABC BCD CDE DEF EFG FG0 ].

    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – Input Sequence.
    • +
    • context_len (int) – context length.
    • +
    • context_start (int) – context start position. Default is +-(context_len - 1)/2
    • +
    • padding_attr (bool|paddle.v2.attr.ParameterAttribute) – Padding Parameter Attribute. If false, it means padding +always be zero. Otherwise Padding is learnable, and +parameter attribute is set by this parameter.
    • +
    +
    返回:

    Projection

    +
    返回类型:

    Projection

    +
    +
    + +
    +
    +class paddle.v2.layer.conv_projection(**kwargs)
    +

    Different from img_conv and conv_op, conv_projection is an Projection, +which can be used in mixed and conat. It use cudnn to implement +conv and only support GPU mode.

    +

    The example usage is:

    +
    proj = conv_projection(input=input1,
    +                       filter_size=3,
    +                       num_filters=64,
    +                       num_channels=64)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – input layer
    • +
    • filter_size (int) – The x dimension of a filter kernel.
    • +
    • filter_size_y (int) – The y dimension of a filter kernel. Since +PaddlePaddle now supports rectangular filters, +the filter’s shape can be (filter_size, filter_size_y).
    • +
    • num_filters (int) – channel of output data.
    • +
    • num_channels (int) – channel of input data.
    • +
    • stride (int) – The x dimension of the stride.
    • +
    • stride_y (int) – The y dimension of the stride.
    • +
    • padding (int) – The x dimension of padding.
    • +
    • padding_y (int) – The y dimension of padding.
    • +
    • groups (int) – The group number.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – Convolution param attribute. None means default attribute
    • +
    +
    返回:

    A DotMulProjection Object.

    +
    返回类型:

    DotMulProjection

    +
    +
    + +
    +
    +class paddle.v2.layer.dotmul_projection(**kwargs)
    +

    DotMulProjection with a layer as input. +It performs element-wise multiplication with weight.

    +
    +\[out.row[i] += in.row[i] .* weight\]
    +

    where \(.*\) means element-wise multiplication.

    +

    The example usage is:

    +
    proj = dotmul_projection(input=layer)
    +
    +
    + +++ + + + + + + + +
    参数: +
    返回:

    A DotMulProjection Object.

    +
    返回类型:

    DotMulProjection

    +
    +
    + +
    +
    +class paddle.v2.layer.full_matrix_projection(**kwargs)
    +

    Full Matrix Projection. It performs full matrix multiplication.

    +
    +\[out.row[i] += in.row[i] * weight\]
    +

    There are two styles of usage.

    +
      +
    1. When used in mixed like this, you can only set the input:
    2. +
    +
    with mixed(size=100) as m:
    +    m += full_matrix_projection(input=layer)
    +
    +
    +
      +
    1. When used as an independant object like this, you must set the size:
    2. +
    +
    proj = full_matrix_projection(input=layer,
    +                              size=100,
    +                              param_attr=ParamAttr(name='_proj'))
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – input layer
    • +
    • size (int) – The parameter size. Means the width of parameter.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – Parameter config, None if use default.
    • +
    +
    返回:

    A FullMatrixProjection Object.

    +
    返回类型:

    FullMatrixProjection

    +
    +
    + +
    +
    +class paddle.v2.layer.identity_projection(**kwargs)
    +
      +
    1. IdentityProjection if offset=None. It performs:
    2. +
    +
    +\[out.row[i] += in.row[i]\]
    +

    The example usage is:

    +
    proj = identity_projection(input=layer)
    +
    +
    +

    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection, +but layer size may be smaller than input size. +It select dimesions [offset, offset+layer_size) from input:

    +
    +\[out.row[i] += in.row[i + \textrm{offset}]\]
    +

    The example usage is:

    +
    proj = identity_projection(input=layer,
    +                           offset=10)
    +
    +
    +

    Note that both of two projections should not have any parameter.

    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – Input Layer.
    • +
    • offset (int) – Offset, None if use default.
    • +
    +
    返回:

    A IdentityProjection or IdentityOffsetProjection object

    +
    返回类型:

    IdentityProjection or IdentityOffsetProjection

    +
    +
    + +
    +
    +class paddle.v2.layer.scaling_projection(**kwargs)
    +

    scaling_projection multiplies the input with a scalar parameter and add to +the output.

    +
    +\[out += w * in\]
    +

    The example usage is:

    +
    proj = scaling_projection(input=layer)
    +
    +
    + +++ + + + + + + + +
    参数: +
    返回:

    A ScalingProjection object

    +
    返回类型:

    ScalingProjection

    +
    +
    + +
    +
    +class paddle.v2.layer.table_projection(**kwargs)
    +

    Table Projection. It selects rows from parameter where row_id +is in input_ids.

    +
    +\[out.row[i] += table.row[ids[i]]\]
    +

    where \(out\) is output, \(table\) is parameter, \(ids\) is input_ids, +and \(i\) is row_id.

    +

    There are two styles of usage.

    +
      +
    1. When used in mixed like this, you can only set the input:
    2. +
    +
    with mixed(size=100) as m:
    +    m += table_projection(input=layer)
    +
    +
    +
      +
    1. When used as an independant object like this, you must set the size:
    2. +
    +
    proj = table_projection(input=layer,
    +                        size=100,
    +                        param_attr=ParamAttr(name='_proj'))
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – Input layer, which must contains id fields.
    • +
    • size (int) – The parameter size. Means the width of parameter.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – Parameter config, None if use default.
    • +
    +
    返回:

    A TableProjection Object.

    +
    返回类型:

    TableProjection

    +
    +
    + +
    +
    +class paddle.v2.layer.trans_full_matrix_projection(**kwargs)
    +

    Different from full_matrix_projection, this projection performs matrix +multiplication, using transpose of weight.

    +
    +\[out.row[i] += in.row[i] * w^\mathrm{T}\]
    +

    \(w^\mathrm{T}\) means transpose of weight. +The simply usage is:

    +
    proj = trans_full_matrix_projection(input=layer,
    +                                    size=100,
    +                                    param_attr=ParamAttr(
    +                                         name='_proj',
    +                                         initial_mean=0.0,
    +                                         initial_std=0.01))
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – input layer
    • +
    • size (int) – The parameter size. Means the width of parameter.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – Parameter config, None if use default.
    • +
    +
    返回:

    A TransposedFullMatrixProjection Object.

    +
    返回类型:

    TransposedFullMatrixProjection

    +
    +
    + +
    +
    +class paddle.v2.layer.conv_operator(**kwargs)
    +

    Different from img_conv, conv_op is an Operator, which can be used +in mixed. And conv_op takes two inputs to perform convolution. +The first input is the image and the second is filter kernel. It only +support GPU mode.

    +

    The example usage is:

    +
    op = conv_operator(img=input1,
    +                   filter=input2,
    +                   filter_size=3,
    +                   num_filters=64,
    +                   num_channels=64)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • img (paddle.v2.config_base.Layer) – input image
    • +
    • filter (paddle.v2.config_base.Layer) – input filter
    • +
    • filter_size (int) – The x dimension of a filter kernel.
    • +
    • filter_size_y (int) – The y dimension of a filter kernel. Since +PaddlePaddle now supports rectangular filters, +the filter’s shape can be (filter_size, filter_size_y).
    • +
    • num_filters (int) – channel of output data.
    • +
    • num_channels (int) – channel of input data.
    • +
    • stride (int) – The x dimension of the stride.
    • +
    • stride_y (int) – The y dimension of the stride.
    • +
    • padding (int) – The x dimension of padding.
    • +
    • padding_y (int) – The y dimension of padding.
    • +
    +
    返回:

    A ConvOperator Object.

    +
    返回类型:

    ConvOperator

    +
    +
    + +
    +
    +class paddle.v2.layer.dotmul_operator(**kwargs)
    +

    DotMulOperator takes two inputs and performs element-wise multiplication:

    +
    +\[out.row[i] += scale * (x.row[i] .* y.row[i])\]
    +

    where \(.*\) means element-wise multiplication, and +scale is a config scalar, its default value is one.

    +

    The example usage is:

    +
    op = dotmul_operator(x=layer1, y=layer2, scale=0.5)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • a (paddle.v2.config_base.Layer) – Input layer1
    • +
    • b (paddle.v2.config_base.Layer) – Input layer2
    • +
    • scale (float) – config scalar, default value is one.
    • +
    +
    返回:

    A DotMulOperator Object.

    +
    返回类型:

    DotMulOperator

    +
    +
    + + +
    +

    Attributes

    +
    +
    +paddle.v2.attr.Param
    +

    ParameterAttribute 的别名

    +
    + +
    +
    +paddle.v2.attr.Extra
    +

    ExtraLayerAttribute 的别名

    +
    + +
    +
    +paddle.v2.attr.ParamAttr
    +

    ParameterAttribute 的别名

    +
    + +
    +
    +paddle.v2.attr.ExtraAttr
    +

    ExtraLayerAttribute 的别名

    +
    + +
    +
    +class paddle.v2.attr.ParameterAttribute(name=None, is_static=False, initial_std=None, initial_mean=None, initial_max=None, initial_min=None, l1_rate=None, l2_rate=None, learning_rate=None, momentum=None, gradient_clipping_threshold=None, sparse_update=False)
    +

    Parameter Attributes object. To fine-tuning network training process, user +can set attribute to control training details, such as l1,l2 rate / learning +rate / how to init param.

    +

    NOTE: IT IS A HIGH LEVEL USER INTERFACE.

    + +++ + + + +
    参数:
      +
    • is_static (bool) – True if this parameter will be fixed while training.
    • +
    • initial_std (float or None) – Gauss Random initialization standard deviation. +None if not using Gauss Random initialize parameter.
    • +
    • initial_mean (float or None) – Gauss Random initialization mean. +None if not using Gauss Random initialize parameter.
    • +
    • initial_max (float or None) – Uniform initialization max value.
    • +
    • initial_min (float or None) – Uniform initialization min value.
    • +
    • l1_rate (float or None) – the l1 regularization factor
    • +
    • l2_rate (float or None) – the l2 regularization factor
    • +
    • learning_rate (float or None) – The parameter learning rate. None means 1. +The learning rate when optimize is LEARNING_RATE = +GLOBAL_LEARNING_RATE * PARAMETER_LEARNING_RATE +* SCHEDULER_FACTOR.
    • +
    • momentum (float or None) – The parameter momentum. None means use global value.
    • +
    • gradient_clipping_threshold (float) – gradient clipping threshold. If gradient +value larger than some value, will be +clipped.
    • +
    • sparse_update (bool) – Enable sparse update for this parameter. It will +enable both local and remote sparse update.
    • +
    +
    +
    +
    +set_default_parameter_name(name)
    +

    Set default parameter name. If parameter not set, then will use default +parameter name.

    + +++ + + + +
    参数:name (basestring) – default parameter name.
    +
    + +
    + +
    +
    +class paddle.v2.attr.ExtraLayerAttribute(error_clipping_threshold=None, drop_rate=None, device=None)
    +

    Some high level layer attributes config. You can set all attributes here, +but some layer doesn’t support all attributes. If you set an attribute to a +layer that not support this attribute, paddle will print an error and core.

    + +++ + + + +
    参数:
      +
    • error_clipping_threshold (float) – Error clipping threshold.
    • +
    • drop_rate (float) – Dropout rate. Dropout will create a mask on layer output. +The dropout rate is the zero rate of this mask. The +details of what dropout is please refer to here.
    • +
    • device (int) –

      device ID of layer. device=-1, use CPU. device>0, use GPU. +The details allocation in parallel_nn please refer to here.

      +
    • +
    +
    +
    + +
    +
    +

    Activations

    +
    +
    +class paddle.v2.activation.Tanh
    +

    Tanh activation.

    +
    +\[f(z)=tanh(z)=\frac{e^z-e^{-z}}{e^z+e^{-z}}\]
    +
    + +
    +
    +class paddle.v2.activation.Sigmoid
    +

    Sigmoid activation.

    +
    +\[f(z) = \frac{1}{1+exp(-z)}\]
    +
    + +
    +
    +class paddle.v2.activation.Softmax
    +

    Softmax activation for simple input

    +
    +\[P(y=j|x) = \frac{e^{x_j}} {\sum^K_{k=1} e^{x_j} }\]
    +
    + +
    +
    +paddle.v2.activation.Identity
    +

    Linear 的别名

    +
    + +
    +
    +class paddle.v2.activation.Linear
    +

    Identity Activation.

    +

    Just do nothing for output both forward/backward.

    +
    + +
    +
    +class paddle.v2.activation.SequenceSoftmax
    +

    Softmax activation for one sequence. The dimension of input feature must be +1 and a sequence.

    +
    result = softmax(for each_feature_vector[0] in input_feature)
    +for i, each_time_step_output in enumerate(output):
    +    each_time_step_output = result[i]
    +
    +
    +
    + +
    +
    +class paddle.v2.activation.Exp
    +

    Exponential Activation.

    +
    +\[f(z) = e^z.\]
    +
    + +
    +
    +class paddle.v2.activation.Relu
    +

    Relu activation.

    +

    forward. \(y = max(0, z)\)

    +

    derivative:

    +
    +\[\begin{split}1 &\quad if z > 0 \\ +0 &\quad\mathrm{otherwize}\end{split}\]
    +
    + +
    +
    +class paddle.v2.activation.BRelu
    +

    BRelu Activation.

    +

    forward. \(y = min(24, max(0, z))\)

    +

    derivative:

    +
    +\[\begin{split}1 &\quad if 0 < z < 24 \\ +0 &\quad \mathrm{otherwise}\end{split}\]
    +
    + +
    +
    +class paddle.v2.activation.SoftRelu
    +

    SoftRelu Activation.

    +
    + +
    +
    +class paddle.v2.activation.STanh
    +

    Scaled Tanh Activation.

    +
    +\[f(z) = 1.7159 * tanh(2/3*z)\]
    +
    + +
    +
    +class paddle.v2.activation.Abs
    +

    Abs Activation.

    +

    Forward: \(f(z) = abs(z)\)

    +

    Derivative:

    +
    +\[\begin{split}1 &\quad if \quad z > 0 \\ +-1 &\quad if \quad z < 0 \\ +0 &\quad if \quad z = 0\end{split}\]
    +
    + +
    +
    +class paddle.v2.activation.Square
    +

    Square Activation.

    +
    +\[f(z) = z^2.\]
    +
    + +
    +
    +class paddle.v2.activation.Base(name, support_hppl)
    +

    A mark for activation class. +Each activation inherit BaseActivation, which has two parameters.

    + +++ + + + +
    参数:
      +
    • name (basestring) – activation name in paddle config.
    • +
    • support_hppl (bool) – True if supported by hppl. HPPL is a library used by paddle +internally. Currently, lstm layer can only use activations +supported by hppl.
    • +
    +
    +
    + +
    +
    +class paddle.v2.activation.Log
    +

    Logarithm Activation.

    +
    +\[f(z) = log(z)\]
    +
    + +
    +
    +

    Poolings

    +
    +
    +class paddle.v2.pooling.BasePool(name)
    +

    Base Pooling Type. +Note these pooling types are used for sequence input, not for images. +Each PoolingType contains one parameter:

    + +++ + + + +
    参数:name (basestring) – pooling layer type name used by paddle.
    +
    + +
    +
    +class paddle.v2.pooling.Max(output_max_index=None)
    +

    Max pooling.

    +

    Return the very large values for each dimension in sequence or time steps.

    +
    +\[max(samples\_of\_a\_sequence)\]
    + +++ + + + +
    参数:output_max_index (bool|None) – True if output sequence max index instead of max +value. None means use default value in proto.
    +
    + +
    +
    +class paddle.v2.pooling.Avg(strategy='average')
    +

    Average pooling.

    +

    Return the average values for each dimension in sequence or time steps.

    +
    +\[sum(samples\_of\_a\_sequence)/sample\_num\]
    +
    + +
    +
    +class paddle.v2.pooling.CudnnMax
    +

    Cudnn max pooling only support GPU. Return the maxinum value in the +pooling window.

    +
    + +
    +
    +class paddle.v2.pooling.CudnnAvg
    +

    Cudnn average pooling only support GPU. Return the average value in the +pooling window.

    +
    + +
    +
    +class paddle.v2.pooling.Sum
    +

    Sum pooling.

    +

    Return the sum values of each dimension in sequence or time steps.

    +
    +\[sum(samples\_of\_a\_sequence)\]
    +
    + +
    +
    +class paddle.v2.pooling.SquareRootN
    +

    Square Root Pooling.

    +

    Return the square root values of each dimension in sequence or time steps.

    +
    +\[sum(samples\_of\_a\_sequence)/sqrt(sample\_num)\]
    +
    + +
    +
    +

    Networks

    +
    +
    +class paddle.v2.networks.sequence_conv_pool(*args, **kwargs)
    +

    Text convolution pooling layers helper.

    +

    Text input => Context Projection => FC Layer => Pooling => Output.

    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – name of output layer(pooling layer name)
    • +
    • input (paddle.v2.config_base.Layer) – name of input layer
    • +
    • context_len (int) – context projection length. See +context_projection’s document.
    • +
    • hidden_size (int) – FC Layer size.
    • +
    • context_start (int or None) – context projection length. See +context_projection’s context_start.
    • +
    • pool_type (BasePoolingType.) – pooling layer type. See pooling’s document.
    • +
    • context_proj_name (basestring) – context projection layer name. +None if user don’t care.
    • +
    • context_proj_param_attr (paddle.v2.attr.ParameterAttribute or None.) – context projection parameter attribute. +None if user don’t care.
    • +
    • fc_name (basestring) – fc layer name. None if user don’t care.
    • +
    • fc_param_attr (paddle.v2.attr.ParameterAttribute or None) – fc layer parameter attribute. None if user don’t care.
    • +
    • fc_bias_attr (paddle.v2.attr.ParameterAttribute or None) – fc bias parameter attribute. False if no bias, +None if user don’t care.
    • +
    • fc_act (paddle.v2.Activation.Base) – fc layer activation type. None means tanh
    • +
    • pool_bias_attr (paddle.v2.attr.ParameterAttribute or None.) – pooling layer bias attr. None if don’t care. +False if no bias.
    • +
    • fc_attr (paddle.v2.attr.ExtraAttribute) – fc layer extra attribute.
    • +
    • context_attr (paddle.v2.attr.ExtraAttribute) – context projection layer extra attribute.
    • +
    • pool_attr (paddle.v2.attr.ExtraAttribute) – pooling layer extra attribute.
    • +
    +
    返回:

    output layer name.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.networks.simple_lstm(*args, **kwargs)
    +

    Simple LSTM Cell.

    +

    It just combine a mixed layer with fully_matrix_projection and a lstmemory +layer. The simple lstm cell was implemented as follow equations.

    +
    +\[ \begin{align}\begin{aligned}i_t & = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)\\f_t & = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)\\c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)\\o_t & = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)\\h_t & = o_t tanh(c_t)\end{aligned}\end{align} \]
    +

    Please refer Generating Sequences With Recurrent Neural Networks if you +want to know what lstm is. Link is here.

    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – lstm layer name.
    • +
    • input (paddle.v2.config_base.Layer) – input layer name.
    • +
    • size (int) – lstm layer size.
    • +
    • reverse (bool) – whether to process the input data in a reverse order
    • +
    • mat_param_attr (paddle.v2.attr.ParameterAttribute) – mixed layer’s matrix projection parameter attribute.
    • +
    • bias_param_attr (paddle.v2.attr.ParameterAttribute|False) – bias parameter attribute. False means no bias, None +means default bias.
    • +
    • inner_param_attr (paddle.v2.attr.ParameterAttribute) – lstm cell parameter attribute.
    • +
    • act (paddle.v2.Activation.Base) – lstm final activiation type
    • +
    • gate_act (paddle.v2.Activation.Base) – lstm gate activiation type
    • +
    • state_act (paddle.v2.Activation.Base) – lstm state activiation type.
    • +
    • mixed_attr (paddle.v2.attr.ExtraAttribute) – mixed layer’s extra attribute.
    • +
    • lstm_cell_attr (paddle.v2.attr.ExtraAttribute) – lstm layer’s extra attribute.
    • +
    +
    返回:

    lstm layer name.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.networks.simple_img_conv_pool(*args, **kwargs)
    +

    Simple image convolution and pooling group.

    +

    Input => conv => pooling

    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – group name
    • +
    • input (paddle.v2.config_base.Layer) – input layer name.
    • +
    • filter_size (int) – see img_conv for details
    • +
    • num_filters (int) – see img_conv for details
    • +
    • pool_size (int) – see img_pool for details
    • +
    • pool_type (BasePoolingType) – see img_pool for details
    • +
    • act (paddle.v2.Activation.Base) – see img_conv for details
    • +
    • groups (int) – see img_conv for details
    • +
    • conv_stride (int) – see img_conv for details
    • +
    • conv_padding (int) – see img_conv for details
    • +
    • bias_attr (paddle.v2.attr.ParameterAttribute) – see img_conv for details
    • +
    • num_channel (int) – see img_conv for details
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – see img_conv for details
    • +
    • shared_bias (bool) – see img_conv for details
    • +
    • conv_attr (paddle.v2.attr.ExtraAttribute) – see img_conv for details
    • +
    • pool_stride (int) – see img_pool for details
    • +
    • pool_padding (int) – see img_pool for details
    • +
    • pool_attr (paddle.v2.attr.ExtraAttribute) – see img_pool for details
    • +
    +
    返回:

    Layer’s output

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.networks.img_conv_bn_pool(*args, **kwargs)
    +

    Convolution, batch normalization, pooling group.

    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – group name
    • +
    • input (paddle.v2.config_base.Layer) – layer’s input
    • +
    • filter_size (int) – see img_conv’s document
    • +
    • num_filters (int) – see img_conv’s document
    • +
    • pool_size (int) – see img_pool’s document.
    • +
    • pool_type (BasePoolingType) – see img_pool’s document.
    • +
    • act (paddle.v2.Activation.Base) – see batch_norm’s document.
    • +
    • groups (int) – see img_conv’s document
    • +
    • conv_stride (int) – see img_conv’s document.
    • +
    • conv_padding (int) – see img_conv’s document.
    • +
    • conv_bias_attr (paddle.v2.attr.ParameterAttribute) – see img_conv’s document.
    • +
    • num_channel (int) – see img_conv’s document.
    • +
    • conv_param_attr (paddle.v2.attr.ParameterAttribute) – see img_conv’s document.
    • +
    • shared_bias (bool) – see img_conv’s document.
    • +
    • conv_attr (Extrapaddle.v2.config_base.Layer) – see img_conv’s document.
    • +
    • bn_param_attr (paddle.v2.attr.ParameterAttribute.) – see batch_norm’s document.
    • +
    • bn_bias_attr – see batch_norm’s document.
    • +
    • bn_attr – paddle.v2.attr.ParameterAttribute.
    • +
    • pool_stride (int) – see img_pool’s document.
    • +
    • pool_padding (int) – see img_pool’s document.
    • +
    • pool_attr (paddle.v2.attr.ExtraAttribute) – see img_pool’s document.
    • +
    +
    返回:

    Layer groups output

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.networks.dropout_layer(*args, **kwargs)
    +

    @TODO(yuyang18): Add comments.

    + +++ + + + + + +
    参数:
      +
    • name
    • +
    • input
    • +
    • dropout_rate
    • +
    +
    返回:

    +
    +
    + +
    +
    +class paddle.v2.networks.lstmemory_group(*args, **kwargs)
    +

    lstm_group is a recurrent layer group version of Long Short Term Memory. It +does exactly the same calculation as the lstmemory layer (see lstmemory in +layers.py for the maths) does. A promising benefit is that LSTM memory +cell states, or hidden states in every time step are accessible to the +user. This is especially useful in attention model. If you do not need to +access the internal states of the lstm, but merely use its outputs, +it is recommended to use the lstmemory, which is relatively faster than +lstmemory_group.

    +

    NOTE: In PaddlePaddle’s implementation, the following input-to-hidden +multiplications: +\(W_{xi}x_{t}\) , \(W_{xf}x_{t}\), +\(W_{xc}x_t\), \(W_{xo}x_{t}\) are not done in lstmemory_unit to +speed up the calculations. Consequently, an additional mixed with +full_matrix_projection must be included before lstmemory_unit is called.

    +

    The example usage is:

    +
    lstm_step = lstmemory_group(input=[layer1],
    +                            size=256,
    +                            act=paddle.v2.Activation.Tanh(),
    +                            gate_act=paddle.v2.Activation.Sigmoid(),
    +                            state_act=paddle.v2.Activation.Tanh())
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – input layer name.
    • +
    • name (basestring) – lstmemory group name.
    • +
    • size (int) – lstmemory group size.
    • +
    • reverse (bool) – is lstm reversed
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – Parameter config, None if use default.
    • +
    • act (paddle.v2.Activation.Base) – lstm final activiation type
    • +
    • gate_act (paddle.v2.Activation.Base) – lstm gate activiation type
    • +
    • state_act (paddle.v2.Activation.Base) – lstm state activiation type.
    • +
    • mixed_bias_attr (paddle.v2.attr.ParameterAttribute|False) – bias parameter attribute of mixed layer. +False means no bias, None means default bias.
    • +
    • lstm_bias_attr (paddle.v2.attr.ParameterAttribute|False) – bias parameter attribute of lstm layer. +False means no bias, None means default bias.
    • +
    • mixed_attr (paddle.v2.attr.ExtraAttribute) – mixed layer’s extra attribute.
    • +
    • lstm_attr (paddle.v2.attr.ExtraAttribute) – lstm layer’s extra attribute.
    • +
    • get_output_attr (paddle.v2.attr.ExtraAttribute) – get output layer’s extra attribute.
    • +
    +
    返回:

    the lstmemory group.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.networks.lstmemory_unit(*args, **kwargs)
    +

    Define calculations that a LSTM unit performs in a single time step. +This function itself is not a recurrent layer, so that it can not be +directly applied to sequence input. This function is always used in +recurrent_group (see layers.py for more details) to implement attention +mechanism.

    +

    Please refer to Generating Sequences With Recurrent Neural Networks +for more details about LSTM. The link goes as follows: +.. _Link: https://arxiv.org/abs/1308.0850

    +
    +\[ \begin{align}\begin{aligned}i_t & = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)\\f_t & = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)\\c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)\\o_t & = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)\\h_t & = o_t tanh(c_t)\end{aligned}\end{align} \]
    +

    The example usage is:

    +
    lstm_step = lstmemory_unit(input=[layer1],
    +                           size=256,
    +                           act=paddle.v2.Activation.Tanh(),
    +                           gate_act=paddle.v2.Activation.Sigmoid(),
    +                           state_act=paddle.v2.Activation.Tanh())
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – input layer name.
    • +
    • name (basestring) – lstmemory unit name.
    • +
    • size (int) – lstmemory unit size.
    • +
    • param_attr (paddle.v2.attr.ParameterAttribute) – Parameter config, None if use default.
    • +
    • act (paddle.v2.Activation.Base) – lstm final activiation type
    • +
    • gate_act (paddle.v2.Activation.Base) – lstm gate activiation type
    • +
    • state_act (paddle.v2.Activation.Base) – lstm state activiation type.
    • +
    • mixed_bias_attr (paddle.v2.attr.ParameterAttribute|False) – bias parameter attribute of mixed layer. +False means no bias, None means default bias.
    • +
    • lstm_bias_attr (paddle.v2.attr.ParameterAttribute|False) – bias parameter attribute of lstm layer. +False means no bias, None means default bias.
    • +
    • mixed_attr (paddle.v2.attr.ExtraAttribute) – mixed layer’s extra attribute.
    • +
    • lstm_attr (paddle.v2.attr.ExtraAttribute) – lstm layer’s extra attribute.
    • +
    • get_output_attr (paddle.v2.attr.ExtraAttribute) – get output layer’s extra attribute.
    • +
    +
    返回:

    lstmemory unit name.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.networks.img_conv_group(**kwargs)
    +

    Image Convolution Group, Used for vgg net.

    +

    TODO(yuyang18): Complete docs

    + +++ + + + + + +
    参数:
      +
    • conv_batchnorm_drop_rate
    • +
    • input
    • +
    • conv_num_filter
    • +
    • pool_size
    • +
    • num_channels
    • +
    • conv_padding
    • +
    • conv_filter_size
    • +
    • conv_act
    • +
    • conv_with_batchnorm
    • +
    • pool_stride
    • +
    • pool_type
    • +
    +
    返回:

    +
    +
    + +
    +
    +class paddle.v2.networks.vgg_16_network(**kwargs)
    +

    Same model from https://gist.github.com/ksimonyan/211839e770f7b538e2d8

    + +++ + + + + + +
    参数:
      +
    • num_classes
    • +
    • input_image (paddle.v2.config_base.Layer) –
    • +
    • num_channels (int) –
    • +
    +
    返回:

    +
    +
    + +
    +
    +class paddle.v2.networks.gru_unit(*args, **kwargs)
    +

    Define calculations that a gated recurrent unit performs in a single time +step. This function itself is not a recurrent layer, so that it can not be +directly applied to sequence input. This function is almost always used in +the recurrent_group (see layers.py for more details) to implement attention +mechanism.

    +

    Please see grumemory in layers.py for the details about the maths.

    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – input layer name.
    • +
    • name (basestring) – name of the gru group.
    • +
    • size (int) – hidden size of the gru.
    • +
    • act (paddle.v2.Activation.Base) – type of the activation
    • +
    • gate_act (paddle.v2.Activation.Base) – type of the gate activation
    • +
    • gru_attr (paddle.v2.attr.ParameterAttribute|False) – Extra parameter attribute of the gru layer.
    • +
    +
    返回:

    the gru output layer.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.networks.gru_group(*args, **kwargs)
    +

    gru_group is a recurrent layer group version of Gated Recurrent Unit. It +does exactly the same calculation as the grumemory layer does. A promising +benefit is that gru hidden states are accessible to the user. This is +especially useful in attention model. If you do not need to access +any internal state, but merely use the outputs of a GRU, it is recommended +to use the grumemory, which is relatively faster.

    +

    Please see grumemory in layers.py for more detail about the maths.

    +

    The example usage is:

    +
    gru = gur_group(input=[layer1],
    +                size=256,
    +                act=paddle.v2.Activation.Tanh(),
    +                gate_act=paddle.v2.Activation.Sigmoid())
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – input layer name.
    • +
    • name (basestring) – name of the gru group.
    • +
    • size (int) – hidden size of the gru.
    • +
    • reverse (bool) – whether to process the input data in a reverse order
    • +
    • act (paddle.v2.Activation.Base) – type of the activiation
    • +
    • gate_act (paddle.v2.Activation.Base) – type of the gate activiation
    • +
    • gru_bias_attr (paddle.v2.attr.ParameterAttribute|False) – bias. False means no bias, None means default bias.
    • +
    • gru_attr (paddle.v2.attr.ParameterAttribute|False) – Extra parameter attribute of the gru layer.
    • +
    +
    返回:

    the gru group.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.networks.simple_gru(*args, **kwargs)
    +

    You maybe see gru_step, grumemory in layers.py, gru_unit, gru_group, +simple_gru in network.py. The reason why there are so many interfaces is +that we have two ways to implement recurrent neural network. One way is to +use one complete layer to implement rnn (including simple rnn, gru and lstm) +with multiple time steps, such as recurrent, lstmemory, grumemory. But, +the multiplication operation \(W x_t\) is not computed in these layers. +See details in their interfaces in layers.py. +The other implementation is to use an recurrent group which can ensemble a +series of layers to compute rnn step by step. This way is flexible for +attenion mechanism or other complex connections.

    +
      +
    • gru_step: only compute rnn by one step. It needs an memory as input +and can be used in recurrent group.
    • +
    • gru_unit: a wrapper of gru_step with memory.
    • +
    • gru_group: a GRU cell implemented by a combination of multiple layers in +recurrent group. +But \(W x_t\) is not done in group.
    • +
    • gru_memory: a GRU cell implemented by one layer, which does same calculation +with gru_group and is faster than gru_group.
    • +
    • simple_gru: a complete GRU implementation inlcuding \(W x_t\) and +gru_group. \(W\) contains \(W_r\), \(W_z\) and \(W\), see +formula in grumemory.
    • +
    +

    The computational speed is that, grumemory is relatively better than +gru_group, and gru_group is relatively better than simple_gru.

    +

    The example usage is:

    +
    gru = simple_gru(input=[layer1], size=256)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – input layer name.
    • +
    • name (basestring) – name of the gru group.
    • +
    • size (int) – hidden size of the gru.
    • +
    • reverse (bool) – whether to process the input data in a reverse order
    • +
    • act (paddle.v2.Activation.Base) – type of the activiation
    • +
    • gate_act (paddle.v2.Activation.Base) – type of the gate activiation
    • +
    • gru_bias_attr (paddle.v2.attr.ParameterAttribute|False) – bias. False means no bias, None means default bias.
    • +
    • gru_attr (paddle.v2.attr.ParameterAttribute|False) – Extra parameter attribute of the gru layer.
    • +
    +
    返回:

    the gru group.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.networks.simple_attention(*args, **kwargs)
    +

    Calculate and then return a context vector by attention machanism. +Size of the context vector equals to size of the encoded_sequence.

    +
    +\[ \begin{align}\begin{aligned}a(s_{i-1},h_{j}) & = v_{a}f(W_{a}s_{t-1} + U_{a}h_{j})\\e_{i,j} & = a(s_{i-1}, h_{j})\\a_{i,j} & = \frac{exp(e_{i,j})}{\sum_{k=1}^{T_x}{exp(e_{i,k})}}\\c_{i} & = \sum_{j=1}^{T_{x}}a_{i,j}h_{j}\end{aligned}\end{align} \]
    +

    where \(h_{j}\) is the jth element of encoded_sequence, +\(U_{a}h_{j}\) is the jth element of encoded_proj +\(s_{i-1}\) is decoder_state +\(f\) is weight_act, and is set to tanh by default.

    +

    Please refer to Neural Machine Translation by Jointly Learning to +Align and Translate for more details. The link is as follows: +https://arxiv.org/abs/1409.0473.

    +

    The example usage is:

    +
    context = simple_attention(encoded_sequence=enc_seq,
    +                           encoded_proj=enc_proj,
    +                           decoder_state=decoder_prev,)
    +
    +
    + +++ + + + + + +
    参数:
      +
    • name (basestring) – name of the attention model.
    • +
    • softmax_param_attr (paddle.v2.attr.ParameterAttribute) – parameter attribute of sequence softmax +that is used to produce attention weight
    • +
    • weight_act (Activation) – activation of the attention model
    • +
    • encoded_sequence (paddle.v2.config_base.Layer) – output of the encoder
    • +
    • encoded_proj (paddle.v2.config_base.Layer) – attention weight is computed by a feed forward neural +network which has two inputs : decoder’s hidden state +of previous time step and encoder’s output. +encoded_proj is output of the feed-forward network for +encoder’s output. Here we pre-compute it outside +simple_attention for speed consideration.
    • +
    • decoder_state (paddle.v2.config_base.Layer) – hidden state of decoder in previous time step
    • +
    • transform_param_attr (paddle.v2.attr.ParameterAttribute) – parameter attribute of the feed-forward +network that takes decoder_state as inputs to +compute attention weight.
    • +
    +
    返回:

    a context vector

    +
    +
    + +
    +
    +class paddle.v2.networks.simple_gru2(*args, **kwargs)
    +

    simple_gru2 is the same with simple_gru, but using grumemory instead +Please see grumemory in layers.py for more detail about the maths. +simple_gru2 is faster than simple_gru.

    +

    The example usage is:

    +
    gru = simple_gru2(input=[layer1], size=256)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • input (paddle.v2.config_base.Layer) – input layer name.
    • +
    • name (basestring) – name of the gru group.
    • +
    • size (int) – hidden size of the gru.
    • +
    • reverse (bool) – whether to process the input data in a reverse order
    • +
    • act (paddle.v2.Activation.Base) – type of the activiation
    • +
    • gate_act (paddle.v2.Activation.Base) – type of the gate activiation
    • +
    • gru_bias_attr (paddle.v2.attr.ParameterAttribute|False) – bias. False means no bias, None means default bias.
    • +
    • gru_attr (paddle.v2.attr.ParameterAttribute|False) – Extra parameter attribute of the gru layer.
    • +
    +
    返回:

    the gru group.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.networks.bidirectional_gru(*args, **kwargs)
    +

    A bidirectional_gru is a recurrent unit that iterates over the input +sequence both in forward and bardward orders, and then concatenate two +outputs to form a final output. However, concatenation of two outputs +is not the only way to form the final output, you can also, for example, +just add them together.

    +

    The example usage is:

    +
    bi_gru = bidirectional_gru(input=[input1], size=512)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – bidirectional gru layer name.
    • +
    • input (paddle.v2.config_base.Layer) – input layer.
    • +
    • size (int) – gru layer size.
    • +
    • return_seq (bool) – If set False, outputs of the last time step are +concatenated and returned. +If set True, the entire output sequences that are +processed in forward and backward directions are +concatenated and returned.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.networks.text_conv_pool(*args, **kwargs)
    +

    Text convolution pooling layers helper.

    +

    Text input => Context Projection => FC Layer => Pooling => Output.

    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – name of output layer(pooling layer name)
    • +
    • input (paddle.v2.config_base.Layer) – name of input layer
    • +
    • context_len (int) – context projection length. See +context_projection’s document.
    • +
    • hidden_size (int) – FC Layer size.
    • +
    • context_start (int or None) – context projection length. See +context_projection’s context_start.
    • +
    • pool_type (BasePoolingType.) – pooling layer type. See pooling’s document.
    • +
    • context_proj_name (basestring) – context projection layer name. +None if user don’t care.
    • +
    • context_proj_param_attr (paddle.v2.attr.ParameterAttribute or None.) – context projection parameter attribute. +None if user don’t care.
    • +
    • fc_name (basestring) – fc layer name. None if user don’t care.
    • +
    • fc_param_attr (paddle.v2.attr.ParameterAttribute or None) – fc layer parameter attribute. None if user don’t care.
    • +
    • fc_bias_attr (paddle.v2.attr.ParameterAttribute or None) – fc bias parameter attribute. False if no bias, +None if user don’t care.
    • +
    • fc_act (paddle.v2.Activation.Base) – fc layer activation type. None means tanh
    • +
    • pool_bias_attr (paddle.v2.attr.ParameterAttribute or None.) – pooling layer bias attr. None if don’t care. +False if no bias.
    • +
    • fc_attr (paddle.v2.attr.ExtraAttribute) – fc layer extra attribute.
    • +
    • context_attr (paddle.v2.attr.ExtraAttribute) – context projection layer extra attribute.
    • +
    • pool_attr (paddle.v2.attr.ExtraAttribute) – pooling layer extra attribute.
    • +
    +
    返回:

    output layer name.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    +
    + +
    +
    +class paddle.v2.networks.bidirectional_lstm(*args, **kwargs)
    +

    A bidirectional_lstm is a recurrent unit that iterates over the input +sequence both in forward and bardward orders, and then concatenate two +outputs form a final output. However, concatenation of two outputs +is not the only way to form the final output, you can also, for example, +just add them together.

    +

    Please refer to Neural Machine Translation by Jointly Learning to Align +and Translate for more details about the bidirectional lstm. +The link goes as follows: +.. _Link: https://arxiv.org/pdf/1409.0473v3.pdf

    +

    The example usage is:

    +
    bi_lstm = bidirectional_lstm(input=[input1], size=512)
    +
    +
    + +++ + + + + + + + +
    参数:
      +
    • name (basestring) – bidirectional lstm layer name.
    • +
    • input (paddle.v2.config_base.Layer) – input layer.
    • +
    • size (int) – lstm layer size.
    • +
    • return_seq (bool) – If set False, outputs of the last time step are +concatenated and returned. +If set True, the entire output sequences that are +processed in forward and backward directions are +concatenated and returned.
    • +
    +
    返回:

    paddle.v2.config_base.Layer object accroding to the return_seq.

    +
    返回类型:

    paddle.v2.config_base.Layer

    +
    diff --git a/develop/doc_cn/genindex.html b/develop/doc_cn/genindex.html index 425257b080f70c269239d0835dbba7e1023e6cae..1815ae4fa38fa2a32b238a56327017406b2fb000 100644 --- a/develop/doc_cn/genindex.html +++ b/develop/doc_cn/genindex.html @@ -194,16 +194,119 @@

    索引

    - D + A + | B + | C + | D | E + | F + | G + | H + | I + | L + | M + | N + | O | P + | R | S + | T + | V + | W
    +

    A

    + + + +
    + +

    B

    + + + +
    + +

    C

    + + + +
    +

    D

    +
    @@ -211,11 +314,155 @@

    E

    +
    + +

    F

    + + + +
    + +

    G

    + + + +
    + +

    H

    + + + +
    + +

    I

    + + + +
    + +

    L

    + + + +
    + +

    M

    + + + +
    + +

    N

    + + +
    + +

    O

    + +
    @@ -223,19 +470,67 @@

    P

    +
    + +

    R

    + + +
    @@ -243,7 +538,97 @@

    S

    + +
    + +

    T

    + + + +
    + +

    V

    + + +
    + +

    W

    + +
    diff --git a/develop/doc_cn/objects.inv b/develop/doc_cn/objects.inv index c3ea0056a0a5850474b493437b11c8b42009c85e..430bc1730bf13708671a3fd2c0f31dffdf1b3df6 100644 Binary files a/develop/doc_cn/objects.inv and b/develop/doc_cn/objects.inv differ diff --git a/develop/doc_cn/py-modindex.html b/develop/doc_cn/py-modindex.html index 0243ad805f02a164a6fa40d19d00cee17c5d6998..233312cd3adb5af59a27bcb95b49a6bf1abe8986 100644 --- a/develop/doc_cn/py-modindex.html +++ b/develop/doc_cn/py-modindex.html @@ -219,11 +219,31 @@     paddle.trainer_config_helpers.data_sources + + +     + paddle.v2.activation + + + +     + paddle.v2.attr +     paddle.v2.layer + + +     + paddle.v2.networks + + + +     + paddle.v2.pooling + diff --git a/develop/doc_cn/searchindex.js b/develop/doc_cn/searchindex.js index 1d1d69822de9386c2f16d005e35d13a0ccc81bd2..9031c937b350d66bb8eb006d6e0f745cc3fbf660 100644 --- a/develop/doc_cn/searchindex.js +++ b/develop/doc_cn/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["about/index_cn","api/index_cn","api/v1/data_provider/dataprovider_cn","api/v1/data_provider/pydataprovider2_cn","api/v1/index_cn","api/v1/predict/swig_py_paddle_cn","api/v1/trainer_config_helpers/activations","api/v1/trainer_config_helpers/attrs","api/v1/trainer_config_helpers/data_sources","api/v1/trainer_config_helpers/evaluators","api/v1/trainer_config_helpers/layers","api/v1/trainer_config_helpers/networks","api/v1/trainer_config_helpers/optimizers","api/v1/trainer_config_helpers/poolings","api/v2/model_configs","design/api","design/reader/README","faq/index_cn","getstarted/basic_usage/index_cn","getstarted/build_and_install/cmake/build_from_source_cn","getstarted/build_and_install/docker_install_cn","getstarted/build_and_install/index_cn","getstarted/build_and_install/ubuntu_install_cn","getstarted/index_cn","howto/deep_model/rnn/hierarchical_layer_cn","howto/deep_model/rnn/hrnn_rnn_api_compare_cn","howto/deep_model/rnn/index_cn","howto/deep_model/rnn/recurrent_group_cn","howto/deep_model/rnn/rnn_config_cn","howto/dev/contribute_to_paddle_cn","howto/dev/new_layer_cn","howto/dev/write_docs_cn","howto/index_cn","howto/optimization/gpu_profiling_cn","howto/usage/cluster/cluster_train_cn","howto/usage/cmd_parameter/arguments_cn","howto/usage/cmd_parameter/detail_introduction_cn","howto/usage/cmd_parameter/index_cn","howto/usage/cmd_parameter/use_case_cn","howto/usage/concepts/use_concepts_cn","howto/usage/k8s/k8s_basis_cn","howto/usage/k8s/k8s_cn","howto/usage/k8s/k8s_distributed_cn","howto/usage/k8s/src/k8s_data/README","howto/usage/k8s/src/k8s_train/README","index_cn","tutorials/embedding_model/index_cn","tutorials/image_classification/index_cn","tutorials/imagenet_model/resnet_model_cn","tutorials/index_cn","tutorials/quick_start/index_cn","tutorials/rec/ml_dataset_cn","tutorials/rec/ml_regression_cn","tutorials/semantic_role_labeling/index_cn","tutorials/sentiment_analysis/index_cn","tutorials/text_generation/index_cn"],envversion:50,filenames:["about/index_cn.md","api/index_cn.rst","api/v1/data_provider/dataprovider_cn.rst","api/v1/data_provider/pydataprovider2_cn.rst","api/v1/index_cn.rst","api/v1/predict/swig_py_paddle_cn.rst","api/v1/trainer_config_helpers/activations.rst","api/v1/trainer_config_helpers/attrs.rst","api/v1/trainer_config_helpers/data_sources.rst","api/v1/trainer_config_helpers/evaluators.rst","api/v1/trainer_config_helpers/layers.rst","api/v1/trainer_config_helpers/networks.rst","api/v1/trainer_config_helpers/optimizers.rst","api/v1/trainer_config_helpers/poolings.rst","api/v2/model_configs.rst","design/api.md","design/reader/README.md","faq/index_cn.rst","getstarted/basic_usage/index_cn.rst","getstarted/build_and_install/cmake/build_from_source_cn.rst","getstarted/build_and_install/docker_install_cn.rst","getstarted/build_and_install/index_cn.rst","getstarted/build_and_install/ubuntu_install_cn.rst","getstarted/index_cn.rst","howto/deep_model/rnn/hierarchical_layer_cn.rst","howto/deep_model/rnn/hrnn_rnn_api_compare_cn.rst","howto/deep_model/rnn/index_cn.rst","howto/deep_model/rnn/recurrent_group_cn.md","howto/deep_model/rnn/rnn_config_cn.rst","howto/dev/contribute_to_paddle_cn.md","howto/dev/new_layer_cn.rst","howto/dev/write_docs_cn.rst","howto/index_cn.rst","howto/optimization/gpu_profiling_cn.rst","howto/usage/cluster/cluster_train_cn.md","howto/usage/cmd_parameter/arguments_cn.md","howto/usage/cmd_parameter/detail_introduction_cn.md","howto/usage/cmd_parameter/index_cn.rst","howto/usage/cmd_parameter/use_case_cn.md","howto/usage/concepts/use_concepts_cn.rst","howto/usage/k8s/k8s_basis_cn.md","howto/usage/k8s/k8s_cn.md","howto/usage/k8s/k8s_distributed_cn.md","howto/usage/k8s/src/k8s_data/README.md","howto/usage/k8s/src/k8s_train/README.md","index_cn.rst","tutorials/embedding_model/index_cn.md","tutorials/image_classification/index_cn.md","tutorials/imagenet_model/resnet_model_cn.md","tutorials/index_cn.md","tutorials/quick_start/index_cn.rst","tutorials/rec/ml_dataset_cn.md","tutorials/rec/ml_regression_cn.rst","tutorials/semantic_role_labeling/index_cn.md","tutorials/sentiment_analysis/index_cn.md","tutorials/text_generation/index_cn.md"],objects:{"paddle.trainer_config_helpers":{attrs:[7,0,0,"-"],data_sources:[8,0,0,"-"]},"paddle.trainer_config_helpers.attrs":{ExtraAttr:[7,1,1,""],ExtraLayerAttribute:[7,2,1,""],ParamAttr:[7,1,1,""],ParameterAttribute:[7,2,1,""]},"paddle.trainer_config_helpers.attrs.ParameterAttribute":{set_default_parameter_name:[7,3,1,""]},"paddle.trainer_config_helpers.data_sources":{define_py_data_sources2:[8,4,1,""]},"paddle.v2":{layer:[14,0,0,"-"]},"paddle.v2.layer":{parse_network:[14,4,1,""]}},objnames:{"0":["py","module","Python \u6a21\u5757"],"1":["py","attribute","Python \u5c5e\u6027"],"2":["py","class","Python \u7c7b"],"3":["py","method","Python \u65b9\u6cd5"],"4":["py","function","Python \u51fd\u6570"]},objtypes:{"0":"py:module","1":"py:attribute","2":"py:class","3":"py:method","4":"py:function"},terms:{"00012\u7684\u6a21\u578b\u6709\u7740\u6700\u9ad8\u7684bleu\u503c27":55,"0005\u4e58\u4ee5batch":47,"000\u4e2a\u5df2\u6807\u6ce8\u8fc7\u7684\u9ad8\u6781\u6027\u7535\u5f71\u8bc4\u8bba\u7528\u4e8e\u8bad\u7ec3":54,"000\u4e2a\u7528\u4e8e\u6d4b\u8bd5":54,"000\u4e2atxt\u6587\u4ef6":54,"000\u4f4d\u7528\u6237\u5bf94":51,"000\u5e45\u56fe\u50cf\u4e0a\u6d4b\u8bd5\u4e86\u6a21\u578b\u7684\u5206\u7c7b\u9519\u8bef\u7387":48,"000\u5f20\u7070\u5ea6\u56fe\u7247\u7684\u6570\u5b57\u5206\u7c7b\u6570\u636e\u96c6":3,"000\u6761\u8bc4\u4ef7":51,"000\u90e8\u7535\u5f71\u76841":51,"00186201e":5,"00m":33,"02595v1":10,"03m":33,"0424m":33,"0473v3":11,"05d":47,"0630u":33,"06u":33,"0810u":33,"08823112e":5,"0957m":33,"0\u53f7\u8bad\u7ec3\u8282\u70b9\u662f\u4e3b\u8bad\u7ec3\u8282\u70b9":36,"0\u5c42\u5e8f\u5217":24,"0\u8868\u793a\u7b2c\u4e00\u6b21\u7ecf\u8fc7\u8bad\u7ec3\u96c6":54,"0ab":10,"0b1":22,"10000\u5f20\u4f5c\u4e3a\u6d4b\u8bd5\u96c6":47,"10007_10":54,"10014_7":54,"100m":17,"101\u5c42\u548c152\u5c42\u7684\u7f51\u7edc\u7ed3\u6784\u4e2d":48,"101\u5c42\u548c152\u5c42\u7684\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6\u53ef\u53c2\u7167":48,"101\u5c42\u7f51\u7edc\u6a21\u578b":48,"10\u4e2d\u7684\u8bad\u7ec3\u96c6\u548c\u6d4b\u8bd5\u96c6":47,"10\u4ee5\u4e0a\u7684linux":20,"10\u6570\u636e\u96c6":47,"10\u6570\u636e\u96c6\u5305\u542b60000\u5f2032x32\u7684\u5f69\u8272\u56fe\u7247":47,"10\u6570\u636e\u96c6\u7684\u5b98\u65b9\u7f51\u5740":47,"10\u6570\u636e\u96c6\u8bad\u7ec3\u4e00\u4e2a\u5377\u79ef\u795e\u7ecf\u7f51\u7edc":47,"10gbe":20,"1150u":33,"11e6":41,"12194102e":5,"124n":33,"128\u7ef4\u548c256\u7ef4":46,"13m":41,"1490u":33,"14\u6570\u636e\u96c6":55,"14\u6570\u636e\u96c6\u4e0a\u5f97\u5230\u826f\u597d\u8868\u73b0\u7684\u8bad\u7ec3\u8fc7\u7a0b":55,"14\u8fd9\u79cd\u5199\u6cd5\u5c06\u4f1a\u6d4b\u8bd5\u6a21\u578b":38,"152\u5c42\u7f51\u7edc\u6a21\u578b":48,"15501715e":5,"1550u":33,"15\u884c":25,"1636k":55,"16u":33,"173m":48,"173n":33,"1770u":33,"18\u5c81\u4ee5\u4e0b":51,"18e457ce3d362ff5f3febf8e7f85ffec852f70f3b629add10aed84f930a68750":41,"197u":33,"1\u7684\u5c42\u4e4b\u5916":38,"1\u7a00\u758f\u6570\u636e":30,"1\u8f6e\u5b58\u50a8\u7684\u6240\u6709\u6a21\u578b":38,"1\u9664\u4ee5batch":47,"1m\u6570\u636e\u96c6\u4e2d":52,"1m\u7684\u5b57\u6bb5\u914d\u7f6e\u6587\u4ef6\u5728\u76ee\u5f55":52,"200\u6570\u636e\u96c6\u4e0a\u4f7f\u7528vgg\u6a21\u578b\u8bad\u7ec3\u4e00\u4e2a\u9e1f\u7c7b\u56fe\u7247\u5206\u7c7b\u6a21\u578b":47,"210u":33,"211839e770f7b538e2d8":11,"215n":33,"228u":33,"234m":48,"24\u5c81":51,"2520u":33,"25639710e":5,"25k":50,"2680u":33,"26\u884c":25,"27787406e":5,"279n":33,"27m":33,"285m":33,"2863m":33,"28\u7684\u56fe\u7247\u50cf\u7d20\u7070\u5ea6\u503c":3,"28\u7ef4\u7684\u7a20\u5bc6\u6d6e\u70b9\u6570\u5411\u91cf\u548c\u4e00\u4e2a":3,"28m":33,"2977m":33,"29997\u4e2a\u6700\u9ad8\u9891\u5355\u8bcd\u548c3\u4e2a\u7279\u6b8a\u7b26\u53f7":55,"2\u4e09\u7c7b\u7684\u6bd4\u4f8b\u4e3a":17,"2\u4e2a\u6d6e\u70b9\u6570":18,"2\u5206\u522b\u4ee3\u88683\u4e2a\u8282\u70b9\u7684trainer":42,"2\u610f\u5473\u77400\u53f7\u548c1\u53f7gpu\u5c06\u4f1a\u4f7f\u7528\u6570\u636e\u5e76\u884c\u6765\u8ba1\u7b97fc1\u548cfc2\u5c42":38,"2\u8fd9\u51e0\u4e2a\u76ee\u5f55\u8868\u793apaddlepaddle\u8282\u70b9\u4e0etrain":42,"2nd":10,"302n":33,"30u":33,"3206325\u4e2a\u8bcd\u548c3\u4e2a\u7279\u6b8a\u6807\u8bb0":46,"32777140e":5,"328n":33,"32\u7ef4":46,"32u":33,"331n":33,"3320u":33,"34\u5c81":51,"35\u65f6":55,"36540484e":5,"36u":33,"3710m":33,"3768m":33,"387u":33,"38u":33,"3920u":33,"39u":33,"3\u4e2a\u7279\u6b8a\u7b26\u53f7":55,"3\u53f7gpu":17,"4035m":33,"4090u":33,"4096mb":36,"40gbe":20,"4279m":33,"43630644e":5,"43u":33,"448a5b355b84":41,"44\u5c81":51,"4560u":33,"4563m":33,"45u":33,"4650u":33,"4726m":33,"473m":41,"48565123e":5,"48684503e":5,"49316648e":5,"49\u5c81":51,"4gb":36,"500\u4e2atxt\u6587\u4ef6":54,"500m":17,"50\u5c42":48,"50\u5c42\u7f51\u7edc\u6a21\u578b":48,"51111044e":5,"514u":33,"525n":33,"526u":33,"53018653e":5,"536u":33,"5460u":33,"5470u":33,"54u":33,"55\u5c81":51,"55g":55,"5690m":33,"56gbe":20,"573u":33,"578n":33,"5798m":33,"586u":33,"58s":41,"5969m":33,"5\u4e2a\u6d4b\u8bd5\u6837\u4f8b\u548c2\u4e2a\u751f\u6210\u5f0f\u6837\u4f8b":46,"5\u5230\u672c\u5730\u73af\u5883\u4e2d":22,"6080u":33,"6082v4":10,"6140u":33,"6305m":33,"639u":33,"64\u7ef4":46,"655u":33,"6780u":33,"6810u":33,"682u":33,"6970u":33,"6\u4e07\u4ebf\u6b21\u6d6e\u70b9\u8fd0\u7b97\u6bcf\u79d2":33,"6\u4e2a\u8282\u70b9":34,"6\u5143\u4e0a\u4e0b\u6587\u4f5c\u4e3a\u8f93\u5165\u5c42":46,"704u":33,"70634608e":5,"7090u":33,"72296313e":5,"72u":33,"73u":33,"75u":33,"760u":33,"767u":33,"783n":33,"784u":33,"78m":33,"7kb":41,"8250u":33,"8300u":33,"830n":33,"849m":33,"85625684e":5,"861u":33,"864k":55,"8661m":33,"877\u4e2a\u88ab\u5411\u91cf\u5316\u7684\u8bcd":46,"877\u884c":46,"892m":33,"8\u4ee5\u4e0a":29,"901n":33,"90u":33,"918u":33,"9247m":33,"924n":33,"9261m":33,"93137714e":5,"9330m":33,"94u":33,"9530m":33,"96644767e":5,"983m":33,"988u":33,"997u":33,"99982715e":5,"99m":48,"99u":33,"9\u4e2d\u7684\u4e00\u4e2a\u6570\u5b57":3,"9f18":41,"\u0233":18,"\u03b5":18,"\u4e00":25,"\u4e00\u4e2a":39,"\u4e00\u4e2a0\u5c42\u5e8f\u5217":24,"\u4e00\u4e2a0\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u6269\u5c55\u6210\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":24,"\u4e00\u4e2a\u4f8b\u5b50\u662f\u623f\u4ea7\u4f30\u503c":18,"\u4e00\u4e2a\u5178\u578b\u7684\u795e\u7ecf\u7f51\u7edc\u5982\u4e0b\u56fe\u6240\u793a":47,"\u4e00\u4e2a\u5206\u5e03\u5f0f\u4f5c\u4e1a\u91cc\u5305\u62ec\u82e5\u5e72trainer\u8fdb\u7a0b\u548c\u82e5\u5e72paramet":39,"\u4e00\u4e2a\u5206\u5e03\u5f0f\u7684\u5b58\u50a8\u7cfb\u7edf":40,"\u4e00\u4e2a\u5206\u5e03\u5f0fpaddle\u8bad\u7ec3\u4efb\u52a1\u4e2d\u7684\u6bcf\u4e2a\u8fdb\u7a0b\u90fd\u53ef\u4ee5\u4ececeph\u8bfb\u53d6\u6570\u636e":41,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":24,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u6216\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":24,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u6269\u5c55\u6210\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":24,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u8fdb\u5165":27,"\u4e00\u4e2a\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u5305\u542b\u5982\u4e0b\u5c42":47,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":24,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":24,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":24,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":24,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u8fdb\u5165":27,"\u4e00\u4e2a\u53cc\u5c42rnn\u7531\u591a\u4e2a\u5355\u5c42rnn\u7ec4\u6210":27,"\u4e00\u4e2a\u53ef\u8c03\u7528\u7684\u51fd\u6570":27,"\u4e00\u4e2a\u57fa\u672c\u7684\u5e94\u7528\u573a\u666f\u662f\u533a\u5206\u7ed9\u5b9a\u6587\u672c\u7684\u8912\u8d2c\u4e24\u6781\u6027":54,"\u4e00\u4e2a\u6216\u591a\u4e2a":40,"\u4e00\u4e2a\u6570\u636e\u96c6\u5927\u90e8\u5206\u5e8f\u5217\u957f\u5ea6\u662f100":17,"\u4e00\u4e2a\u6587\u4ef6":3,"\u4e00\u4e2a\u662f\u6d6e\u70b9\u8ba1\u7b97\u91cf":33,"\u4e00\u4e2a\u72ec\u7acb\u7684\u5143\u7d20":24,"\u4e00\u4e2a\u72ec\u7acb\u7684\u8bcd\u8bed":24,"\u4e00\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50\u5982":54,"\u4e00\u4e2a\u7b80\u5355\u7684\u8bad\u7ec3\u914d\u7f6e\u6587\u4ef6\u4e3a":39,"\u4e00\u4e2a\u7f51\u7edc\u5c42\u7684\u524d\u5411\u4f20\u64ad\u90e8\u5206\u628a\u8f93\u5165\u8f6c\u5316\u4e3a\u76f8\u5e94\u7684\u8f93\u51fa":30,"\u4e00\u4e2a\u7f51\u7edc\u5c42\u7684\u53c2\u6570\u662f\u5728":30,"\u4e00\u4e2a\u7f51\u7edc\u5c42\u7684c":30,"\u4e00\u4e2a\u91cd\u8981\u7684\u95ee\u9898\u662f\u9009\u62e9\u6b63\u786e\u7684learning_r":17,"\u4e00\u4e2agpu\u8bbe\u5907\u4e0a\u4e0d\u5141\u8bb8\u914d\u7f6e\u591a\u4e2a\u6a21\u578b":36,"\u4e00\u4e2alabel":25,"\u4e00\u4e2alogging\u5bf9\u8c61":3,"\u4e00\u4e2amemory\u5305\u542b":28,"\u4e00\u4e2apass\u610f\u5473\u7740paddlepaddle\u8bad\u7ec3\u6570\u636e\u96c6\u4e2d\u7684\u6240\u6709\u6837\u672c\u88ab\u904d\u5386\u4e00\u6b21":53,"\u4e00\u4e2apass\u8868\u793a\u8fc7\u4e00\u904d\u6240\u6709\u8bad\u7ec3\u6837\u672c":50,"\u4e00\u4e2apod\u4e2d\u7684\u6240\u6709\u5bb9\u5668\u4f1a\u88ab\u8c03\u5ea6\u5230\u540c\u4e00\u4e2anode\u4e0a":40,"\u4e00\u4e2apserver\u8fdb\u7a0b\u5171\u7ed1\u5b9a\u591a\u5c11\u7aef\u53e3\u7528\u6765\u505a\u7a00\u758f\u66f4\u65b0":39,"\u4e00\u4e9b\u60c5\u51b5\u4e0b":39,"\u4e00\u4e9b\u968f\u673a\u5316\u566a\u58f0\u6dfb\u52a0\u90fd\u5e94\u8be5\u5728dataprovider\u4e2d\u5b8c\u6210":39,"\u4e00\u4eba":25,"\u4e00\u53e5\u8bdd\u662f\u7531\u8bcd\u8bed\u6784\u6210\u7684\u5e8f\u5217":27,"\u4e00\u53f0\u673a\u5668\u4e0a\u9762\u7684\u7ebf\u7a0b\u6570\u91cf":52,"\u4e00\u65e6\u4f60\u521b\u5efa\u4e86\u4e00\u4e2afork":29,"\u4e00\u65e9":25,"\u4e00\u662fbatch":17,"\u4e00\u6761\u6837\u672c":3,"\u4e00\u6837\u8bbe\u7f6e":34,"\u4e00\u6b21\u4f5c\u4e1a\u79f0\u4e3a\u4e00\u4e2ajob":40,"\u4e00\u6b21\u6027\u676f\u5b50":25,"\u4e00\u6b21yield\u8c03\u7528":3,"\u4e00\u79cd\u5e38\u7528\u7684\u505a\u6cd5\u662f\u7528\u5b66\u4e60\u7684\u6a21\u578b\u5bf9\u53e6\u5916\u4e00\u7ec4\u6d4b\u8bd5\u6570\u636e\u8fdb\u884c\u9884\u6d4b":18,"\u4e00\u7bc7\u8bba\u6587":55,"\u4e00\u7ea7\u76ee\u5f55":[54,55],"\u4e00\u81f4":[24,25],"\u4e00\u822c\u5728paddlepaddle\u4e2d":25,"\u4e00\u822c\u60c5\u51b5\u4e0b":[2,18],"\u4e00\u822c\u63a8\u8350\u8bbe\u7f6e\u6210true":3,"\u4e00\u822c\u662f\u5c01\u88c5\u4e86\u8bb8\u591a\u590d\u6742\u64cd\u4f5c\u7684\u96c6\u5408":39,"\u4e00\u822c\u662f\u7531\u4e8e\u76f4\u63a5\u4f20\u9012\u5927\u5b57\u5178\u5bfc\u81f4\u7684":17,"\u4e00\u822c\u6765\u8bf4":28,"\u4e00\u822c\u800c\u8a00":55,"\u4e00\u822c\u8868\u793a":25,"\u4e00\u884c\u4e3a\u4e00\u4e2a\u6837\u672c":50,"\u4e09\u79cd\u5e8f\u5217\u6a21\u5f0f":3,"\u4e09\u7ea7\u76ee\u5f55":[54,55],"\u4e0a":29,"\u4e0a\u4e0b\u6587\u5927\u5c0f\u8bbe\u7f6e\u4e3a1\u7684\u4e00\u4e2a\u6837\u672c\u7684\u7279\u5f81\u5982\u4e0b":53,"\u4e0a\u4f20\u5230volume\u6240\u5728\u7684\u5171\u4eab\u5b58\u50a8":42,"\u4e0a\u53d1\u8868\u7684\u8bc4\u8bba\u5206\u6210\u6b63\u9762\u8bc4\u8bba\u548c\u8d1f\u9762\u8bc4\u8bba\u4e24\u7c7b":54,"\u4e0a\u56fe\u4e2d\u865a\u7ebf\u7684\u8fde\u63a5":25,"\u4e0a\u56fe\u63cf\u8ff0\u4e86\u4e00\u4e2a3\u8282\u70b9\u7684\u5206\u5e03\u5f0f\u8bad\u7ec3\u573a\u666f":42,"\u4e0a\u7f51":25,"\u4e0a\u8ff0\u4ee3\u7801\u5c06bias\u5168\u90e8\u521d\u59cb\u5316\u4e3a1":17,"\u4e0a\u8ff0\u7684\u4ee3\u7801\u7247\u6bb5\u5305\u542b\u4e86\u4e24\u79cd\u65b9\u6cd5":33,"\u4e0a\u8ff0\u811a\u672c\u4f7f\u7528":34,"\u4e0b":47,"\u4e0b\u56fe\u4e2d\u5c31\u5c55\u793a\u4e86\u4e00\u4e9b\u5173\u4e8e\u5185\u5b58\u6570\u636e\u8fc1\u5f99\u548c\u8ba1\u7b97\u8d44\u6e90\u5229\u7528\u7387\u7684\u5efa\u8bae":33,"\u4e0b\u56fe\u5c55\u793a\u4e86\u6240\u6709\u7684\u56fe\u7247\u7c7b\u522b":47,"\u4e0b\u56fe\u5c55\u793a\u4e86\u65f6\u95f4\u6269\u5c55\u76842\u5c42":53,"\u4e0b\u56fe\u5c55\u793a\u7684\u662f\u57fa\u4e8e\u6b8b\u5dee\u7684\u8fde\u63a5\u65b9\u5f0f":48,"\u4e0b\u56fe\u63cf\u8ff0\u4e86\u7528\u6237\u4f7f\u7528\u6846\u56fe":39,"\u4e0b\u56fe\u662f\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42\u7684\u793a\u610f\u56fe":30,"\u4e0b\u6587\u4ee5nlp\u4efb\u52a1\u4e3a\u4f8b":27,"\u4e0b\u6587\u4f7f\u7528":42,"\u4e0b\u6587\u5c31\u662f\u7528job\u7c7b\u578b\u7684\u8d44\u6e90\u6765\u8fdb\u884c\u8bad\u7ec3":41,"\u4e0b\u6b21":25,"\u4e0b\u7684":42,"\u4e0b\u8868\u5c55\u793a\u4e86batch":48,"\u4e0b\u8f7d\u5b8c\u6570\u636e\u540e":41,"\u4e0b\u8f7d\u5b8c\u76f8\u5173\u5b89\u88c5\u5305\u540e":22,"\u4e0b\u8f7d\u6570\u636e\u96c6":47,"\u4e0b\u8f7dwmt":55,"\u4e0b\u8ff0\u5185\u5bb9\u5c06\u5206\u4e3a\u5982\u4e0b\u51e0\u4e2a\u7c7b\u522b\u63cf\u8ff0":20,"\u4e0b\u9762\u4e3e\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50":33,"\u4e0b\u9762\u4ecb\u7ecd\u9884\u5904\u7406\u8fc7\u7a0b\u5177\u4f53\u7684\u6b65\u9aa4":52,"\u4e0b\u9762\u5148\u7b80\u8981\u4ecb\u7ecd\u4e00\u4e0b\u672c\u6587\u7528\u5230\u7684\u51e0\u4e2akubernetes\u6982\u5ff5":40,"\u4e0b\u9762\u5206\u522b\u4ecb\u7ecd\u6570\u636e\u6e90\u914d\u7f6e":39,"\u4e0b\u9762\u5217\u51fa\u4e86":28,"\u4e0b\u9762\u5217\u51fa\u4e86\u5168\u8fde\u63a5\u5c42\u7684\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5":30,"\u4e0b\u9762\u5c06\u5206\u522b\u4ecb\u7ecd\u8fd9\u4e24\u90e8\u5206":39,"\u4e0b\u9762\u5c31\u6839\u636e\u8fd9\u51e0\u4e2a\u6b65\u9aa4\u5206\u522b\u4ecb\u7ecd":42,"\u4e0b\u9762\u6211\u4eec\u7ed9\u51fa\u4e86\u4e00\u4e2a\u914d\u7f6e\u793a\u4f8b":47,"\u4e0b\u9762\u662f\u4e00\u4e2a\u8bef\u5dee\u66f2\u7ebf\u56fe\u7684\u793a\u4f8b":47,"\u4e0b\u9762\u662fcifar":47,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u5b9e\u73b0\u4e86":30,"\u4e0b\u9762\u7684\u4f8b\u5b50\u4f7f\u7528\u4e86":48,"\u4e0b\u9762\u7684\u4f8b\u5b50\u540c\u6837\u4f7f\u7528\u4e86":48,"\u4e0b\u9762\u7ed9\u51fa\u4e86\u4e00\u4e2a\u4f8b\u5b50":30,"\u4e0b\u9762\u811a\u672c\u7b26\u5408paddlepaddle\u671f\u5f85\u7684\u8bfb\u53d6\u6570\u636e\u7684python\u7a0b\u5e8f\u7684\u6a21\u5f0f":18,"\u4e0b\u9762\u8fd9\u4e9blayer\u80fd\u591f\u63a5\u53d7\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165":24,"\u4e0d":25,"\u4e0d\u4e00\u5b9a\u548c\u65f6\u95f4\u6709\u5173\u7cfb":3,"\u4e0d\u4f1a\u518d\u4ece":17,"\u4e0d\u4f7f\u7528\u989d\u5916\u7a7a\u95f4":30,"\u4e0d\u5305\u542b\u5728\u5b57\u5178\u4e2d\u7684\u5355\u8bcd":55,"\u4e0d\u540c":53,"\u4e0d\u540c\u4e3b\u673a":40,"\u4e0d\u540c\u4ea7\u54c1":54,"\u4e0d\u540c\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u6570\u636e\u5927\u5c0f\u7684\u6700\u5927\u503c\u4e0e\u6700\u5c0f\u503c\u7684\u6bd4\u7387":36,"\u4e0d\u540c\u5c42\u7684\u7279\u5f81\u7531\u5206\u53f7":48,"\u4e0d\u540c\u65f6\u95f4\u6b65\u7684\u8f93\u5165\u662f\u4e0d\u540c\u7684":28,"\u4e0d\u540c\u7684\u4f18\u5316\u7b97\u6cd5\u9700\u8981\u4f7f\u7528\u4e0d\u540c\u5927\u5c0f\u7684\u5185\u5b58":17,"\u4e0d\u540c\u7684\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf":42,"\u4e0d\u540c\u7684\u6570\u636e\u7c7b\u578b\u548c\u5e8f\u5217\u6a21\u5f0f\u8fd4\u56de\u7684\u683c\u5f0f\u4e0d\u540c":3,"\u4e0d\u540c\u7a7a\u95f4\u7684\u8d44\u6e90\u540d\u53ef\u4ee5\u91cd\u590d":40,"\u4e0d\u540c\u8f93\u5165\u542b\u6709\u7684\u5b50\u53e5":27,"\u4e0d\u540c\u8f93\u5165\u5e8f\u5217\u542b\u6709\u7684\u8bcd\u8bed\u6570\u5fc5\u987b\u4e25\u683c\u76f8\u7b49":27,"\u4e0d\u540cdataprovider\u5bf9\u6bd4\u5982\u4e0b":25,"\u4e0d\u540cpod\u4e4b\u95f4\u53ef\u4ee5\u901a\u8fc7ip\u5730\u5740\u8bbf\u95ee":40,"\u4e0d\u542b\u53ef\u5b66\u4e60\u53c2\u6570":39,"\u4e0d\u5c11":25,"\u4e0d\u5e94\u8be5\u88ab\u62c6\u89e3":27,"\u4e0d\u5fc5\u518d\u5c06\u4efb\u610f\u957f\u5ea6\u6e90\u8bed\u53e5\u4e2d\u7684\u6240\u6709\u4fe1\u606f\u538b\u7f29\u81f3\u4e00\u4e2a\u5b9a\u957f\u7684\u5411\u91cf\u4e2d":55,"\u4e0d\u6307\u5b9a\u65f6":27,"\u4e0d\u63d0\u4f9b\u5206\u5e03\u5f0f\u5b58\u50a8":40,"\u4e0d\u652f\u6301":53,"\u4e0d\u652f\u6301avx\u6307\u4ee4\u96c6\u7684cpu\u4e5f\u53ef\u4ee5\u8fd0\u884c":20,"\u4e0d\u662f\u4e00\u6761\u5e8f\u5217":3,"\u4e0d\u6ee1\u8db3\u94a9\u5b50":29,"\u4e0d\u7f13\u5b58\u4efb\u4f55\u6570\u636e":3,"\u4e0d\u80fd\u63d0\u4ea4\u4ee3\u7801\u5230":29,"\u4e0d\u8fc7":25,"\u4e0d\u8fdc":25,"\u4e0d\u9002\u5408\u63d0\u4ea4\u7684\u4e1c\u897f":29,"\u4e0d\u9519":25,"\u4e0d\u9700\u8981\u5bf9\u5e8f\u5217\u6570\u636e\u8fdb\u884c\u4efb\u4f55\u9884\u5904\u7406":28,"\u4e0d\u9700\u8981avx\u6307\u4ee4\u96c6\u7684cpu\u4e5f\u53ef\u4ee5\u8fd0\u884c":20,"\u4e0e":[42,46,55],"\u4e0e\u5355\u5c42rnn\u7684\u914d\u7f6e\u7c7b\u4f3c":25,"\u4e0e\u5728":53,"\u4e0e\u672c\u5730\u8bad\u7ec3\u76f8\u540c":34,"\u4e0e\u6b64\u4e0d\u540c\u7684\u662f":42,"\u4e0e\u7ffb\u8bd1":55,"\u4e0e\u8bad\u7ec3\u4e0d\u540c":54,"\u4e0e\u8bad\u7ec3\u6a21\u578b\u4e0d\u540c\u7684\u662f":55,"\u4e0e\u8fd9\u4e2a\u8bad\u7ec3\u6570\u636e\u4ea4\u4e92\u7684layer":17,"\u4e0eimdb\u7f51\u7ad9\u63d0\u4f9b\u7684\u4e00\u81f4":51,"\u4e0etime":51,"\u4e14":25,"\u4e14\u5e8f\u5217\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20\u8fd8\u662f\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":3,"\u4e14\u652f\u6301\u90e8\u7f72\u5230":40,"\u4e14\u6bcf\u4e2a\u53e5\u5b50\u8868\u793a\u4e3a\u5bf9\u5e94\u7684\u8bcd\u8868\u7d22\u5f15\u6570\u7ec4":25,"\u4e14\u9ed8\u8ba4\u5728\u8bad\u7ec3\u96c6\u4e0a\u6784\u5efa\u5b57\u5178":54,"\u4e24":25,"\u4e24\u4e2a\u5217\u8868\u6587\u4ef6":34,"\u4e24\u4e2a\u5b50\u76ee\u5f55\u4e0b":31,"\u4e24\u4e2a\u5d4c\u5957\u7684":27,"\u4e24\u4e2a\u64cd\u4f5c":33,"\u4e24\u4e2a\u6587\u4ef6\u5939":47,"\u4e24\u4e2a\u6587\u6863":20,"\u4e24\u4e2a\u8f93\u5165\u7279\u5f81\u5728\u8fd9\u4e2a\u6d41\u7a0b\u4e2d\u8d77\u7740\u81f3\u5173\u91cd\u8981\u7684\u4f5c\u7528":53,"\u4e24\u4e2a\u8f93\u5165\u7684\u5b50\u5e8f\u5217\u957f\u5ea6\u4e5f\u5e76\u4e0d\u76f8\u540c":25,"\u4e24\u4e2a\u90e8\u5206":31,"\u4e24\u79cd\u7c7b\u522b":50,"\u4e24\u8005\u5747\u4e3a\u7eaf\u6587\u672c\u6587\u4ef6":2,"\u4e2a":50,"\u4e2a\u5185\u5b58\u6c60\u5b9e\u9645\u4e0a\u51b3\u5b9a\u4e86shuffle\u7684\u7c92\u5ea6":17,"\u4e2a\u5355\u8bcd":55,"\u4e2a\u6027\u5316\u63a8\u8350":49,"\u4e2a\u6279\u6b21\u540e\u6253\u5370\u4e00\u4e2a":52,"\u4e2a\u6279\u6b21\u7684\u53c2\u6570\u5e73\u5747\u503c\u8fdb\u884c\u6d4b\u8bd5":36,"\u4e2a\u6a21\u578b\u6d4b\u8bd5\u6570\u636e":36,"\u4e2d":[17,30,39,42,47,50,52,53,54],"\u4e2d\u4e0d\u8981\u6dfb\u52a0\u5927\u6587\u4ef6":29,"\u4e2d\u4ecb\u7ecd\u7684\u65b9\u6cd5":46,"\u4e2d\u4efb\u610f\u7b2ci\u884c\u7684\u53e5\u5b50\u4e4b\u95f4\u90fd\u5fc5\u987b\u6709\u7740\u4e00\u4e00\u5bf9\u5e94\u7684\u5173\u7cfb":55,"\u4e2d\u4efb\u610f\u7b2ci\u884c\u7684\u53e5\u5b50\u4e4b\u95f4\u90fd\u6709\u7740\u4e00\u4e00\u5bf9\u5e94\u7684\u5173\u7cfb":55,"\u4e2d\u5173\u4e8e\u65f6\u95f4\u9012\u5f52\u795e\u7ecf\u7f51\u7edc\u7684\u4ecb\u7ecd":25,"\u4e2d\u5305\u542b\u4e86\u8bad\u7ec3\u6a21\u578b\u7684\u57fa\u672c\u547d\u4ee4":50,"\u4e2d\u5305\u542b\u5982\u4e0b\u8868\u6240\u793a\u76843\u4e2a\u6587\u4ef6\u5939":55,"\u4e2d\u5355\u5143\u6d4b\u8bd5\u7684\u4e00\u90e8\u5206":29,"\u4e2d\u5b89\u88c5":34,"\u4e2d\u5b8c\u6210":54,"\u4e2d\u5b9a\u4e49":28,"\u4e2d\u5b9a\u4e49\u4f7f\u7528\u54ea\u79cddataprovid":2,"\u4e2d\u5b9a\u4e49\u548c\u4f7f\u7528":27,"\u4e2d\u5bfc\u51fa\u9884\u5b9a\u4e49\u7684\u7f51\u7edc":54,"\u4e2d\u5c55\u793a\u4e86\u5982\u4f55\u4f7f\u7528python\u6765\u63d0\u53d6\u7279\u5f81":48,"\u4e2d\u6307\u5b9a":36,"\u4e2d\u6307\u5b9a\u7684\u540d\u5b57":38,"\u4e2d\u6307\u5b9a\u7684\u5c42\u987a\u5e8f\u4e00\u81f4":48,"\u4e2d\u63d0\u51fa\u7684resnet\u7f51\u7edc\u7ed3\u6784\u57282015\u5e74imagenet\u5927\u89c4\u6a21\u89c6\u89c9\u8bc6\u522b\u7ade\u8d5b":48,"\u4e2d\u641c\u7d22\u8fd9\u51e0\u4e2a\u5e93":19,"\u4e2d\u6587\u6587\u6863\u76ee\u5f55":31,"\u4e2d\u6587\u7ef4\u57fa\u767e\u79d1\u9875\u9762":25,"\u4e2d\u65b0\u7684\u63d0\u4ea4\u5bfc\u81f4\u4f60\u7684":29,"\u4e2d\u6709\u8bb8\u591a\u7684\u7279\u5f81":51,"\u4e2d\u6bcf\u4e2apod\u7684ip\u5730\u5740":42,"\u4e2d\u6bcf\u5c42\u7684\u6570\u503c\u7edf\u8ba1":36,"\u4e2d\u7684":48,"\u4e2d\u7684\u4e00\u884c":3,"\u4e2d\u7684\u4e8c\u8fdb\u5236\u4f7f\u7528\u4e86":20,"\u4e2d\u7684\u5185\u5bb9":53,"\u4e2d\u7684\u63a5\u53e3":52,"\u4e2d\u7684\u6570\u636e":48,"\u4e2d\u7684\u6570\u636e\u662f\u5426\u4e3a\u5e8f\u5217\u6a21\u5f0f":52,"\u4e2d\u7684\u6570\u636e\u8fdb\u884c\u9884\u6d4b":48,"\u4e2d\u7684\u6570\u6910\u96c6\u7684\u7ed3\u6784\u5982\u4e0b":54,"\u4e2d\u7684\u6bcf\u4e00\u884c\u547d\u4ee4":52,"\u4e2d\u7684\u751f\u6210\u7ed3\u679c\u5982\u4e0b\u6240\u793a":55,"\u4e2d\u7684\u7528\u6237\u8bc1\u4e66":40,"\u4e2d\u7684\u7b2ci\u884c":55,"\u4e2d\u7684\u8bf4\u660e":3,"\u4e2d\u7684\u8fd9\u4e9b\u6570\u636e\u6587\u4ef6":51,"\u4e2d\u770b\u5230\u4e0b\u9762\u7684\u6587\u4ef6":54,"\u4e2d\u83b7\u53d6":42,"\u4e2d\u8ba4\u771f\u8bbe\u7f6e":34,"\u4e2d\u8bbe\u7f6e":34,"\u4e2d\u8bbe\u7f6e\u7684\u6240\u6709\u8282\u70b9":34,"\u4e2d\u8be6\u7ec6\u4ecb\u7ecd":30,"\u4e2d\u8bfb\u53d6":3,"\u4e2d\u914d\u7f6e\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":28,"\u4e2d\u914d\u7f6e\u7684\u6548\u679c\u4e00\u81f4":3,"\u4e34\u65f6\u53d8\u91cf\u7b49\u7b49":17,"\u4e3a":[3,28],"\u4e3a0":3,"\u4e3a\u4e86\u4f7f\u7528\u63d0\u524d\u7f16\u5199\u7684\u811a\u672c":54,"\u4e3a\u4e86\u4fdd\u8bc1\u6548\u7387":30,"\u4e3a\u4e86\u5145\u5206\u7684\u968f\u673a\u6253\u4e71\u8bad\u7ec3\u96c6":54,"\u4e3a\u4e86\u5b8c\u6210\u5206\u5e03\u5f0f\u673a\u5668\u5b66\u4e60\u8bad\u7ec3\u4efb\u52a1":40,"\u4e3a\u4e86\u5c01\u88c5\u80fd\u591f\u6b63\u786e\u5de5\u4f5c":30,"\u4e3a\u4e86\u63cf\u8ff0\u65b9\u4fbf":27,"\u4e3a\u4e86\u65b9\u4fbf\u8d77\u89c1":34,"\u4e3a\u4e86\u66f4\u7075\u6d3b\u7684\u914d\u7f6e":39,"\u4e3a\u4e86\u6ee1\u8db3\u8bad\u7ec3":34,"\u4e3a\u4e86\u7528\u6237\u80fd\u591f\u7075\u6d3b\u7684\u5904\u7406\u6570\u636e":39,"\u4e3a\u4e86\u8fbe\u5230\u6027\u80fd\u6700\u4f18":33,"\u4e3a\u4e86\u8fd0\u884cpaddlepaddle\u7684docker\u955c\u50cf":20,"\u4e3a\u4e86\u8fd8\u539f":18,"\u4e3a\u4e86\u907f\u514d\u7528\u6237\u76f4\u63a5\u5199\u590d\u6742\u7684protobuf":39,"\u4e3a\u4f8b":50,"\u4e3a\u4f8b\u521b\u5efa\u5206\u5e03\u5f0f\u7684\u5355\u8fdb\u7a0b\u8bad\u7ec3":34,"\u4e3a\u4f8b\u8fdb\u884c\u9884\u6d4b":50,"\u4e3a\u53c2\u6570\u77e9\u9635\u7684\u5bbd\u5ea6":17,"\u4e3a\u60a8\u505a\u6027\u80fd\u8c03\u4f18\u63d0\u4f9b\u4e86\u65b9\u5411":33,"\u4e3a\u60f3\u4fee\u6b63\u8bcd\u5411\u91cf\u6a21\u578b\u7684\u7528\u6237\u63d0\u4f9b\u4e86\u5c06\u6587\u672c\u8bcd\u5411\u91cf\u6a21\u578b\u8f6c\u6362\u4e3a\u4e8c\u8fdb\u5236\u6a21\u578b\u7684\u547d\u4ee4":46,"\u4e3a\u65b9\u4fbf\u4f5c\u4e1a\u542f\u52a8\u63d0\u4f9b\u4e86\u4e24\u4e2a\u72ec\u7279\u7684\u547d\u4ee4\u9009\u9879":34,"\u4e3a\u6b64":[29,41],"\u4e3a\u8f93\u51fa\u5206\u914d\u5185\u5b58":30,"\u4e3a\u96c6\u7fa4\u4f5c\u4e1a\u8bbe\u7f6e\u989d\u5916\u7684":34,"\u4e3ajson\u6216yaml\u683c\u5f0f":52,"\u4e3aoutput_\u7533\u8bf7\u5185\u5b58":30,"\u4e3b\u8981\u4e3a\u5f00\u53d1\u8005\u4f7f\u7528":36,"\u4e3b\u8981\u5305\u62ec\u4ee5\u4e0b\u4e94\u4e2a\u6b65\u9aa4":5,"\u4e3b\u8981\u539f\u56e0":25,"\u4e3b\u8981\u539f\u56e0\u662f\u589e\u52a0\u4e86\u521d\u59cb\u5316\u673a\u5236":3,"\u4e3b\u8981\u6765\u81ea\u5317\u7f8e\u6d32":47,"\u4e3b\u8981\u7528\u5728\u5ea6\u91cf\u5b66\u4e60\u4e2d":36,"\u4e3b\u8981\u7531layer\u7ec4\u6210":39,"\u4e3b\u8981\u804c\u8d23\u5728\u4e8e\u5c06\u8bad\u7ec3\u6570\u636e\u4f20\u5165\u5185\u5b58\u6216\u8005\u663e\u5b58":50,"\u4e3e\u4e00\u4e2a\u4f8b\u5b50":17,"\u4e3e\u4f8b":17,"\u4e3e\u4f8b\u8bf4\u660e":25,"\u4e4b\u524d":29,"\u4e4b\u524d\u914d\u7f6e\u6587\u4ef6\u4e2d":50,"\u4e4b\u540e":[18,30],"\u4e4b\u540e\u4f60\u4f1a\u5f97\u5230\u8bad\u7ec3":34,"\u4e4b\u540e\u4f7f\u7528":30,"\u4e4b\u540e\u4f7f\u7528\u77e9\u9635\u8fd0\u7b97\u51fd\u6570\u6765\u8ba1\u7b97":30,"\u4e4b\u540e\u521d\u59cb\u5316\u6240\u6709\u7684\u6743\u91cd\u77e9\u9635":30,"\u4e4b\u540e\u5b9a\u4e49\u7684":47,"\u4e4b\u95f4\u7684\u8ddd\u79bb":18,"\u4e4b\u95f4\u7684\u8fd0\u7b97\u662f\u72ec\u7acb\u7684":27,"\u4e58\u4e0a\u8f93\u51fa\u7684\u68af\u5ea6":30,"\u4e5d\u4e2a":53,"\u4e5f":25,"\u4e5f\u4e0d\u5b58\u5728\u4e00\u4e2asubseq\u76f4\u63a5\u751f\u6210\u4e0b\u4e00\u4e2asubseq\u7684\u60c5\u51b5":27,"\u4e5f\u53ef\u4ee5\u53bb\u6389\u8fd9\u4e9b\u8bc1\u4e66\u7684\u914d\u7f6e":40,"\u4e5f\u53ef\u4ee5\u662f\u4e00\u4e2a\u8bcd\u8bed":27,"\u4e5f\u53ef\u4ee5\u76f4\u63a5\u6267\u884c":20,"\u4e5f\u53ef\u4ee5\u8bf4\u662f\u67d0\u4e9b\u7279\u5b9a\u6307\u4ee4\u7684\u4f7f\u7528\u60c5\u51b5":33,"\u4e5f\u53ef\u4ee5\u901a\u8fc7saving_period_by_batches\u8bbe\u7f6e\u6bcf\u9694\u591a\u5c11batch\u4fdd\u5b58\u4e00\u6b21\u6a21\u578b":50,"\u4e5f\u53ef\u4ee5\u914d\u7f6e\u4e0d\u540c\u7684\u91cd\u8bd5\u673a\u5236":40,"\u4e5f\u5c31\u662f":42,"\u4e5f\u5c31\u662f\u5c06\u8bcd\u5411\u91cf\u6a21\u578b\u8fdb\u4e00\u6b65\u6f14\u5316\u4e3a\u4e09\u4e2a\u65b0\u6b65\u9aa4":50,"\u4e5f\u5c31\u662f\u8bf4":[36,38,46],"\u4e5f\u5f97\u5230\u4e00\u4e2a\u7528\u6237\u7279\u5f81":52,"\u4e5f\u63cf\u8ff0\u4e86\u5bb9\u5668\u9700\u8981\u4f7f\u7528\u7684\u5b58\u50a8\u5377\u6302\u8f7d\u7684\u60c5\u51b5":42,"\u4e5f\u652f\u6301cpu\u7684\u6027\u80fd\u5206\u6790":33,"\u4e5f\u662f\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":25,"\u4e5f\u662f\u5bb9\u5668\u4e0enode\u4e4b\u95f4\u5171\u4eab\u6587\u4ef6\u7684\u65b9\u5f0f":40,"\u4e5f\u662fdecoder\u5faa\u73af\u5c55\u5f00\u7684\u4f9d\u636e":27,"\u4e5f\u662fpaddlepaddle\u6240\u80fd\u591f\u4fdd\u8bc1\u7684shuffle\u7c92\u5ea6":3,"\u4e5f\u6ca1\u7528":17,"\u4e5f\u79f0\u4e3arnn\u6a21\u578b":50,"\u4e5f\u79f0\u4f5c":39,"\u4e5f\u8bb8\u662f\u56e0\u4e3a\u9700\u8981\u5b89\u88c5":47,"\u4e5f\u9700\u8981\u4e24\u6b21\u968f\u673a\u9009\u62e9\u5230\u76f8\u540cgenerator\u7684\u65f6\u5019":3,"\u4e7e":25,"\u4e86":25,"\u4e86\u89e3\u60a8\u7684\u786c\u4ef6":33,"\u4e86\u89e3\u66f4\u591a\u7ec6\u8282":28,"\u4e86\u89e3\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f":28,"\u4e8c\u6b21\u5f00\u53d1\u53ef\u4ee5":20,"\u4e8c\u7ea7\u76ee\u5f55":[54,55],"\u4e8c\u7ef4\u77e9\u9635":48,"\u4e8c\u8005\u8bed\u610f\u4e0a\u5b8c\u5168\u4e00\u81f4":25,"\u4e8c\u8fdb\u5236":46,"\u4e92\u76f8\u901a\u4fe1":40,"\u4e92\u8054\u7f51\u7535\u5f71\u6570\u636e\u5e93":54,"\u4e94\u661f\u7ea7":25,"\u4e9a\u9a6c\u900a":54,"\u4ea4\u901a":25,"\u4ea4\u901a\u4fbf\u5229":25,"\u4ec0\u4e48":52,"\u4ec5\u4ec5\u662f\u4e00\u4e9b\u5173\u952e\u8bcd":54,"\u4ec5\u4ec5\u662f\u4e24\u4e2a\u5168\u8fde\u63a5\u5c42":52,"\u4ec5\u4ec5\u662f\u7b80\u5355\u7684\u5d4c\u5165":52,"\u4ec5\u5305\u542b\u8bad\u7ec3\u548c\u6d4b\u8bd5\u6570\u6910\u96c6":54,"\u4ec5\u5728\u8fdc\u7a0b\u7a00\u758f\u8bad\u7ec3\u65f6\u6709\u6548":30,"\u4ec5\u5bf9\u7a00\u758f\u6570\u636e\u6709\u6548":30,"\u4ec5\u9700\u8981\u77e5\u9053\u5982\u4f55\u4ece":3,"\u4ecb\u7ecd\u4e86\u4e00\u79cd\u901a\u8fc7ssh\u8fdc\u7a0b\u5206\u53d1\u4efb\u52a1":42,"\u4ecb\u7ecd\u5206\u5e03\u5f0f\u8bad\u7ec3\u4e4b\u524d":40,"\u4ecb\u7ecdpaddlepaddle\u7684\u57fa\u672c\u4f7f\u7528\u65b9\u6cd5":50,"\u4ece":[33,53],"\u4ece0\u5230num":36,"\u4ece\u4e00\u4e2aword\u751f\u6210\u4e0b\u4e00\u4e2aword":27,"\u4ece\u5185\u6838\u51fd\u6570\u7684\u89d2\u5ea6":33,"\u4ece\u56fe\u4e2d\u53ef\u4ee5\u770b\u5230":18,"\u4ece\u5916\u90e8\u7f51\u7ad9\u4e0a\u4e0b\u8f7d\u7684\u539f\u59cb\u6570\u6910\u96c6":54,"\u4ece\u5927\u5230\u5c0f":55,"\u4ece\u6570\u636e\u63d0\u4f9b\u7a0b\u5e8f\u52a0\u8f7d\u5b9e\u4f8b":53,"\u4ece\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u6765\u770b":25,"\u4ece\u6bcf\u4e2a\u5355\u8bcd\u5de6\u53f3\u4e24\u7aef\u5206\u522b\u83b7\u53d6k\u4e2a\u76f8\u90bb\u7684\u5355\u8bcd":50,"\u4ece\u7b2c0\u4e2a\u8bc4\u4f30\u5230\u5f53\u524d\u8bc4\u4f30\u4e2d":55,"\u4ece\u7b2c0\u4e2abatch\u5230\u5f53\u524dbatch\u7684\u5e73\u5747\u635f\u5931":54,"\u4ece\u7b2c0\u4e2abatch\u5230\u5f53\u524dbatch\u7684\u5e73\u5747cost":55,"\u4ece\u800c\u53ef\u4ee5\u505a\u4e00\u4e9b\u4e0e\u8ba1\u7b97\u91cd\u53e0\u7684\u5de5\u4f5c":30,"\u4ece\u800c\u53ef\u4ee5\u62df\u5408\u4efb\u610f\u7684\u51fd\u6570\u6765\u5b66\u4e60\u590d\u6742\u7684\u6570\u636e\u5173\u7cfb":18,"\u4ece\u800c\u751f\u6210\u591a\u4e2agener":3,"\u4ece\u800c\u80fd\u591f\u88abpaddlepaddl":50,"\u4ece\u800c\u9632\u6b62\u8fc7\u62df\u5408":2,"\u4ece\u8be5\u94fe\u63a5":55,"\u4ece\u8bed\u4e49\u4e0a\u770b":27,"\u4ece\u8f93\u5165\u6570\u636e\u4e0a\u770b":25,"\u4ece\u8f93\u51fa\u65e5\u5fd7\u53ef\u4ee5\u770b\u5230":18,"\u4ece\u9884\u8bad\u7ec3\u6a21\u578b\u4e2d":46,"\u4ecestart":36,"\u4ecetest":55,"\u4ed3\u5e93":29,"\u4ed4\u7ec6\u89c2\u5bdf":48,"\u4ed6\u4eec\u5206\u522b\u662f":25,"\u4ed6\u4eec\u5728paddle\u7684\u6587\u6863\u548capi\u4e2d\u662f\u4e00\u4e2a\u6982\u5ff5":25,"\u4ed6\u4eec\u63d0\u51fa\u6b8b\u5dee\u5b66\u4e60\u7684\u6846\u67b6\u6765\u7b80\u5316\u7f51\u7edc\u7684\u8bad\u7ec3":48,"\u4ed6\u4eec\u662f":20,"\u4ed6\u4eec\u7684imag":20,"\u4ee3\u66ff":42,"\u4ee3\u7801":52,"\u4ee3\u7801\u4e2d9":25,"\u4ee3\u7801\u5982\u4e0b":28,"\u4ee3\u8868\u5bbf\u4e3b\u673a\u76ee\u5f55":42,"\u4ee3\u8868\u7f16\u53f7":52,"\u4ee5\u4e0b":52,"\u4ee5\u4e0b\u4ee3\u7801\u6bb5\u5b9a\u4e49\u4e86\u4e09\u4e2a\u8f93\u5165":28,"\u4ee5\u4e0b\u4ee3\u7801\u7247\u6bb5\u5b9a\u4e49":28,"\u4ee5\u4e0b\u6211\u4eec\u7ffb\u8bd1\u6570\u636e\u96c6\u7f51\u7ad9\u4e2dreadme\u6587\u4ef6\u7684\u63cf\u8ff0":51,"\u4ee5\u4e0b\u6559\u7a0b\u5c06\u6307\u5bfc\u60a8\u63d0\u4ea4\u4ee3\u7801":29,"\u4ee5\u4e0b\u662f\u5bf9\u4e0a\u8ff0\u6570\u636e\u52a0\u8f7d\u7684\u89e3\u91ca":50,"\u4ee5\u4e0b\u6b65\u9aa4\u57fa\u4e8e":34,"\u4ee5\u4e0b\u793a\u8303\u5982\u4f55\u4f7f\u7528\u9884\u8bad\u7ec3\u7684\u4e2d\u6587\u5b57\u5178\u548c\u8bcd\u5411\u91cf\u8fdb\u884c\u77ed\u8bed\u6539\u5199":46,"\u4ee5\u4e0b\u9009\u9879\u5fc5\u987b\u5728":34,"\u4ee5\u4fbf\u5ba1\u9605\u8005\u53ef\u4ee5\u770b\u5230\u65b0\u7684\u8bf7\u6c42\u548c\u65e7\u7684\u8bf7\u6c42\u4e4b\u95f4\u7684\u533a\u522b":29,"\u4ee5\u4fbf\u7528\u6237":34,"\u4ee5\u4fdd\u8bc1\u68af\u5ea6\u7684\u6b63\u786e\u8ba1\u7b97":30,"\u4ee5\u4fdd\u8bc1\u68af\u5ea6\u8ba1\u7b97\u7684\u6b63\u786e\u6027":30,"\u4ee5\u5206\u7c7b\u6765\u81ea":54,"\u4ee5\u53ca":30,"\u4ee5\u53ca\u4f7f\u7528\u5b50\u5e8f\u5217\u6765\u5b9a\u4e49\u5206\u7ea7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u67b6\u6784":28,"\u4ee5\u53ca\u53cc\u5c42\u5e8f\u5217":24,"\u4ee5\u53ca\u5728wmt":55,"\u4ee5\u53ca\u5982\u4f55\u5728\u5c42\u4e4b\u95f4\u8fdb\u884c\u8fde\u63a5":47,"\u4ee5\u53ca\u6570\u636e\u8bfb\u53d6\u51fd\u6570":39,"\u4ee5\u53ca\u8ba1\u7b97\u903b\u8f91\u5728\u5e8f\u5217\u4e0a\u7684\u5faa\u73af\u5c55\u5f00":27,"\u4ee5\u53ca\u8f93\u5165\u7684\u68af\u5ea6":30,"\u4ee5\u53capaddle\u5982\u4f55\u5904\u7406\u591a\u79cd\u7c7b\u578b\u7684\u8f93\u5165":52,"\u4ee5\u53carelu":30,"\u4ee5\u592a\u7f51\u5361":20,"\u4ee5\u76f8\u5bf9\u8def\u5f84\u5f15\u7528":2,"\u4ee5\u83b7\u5f97\u66f4\u597d\u7684\u7f51\u7edc\u6027\u80fd":34,"\u4ee5\u9017\u53f7":46,"\u4ee5\u9017\u53f7\u95f4\u9694":36,"\u4ef7\u683c":25,"\u4efb\u52a1":52,"\u4efb\u52a1\u6765\u7ec8\u6b62\u96c6\u7fa4\u4f5c\u4e1a":34,"\u4efb\u52a1\u7b80\u4ecb":23,"\u4efb\u610f\u5c06\u4e00\u4e9b\u6570\u636e\u7ec4\u5408\u6210\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217":25,"\u4f18\u5316":54,"\u4f18\u5316\u5668\u5219\u7528\u94fe\u5f0f\u6cd5\u5219\u6765\u5bf9\u6bcf\u4e2a\u53c2\u6570\u8ba1\u7b97\u635f\u5931\u51fd\u6570\u7684\u68af\u5ea6":30,"\u4f18\u5316\u7b97\u6cd5":39,"\u4f1a\u5148\u8fdb\u884c\u53c2\u6570\u7684\u521d\u59cb\u5316\u4e0e\u89e3\u6790":42,"\u4f1a\u5171\u4eab\u53c2\u6570":17,"\u4f1a\u52a0\u8f7d\u4e0a\u4e00\u8f6e\u7684\u53c2\u6570":36,"\u4f1a\u53d8\u6210\u8bcd\u8868\u4e2d\u7684\u4f4d\u7f6e":25,"\u4f1a\u542f\u52a8pserver\u4e0etrainer\u8fdb\u7a0b":42,"\u4f1a\u5bf9\u6bcf\u4e00\u4e2a\u6fc0\u6d3b\u6682\u5b58\u4e00\u4e9b\u6570\u636e":17,"\u4f1a\u5bf9\u8fd9\u7c7b\u8f93\u5165\u8fdb\u884c\u62c6\u89e3":27,"\u4f1a\u5c06\u6bcf\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51fa\u62fc\u63a5":27,"\u4f1a\u5c06\u7b2c\u4e00\u4e2a":17,"\u4f1a\u6210\u4e3astep\u51fd\u6570\u7684\u8f93\u5165":27,"\u4f1a\u6254\u5230\u8fd9\u6761\u6570\u636e":3,"\u4f1a\u62a5\u9519":27,"\u4f1a\u6839\u636e\u547d\u4ee4\u884c\u53c2\u6570\u6307\u5b9a\u7684\u6d4b\u8bd5\u65b9\u5f0f":2,"\u4f1a\u6839\u636einput_types\u68c0\u67e5\u6570\u636e\u7684\u5408\u6cd5\u6027":3,"\u4f1a\u76f8\u5e94\u5730\u6539\u53d8\u8f93\u51fa\u7684\u5c3a\u5bf8":30,"\u4f1a\u81ea\u9002\u5e94\u5730\u4ece\u8fd9\u4e9b\u5411\u91cf\u4e2d\u9009\u62e9\u4e00\u4e2a\u5b50\u96c6\u51fa\u6765":55,"\u4f1a\u83b7\u53d6\u5f53\u524dnamespace\u4e0b\u7684\u6240\u6709pod":42,"\u4f1a\u88ab\u62c6\u89e3\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":27,"\u4f1a\u88ab\u62c6\u89e3\u4e3a\u975e\u5e8f\u5217":27,"\u4f20\u5165":3,"\u4f20\u5165\u4e0a\u4e00\u6b65\u89e3\u6790\u51fa\u6765\u7684\u6a21\u578b\u914d\u7f6e\u5c31\u53ef\u4ee5\u521b\u5efa\u4e00\u4e2a":5,"\u4f20\u5165\u9884\u6d4b\u6570\u636e":5,"\u4f20\u7ed9dataprovider\u7684\u67d0\u4e00\u4e2aargs\u8fc7\u5927":17,"\u4f20\u9012\u7ed9\u914d\u7f6e\u6587\u4ef6\u7684\u53c2\u6570":36,"\u4f46\u4e0d\u7528\u4e8e\u8ba1\u7b97\u68af\u5ea6":30,"\u4f46\u4e0d\u9700\u8981\u63d0\u524d\u521b\u5efa":36,"\u4f46\u4e8e\u53cc\u5c42\u5e8f\u5217\u7684lstm\u6765\u8bf4":25,"\u4f46\u548c\u5355\u5c42rnn\u4e0d\u540c":25,"\u4f46\u5728\u8d77\u521d\u7684\u51e0\u8f6e\u8bad\u7ec3\u4e2d\u5b83\u4eec\u90fd\u5728\u5feb\u901f\u903c\u8fd1\u771f\u5b9e\u503c":18,"\u4f46\u5b50\u53e5\u542b\u6709\u7684\u8bcd\u8bed\u6570\u53ef\u4ee5\u4e0d\u76f8\u7b49":27,"\u4f46\u5c3d\u91cf\u8bf7\u4fdd\u6301\u7f16\u8bd1\u548c\u8fd0\u884c\u4f7f\u7528\u7684cudnn\u662f\u540c\u4e00\u4e2a\u7248\u672c":19,"\u4f46\u5e8f\u5217\u8f93\u51fa\u65f6":25,"\u4f46\u5f53\u8c03\u7528\u8fc7\u4e00\u6b21\u540e":3,"\u4f46\u662f":[17,25,29],"\u4f46\u662f\u4e5f\u6ca1\u6709\u5fc5\u8981\u5220\u9664\u65e0\u7528\u7684\u6587\u4ef6":34,"\u4f46\u662f\u5927\u90e8\u5206\u53c2\u6570\u662f\u4e3a\u5f00\u53d1\u8005\u63d0\u4f9b\u7684":35,"\u4f46\u662f\u5982\u679c\u4f7f\u7528\u4e86\u9ad8\u6027\u80fd\u7684\u7f51\u5361":20,"\u4f46\u662f\u5982\u679c\u5b58\u5728\u4ee3\u7801\u51b2\u7a81":29,"\u4f46\u662f\u5b50\u5e8f\u5217\u7684\u6570\u76ee\u5fc5\u987b\u4e00\u6837":25,"\u4f46\u662f\u65b9\u4fbf\u8c03\u8bd5\u548c\u6d4bbenchmark":19,"\u4f46\u662f\u6bcf\u4e2a\u6837\u672c\u4ec5\u5305\u542b\u51e0\u4e2a\u8bcd":38,"\u4f46\u662f\u7a81\u7136\u6709\u4e00\u4e2a10000\u957f\u7684\u5e8f\u5217":17,"\u4f46\u662f\u8fd9\u4e2a\u503c\u4e0d\u53ef\u4ee5\u8c03\u7684\u8fc7\u5927":39,"\u4f46\u662f\u8fd9\u79cd\u65b9\u6cd5\u5728\u6bcf\u5c42\u53ea\u4fdd\u5b58\u9884\u8bbe\u6570\u91cf\u7684\u6700\u4f18\u72b6\u6001":55,"\u4f46\u662f\u8fdc\u672a\u5b8c\u5584":0,"\u4f46\u662f\u9690\u85cf\u5c42\u4e2d\u7684\u6bcf\u4e2a\u666e\u901a\u8282\u70b9\u88ab\u4e00\u4e2a\u8bb0\u5fc6\u5355\u5143\u66ff\u6362":54,"\u4f46\u662fbatch":17,"\u4f46\u6709\u503c\u7684\u5730\u65b9\u5fc5\u987b\u4e3a1":3,"\u4f46\u6709\u503c\u7684\u90e8\u5206\u53ef\u4ee5\u662f\u4efb\u4f55\u6d6e\u70b9\u6570":3,"\u4f46\u8fd9\u4e2a\u5173\u7cfb\u53ef\u80fd\u4e0d\u6b63\u786e":3,"\u4f4d\u7f6e":25,"\u4f4f":25,"\u4f53\u88c1\u5b57\u5178":52,"\u4f53\u88c1\u5b57\u6bb5":52,"\u4f59\u5f26\u76f8\u4f3c\u5ea6\u56de\u5f52":52,"\u4f59\u5f26\u76f8\u4f3c\u5ea6\u5c42":52,"\u4f5c\u4e3a\u4e0b\u4e00\u4e2a\u5b50\u53e5memory\u7684\u521d\u59cb\u72b6\u6001":25,"\u4f5c\u4e3a\u4f8b\u5b50\u6f14\u793a\u5982\u4f55\u914d\u7f6e\u590d\u6742\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u6a21\u578b":28,"\u4f5c\u4e3a\u53c2\u6570\u7684id":17,"\u4f5c\u4e3a\u5f53\u524d\u65f6\u523b\u8f93\u5165":27,"\u4f5c\u4e3a\u6d88\u606f\u957f\u5ea6":39,"\u4f5c\u4e3a\u793a\u4f8b\u6570\u636e":51,"\u4f5c\u4e3a\u7ebf\u6027\u56de\u5f52\u7684\u8f93\u5165":18,"\u4f5c\u4e3a\u8f93\u51fa":28,"\u4f5c\u4e3a\u8fd9\u6b21\u8bad\u7ec3\u7684\u5185\u5bb9":42,"\u4f5c\u4e3a\u96c6\u7fa4\u8bad\u7ec3\u7684\u5de5\u4f5c\u7a7a\u95f4":34,"\u4f5c\u4e3aboot_layer\u4f20\u7ed9\u4e0b\u4e00\u4e2a\u5b50\u53e5\u7684memori":25,"\u4f5c\u5bb6":51,"\u4f5c\u7528":24,"\u4f60":29,"\u4f60\u4e5f\u53ef\u4ee5\u4f7f\u7528\u8fd9\u4e09\u4e2a\u503c":48,"\u4f60\u4e5f\u53ef\u4ee5\u5148\u8df3\u8fc7\u672c\u6587\u7684\u89e3\u91ca\u73af\u8282":50,"\u4f60\u4e5f\u53ef\u4ee5\u7b80\u5355\u7684\u8fd0\u884c\u4ee5\u4e0b\u7684\u547d\u4ee4":46,"\u4f60\u4e5f\u53ef\u4ee5\u901a\u8fc7\u5728\u547d\u4ee4\u884c\u53c2\u6570\u4e2d\u589e\u52a0\u4e00\u4e2a\u53c2\u6570\u5982":48,"\u4f60\u53ea\u9700\u5b8c\u6210":34,"\u4f60\u53ea\u9700\u81ea\u5df1\u521b\u5efa\u5b83":29,"\u4f60\u53ea\u9700\u8981\u5728\u547d\u4ee4\u884c\u8f93\u5165\u4ee5\u4e0b\u547d\u4ee4":50,"\u4f60\u53ea\u9700\u8981\u6309\u7167\u5982\u4e0b\u65b9\u5f0f\u7ec4\u7ec7\u6570\u636e":55,"\u4f60\u53ef\u4ee5\u4f7f\u7528":48,"\u4f60\u53ef\u4ee5\u4f7f\u7528\u4e0b\u9762\u7684\u811a\u672c\u4e0b\u8f7d":54,"\u4f60\u53ef\u4ee5\u4f7f\u7528\u4f60\u6700\u559c\u6b22\u7684":29,"\u4f60\u53ef\u4ee5\u4f7f\u7528\u5b83\u6765\u8bbe\u7f6e":34,"\u4f60\u53ef\u4ee5\u4f7f\u7528\u672c\u5730\u8bad\u7ec3\u4e2d\u7684\u76f8\u540c\u6a21\u578b\u6587\u4ef6\u8fdb\u884c\u96c6\u7fa4\u8bad\u7ec3":34,"\u4f60\u53ef\u4ee5\u5728\u4efb\u4f55\u65f6\u5019\u7528":52,"\u4f60\u53ef\u4ee5\u5bf9\u6a21\u578b\u8fdb\u884c\u8bc4\u4f30":52,"\u4f60\u53ef\u4ee5\u5c06\u7f51\u7edc\u914d\u7f6e\u6210\u67d0\u4e9b\u5c42\u4f7f\u7528gpu\u8ba1\u7b97":38,"\u4f60\u53ef\u4ee5\u6267\u884c\u4e0a\u8ff0\u547d\u4ee4\u6765\u4e0b\u8f7d\u6240\u6709\u7684\u6a21\u578b\u548c\u5747\u503c\u6587\u4ef6":48,"\u4f60\u53ef\u4ee5\u70b9\u51fb":29,"\u4f60\u53ef\u4ee5\u7528":29,"\u4f60\u53ef\u4ee5\u901a\u8fc7":29,"\u4f60\u53ef\u4ee5\u901a\u8fc7\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u6765\u5f97\u5230resnet\u7f51\u7edc\u7684\u7ed3\u6784\u53ef\u89c6\u5316\u56fe":48,"\u4f60\u53ef\u4ee5\u9884\u6d4b\u4efb\u4f55\u7528\u6237\u5bf9\u4e8e\u4efb\u4f55\u4e00\u90e8\u7535\u5f71\u7684\u8bc4\u4ef7":52,"\u4f60\u53ef\u80fd\u8981\u5904\u7406\u51b2\u7a81":29,"\u4f60\u53ef\u80fd\u9700\u8981\u6839\u636egit\u63d0\u793a\u89e3\u51b3\u51b2\u7a81":29,"\u4f60\u5c06\u4f1a\u770b\u5230\u4ee5\u4e0b\u7684\u6a21\u578b\u7ed3\u6784":46,"\u4f60\u5c06\u4f1a\u770b\u5230\u5982\u4e0b\u6d88\u606f":55,"\u4f60\u5c06\u4f1a\u770b\u5230\u5982\u4e0b\u7ed3\u679c":48,"\u4f60\u5c06\u4f1a\u770b\u5230\u7279\u5f81\u5b58\u50a8\u5728":48,"\u4f60\u5c06\u4f1a\u770b\u5230\u8fd9\u6837\u7684\u6d88\u606f":55,"\u4f60\u5c06\u5728\u76ee\u5f55":54,"\u4f60\u5c06\u770b\u5230\u5982\u4e0b\u7684\u4fe1\u606f":52,"\u4f60\u5e94\u8be5\u4ece\u6700\u65b0\u7684":29,"\u4f60\u7684\u4ed3\u5e93":29,"\u4f60\u7684\u4ee3\u7801\u5fc5\u987b\u5b8c\u5168\u9075\u5b88":29,"\u4f60\u7684\u5de5\u4f5c\u7a7a\u95f4\u5e94\u5982\u4e0b\u6240\u793a":34,"\u4f60\u7684\u672c\u5730\u4e3b\u5206\u652f\u4e0e\u4e0a\u6e38\u4fee\u6539\u7684\u4e00\u81f4\u5e76\u662f\u6700\u65b0\u7684":29,"\u4f60\u7684\u8bf7\u6c42":29,"\u4f60\u8fd8\u53ef\u4ee5\u5c06\u7528\u6237\u548c":34,"\u4f60\u9700\u8981\u4e00\u4e9b\u66f4\u590d\u6742\u7684\u5355\u5143\u6d4b\u8bd5\u6765\u4fdd\u8bc1\u4f60\u5b9e\u73b0\u7684\u7f51\u7edc\u5c42\u662f\u6b63\u786e\u7684":30,"\u4f60\u9700\u8981\u5728\u672c\u5730\u4ed3\u5e93\u6267\u884c\u5982\u4e0b\u547d\u4ee4":29,"\u4f60\u9700\u8981\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u6307\u5b9a\u8bbe\u5907\u7684id\u53f7":38,"\u4f60\u9700\u8981\u5728\u914d\u7f6ecmake\u65f6\u5c06":30,"\u4f60\u9700\u8981\u5b89\u88c5python\u7684\u7b2c\u4e09\u65b9\u5e93":52,"\u4f60\u9700\u8981\u624b\u52a8\u8fdb\u884c\u66f4\u65b0":29,"\u4f60\u9700\u8981\u628a\u8be5\u6587\u4ef6\u52a0\u5165":30,"\u4f60\u9700\u8981\u9996\u5148\u6dfb\u52a0\u8fdc\u7a0b":29,"\u4f7f\u5176\u8f6c\u53d8\u4e3a\u7ef4\u5ea6\u4e3ahidden_dim\u7684\u65b0\u5411\u91cf":50,"\u4f7f\u5f97":18,"\u4f7f\u5f97\u4e24\u4e2a\u5b57\u5178\u6709\u76f8\u540c\u7684\u4e0a\u4e0b\u6587":55,"\u4f7f\u5f97\u5355\u5143\u6d4b\u8bd5\u6709\u4e00\u4e2a\u5e72\u51c0\u7684\u73af\u5883":17,"\u4f7f\u5f97\u642d\u6a21\u578b\u65f6\u66f4\u65b9\u4fbf":30,"\u4f7f\u5f97\u6700\u7ec8\u5f97\u5230\u7684\u6a21\u578b\u51e0\u4e4e\u4e0e\u771f\u5b9e\u6a21\u578b\u4e00\u81f4":18,"\u4f7f\u7528":[17,20,25,27,28,30,33,36,39,50,53,54],"\u4f7f\u75280\u53f7\u548c1\u53f7gpu\u8ba1\u7b97fc2\u5c42":38,"\u4f7f\u75280\u53f7gpu\u8ba1\u7b97fc2\u5c42":38,"\u4f7f\u752810\u4e2a\u88c1\u526a\u56fe\u50cf\u5757":48,"\u4f7f\u75281\u53f7gpu\u8ba1\u7b97fc3\u5c42":38,"\u4f7f\u75282\u53f7\u548c3\u53f7gpu\u8ba1\u7b97fc3\u5c42":38,"\u4f7f\u7528\u4e00\u4e2a\u5c3a\u5ea6\u4e3a":30,"\u4f7f\u7528\u4e00\u4e2a\u8bcd\u524d\u4e24\u4e2a\u8bcd\u548c\u540e\u4e24\u4e2a\u8bcd":17,"\u4f7f\u7528\u4e0a\u6587\u521b\u5efa\u7684yaml\u6587\u4ef6\u521b\u5efakubernet":41,"\u4f7f\u7528\u4e0d\u540c\u5206\u5e03\u5f0f\u5b58\u50a8\u4f1a\u6709\u4e0d\u540c\u7684\u6302\u8f7d\u65b9\u5f0f":42,"\u4f7f\u7528\u4e86":39,"\u4f7f\u7528\u4e86\u540c\u6837\u7684parameter\u548cbia":17,"\u4f7f\u7528\u4e86\u57fa\u4e8e\u53e5\u6cd5\u7ed3\u6784\u7684\u9884\u5b9a\u4e49\u7279\u5f81\u6a21\u677f":53,"\u4f7f\u7528\u4e86avx\u6307\u4ee4\u96c6":22,"\u4f7f\u7528\u4ee5\u4e0b\u547d\u4ee4\u8fdb\u884c\u6a21\u578b\u8bad\u7ec3":46,"\u4f7f\u7528\u5177\u6709softmax\u6fc0\u6d3b\u7684\u5168\u8fde\u63a5\u524d\u9988\u5c42\u6765\u6267\u884c\u5206\u7c7b\u4efb\u52a1":54,"\u4f7f\u7528\u591a\u5757\u663e\u5361\u8bad\u7ec3":17,"\u4f7f\u7528\u591a\u7ebf\u7a0b\u8bad\u7ec3":17,"\u4f7f\u7528\u5982\u4e0b\u53c2\u6570":47,"\u4f7f\u7528\u5982\u4e0b\u547d\u4ee4":46,"\u4f7f\u7528\u5982\u4e0b\u811a\u672c\u53ef\u4ee5\u786e\u5b9a\u672c\u673a\u7684cpu\u662f\u5426\u652f\u6301":20,"\u4f7f\u7528\u5b66\u4e60\u5b8c\u6210\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u6a21\u578b\u751f\u6210\u5e8f\u5217":28,"\u4f7f\u7528\u5bb9\u5668\u65b9\u5f0f\u8fd0\u884c\u8bad\u7ec3\u4efb\u52a1\u7684kubernet":42,"\u4f7f\u7528\u6211\u4eec\u4e4b\u524d\u6784\u9020\u7684\u955c\u50cf":41,"\u4f7f\u7528\u624b\u5de5\u6307\u5b9a\u7aef\u53e3\u6570\u91cf":39,"\u4f7f\u7528\u663e\u5361\u8bad\u7ec3":17,"\u4f7f\u7528\u6848\u4f8b":37,"\u4f7f\u7528\u7684":17,"\u4f7f\u7528\u8005\u4e0d\u9700\u8981\u5173\u5fc3":36,"\u4f7f\u7528\u8005\u53ea\u9700\u8981\u5173\u6ce8\u4e8e\u8bbe\u8ba1rnn\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u5b8c\u6210\u7684\u8ba1\u7b97":27,"\u4f7f\u7528\u8005\u53ef\u4ee5\u4f7f\u7528\u4e0b\u9762\u7684python\u811a\u672c\u6765\u8bfb\u53d6\u53c2\u6570\u503c":48,"\u4f7f\u7528\u8005\u65e0\u9700\u5173\u5fc3\u8fd9\u4e2a\u53c2\u6570":36,"\u4f7f\u7528\u8005\u901a\u5e38\u65e0\u9700\u5173\u5fc3":36,"\u4f7f\u7528\u81ea\u52a8\u7684\u66ff\u8865\u6765\u66ff\u4ee3\u7ecf\u9a8c\u4e30\u5bcc\u7684\u4eba\u5de5\u8bc4\u5224":55,"\u4f7f\u7528\u8be5dockerfile\u6784\u5efa\u51fa\u955c\u50cf":20,"\u4f7f\u7528\u8c13\u8bcd\u4e0a\u4e0b\u6587":53,"\u4f7f\u7528\u8fd9\u4e2a\u811a\u672c\u524d\u8bf7\u786e\u8ba4\u5df2\u7ecf\u5b89\u88c5\u4e86pillow\u53ca\u76f8\u5173\u4f9d\u8d56\u6a21\u5757":47,"\u4f7f\u7528\u8fd9\u79cd\u65b9\u5f0f":25,"\u4f7f\u7528\u8fdc\u7a0b\u7a00\u758f\u65b9\u5f0f\u8bad\u7ec3\u65f6":30,"\u4f7f\u7528\u968f\u673a\u68af\u5ea6\u4e0b\u964d":54,"\u4f7f\u7528\u9884\u8bad\u7ec3\u7684\u6807\u51c6\u683c\u5f0f\u8bcd\u5411\u91cf\u6a21\u578b":46,"\u4f7f\u7528args\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u8bbe\u7f6e":3,"\u4f7f\u7528checkgrad\u6a21\u5f0f\u65f6\u7684\u53c2\u6570\u53d8\u5316\u5927\u5c0f":36,"\u4f7f\u7528cpu\u4e24\u7ebf\u7a0b\u8ba1\u7b97fc4\u5c42":38,"\u4f7f\u7528cpu\u8ba1\u7b97fc4\u5c42":38,"\u4f7f\u7528cpu\u8bad\u7ec3":54,"\u4f7f\u7528dockerfile\u6784\u5efa\u4e00\u4e2a\u5168\u65b0\u7684dock":20,"\u4f7f\u7528init":38,"\u4f7f\u7528lstm\u4f5c\u4e3aencod":25,"\u4f7f\u7528max":47,"\u4f7f\u7528memory\u7684rnn\u5b9e\u73b0\u4fbf\u5982\u4e0b\u56fe\u6240\u793a":25,"\u4f7f\u7528model":38,"\u4f7f\u7528paddlepaddl":50,"\u4f7f\u7528python\u6570\u636e\u63d0\u4f9b\u5668":47,"\u4f7f\u7528rdma\u8fd8\u662ftcp\u4f20\u8f93\u534f\u8bae":36,"\u4f7f\u7528ssh\u8bbf\u95eepaddlepaddle\u955c\u50cf":20,"\u4f7f\u8f93\u5165\u5c42\u5230\u9690\u85cf\u5c42\u7684\u795e\u7ecf\u5143\u662f\u5168\u90e8\u8fde\u63a5\u7684":47,"\u4f86":25,"\u4f8b\u5982":[3,17,19,25,28,30,33,34,35,36,38,39,42,48,50,52,54],"\u4f8b\u5982\u4e0a\u6587\u7684pod":40,"\u4f8b\u5982\u4e0a\u9762\u7684":18,"\u4f8b\u5982\u4ee5\u592a\u7f51\u7684":34,"\u4f8b\u5982\u4f7f\u7528":17,"\u4f8b\u5982\u586b\u5145":28,"\u4f8b\u5982\u5c06\u7b2c\u4e00\u6761\u6570\u636e\u8f6c\u5316\u4e3a":25,"\u4f8b\u5982\u6587\u672c\u5206\u7c7b\u4e2d":25,"\u4f8b\u5982\u672c\u4f8b\u4e2d\u7684\u4e24\u4e2a\u7279\u5f81":25,"\u4f8b\u5982\u673a\u5668\u4e0a\u67094\u5757gpu":17,"\u4f8b\u5982\u7b2c300\u4e2apass\u7684\u6a21\u578b\u4f1a\u88ab\u4fdd\u5b58\u5728":47,"\u4f8b\u5982hostpath":40,"\u4f8b\u5982output\u76ee\u5f55\u4e0b\u5c31\u5b58\u653e\u4e86\u8f93\u51fa\u7ed3\u679c":42,"\u4f8b\u5982rdma\u7f51\u5361":20,"\u4f8b\u5982sigmoid":30,"\u4f8b\u5982sigmoid\u53d8\u6362":50,"\u4f8b\u5b50\u4e2d\u662f":30,"\u4f8b\u5b50\u4e2d\u662f0":30,"\u4f8b\u5b50\u4e2d\u662f100":30,"\u4f8b\u5b50\u4e2d\u662f4096":30,"\u4f8b\u5b50\u4e2d\u662f8192":30,"\u4f8b\u5b50\u4e2d\u662ffc":30,"\u4f8b\u5b50\u4e2d\u662fsoftmax":30,"\u4f8b\u5b50\u4f7f\u7528":40,"\u4f9bpaddlepaddle\u52a0\u8f7d":36,"\u4f9d\u636e\u5206\u7c7b\u9519\u8bef\u7387\u83b7\u5f97\u6700\u4f73\u6a21\u578b\u8fdb\u884c\u6d4b\u8bd5":54,"\u4f9d\u8d56\u4e8epython\u7684":47,"\u4fbf\u4e8e\u5b58\u50a8\u8d44\u6e90\u7ba1\u7406\u548cpod\u5f15\u7528":40,"\u4fbf\u4e8e\u672c\u5730\u9a8c\u8bc1\u548c\u6d4b\u8bd5":40,"\u4fbf\u5229":25,"\u4fbf\u548c\u5355\u5c42rnn\u914d\u7f6e\u4e2d\u7684":25,"\u4fbf\u5b9c":25,"\u4fdd\u5b58\u6a21\u578b\u53c2\u6570\u7684\u76ee\u5f55":36,"\u4fdd\u5b58\u751f\u6210\u7ed3\u679c\u7684\u6587\u4ef6":55,"\u4fdd\u5b58\u7f51\u7edc\u5c42\u8f93\u51fa\u7ed3\u679c\u7684\u76ee\u5f55":36,"\u4fdd\u5b58\u9884\u6d4b\u7ed3\u679c\u7684\u6587\u4ef6\u540d":36,"\u4fdd\u6301\u5bbd\u9ad8\u6bd4\u7f29\u653e\u5230\u77ed\u8fb9\u4e3a256":48,"\u4fe1\u53f7\u6765\u81ea\u52a8\u7ec8\u6b62\u5b83\u542f\u52a8\u7684\u6240\u6709\u8fdb\u7a0b":34,"\u4fe1\u606f":20,"\u4fee\u6539":[40,41],"\u4fee\u6539\u542f\u52a8\u811a\u672c\u540e":41,"\u4fee\u6539\u6210\u66f4\u5feb\u7684\u7248\u672c":33,"\u4fee\u6539\u6587\u6863":32,"\u503c\u5f97\u6ce8\u610f\u7684\u662f":25,"\u503c\u5f97\u6df1\u5165\u5206\u6790":33,"\u503c\u7c7b\u578b":38,"\u5047\u5982\u6211\u4eec\u662f\u4e09\u5206\u7c7b\u95ee\u9898":17,"\u5047\u8bbe":30,"\u5047\u8bbe\u53d8\u91cf":18,"\u5047\u8bbe\u635f\u5931\u51fd\u6570\u662f":30,"\u5047\u8bbe\u8bcd\u5411\u91cf\u7ef4\u5ea6\u4e3a32":46,"\u504f\u7f6e\u53c2\u6570":48,"\u504f\u7f6e\u53c2\u6570\u7684\u5927\u5c0f":30,"\u505c\u6b62\u52a0\u8f7d\u6570\u636e":36,"\u505c\u7535":25,"\u513f\u7ae5\u7247":51,"\u5143\u7d20":24,"\u5143\u7d20\u4e4b\u95f4\u7684\u987a\u5e8f\u662f\u91cd\u8981\u7684\u8f93\u5165\u4fe1\u606f":24,"\u5148\u4f7f\u7528\u547d\u4ee4":39,"\u5148\u8c03\u7528initializer\u51fd\u6570":50,"\u5168\u5bb6":25,"\u5168\u8fde\u63a5\u5c42":[18,39,46,47,52],"\u5168\u8fde\u63a5\u5c42\u4ee5\u4e00\u4e2a\u7ef4\u5ea6\u4e3a":30,"\u5168\u8fde\u63a5\u5c42\u5c06\u7535\u5f71\u7684\u6bcf\u4e2a\u7279\u5f81\u7ed3\u5408\u6210\u4e00\u4e2a\u7535\u5f71\u7279\u5f81":52,"\u5168\u8fde\u63a5\u5c42\u6743\u91cd":48,"\u5168\u8fde\u63a5\u5c42\u6ca1\u6709\u7f51\u7edc\u5c42\u914d\u7f6e\u7684\u8d85\u53c2\u6570":30,"\u5168\u8fde\u63a5\u5c42\u7684\u5b9e\u73b0\u4f4d\u4e8e":30,"\u5168\u8fde\u63a5\u5c42\u7684\u6bcf\u4e2a\u8f93\u51fa\u90fd\u8fde\u63a5\u5230\u4e0a\u4e00\u5c42\u7684\u6240\u6709\u7684\u795e\u7ecf\u5143\u4e0a":30,"\u5168\u8fde\u63a5\u5c42python\u5c01\u88c5\u7684\u4f8b\u5b50\u4e2d\u5305\u542b\u4e0b\u9762\u51e0\u6b65":30,"\u516b\u4e2a\u7279\u5f81\u5206\u522b\u8f6c\u6362\u4e3a\u5411\u91cf":53,"\u516c\u94a5\u5199\u5165":34,"\u516d\u4e2a\u7279\u5f81\u548c\u6807\u7b7e\u90fd\u662f\u7d22\u5f15\u69fd":53,"\u5171\u4eab\u4efb\u52a1\u4e2d\u8bbe\u7f6e\u7684\u6570\u636e\u8fdb\u884c\u8bad\u7ec3\u548c\u6d4b\u8bd5":53,"\u5171\u670932":46,"\u5173\u4e8e\u5982\u4f55\u5b9a\u4e49\u7f51\u7edc\u4e2d\u7684\u5c42":47,"\u5173\u4e8e\u65f6\u95f4\u5e8f\u5217":25,"\u5173\u4e8epaddlepaddle\u7684\u5206\u5e03\u5f0f\u8bad\u7ec3":42,"\u5173\u4e8eunbound":27,"\u5173\u4e8evgg\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u7684\u63cf\u8ff0\u53ef\u4ee5\u53c2\u8003":47,"\u5173\u95edcontain":20,"\u5176\u4e0b\u5b50\u6587\u4ef6\u5939\u7684\u7ed3\u6784\u5982\u4e0b":47,"\u5176\u4e2d":[3,17,18,20,28,30,39,46,47,48],"\u5176\u4e2d156\u548c285\u662f\u8fd9\u4e9b\u56fe\u50cf\u7684\u5206\u7c7b\u6807\u7b7e":48,"\u5176\u4e2d50000\u5f20\u56fe\u7247\u4f5c\u4e3a\u8bad\u7ec3\u96c6":47,"\u5176\u4e2d\u5206\u522b\u5305\u542b\u4e86cifar":47,"\u5176\u4e2d\u5305\u542b6":51,"\u5176\u4e2d\u5305\u542b\u4e86200\u79cd\u9e1f\u7c7b\u7684\u7167\u7247":47,"\u5176\u4e2d\u5305\u542b\u7b97\u6cd5\u548c\u7f51\u7edc\u914d\u7f6e":54,"\u5176\u4e2d\u5305\u62ec\u51fd\u6570":53,"\u5176\u4e2d\u5b9a\u4e49\u4e86\u6a21\u578b\u67b6\u6784\u548csolver\u914d\u7f6e":55,"\u5176\u4e2d\u6570\u636e\u6e90\u914d\u7f6e\u4e0edataprovider\u7684\u5173\u7cfb\u662f":39,"\u5176\u4e2d\u6587\u672c\u8f93\u5165\u7c7b\u578b\u5b9a\u4e49\u4e3a\u6574\u6570\u65f6\u5e8f\u7c7b\u578binteger_value_sequ":50,"\u5176\u4e2d\u6bcf\u4e00\u884c\u5bf9\u5e94\u4e00\u4e2a\u6570\u636e\u6587\u4ef6\u5730\u5740":2,"\u5176\u4e2d\u6bcf\u4e2a\u5143\u7d20\u662f\u53cc\u5c42\u5e8f\u5217\u4e2d\u6bcf\u4e2asubseq\u6700\u540e\u4e00\u4e2a":24,"\u5176\u4e2d\u6bcf\u4e2a\u5411\u91cf\u5bf9\u5e94\u8f93\u5165\u8bed\u53e5\u4e2d\u7684\u4e00\u4e2a\u5143\u7d20":55,"\u5176\u4e2d\u6bcf\u6761pass\u82b1\u8d39\u4e867\u4e2a\u5c0f\u65f6":55,"\u5176\u4e2d\u6bcf\u884c\u6570\u636e\u4ee3\u8868\u4e00\u5f20\u56fe\u7247":3,"\u5176\u4e2d\u8be6\u7ec6\u8bf4\u660e\u4e86\u6a21\u578b\u67b6\u6784":55,"\u5176\u4e2d\u8f93\u5165\u56fe\u50cf\u7684\u989c\u8272\u901a\u9053\u987a\u5e8f\u4e3a":48,"\u5176\u4e2dbeam":55,"\u5176\u4e2dcheckgrad\u4e3b\u8981\u4e3a\u5f00\u53d1\u8005\u4f7f\u7528":36,"\u5176\u4e2dmean\u548cstd\u662f\u8bad\u7ec3\u914d\u7f6e\u4e2d\u7684\u53c2\u6570":36,"\u5176\u4e2dvalue\u5373\u4e3asoftmax\u5c42\u7684\u8f93\u51fa":5,"\u5176\u4ed6":51,"\u5176\u4ed6\u516d\u884c\u5217\u51fa\u4e86\u96c6\u675f\u641c\u7d22\u7684\u7ed3\u679c":55,"\u5176\u4ed6\u5185\u5b58\u6742\u9879":17,"\u5176\u4ed6\u5185\u5b58\u6742\u9879\u662f\u6307paddlepaddle\u672c\u8eab\u6240\u7528\u7684\u4e00\u4e9b\u5185\u5b58":17,"\u5176\u4ed6\u53c2\u6570\u4f7f\u7528":3,"\u5176\u4ed6\u53c2\u6570\u8bf7\u53c2\u8003":50,"\u5176\u4ed6\u6240\u6709\u5c42\u90fd\u4f1a\u4f7f\u7528gpu\u8ba1\u7b97":38,"\u5176\u4ed6\u7528\u6237\u5206\u652f\u662f\u7279\u5f81\u5206\u652f":29,"\u5176\u4ed6\u884c\u53ef\u4ee5\u6dfb\u52a0\u4e00\u4e9b\u7ec6\u8282":29,"\u5176\u4ed6\u9ad8\u7ea7\u529f\u80fd\u5305\u62ec\u5b9a\u4e49\u591a\u4e2amemori":28,"\u5176\u4f1a\u81ea\u52a8\u88ab\u52a0\u5165\u7f16\u8bd1\u5217\u8868":30,"\u5176\u4f59\u884c\u662f":46,"\u5176\u4f5c\u7528\u662f\u5c06\u6570\u636e\u4f20\u5165\u5185\u5b58\u6216\u663e\u5b58":2,"\u5176\u5177\u4f53\u8bf4\u660e\u4e86\u5b57\u6bb5\u7c7b\u578b\u548c\u6587\u4ef6\u540d\u79f0":52,"\u5176\u5185\u90e8\u7684\u6587\u4ef6\u4e5f\u4f1a\u968f\u4e4b\u6d88\u5931":40,"\u5176\u5305\u62ec\u4e24\u4e2a\u51fd\u6570":50,"\u5176\u53c2\u6570\u5982\u4e0b":3,"\u5176\u5b83\u90e8\u5206\u548c\u903b\u8f91\u56de\u5f52\u7f51\u7edc\u7ed3\u6784\u4e00\u81f4":50,"\u5176\u5b83layer\u7684\u8f93\u51fa":27,"\u5176\u5b9e\u4e5f\u662f\u548c\u6bcf\u4e2amini":17,"\u5176\u63d0\u4f9b\u5e94\u7528\u90e8\u7f72":40,"\u5176\u6b21":[3,25,50],"\u5176\u76ee\u7684\u662f\u5728\u7ed9\u5b9a\u7684\u8f93\u5165\u53e5\u5b50\u4e2d\u53d1\u73b0\u6bcf\u4e2a\u8c13\u8bcd\u7684\u8c13\u8bcd\u8bba\u5143\u7ed3\u6784":53,"\u5176\u8bf4\u660e\u5982\u4e0b":25,"\u5176\u8f93\u5165\u53c2\u6570\u5982\u4e0b":55,"\u5176\u8f93\u51fa\u88ab\u7528\u4f5cmemory\u7684\u521d\u59cb\u503c":28,"\u5177\u4f53\u4f7f\u7528\u65b9\u6cd5\u4e3a":17,"\u5177\u4f53\u53ef\u4ee5\u53c2\u8003":[3,30],"\u5177\u4f53\u53ef\u53c2\u8003\u6587\u6863":27,"\u5177\u4f53\u60c5\u51b5\u56e0\u4eba\u800c\u5f02":33,"\u5177\u4f53\u64cd\u4f5c\u5982\u4e0b":17,"\u5177\u4f53\u6d41\u7a0b\u5982\u4e0b":50,"\u5177\u4f53\u7684\u4f7f\u7528\u65b9\u6cd5\u8bf7\u53c2\u8003":39,"\u5177\u4f53\u7684\u683c\u5f0f\u8bf4\u660e":3,"\u5177\u4f53\u7684\u89e3\u51b3\u65b9\u6cd5\u662f":17,"\u5177\u4f53\u8ba1\u7b97\u662f\u901a\u8fc7\u5185\u90e8\u7684":39,"\u5177\u4f53\u8bf7\u53c2\u7167\u793a\u4f8b":48,"\u5177\u4f53\u8bf7\u53c2\u8003":3,"\u5177\u4f53\u8bf7\u53c2\u8003\u6ce8\u610f\u4e8b\u9879\u4e2d\u7684":20,"\u5177\u6709\u76f8\u540c\u7684\u7ed3\u679c\u4e86":25,"\u5177\u6709\u81ea\u5faa\u73af\u8fde\u63a5\u7684\u795e\u7ecf\u5143":54,"\u517c\u5907\u6613\u7528\u6027":0,"\u5185":28,"\u5185\u5b58":33,"\u5185\u5b58\u5bb9\u9650\u9608\u503c":36,"\u5185\u5bb9":50,"\u5185\u5bb9\u5982\u4e0b":41,"\u5185\u5c42inner_step\u7684recurrent_group\u548c\u5355\u5c42\u5e8f\u5217\u7684\u51e0\u4e4e\u4e00\u6837":25,"\u5185\u5df2\u7ecf\u5305\u542bpaddlepaddle\u7684\u6267\u884c\u7a0b\u5e8f\u4f46\u662f\u8fd8\u6ca1\u4e0a\u8ff0\u529f\u80fd":42,"\u5185\u90e8":42,"\u518d\u4e3apaddle\u7684\u8bad\u7ec3\u8fc7\u7a0b\u63d0\u4f9b\u6587\u4ef6\u5217\u8868":52,"\u518d\u4f20\u5165\u7ed9train":39,"\u518d\u5bf9\u6bcf\u4e00\u4e2a\u5355\u5c42\u65f6\u95f4\u5e8f\u5217\u8fdb\u884c\u5904\u7406":25,"\u518d\u5bf9\u6bcf\u4e00\u53e5\u8bdd\u7684\u7f16\u7801\u5411\u91cf\u7528lstm\u7f16\u7801\u6210\u4e00\u4e2a\u6bb5\u843d\u7684\u5411\u91cf":25,"\u518d\u5bf9\u8fd9\u4e2a\u6bb5\u843d\u5411\u91cf\u8fdb\u884c\u5206\u7c7b":25,"\u518d\u6307\u5b9a":19,"\u518d\u6b21\u5bf9\u4ee3\u7801\u8fdb\u884c\u6027\u80fd\u5206\u6790":33,"\u518d\u7528\u8fd9\u4e2a\u68af\u5ea6\u53bb\u548c":30,"\u518d\u901a\u8fc7\u51fd\u6570":42,"\u5192\u9669\u7247":51,"\u5197\u4f59\u7b49\u529f\u80fd":40,"\u5199\u4e0b\u4f60\u7684\u6ce8\u91ca":29,"\u5199\u5b8c\u6a21\u578b\u914d\u7f6e\u4e4b\u540e":55,"\u5199\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5\u662f\u4e00\u4e2a\u9a8c\u8bc1\u65b0\u5b9e\u73b0\u7684\u5c42\u662f\u5426\u6b63\u786e\u7684\u76f8\u5bf9\u7b80\u5355\u7684\u529e\u6cd5":30,"\u519c\u6c11":51,"\u51c6\u5907":25,"\u51c6\u5907\u597d\u6570\u636e":52,"\u51c6\u5907\u6570\u636e":23,"\u51c6\u5907\u7528\u6765\u5b66\u4e60\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u5e8f\u5217\u6570\u636e":28,"\u51c6\u5907\u9884\u6d4b\u6570\u636e":5,"\u51cf\u5c0f\u5e8f\u5217\u7684\u957f\u5ea6":17,"\u51cf\u5c0f\u8fd9\u4e2a\u5185\u5b58\u6c60\u5373\u53ef\u51cf\u5c0f\u5185\u5b58\u5360\u7528":17,"\u51cf\u5c0fbatch":17,"\u51fa\u53bb\u73a9":25,"\u51fa\u5dee":25,"\u51fa\u6765":25,"\u51fa\u73b0\u4ee5\u4e0b\u9519\u8bef":17,"\u51fa\u73b0\u8fd9\u4e2a\u95ee\u9898\u7684\u4e3b\u8981\u539f\u56e0\u662f":17,"\u51fd\u6570":[3,18,28,30,33,53,54],"\u51fd\u6570\u4e2d":28,"\u51fd\u6570\u4e2d\u4f7f\u7528":3,"\u51fd\u6570\u4e2d\u8bbe\u7f6e\u7684":34,"\u51fd\u6570\u5047\u8bbe":28,"\u51fd\u6570\u52a0\u5230\u4ee3\u7801\u4e2d":33,"\u51fd\u6570\u53ea\u5173\u6ce8\u4e8ernn\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u7684\u8ba1\u7b97":27,"\u51fd\u6570\u5c06\u8fd4\u56de\u4e09\u4e2a\u6574\u6570\u5217\u8868":28,"\u51fd\u6570\u5c31\u662f\u6839\u636e\u8be5\u673a\u5236\u914d\u7f6e\u7684":3,"\u51fd\u6570\u5f97\u5230\u7684\u68af\u5ea6\u53bb\u5bf9\u6bd4":30,"\u51fd\u6570\u5fc5\u987b\u5148\u8c03\u7528\u57fa\u7c7b\u4e2d\u7684\u51fd\u6570":30,"\u51fd\u6570\u5fc5\u987b\u8fd4\u56de\u4e00\u4e2a\u6216\u591a\u4e2alayer\u7684\u8f93\u51fa":27,"\u51fd\u6570\u6307\u51fa\u4e86\u5728\u8bad\u7ec3\u65f6\u9700\u8981\u4ece\u53c2\u6570\u670d\u52a1\u5668\u53d6\u51fa\u7684\u884c":30,"\u51fd\u6570\u6765\u5c06\u4fe1\u606f\u8f93\u51fa\u5230\u754c\u9762\u4e2d":33,"\u51fd\u6570\u67e5\u8be2\u8f6f\u4ef6\u5305\u76f8\u5173api\u8bf4\u660e":5,"\u51fd\u6570\u7684":3,"\u51fd\u6570\u7684\u5b9e\u73b0\u662f\u6b63\u786e\u7684":30,"\u51fd\u6570\u7684\u5f00\u5934\u5fc5\u987b\u8c03\u7528":30,"\u5206\u4e3a\u597d\u8bc4":50,"\u5206\u522b\u4e3a":46,"\u5206\u522b\u4e3atrain":55,"\u5206\u522b\u4ece\u8bcd\u8bed\u548c\u53e5\u5b50\u7ea7\u522b\u7f16\u7801\u8f93\u5165\u6570\u636e":27,"\u5206\u522b\u4f7f\u7528\u5355\u53cc\u5c42rnn\u4f5c\u4e3a\u7f51\u7edc\u914d\u7f6e\u7684\u6a21\u578b":25,"\u5206\u522b\u5305\u542b\u4e86\u6cd5\u8bed\u5230\u82f1\u8bed\u7684\u5e73\u884c\u8bed\u6599\u5e93\u7684\u8bad\u7ec3\u6570\u636e":55,"\u5206\u522b\u5b9a\u4e49\u5b50\u53e5\u7ea7\u522b\u548c\u8bcd\u8bed\u7ea7\u522b\u4e0a\u9700\u8981\u5b8c\u6210\u7684\u8fd0\u7b97":27,"\u5206\u522b\u5bf9\u5e94\u4e8e\u53d8\u91cf":18,"\u5206\u522b\u662f":24,"\u5206\u522b\u662frnn\u72b6\u6001\u548c\u8f93\u5165\u7684\u53d8\u6362\u77e9\u9635":28,"\u5206\u522b\u662fsentences\u548clabel":25,"\u5206\u522b\u662fwords\u548clabel":25,"\u5206\u522b\u8ba1\u7b97\u6bcf\u4e2a\u53c2\u6570\u7684\u68af\u5ea6":30,"\u5206\u522b\u8fdb\u884c\u5e8f\u5217\u64cd\u4f5c":25,"\u5206\u5272":[51,53],"\u5206\u5272\u6587\u4ef6\u7684\u65b9\u6cd5\u662f":52,"\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf":40,"\u5206\u6210\u4e24\u90e8\u5206":3,"\u5206\u652f":29,"\u5206\u6790\u5f97\u5230\u7684\u4fe1\u606f\u7528\u4e8e\u534f\u52a9\u8fdb\u884c\u7a0b\u5e8f\u7684\u4f18\u5316":33,"\u5206\u7c7b\u6210\u6b63\u9762\u60c5\u7eea\u548c\u8d1f\u9762\u60c5\u7eea\u4e24\u7c7b":3,"\u5206\u7c7b\u8bef\u5dee\u662f0":54,"\u5206\u7c7b\u9519\u8bef\u7387\u548c\u6a21\u578b\u5927\u5c0f\u7531\u4e0b\u8868\u7ed9\u51fa":48,"\u5206\u8bcd\u5e8f\u5217\u7684\u5f00\u59cb":46,"\u5206\u8bcd\u5e8f\u5217\u7684\u7ed3\u675f":46,"\u5206\u8bcd\u98ce\u683c\u5982\u4e0b":46,"\u5206\u914d\u5230\u5f53\u524d\u6570\u636e\u5757\u6837\u672c\u6570\u7684\u56db\u5206\u4e4b\u4e00":36,"\u5206\u9694":[46,52],"\u5206\u9694\u7b26\u4e3a":51,"\u5217\u8868":52,"\u5217\u8868\u5982\u4e0b":3,"\u5219\u4e0d\u5728\u4e4e\u5185\u5b58\u6682\u5b58\u591a\u5c11\u6761\u6570\u636e":3,"\u5219\u4e0d\u9700\u8981\u91cd\u5199\u8be5\u51fd\u6570":30,"\u5219\u4f1a\u9884\u5148\u8bfb\u53d6\u5168\u90e8\u6570\u636e\u5230\u5185\u5b58\u4e2d":3,"\u5219\u4f1a\u9ed8\u8ba4\u751f\u6210\u4e00\u4e2alist\u6587\u4ef6":39,"\u5219\u4f7f\u7528\u533a\u57df\u6807\u8bb0":53,"\u5219\u4f7f\u7528\u540c\u6b65\u8bad\u7ec3":36,"\u5219\u4f7f\u7528\u8be5\u53c2\u6570\u4f5c\u4e3a\u9ed8\u8ba4\u503c":36,"\u5219\u5148\u505a\u5d4c\u5165":52,"\u5219\u53ef\u4ee5\u4f7f\u7528":20,"\u5219\u53ef\u4ee5\u50cf":34,"\u5219\u53ef\u4ee5\u9009\u62e9\u4e0a\u8868\u4e2d\u7684avx\u7248\u672cpaddlepaddl":20,"\u5219\u5b57\u4e0e\u5b57\u4e4b\u95f4\u7528\u7a7a\u683c\u5206\u9694":50,"\u5219\u603b\u4f1a\u663e\u793a\u963b\u9694\u6458\u8981\u4fe1\u606f":36,"\u5219\u63a8\u8350\u5927\u4e8e\u8bad\u7ec3\u65f6batch":3,"\u5219\u662f\u5e26gui\u7684nvidia\u53ef\u89c6\u5316\u6027\u80fd\u5206\u6790\u5de5\u5177":33,"\u5219\u663e\u793a\u963b\u9694\u6027\u80fd\u7684\u6458\u8981\u4fe1\u606f":36,"\u5219\u8868\u793a\u7a20\u5bc6\u66f4\u65b0\u7684\u7aef\u53e3\u6570\u91cf":42,"\u5219\u9700\u8981\u4f7f\u7528\u7b49\u4e8e\u6743\u91cd\u53c2\u6570\u89c4\u6a21\u5927\u7ea65\u500d\u7684\u5185\u5b58":17,"\u5219\u9700\u8981\u5148\u5c06":20,"\u5219\u9700\u8981\u8fdb\u884c\u4e00\u5b9a\u7684\u4e8c\u6b21\u5f00\u53d1":20,"\u5219\u9700\u8981\u914d\u7f6e":40,"\u521b\u5efa":29,"\u521b\u5efa\u4e00\u4e2akubernet":42,"\u521b\u5efa\u5e76\u6d4b\u8bd5\u4f60\u7684\u4ee3\u7801":29,"\u521b\u5efa\u6210\u529f\u540e":42,"\u521b\u5efa\u8bad\u7ec3\u6570\u636e\u7684":55,"\u521b\u5efa\u8fdc\u7a0b\u5206\u652f":29,"\u521b\u5efagener":3,"\u521d\u59cb\u5316\u4e4b\u540e":5,"\u521d\u59cb\u5316\u504f\u7f6e\u5411\u91cf":30,"\u521d\u59cb\u5316\u65f6\u8c03\u7528\u7684\u51fd\u6570":3,"\u521d\u59cb\u5316\u6743\u91cd\u8868":30,"\u521d\u59cb\u5316\u6a21\u578b\u7684\u8def\u5f84":36,"\u521d\u59cb\u5316\u6a21\u578b\u7684\u8def\u5f84\u914d\u7f6e\u4e3a":46,"\u521d\u59cb\u5316\u7236\u7c7b":30,"\u521d\u59cb\u5316biases_":30,"\u521d\u59cb\u5316paddlepaddle\u73af\u5883":5,"\u521d\u59cb\u72b6\u6001":27,"\u5220\u9664contain":20,"\u5229\u7528\u5206\u5e03\u5f0f\u8bad\u7ec3\u9a7e\u9a6d\u66f4\u591a\u7684\u8ba1\u7b97\u8d44\u6e90":17,"\u5229\u7528\u5355\u8bcdid\u67e5\u627e\u8be5\u5355\u8bcd\u5bf9\u5e94\u7684\u8fde\u7eed\u5411\u91cf":50,"\u5229\u7528\u66f4\u591a\u7684\u8ba1\u7b97\u8d44\u6e90\u53ef\u4ee5\u5206\u4e3a\u4e00\u4e0b\u51e0\u4e2a\u65b9\u5f0f\u6765\u8fdb\u884c":17,"\u5229\u7528\u6b63\u5219\u8868\u8fbe\u5f0f\u6765\u89e3\u6790\u8be5\u7279\u5f81":52,"\u5229\u7528\u8bad\u7ec3\u96c6\u751f\u6210\u7684\u5b57\u5178":54,"\u5229\u7528\u8fd9\u79cd\u7279\u6027":27,"\u5229\u7528\u903b\u8f91\u56de\u5f52\u6a21\u578b\u5bf9\u8be5\u5411\u91cf\u8fdb\u884c\u5206\u7c7b":50,"\u5229\u7528kubernetes\u80fd\u65b9\u4fbf\u5730\u7ba1\u7406\u8de8\u673a\u5668\u8fd0\u884c\u5bb9\u5668\u5316\u7684\u5e94\u7528":40,"\u5229\u843d":25,"\u5230":[17,28],"\u5230\u6240\u6709\u8282\u70b9\u800c\u4e0d\u7528\u5bc6\u7801":34,"\u5230\u672c\u5730":29,"\u5230\u76ee\u524d\u4e3a\u6b62":53,"\u5236\u4f5c\u65b0\u955c\u50cf\u6765\u5b8c\u6210\u4ee5\u4e0a\u7684\u5de5\u4f5c":42,"\u5236\u4f5cpaddlepaddle\u955c\u50cf":42,"\u5237\u7259":25,"\u524d\u4e00\u7bc7\u6587\u7ae0\u4ecb\u7ecd\u4e86\u5982\u4f55\u5728kubernetes\u96c6\u7fa4\u4e0a\u542f\u52a8\u4e00\u4e2a\u5355\u673apaddlepaddle\u8bad\u7ec3\u4f5c\u4e1a":42,"\u524d\u4e09\u884cimport\u4e86\u5b9a\u4e49network":55,"\u524d\u53f0":25,"\u524d\u5411\u4f20\u64ad":30,"\u524d\u5411\u4f20\u64ad\u7ed9\u5b9a\u8f93\u5165":30,"\u524d\u5411\u548c\u540e\u5411":30,"\u5269\u4e0b\u7684pass\u4f1a\u76f4\u63a5\u4ece\u5185\u5b58\u91cc":3,"\u52a0\u4e0a\u504f\u7f6e\u5411\u91cf":30,"\u52a0\u4e86l2\u6b63\u5219\u548c\u68af\u5ea6\u622a\u65ad":50,"\u52a0\u5165":33,"\u52a0\u6743\u548c\u7528\u6765\u751f\u6210":28,"\u52a0\u6743\u7f16\u7801\u5411\u91cf":28,"\u52a0\u8f7d\u6570\u636e":53,"\u52a0\u8f7d\u6a21\u578b":53,"\u52a0\u8f7d\u6a21\u578b\u53c2\u6570":55,"\u52a0\u8f7dtest":36,"\u52a0\u901fpaddlepaddle\u8bad\u7ec3\u53ef\u4ee5\u8003\u8651\u4ece\u4ee5\u4e0b\u51e0\u4e2a\u65b9\u9762":17,"\u52a8\u4f5c\u7247":51,"\u52a8\u753b\u7247":51,"\u52a8\u8bcd":53,"\u52a9\u624b":30,"\u5305":20,"\u5305\u542b12":54,"\u5305\u542b20\u4e2a\u8bad\u7ec3\u6837\u4f8b":46,"\u5305\u542b3\u4e2a\u5c5e\u6027":46,"\u5305\u542b50":54,"\u5305\u548c":20,"\u5305\u5e76\u91cd\u65b0\u7f16\u8bd1paddlepaddl":17,"\u5305\u62ec":[36,50,53,55],"\u5305\u62ec\u4e86\u56fe\u50cf\u7684\u5377\u79ef":39,"\u5305\u62ec\u4ee5\u4e0b\u4e24\u79cd":3,"\u5305\u62ec\u53d1\u884c\u65f6\u95f4":51,"\u5305\u62ec\u5b57\u7b26\u4e32\u5206\u914d":17,"\u5305\u62ec\u5b66\u4e60\u7387":39,"\u5305\u62ec\u6570\u636e\u8f93\u5165":18,"\u5305\u62ec\u751f\u6210cpu":19,"\u5305\u62ec\u7b80\u5355\u7684":50,"\u5305\u62ecbool":38,"\u5305\u62ecdocker\u955c\u50cf":21,"\u5305\u62ecpaddle\u7684\u4e8c\u8fdb\u5236":20,"\u5305\u62ecpaddle\u8fd0\u884cdemo\u6240\u9700\u8981\u7684\u4f9d\u8d56":20,"\u5305\u662f\u6700\u65b0\u7684":17,"\u5305\u6bd4\u8f83\u8001":17,"\u5305\u7684\u65b9\u6cd5\u662f":17,"\u533a\u522b\u662f\u540c\u65f6\u5904\u7406\u4e86\u4e24\u4e2a\u8f93\u5165":25,"\u533a\u522b\u662frnn\u4f7f\u7528\u4e24\u5c42\u5e8f\u5217\u6a21\u578b":25,"\u533b\u751f":51,"\u533b\u7597\u4fdd\u5065":51,"\u5341\u4e00":25,"\u5347\u5e8f\u6392\u5217":55,"\u534e\u6da6\u4e07\u5bb6":25,"\u5355\u4f4d\u662fmb":36,"\u5355\u5143\u6d4b\u8bd5\u4f1a\u5f15\u7528site":17,"\u5355\u5143\u6d4b\u8bd5checkgrad_ep":35,"\u5355\u53cc\u5c42\u5e8f\u5217\u7684\u53e5\u5b50\u662f\u4e00\u6837\u7684":25,"\u5355\u53cc\u5c42rnn":26,"\u5355\u53d8\u91cf\u7684\u7ebf\u6027\u56de\u5f52":18,"\u5355\u5c42":27,"\u5355\u5c42\u4e0d\u7b49\u957frnn":25,"\u5355\u5c42\u548c\u53cc\u5c42\u5e8f\u5217\u7684\u4f7f\u7528\u548c\u793a\u4f8b2\u4e2d\u7684\u793a\u4f8b\u7c7b\u4f3c":25,"\u5355\u5c42\u5e8f\u5217":24,"\u5355\u5c42\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20":24,"\u5355\u5c42\u5e8f\u5217\u7b2ci\u4e2a\u5143\u7d20":24,"\u5355\u5c42\u6216\u53cc\u5c42":24,"\u5355\u5c42\u65f6\u95f4\u5e8f\u5217":25,"\u5355\u5c42rnn":[25,27],"\u5355\u5c42rnn\u548c\u53cc\u5c42rnn\u7684\u7f51\u7edc\u914d\u7f6e":25,"\u5355\u673a\u6a21\u5f0f\u7528\u547d\u4ee4":39,"\u5355\u673a\u8bad\u7ec3\u901a\u5e38\u53ea\u5305\u62ec\u4e00\u4e2atrainer\u8fdb\u7a0b":39,"\u5355\u673acpu\u8bad\u7ec3":17,"\u5355\u673agpu\u8bad\u7ec3":17,"\u5355\u6b65\u51fd\u6570":28,"\u5355\u6b65\u51fd\u6570\u548c\u8f93\u51fa\u51fd\u6570\u5728":28,"\u5355\u6b65\u51fd\u6570\u548c\u8f93\u51fa\u51fd\u6570\u90fd\u975e\u5e38\u7b80\u5355":28,"\u5355\u6b65\u51fd\u6570\u7684\u5b9e\u73b0\u5982\u4e0b\u6240\u793a":28,"\u5355\u8fdb\u5355\u51fa":27,"\u536b\u751f":25,"\u5373":[17,18,20,31,42,50,54],"\u5373\u4e00\u4e2a\u5c06\u5355\u8bcd\u5b57\u7b26\u4e32\u6620\u5c04\u5230\u5355\u8bcdid\u7684\u5b57\u5178":3,"\u5373\u4e0a\u8ff0\u4ee3\u7801\u4e2d\u7684\u7b2c19\u884c":25,"\u5373\u4e0d\u8981\u5c06\u6bcf\u4e00\u4e2a\u6837\u672c\u90fd\u653e\u5165train":3,"\u5373\u4e0d\u9700\u8981\u4f7f\u7528memori":25,"\u5373\u4e3a\u4e00\u4e2a\u65f6\u95f4\u6b65":25,"\u5373\u4e3a\u5355\u5c42rnn\u5e8f\u5217\u7684\u4f7f\u7528\u4ee3\u7801":25,"\u5373\u4e3a\u65f6\u95f4\u5e8f\u5217\u7684\u8f93\u5165":25,"\u5373\u4e3a\u8fd9\u4e2a\u53cc\u5c42rnn\u7684\u7f51\u7edc\u7ed3\u6784":25,"\u5373\u4e3a\u8fd9\u4e2a\u6570\u636e\u6587\u4ef6\u7684\u540d\u5b57":3,"\u5373\u4e8c\u7ef4\u6570\u7ec4":25,"\u5373\u4f7f\u95f4\u9694\u5f88\u5c0f":36,"\u5373\u4f7fprocess\u51fd\u6570\u91cc\u9762\u53ea\u6709\u4e00\u4e2ayield":3,"\u5373\u4fbf\u8bbe\u7f6e":17,"\u5373\u521d\u59cb\u72b6\u6001\u4e3a0":27,"\u5373\u5305\u542b\u65f6\u95f4\u6b65\u4fe1\u606f":3,"\u5373\u5355\u65f6\u95f4\u6b65\u6267\u884c\u7684\u51fd\u6570":28,"\u5373\u53cc\u5411lstm\u548c\u4e09\u5c42\u5806\u53e0lstm":54,"\u5373\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217":25,"\u5373\u53cc\u5c42rnn\u7684\u6bcf\u4e2a\u72b6\u6001":27,"\u5373\u53ef":18,"\u5373\u53ef\u4ee5\u4f7f\u7528ssh\u8bbf\u95ee\u5bbf\u4e3b\u673a\u76848022\u7aef\u53e3":20,"\u5373\u53ef\u4ee5\u6781\u5927\u7684\u52a0\u901f\u6570\u636e\u8f7d\u5165\u6d41\u7a0b":17,"\u5373\u53ef\u542f\u52a8\u548c\u8fdb\u5165paddlepaddle\u7684contain":20,"\u5373\u53ef\u6253\u5370\u51fapaddlepaddle\u7684\u7248\u672c\u548c\u6784\u5efa":20,"\u5373\u5728\u53cc\u5c42\u5e8f\u5217\u7684\u539f\u59cb\u6570\u636e\u4e2d":25,"\u5373\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d":17,"\u5373\u5927\u90e8\u5206\u503c\u4e3a0":3,"\u5373\u5bf9\u7b2c\u4e09\u6b65\u8fdb\u884c\u66ff\u6362":50,"\u5373\u5c06\u4e00\u6bb5\u82f1\u6587\u6587\u672c\u6570\u636e":3,"\u5373\u5c06\u4e00\u6bb5\u8bdd\u8fdb\u884c\u5206\u7c7b":25,"\u5373\u5f53\u524d\u65f6\u95f4\u6b65\u4e0b\u7684\u795e\u7ecf\u7f51\u7edc\u4f9d\u8d56\u524d\u4e00\u4e2a\u65f6\u95f4\u6b65\u795e\u7ecf\u7f51\u7edc\u4e2d\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u8f93\u51fa":25,"\u5373\u6211\u4eec\u7684\u8bad\u7ec3\u76ee\u6807":18,"\u5373\u628a\u5355\u5c42rnn\u751f\u6210\u540e\u7684subseq\u7ed9\u62fc\u63a5\u6210\u4e00\u4e2a\u65b0\u7684\u53cc\u5c42seq":27,"\u5373\u6574\u4e2a\u53cc\u5c42group\u662f\u5c06\u524d\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5411\u91cf":25,"\u5373\u6574\u4e2a\u8f93\u5165\u5e8f\u5217":24,"\u5373\u6574\u6570\u6570\u7ec4":25,"\u5373\u65f6\u95f4\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":25,"\u5373\u662f\u8de8\u8d8a\u65f6\u95f4\u6b65\u7684\u7f51\u7edc\u8fde\u63a5":25,"\u5373\u6b63\u9762\u548c\u8d1f\u9762":54,"\u5373\u6b63\u9762\u8bc4\u4ef7\u6807\u7b7e\u548c\u8d1f\u9762\u8bc4\u4ef7\u6807\u7b7e":54,"\u5373\u7279\u5f81\u7684\u6570\u7ec4":25,"\u5373\u7f51\u5361\u540d":42,"\u5373\u82e5\u5e72\u6570\u636e\u6587\u4ef6\u8def\u5f84\u7684\u67d0\u4e00\u4e2a":3,"\u5373\u8bbe\u7f6e":17,"\u5373define_py_data_sources2\u5e94\u6539\u4e3a":17,"\u5373input":27,"\u5373rnn\u4e4b\u95f4\u6709\u4e00\u6b21\u5d4c\u5957\u5173\u7cfb":25,"\u5377\u79ef\u5c42":47,"\u5377\u79ef\u5c42\u6743\u91cd":48,"\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u53ef\u4ee5\u8fa8\u8bc6\u56fe\u7247\u4e2d\u7684\u4e3b\u4f53":47,"\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u5728\u56fe\u7247\u5206\u7c7b\u4e0a\u6709\u7740\u60ca\u4eba\u7684\u6027\u80fd":47,"\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u662f\u4e00\u79cd\u4f7f\u7528\u5377\u79ef\u5c42\u7684\u524d\u5411\u795e\u7ecf\u7f51\u7edc":47,"\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u80fd\u591f\u5f88\u597d\u7684\u8868\u793a\u8fd9\u4e24\u7c7b\u4fe1\u606f":47,"\u5377\u79ef\u7f51\u7edc\u662f\u4e00\u79cd\u7279\u6b8a\u7684\u4ece\u8bcd\u5411\u91cf\u8868\u793a\u5230\u53e5\u5b50\u8868\u793a\u7684\u65b9\u6cd5":50,"\u5378\u8f7dpaddlepaddle\u5305":17,"\u538b\u7f29\u6210\u4e00\u4e2a\u5411\u91cf":25,"\u539f\u56e0\u5728\u4e8e\u6ca1\u6709\u628a\u673a\u5668\u4e0acuda\u76f8\u5173\u7684\u9a71\u52a8\u548c\u5e93\u6620\u5c04\u5230\u5bb9\u5668\u5185\u90e8":17,"\u539f\u56e0\u662f\u672a\u8bbe\u7f6ecuda\u8fd0\u884c\u65f6\u73af\u5883\u53d8\u91cf":22,"\u53bb\u8fc7":25,"\u53c2\u6570":[3,6,7,8,9,10,11,12,13,30,35,42,46,48,54],"\u53c2\u6570\u5171\u4eab\u7684\u914d\u7f6e\u793a\u4f8b\u4e3a":17,"\u53c2\u6570\u521d\u59cb\u5316\u8def\u5f84":53,"\u53c2\u6570\u5373\u53ef":54,"\u53c2\u6570\u540d":48,"\u53c2\u6570\u6570\u91cf":50,"\u53c2\u6570\u670d\u52a1\u5668":35,"\u53c2\u6570\u670d\u52a1\u5668\u7684\u53c2\u6570\u5206\u5757\u5927\u5c0f":36,"\u53c2\u6570\u670d\u52a1\u5668\u7684\u76d1\u542c\u7aef\u53e3":36,"\u53c2\u6570\u670d\u52a1\u5668\u7684\u7f51\u7edc\u8bbe\u5907\u540d\u79f0":36,"\u53c2\u6570\u670d\u52a1\u5668\u7684ip\u5730\u5740":36,"\u53c2\u6570\u670d\u52a1\u5668\u7a00\u758f\u66f4\u65b0\u7684\u53c2\u6570\u5206\u5757\u5927\u5c0f":36,"\u53c2\u6570\u6765\u63a7\u5236\u7f13\u5b58\u65b9\u6cd5":17,"\u53c2\u6570\u6982\u8ff0":37,"\u53c2\u6570\u7684\u89e3\u6790":42,"\u53c2\u6570\u7ef4\u5ea6":46,"\u53c2\u6570\u884c":46,"\u53c2\u6570\u8bbe\u7f6e\u4e86\u5916\u5c42":25,"\u53c2\u6570\u9700\u8981\u5b9e\u73b0":28,"\u53c2\u8003":40,"\u53c2\u8003\u5f3a\u8c03\u90e8\u5206":33,"\u53c2\u8003\u6587\u732e":55,"\u53c2\u8003\u65f6\u95f4\u5e8f\u5217":25,"\u53c2\u8003\u955c\u50cf\u7684":42,"\u53c8":25,"\u53c8\u662f\u4e00\u4e2a\u5355\u5c42\u7684\u5e8f\u5217":24,"\u53c8\u8981\u4fdd\u8bc1\u6570\u636e\u662f\u968f\u673a\u7684":17,"\u53ca":30,"\u53cc\u5411\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u9690\u85cf\u72b6\u6001":28,"\u53cc\u5c42":27,"\u53cc\u5c42\u4e0d\u7b49\u957frnn":25,"\u53cc\u5c42\u5e8f\u5217":24,"\u53cc\u5c42\u5e8f\u5217\u6216\u5355\u5c42\u5e8f\u5217":24,"\u53cc\u5c42\u5e8f\u5217\u6570\u636e\u4e00\u5171\u67094\u4e2a\u6837\u672c":25,"\u53cc\u5c42\u5e8f\u5217\u662f\u4e00\u4e2a\u5d4c\u5957\u7684\u5e8f\u5217":24,"\u53cc\u5c42\u5e8f\u5217\u662fpaddlepaddle\u652f\u6301\u7684\u4e00\u79cd\u975e\u5e38\u7075\u6d3b\u7684\u6570\u636e\u7ec4\u7ec7\u65b9\u5f0f":27,"\u53cc\u5c42\u5e8f\u5217\u6bcf\u4e2asubseq\u4e2d\u6bcf\u4e2a\u5143\u7d20":24,"\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":24,"\u53cc\u5c42\u6216\u8005\u5355\u5c42":24,"\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217\u7684dataprovider\u7684\u4ee3\u7801":25,"\u53cc\u5c42rnn":27,"\u53cc\u5c42rnn\u6570\u636e\u968f\u610f\u52a0\u4e86\u4e00\u4e9b\u9694\u65ad":25,"\u53cc\u5c42rnn\u987e\u540d\u601d\u4e49":25,"\u53cc\u7f13\u51b2":39,"\u53cc\u8fdb\u5355\u51fa":27,"\u53cc\u8fdb\u53cc\u51fa":27,"\u53cd\u4e4b\u5219":53,"\u53cd\u5411\u4f20\u64ad":30,"\u53cd\u5411\u4f20\u64ad\u6839\u636e\u8f93\u51fa\u7684\u68af\u5ea6":30,"\u53d1\u884c\u548c\u7ef4\u62a4":29,"\u53d1\u9001\u53c2\u6570\u7684\u7aef\u53e3\u53f7":36,"\u53d6\u51b3\u4e8e\u662f\u5426\u5bfb\u627e\u5230cuda\u5de5\u5177\u94fe":19,"\u53d6\u51b3\u4e8e\u662f\u5426\u5bfb\u627e\u5230gtest":19,"\u53d6\u51b3\u4e8e\u662f\u5426\u5bfb\u627e\u5230swig":19,"\u53d8\u6362\u77e9\u9635":30,"\u53d8\u91cf\u6765\u8bbe\u7f6e\u5185\u5b58\u4e2d\u6682\u5b58\u7684\u6570\u636e\u6761":3,"\u53e3\u5934":25,"\u53e3\u7edf\u8ba1\u5b66\u4fe1\u606f\u7684\u7528\u6237\u624d\u88ab\u5305\u542b\u5728\u6570\u636e\u96c6\u4e2d":51,"\u53e5\u5b50":54,"\u53e5\u5b50\u4e2d\u7684\u7ec4\u5757\u5c06\u4f1a\u626e\u6f14\u67d0\u4e9b\u8bed\u4e49\u89d2\u8272":53,"\u53e5\u5b50\u8868\u793a\u7684\u8ba1\u7b97\u66f4\u65b0\u4e3a\u4e24\u6b65":50,"\u53e6\u4e00\u4e2a\u4f8b\u5b50\u662f\u901a\u8fc7\u5206\u6790\u6bcf\u65e5twitter\u535a\u5ba2\u7684\u6587\u672c\u5185\u5bb9\u6765\u9884\u6d4b\u80a1\u7968\u53d8\u52a8":54,"\u53e6\u4e00\u4e2a\u662f\u5185\u5b58\u64cd\u4f5c\u91cf":33,"\u53e6\u4e00\u4e2a\u662f\u6bcf\u6761\u5e8f\u5217":17,"\u53e6\u4e00\u65b9\u9762":54,"\u53e6\u4e00\u79cd\u65b9\u5f0f\u662f\u5c06\u7f51\u7edc\u5c42\u5212\u5206\u5230\u4e0d\u540c\u7684gpu\u4e0a\u53bb\u8ba1\u7b97":38,"\u53e6\u5916":[25,39],"\u53e6\u5916\u4e24\u4e2a\u5206\u522b\u662f\u6ed1\u52a8\u5747\u503c\u548c\u65b9\u5dee":48,"\u53e6\u5916\u7a00\u758f\u66f4\u65b0\u7684\u7aef\u53e3\u5982\u679c\u592a\u5927\u7684\u8bdd":39,"\u53ea\u4f5c\u4e3aread":27,"\u53ea\u4fdd\u5b58\u6700\u540e\u4e00\u8f6e\u7684\u53c2\u6570":36,"\u53ea\u5141\u8bb8\u6574\u6570\u7684\u661f\u7ea7":51,"\u53ea\u5305\u62ecpaddle\u7684\u4e8c\u8fdb\u5236":20,"\u53ea\u5728\u7b2c\u4e00\u6b21cmake\u7684\u65f6\u5019\u6709\u6548":19,"\u53ea\u622a\u53d6\u4e2d\u5fc3\u65b9\u5f62\u7684\u56fe\u50cf\u533a\u57df":48,"\u53ea\u662f\u53cc\u5c42\u5e8f\u5217\u5c06\u5176\u53c8\u505a\u4e86\u5b50\u5e8f\u5217\u5212\u5206":25,"\u53ea\u662f\u5c06\u53e5\u5b50\u7528\u8fde\u7eed\u5411\u91cf\u8868\u793a\u66ff\u6362\u4e3a\u7528\u7a00\u758f\u5411\u91cf\u8868\u793a":50,"\u53ea\u662f\u8bf4\u660e\u6570\u636e\u7684\u987a\u5e8f\u662f\u91cd\u8981\u7684":3,"\u53ea\u6709":25,"\u53ea\u67092\u4e2a\u914d\u7f6e\u4e0d\u4e00\u6837":46,"\u53ea\u6709\u542b\u6709\u4eba":51,"\u53ea\u6709\u5f53\u8bbe\u7f6e\u4e86spars":36,"\u53ea\u7528\u4e8e\u5728\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u4e2d\u6307\u5b9a\u8f93\u5165\u6570\u636e":27,"\u53ea\u80fd\u6d4b\u8bd5\u5355\u4e2a\u6a21\u578b":38,"\u53ea\u8981\u4e00\u7cfb\u5217\u7279\u5f81\u6570\u636e\u4e2d\u7684":25,"\u53ea\u8bfbmemory\u8f93\u5165":27,"\u53ea\u9488\u5bf9\u5185\u5b58":17,"\u53ea\u9700\u4e2d\u65ad":34,"\u53ea\u9700\u4f7f\u7528":34,"\u53ea\u9700\u5220\u9664\u6700\u540e\u4e00\u884c\u4e2d\u7684\u6ce8\u91ca\u5e76\u628a":54,"\u53ea\u9700\u5728linux\u4e0b\u8fd0\u884c\u5982\u4e0b\u547d\u4ee4":55,"\u53ea\u9700\u7528\u4f60\u5b9a\u4e49\u7684\u76ee\u5f55\u4fee\u6539":34,"\u53ea\u9700\u77e5\u9053\u8fd9\u662f\u4e00\u4e2a\u6807\u8bb0\u5c5e\u6027\u7684\u65b9\u6cd5\u5c31\u53ef\u4ee5\u4e86":3,"\u53ea\u9700\u8981":28,"\u53ea\u9700\u8981\u4e00\u884c\u4ee3\u7801\u5c31\u53ef\u4ee5\u8c03\u7528\u8fd9\u4e2apydataprovider2":3,"\u53ea\u9700\u8981\u5728\u51fd\u6570\u4e2d\u8c03\u7528\u591a\u6b21yield\u5373\u53ef":3,"\u53ea\u9700\u8981\u7b80\u5355\u5730\u8fd0\u884c\u4ee5\u4e0b\u547d\u4ee4":55,"\u53ea\u9700\u8981\u7b80\u5355\u7684\u8fd0\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u5373\u53ef":52,"\u53ea\u9700\u8981\u8fd0\u884c":52,"\u53ef\u4ee5":[25,34],"\u53ef\u4ee5\u4f20\u5165\u4e00\u4e2a\u51fd\u6570":3,"\u53ef\u4ee5\u4f30\u8ba1\u51fa\u5982\u679c\u6a21\u578b\u91c7\u7528\u4e0d\u53d8\u7684\u8f93\u51fa\u6700\u5c0f\u7684cost0\u662f\u591a\u5c11":17,"\u53ef\u4ee5\u4f7f\u7528":[17,39],"\u53ef\u4ee5\u4f7f\u7528\u547d\u4ee4":22,"\u53ef\u4ee5\u4f7f\u7528\u5982\u4e0b\u4ee3\u7801":17,"\u53ef\u4ee5\u4f7f\u7528\u8be5\u53c2\u6570":36,"\u53ef\u4ee5\u4f7f\u7528kubernetes\u7684\u547d\u4ee4\u884c\u5de5\u5177\u521b\u5efajob":42,"\u53ef\u4ee5\u4f7f\u7528python\u7684":5,"\u53ef\u4ee5\u51cf\u5c11\u7f13\u5b58\u6c60\u7684\u5927\u5c0f":17,"\u53ef\u4ee5\u521b\u5efa\u4e00\u4e2a":41,"\u53ef\u4ee5\u53c2\u7167\u4e0b\u9762\u7684\u547d\u4ee4\u8fdb\u884c\u5b89\u88c5":47,"\u53ef\u4ee5\u53c2\u8003":[25,28,39,40,42,55],"\u53ef\u4ee5\u53c2\u8003\u4fdd\u5b58\u5728":46,"\u53ef\u4ee5\u542f\u52a8":39,"\u53ef\u4ee5\u542f\u52a8\u4e00\u4e2atrainer\u8fdb\u7a0b":39,"\u53ef\u4ee5\u542f\u52a8\u5206\u5e03\u5f0f\u4f5c\u4e1a":39,"\u53ef\u4ee5\u544a\u8bc9\u60a8\u67d0\u4e2a\u64cd\u4f5c\u5230\u5e95\u82b1\u4e86\u591a\u957f\u65f6\u95f4":33,"\u53ef\u4ee5\u5728\u5171\u4eab\u5b58\u50a8\u4e0a\u67e5\u770b\u8f93\u51fa\u7684\u65e5\u5fd7\u548c\u6a21\u578b":42,"\u53ef\u4ee5\u5728\u5f88\u5927\u7a0b\u5ea6\u4e0a\u6d88\u9664\u6b67\u4e49":53,"\u53ef\u4ee5\u5728\u7f51\u7ad9\u4e0a\u627e\u5230":53,"\u53ef\u4ee5\u5728kubernetes\u4e2d\u6309\u7167":40,"\u53ef\u4ee5\u5c06\u67d0\u4e00\u4e2a\u51fd\u6570\u6807\u8bb0\u6210\u4e00\u4e2apydataprovider2":3,"\u53ef\u4ee5\u5c06\u78c1\u76d8\u4e0a\u67d0\u4e2a\u76ee\u5f55\u5171\u4eab\u7ed9\u7f51\u7edc\u4e2d\u5176\u4ed6\u673a\u5668\u8bbf\u95ee":40,"\u53ef\u4ee5\u5c06memory\u7406\u89e3\u4e3a\u4e00\u4e2a\u65f6\u5ef6\u64cd\u4f5c":27,"\u53ef\u4ee5\u5e2e\u60a8\u63d0\u4f9b\u4e00\u4e9b\u5b9a\u4f4d\u6027\u80fd\u74f6\u9888\u7684\u5efa\u8bae":33,"\u53ef\u4ee5\u6307\u5b9a\u54ea\u4e00\u4e2a\u8f93\u5165\u548c\u8f93\u51fa\u5e8f\u5217\u4fe1\u606f\u4e00\u81f4":25,"\u53ef\u4ee5\u6309\u5982\u4e0b\u7684\u7ed3\u6784\u6765\u51c6\u5907\u6570\u6910":54,"\u53ef\u4ee5\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":[24,27],"\u53ef\u4ee5\u662f\u4e00\u4e2a\u975e\u5e8f\u5217":27,"\u53ef\u4ee5\u662f\u4ee5\u4e0b\u51e0\u79cd":30,"\u53ef\u4ee5\u663e\u793a\u5730\u6307\u5b9a\u4e00\u4e2alayer\u7684\u8f93\u51fa\u7528\u4e8e\u521d\u59cb\u5316memori":27,"\u53ef\u4ee5\u6709\u4ee5\u4e0b\u4e24\u79cd":27,"\u53ef\u4ee5\u6709\u53ef\u5b66\u4e60\u7684\u53c2\u6570":39,"\u53ef\u4ee5\u6709\u6548\u51cf\u5c0f\u7f51\u7edc\u7684\u963b\u585e":36,"\u53ef\u4ee5\u67e5\u770b":42,"\u53ef\u4ee5\u67e5\u770b\u6b64pod\u8fd0\u884c\u7684\u5bbf\u4e3b\u673a":41,"\u53ef\u4ee5\u6d4b\u8bd5\u591a\u4e2a\u6a21\u578b":38,"\u53ef\u4ee5\u7528\u4e8e\u4ece\u5b98\u65b9\u7f51\u7ad9\u4e0a\u4e0b\u8f7dcifar":47,"\u53ef\u4ee5\u7528\u4e8e\u5c0f\u91cf\u6570\u636e\u7684\u9a8c\u8bc1":40,"\u53ef\u4ee5\u7528\u4e8e\u63a5\u6536\u548cpydataprovider2\u4e00\u6837\u7684\u8f93\u5165\u6570\u636e\u5e76\u8f6c\u6362\u6210\u9884\u6d4b\u63a5\u53e3\u6240\u9700\u7684\u6570\u636e\u7c7b\u578b":5,"\u53ef\u4ee5\u7528\u6765\u8ba1\u7b97cpu\u51fd\u6570\u6216cuda\u5185\u6838\u7684\u65f6\u95f4\u6d88\u8017":33,"\u53ef\u4ee5\u770b\u4f5c\u662f\u4e00\u4e2a\u975e\u5e8f\u5217\u8f93\u5165":24,"\u53ef\u4ee5\u7cbe\u786e\u8bf4\u660e\u4e00\u4e2a\u957f\u8017\u65f6\u64cd\u4f5c\u7684\u5177\u4f53\u539f\u56e0":33,"\u53ef\u4ee5\u8003\u8651\u4f7f\u7528\u4e00\u4e9b\u4f18\u5316\u7b97\u6cd5":17,"\u53ef\u4ee5\u8bbe\u7f6e":47,"\u53ef\u4ee5\u8fd0\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u6765\u751f\u6210":52,"\u53ef\u4ee5\u8fd0\u884c\u811a\u672ctrain":47,"\u53ef\u4ee5\u9009\u62e9\u662f\u5426\u4f7f\u7528\u53c2\u6570":38,"\u53ef\u4ee5\u901a\u8fc7":40,"\u53ef\u4ee5\u901a\u8fc7\u4fee\u6539\u8fd9\u4e24\u4e2a\u51fd\u6570\u6765\u5b9e\u73b0\u590d\u6742\u7684\u7f51\u7edc\u914d\u7f6e":28,"\u53ef\u4ee5\u901a\u8fc7\u8c03\u7528":5,"\u53ef\u4ee5\u901a\u8fc7show_parameter_stats_period\u8bbe\u7f6e\u6253\u5370\u53c2\u6570\u4fe1\u606f\u7b49":50,"\u53ef\u7528\u4e8e\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u89e3\u6790\u8fd9\u4e9b\u53c2\u6570":38,"\u53ef\u7528\u5728\u6d4b\u8bd5\u6216\u8bad\u7ec3\u65f6\u6307\u5b9a\u521d\u59cb\u5316\u6a21\u578b":50,"\u53ef\u80fd\u4f1a\u53d1\u751f\u4e00\u4e9b\u51b2\u7a81":29,"\u53ef\u80fd\u4f1a\u5bfc\u81f4\u51fa\u9519":42,"\u53ef\u80fd\u7684\u4ee3\u7801\u4e3a":17,"\u53ef\u80fd\u7684\u539f\u56e0\u662f":17,"\u53ef\u80fd\u7684\u53c2\u6570\u662f":39,"\u53ef\u80fd\u7684\u547d\u4ee4\u662f":29,"\u53ef\u80fd\u7684\u60c5\u51b5\u4e0b":33,"\u53ef\u9009":[3,30],"\u53f3\u8fb9\u662f":48,"\u5403":25,"\u5403\u996d":25,"\u5404\u65b9\u9762":25,"\u5404\u9879\u53c2\u6570\u7684\u8be6\u7ec6\u8bf4\u660e\u53ef\u4ee5\u5728\u547d\u4ee4\u884c\u53c2\u6570\u76f8\u5173\u6587\u6863\u4e2d\u627e\u5230":47,"\u5408":25,"\u5408\u5e76":55,"\u5408\u5e76\u6bcf\u4e2a":55,"\u5408\u7406":25,"\u540c\u65f6":[17,33],"\u540c\u65f6\u4e5f\u4f1a\u8bfb\u53d6\u76f8\u5173\u8def\u5f84\u53d8\u91cf\u6765\u8fdb\u884c\u641c\u7d22":19,"\u540c\u65f6\u4e5f\u53ef\u4ee5\u52a0\u901f\u5f00\u59cb\u8bad\u7ec3\u524d\u6570\u636e\u8f7d\u5165\u7684\u8fc7\u7a0b":17,"\u540c\u65f6\u4e5f\u80fd\u591f\u5f15\u5165\u66f4\u52a0\u590d\u6742\u7684\u8bb0\u5fc6\u673a\u5236":27,"\u540c\u65f6\u4f1a\u8ba1\u7b97\u5206\u7c7b\u51c6\u786e\u7387":50,"\u540c\u65f6\u4f60\u53ef\u4ee5\u4f7f\u7528":48,"\u540c\u65f6\u4f7f\u7528\u4e86l2\u6b63\u5219":50,"\u540c\u65f6\u5176\u5185\u90e8\u5b9e\u73b0\u53ef\u4ee5\u907f\u514d\u7eafcpu\u7248\u672cpaddlepaddle\u5728\u6267\u884c\u672c\u8bed\u53e5\u65f6\u53d1\u751f\u5d29\u6e83":33,"\u540c\u65f6\u53ef\u4ee5\u4f7f\u7528\u6237\u53ea\u5173\u6ce8\u5982\u4f55\u4ece\u6587\u4ef6\u4e2d\u8bfb\u53d6\u6bcf\u4e00\u6761\u6570\u636e":3,"\u540c\u65f6\u5728\u5185\u5b58\u91cc\u76f4\u63a5\u968f\u5373\u9009\u53d6\u6570\u636e\u6765\u505ashuffl":17,"\u540c\u65f6\u5c06\u53c2\u6570\u521d\u59cb\u5316\u4e3a":17,"\u540c\u65f6\u6211\u4eec\u5e0c\u671b\u5e7f\u5927\u5f00\u53d1\u8005\u79ef\u6781\u63d0\u4f9b\u53cd\u9988\u548c\u8d21\u732e\u6e90\u4ee3\u7801":0,"\u540c\u65f6\u6b22\u8fce\u8d21\u732e\u66f4\u591a\u7684\u5b89\u88c5\u5305":21,"\u540c\u65f6\u7528\u6237\u9700\u8981\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u6307\u5b9a":38,"\u540c\u65f6\u8bbe\u7f6e\u5185\u5b58\u7f13\u5b58\u529f\u80fd":17,"\u540c\u65f6\u8bbe\u7f6e\u5b83\u7684input_types\u5c5e\u6027":3,"\u540c\u65f6\u9884\u6d4b\u7f51\u7edc\u901a\u5e38\u76f4\u63a5\u8f93\u51fa\u6700\u540e\u4e00\u5c42\u7684\u7ed3\u679c\u800c\u4e0d\u662f\u50cf\u8bad\u7ec3\u7f51\u7edc\u4e00\u6837\u518d\u63a5\u4e00\u5c42cost":5,"\u540c\u6837\u4e5f\u53ef\u4ee5\u5728\u6d4b\u8bd5\u6a21\u5f0f\u4e2d\u6307\u5b9a\u6a21\u578b\u8def\u5f84":36,"\u540c\u6837\u529f\u80fd\u7684":39,"\u540c\u6837\u53ef\u4ee5\u6269\u5c55\u5230\u53cc\u5c42\u5e8f\u5217\u7684\u5904\u7406\u4e0a":27,"\u540c\u6b65\u4ee3\u7801":29,"\u540c\u6b65\u6267\u884c\u64cd\u4f5c\u7684\u7ebf\u7a0b\u6570":36,"\u540d\u79f0":50,"\u540e":[17,19,42,54],"\u540e\u5411\u4f20\u64ad":30,"\u540e\u5411\u4f20\u64ad\u7ed9\u5b9a\u8f93\u51fa\u7684\u68af\u5ea6":30,"\u540e\u9762\u8fde\u5168\u8fde\u63a5\u5c42\u548csoftmax\u5c42":54,"\u5411\u91cfenable_parallel_vector":35,"\u5426":19,"\u5426\u5219":[2,34,52],"\u5426\u5219\u4f60\u9700\u8981\u81ea\u5df1\u4e0b\u8f7d":55,"\u5426\u5219\u4f7f\u7528\u591a\u673a\u8bad\u7ec3":36,"\u5426\u5219\u4f7f\u7528cpu\u6a21\u5f0f":36,"\u5426\u5219\u4f7f\u7528gpu":38,"\u5426\u5219\u5b83\u4ee5\u4e00\u4e2a\u5e8f\u5217\u8f93\u5165":28,"\u5426\u5219\u9700\u8981\u9009\u62e9\u975eavx\u7684paddlepaddl":20,"\u5426\u5219\u9891\u7e41\u7684\u591a\u8282\u70b9\u5de5\u4f5c\u7a7a\u95f4\u90e8\u7f72\u53ef\u80fd\u4f1a\u5f88\u9ebb\u70e6":34,"\u5426\u5b9a":53,"\u542b\u4e49":[48,54],"\u542b\u53ef\u5b66\u4e60\u53c2\u6570":39,"\u542b\u6709":51,"\u542b\u6709\u5e8f\u5217\u4fe1\u606f\u548c\u5b50\u5e8f\u5217\u4fe1\u606f\u7684\u7a20\u5bc6\u5411\u91cf":30,"\u542b\u6709\u5e8f\u5217\u4fe1\u606f\u7684\u6574\u6570":30,"\u542b\u6709\u5e8f\u5217\u4fe1\u606f\u7684\u7a20\u5bc6\u5411\u91cf":30,"\u542f\u52a8\u4e00\u4e2apserver\u8fdb\u7a0b":39,"\u542f\u52a8\u4e4b\u540e":39,"\u542f\u52a8\u5bb9\u5668\u5f00\u59cb\u8bad\u7ec3":42,"\u542f\u52a8\u5e76\u884c\u5411\u91cf\u7684\u9608\u503c":36,"\u542f\u52a8\u5feb\u901f\u5e94\u7b54":36,"\u542f\u7528\u68af\u5ea6\u53c2\u6570\u7684\u9608\u503c":36,"\u5440":25,"\u544a\u8bc9paddle\u54ea\u4e2a\u6587\u4ef6\u662f\u795e\u7ecf\u7f51\u7edc\u7684\u914d\u7f6e\u6587\u4ef6":52,"\u544a\u8bc9paddle\u5c06\u6a21\u578b\u4fdd\u5b58\u5728":52,"\u5468\u56f4":25,"\u547d\u4ee4":34,"\u547d\u4ee4\u4e3a":[20,41],"\u547d\u4ee4\u521b\u5efa\u65b0\u955c\u50cf":41,"\u547d\u4ee4\u53ef\u4ee5\u8bbe\u7f6e":19,"\u547d\u4ee4\u6307\u5b9a\u7684\u53c2\u6570\u4f1a\u4f20\u5165\u7f51\u7edc\u914d\u7f6e\u4e2d":50,"\u547d\u4ee4\u884c\u53c2\u6570\u6587\u6863":50,"\u547d\u4ee4\u8bbe\u7f6e\u8be5\u7c7b\u7f16\u8bd1\u9009\u9879":19,"\u547d\u4ee4\u8fd0\u884c\u955c\u50cf":20,"\u547d\u4ee4\u9009\u9879\u5e76\u4e14":34,"\u547d\u4ee4\u9884\u5148\u4e0b\u8f7d\u955c\u50cf":20,"\u547d\u540d\u7a7a\u95f4":40,"\u547d\u540d\u7a7a\u95f4\u4e3b\u8981\u4e3a\u4e86\u5bf9\u8c61\u8fdb\u884c\u903b\u8f91\u4e0a\u7684\u5206\u7ec4\u4fbf\u4e8e\u7ba1\u7406":40,"\u548c":[17,18,19,20,25,28,29,30,31,33,34,38,39,40,46,47,50,52,55],"\u548c\u4e00\u4e2a\u5df2\u7ecf\u5206\u8bcd\u540e\u7684\u53e5\u5b50":25,"\u548c\u4e09\u79cd\u5e8f\u5217\u6a21\u5f0f":3,"\u548c\u4e2d\u6587\u6587\u6863":31,"\u548c\u4e4b\u524d\u51cf\u5c0f\u901a\u8fc7\u51cf\u5c0f\u7f13\u5b58\u6c60\u6765\u51cf\u5c0f\u5185\u5b58\u5360\u7528\u7684\u539f\u7406\u4e00\u81f4":17,"\u548c\u504f\u7f6e\u5411\u91cf":30,"\u548c\u533a\u57df\u6807\u8bb0":53,"\u548c\u53cc\u5c42\u5e8f\u5217\u542b\u6709subseq":24,"\u548c\u5728":3,"\u548c\u5bf9\u8c61\u5b58\u50a8api":40,"\u548c\u5dee\u8bc4":50,"\u548c\u5e8f\u5217\u4e2d\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee\u540c":24,"\u548c\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u8f93\u5165":28,"\u548c\u68af\u5ea6\u622a\u65ad":50,"\u548c\u6a21\u578b\u8def\u5f84":54,"\u548c\u6c60\u5316":39,"\u548c\u771f\u5b9e":18,"\u548c\u793a\u4f8b2\u4e2d\u7684\u914d\u7f6e\u7c7b\u4f3c":25,"\u548c\u7b2c6\u884c\u7684":55,"\u548c\u90e8\u5206layer":27,"\u548cadam\u5b66\u4e60\u65b9\u6cd5":55,"\u548cargument":53,"\u548cavgpool":24,"\u548ccudnn":22,"\u548cpython\u63a5\u53e3\u6765\u63d0\u53d6\u7279\u5f81":48,"\u54c1\u8d28":25,"\u54ea\u4e9b\u4e0d\u662f":25,"\u552f\u4e00\u9700\u8981\u505a\u7684\u662f\u5c06\u76f8\u5e94\u7c7b\u578b\u8bbe\u7f6e\u4e3a\u8f93\u5165":28,"\u5546\u52a1":25,"\u554a":25,"\u559c\u5267\u7247":51,"\u5668":50,"\u56db\u79cd\u6570\u636e\u7c7b\u578b":3,"\u56de\u5f52\u8bef\u5dee\u4ee3\u4ef7\u5c42":18,"\u56e0\u4e3a\u5168\u8fde\u63a5\u5c42\u7684\u6fc0\u6d3b\u53ef\u4ee5\u662fsoftmax":30,"\u56e0\u4e3a\u5176\u4e3a\u8d1f\u8d23\u63d0\u4f9bgradient":39,"\u56e0\u4e3a\u5355\u4e2a\u8c13\u8bcd\u4e0d\u80fd\u7cbe\u786e\u5730\u63cf\u8ff0\u8c13\u8bcd\u4fe1\u606f":53,"\u56e0\u4e3a\u53c2\u6570":38,"\u56e0\u4e3a\u589e\u52a0\u8fd9\u4e2a\u503c":39,"\u56e0\u4e3a\u5b83\u4eec\u7684\u8ba1\u7b97\u6548\u7387\u6bd4":28,"\u56e0\u4e3a\u5b83\u6bd4":28,"\u56e0\u4e3a\u5b98\u65b9\u955c\u50cf":42,"\u56e0\u4e3a\u5bb9\u5668\u5185\u7684\u6587\u4ef6\u90fd\u662f\u6682\u65f6\u5b58\u5728\u7684":40,"\u56e0\u4e3a\u8be5\u6587\u4ef6\u53ef\u9002\u7528\u4e8e\u9884\u6d4b":47,"\u56e0\u4e3apython\u7684\u641c\u7d22\u8def\u5f84\u662f\u4f18\u5148\u5df2\u7ecf\u5b89\u88c5\u7684python\u5305":17,"\u56e0\u6b64":[2,3,25,27,30,39],"\u56e0\u6b64\u4f7f\u7528":3,"\u56e0\u6b64\u53cc\u5c42\u5e8f\u5217\u7684\u914d\u7f6e\u4e2d":25,"\u56e0\u6b64\u53ef\u4ee5\u4f7f\u7528\u8be5\u9009\u9879":46,"\u56e0\u6b64\u53ef\u80fd\u4f1a\u6709\u4e00\u4e9b\u9519\u8bef\u548c\u4e0d\u4e00\u81f4\u53d1\u751f":51,"\u56e0\u6b64\u5982\u679c\u8fd9\u4e2a\u811a\u672c\u8fd0\u884c\u5931\u8d25":47,"\u56e0\u6b64\u5b83\u662finteger_value_sub_sequ":25,"\u56e0\u6b64\u6211\u4eec\u91c7\u7528\u8f93\u51fa\u7684\u52a0\u6743\u548c":30,"\u56e0\u6b64\u6709\u4e24\u79cd\u89e3\u51b3\u65b9\u6848":3,"\u56e0\u6b64\u7528\u6237\u5e76\u4e0d\u9700\u8981\u5173\u5fc3\u5b83\u4eec":35,"\u56e0\u6b64\u8be5\u5c42\u4e2d\u6ca1\u6709\u504f\u7f6e":48,"\u56e0\u6b64\u9519\u8bef\u7684\u4f7f\u7528\u4e8c\u8fdb\u5236\u53d1\u884c\u7248\u53ef\u80fd\u4f1a\u5bfc\u81f4\u8fd9\u79cd\u9519\u8bef":17,"\u56e0\u6b64init_hook\u5c3d\u91cf\u4f7f\u7528":3,"\u56e2\u8d2d\u7f51\u7ad9":54,"\u56fe":[48,54],"\u56fe2\u662f\u53cc\u5411lstm\u7f51\u7edc":54,"\u56fe3\u662f\u4e09\u5c42lstm\u7ed3\u6784":54,"\u56fe\u4e2d\u6bcf\u4e2a\u7070\u8272\u65b9\u5757\u662f\u4e00\u53f0\u673a\u5668":39,"\u56fe\u50cf\u5206\u7c7b":49,"\u56fe\u50cf\u5927\u5c0f\u4e3a3":48,"\u56fe\u50cf\u63cf\u8ff0":55,"\u56fe\u7247\u5206\u4e3a10\u7c7b":47,"\u56fe\u7684\u5e95\u90e8\u662fword":54,"\u56fe\u8868":54,"\u5728":[3,22,24,25,28,29,34,39,48,50,51,53],"\u5728\u4e00\u4e2a\u529f\u80fd\u9f50\u5168\u7684kubernetes\u673a\u7fa4\u91cc":41,"\u5728\u4e00\u4e2a\u53c2\u6570\u7684\u68af\u5ea6\u88ab\u66f4\u65b0\u540e":30,"\u5728\u4e00\u4e2a\u5468\u671f\u5185\u6d4b\u8bd5\u6240\u6709\u6570\u636e":53,"\u5728\u4e00\u8f6e\u4e2d\u6bcfsave":36,"\u5728\u4e0a\u9762\u4ee3\u7801\u4e2d":25,"\u5728\u4e0b\u4e00\u7bc7\u4e2d":41,"\u5728\u4e0b\u9762\u4f8b\u5b50\u91cc":50,"\u5728\u4e0b\u9762\u7684\u4f8b\u5b50\u4e2d":47,"\u5728\u4e0d\u540c\u64cd\u4f5c\u7cfb\u7edf":40,"\u5728\u4e0d\u540c\u7684\u5e94\u7528\u91cc":39,"\u5728\u4e4b\u540e\u7684":17,"\u5728\u4ee3\u7801\u5ba1\u67e5":29,"\u5728\u4efb\u610f\u957f\u5ea6\u8bed\u53e5\u7ffb\u8bd1\u7684\u573a\u666f\u4e0b\u90fd\u53ef\u4ee5\u89c2\u5bdf\u5230\u5176\u6548\u679c\u7684\u63d0\u5347":55,"\u5728\u4f7f\u7528\u5b83\u4e4b\u524d\u8bf7\u5b89\u88c5paddlepaddle\u7684python":54,"\u5728\u5168\u8fde\u63a5\u5c42\u4e2d":30,"\u5728\u51fd\u6570":42,"\u5728\u5206\u5e03\u5f0f\u73af\u5883\u4e2d\u6d4b\u8bd5":36,"\u5728\u5206\u5e03\u5f0f\u8bad\u7ec3\u4e2d":36,"\u5728\u5355\u5c42\u6570\u636e\u7684\u57fa\u7840\u4e0a":25,"\u5728\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u52a0\u8f7d\u548c\u4fdd\u5b58\u53c2\u6570":36,"\u5728\u53c2\u6570\u670d\u52a1\u5668\u7ec8\u7aef\u6bcflog":36,"\u5728\u53cc\u5c42rnn\u4e2d\u7684\u7ecf\u5178\u60c5\u51b5\u662f\u5c06\u5185\u5c42\u7684\u6bcf\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217\u6570\u636e":25,"\u5728\u53cd\u5411\u4f20\u9012\u7684\u65f6\u5019":17,"\u5728\u53d8\u6362\u65f6\u9700\u8981\u5c06\u8f93\u5165\u5e8f\u5217\u4f20\u5165":25,"\u5728\u5404\u4e2a\u673a\u5668\u4e0a\u8fd0\u884c\u5982\u4e0b\u547d\u4ee4":39,"\u5728\u540c\u4e00\u4e2a\u547d\u540d\u7a7a\u95f4\u4e2d":40,"\u5728\u58f0\u660edataprovider\u7684\u65f6\u5019\u4f20\u5165dictionary\u4f5c\u4e3a\u53c2\u6570":3,"\u5728\u591acpu\u8bad\u7ec3\u65f6\u5171\u4eab\u8be5\u53c2\u6570":36,"\u5728\u5bb9\u5668\u521b\u5efa\u540e":42,"\u5728\u5bf9\u5bb9\u5668\u7684\u63cf\u8ff0":42,"\u5728\u5c42\u4e2d\u6307\u5b9a":38,"\u5728\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u4e2d":27,"\u5728\u5f00\u59cb\u8bad\u7ec3\u4e4b\u524d":47,"\u5728\u5f53\u524d\u7684\u5b9e\u73b0\u65b9\u5f0f\u4e0b":30,"\u5728\u5f97\u5230":42,"\u5728\u6211\u4eec\u7684\u4f8b\u5b50\u4e2d":28,"\u5728\u6211\u4eec\u7684\u6d4b\u8bd5\u4e2d":54,"\u5728\u62c9":29,"\u5728\u63d0\u4ea4\u524d\u68c0\u67e5\u4e00\u4e9b\u57fa\u672c\u4e8b\u5b9c":29,"\u5728\u6570\u636e\u52a0\u8f7d\u548c\u7f51\u7edc\u914d\u7f6e\u5b8c\u6210\u4e4b\u540e":50,"\u5728\u6587\u4ef6":52,"\u5728\u6587\u4ef6\u7684\u5f00\u59cb":39,"\u5728\u6709\u65b0\u7684\u5355\u8bcd\u6765\u4e34\u7684\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u9aa4\u5185":54,"\u5728\u672c\u4f8b\u4e2d":[25,38],"\u5728\u672c\u4f8b\u4e2d\u6ca1\u6709\u4f7f\u7528":3,"\u5728\u672c\u6559\u7a0b\u4e2d":[28,47],"\u5728\u672c\u6587\u4e2d":34,"\u5728\u672c\u6587\u4e2d\u4f7f\u7528\u7684":34,"\u5728\u672c\u6f14\u793a\u4e2d":54,"\u5728\u672c\u793a\u4f8b\u4e2d":[25,54],"\u5728\u672c\u8282\u4e2d":28,"\u5728\u6811\u7684\u6bcf\u4e00\u5c42\u4e0a":36,"\u5728\u6a21\u578b\u6587\u4ef6\u7684":34,"\u5728\u6a21\u578b\u914d\u7f6e\u4e2d\u901a\u8fc7":50,"\u5728\u6b64":[0,35,38],"\u5728\u6b64\u4e3a\u65b9\u4fbf\u5bf9\u6bd4\u4e0d\u540c\u7f51\u7edc\u7ed3\u6784":50,"\u5728\u6b64\u611f\u8c22":46,"\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u4e2d":28,"\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u7684\u5b50\u5e8f\u5217\u957f\u5ea6\u53ef\u4ee5\u4e0d\u76f8\u7b49":25,"\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u957f":28,"\u5728\u6bcf\u4e2a\u673a\u5668\u4e2d":39,"\u5728\u6bcf\u4e2apod\u4e0a\u90fd\u901a\u8fc7volume\u65b9\u5f0f\u6302\u8f7d\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf\u7684\u4e00\u4e2a\u76ee\u5f55\u7528\u4e8e\u4fdd\u5b58\u8bad\u7ec3\u6570\u636e\u548c\u8f93\u51fa\u7ed3\u679c":42,"\u5728\u6bcf\u8bad\u7ec3":52,"\u5728\u6d4b\u8bd5\u9636\u6bb5":36,"\u5728\u6d4b\u8bd5\u9636\u6bb5\u5b83\u4eec\u5c06\u4f1a\u88ab\u52a0\u8f7d\u5230\u6a21\u578b\u4e2d":48,"\u5728\u6f14\u793a\u4e2d":53,"\u5728\u7269\u7406\u673a\u4e0a\u624b\u52a8\u90e8\u7f72":40,"\u5728\u751f\u6210\u65f6":28,"\u5728\u751f\u6210\u8fc7\u7a0b\u4e2d":55,"\u5728\u751f\u6210\u8fc7\u7a0b\u4e2d\u6211\u4eec\u4f7f\u7528sgd\u8bad\u7ec3\u7b97\u6cd5":55,"\u5728\u7528\u6237\u6587\u4ef6user":52,"\u5728\u7535\u5f71\u6587\u4ef6movi":52,"\u5728\u793a\u4f8b\u4e2d\u6211\u4eec\u4f7f\u7528attention\u7248\u672c\u7684gru\u7f16\u89e3\u7801\u7f51\u7edc":55,"\u5728\u793a\u4f8b\u4e2d\u6211\u4eec\u4f7f\u7528sgd\u8bad\u7ec3\u7b97\u6cd5":55,"\u5728\u793a\u4f8b\u4e2d\u6211\u4eec\u5b9a\u4e49\u4e86\u4e00\u4e2a\u5e8f\u5217\u5230\u5e8f\u5217\u7684\u751f\u6210\u6570\u636e":55,"\u5728\u793a\u4f8b\u4e2d\u6211\u4eec\u5b9a\u4e49\u4e86\u4e00\u4e2a\u5e8f\u5217\u5230\u5e8f\u5217\u7684\u8bad\u7ec3\u548c\u6d4b\u8bd5\u6570\u636e":55,"\u5728\u7a0b\u5e8f\u5f00\u59cb\u9636\u6bb5":5,"\u5728\u7b2c\u4e00\u884c\u4e2d\u6211\u4eec\u8f7d\u5165\u7528\u4e8e\u5b9a\u4e49\u7f51\u7edc\u7684\u51fd\u6570":47,"\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d":30,"\u5728\u7f51\u7edc\u914d\u7f6e\u91cc":3,"\u5728\u7ffb\u8bd1\u6cd5\u8bed\u53e5\u5b50\u4e4b\u524d":55,"\u5728\u811a\u672c":52,"\u5728\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1\u4e2d":24,"\u5728\u8bad\u7ec3\u4e2d":28,"\u5728\u8bad\u7ec3\u4e4b\u524d":42,"\u5728\u8bad\u7ec3\u4e86":52,"\u5728\u8bad\u7ec3\u4e86\u51e0\u4e2a\u8f6e\u6b21\u4ee5\u540e":52,"\u5728\u8bad\u7ec3\u5b8c\u6210\u540e":47,"\u5728\u8bad\u7ec3\u6570\u96c6\u4e0a\u8bad\u7ec3\u751f\u6210\u8bcd\u5411\u91cf\u5b57\u5178":46,"\u5728\u8bad\u7ec3\u65f6":41,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d":[42,55],"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u6bcfshow":36,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u8fdb\u884c\u6d4b\u8bd5":2,"\u5728\u8be5\u914d\u7f6e\u76847":25,"\u5728\u8bed\u8a00\u751f\u6210\u9886\u57df\u4e2d":55,"\u5728\u8d2d\u7269\u7f51\u7ad9\u4e0a":50,"\u5728\u8f6f\u4ef6\u5de5\u7a0b\u7684\u8303\u7574\u91cc":33,"\u5728\u8f93\u51fa\u7684\u8fc7\u7a0b\u4e2d":27,"\u5728\u8fd0\u884c":54,"\u5728\u8fd9\u4e2a\u4efb\u52a1\u4e2d":55,"\u5728\u8fd9\u4e2a\u4f8b\u5b50\u4e2d":[18,54],"\u5728\u8fd9\u4e2a\u4f8b\u5b50\u91cc":[30,41],"\u5728\u8fd9\u4e2a\u51fd\u6570\u4e2d":25,"\u5728\u8fd9\u4e2a\u6559\u7a0b\u4e2d":33,"\u5728\u8fd9\u4e2a\u6a21\u578b\u4e2d":28,"\u5728\u8fd9\u4e2a\u793a\u4f8b\u4e2d":53,"\u5728\u8fd9\u4e9b\u7f51\u7edc\u4e2d":52,"\u5728\u8fd9\u4e9blayer\u4e2d":25,"\u5728\u8fd9\u6b65\u4efb\u52a1\u4e2d":54,"\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b":[28,30],"\u5728\u8fd9\u79cd\u7ed3\u6784\u4e2d":27,"\u5728\u8fd9\u7bc7\u6587\u6863\u91cc":41,"\u5728\u8fd9\u7bc7\u6587\u7ae0\u91cc":42,"\u5728\u8fd9\u91cc":27,"\u5728\u8fd9\u91cc\u6211\u4eec\u4f7f\u7528\u5168\u8fde\u63a5\u5c42\u4f5c\u4e3a\u4f8b\u5b50\u6765\u5c55\u793a\u5b9e\u73b0\u65b0\u7f51\u7edc\u5c42\u6240\u9700\u8981\u7684\u56db\u4e2a\u6b65\u9aa4":30,"\u5728\u914d\u7f6e\u4e2d\u9700\u8981\u8bfb\u53d6\u5916\u90e8\u5b57\u5178":3,"\u5728\u914d\u7f6e\u6587\u4ef6\u4e2d\u7684":48,"\u5728\u91c7\u7528sgd":17,"\u5728\u96c6\u7fa4\u4e0a\u8bad\u7ec3\u4e00\u4e2a\u7a00\u758f\u6a21\u578b\u9700\u8981\u52a0\u4e0a\u4e0b\u9762\u7684\u53c2\u6570":38,"\u5728\u9884\u5904\u7406\u542b\u6709\u591a\u884c\u6570\u6910\u7684\u6587\u672c\u6587\u4ef6\u65f6\u53c2\u6570\u8bbe\u7f6e\u7a0d\u6709\u4e0d\u540c":54,"\u5728\u9884\u6d4b\u5e8f\u5217\u6216\u6bb5\u843d\u7684\u60c5\u611f\u4e2d\u8d77\u4e3b\u8981\u4f5c\u7528":54,"\u5728aws\u4e0a\u5feb\u901f\u90e8\u7f72\u96c6\u7fa4":40,"\u5728cub":47,"\u5728generator\u7684\u4e0a\u4e0b\u6587\u4e2d\u5c3d\u91cf\u7559\u4e0b\u975e\u5e38\u5c11\u7684\u53d8\u91cf\u5f15\u7528":3,"\u5728kubernetes\u4e2d\u521b\u5efa\u7684\u6240\u6709\u8d44\u6e90\u5bf9\u8c61":40,"\u5728linux\u4e0b":55,"\u5728meta\u6587\u4ef6\u4e2d\u6709\u4e24\u79cd\u7279\u5f81":52,"\u5728movielen":52,"\u5728paddl":42,"\u5728paddle\u4e2d":38,"\u5728paddlepaddle\u4e2d":27,"\u5728paddlepaddle\u7684\u6587\u6863\u4e2d":25,"\u5728paddlepaddle\u91cc":18,"\u5728step\u51fd\u6570\u4e2d\u5b9a\u4e49":27,"\u5728step\u51fd\u6570\u4e2d\u5b9a\u4e49memori":27,"\u5728trainer":38,"\u5730\u5740\u4e5f\u53ef\u4ee5\u4e3ahdfs\u6587\u4ef6\u8def\u5f84":2,"\u5730\u6bb5":25,"\u5730\u7406\u4f4d\u7f6e":25,"\u5730\u94c1\u7ad9":25,"\u5747\u503c\u56fe\u50cf\u6587\u4ef6":48,"\u5747\u5300\u5206\u5e03":17,"\u5747\u5300\u5206\u5e03\u7684\u8303\u56f4\u662f":36,"\u5747\u6709\u4e09\u4e2a\u5b50\u5e8f\u5217":25,"\u5747\u6709\u4e24\u7ec4\u7279\u5f81":25,"\u57fa\u4e8e\u53cc\u5c42\u5e8f\u5217\u8f93\u5165":27,"\u57fa\u4e8e\u5b57\u6bcd\u7684\u8bcd\u5d4c\u5165\u7279\u5f81":52,"\u57fa\u4e8epython\u7684\u6a21\u578b\u9884\u6d4b":5,"\u57fa\u4e8epython\u7684\u9884\u6d4b":[4,50],"\u57fa\u672c\u4e0a\u548cmnist\u6837\u4f8b\u4e00\u81f4":3,"\u57fa\u672c\u4f7f\u7528\u6982\u5ff5":32,"\u57fa\u672c\u76f8\u540c":46,"\u589e\u52a0\u4e86\u4e00\u6761cd\u547d\u4ee4":41,"\u589e\u52a0\u5982\u4e0b\u53c2\u6570":38,"\u589e\u52a0\u68af\u5ea6\u68c0\u6d4b\u7684\u5355\u5143\u6d4b\u8bd5":30,"\u58f0\u660epython\u6570\u636e\u6e90":52,"\u5904\u7406\u5668\u6709\u4e24\u4e2a\u5173\u952e\u6027\u80fd\u9650\u5236":33,"\u5904\u7406\u6570\u636e\u7684python\u811a\u672c\u6587\u4ef6":50,"\u5904\u7406\u7684\u8f93\u5165\u5e8f\u5217\u4e3b\u8981\u5206\u4e3a\u4ee5\u4e0b\u4e09\u79cd\u7c7b\u578b":27,"\u5904\u7406\u76f8\u4f3c\u5ea6\u56de\u5f52":52,"\u5904\u7406\u8fc7\u7a0b\u4e2d\u6570\u636e\u5b58\u50a8\u683c\u5f0f":47,"\u5904\u7406batch":39,"\u5907\u6ce8":33,"\u590d\u6742\u5ea6\u6216\u65f6\u95f4\u590d\u6742\u5ea6":33,"\u5916\u5c42memory\u662f\u4e00\u4e2a\u5143\u7d20":25,"\u5916\u5c42outer_step\u4e2d":25,"\u591a\u4e2ainput\u4ee5list\u65b9\u5f0f\u8f93\u5165":50,"\u591a\u53e5\u8bdd\u8fdb\u4e00\u6b65\u6784\u6210\u4e86\u6bb5\u843d":27,"\u591a\u673a\u8bad\u7ec3":17,"\u591a\u673a\u8bad\u7ec3\u7684\u7ecf\u5178\u62d3\u6251\u7ed3\u6784\u5982\u4e0b":39,"\u591a\u7ebf\u7a0b\u7684\u6570\u636e\u8bfb\u53d6":3,"\u591a\u8f6e\u5bf9\u8bdd\u7b49\u66f4\u4e3a\u590d\u6742\u7684\u8bed\u8a00\u6570\u636e":27,"\u5927\u578b\u7535\u5f71\u8bc4\u8bba\u6570\u636e\u96c6":54,"\u5927\u591a\u6570\u5c42\u4e0d\u9700\u8981\u8fdc\u7a0b\u7a00\u758f\u8bad\u7ec3\u51fd\u6570":30,"\u5927\u591a\u6570\u5c42\u9700\u8981\u8bbe\u7f6e\u4e3a":30,"\u5927\u591a\u6570\u6210\u529f\u7684srl\u7cfb\u7edf\u662f\u5efa\u7acb\u5728\u67d0\u79cd\u5f62\u5f0f\u7684\u53e5\u6cd5\u5206\u6790\u7ed3\u679c\u4e4b\u4e0a\u7684":53,"\u5927\u591a\u6570\u7f51\u7edc\u5c42\u4e0d\u9700\u8981\u652f\u6301\u8fdc\u7a0b\u7a00\u758f\u66f4\u65b0":30,"\u5927\u5b66\u751f":51,"\u5927\u5c0f":34,"\u5929":25,"\u5929\u4e00\u5e7f\u573a":25,"\u5929\u4e00\u9601":25,"\u5929\u732b":54,"\u5934\u6587\u4ef6\u4e2d\u628a\u53c2\u6570\u5b9a\u4e49\u4e3a\u7c7b\u7684\u6210\u5458\u53d8\u91cf":30,"\u5934\u6587\u4ef6\u5982\u4e0b":30,"\u5947\u5e7b\u7247":51,"\u597d":25,"\u597d\u5403":25,"\u597d\u8bc4":50,"\u5982":[3,28,34,38,39],"\u59822":34,"\u5982\u4e0b":[3,52,54],"\u5982\u4e0b\u56fe\u6240\u793a":[25,33,47],"\u5982\u4e0b\u6240\u793a":[38,48,52],"\u5982\u4e0b\u662f\u4e00\u6bb5\u4f7f\u7528mnist":5,"\u5982\u4e0b\u8868\u683c":50,"\u5982\u4f55":52,"\u5982\u4f55\u5b58\u50a8\u7b49\u7b49":3,"\u5982\u4f55\u89e3\u6790\u8be5\u5730\u5740\u4e5f\u662f\u7528\u6237\u81ea\u5b9a\u4e49dataprovider\u65f6\u9700\u8981\u8003\u8651\u7684\u5730\u65b9":2,"\u5982\u4f55\u8d21\u732e":32,"\u5982\u4f55\u8d21\u732e\u4ee3\u7801":32,"\u5982\u4f55\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3":50,"\u5982\u4fe1\u606f\u63d0\u53d6":53,"\u5982\u56fe2\u6240\u793a":54,"\u5982\u5f62\u5bb9\u8bcd\u548c\u526f\u8bcd":54,"\u5982\u60f3\u4e86\u89e3\u66f4\u591a\u8be6\u7ec6\u7684\u89e3\u91ca":55,"\u5982\u672c\u4f8b\u4e2d":3,"\u5982\u672c\u4f8b\u7684":3,"\u5982\u679c\u4e00\u4e2a\u7f51\u7edc\u5c42\u9700\u8981\u914d\u7f6e\u7684\u8bdd":30,"\u5982\u679c\u4e0b\u8f7d\u6210\u529f":48,"\u5982\u679c\u4e0d\u4e3a0":36,"\u5982\u679c\u4e0d\u4e86\u89e3":3,"\u5982\u679c\u4e0d\u5207\u8bcd":50,"\u5982\u679c\u4e0d\u6536\u655b":17,"\u5982\u679c\u4e0d\u662f\u5e8f\u5217":52,"\u5982\u679c\u4e3a":3,"\u5982\u679c\u4e3a0":36,"\u5982\u679c\u4e3afals":36,"\u5982\u679c\u4e3atrue":[3,36],"\u5982\u679c\u4e4b\u540e\u60f3\u8981\u91cd\u65b0\u8bbe\u7f6e":19,"\u5982\u679c\u4ed4\u7ec6\u8bbe\u7f6e\u7684\u8bdd":36,"\u5982\u679c\u4f20\u5165\u4e00\u4e2alist\u7684\u8bdd":39,"\u5982\u679c\u4f20\u5165\u5b57\u7b26\u4e32\u7684\u8bdd":39,"\u5982\u679c\u4f60\u4e00\u76f4\u5728\u505a\u4e00\u4e9b\u6539\u53d8":29,"\u5982\u679c\u4f60\u4e0d\u9700\u8981\u8fd9\u4e2a\u64cd\u4f5c":54,"\u5982\u679c\u4f60\u53ea\u9700\u8981\u4f7f\u7528\u7b80\u5355\u7684rnn":28,"\u5982\u679c\u4f60\u5b89\u88c5gpu\u7248\u672c\u7684paddlepaddl":54,"\u5982\u679c\u4f60\u60f3\u4f7f\u7528\u8fd9\u4e9b\u7279\u6027":38,"\u5982\u679c\u4f60\u60f3\u8981\u4fdd\u5b58\u67d0\u4e9b\u5c42\u7684\u7279\u5f81\u56fe":36,"\u5982\u679c\u4f60\u60f3\u8fdb\u884c\u8bf8\u5982\u8bed\u4e49\u8f6c\u8ff0":55,"\u5982\u679c\u4f60\u6267\u884c\u5176\u5b83\u7684\u7528\u60c5\u611f\u5206\u6790\u6765\u5206\u7c7b\u6587\u672c\u7684\u4efb\u52a1":54,"\u5982\u679c\u4f60\u6b63\u5728\u5904\u7406\u5e8f\u5217\u6807\u8bb0\u4efb\u52a1":28,"\u5982\u679c\u4f60\u6ca1\u6709gpu\u73af\u5883":47,"\u5982\u679c\u4f60\u7684\u4ed3\u5e93\u4e0d\u5305\u542b":29,"\u5982\u679c\u4f60\u8981\u4e3a\u4e86\u6d4b\u8bd5\u800c\u589e\u52a0\u65b0\u7684\u6587\u4ef6":30,"\u5982\u679c\u4f7f\u7528":[34,46],"\u5982\u679c\u4f7f\u7528gpu\u7248\u672c\u7684paddlepaddl":22,"\u5982\u679c\u4f7f\u7528ssl\u8ba4\u8bc1":40,"\u5982\u679c\u51fa\u73b0\u4ee5\u4e0bpython\u76f8\u5173\u7684\u5355\u5143\u6d4b\u8bd5\u90fd\u8fc7\u4e0d\u4e86\u7684\u60c5\u51b5":17,"\u5982\u679c\u53c2\u6570\u4fdd\u5b58\u4e0b\u6765\u7684\u6a21\u578b\u76ee\u5f55":17,"\u5982\u679c\u53c2\u6570\u6a21\u578b\u6587\u4ef6\u7f3a\u5931":46,"\u5982\u679c\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u672a\u8bbe\u7f6easync":36,"\u5982\u679c\u5728\u8bad\u7ec3\u671f\u95f4\u540c\u65f6\u53d1\u8d77\u53e6\u5916\u4e00\u4e2a\u8fdb\u7a0b\u8fdb\u884c\u6d4b\u8bd5":36,"\u5982\u679c\u5728\u8bad\u7ec3\u914d\u7f6e\u4e2d\u8bbe\u7f6ebatch":36,"\u5982\u679c\u5728\u8bad\u7ec3nlp\u76f8\u5173\u6a21\u578b\u65f6":17,"\u5982\u679c\u5b83\u4f4d\u4e8e\u8c13\u8bcd\u4e0a\u4e0b\u6587\u533a\u57df\u4e2d":53,"\u5982\u679c\u5c06\u8fd9\u4e2a\u5185\u5b58\u6c60\u51cf\u5c0f":17,"\u5982\u679c\u5df2\u5b89\u88c5":53,"\u5982\u679c\u5df2\u7ecf\u6709pod\u8fd0\u884c":42,"\u5982\u679c\u5f00\u542f\u4f1a\u5bfc\u81f4\u8fd0\u884c\u7565\u6162":19,"\u5982\u679c\u60a8\u4f7f\u7528":20,"\u5982\u679c\u60a8\u6709\u597d\u7684\u5efa\u8bae\u6765":52,"\u5982\u679c\u60a8\u7684gpu\u7406\u8bba\u53ef\u4ee5\u8fbe\u52306":33,"\u5982\u679c\u60f3\u4e3a\u4e00\u4e2a\u6570\u636e\u6587\u4ef6\u8fd4\u56de\u591a\u6761\u6837\u672c":3,"\u5982\u679c\u60f3\u4f7f\u7528\u53ef\u89c6\u5316\u7684\u5206\u6790\u5668":33,"\u5982\u679c\u60f3\u5f88\u597d\u7684\u7406\u89e3\u7a0b\u5e8f\u7684\u884c\u4e3a":33,"\u5982\u679c\u60f3\u8981\u4e86\u89e3\u53cc\u5c42rnn\u5728\u5177\u4f53\u95ee\u9898\u4e2d\u7684\u4f7f\u7528":25,"\u5982\u679c\u60f3\u8981\u542f\u7528paddlepaddle\u7684\u5185\u7f6e\u5b9a\u65f6\u5668":33,"\u5982\u679c\u60f3\u8981\u5728\u5916\u90e8\u673a\u5668\u8bbf\u95ee\u8fd9\u4e2acontain":20,"\u5982\u679c\u6211\u77e5\u9053\u5185\u6838\u82b1\u4e8610ms\u6765\u79fb\u52a81gb\u6570\u636e":33,"\u5982\u679c\u6267\u884c\u5931\u8d25":40,"\u5982\u679c\u6267\u884c\u6210\u529f":48,"\u5982\u679c\u6570\u636e\u6587\u4ef6\u5b58\u4e8e\u672c\u5730\u78c1\u76d8":2,"\u5982\u679c\u6570\u636e\u89c4\u6a21\u6bd4\u8f83\u5927":39,"\u5982\u679c\u6570\u6910\u83b7\u53d6\u6210\u529f":54,"\u5982\u679c\u662f\u4f7f\u7528\u975essl\u65b9\u5f0f\u8bbf\u95ee":40,"\u5982\u679c\u662f\u5e8f\u5217":52,"\u5982\u679c\u6709\u591a\u4e2a\u8f93\u5165":27,"\u5982\u679c\u6709\u591a\u4e2a\u8f93\u5165\u5e8f\u5217":27,"\u5982\u679c\u6709\u5fc5\u8981\u7684\u8bdd":29,"\u5982\u679c\u6709\u66f4\u590d\u6742\u7684\u4f7f\u7528":2,"\u5982\u679c\u672a\u8bbe\u7f6e":36,"\u5982\u679c\u672a\u8bbe\u7f6egpu":38,"\u5982\u679c\u672c\u5730\u6ca1\u6709\u63d0\u4ea4":29,"\u5982\u679c\u67d0\u4e00\u5757\u6839\u672c\u5c31\u4e0d\u600e\u4e48\u8017\u65f6":33,"\u5982\u679c\u68c0\u67e5\u5230\u5206\u914d\u5728\u4e0d\u540c\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u7684\u53c2\u6570\u7684\u5206\u5e03\u4e0d\u5747\u5300\u6b21\u6570\u5927\u4e8echeck":36,"\u5982\u679c\u6ca1\u6709\u51b2\u7a81":29,"\u5982\u679c\u6ca1\u6709\u5b9a\u4e49memori":27,"\u5982\u679c\u6ca1\u6709\u8bbe\u7f6e":55,"\u5982\u679c\u6ca1\u6709\u8bbe\u7f6etest":2,"\u5982\u679c\u6d88\u606f\u6570\u636e\u592a\u5c0f":36,"\u5982\u679c\u7528\u6237\u4e0d\u663e\u793a\u6307\u5b9a\u8fd4\u56de\u6570\u636e\u7684\u5bf9\u5e94\u5173\u7cfb":3,"\u5982\u679c\u7528\u6237\u60f3\u8981\u4e86\u89e3\u8be6\u7ec6\u7684\u6570\u636e\u96c6\u7684\u683c\u5f0f":46,"\u5982\u679c\u7528\u6237\u60f3\u8981\u81ea\u5b9a\u4e49\u521d\u59cb\u5316\u65b9\u5f0f":17,"\u5982\u679c\u771f\u60f3\u6316\u6398\u5185\u6838\u6df1\u5904\u7684\u67d0\u4e2a\u79d8\u5bc6":33,"\u5982\u679c\u7a0b\u5e8f\u5d29\u6e83\u4f60\u4e5f\u53ef\u4ee5\u624b\u52a8\u7ec8\u6b62":34,"\u5982\u679c\u7cfb\u7edf\u5b89\u88c5\u4e86\u591a\u4e2apython\u7248\u672c":17,"\u5982\u679c\u7f51\u7edc\u5c42\u4e0d\u9700\u8981\u8fdc\u7a0b\u7a00\u758f\u66f4\u65b0":30,"\u5982\u679c\u7f51\u7edc\u67b6\u6784\u7b80\u5355":28,"\u5982\u679c\u8981\u4f7f\u7528\u53cc\u5411lstm":54,"\u5982\u679c\u8981\u542f\u7528gpu":34,"\u5982\u679c\u8bad\u7ec3\u4e00\u4e2apass":17,"\u5982\u679c\u8bad\u7ec3\u8fc7\u7a0b\u542f\u52a8\u6210\u529f\u7684\u8bdd":52,"\u5982\u679c\u8bad\u7ec3\u8fc7\u7a0b\u7684\u7684cost\u660e\u663e\u9ad8\u4e8e\u8fd9\u4e2a\u5e38\u6570\u8f93\u51fa\u7684cost":17,"\u5982\u679c\u8bbe\u7f6e":3,"\u5982\u679c\u8bbe\u7f6e\u8be5\u53c2\u6570":36,"\u5982\u679c\u8f93\u51fa":20,"\u5982\u679c\u8fd0\u884c\u6210\u529f":[48,54],"\u5982\u679c\u8fd0\u884cgpu\u7248\u672c\u7684paddlepaddl":20,"\u5982\u679c\u96c6\u7fa4\u8282\u70b9\u6570\u91cf\u5c11":34,"\u5982\u679c\u9700\u8981\u6269\u5927\u77e9\u9635":30,"\u5982\u679c\u9700\u8981\u7f29\u51cf\u77e9\u9635":30,"\u5982\u679clearning_rate\u592a\u5927":17,"\u5982\u679clearning_rate\u592a\u5c0f":17,"\u5982\u679cpaddlepaddle\u5305\u5df2\u7ecf\u5728python\u7684sit":17,"\u5982\u795e\u7ecf\u5143\u6fc0\u6d3b\u503c\u7b49":17,"\u5982\u9ad8\u4eae\u90e8\u5206":33,"\u5b50":25,"\u5b50\u53e5":27,"\u5b50\u53e5\u7684\u5355\u8bcd\u6570\u548c\u6307\u5b9a\u7684\u4e00\u4e2a\u8f93\u5165\u5e8f\u5217\u4e00\u81f4":27,"\u5b57\u5178":55,"\u5b57\u5178\u4f1a\u5305\u542b\u8f93\u5165\u6570\u636e\u96c6\u4e2d\u7684\u6240\u6709\u5355\u8bcd":55,"\u5b57\u5178\u5171\u5305\u542b":46,"\u5b57\u5178\u6587\u4ef6":[53,54],"\u5b57\u5178\u91c7\u7528utf8\u7f16\u7801":46,"\u5b57\u5178imdb":54,"\u5b57\u6bb5\u4e2d":42,"\u5b57\u6bb5\u8868\u793a\u5bb9\u5668\u7684\u73af\u5883\u53d8\u91cf":42,"\u5b57\u6bb5\u8868\u793a\u8fd9\u4e2ajob\u4f1a\u540c\u65f6\u5f00\u542f3\u4e2apaddlepaddle\u8282\u70b9":42,"\u5b58\u50a8\u5377":40,"\u5b58\u50a8\u5728\u8bb0\u5fc6\u5355\u5143\u533a\u5757\u7684\u5386\u53f2\u4fe1\u606f\u88ab\u66f4\u65b0\u7528\u6765\u8fed\u4ee3\u7684\u5b66\u4e60\u5355\u8bcd\u4ee5\u5408\u7406\u7684\u5e8f\u5217\u7a0b\u73b0":54,"\u5b58\u50a8\u6a21\u578b\u7684\u8def\u5f84":55,"\u5b58\u50a8\u7740\u7535\u5f71\u6216\u7528\u6237\u4fe1\u606f":52,"\u5b58\u5165settings\u5bf9\u8c61":3,"\u5b58\u5728\u6216\u66f4\u6539\u4e3a\u5176\u5b83\u6a21\u578b\u8def\u5f84":54,"\u5b66\u4e60\u7b97\u6cd5":18,"\u5b66\u672f":51,"\u5b81\u6ce2":25,"\u5b83\u4e0d\u4ec5\u80fd\u591f\u5904\u7406imdb\u6570\u636e":54,"\u5b83\u4eec\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4f5c\u4e3a\u7f51\u7edc\u7684\u51fa\u53e3":18,"\u5b83\u4eec\u7684\u5927\u5c0f\u662f":28,"\u5b83\u4eec\u8fd8\u53ef\u4ee5\u4f9b\u90a3\u4e9b\u8fd0\u884c\u66f4\u590d\u6742\u7684\u96c6\u7fa4\u7ba1\u7406\u7cfb\u7edf":34,"\u5b83\u4eec\u90fd\u662f\u5e8f\u5217":28,"\u5b83\u4f1a\u5728dataprovider\u521b\u5efa\u7684\u65f6\u5019\u6267\u884c":3,"\u5b83\u4f7f\u752850\u5c42\u7684resnet\u6a21\u578b\u6765\u5bf9":48,"\u5b83\u5305\u542b\u4ee5\u4e0b\u51e0\u6b65":30,"\u5b83\u5305\u542b\u4ee5\u4e0b\u53c2\u6570":30,"\u5b83\u5305\u542b\u56db\u4e2a\u7248\u672c":22,"\u5b83\u5305\u542b\u7684\u5c5e\u6027\u53c2\u6570\u5982\u4e0b":3,"\u5b83\u5305\u62ec\u4e86\u4e00\u4e2a\u53cc\u5411\u7684gru\u4f5c\u4e3a\u7f16\u7801\u5668\u548c\u89e3\u7801\u5668":55,"\u5b83\u53eb\u505a":28,"\u5b83\u53ef\u4ee5\u5728\u53e5\u5b50\u7ea7\u522b\u5229\u7528\u53ef\u6269\u5c55\u7684\u4e0a\u4e0b\u6587":54,"\u5b83\u53ef\u4ee5\u5e2e\u52a9\u51cf\u5c11\u5206\u53d1\u5ef6\u8fdf":34,"\u5b83\u53ef\u4ee5\u5e2e\u52a9\u6211\u4eec\u683c\u5f0f\u5316\u6e90\u4ee3\u7801":29,"\u5b83\u53ef\u4ee5\u6307\u6d4b\u91cf\u4e00\u4e2a\u7a0b\u5e8f\u7684\u7a7a\u95f4":33,"\u5b83\u53ef\u4ee5\u88ab\u5e94\u7528\u4e8e\u8fdb\u884c\u673a\u5668\u7ffb\u8bd1":55,"\u5b83\u53ef\u80fd\u6709\u4e0d\u6b62\u4e00\u4e2a\u6743\u91cd":30,"\u5b83\u540c\u65f6\u5b66\u4e60\u6392\u5217":55,"\u5b83\u548c\u6570\u636e\u4f20\u5165\u51fd\u6570\u7684\u7b2c\u4e00\u4e2a\u53c2\u6570":3,"\u5b83\u5b58\u50a8\u5f53\u524d\u8282\u70b9\u6240\u6709\u8bad\u7ec3":34,"\u5b83\u5b9a\u4e49\u4e86":28,"\u5b83\u5b9a\u4e49\u4e86\u6a21\u578b\u53c2\u6570\u6539\u53d8\u7684\u89c4\u5219":18,"\u5b83\u5b9a\u4e49\u89e3\u7801\u7f51\u7edc\u7684":28,"\u5b83\u5c06\u88ab\u5206\u53d1\u5230":34,"\u5b83\u5c06\u8f93\u5165\u8bed\u53e5\u7f16\u7801\u4e3a\u5411\u91cf\u7684\u5e8f\u5217":55,"\u5b83\u5c06\u8fd4\u56de\u5982\u4e0b\u7684\u5b57\u5178":48,"\u5b83\u5c31\u4f1a\u5728\u6e90\u8bed\u53e5\u4e2d\u641c\u7d22\u51fa\u6700\u76f8\u5173\u4fe1\u606f\u7684\u4f4d\u7f6e\u7684\u96c6\u5408":55,"\u5b83\u652f\u6301\u591a\u7ebf\u7a0b\u66f4\u65b0":30,"\u5b83\u662finteger_value\u7c7b\u578b\u7684":25,"\u5b83\u662finteger_value_sequence\u7c7b\u578b\u7684":25,"\u5b83\u6709\u52a9\u4e8e\u5e2e\u52a9\u9891\u7e41\u4fee\u6539\u548c\u8bbf\u95ee\u5de5\u4f5c\u533a\u6587\u4ef6\u7684\u7528\u6237\u51cf\u5c11\u8d1f\u62c5":34,"\u5b83\u6a21\u62df\u4e86\u89e3\u7801\u7ffb\u8bd1\u8fc7\u7a0b\u4e2d\u5728\u6e90\u8bed\u53e5\u4e2d\u7684\u641c\u7d22":55,"\u5b83\u7684":28,"\u5b83\u7684\u6536\u655b\u901f\u5ea6\u6bd4":54,"\u5b83\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20":24,"\u5b83\u7684\u76ee\u7684\u662f\u9884\u6d4b\u5728\u4e00\u4e2a\u5e8f\u5217\u4e2d\u8868\u8fbe\u7684\u60c5\u611f\u6001\u5ea6":54,"\u5b83\u7684\u8f93\u5165\u4e0e\u7ecf\u8fc7\u5b66\u4e60\u7684\u53c2\u6570\u505a\u5185\u79ef\u5e76\u52a0\u4e0a\u504f\u7f6e":30,"\u5b83\u76f4\u63a5\u5b66\u4e60\u6bb5\u843d\u8868\u793a":54,"\u5b83\u80fd\u591f\u4ece\u8bcd\u7ea7\u5230\u5177\u6709\u53ef\u53d8\u4e0a\u4e0b\u6587\u957f\u5ea6\u7684\u4e0a\u4e0b\u6587\u7ea7\u522b\u6765\u603b\u7ed3\u8868\u793a":54,"\u5b83\u8bfb\u5165\u6570\u636e\u5e76\u5c06\u5b83\u4eec\u4f20\u8f93\u5230\u63a5\u4e0b\u6765\u7684\u7f51\u7edc\u5c42":18,"\u5b83\u8fd4\u56degen":55,"\u5b83\u8fd4\u56detrain":55,"\u5b83\u9700\u8981\u5728\u8fd9\u91cc\u6307\u5b9a":54,"\u5b83\u9996\u5148\u8c03\u7528\u57fa\u6784\u9020\u51fd\u6570":30,"\u5b89\u6392":25,"\u5b89\u88c5":29,"\u5b89\u88c5\u4e0e\u7f16\u8bd1":23,"\u5b89\u88c5\u5305\u7684\u4e0b\u8f7d\u5730\u5740\u662f":22,"\u5b89\u88c5\u597ddocker\u4e4b\u540e\u53ef\u4ee5\u4f7f\u7528\u6e90\u7801\u76ee\u5f55\u4e0b\u7684\u811a\u672c\u6784\u5efa\u6587\u6863":31,"\u5b89\u88c5\u5b8c\u6210\u540e":22,"\u5b89\u88c5\u5b8c\u6210\u7684paddlepaddle\u4e3b\u4f53\u5305\u62ec\u4e09\u4e2a\u90e8\u5206":20,"\u5b89\u88c5\u65b9\u6cd5\u8bf7\u53c2\u8003":20,"\u5b89\u88c5\u6d41\u7a0b":[23,50],"\u5b89\u88c5\u8be5\u8f6f\u4ef6\u5305\u5c31\u53ef\u4ee5\u5728python\u73af\u5883\u4e0b\u5b9e\u73b0\u6a21\u578b\u9884\u6d4b":5,"\u5b89\u88c5docker\u9700\u8981\u60a8\u7684\u673a\u5668":20,"\u5b89\u88c5paddlepaddl":50,"\u5b89\u88c5paddlepaddle\u7684docker\u955c\u50cf":21,"\u5b89\u88c5pillow":47,"\u5b89\u9759":25,"\u5b8c\u6210":39,"\u5b8c\u6210\u4efb\u610f\u7684\u8fd0\u7b97\u903b\u8f91":27,"\u5b8c\u6210\u540evolume\u4e2d\u7684\u6587\u4ef6\u5185\u5bb9\u5927\u81f4\u5982\u4e0b":42,"\u5b8c\u6210\u76f8\u5e94\u7684\u8ba1\u7b97":24,"\u5b8c\u6574\u6559\u7a0b":45,"\u5b8c\u6574\u6e90\u7801\u53ef\u53c2\u8003":17,"\u5b8c\u6574\u7684\u4ee3\u7801\u89c1":5,"\u5b8c\u6574\u7684\u53c2\u6570\u77e9\u9635\u88ab\u5206\u5e03\u5728\u4e0d\u540c\u7684\u53c2\u6570\u670d\u52a1\u5668\u4e0a":30,"\u5b8c\u6574\u7684\u6570\u636e\u63d0\u4f9b\u6587\u4ef6\u5728":28,"\u5b8c\u6574\u7684\u914d\u7f6e\u6587\u4ef6\u5728":28,"\u5b98\u65b9\u6587\u6863":19,"\u5b9a\u4e49\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185rnn\u5355\u5143\u5b8c\u6210\u7684\u8ba1\u7b97":27,"\u5b9a\u4e49\u4e00\u4e2apython\u7684":3,"\u5b9a\u4e49\u4e86\u4e00\u4e2a\u53ea\u8bfb\u7684memori":27,"\u5b9a\u4e49\u4e86\u7f51\u7edc\u7684\u6570\u636e\u69fd":53,"\u5b9a\u4e49\u4e86\u7f51\u7edc\u7ed3\u6784":47,"\u5b9a\u4e49\u4e86\u7f51\u7edc\u7ed3\u6784\u5e76\u4fdd\u5b58\u4e3a":18,"\u5b9a\u4e49\u5728\u5916\u5c42":27,"\u5b9a\u4e49\u5f02\u6b65\u8bad\u7ec3\u7684\u957f\u5ea6":36,"\u5b9a\u4e49\u6570\u636e\u6765\u6e90":18,"\u5b9a\u4e49\u6e90\u8bed\u53e5\u7684\u6570\u636e\u5c42":28,"\u5b9a\u4e49\u89e3\u7801\u5668\u7684memori":28,"\u5b9a\u4e49\u8bad\u7ec3\u6570\u6910\u548c\u6d4b\u8bd5\u6570\u6910\u63d0\u4f9b\u8005":54,"\u5b9a\u4e49\u8f93\u5165\u6570\u636e\u5927\u5c0f":39,"\u5b9a\u4e49\u8f93\u5165\u6570\u636e\u7684\u7c7b\u578b":18,"\u5b9a\u4e49\u8f93\u51fa\u51fd\u6570":28,"\u5b9a\u4e49\u95e8\u63a7\u5faa\u73af\u5355\u5143\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u5355\u6b65\u51fd\u6570":28,"\u5b9e\u4f8b\u5982\u4e0b":53,"\u5b9e\u73b0\u4e24\u4e2a\u5b8c\u5168\u7b49\u4ef7\u7684\u5168\u8fde\u63a5rnn":25,"\u5b9e\u73b0\u524d\u5411\u4f20\u64ad\u7684\u90e8\u5206\u6709\u4e0b\u9762\u51e0\u4e2a\u6b65\u9aa4":30,"\u5b9e\u73b0\u5355\u6b65\u51fd\u6570":28,"\u5b9e\u73b0\u540e\u5411\u4f20\u64ad\u7684\u90e8\u5206\u6709\u4e0b\u9762\u51e0\u4e2a\u6b65\u9aa4":30,"\u5b9e\u73b0\u6570\u636e\u8f93\u5165\u51fd\u6570":3,"\u5b9e\u73b0\u6784\u9020\u51fd\u6570":30,"\u5b9e\u73b0\u7ec6\u8282":30,"\u5b9e\u73b0\u7f51\u7edc\u5c42\u7684\u524d\u5411\u4f20\u64ad":30,"\u5b9e\u73b0\u7f51\u7edc\u5c42\u7684\u540e\u5411\u4f20\u64ad":30,"\u5b9e\u73b0\u8bcd\u8bed\u548c\u53e5\u5b50\u4e24\u4e2a\u7ea7\u522b\u7684\u53cc\u5c42rnn\u7ed3\u6784":27,"\u5b9e\u73b0\u8be5\u5c42\u7684c":30,"\u5b9e\u9645\u4e0a\u53ea\u6709":48,"\u5b9e\u9645\u4e0a\u662fcsv\u6587\u4ef6":51,"\u5ba2\u6237":25,"\u5ba2\u6237\u670d\u52a1":51,"\u5ba2\u6237\u7aef\u514b\u9686\u4f60\u7684\u4ed3\u5e93":29,"\u5bb6":25,"\u5bb9\u5668":40,"\u5bb9\u5668\u4e0d\u4f1a\u4fdd\u7559\u5728\u8fd0\u884c\u65f6\u751f\u6210\u7684\u6570\u636e":40,"\u5bb9\u5668\u8fd0\u884c\u90fd\u8fd0\u884c":42,"\u5bbf\u4e3b\u673a\u76ee\u5f55":40,"\u5bc4\u5b58\u5668\u4f7f\u7528\u60c5\u51b5\u548c\u5171\u4eab\u5185\u5b58\u4f7f\u7528\u60c5\u51b5\u80fd\u8ba9\u6211\u4eec\u5bf9gpu\u7684\u6574\u4f53\u4f7f\u7528\u6709\u66f4\u597d\u7684\u7406\u89e3":33,"\u5bc6\u7801\u4e5f\u662froot":20,"\u5bf9":25,"\u5bf9\u4e00\u4e2a5\u7ef4\u975e\u5e8f\u5217\u7684\u7a00\u758f01\u5411\u91cf":3,"\u5bf9\u4e00\u4e2a5\u7ef4\u975e\u5e8f\u5217\u7684\u7a00\u758f\u6d6e\u70b9\u5411\u91cf":3,"\u5bf9\u4e8e":28,"\u5bf9\u4e8e\u4e24\u79cd\u4e0d\u540c\u7684\u8f93\u5165\u6570\u636e\u7c7b\u578b":25,"\u5bf9\u4e8e\u5185\u5b58\u8f83\u5c0f\u7684\u673a\u5668":3,"\u5bf9\u4e8e\u5355\u5c42rnn":25,"\u5bf9\u4e8e\u5355\u5c42rnn\u7684\u6570\u636e\u4e00\u5171\u6709\u4e24\u4e2a\u6837\u672c":25,"\u5bf9\u4e8e\u53cc\u5c42rnn":25,"\u5bf9\u4e8e\u540c\u6837\u7684\u6570\u636e":25,"\u5bf9\u4e8e\u6211\u4eec\u652f\u6301\u7684\u5168\u90e8\u77e9\u9635\u64cd\u4f5c":30,"\u5bf9\u4e8e\u6811\u7684\u6bcf\u4e00\u5c42":55,"\u5bf9\u4e8e\u6bb5\u843d\u7684\u6587\u672c\u5206\u7c7b":25,"\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u5355\u5c42rnn\u7684\u6570\u636e":25,"\u5bf9\u4e8e\u6bcf\u4f4d\u7528\u6237":52,"\u5bf9\u4e8e\u7b80\u5355\u7684\u591a\u673a\u534f\u540c\u8bad\u7ec3\u4f7f\u7528\u4e0a\u8ff0\u65b9\u5f0f\u5373\u53ef":39,"\u5bf9\u4e8e\u7ed9\u5b9a\u7684\u4e00\u6761\u6587\u672c":50,"\u5bf9\u4e8e\u914d\u5907\u6709\u6ce8\u610f\u529b\u673a\u5236\u7684\u89e3\u7801\u5668":28,"\u5bf9\u4e8eamazon":50,"\u5bf9\u4ee3\u7801\u8fdb\u884c\u6027\u80fd\u5206\u6790":33,"\u5bf9\u5168\u8fde\u63a5\u5c42\u6765\u8bf4":30,"\u5bf9\u56fe\u7247\u8fdb\u884c\u9884\u5904\u7406":47,"\u5bf9\u5e94\u4e00\u4e2a\u5b50\u53e5":27,"\u5bf9\u5e94\u4e00\u4e2a\u8bcd":27,"\u5bf9\u5e94\u4e8e\u5b57\u5178":46,"\u5bf9\u5e94\u7684":3,"\u5bf9\u6027\u80fd\u5c24\u5176\u662f\u5185\u5b58\u5360\u7528\u6709\u4e00\u5b9a\u7684\u5f00\u9500":39,"\u5bf9\u6570\u636e\u96c6\u8fdb\u884c\u9884\u5904\u7406\u7684\u57fa\u672c\u547d\u4ee4\u662f":55,"\u5bf9\u6574\u4e2a\u65b0\u5411\u91cf\u96c6\u5408\u7684\u6bcf\u4e00\u4e2a\u7ef4\u5ea6\u53d6\u6700\u5927\u503c\u6765\u8868\u793a\u6700\u540e\u7684\u53e5\u5b50":50,"\u5bf9\u6587\u6863\u5904\u7406\u540e\u5f62\u6210\u7684\u5355\u8bcd\u5411\u91cf":54,"\u5bf9\u673a\u5668\u7ffb\u8bd1\u7684\u4eba\u5de5\u8bc4\u4f30\u5de5\u4f5c\u5f88\u5e7f\u6cdb\u4f46\u4e5f\u5f88\u6602\u8d35":55,"\u5bf9\u6bcf\u4e2a\u8f93\u5165":30,"\u5bf9\u6bcf\u4e2a\u8f93\u5165\u4e58\u4e0a\u53d8\u6362\u77e9\u9635":30,"\u5bf9\u6fc0\u6d3b\u6c42\u5bfc":30,"\u5bf9\u7528\u6237\u6765\u8bf4":3,"\u5bf9\u8bad\u7ec3\u6570\u636e\u8fdb\u884cshuffl":3,"\u5bf9\u8be5\u5411\u91cf\u8fdb\u884c\u975e\u7ebf\u6027\u53d8\u6362":50,"\u5bf9\u8c61":[17,39],"\u5bf9\u8c61\u5b58\u50a8\u4e3a\u6587\u4ef6":52,"\u5bf9\u8f93\u51fa\u7684\u5408\u5e76":27,"\u5bf9\u9762":25,"\u5bf9check":3,"\u5bf9sparse_binary_vector\u548csparse_float_vector":3,"\u5bfc\u81f4\u7f16\u8bd1paddlepaddle\u5931\u8d25":17,"\u5bfc\u81f4\u8bad\u7ec3\u65f6\u95f4\u8fc7\u957f":17,"\u5c01\u88c5\u4e86":33,"\u5c01\u88c5\u8be5\u5c42\u7684python\u63a5\u53e3":30,"\u5c06":[3,17,33,39,50],"\u5c06\u4e0a\u4e00\u65f6\u95f4\u6b65\u6240\u751f\u6210\u7684\u8bcd\u7684\u5411\u91cf\u6765\u4f5c\u4e3a\u5f53\u524d\u65f6\u95f4\u6b65\u7684\u8f93\u5165":28,"\u5c06\u4ed6\u4eec\u79fb\u52a8\u5230\u76ee\u5f55":52,"\u5c06\u4f1a\u81ea\u52a8\u8ba1\u7b97\u51fa\u4e00\u4e2a\u5408\u9002\u7684\u503c":36,"\u5c06\u5176\u8bbe\u7f6e\u6210":17,"\u5c06\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217\u6570\u636e\u5148\u53d8\u6362\u6210\u5355\u5c42\u65f6\u95f4\u5e8f\u5217\u6570\u636e":25,"\u5c06\u542b\u6709\u5b50\u53e5":27,"\u5c06\u542b\u6709\u8bcd\u8bed\u7684\u53e5\u5b50\u5b9a\u4e49\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":27,"\u5c06\u56fe\u7247\u6309\u7167\u4e0a\u8ff0\u7ed3\u6784\u5b58\u50a8\u597d\u4e4b\u540e":47,"\u5c06\u5728":47,"\u5c06\u5728\u8fd0\u884c\u65f6\u62a5\u9519":34,"\u5c06\u5916\u90e8\u7684\u5b58\u50a8\u670d\u52a1\u5728kubernetes\u4e2d\u63cf\u8ff0\u6210\u4e3a\u7edf\u4e00\u7684\u8d44\u6e90\u5f62\u5f0f":40,"\u5c06\u591a\u53e5\u8bdd\u770b\u6210\u4e00\u4e2a\u6574\u4f53\u540c\u65f6\u4f7f\u7528encoder\u538b\u7f29":25,"\u5c06\u591a\u53f0\u673a\u5668\u7684\u6d4b\u8bd5\u7ed3\u679c\u5408\u5e76":36,"\u5c06\u5b57\u5178\u7684\u5730\u5740\u4f5c\u4e3aargs\u4f20\u7ed9dataprovid":17,"\u5c06\u5bbf\u4e3b\u673a\u76848022\u7aef\u53e3\u6620\u5c04\u5230container\u768422\u7aef\u53e3\u4e0a":20,"\u5c06\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u524d\u5411\u548c\u53cd\u5411\u90e8\u5206\u6df7\u5408\u5728\u4e00\u8d77":28,"\u5c06\u6570\u636e\u5904\u7406\u6210\u89c4\u8303\u683c\u5f0f":46,"\u5c06\u6570\u636e\u7ec4\u5408\u6210batch\u8fdb\u884c\u8bad\u7ec3":3,"\u5c06\u6570\u636e\u8f6c\u6362\u4e3apaddle\u7684\u683c\u5f0f":47,"\u5c06\u65b0\u5efa\u7684\u6743\u91cd\u52a0\u5165\u6743\u91cd\u8868":30,"\u5c06\u65e5\u5fd7\u5199\u5165\u6587\u4ef6":52,"\u5c06\u672c\u5730\u66f4\u65b0\u5230\u6700\u65b0\u7684\u4ee3\u7801\u5e93":29,"\u5c06\u6837\u672c\u7684\u5730\u5740\u653e\u5165\u53e6\u4e00\u4e2a\u6587\u672c\u6587\u4ef6":3,"\u5c06\u6b64\u76ee\u5f55\u6302\u8f7d\u4e3a\u5bb9\u5668\u7684":42,"\u5c06\u6bcf\u4e2a\u6e90\u8bed\u8a00\u5230\u76ee\u6807\u8bed\u8a00\u7684\u5e73\u884c\u8bed\u6599\u5e93\u6587\u4ef6\u5408\u5e76\u4e3a\u4e00\u4e2a\u6587\u4ef6":55,"\u5c06\u73af\u5883\u53d8\u91cf\u8f6c\u6362\u6210paddle\u7684\u547d\u4ee4\u884c\u53c2\u6570":42,"\u5c06\u7528\u6237\u7684\u539f\u59cb\u6570\u636e\u8f6c\u6362\u6210\u7cfb\u7edf\u53ef\u4ee5\u8bc6\u522b\u7684\u6570\u636e\u7c7b\u578b":39,"\u5c06\u7b80\u5355\u5730\u6267\u884c\u5feb\u8fdb":29,"\u5c06\u7ed3\u679c\u4fdd\u5b58\u5230\u6b64\u76ee\u5f55\u91cc":42,"\u5c06\u884c\u4e2d\u7684\u6570\u636e\u8f6c\u6362\u6210\u4e0einput_types\u4e00\u81f4\u7684\u683c\u5f0f":3,"\u5c06\u88ab\u5206\u4e3a":46,"\u5c06\u8bad\u7ec3\u6587\u4ef6\u4e0e\u5207\u5206\u597d\u7684\u6570\u636e\u4e0a\u4f20\u5230\u5171\u4eab\u5b58\u50a8":42,"\u5c06\u8be5\u53e5\u8bdd\u5305\u542b\u7684\u6240\u6709\u5355\u8bcd\u5411\u91cf\u6c42\u5e73\u5747":50,"\u5c06\u8df3\u8fc7\u5206\u53d1\u9636\u6bb5\u76f4\u63a5\u542f\u52a8\u6240\u6709\u8282\u70b9\u7684\u96c6\u7fa4\u4f5c\u4e1a":34,"\u5c06\u8fd9\u79cd\u8de8\u8d8a\u65f6\u95f4\u6b65\u7684\u8fde\u63a5\u7528\u4e00\u4e2a\u7279\u6b8a\u7684\u795e\u7ecf\u7f51\u7edc\u5355\u5143\u5b9e\u73b0":25,"\u5c06\u900f\u660e":34,"\u5c06ip\u6392\u5e8f\u751f\u6210\u7684\u5e8f\u53f7\u4f5c\u4e3atrain":42,"\u5c06ssh\u88c5\u5165\u7cfb\u7edf\u5185\u5e76\u5f00\u542f\u8fdc\u7a0b\u8bbf\u95ee":20,"\u5c11\u4e8e5":34,"\u5c1a\u53ef":25,"\u5c31":25,"\u5c31\u4f1a\u751f\u6210\u975e\u5e38\u591a\u7684gener":3,"\u5c31\u53ef\u4ee5\u5c06\u6570\u636e\u4f20\u9001\u7ed9paddlepaddle\u4e86":3,"\u5c31\u53ef\u4ee5\u5c06\u8fd9\u4e9b\u6587\u4ef6\u6301\u4e45\u5316\u5b58\u50a8":40,"\u5c31\u5f88\u5bb9\u6613\u5bfc\u81f4\u5185\u5b58\u8d85\u9650":17,"\u5c31\u662f":25,"\u5c31\u662f\u6a21\u578b\u7684\u53c2\u6570":18,"\u5c31\u662f\u7528\u4e8e\u5c55\u793a\u4e0a\u8ff0\u5206\u6790\u5de5\u5177\u7684\u7528\u6cd5":33,"\u5c31\u80fd\u591f\u5f88\u65b9\u4fbf\u7684\u5b8c\u6210\u6570\u636e\u4e0b\u8f7d\u548c\u76f8\u5e94\u7684\u9884\u5904\u7406\u5de5\u4f5c":50,"\u5c31\u901a\u5e38\u7684gpu\u6027\u80fd\u5206\u6790\u6765\u8bf4":33,"\u5c3a\u5bf8":48,"\u5c40\u90e8\u5173\u8054\u6027\u8d28\u548c\u7a7a\u95f4\u4e0d\u53d8\u6027\u8d28":47,"\u5c42\u540e\u5f97\u5230\u6df1\u5ea6":53,"\u5c42\u548c\u8f93\u5165\u7684\u914d\u7f6e":30,"\u5c42\u6743\u91cd":48,"\u5c42\u6b21\u5316\u7684rnn":27,"\u5c42\u7279\u5f81":48,"\u5c42\u7684\u540d\u79f0\u4e0e":28,"\u5c42\u7684\u5927\u5c0f":30,"\u5c42\u7684\u7279\u5f81":48,"\u5c42\u7684\u7c7b\u578b":30,"\u5c42\u7684\u8f93\u5165":53,"\u5c42\u7684\u8f93\u5165\u548c\u8f93\u51fa\u4f5c\u4e3a\u4e0b\u4e00\u4e2a":53,"\u5c42\u7684\u8f93\u51fa\u88ab\u7528\u4f5c\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684":28,"\u5c42\u7ec4\u6210\u4e00\u5bf9":53,"\u5c45\u7136":25,"\u5c55\u793a\u4e86\u4e00\u79cd\u65b9\u6cd5":55,"\u5c55\u793a\u4e86\u4e0a\u8ff0\u7f51\u7edc\u6a21\u578b\u7684\u8bad\u7ec3\u6548\u679c":50,"\u5c55\u793a\u4e86\u5982\u4f55\u5c06\u6bcf\u4e2a\u7279\u5f81\u6620\u5c04\u5230\u4e00\u4e2a\u5411\u91cf":52,"\u5c5e\u6027":53,"\u5d4c\u5165\u5c42":52,"\u5d4c\u5165\u7279\u5f81\u5b57\u5178":52,"\u5d4c\u5165\u7f16\u53f7\u4f1a\u6839\u636e\u5355\u8bcd\u6392\u5e8f":52,"\u5de5\u4f5c\u6a21\u5f0f":36,"\u5de5\u4f5c\u7a7a\u95f4":34,"\u5de5\u4f5c\u7a7a\u95f4\u4e2d\u7684":34,"\u5de5\u4f5c\u7a7a\u95f4\u6839\u76ee\u5f55":34,"\u5de5\u4f5c\u7a7a\u95f4\u76ee\u5f55\u7684\u5de5\u4f5c\u7a7a\u95f4":34,"\u5de5\u4f5c\u7a7a\u95f4\u914d\u7f6e":34,"\u5de5\u5177":54,"\u5de5\u5177\u4e2d\u7684\u811a\u672c":54,"\u5de5\u5177\u6765\u7ba1\u7406git\u9884\u63d0\u4ea4\u94a9\u5b50":29,"\u5de5\u7a0b\u5e08":51,"\u5de6\u56fe\u6784\u9020\u7f51\u7edc\u6a21\u5757\u7684\u65b9\u5f0f\u88ab\u7528\u4e8e34\u5c42\u7684\u7f51\u7edc\u4e2d":48,"\u5de6\u8fb9\u662f":48,"\u5dee\u8bc4":50,"\u5df2\u6253\u5f00":29,"\u5df2\u7ecf\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u5b8c\u6210\u8bbe\u7f6e":36,"\u5df2\u7ecf\u63d0\u4f9b\u4e86\u811a\u672c\u6765\u5e2e\u52a9\u60a8\u521b\u5efa\u8fd9\u4e24\u4e2a\u6587\u4ef6":34,"\u5e02\u573a":51,"\u5e02\u9762\u4e0a\u5df2\u7ecf\u6709nvidia\u6216\u7b2c\u4e09\u65b9\u63d0\u4f9b\u7684\u4f17\u591a\u5de5\u5177":33,"\u5e0c\u671b\u52a0\u901f\u8bad\u7ec3":39,"\u5e0c\u671b\u80fd\u8ba9\u6211\u4eec\u77e5\u6653":52,"\u5e2e\u52a9\u6211\u4eec\u5b8c\u6210\u5bf9\u8f93\u5165\u5e8f\u5217\u7684\u62c6\u5206":27,"\u5e2e\u52a9\u6211\u4eec\u66f4\u597d\u5730\u63cf\u8ff0\u6bb5\u843d":27,"\u5e2e\u52a9\u6211\u4eec\u6784\u9020\u4e00\u4e9b\u590d\u6742\u7684\u8f93\u5165\u4fe1\u606f":24,"\u5e38\u5e38\u51fa\u73b0":17,"\u5e38\u7528\u4f18\u5316\u7b97\u6cd5\u5305\u62ecmomentum":50,"\u5e38\u89c1\u7684\u53ef\u9009\u5b58\u50a8\u670d\u52a1\u5305\u62ec":40,"\u5e72\u51c0":25,"\u5e73\u53f0\u4e3a\u60f3\u89c2\u6d4b\u8bcd\u5411\u91cf\u7684\u7528\u6237\u63d0\u4f9b\u4e86\u5c06\u4e8c\u8fdb\u5236\u8bcd\u5411\u91cf\u6a21\u578b\u8f6c\u6362\u4e3a\u6587\u672c\u6a21\u578b\u7684\u529f\u80fd":46,"\u5e73\u5747\u7279\u5f81\u56fe\u7684\u9ad8\u5ea6\u53ca\u5bbd\u5ea6":47,"\u5e74\u9f84":51,"\u5e74\u9f84\u4ece\u4e0b\u5217\u5217\u8868\u8303\u56f4\u4e2d\u9009\u53d6":51,"\u5e74\u9f84\u548c\u804c\u4e1a":52,"\u5e76\u4e0d\u4fdd\u8bc1":30,"\u5e76\u4e0d\u662f\u4f7f\u7528\u53cc\u5c42rnn\u89e3\u51b3\u5b9e\u9645\u7684\u95ee\u9898":25,"\u5e76\u4e0d\u662fkubernetes\u4e2d\u7684node\u6982\u5ff5":42,"\u5e76\u4e0d\u771f\u6b63\u7684\u548c":25,"\u5e76\u4e14":[3,28],"\u5e76\u4e14\u5185\u5c42\u7684\u5e8f\u5217\u64cd\u4f5c\u4e4b\u95f4\u72ec\u7acb\u65e0\u4f9d\u8d56":25,"\u5e76\u4e14\u5206\u522b\u91cd\u547d\u540d\u6587\u4ef6\u540e\u7f00":55,"\u5e76\u4e14\u5220\u9664container\u4e2d\u7684\u6570\u636e":20,"\u5e76\u4e14\u52a0\u4e0a\u4e0b\u9762\u7684\u547d\u4ee4\u884c\u53c2\u6570":38,"\u5e76\u4e14\u53ea\u6709\u4e00\u4e2a\u6743\u91cd":48,"\u5e76\u4e14\u53ef\u80fd\u4f1a\u52a0\u901f\u8bad\u7ec3\u8fc7\u7a0b":17,"\u5e76\u4e14\u540e\u7eed\u4ecd\u5728\u4e0d\u65ad\u6539\u8fdb":18,"\u5e76\u4e14\u542f\u52a8\u8bad\u7ec3":42,"\u5e76\u4e14\u5728\u5185\u5b58\u8db3\u591f\u7684\u60c5\u51b5\u4e0b\u8d8a\u5927\u8d8a\u597d":3,"\u5e76\u4e14\u5728\u968f\u540e\u7684\u8bfb\u53d6\u6570\u636e\u8fc7\u7a0b\u4e2d\u586b\u5145\u8bcd\u8868":50,"\u5e76\u4e14\u5728dataprovider\u4e2d\u5b9e\u73b0\u5982\u4f55\u8bbf\u95ee\u8bad\u7ec3\u6587\u4ef6\u5217\u8868":2,"\u5e76\u4e14\u5b83\u4eec\u7684\u987a\u5e8f\u4e0e":48,"\u5e76\u4e14\u5bf9\u7528\u6237\u7684\u7279\u5f81\u505a\u540c\u6837\u7684\u64cd\u4f5c":52,"\u5e76\u4e14\u5c06\u9884\u5904\u7406\u597d\u7684\u6570\u636e\u96c6\u5b58\u653e\u5728":55,"\u5e76\u4e14\u67e5\u8be2paddlepaddle\u5355\u5143\u6d4b\u8bd5\u7684\u65e5\u5fd7":17,"\u5e76\u4e14\u7b2c\u4e8c\u4e2a\u662f\u53cd\u5411lstm":54,"\u5e76\u4e14\u7cfb\u7edf\u6bcf\u4e00\u8f6e\u8bad\u7ec3\u5f00\u59cb\u65f6\u4f1a\u91cd\u7f6edataprovid":39,"\u5e76\u4e14\u7f16\u8bd1\u80fd\u901a\u8fc7\u4ee3\u7801\u6837\u5f0f\u68c0\u67e5":29,"\u5e76\u4e14\u901a\u8fc7\u7ed9\u51fa\u5f53\u524d\u76ee\u6807\u5355\u8bcd\u6765\u9884\u6d4b\u4e0b\u4e00\u4e2a\u76ee\u6807\u5355\u8bcd":55,"\u5e76\u4e14\u96c6\u7fa4\u4f5c\u4e1a\u4e2d\u7684\u6240\u6709\u8282\u70b9\u5c06\u5728\u6b63\u5e38\u60c5\u51b5\u4e0b\u5904\u7406\u5177\u6709\u76f8\u540c\u903b\u8f91\u4ee3\u7801\u7684\u6587\u4ef6":34,"\u5e76\u4e14\u9700\u8981\u91cd\u5199\u57fa\u7c7b\u4e2d\u7684\u4ee5\u4e0b\u51e0\u4e2a\u865a\u51fd\u6570":30,"\u5e76\u4e14softmax\u5c42\u7684\u4e24\u4e2a\u8f93\u5165\u4e5f\u4f7f\u7528\u4e86\u540c\u6837\u7684\u53c2\u6570":17,"\u5e76\u4f20\u5165\u76f8\u5e94\u7684\u547d\u4ee4\u884c\u53c2\u6570\u521d\u59cb\u5316paddlepaddl":5,"\u5e76\u4f7f\u7528":53,"\u5e76\u4f7f\u7528\u4e86dropout":50,"\u5e76\u4f7f\u7528\u8fd9\u4e2a\u795e\u7ecf\u7f51\u7edc\u6765\u5bf9\u56fe\u7247\u8fdb\u884c\u5206\u7c7b":47,"\u5e76\u5728\u4e58\u79ef\u7ed3\u679c\u4e0a\u518d\u52a0\u4e0a\u7ef4\u5ea6\u4e3a":30,"\u5e76\u5728\u6700\u5f00\u59cb\u521d\u59cb\u5316\u4e3a\u8d77\u59cb\u8bcd":28,"\u5e76\u5728\u7c7b\u6784\u5efa\u51fd\u6570\u4e2d\u628a\u5b83\u653e\u5165\u4e00\u4e2a\u7c7b\u6210\u5458\u53d8\u91cf\u91cc":30,"\u5e76\u5bf9\u76f8\u5e94\u7684\u53c2\u6570\u8c03\u7528":30,"\u5e76\u5c06\u5176\u6295\u5c04\u5230":28,"\u5e76\u5c06\u5b83\u4eec\u6309\u7167\u542f\u53d1\u4ee3\u4ef7":55,"\u5e76\u5c06\u5b83\u4eec\u653e\u5728":55,"\u5e76\u5c06\u6bcf\u8f6e\u7684\u6a21\u578b\u7ed3\u679c\u5b58\u653e\u5728":18,"\u5e76\u5c06develop\u548ctest\u6570\u636e\u5206\u522b\u653e\u5165\u4e0d\u540c\u7684\u6587\u4ef6\u5939":55,"\u5e76\u60f3\u4f7f\u7528gpu\u6765\u8bad\u7ec3\u8bbe\u7f6e\u4e3atru":54,"\u5e76\u6307\u5b9a\u7aef\u53e3\u53f7":39,"\u5e76\u6307\u5b9abatch":55,"\u5e76\u63d0\u4f9b\u4e86\u7b80\u5355\u7684cache\u529f\u80fd":3,"\u5e76\u6b22\u8fce\u60a8\u6765\u53c2\u4e0e\u8d21\u732e":54,"\u5e76\u7531":53,"\u5e76\u7ed9\u51fa\u5206\u7c7b\u7ed3\u679c":47,"\u5e76\u7ed9\u51fa\u7684\u76f8\u5173\u6a21\u578b\u683c\u5f0f\u7684\u5b9a\u4e49":46,"\u5e76\u88ab\u53cd\u5411\u5904\u7406":53,"\u5e76\u89c2\u5bdf\u7ed3\u679c":33,"\u5e76\u8bbe\u7f6e":[22,34],"\u5e76\u9010\u6e10\u5c55\u793a\u66f4\u52a0\u6df1\u5165\u7684\u529f\u80fd":50,"\u5e8a\u4e0a\u7528\u54c1":25,"\u5e8a\u57ab":25,"\u5e8f\u5217\u4e2d\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee\u540c":24,"\u5e8f\u5217\u5230\u5e8f\u5217":55,"\u5e8f\u5217\u6570\u636e\u662f\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1\u9762\u5bf9\u7684\u4e00\u79cd\u4e3b\u8981\u8f93\u5165\u6570\u636e\u7c7b\u578b":27,"\u5e8f\u5217\u662f\u4e00\u79cd\u5e38\u89c1\u7684\u6570\u636e\u7c7b\u578b":24,"\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u5927\u591a\u9075\u5faaencod":27,"\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u7684\u8f93\u5165":27,"\u5e8f\u5217\u7684\u5f00\u59cb":55,"\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20\u662f\u539f\u6765\u53cc\u5c42\u5e8f\u5217\u6bcf\u4e2asubseq\u5143\u7d20\u7684\u5e73\u5747\u503c":24,"\u5e8f\u5217\u7684\u7ed3\u5c3e":55,"\u5e8f\u5217\u7684\u7ed3\u675f":55,"\u5e93":34,"\u5e93\u7684\u8def\u5f84":34,"\u5e94\u7528\u524d\u5411\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":28,"\u5e94\u7528\u53cd\u5411\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":28,"\u5e94\u7528\u6a21\u578b":50,"\u5e94\u8be5":25,"\u5e94\u8be5\u4e0e\u5b83\u7684memory\u540d\u5b57\u76f8\u540c":28,"\u5e94\u8be5\u964d\u4f4e\u5b66\u4e60\u7387":17,"\u5e95\u5c42\u8fdb\u7a0b":34,"\u5ea6\u91cf\u5b66\u4e60":35,"\u5efa\u7acb\u4e00\u4e2a\u6d3b\u8dc3\u7684\u5f00\u6e90\u793e\u533a":0,"\u5efa\u8bae\u5c06\u5176\u8bbe\u7f6e\u4e3a\u8f83\u5927":34,"\u5efa\u8bae\u5c06\u8be5\u53c2\u6570\u8bbe\u4e3atrue":36,"\u5f00\u53d1\u4eba\u5458\u4f7f\u7528":29,"\u5f00\u59cb":18,"\u5f00\u59cb\u5f00\u53d1\u5427":29,"\u5f00\u59cb\u6807\u8bb0":28,"\u5f00\u59cb\u8bad\u7ec3\u6a21\u578b":50,"\u5f00\u59cb\u9636\u6bb5":33,"\u5f02\u6b65\u8bfb\u53d6\u7b49\u95ee\u9898":39,"\u5f02\u6b65\u968f\u673a\u68af\u5ea6\u4e0b\u964d":35,"\u5f15\u5165lstm\u6a21\u578b\u4e3b\u8981\u662f\u4e3a\u4e86\u514b\u670d\u6d88\u5931\u68af\u5ea6\u7684\u95ee\u9898":54,"\u5f15\u5165paddlepaddle\u7684pydataprovider2\u5305":3,"\u5f15\u5bfc\u5c42":28,"\u5f15\u7528":34,"\u5f15\u7528memory\u5f97\u5230\u8fd9layer\u4e0a\u4e00\u65f6\u523b\u8f93\u51fa":27,"\u5f3a\u70c8\u63a8\u8350":25,"\u5f3a\u70c8\u63a8\u8350\u4f7f\u7528virtualenv\u6765\u521b\u9020\u4e00\u4e2a\u5e72\u51c0\u7684python\u73af\u5883":52,"\u5f52\u4e00\u5316\u6982\u7387\u5411\u91cf":28,"\u5f53":38,"\u5f53\u4f20\u9012\u76f8\u540c\u7684\u6837\u672c\u6570\u65f6":54,"\u5f53\u4f60":29,"\u5f53\u4f60\u6267\u884c\u547d\u4ee4":30,"\u5f53\u51fd\u6570\u8fd4\u56de\u7684\u65f6\u5019":3,"\u5f53\u524d\u5355\u8bcd\u5728\u76f8\u6bd4\u4e4b\u4e0b\u603b\u662f\u88ab\u5f53\u4f5c\u771f\u503c":55,"\u5f53\u524d\u5355\u8bcd\u662f\u89e3\u7801\u5668\u6700\u540e\u4e00\u6b65\u7684\u8f93\u51fa":55,"\u5f53\u524d\u65f6\u95f4\u6b65\u5904\u7684memory\u7684\u8f93\u51fa\u4f5c\u4e3a\u4e0b\u4e00\u65f6\u95f4\u6b65memory\u7684\u8f93\u5165":28,"\u5f53\u524d\u7684\u5b9e\u73b0\u65b9\u5f0f\u4e0b":30,"\u5f53\u524d\u7684\u8f93\u5165y\u548c\u4e0a\u4e00\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51farnn_state\u505a\u4e86\u4e00\u4e2a\u5168\u94fe\u63a5":25,"\u5f53\u524d\u8bc4\u4f30\u4e2d":55,"\u5f53\u524dbatch\u7684cost":55,"\u5f53\u524dlog_period\u4e2abatch\u6240\u6709\u6837\u672c\u7684\u5e73\u5747\u5206\u7c7b\u9519\u8bef\u7387":50,"\u5f53\u524dlog_period\u4e2abatch\u6240\u6709\u6837\u672c\u7684\u5e73\u5747cost":50,"\u5f53\u5728\u7f51\u7edc\u5c42\u914d\u7f6e\u4e2d\u8bbe\u7f6e":36,"\u5f53\u5728\u8bad\u7ec3\u914d\u7f6e\u4e2d\u8bbe\u7f6e":36,"\u5f53\u5bb9\u5668\u56e0\u4e3a\u5404\u79cd\u539f\u56e0\u88ab\u9500\u6bc1\u65f6":40,"\u5f53\u6240\u6709\u6570\u636e\u8bfb\u53d6\u5b8c\u4e00\u8f6e\u540e":39,"\u5f53\u6240\u6709pod\u90fd\u5904\u4e8erunning\u72b6\u6001":42,"\u5f53\u6839\u636e\u5ba1\u9605\u8005\u7684\u610f\u89c1\u4fee\u6539":29,"\u5f53\u6a21\u578b\u53c2\u6570\u4e0d\u5b58\u5728\u65f6":36,"\u5f53\u6a21\u578b\u8bad\u7ec3\u597d\u4e86\u4e4b\u540e":50,"\u5f53\u6a21\u5f0f\u4e3a":36,"\u5f53\u7136":33,"\u5f53\u7f51\u7edc\u5c42\u7528\u4e00\u4e2a\u6279\u6b21\u505a\u8bad\u7ec3\u65f6":30,"\u5f53\u89e3\u8bfb\u6bcf\u4e00\u4e2a":28,"\u5f53\u8bad\u7ec3\u6570\u636e\u975e\u5e38\u591a\u65f6":3,"\u5f53\u8d85\u8fc7\u8be5\u9608\u503c\u65f6":36,"\u5f53\u8f93\u5165\u662f\u7ef4\u5ea6\u5f88\u9ad8\u7684\u7a00\u758f\u6570\u636e\u65f6":38,"\u5f53\u9700\u8981\u5feb\u901f\u6216\u8005\u9891\u7e41\u7684\u8bc4\u4f30\u65f6":55,"\u5f53classif":55,"\u5f62\u6210recurr":27,"\u5f62\u6210recurrent\u8fde\u63a5":27,"\u5f62\u72b6":48,"\u5f88":[25,50],"\u5f88\u591a":25,"\u5f88\u5b89\u9759":25,"\u5f88\u5bb9\u6613\u5bfc\u81f4\u67d0\u4e00\u4e2a\u53c2\u6570\u670d\u52a1\u5668\u6ca1\u6709\u5206\u914d\u5230\u4efb\u4f55\u53c2\u6570":39,"\u5f88\u5e72\u51c0":25,"\u5f88\u65b9\u4fbf":25,"\u5f88\u6709\u53ef\u80fd\u5b9e\u9645\u5e94\u7528\u5c31\u662f\u6ca1\u6709\u6309\u7167\u60a8\u7684\u9884\u671f\u60c5\u51b5\u8fd0\u884c":33,"\u5f88\u9002\u5408\u6784\u5efa\u7528\u4e8e\u7406\u89e3\u56fe\u7247\u5185\u5bb9\u7684\u6a21\u578b":47,"\u5f88\u96be\u6574\u4f53\u4fee\u6b63":3,"\u5f8b\u5e08":51,"\u5f97":25,"\u5f97\u5230\u53e5\u5b50\u7684\u8868\u793a":50,"\u5f97\u5230\u6700\u597d\u8f6e\u6b21\u4e0b\u7684\u6a21\u578b":52,"\u5faa\u73af\u5c55\u5f00\u7684\u6bcf\u4e2a\u65f6\u95f4\u6b65\u603b\u662f\u80fd\u591f\u5f15\u7528\u6240\u6709\u8f93\u5165":27,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u4e2d":28,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u4f5c\u4e3a\u4f7f\u7528":28,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u548c":28,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u9aa4\u987a\u5e8f\u5730\u5904\u7406\u5e8f\u5217":28,"\u5faa\u73af\u7f51\u7edc\u4ece":28,"\u5fc5\u987b":30,"\u5fc5\u987b\u4e00\u81f4":3,"\u5fc5\u987b\u4f7f\u7528python\u5173\u952e\u8bcd":3,"\u5fc5\u987b\u5c06\u524d\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5143\u7d20":25,"\u5fc5\u987b\u6307\u5411\u4e00\u4e2apaddlepaddle\u5b9a\u4e49\u7684lay":27,"\u5fc5\u987b\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":27,"\u5fc5\u987b\u662f\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":24,"\u5fc5\u987b\u7531\u53ea\u8bfbmemory\u7684":28,"\u5fd8\u8bb0\u95e8\u548c\u8f93\u51fa\u95e8":54,"\u5feb":[25,54],"\u5feb\u901f\u5165\u95e8":49,"\u5feb\u901f\u5728\u672c\u5730\u542f\u52a8\u4e00\u4e2a\u5355\u673a\u7684kubernetes\u670d\u52a1\u5668":40,"\u5feb\u901f\u90e8\u7f72\u96c6\u7fa4":40,"\u6027\u4ef7\u6bd4":25,"\u6027\u522b":[51,52],"\u6027\u80fd\u5206\u6790":33,"\u6027\u80fd\u5206\u6790\u5de5\u5177\u662f\u7528\u4e8e\u7ed9\u5e94\u7528\u7a0b\u5e8f\u7684\u6027\u80fd\u505a\u5b9a\u91cf\u5206\u6790\u7684":33,"\u6027\u80fd\u5206\u6790\u662f\u6027\u80fd\u4f18\u5316\u7684\u5173\u952e\u4e00\u6b65":33,"\u6027\u80fd\u8c03\u4f18":35,"\u603b\u4f53\u6765\u8bf4":25,"\u603b\u8ba1\u7684\u53c2\u6570\u4e2a\u6570":46,"\u603b\u8bc4\u520610\u5206":54,"\u6050\u6016\u7247":51,"\u60a8\u4f1a\u5728\u63a5\u4e0b\u6765\u7684\u90e8\u5206\u4e2d\u83b7\u5f97\u66f4\u591a\u7684\u7ec6\u8282\u4ecb\u7ecd":33,"\u60a8\u53ef\u4ee5\u4efb\u610f\u4f7f\u7528\u4e00\u4e2a\u6216\u4e24\u4e2a\u6765\u5bf9\u611f\u5174\u8da3\u7684\u4ee3\u7801\u6bb5\u505a\u6027\u80fd\u5206\u6790":33,"\u60a8\u53ef\u4ee5\u4f7f\u7528":20,"\u60a8\u53ef\u4ee5\u5bfc\u5165":33,"\u60a8\u53ef\u4ee5\u91c7\u7528\u4e0b\u9762\u4e94\u4e2a\u6b65\u9aa4":33,"\u60a8\u5c06\u4e86\u89e3\u5982\u4f55":28,"\u60a8\u5c31\u53ef\u4ee5\u8fdc\u7a0b\u7684\u4f7f\u7528paddlepaddle\u5566":20,"\u60a8\u5c31\u80fd\u83b7\u5f97\u5982\u4e0b\u7684\u5206\u6790\u7ed3\u679c":33,"\u60a8\u6309\u5982\u4e0b\u6b65\u9aa4\u64cd\u4f5c\u5373\u53ef":33,"\u60a8\u6700\u597d\u5148\u786e\u8ba4":33,"\u60a8\u9700\u8981\u5728\u673a\u5668\u4e2d\u5b89\u88c5\u597ddocker":20,"\u60a8\u9700\u8981\u8fdb\u5165\u955c\u50cf\u8fd0\u884cpaddlepaddl":20,"\u60a8\u9996\u5148\u9700\u8981\u5728\u76f8\u5173\u4ee3\u7801\u6bb5\u4e2d\u52a0\u5165":33,"\u60ac\u7591\u7247":51,"\u60c5\u6001\u52a8\u8bcd":53,"\u60c5\u611f\u5206\u6790":49,"\u60c5\u611f\u5206\u6790\u4e5f\u5e38\u7528\u4e8e\u57fa\u4e8e\u5927\u91cf\u8bc4\u8bba\u548c\u4e2a\u4eba\u535a\u5ba2\u6765\u76d1\u63a7\u793e\u4f1a\u5a92\u4f53":54,"\u60c5\u611f\u5206\u6790\u662f\u81ea\u7136\u8bed\u8a00\u7406\u89e3\u4e2d\u6700\u5178\u578b\u7684\u95ee\u9898\u4e4b\u4e00":54,"\u60c5\u611f\u5206\u6790\u6709\u8bb8\u591a\u5e94\u7528\u573a\u666f":54,"\u60ca\u9669\u7535\u5f71":51,"\u60f3\u4e86\u89e3\u66f4\u591a\u7ec6\u8282\u53ef\u4ee5\u53c2\u8003pydataprovider\u90e8\u5206\u7684\u6587\u6863":54,"\u60f3\u8981\u8fd0\u884cpaddlepaddl":20,"\u610f\u5473\u7740\u4e0d\u540c\u65f6\u95f4\u6b65\u7684\u8f93\u5165\u90fd\u662f\u76f8\u540c\u7684\u503c":28,"\u610f\u601d\u662f\u4e0d\u4f7f\u7528\u5e73\u5747\u53c2\u6570\u6267\u884c\u6d4b\u8bd5":36,"\u610f\u601d\u662f\u4e0d\u4fdd\u5b58\u7ed3\u679c":36,"\u610f\u601d\u662f\u4f7f\u7528\u7b2ctest":36,"\u610f\u601d\u662f\u5728gpu\u6a21\u5f0f\u4e0b\u4f7f\u75284\u4e2agpu":36,"\u611f\u89c9":25,"\u620f\u5267":51,"\u6210\u529f\u8bad\u7ec3\u4e14\u9000\u51fa\u7684pod\u6570\u76ee\u4e3a3\u65f6":42,"\u6211\u4eec\u4e0d\u80fd\u901a\u8fc7\u5e38\u89c4\u7684\u68af\u5ea6\u68c0\u67e5\u7684\u65b9\u5f0f\u6765\u8ba1\u7b97\u68af\u5ea6":30,"\u6211\u4eec\u4e3a\u7528\u6237\u5b9a\u4ee5python\u63a5\u53e3\u6765\u914d\u7f6e\u7f51\u7edc":39,"\u6211\u4eec\u4e3b\u8981\u4f1a\u4ecb\u7ecdnvprof\u548cnvvp":33,"\u6211\u4eec\u4ec5\u4ec5\u662f\u5c06\u6bcf\u4e2a\u7279\u5f81\u79cd\u7c7b\u6620\u5c04\u5230\u4e00\u4e2a\u7279\u5f81\u5411\u91cf\u4e2d":52,"\u6211\u4eec\u4ec5\u6709\u4e00\u4e2a\u8f93\u5165":30,"\u6211\u4eec\u4ec5\u7528":52,"\u6211\u4eec\u4ecb\u7ecd\u5982\u4f55\u5728":41,"\u6211\u4eec\u4ecb\u7ecd\u5982\u4f55\u5728kubernetes\u96c6\u7fa4\u4e0a\u8fdb\u884c\u5206\u5e03\u5f0fpaddlepaddle\u8bad\u7ec3\u4f5c\u4e1a":42,"\u6211\u4eec\u4ece\u63d0\u524d\u7ed9\u5b9a\u7684\u7c7b\u522b\u96c6\u5408\u4e2d\u9009\u62e9\u5176\u6240\u5c5e\u7c7b\u522b":50,"\u6211\u4eec\u4ee5mnist\u624b\u5199\u8bc6\u522b\u4e3a\u4f8b":3,"\u6211\u4eec\u4f1a\u53d1\u73b0\u6570\u636e\u96c6":55,"\u6211\u4eec\u4f1a\u7ee7\u7eed\u4f7f\u7528\u73b0\u6709\u7684\u5185\u5b58\u5757":30,"\u6211\u4eec\u4f1a\u91cd\u65b0\u5206\u914d\u5185\u5b58":30,"\u6211\u4eec\u4f7f\u7528":[30,34,54],"\u6211\u4eec\u4f7f\u7528\u4e86":25,"\u6211\u4eec\u4f7f\u7528\u4e86\u4e00\u4e2a\u7f16\u89e3\u7801\u6a21\u578b\u7684\u6269\u5c55":55,"\u6211\u4eec\u4f7f\u7528\u4e86\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":54,"\u6211\u4eec\u4f7f\u7528\u5176\u4e2d\u7684":55,"\u6211\u4eec\u4f7f\u7528\u6700\u5927\u6982\u7387\u7684\u6807\u7b7e\u4f5c\u4e3a\u7ed3\u679c":53,"\u6211\u4eec\u4f7f\u7528\u96c6\u675f\u641c\u7d22":55,"\u6211\u4eec\u4f7f\u7528paddlepaddle\u5728ilsvrc\u7684\u9a8c\u8bc1\u96c6\u517150":48,"\u6211\u4eec\u5047\u8bbe\u4e00\u53f0\u673a\u5668\u4e0a\u67094\u4e2agpu":38,"\u6211\u4eec\u5047\u8bbe\u623f\u4ea7\u7684\u4ef7\u683c":18,"\u6211\u4eec\u5148\u4ece\u4e00\u6761\u968f\u673a\u7684\u76f4\u7ebf":18,"\u6211\u4eec\u51c6\u5907\u4e86\u4e00\u4e2a\u811a\u672c":47,"\u6211\u4eec\u53ea\u4f7f\u7528\u5df2\u7ecf\u6807\u6ce8\u8fc7\u7684\u8bad\u7ec3\u96c6\u548c\u6d4b\u8bd5\u96c6":54,"\u6211\u4eec\u53ea\u6240\u4ee5\u4f7f\u7528lstm\u6765\u6267\u884c\u8fd9\u4e2a\u4efb\u52a1\u662f\u56e0\u4e3a\u5176\u6539\u8fdb\u7684\u8bbe\u8ba1\u5e76\u4e14\u5177\u6709\u95e8\u673a\u5236":54,"\u6211\u4eec\u53ea\u6f14\u793a\u4e00\u4e2a\u5355\u673a\u4f5c\u4e1a":41,"\u6211\u4eec\u53ea\u9700\u8981\u4f7f\u7528lstm":25,"\u6211\u4eec\u53ea\u9700\u8981\u8fd0\u884c":50,"\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528":47,"\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u5b83\u6765\u751f\u6210\u5e8f\u5217":28,"\u6211\u4eec\u53ef\u4ee5\u5c06":34,"\u6211\u4eec\u53ef\u4ee5\u6309\u7167\u5982\u4e0b\u5c42\u6b21\u5b9a\u4e49\u975e\u5e8f\u5217":24,"\u6211\u4eec\u53ef\u4ee5\u751f\u6210":52,"\u6211\u4eec\u53ef\u4ee5\u76f4\u63a5\u89c2\u5bdf\u6a21\u578b\u7684\u53c2\u6570\u662f\u5426\u7b26\u5408\u9884\u671f\u6765\u8fdb\u884c\u68c0\u9a8c":18,"\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u5728\u76ee\u5f55":54,"\u6211\u4eec\u53ef\u4ee5\u8bbe\u8ba1\u642d\u5efa\u4e00\u4e2a\u7075\u6d3b\u7684":27,"\u6211\u4eec\u53ef\u4ee5\u8fd0\u884c\u4ee5\u4e0b\u547d\u4ee4\u6765\u505ableu\u8bc4\u4f30":55,"\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u4ee5\u4e0b\u547d\u4ee4\u6765\u8bad\u7ec3\u6a21\u578b":55,"\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u4ee5\u4e0b\u547d\u4ee4\u6765\u8fdb\u884c\u4ece\u6cd5\u8bed\u5230\u82f1\u8bed\u7684\u6587\u672c\u7ffb\u8bd1":55,"\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u5982\u4e0b\u547d\u4ee4\u8fdb\u884c\u9884\u5904\u7406\u5de5\u4f5c":47,"\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u65e5\u5fd7\u67e5\u770b\u5bb9\u5668\u8bad\u7ec3\u7684\u60c5\u51b5":42,"\u6211\u4eec\u57285\u5929\u91cc\u8bad\u7ec3\u4e8616\u4e2apass":55,"\u6211\u4eec\u5728\u51fd\u6570\u7684\u7ed3\u5c3e\u8fd4\u56de":28,"\u6211\u4eec\u5728\u62e5\u670950\u4e2a\u8282\u70b9\u7684\u96c6\u7fa4\u4e2d\u8bad\u7ec3\u6a21\u578b":55,"\u6211\u4eec\u5728\u8bad\u7ec3\u4e4b\u524d\u9700\u8981\u5e38\u89c1\u4e00\u4e2a\u6a21\u578b\u914d\u7f6e\u6587\u4ef6":55,"\u6211\u4eec\u5728initialzier\u51fd\u6570\u91cc\u521d\u59cb\u5316\u8bcd\u8868":50,"\u6211\u4eec\u5bf9\u6a21\u578b\u8fdb\u884c\u4e86\u4ee5\u4e0b\u66f4\u6539":28,"\u6211\u4eec\u5c06":[42,52],"\u6211\u4eec\u5c06\u4e00\u6bb5\u8bdd\u770b\u6210\u53e5\u5b50\u7684\u6570\u7ec4":25,"\u6211\u4eec\u5c06\u4ecb\u7ecd\u5982\u4f55\u542f\u52a8\u5206\u5e03\u5f0f\u8bad\u7ec3\u4f5c\u4e1a":41,"\u6211\u4eec\u5c06\u4ee5":[34,50],"\u6211\u4eec\u5c06\u4ee5\u6700\u57fa\u672c\u7684\u903b\u8f91\u56de\u5f52\u7f51\u7edc\u4f5c\u4e3a\u8d77\u70b9":50,"\u6211\u4eec\u5c06\u4f7f\u7528":28,"\u6211\u4eec\u5c06\u4f7f\u7528\u7b80\u5355\u7684":28,"\u6211\u4eec\u5c06\u4f7f\u7528cifar":47,"\u6211\u4eec\u5c06\u539f\u59cb\u6570\u636e\u7684\u6bcf\u4e00\u7ec4":25,"\u6211\u4eec\u5c06\u5728\u540e\u9762\u4ecb\u7ecd\u8bad\u7ec3\u548c\u9884\u6d4b\u6d41\u7a0b\u7684\u811a\u672c":50,"\u6211\u4eec\u5c06\u5b83\u4eec\u5212\u5206\u4e3a\u4e0d\u540c\u7684\u7c7b\u522b":35,"\u6211\u4eec\u5c06\u5bf9\u8fd9\u4e24\u4e2a\u6b65\u9aa4\u7ed9\u51fa\u4e86\u8be6\u7ec6\u7684\u89e3\u91ca":50,"\u6211\u4eec\u5c06\u653e\u7f6e\u4f9d\u8d56\u5e93":34,"\u6211\u4eec\u5c06\u8bad\u7ec3\u6587\u4ef6\u4e0e\u6570\u636e\u653e\u5728\u4e00\u4e2ajob":42,"\u6211\u4eec\u5c06\u8bc4\u5206\u5206\u6210\u4e24\u90e8\u5206":52,"\u6211\u4eec\u5c06\u9610\u91ca\u5982\u4f55\u5728\u96c6\u7fa4\u4e0a\u8fd0\u884c\u5206\u5e03\u5f0f":34,"\u6211\u4eec\u5c31\u53ef\u4ee5\u7740\u624b\u5bf9\u5206\u7c7b\u6a21\u578b\u8fdb\u884c\u8bad\u7ec3\u4e86":47,"\u6211\u4eec\u5c31\u53ef\u4ee5\u8bad\u7ec3\u6a21\u578b\u4e86":50,"\u6211\u4eec\u5c31\u53ef\u4ee5\u8fdb\u884c\u9884\u6d4b\u4e86":50,"\u6211\u4eec\u5c55\u793a\u5982\u4f55\u7528paddlepaddle\u89e3\u51b3":18,"\u6211\u4eec\u5df2\u7ecf\u5b9e\u73b0\u4e86\u5927\u591a\u6570\u5e38\u7528\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u67b6\u6784":28,"\u6211\u4eec\u5e0c\u671b\u80fd\u5728\u8fd9\u4e2a\u57fa\u7840\u4e0a\u4e0d\u65ad\u7684\u6539\u8fdb":0,"\u6211\u4eec\u5e0c\u671b\u80fd\u591f\u68c0\u9a8c\u6a21\u578b\u7684\u597d\u574f":18,"\u6211\u4eec\u5e94\u5f53\u4f1a\u5f97\u5230\u4e00\u4e2a\u540d\u4e3acifar":47,"\u6211\u4eec\u5efa\u8bae\u4f60\u4e3a\u4f60\u7684python\u5c01\u88c5\u5b9e\u73b0\u4e00\u4e2a":30,"\u6211\u4eec\u5efa\u8bae\u4f60\u5728\u5199\u65b0\u7f51\u7edc\u5c42\u65f6\u628a\u6d4b\u8bd5\u4ee3\u7801\u653e\u5165\u65b0\u7684\u6587\u4ef6\u4e2d":30,"\u6211\u4eec\u603b\u7ed3\u4e86\u5404\u4e2a\u7f51\u7edc\u7684\u590d\u6742\u5ea6\u548c\u6548\u679c":50,"\u6211\u4eec\u611f\u8c22":55,"\u6211\u4eec\u63a8\u8350\u4f7f\u7528\u6700\u65b0\u7248\u672c\u7684cudnn":19,"\u6211\u4eec\u63a8\u8350\u4f7f\u7528docker\u955c\u50cf\u6765\u90e8\u7f72\u73af\u5883":21,"\u6211\u4eec\u63d0\u4f9b\u4e24\u4e2a\u7f51\u7edc":54,"\u6211\u4eec\u63d0\u4f9b\u4e8612\u4e2a":20,"\u6211\u4eec\u63d0\u4f9b\u4e86\u4e00\u4e2a\u6570\u636e\u9884\u5904\u7406\u811a\u672c":54,"\u6211\u4eec\u63d0\u4f9b\u4e86\u4e00\u4e2a\u793a\u4f8b\u811a\u672c":48,"\u6211\u4eec\u63d0\u4f9b\u4e86\u811a\u672c\u6765\u6784\u5efa\u5b57\u5178\u548c\u9884\u5904\u7406\u6570\u6910":54,"\u6211\u4eec\u63d0\u4f9b\u4e86c":48,"\u6211\u4eec\u63d0\u4f9b\u4e86python\u5904\u7406\u6570\u636e\u7684\u63a5\u53e3":39,"\u6211\u4eec\u662f\u5bf9\u6bcf\u4e00\u4e2a\u5b50\u5e8f\u5217\u53d6\u6700\u540e\u4e00\u4e2a\u5143\u7d20":25,"\u6211\u4eec\u6709\u4e00\u4e2a\u5e8f\u5217\u4f5c\u4e3a\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u72b6\u6001":28,"\u6211\u4eec\u7528":51,"\u6211\u4eec\u7528\u4ee5\u4e0b\u7684\u4e00\u4e9b":52,"\u6211\u4eec\u7528\u7f16\u53f7\u4f5c\u4e3akei":52,"\u6211\u4eec\u7528paddlepaddle\u89e3\u51b3\u4e86\u5355\u53d8\u91cf\u7ebf\u6027\u56de\u5f52\u95ee\u9898":18,"\u6211\u4eec\u7684\u5b57\u5178\u4f7f\u7528\u5185\u90e8\u7684\u5206\u8bcd\u5de5\u5177\u5bf9\u767e\u5ea6\u77e5\u9053\u548c\u767e\u5ea6\u767e\u79d1\u7684\u8bed\u6599\u8fdb\u884c\u5206\u8bcd\u540e\u4ea7\u751f":46,"\u6211\u4eec\u7684\u8bad\u7ec3\u66f2\u7ebf\u5982\u4e0b":53,"\u6211\u4eec\u770b\u4e00\u4e0b\u5355\u5c42rnn\u7684\u914d\u7f6e":25,"\u6211\u4eec\u770b\u4e00\u4e0b\u8bed\u4e49\u76f8\u540c\u7684\u53cc\u5c42rnn\u7684\u7f51\u7edc\u914d\u7f6e":25,"\u6211\u4eec\u771f\u8bda\u5730\u611f\u8c22\u60a8\u7684\u5173\u6ce8":54,"\u6211\u4eec\u771f\u8bda\u5730\u611f\u8c22\u60a8\u7684\u8d21\u732e":29,"\u6211\u4eec\u79f0\u4e4b\u4e3a\u4e00\u4e2a0\u5c42\u7684\u5e8f\u5217":24,"\u6211\u4eec\u8fd8\u53ef\u4ee5\u767b\u5f55\u5230\u5bbf\u4e3b\u673a\u4e0a\u67e5\u770b\u8bad\u7ec3\u7ed3\u679c":41,"\u6211\u4eec\u8fd8\u5c06\u7f16\u7801\u5411\u91cf\u6295\u5c04\u5230":28,"\u6211\u4eec\u9009\u53d6\u5355\u53cc\u5c42\u5e8f\u5217\u914d\u7f6e\u4e2d\u7684\u4e0d\u540c\u90e8\u5206":25,"\u6211\u4eec\u901a\u5e38\u5728\u6240\u6709\u8282\u70b9\u4e0a\u521b\u5efa\u4e00\u4e2a":34,"\u6211\u4eec\u901a\u5e38\u5c06\u4e00\u53e5\u8bdd\u7406\u89e3\u6210\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":25,"\u6211\u4eec\u901a\u8fc7\u8bfb\u53d6":42,"\u6211\u4eec\u9075\u5faa":55,"\u6211\u4eec\u91c7\u7528\u4e0a\u9762\u7684\u7279\u5f81\u6a21\u677f":53,"\u6211\u4eec\u91c7\u7528\u5355\u5c42lstm\u6a21\u578b":50,"\u6211\u4eec\u9700\u8981\u5148\u521b\u5efa\u4e00\u4e2a\u6a21\u578b\u914d\u7f6e\u6587\u4ef6":47,"\u6211\u4eec\u9700\u8981\u521b\u5efa\u6a21\u578b\u914d\u7f6e\u6587\u4ef6":55,"\u6211\u4eec\u9700\u8981\u5236\u4f5c\u4e00\u4e2a\u5305\u542b\u8bad\u7ec3\u6570\u636e\u7684paddle\u955c\u50cf":41,"\u6211\u4eec\u9700\u8981\u5728\u96c6\u7fa4\u7684\u6240\u6709\u8282\u70b9\u4e0a\u5b89\u88c5":34,"\u6211\u4eec\u9700\u8981\u8ba1\u7b97":30,"\u6211\u4eec\u9700\u8981\u8bbe\u7f6e":52,"\u6211\u4eec\u9700\u8981\u9884\u5904\u7406\u6570\u6910\u5e76\u6784\u5efa\u4e00\u4e2a\u5b57\u5178":54,"\u6211\u4eec\u975e\u5e38\u6b22\u8fce\u60a8\u7528paddlepaddle\u6784\u5efa\u66f4\u597d\u7684\u793a\u4f8b":52,"\u6211\u4eec\u9884\u8bad\u7ec3\u5f97\u52304\u79cd\u4e0d\u540c\u7ef4\u5ea6\u7684\u8bcd\u5411\u91cf":46,"\u6211\u4eec\u9996\u5148\u5904\u7406\u7535\u5f71\u6216\u7528\u6237\u7684\u7279\u5f81\u6587\u4ef6":52,"\u6211\u4eec\u9ed8\u8ba4\u4f7f\u7528imdb\u7684\u6d4b\u8bd5\u6570\u636e\u96c6\u4f5c\u4e3a\u9a8c\u8bc1":54,"\u6216":[3,33,39,47,53],"\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":24,"\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":24,"\u6216\u4e00\u4e2a\u5411\u91cf":27,"\u6216\u4e0d\u786e\u5b9a":51,"\u6216\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":24,"\u6216\u53ea\u662f\u76f4\u63a5\u5728\u547d\u4ee4\u884c\u8f93\u5165":29,"\u6216\u662f\u624b\u52a8\u7f16\u8f91\u751f\u6210":52,"\u6216\u6700\u5927\u503c":24,"\u6216\u6d4b\u8bd5\u6587\u4ef6\u5217\u8868":2,"\u6216\u79f0pserver":39,"\u6216\u7b2c\u4e00\u4e2a":24,"\u6216\u7b2c\u4e00\u4e2a\u5143\u7d20":24,"\u6216\u8005":[17,20,22,24,25,33,39],"\u6216\u8005\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":27,"\u6216\u8005\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":[24,27],"\u6216\u8005\u4ece\u5de5\u5177\u7684\u754c\u9762\u91cc\u8fd0\u884c\u60a8\u7684\u5e94\u7528":33,"\u6216\u8005\u53cd\u5411\u5730\u4ece":28,"\u6216\u8005\u5728cpu\u6a21\u5f0f\u4e0b\u4f7f\u75284\u4e2a\u7ebf\u7a0b":36,"\u6216\u8005\u5df2\u7ecf\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u81ea\u52a8\u8bbe\u7f6e":35,"\u6216\u8005\u6570\u636e\u5e93\u8fde\u63a5\u8def\u5f84\u7b49":2,"\u6216\u8005\u6570\u7ec4\u7684\u6570\u7ec4\u8fd9\u4e2a\u6982\u5ff5":25,"\u6216\u8005\u662f\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":24,"\u6216\u8005\u662f\u4e00\u4e2a\u5c0f\u7684\u6587\u672c\u7247\u6bb5":54,"\u6216\u8005\u662f\u51fd\u6570\u8c03\u7528\u7684\u9891\u7387\u548c\u8017\u65f6\u7b49":33,"\u6216\u8005\u66f4\u65e9":17,"\u6216\u8005\u6bcf\u4e00\u4e2a\u7cfb\u5217\u91cc\u7684\u7279\u5f81\u6570\u636e":25,"\u6216\u8005\u76f4\u63a5\u4f7f\u7528\u4e0b\u9762\u7684shell\u547d\u4ee4":48,"\u6216\u8005\u76f4\u63a5\u6254\u6389\u975e\u5e38\u957f\u7684\u5e8f\u5217":17,"\u6216\u8005\u91c7\u7528\u5e76\u884c\u8ba1\u7b97\u6765\u52a0\u901f\u67d0\u4e9b\u5c42\u7684\u66f4\u65b0":38,"\u6216\u8005\u9700\u8981\u66f4\u9ad8\u7684\u6548\u7387":2,"\u6216\u8005\u9ad8\u6027\u80fd\u7684":20,"\u6216\u8bbe\u7f6e\u4e3anone":2,"\u6216gpu":36,"\u6216gpu\u4e2a\u6570":54,"\u6218\u4e89\u7247":51,"\u623f":25,"\u623f\u95f4":25,"\u6240\u4ee5":[3,17,39],"\u6240\u4ee5\u4e00\u822c\u9700\u8981\u5bf9\u8bad\u7ec3\u7528\u7684\u6a21\u578b\u914d\u7f6e\u6587\u4ef6\u7a0d\u4f5c\u76f8\u5e94\u4fee\u6539\u624d\u80fd\u5728\u9884\u6d4b\u65f6\u4f7f\u7528":5,"\u6240\u4ee5\u4f60\u53ea\u7528\u6309\u4e0b\u9762\u7684\u7ed3\u6784\u6765\u7ec4\u7ec7\u6570\u6910\u5c31\u884c\u4e86":54,"\u6240\u4ee5\u505a\u6cd5\u53ef\u4ee5\u6709\u4e24\u79cd":17,"\u6240\u4ee5\u53ef\u4ee5\u5229\u7528\u5982\u4e0b\u65b9\u6cd5\u8bfb\u53d6\u6a21\u578b\u7684\u53c2\u6570":18,"\u6240\u4ee5\u53ef\u4ee5\u7b80\u5316\u5bf9\u73af\u5883\u7684\u8981\u6c42":41,"\u6240\u4ee5\u5728cpu\u7684\u8fd0\u7b97\u6027\u80fd\u4e0a\u5e76\u4e0d\u4f1a\u6709\u4e25\u91cd\u7684\u5f71\u54cd":20,"\u6240\u4ee5\u5916\u5c42\u8f93\u51fa\u7684\u5e8f\u5217\u5f62\u72b6":25,"\u6240\u4ee5\u5982\u679c\u60f3\u8981\u5728\u540e\u53f0\u542f\u7528ssh":20,"\u6240\u4ee5\u5b83\u4eec\u4f7f\u7528\u540c\u4e00\u4e2aip\u5730\u5740":40,"\u6240\u4ee5\u5bf9":25,"\u6240\u4ee5\u5f88\u591a\u65f6\u5019\u4f60\u9700\u8981\u505a\u7684\u53ea\u662f\u5b9a\u4e49\u6b63\u786e\u7684\u7f51\u7edc\u5c42\u5e76\u628a\u5b83\u4eec\u8fde\u63a5\u8d77\u6765":18,"\u6240\u4ee5\u6027\u80fd\u4e5f\u5c31\u9010\u6b65\u53d8\u6210\u4e86\u6df1\u5ea6\u5b66\u4e60\u9886\u57df\u6700\u91cd\u8981\u7684\u6307\u6807":33,"\u6240\u4ee5\u6211\u4eec\u4f7f\u7528\u8fd9\u4e2a\u955c\u50cf\u6765\u4e0b\u8f7d\u8bad\u7ec3\u6570\u636e\u5230docker":41,"\u6240\u4ee5\u6211\u4eec\u53ef\u4ee5\u5728\u8fd9\u4e2a\u57fa\u7840\u4e0a":42,"\u6240\u4ee5\u6211\u4eec\u63a8\u8350\u4f7f\u7528\u57fa\u4e8edocker\u6765\u6784\u5efapaddlepaddle\u7684\u6587\u6863":31,"\u6240\u4ee5\u6211\u4eec\u9700\u8981\u5c06\u8f93\u5165\u6570\u636e\u6807\u8bb0\u6210":25,"\u6240\u4ee5\u63a8\u8350\u4f7f\u7528\u663e\u5f0f\u6307\u5b9a\u7684\u65b9\u5f0f\u6765\u8bbe\u7f6einput_typ":3,"\u6240\u4ee5\u653e\u4e00\u4e2a\u7a7a\u5217\u8868":18,"\u6240\u4ee5\u8bad\u7ec3":34,"\u6240\u4ee5\u8f93\u51fa\u7684value\u5305\u542b\u4e24\u4e2a\u5411\u91cf":5,"\u6240\u4ee5\u8fd9\u4e00\u6b65\u662f\u5fc5\u8981\u7684":30,"\u6240\u4ee5gpu\u5728\u8fd0\u7b97\u6027\u80fd\u4e0a\u4e5f\u4e0d\u4f1a\u6709\u4e25\u91cd\u7684\u5f71\u54cd":20,"\u6240\u5bf9\u5e94\u7684\u8bcd\u8868index\u6570\u7ec4":25,"\u6240\u6709\u4ee3\u7801\u5fc5\u987b\u5177\u6709\u5355\u5143\u6d4b\u8bd5":29,"\u6240\u6709\u53c2\u6570\u7f6e\u4e3a\u96f6":36,"\u6240\u6709\u540c\u76ee\u5f55\u4e0b\u7684\u6587\u672c\u5b9e\u4f8b\u6587\u4ef6\u90fd\u662f\u540c\u7ea7\u522b\u7684":54,"\u6240\u6709\u547d\u4ee4\u884c\u9009\u9879\u53ef\u4ee5\u8bbe\u7f6e\u4e3a":34,"\u6240\u6709\u6587\u4ef6\u5217\u8868":3,"\u6240\u6709\u672c\u5730\u8bad\u7ec3":34,"\u6240\u6709\u6807\u8bb0\u7684\u6d4b\u8bd5\u96c6\u548c\u8bad\u7ec3\u96c6":54,"\u6240\u6709\u7684":30,"\u6240\u6709\u7684\u4eba\u53e3\u7edf\u8ba1\u5b66\u4fe1\u606f\u7531\u7528\u6237\u81ea\u613f\u63d0\u4f9b":51,"\u6240\u6709\u7684\u5355\u6d4b\u90fd\u4f1a\u88ab\u6267\u884c\u4e00\u6b21":30,"\u6240\u6709\u7684\u64cd\u4f5c\u90fd\u662f\u9488\u5bf9\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u6765\u8fdb\u884c\u7684":25,"\u6240\u6709\u7684\u7528\u6237\u4fe1\u606f\u90fd\u5305\u542b\u5728":51,"\u6240\u6709\u7684\u7535\u5f71\u4fe1\u606f\u90fd\u5305\u542b\u5728":51,"\u6240\u6709\u7684\u8bc4\u5206\u6570\u636e\u90fd\u5305\u542b\u5728":51,"\u6240\u6709\u7684python\u5c01\u88c5\u90fd\u4f7f\u7528":30,"\u6240\u6709\u7684python\u5c01\u88c5\u90fd\u5728":30,"\u6240\u6709\u7f51\u7edc\u5c42\u7684\u68af\u5ea6\u68c0\u67e5\u5355\u6d4b\u90fd\u4f4d\u4e8e":30,"\u6240\u6709\u8282\u70b9\u8fd0\u884c\u96c6\u7fa4\u4f5c\u4e1a\u7684\u4e3b\u673a\u540d\u6216":34,"\u6240\u6709\u8d21\u732e\u8005":0,"\u6240\u6709\u8f93\u5165\u5e8f\u5217\u5e94\u8be5\u6709\u76f8\u540c\u7684\u957f\u5ea6":28,"\u6240\u6709\u914d\u7f6e\u90fd\u80fd\u5728":50,"\u6240\u6784\u5efa\u7f51\u7edc\u7ed3\u6784\u7684\u7684\u6df1\u5ea6\u6bd4\u4e4b\u524d\u4f7f\u7528\u7684\u7f51\u7edc\u6709\u5927\u5e45\u5ea6\u7684\u63d0\u9ad8":48,"\u6240\u793a":53,"\u6240\u8c13\u65f6\u95f4\u6b65\u4fe1\u606f":3,"\u624b\u5de5\u827a\u8005":51,"\u624d\u4f1a\u91ca\u653e\u8be5\u6bb5\u5185\u5b58":3,"\u624d\u4f1astop":3,"\u624d\u80fd\u4fdd\u8bc1\u548c\u5355\u5c42\u5e8f\u5217\u7684\u914d\u7f6e\u4e2d":25,"\u624d\u80fd\u53d1\u6325\u5176\u5168\u90e8\u80fd\u529b":33,"\u6253\u5370\u5728\u5c4f\u5e55\u4e0a":52,"\u6253\u5370\u7684\u65e5\u5fd7\u53d8\u591a":19,"\u6253\u5f00":33,"\u6253\u5f00\u6587\u672c\u6587\u4ef6":3,"\u6253\u5f00\u6d4f\u89c8\u5668\u8bbf\u95ee\u5bf9\u5e94\u76ee\u5f55\u4e0b\u7684index":31,"\u6267\u884c":[22,53,54],"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u5c31\u53ef\u4ee5\u9884\u5904\u7406\u6570\u6910":54,"\u6267\u884c\u4ee5\u4e0b\u64cd\u4f5c":28,"\u6267\u884c\u5982\u4e0b\u547d\u4ee4\u5373\u53ef\u4ee5\u5173\u95ed\u8fd9\u4e2acontain":20,"\u6267\u884c\u60a8\u7684\u4ee3\u7801":33,"\u6267\u884c\u65b9\u6cd5\u5982\u4e0b":20,"\u6267\u884c\u7684\u547d\u4ee4\u5982\u4e0b":48,"\u6269\u5c55\u548c\u5ef6\u4f38":0,"\u6269\u5c55\u673a\u5236\u7b49\u529f\u80fd":40,"\u6279\u6b21\u540e\u6253\u5370\u65e5\u5fd7":52,"\u6279\u6b21\u5bf9\u5e73\u5747\u53c2\u6570\u8fdb\u884c\u6d4b\u8bd5":53,"\u6279\u6b21\u7684\u6570\u636e":52,"\u627e\u5230":28,"\u627e\u5230\u8fd0\u884c\u6162\u7684\u539f\u56e0":33,"\u627e\u5230\u8fd0\u884c\u6162\u7684\u90e8\u5206":33,"\u6280\u672f\u5458":51,"\u628a":30,"\u628a\u7528\u6237\u5728\u8d2d\u7269\u7f51\u7ad9":54,"\u628a\u8bad\u7ec3\u6570\u636e\u76f4\u63a5\u653e\u5728":41,"\u6293\u53d6\u4ea7\u54c1\u7684\u7528\u6237\u8bc4\u8bba\u5e76\u5206\u6790\u4ed6\u4eec\u7684\u60c5\u611f":54,"\u6295\u5c04\u53cd\u5411rnn\u7684\u7b2c\u4e00\u4e2a\u5b9e\u4f8b\u5230":28,"\u6295\u5c04\u7f16\u7801\u5411\u91cf\u5230":28,"\u62a5\u9519":22,"\u62bd\u53d6\u51fa\u7684\u65b0\u8bcd\u8868\u7684\u4fdd\u5b58\u8def\u5f84":46,"\u62bd\u53d6\u5bf9\u5e94\u7684\u8bcd\u5411\u91cf\u6784\u6210\u65b0\u7684\u8bcd\u8868":46,"\u62c6\u5206\u5230\u4e0d\u540c\u6587\u4ef6\u5939":55,"\u62c6\u89e3":27,"\u62c6\u89e3\u6210\u7684\u6bcf\u4e00\u53e5\u8bdd\u518d\u901a\u8fc7\u4e00\u4e2alstm\u7f51\u7edc":25,"\u62f7\u8d1d\u8bad\u7ec3\u6587\u4ef6\u5230\u5bb9\u5668\u5185":42,"\u62fc\u63a5\u6210\u4e00\u4e2a\u65b0\u7684\u5411\u91cf":50,"\u6307\u4ee4\u96c6":20,"\u6307\u5411\u4e00\u4e2alayer":27,"\u6307\u5b9a":[17,27,28,39],"\u6307\u5b9a\u4e00\u53f0\u673a\u5668\u4e0a\u4f7f\u7528\u7684\u7ebf\u7a0b\u6570":36,"\u6307\u5b9a\u4e86dataprovider\u7684\u6587\u4ef6\u540d\u548c\u8fd4\u56de\u6570\u636e\u7684\u51fd\u6570\u540d":39,"\u6307\u5b9a\u4ee5\u592a\u7f51\u7c7b\u578b\u4e3atcp\u7f51\u7edc":39,"\u6307\u5b9a\u4f7f\u75282":17,"\u6307\u5b9a\u521d\u59cb\u5316\u6a21\u578b\u8def\u5f84":50,"\u6307\u5b9a\u52a0\u8f7d\u7684\u65b9\u5f0f":36,"\u6307\u5b9a\u5de5\u4f5c\u6a21\u578b\u8fdb\u884c\u9884\u6d4b":48,"\u6307\u5b9a\u5de5\u4f5c\u6a21\u5f0f\u6765\u63d0\u53d6\u7279\u5f81":48,"\u6307\u5b9a\u63d0\u53d6\u7279\u5f81\u7684\u5c42":48,"\u6307\u5b9a\u662f\u5426\u4f7f\u7528gpu":48,"\u6307\u5b9a\u751f\u6210\u6570\u636e\u7684\u51fd\u6570":50,"\u6307\u5b9a\u7684\u5b57\u5178\u5355\u8bcd\u6570":55,"\u6307\u5b9a\u7684\u6570\u636e\u5c06\u4f1a\u88ab\u6d4b\u8bd5":50,"\u6307\u5b9a\u7684\u8f93\u5165\u4e0d\u4f1a\u88ab":27,"\u6307\u5b9a\u7f51\u7edc\u63a5\u53e3\u540d\u5b57\u4e3aeth0":39,"\u6307\u5b9a\u8bad\u7ec3\u6570\u636e\u548c\u6d4b\u8bd5\u6570\u636e":50,"\u6307\u5b9abatch":55,"\u6307\u5b9acudnn\u7684\u6700\u5927\u5de5\u4f5c\u7a7a\u95f4\u5bb9\u9650":36,"\u6307\u5bf9\u4e8e\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217\u8f93\u5165\u6570\u636e":25,"\u6307\u793a\u4f7f\u7528\u54ea\u4e2agpu\u6838":36,"\u6307\u793a\u5728\u7b80\u5355\u7684recurrentlayer\u5c42\u7684\u8ba1\u7b97\u4e2d\u662f\u5426\u4f7f\u7528\u6279\u5904\u7406\u65b9\u6cd5":36,"\u6307\u793a\u5f53\u6307\u5b9a\u8f6e\u7684\u6d4b\u8bd5\u6a21\u578b\u4e0d\u5b58\u5728\u65f6":36,"\u6307\u793a\u662f\u5426\u4f7f\u7528\u5916\u90e8\u673a\u5668\u8fdb\u884c\u5ea6\u91cf\u5b66\u4e60":36,"\u6307\u793a\u662f\u5426\u4f7f\u7528\u591a\u7ebf\u7a0b\u6765\u8ba1\u7b97\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc":36,"\u6307\u793a\u662f\u5426\u5f00\u542f\u53c2\u6570\u670d\u52a1\u5668":36,"\u6307\u793a\u662f\u5426\u663e\u793a\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u7684\u7a00\u758f\u53c2\u6570\u5206\u5e03\u7684\u65e5\u5fd7\u7ec6\u8282":36,"\u6307\u793a\u662f\u5426\u68c0\u67e5\u6240\u6709\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u7684\u7a00\u758f\u53c2\u6570\u7684\u5206\u5e03\u662f\u5747\u5300\u7684":36,"\u6307\u793a\u6d4b\u8bd5\u4efb\u52a1":53,"\u6307\u793a\u6d4b\u8bd5\u4efb\u52a1\u7684\u6807\u8bb0":53,"\u6309\u542f\u53d1\u5f0f\u635f\u5931\u7684\u5927\u5c0f\u9012\u589e\u6392\u5e8f":36,"\u6309\u7167\u4e0b\u9762\u6b65\u9aa4\u5373\u53ef":42,"\u6309\u94ae":29,"\u633a":25,"\u633a\u597d":25,"\u6355\u83b7":50,"\u635f\u5931\u51fd\u6570":39,"\u635f\u5931\u51fd\u6570\u5373\u4e3a\u7f51\u7edc\u7684\u4f18\u5316\u76ee\u6807":39,"\u635f\u5931\u51fd\u6570\u548c\u8bc4\u4f30\u5668":39,"\u6362":25,"\u6392\u6210\u4e00\u5217\u7684\u591a\u4e2a\u5143\u7d20":24,"\u63a5\u4e0b\u6765":[50,54],"\u63a5\u4e0b\u6765\u53ef\u4ee5\u8003\u8651\u4e0b\u65f6\u95f4\u7ebf\u7684\u5206\u6790":33,"\u63a5\u4e0b\u6765\u5c31\u53ef\u4ee5\u4f7f\u7528":33,"\u63a5\u4e0b\u6765\u6211\u4eec\u5c06\u5c55\u793a\u5982\u4f55\u7528paddlepaddle\u8bad\u7ec3\u4e00\u4e2a\u6587\u672c\u5206\u7c7b\u6a21\u578b":50,"\u63a5\u53d7":53,"\u63a5\u53d7\u7684\u4e1c\u897f":53,"\u63a5\u53d7\u8005":53,"\u63a5\u53e3\u540d\u79f0":34,"\u63a5\u53e3\u63d0\u53d6\u7684\u7ed3\u679c\u662f\u4e00\u81f4\u7684":48,"\u63a5\u53e3\u6709\u4e00\u4e2a":17,"\u63a5\u53e3\u6765\u52a0\u8f7d\u6570\u636e":50,"\u63a5\u53e3\u6765\u52a0\u8f7d\u8be5\u6587\u4ef6":48,"\u63a5\u53e3\u6765\u6253\u5f00\u8be5\u6587\u4ef6":48,"\u63a5\u53e3\u8bbe\u7f6e\u795e\u7ecf\u7f51\u7edc\u6240\u4f7f\u7528\u7684\u8bad\u7ec3\u53c2\u6570\u548c":39,"\u63a7\u5236":36,"\u63a7\u5236\u5982\u4f55\u6539\u53d8\u6a21\u578b\u53c2\u6570":18,"\u63a8\u5bfc\u8be5\u5c42\u524d\u5411\u548c\u540e\u5411\u4f20\u9012\u7684\u65b9\u7a0b":30,"\u63a8\u8350":25,"\u63a8\u8350\u4f7f\u7528":3,"\u63a8\u8350\u4f7f\u7528\u5c06\u672c\u5730\u7f51\u5361":20,"\u63a8\u8350\u6e05\u7406\u6574\u4e2a\u7f16\u8bd1\u76ee\u5f55":19,"\u63a8\u8350\u76f4\u63a5\u5b58\u653e\u5230\u8bad\u7ec3\u76ee\u5f55":2,"\u63a8\u8350\u7cfb\u7edf":34,"\u63a8\u9500\u5458":51,"\u63cf\u8ff0":19,"\u63cf\u8ff0\u7f51\u7edc\u7ed3\u6784\u548c\u4f18\u5316\u7b97\u6cd5":50,"\u63cf\u8ff0kubernetes\u4e0a\u8fd0\u884c\u7684\u4f5c\u4e1a":40,"\u63d0\u4ea4\u4f60\u7684\u4ee3\u7801":29,"\u63d0\u4ea4\u4f60\u7684\u4ee3\u7801\u65f6":29,"\u63d0\u4ea4\u4fe1\u606f\u7684\u7b2c\u4e00\u884c\u662f\u6807\u9898":29,"\u63d0\u4f9b":34,"\u63d0\u4f9b\u4e86\u4e00\u4e2a\u542f\u52a8\u811a\u672c":42,"\u63d0\u4f9b\u4e86\u547d\u4ee4\u6837\u4f8b\u6765\u8fd0\u884c":34,"\u63d0\u4f9b\u4e86\u81ea\u52a8\u5316\u811a\u672c\u6765\u542f\u52a8\u4e0d\u540c\u8282\u70b9\u4e2d\u7684\u6240\u6709":34,"\u63d0\u4f9b\u51e0\u4e4e\u6240\u6709\u8bad\u7ec3\u7684\u5185\u90e8\u8f93\u51fa\u65e5\u5fd7":34,"\u63d0\u4f9b\u6269\u5c55\u7684\u957f\u5ea6\u4fe1\u606f":24,"\u63d0\u4f9b\u8bad\u7ec3\u8fc7\u7a0b\u7684":34,"\u63d0\u51fa\u7684\u4ee3\u7801\u9700\u6c42":46,"\u63d0\u793a":17,"\u64cd\u4f5c":[25,39],"\u64cd\u6301\u5bb6\u52a1\u8005":51,"\u652f\u6301\u4e3b\u6d41x86\u5904\u7406\u5668\u5e73\u53f0":22,"\u652f\u6301\u5355\u673a\u6a21\u5f0f\u548c\u591a\u673a\u6a21\u5f0f":39,"\u652f\u6301\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165\u7684layer":[26,27],"\u652f\u6301nvidia":22,"\u652f\u6301rbd":40,"\u653e\u5728\u8fd9\u4e2a\u76ee\u5f55\u91cc\u7684\u6587\u4ef6\u5176\u5b9e\u662f\u4fdd\u5b58\u5230\u4e86mfs\u4e0a":42,"\u653e\u5fc3":25,"\u6545\u800c\u662f\u4e00\u4e2a\u5355\u5c42\u65f6\u95f4\u5e8f\u5217":25,"\u6548\u679c\u603b\u7ed3":50,"\u6559\u7a0b\u6587\u6863\u5230":34,"\u6559\u80b2\u5de5\u4f5c\u8005":51,"\u6570":[27,53],"\u6570\u5fc5\u987b\u4e25\u683c\u76f8\u7b49":27,"\u6570\u636e":55,"\u6570\u636e\u4e0b\u8f7d\u4e4b\u540e":47,"\u6570\u636e\u4e2d0":17,"\u6570\u636e\u5217\u8868":48,"\u6570\u636e\u5c06\u4fdd\u5b58\u5728":46,"\u6570\u636e\u5c42":[18,52],"\u6570\u636e\u5e94\u8be5\u5728\u542f\u52a8\u96c6\u7fa4\u4f5c\u4e1a\u4e4b\u524d\u51c6\u5907\u597d":34,"\u6570\u636e\u63d0\u4f9b\u5668":35,"\u6570\u636e\u63d0\u4f9b\u811a\u672c\u4ec5\u4ec5\u662f\u8bfb\u53d6meta":52,"\u6570\u636e\u63d0\u4f9b\u811a\u672c\u7684\u7ec6\u8282\u6587\u6863\u53ef\u4ee5\u53c2\u8003":52,"\u6570\u636e\u670d\u52a1\u5668":36,"\u6570\u636e\u7684\u6574\u6570id":28,"\u6570\u636e\u76ee\u5f55\u4e2d\u7684\u6240\u6709\u6587\u4ef6\u88ab":34,"\u6570\u636e\u7c7b\u578b":5,"\u6570\u636e\u7f13\u5b58\u7684\u7b56\u7565":3,"\u6570\u636e\u8bfb\u53d6\u7a0b\u5e8f\u5f80\u5f80\u5b9a\u4e49\u5728\u4e00\u4e2a\u5355\u72ecpython\u811a\u672c\u6587\u4ef6\u91cc":39,"\u6570\u636e\u8f93\u5165":27,"\u6570\u636e\u8f93\u5165\u683c\u5f0f":3,"\u6570\u636e\u96c6":51,"\u6570\u636e\u96c6\u63cf\u8ff0":52,"\u6570\u636e\u96c6\u6587\u4ef6\u5939\u540d\u79f0":55,"\u6570\u636e\u9884\u5904\u7406\u5b8c\u6210\u4e4b\u540e":50,"\u6570\u636e\u9884\u6d4b":53,"\u6570\u6910\u5b9a\u4e49":54,"\u6570\u6910\u8bf4\u660e\u6587\u6863":54,"\u6570\u6910\u96c6\u548c":54,"\u6570\u76ee":38,"\u6574\u4f53":25,"\u6574\u4f53\u6570\u636e\u548c\u539f\u59cb\u6570\u636e\u5b8c\u5168\u4e00\u6837":25,"\u6574\u4f53\u7684\u7ed3\u6784\u56fe\u5982\u4e0b":42,"\u6574\u6570":30,"\u6574\u6570\u6807\u7b7e":3,"\u6574\u6d01":25,"\u6587\u4e66\u5de5\u4f5c":51,"\u6587\u4ef6":[41,53],"\u6587\u4ef6\u4e2d":[42,48,51,53],"\u6587\u4ef6\u4e2d\u6307\u5b9a\u6a21\u578b\u8def\u5f84\u548c\u8f93\u51fa\u7684\u76ee\u5f55":48,"\u6587\u4ef6\u4e2d\u6307\u5b9a\u8981\u63d0\u53d6\u7279\u5f81\u7684\u7f51\u7edc\u5c42\u7684\u540d\u5b57":48,"\u6587\u4ef6\u4e2d\u7684":48,"\u6587\u4ef6\u4e2d\u7684\u6bcf\u884c\u90fd\u5fc5\u987b\u662f\u4e00\u4e2a\u53e5\u5b50":55,"\u6587\u4ef6\u4e3a":[17,55],"\u6587\u4ef6\u4e5f\u53ef\u4ee5\u7528\u4e8e\u5bf9\u6837\u672c\u8fdb\u884c\u9884\u6d4b":48,"\u6587\u4ef6\u5206\u5272\u4e3a\u8bad\u7ec3\u548c\u6d4b\u8bd5\u6587\u4ef6":52,"\u6587\u4ef6\u540d\u79f0\u4e3a":52,"\u6587\u4ef6\u59390":42,"\u6587\u4ef6\u5939\u4e2d\u7684\u6bcf\u4e2a\u6587\u4ef6\u7684\u6bcf\u4e00\u884c\u5305\u542b\u4e24\u90e8\u5206":55,"\u6587\u4ef6\u5f00\u5934":39,"\u6587\u4ef6\u7684\u5206\u9694\u7b26\u4e3a":52,"\u6587\u4ef6\u7684\u683c\u5f0f\u53ef\u4ee5":52,"\u6587\u4ef6\u7a0d\u6709\u5dee\u522b":47,"\u6587\u4ef6\u7d22\u5f15":34,"\u6587\u4ef6\u7ed9\u51fa\u4e86\u5b8c\u6574\u4f8b\u5b50":50,"\u6587\u4ef6model":38,"\u6587\u672c\u4e2d\u7684\u5355\u8bcd\u7528\u7a7a\u683c\u5206\u9694":50,"\u6587\u672c\u4fe1\u606f\u5c31\u662f\u4e00\u4e2a\u5e8f\u5217\u6570\u636e":3,"\u6587\u672c\u5206\u7c7b\u95ee\u9898":50,"\u6587\u672c\u5377\u79ef\u5206\u53ef\u4e3a\u4e09\u4e2a\u6b65\u9aa4":50,"\u6587\u672c\u5377\u79ef\u91c7\u6837\u5c42":52,"\u6587\u672c\u6295\u5f71\u5c42":52,"\u6587\u672c\u683c\u5f0f\u7684\u5b9e\u4f8b\u6587\u4ef6":54,"\u6587\u6863":[17,39],"\u6587\u6863\u81ea\u52a8\u5206\u7c7b\u548c\u95ee\u7b54":53,"\u6587\u6863\u90fd\u662f\u901a\u8fc7":31,"\u6587\u7ae0":42,"\u65b0":25,"\u65b0\u5efa\u4e00\u4e2a\u6743\u91cd":30,"\u65b0\u624b\u5165\u95e8":45,"\u65b9\u4fbf":25,"\u65b9\u4fbf\u4eca\u540e\u7684\u5d4c\u5165\u5f0f\u79fb\u690d\u5de5\u4f5c":19,"\u65b9\u5f0f1":17,"\u65b9\u5f0f2":17,"\u65b9\u6848\u6765\u6807\u8bb0\u6bcf\u4e2a\u53c2\u6570":53,"\u65b9\u6cd5\u4e00":38,"\u65b9\u6cd5\u4e09":38,"\u65b9\u6cd5\u4e8c":38,"\u65c1\u8fb9":25,"\u65c5\u6e38\u7f51\u7ad9":54,"\u65e0":25,"\u65e0\u4e1a\u4eba\u58eb":51,"\u65e0\u5ef6\u8fdf":36,"\u65e5\u5fd7\u5c06\u4fdd\u5b58\u5728":54,"\u65e8\u5728\u5efa\u7acb\u4e00\u4e2a\u53ef\u4ee5\u88ab\u534f\u540c\u8c03\u81f3\u6700\u4f18\u7ffb\u8bd1\u6548\u679c\u7684\u5355\u795e\u7ecf\u5143\u7f51\u7edc":55,"\u65e9\u9910":25,"\u65f6":[17,24,28,30,36,42],"\u65f6\u5019":25,"\u65f6\u52a0\u4e0a":54,"\u65f6\u5e8f\u6a21\u578b\u5747\u4f7f\u7528\u8be5\u811a\u672c":50,"\u65f6\u5e8f\u6a21\u578b\u662f\u6307\u6570\u636e\u7684\u67d0\u4e00\u7ef4\u5ea6\u662f\u4e00\u4e2a\u5e8f\u5217\u5f62\u5f0f":3,"\u65f6\u76ee\u6807\u8bed\u8a00\u7684\u6587\u4ef6":55,"\u65f6\u88ab\u8bad\u7ec3\u7684":30,"\u65f6\u8bbe\u5907id\u53f7\u7684\u5206\u914d":38,"\u65f6\u95f4":25,"\u65f6\u95f4\u6233":51,"\u65f6\u95f4\u6233\u8868\u793a\u4e3a\u4ece1970":51,"\u65f6\u95f4\u6b65\u7684\u6982\u5ff5":25,"\u6620\u5c04\u5230\u4e00\u4e2a\u7ef4\u5ea6\u4e3a":30,"\u662f":[19,25,39],"\u662f\u4e00\u4e2a\u51681\u7684\u5411\u91cf":30,"\u662f\u4e00\u4e2a\u5185\u7f6e\u7684\u5b9a\u65f6\u5668\u5c01\u88c5":33,"\u662f\u4e00\u4e2a\u52a8\u6001\u7a0b\u5e8f\u5206\u6790\u7684\u672f\u8bed":33,"\u662f\u4e00\u4e2a\u5305\u88c5\u6570\u636e\u7684":53,"\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":24,"\u662f\u4e00\u4e2a\u53cc\u5c42\u7684\u5e8f\u5217":24,"\u662f\u4e00\u4e2a\u5c01\u88c5\u5bf9\u8c61":33,"\u662f\u4e00\u4e2a\u5f88\u6709\u7528\u7684\u53c2\u6570":38,"\u662f\u4e00\u4e2a\u7b26\u5408\u9ad8\u65af\u5206\u5e03\u7684\u968f\u673a\u53d8\u91cf":18,"\u662f\u4e00\u4e2a\u7ec4\u5408\u5c42":39,"\u662f\u4e00\u4e2a\u7edf\u8ba1\u5b66\u7684\u673a\u5668\u7ffb\u8bd1\u7cfb\u7edf":55,"\u662f\u4e00\u4e2a\u914d\u7f6e\u6587\u4ef6\u7684\u4f8b\u5b50":54,"\u662f\u4e00\u4e2a\u975e\u7ebf\u6027\u7684":30,"\u662f\u4e00\u4e2apython\u7684":3,"\u662f\u4e00\u4e2aswig\u5c01\u88c5\u7684paddlepaddle\u5305":20,"\u662f\u4e00\u4e2aunbound":27,"\u662f\u4e00\u6761\u65f6\u95f4\u5e8f\u5217":3,"\u662f\u4e00\u79cd\u4efb\u610f\u590d\u6742\u7684rnn\u5355\u5143":27,"\u662f\u4e00\u7ec4":40,"\u662f\u4e0d\u5305\u62ec\u6e90\u7801\u7684":41,"\u662f\u4e0d\u662f\u5f88\u7b80\u5355\u5462":3,"\u662f\u4e0d\u662f\u8981\u5bf9\u6570\u636e\u505ashuffl":3,"\u662f\u4e3b\u5206\u652f":29,"\u662f\u4e3b\u8981\u7684\u53ef\u6267\u884cpython\u811a\u672c":53,"\u662f\u4ec0\u4e48\u4e5f\u6ca1\u5173\u7cfb":3,"\u662f\u4f17\u591a\u8bef\u5dee\u4ee3\u4ef7\u51fd\u6570\u5c42\u7684\u4e00\u79cd":18,"\u662f\u4f7f\u5f97\u8981\u5171\u4eab\u7684\u53c2\u6570\u4f7f\u7528\u540c\u6837\u7684":17,"\u662f\u504f\u5dee":28,"\u662f\u5176\u5927\u5c0f":18,"\u662f\u51e0\u4e4e\u4e0d\u5360\u5185\u5b58\u7684":3,"\u662f\u539f\u59cb\u6cd5\u8bed\u6587\u4ef6":55,"\u662f\u5411\u91cf":30,"\u662f\u5426\u4ee5\u9006\u5e8f\u5904\u7406\u8f93\u5165\u5e8f\u5217":27,"\u662f\u5426\u4f7f\u7528\u53cc\u7cbe\u5ea6\u6d6e\u70b9\u6570":19,"\u662f\u5426\u4f7f\u7528\u65e7\u7684remoteparameterupdat":36,"\u662f\u5426\u4f7f\u7528\u6743\u91cd":30,"\u662f\u5426\u4f7f\u7528gpu":52,"\u662f\u5426\u4f7f\u7528gpu\u8bad\u7ec3":55,"\u662f\u5426\u5141\u8bb8\u6682\u5b58\u7565\u5fae\u591a\u4f59pool_size\u7684\u6570\u636e":3,"\u662f\u5426\u5185\u5d4cpython\u89e3\u91ca\u5668":19,"\u662f\u5426\u5c06\u5168\u5c40\u79cd\u5b50\u5e94\u7528\u4e8e\u672c\u5730\u7ebf\u7a0b\u7684\u968f\u673a\u6570":36,"\u662f\u5426\u5f00\u542f\u5355\u5143\u6d4b\u8bd5":19,"\u662f\u5426\u5f00\u542f\u8ba1\u65f6\u529f\u80fd":19,"\u662f\u5426\u5f00\u542frdma":19,"\u662f\u5426\u6253\u5370\u7248\u672c\u4fe1\u606f":36,"\u662f\u5426\u652f\u6301gpu":19,"\u662f\u5426\u663e\u793a":36,"\u662f\u5426\u7a00\u758f":30,"\u662f\u5426\u7f16\u8bd1\u4e2d\u82f1\u6587\u6587\u6863":19,"\u662f\u5426\u7f16\u8bd1\u542b\u6709avx\u6307\u4ee4\u96c6\u7684paddlepaddle\u4e8c\u8fdb\u5236\u6587\u4ef6":19,"\u662f\u5426\u7f16\u8bd1\u65f6\u8fdb\u884c\u4ee3\u7801\u98ce\u683c\u68c0\u67e5":19,"\u662f\u5426\u7f16\u8bd1python\u7684swig\u63a5\u53e3":19,"\u662f\u5426\u8fd0\u884c\u65f6\u52a8\u6001\u52a0\u8f7dcuda\u52a8\u6001\u5e93":19,"\u662f\u5426\u9700\u8981\u7b49\u5f85\u8be5\u8f6e\u6a21\u578b\u53c2\u6570":36,"\u662f\u56e0\u4e3apaddle\u7684\u7f51\u7edc\u901a\u4fe1\u4e2d":39,"\u662f\u56e0\u4e3apaddlepaddle\u914d\u7f6e\u6587\u4ef6\u4e0ec":39,"\u662f\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u52a0\u8f7d\u5b57\u5178\u5e76\u5b9a\u4e49\u6570\u636e\u63d0\u4f9b\u7a0b\u5e8f\u6a21\u5757\u548c\u7f51\u7edc\u67b6\u6784\u7684\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6":53,"\u662f\u5728paddlepaddle\u4e2d\u6784\u9020\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u65f6\u6700\u91cd\u8981\u7684\u6982\u5ff5":28,"\u662f\u57fa\u7840\u7684\u8ba1\u7b97\u5355\u5143":18,"\u662f\u5b58\u6709\u4e00\u7cfb\u5217\u53d8\u6362\u77e9\u9635\u7684\u6743\u91cd":30,"\u662f\u5b58\u6709\u504f\u7f6e\u5411\u91cf\u7684\u6743\u91cd":30,"\u662f\u5e8f\u5217":52,"\u662f\u5f85\u6269\u5c55\u7684\u6570\u636e":24,"\u662f\u6307\u4e00\u4e2a\u6570\u636e\u5217\u8868\u6587\u4ef6":39,"\u662f\u6307\u4e00\u7cfb\u5217\u7684\u7279\u5f81\u6570\u636e":25,"\u662f\u6307recurrent_group\u7684\u591a\u4e2a\u8f93\u5165\u5e8f\u5217":25,"\u662f\u6570\u636e\u8f93\u5165":28,"\u662f\u6574\u4e2a\u7684\u8bcd\u5d4c\u5165":52,"\u662f\u6700\u65b0\u7684\u4e86":29,"\u662f\u6709\u610f\u4e49\u7684":25,"\u662f\u6784\u5efa\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u6700\u91cd\u8981\u7684\u5de5\u5177":28,"\u662f\u6a21\u578b\u53c2\u6570\u4f18\u5316\u7684\u76ee\u6807\u51fd\u6570":18,"\u662f\u6d45\u5c42\u8bed\u4e49\u89e3\u6790\u7684\u4e00\u79cd\u5f62\u5f0f":53,"\u662f\u6e90\u8bed\u8a00\u7684\u6587\u4ef6":55,"\u662f\u76ee\u6807\u82f1\u8bed\u6587\u4ef6":55,"\u662f\u77e9\u9635":30,"\u662f\u795e\u7ecf\u7f51\u7edc\u7684\u5165\u53e3":18,"\u662f\u7f51\u7edc\u548c\u6570\u636e\u914d\u7f6e\u6587\u4ef6":47,"\u662f\u7f51\u7edc\u5c42\u5b9e\u4f8b\u7684\u540d\u5b57\u6807\u8bc6\u7b26":30,"\u662f\u7f51\u7edc\u5c42\u7684\u6807\u8bc6\u7b26":30,"\u662f\u7f51\u7edc\u5c42\u7684\u7c7b\u578b":30,"\u662f\u7f51\u7edc\u5c42\u8f93\u51fa\u7684\u5927\u5c0f":30,"\u662f\u8be5\u5c42\u7684\u6807\u8bc6\u7b26":30,"\u662f\u8be5\u5c42\u7684\u7c7b\u540d":30,"\u662f\u8be5\u7f51\u7edc\u5c42\u7684":30,"\u662f\u8f93\u5165":28,"\u662f\u901a\u7528\u7269\u4f53\u5206\u7c7b\u9886\u57df\u4e00\u4e2a\u4f17\u6240\u5468\u77e5\u7684\u6570\u636e\u5e93":48,"\u662f\u9700\u8981\u4e86\u89e3\u54ea\u4e9b\u6b65\u9aa4\u62d6\u6162\u4e86\u6574\u4f53":33,"\u662fdecoder\u7684\u6570\u636e\u8f93\u5165":27,"\u662fgoogle\u5f00\u6e90\u7684\u5bb9\u5668\u96c6\u7fa4\u7ba1\u7406\u7cfb\u7edf":40,"\u662fnvidia\u6027\u80fd\u5206\u6790\u5de5\u5177":33,"\u662fpaddlepaddle\u652f\u6301\u7684\u4e00\u79cd\u4efb\u610f\u590d\u6742\u7684rnn\u5355\u5143":27,"\u662fpaddlepaddle\u8d1f\u8d23\u63d0\u4f9b\u6570\u636e\u7684\u6a21\u5757":50,"\u662fpod\u5185\u7684\u5bb9\u5668\u90fd\u53ef\u4ee5\u8bbf\u95ee\u7684\u5171\u4eab\u76ee\u5f55":40,"\u662fpython\u5c01\u88c5\u7684\u7c7b\u540d":30,"\u662frnn\u72b6\u6001":28,"\u663e":50,"\u663e\u5f0f\u6307\u5b9a\u8fd4\u56de\u7684\u662f\u4e00\u4e2a28":3,"\u663e\u793a\u5de5\u4f5c\u6811\u72b6\u6001":29,"\u665a":25,"\u666e\u901a\u7528\u6237\u8bf7\u8d70\u5b89\u88c5\u6d41\u7a0b":21,"\u6682\u4e0d\u8003\u8651\u5728\u5185":17,"\u66f4\u591a\u5173\u4e8edocker\u7684\u5b89\u88c5\u4e0e\u4f7f\u7528":17,"\u66f4\u591a\u5185\u5bb9\u53ef\u67e5\u770b\u53c2\u8003\u6587\u732e":54,"\u66f4\u591a\u7684\u7ec6\u8282\u53ef\u4ee5\u5728\u6587\u732e\u4e2d\u627e\u5230":54,"\u66f4\u597d\u5730\u5b8c\u6210\u4e00\u4e9b\u590d\u6742\u7684\u8bed\u8a00\u7406\u89e3\u4efb\u52a1":27,"\u66f4\u5feb":28,"\u66f4\u65b0":[17,29],"\u66f4\u65b0\u4f60\u7684":29,"\u66f4\u65b0\u5206\u652f":29,"\u66f4\u65b0\u6a21\u5f0f":17,"\u66f4\u65b9\u4fbf\u7684\u8bbe\u7f6e\u65b9\u5f0f":17,"\u66f4\u8be6\u7ec6\u6570\u636e\u683c\u5f0f\u548c\u7528\u4f8b\u8bf7\u53c2\u8003":50,"\u66f4\u8be6\u7ec6\u7684\u4f7f\u7528":39,"\u66f4\u8be6\u7ec6\u7684\u7f51\u7edc\u914d\u7f6e\u8fde\u63a5\u8bf7\u53c2\u8003":50,"\u66f4\u8be6\u7ec6\u7684\u8bf4\u660e":50,"\u66f4\u8fdb\u4e00\u6b65":27,"\u66f4\u9ad8":28,"\u66ff\u6211\u4eec\u5b8c\u6210\u4e86\u539f\u59cb\u8f93\u5165\u6570\u636e\u7684\u62c6\u5206":27,"\u6700":25,"\u6700\u4e0d\u540c\u7684\u7279\u8272\u662f\u5b83\u5e76\u6ca1\u6709\u5c06\u8f93\u5165\u8bed\u53e5\u7f16\u7801\u4e3a\u4e00\u4e2a\u5355\u72ec\u7684\u5b9a\u957f\u5411\u91cf":55,"\u6700\u4e3b\u8981\u7684\u5de5\u4f5c\u5c31\u662f\u89e3\u6790\u51fa":42,"\u6700\u4f73\u63a8\u8350":3,"\u6700\u540e":[3,30,34,50,54],"\u6700\u540e\u4e00\u4e2a":24,"\u6700\u540e\u4e00\u90e8\u5206\u662f\u795e\u7ecf\u7f51\u7edc\u7684\u914d\u7f6e":18,"\u6700\u540e\u6211\u4eec\u4f7f\u7528\u94fe\u5f0f\u6cd5\u5219\u8ba1\u7b97":30,"\u6700\u597d\u7684\u6a21\u578b\u662f":54,"\u6700\u5c11\u663e\u793a\u591a\u5c11\u4e2a\u8282\u70b9":36,"\u6700\u65b0log":54,"\u6700\u7ec8":30,"\u6700\u7ec8\u5b9e\u73b0\u4e00\u4e2a\u5c42\u6b21\u5316\u7684\u590d\u6742rnn":27,"\u6700\u7ec8\u7684\u8f93\u51fa\u7ed3\u679c":27,"\u6700\u7ec8\u8d8b\u4e8e\u63a5\u8fd1":18,"\u6708\u6e56":25,"\u6709":25,"\u6709\u4e00\u4e2a\u57fa\u672c\u7684\u8ba4\u8bc6":40,"\u6709\u4e24\u4e2a\u7279\u6b8a\u6807\u8bc6":55,"\u6709\u4e86meta\u914d\u7f6e\u6587\u4ef6\u4e4b\u540e":52,"\u6709\u4e9b\u5c42\u53ef\u80fd\u9700\u8981\u9ad8\u7cbe\u5ea6\u6765\u4fdd\u8bc1\u68af\u5ea6\u68c0\u67e5\u5355\u6d4b\u6b63\u786e\u6267\u884c":30,"\u6709\u4e9b\u5c42\u6216\u8005\u6fc0\u6d3b\u9700\u8981\u505a\u5f52\u4e00\u5316\u4ee5\u4fdd\u8bc1\u5b83\u4eec\u7684\u8f93\u51fa\u7684\u548c\u662f\u4e00\u4e2a\u5e38\u6570":30,"\u6709\u4e9b\u7535\u5f71id\u53ef\u80fd\u4e0e\u5b9e\u9645\u7535\u5f71\u4e0d\u76f8\u7b26\u5408":51,"\u6709\u5173":25,"\u6709\u5173\u5982\u4f55\u7f16\u5199\u6570\u636e\u63d0\u4f9b\u7a0b\u5e8f\u7684\u66f4\u591a\u7ec6\u8282\u63cf\u8ff0":28,"\u6709\u5173kubernetes\u76f8\u5173\u6982\u5ff5\u4ee5\u53ca\u5982\u4f55\u642d\u5efa\u548c\u914d\u7f6ekubernetes\u96c6\u7fa4":42,"\u6709\u52a9\u4e8e\u7406\u89e3\u7528\u6237\u5bf9\u4e0d\u540c\u516c\u53f8":54,"\u6709\u52a9\u4e8e\u8bca\u65ad\u5206\u5e03\u5f0f\u9519\u8bef":34,"\u6709\u56db\u4e2a\u8bad\u7ec3\u8fdb\u7a0b":39,"\u6709\u65f6\u79f0\u4e3a":54,"\u6709\u7684\u65f6\u5019\u7b80\u7b80\u5355\u5355\u7684\u6539\u53d8\u5c31\u80fd\u5728\u6027\u80fd\u4e0a\u4ea7\u751f\u660e\u663e\u7684\u4f18\u5316\u6548\u679c":33,"\u670d\u52a1":25,"\u670d\u52a1\u5458":25,"\u671f\u95f4":29,"\u672a\u5305\u542b\u5728\u5b57\u5178\u4e2d\u7684\u5355\u8bcd":55,"\u672a\u6807\u8bb0\u7684\u8bc4\u4ef7\u6837\u672c":54,"\u672a\u77e5\u8bcd":46,"\u672c\u4f8b\u4e2d\u4e3a0":46,"\u672c\u4f8b\u4e2d\u4e3a32":46,"\u672c\u4f8b\u4e2d\u4e3a4":46,"\u672c\u4f8b\u4e2d\u4f7f\u7528for\u5faa\u73af\u8fdb\u884c\u591a\u6b21\u8c03\u7528":3,"\u672c\u4f8b\u4e2d\u7684\u539f\u59cb\u6570\u636e\u4e00\u5171\u670910\u4e2a\u6837\u672c":25,"\u672c\u4f8b\u4e2d\u7684\u8f93\u5165\u7279\u5f81\u662f\u8bcdid\u7684\u5e8f\u5217":3,"\u672c\u4f8b\u6839\u636e\u7f51\u7edc\u914d\u7f6e\u4e2d":3,"\u672c\u4f8b\u6bcf\u884c\u4fdd\u5b58\u4e00\u6761\u6837\u672c":50,"\u672c\u4f8b\u7531\u6613\u5230\u96be\u5c55\u793a4\u79cd\u4e0d\u540c\u7684\u6587\u672c\u5206\u7c7b\u7f51\u7edc\u914d\u7f6e":50,"\u672c\u4f8b\u7684":3,"\u672c\u4f8b\u7684\u6240\u6709\u5b57\u7b26\u90fd\u5c06\u8f6c\u6362\u4e3a\u8fde\u7eed\u6574\u6570\u8868\u793a\u7684id\u4f20\u7ed9\u6a21\u578b":50,"\u672c\u4f8b\u91c7\u7528\u82f1\u6587\u60c5\u611f\u5206\u7c7b\u7684\u6570\u636e":3,"\u672c\u4f8b\u91c7\u7528adam\u4f18\u5316\u65b9\u6cd5":50,"\u672c\u5730\u6d4b\u8bd5":35,"\u672c\u5730\u8bad\u7ec3":35,"\u672c\u5730\u8bad\u7ec3\u7684\u5b9e\u9a8c":38,"\u672c\u5b9e\u4f8b\u4e2d":46,"\u672c\u5c0f\u8282\u6211\u4eec\u5c06\u4ecb\u7ecd\u6a21\u578b\u7f51\u7edc\u7ed3\u6784":50,"\u672c\u5c42\u5c3a\u5bf8":48,"\u672c\u5c42\u6709\u56db\u4e2a\u53c2\u6570":48,"\u672c\u6559\u7a0b\u4e2d\u6211\u4eec\u7ed9\u51fa\u4e86\u4e09\u4e2aresnet\u6a21\u578b":48,"\u672c\u6559\u7a0b\u5c06\u4ecb\u7ecd\u4f7f\u7528\u6df1\u5ea6\u53cc\u5411\u957f\u77ed\u671f\u8bb0\u5fc6":53,"\u672c\u6559\u7a0b\u5c06\u6307\u5bfc\u4f60\u5982\u4f55\u5728":28,"\u672c\u6559\u7a0b\u5c06\u6307\u5bfc\u60a8\u5b8c\u6210\u957f\u671f\u77ed\u671f\u8bb0\u5fc6":54,"\u672c\u6559\u7a0b\u63d0\u4f9b\u4e86\u4e00\u4e2a\u7528\u4e8eimagenet\u4e0a\u7684\u5377\u79ef\u5206\u7c7b\u7f51\u7edc\u6a21\u578b":48,"\u672c\u6587\u4e2d\u6240\u6709\u7684\u4f8b\u5b50":25,"\u672c\u6587\u4e2d\u7531\u4e8e\u8f93\u5165\u6570\u636e\u662f\u968f\u673a\u751f\u6210\u7684\u4e0d\u9700\u8981\u8bfb\u8f93\u5165\u6587\u4ef6":18,"\u672c\u6587\u4e2d\u793a\u4f8b\u6240\u4f7f\u7528\u7684\u5355\u5143\u6d4b\u8bd5\u6587\u4ef6\u662f":25,"\u672c\u6587\u4ee5paddlepaddle\u7684\u53cc\u5c42rnn\u5355\u5143\u6d4b\u8bd5\u4e3a\u793a\u4f8b":25,"\u672c\u6587\u4f7f\u7528paddlepaddle\u5b98\u65b9\u7684":42,"\u672c\u6587\u53ea\u4f7f\u7528\u4e86\u9ed8\u8ba4\u547d\u540d\u7a7a\u95f4":40,"\u672c\u6587\u5c06\u4ecb\u7ecd\u5728kubernetes\u5bb9\u5668\u7ba1\u7406\u5e73\u53f0\u4e0a\u5feb\u901f\u6784\u5efapaddlepaddle\u5bb9\u5668\u96c6\u7fa4":42,"\u672c\u6587\u6863\u4ecb\u7ecd\u5982\u4f55\u5728paddlepaddle\u5e73\u53f0\u4e0a":46,"\u672c\u6587\u6863\u5185\u4e0d\u91cd\u590d\u4ecb\u7ecd":40,"\u672c\u6587\u9996\u5148\u4ecb\u7ecdtrainer\u8fdb\u7a0b\u4e2d\u7684\u4e00\u4e9b\u4f7f\u7528\u6982\u5ff5":39,"\u672c\u6765":25,"\u672c\u6b21\u8bad\u7ec3\u7684yaml\u6587\u4ef6\u53ef\u4ee5\u5199\u6210":42,"\u672c\u6b21\u8bad\u7ec3\u8981\u6c42\u67093\u4e2apaddlepaddle\u8282\u70b9":42,"\u672c\u6b21\u8bd5\u9a8c":50,"\u672c\u793a\u4f8b\u4e2d\u4f7f\u7528\u7684\u539f\u59cb\u6570\u636e\u5982\u4e0b":25,"\u672c\u793a\u4f8b\u610f\u56fe\u4f7f\u7528\u5355\u5c42rnn\u548c\u53cc\u5c42rnn\u5b9e\u73b0\u4e24\u4e2a\u5b8c\u5168\u7b49\u4ef7\u7684\u5168\u8fde\u63a5rnn":25,"\u672c\u793a\u4f8b\u7684\u9884\u6d4b\u7ed3\u679c":54,"\u672c\u7bc7\u6559\u7a0b\u5728paddlepaddle\u4e2d\u91cd\u73b0\u4e86\u8fd9\u4e00\u826f\u597d\u7684\u8bad\u7ec3\u7ed3\u679c":55,"\u672c\u7bc7\u6559\u7a0b\u5c06\u4f1a\u6307\u5bfc\u4f60\u901a\u8fc7\u8bad\u7ec3\u4e00\u4e2a":55,"\u672c\u8d28\u4e0a\u4e0e\u8bad\u7ec3\u6a21\u578b\u4e00\u6837":55,"\u673a\u5668\u7684\u8bbe\u5907":38,"\u673a\u5668\u7ffb\u8bd1":49,"\u6743\u91cd\u66f4\u65b0\u7684\u68af\u5ea6":36,"\u6761\u4ef6\u4e0b":40,"\u6765":25,"\u6765\u505a\u68af\u5ea6\u68c0\u67e5":30,"\u6765\u505ableu\u8bc4\u4f30":55,"\u6765\u505c\u6b62\u8bad\u7ec3":52,"\u6765\u5206\u6790\u6267\u884c\u6587\u4ef6":33,"\u6765\u5206\u79bb\u8bad\u7ec3\u548c\u6d4b\u8bd5\u6587\u4ef6":52,"\u6765\u5206\u9694\u6bcf\u4e00\u884c":52,"\u6765\u521d\u59cb\u5316\u53c2\u6570":17,"\u6765\u5b89\u88c5":34,"\u6765\u5b9a\u4e49\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":28,"\u6765\u5bf9\u6bd4\u5206\u6790\u4e24\u8005\u8bed\u4e49\u76f8\u540c\u7684\u539f\u56e0":25,"\u6765\u5e2e\u52a9\u4f60\u7406\u89e3paddlepaddle\u7684\u5185\u90e8\u8fd0\u884c\u673a\u5236":50,"\u6765\u5f00\u542f\u672c\u5730\u7684\u8bad\u7ec3":54,"\u6765\u5f15\u7528\u8fd9\u4e2aimag":20,"\u6765\u5f97\u5230\u67d0\u4e2a\u7279\u5b9a\u53c2\u6570\u7684\u68af\u5ea6\u77e9\u9635":30,"\u6765\u6307\u5b9a\u7f51\u7edc\u5c42\u7684\u6570\u76ee":48,"\u6765\u63a5\u53d7\u4e0d\u4f7f\u7528\u7684\u51fd\u6570\u4ee5\u4fdd\u8bc1\u517c\u5bb9\u6027":3,"\u6765\u63d0\u4ea4\u66f4\u6539":29,"\u6765\u6ce8\u518c\u8be5\u5c42":30,"\u6765\u6df7\u5408\u4f7f\u7528gpu\u548ccpu\u8ba1\u7b97\u7f51\u7edc\u5c42\u7684\u53c2\u6570":38,"\u6765\u751f\u6210\u5e8f\u5217":55,"\u6765\u7684\u79d2\u6570":51,"\u6765\u786e\u5b9a\u5bf9\u5e94\u5173\u7cfb":3,"\u6765\u81ea\u5b9a\u4e49\u4f20\u6570\u636e\u7684\u8fc7\u7a0b":2,"\u6765\u83b7\u5f97\u8f93\u51fa\u7684\u68af\u5ea6":30,"\u6765\u8868\u793a":28,"\u6765\u8868\u793a\u53c2\u6570\u4f4d\u7f6e":53,"\u6765\u8868\u793a\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":28,"\u6765\u8ba1\u7b97\u68af\u5ea6":30,"\u6765\u8bb2\u89e3\u5982\u4f55\u4f7f\u7528\u53cc\u5c42rnn":25,"\u6765\u8bbe\u7f6e":17,"\u6765\u8bf4\u660epydataprovider2\u7684\u7b80\u5355\u4f7f\u7528\u573a\u666f":3,"\u6765\u8c03\u6574c":29,"\u6765\u8fd0\u884c":34,"\u6765\u8fd0\u884c\u6027\u80fd\u5206\u6790\u548c\u8c03\u4f18":33,"\u6765\u8fdb\u884c\u8bad\u7ec3":20,"\u6765\u9884\u6d4b\u8fd9\u4e2a\u4e2d\u95f4\u7684\u8bcd":17,"\u676f\u5b50":25,"\u6784\u5efapaddlepaddle\u6587\u6863\u9700\u8981\u51c6\u5907\u7684\u73af\u5883\u76f8\u5bf9\u8f83\u590d\u6742":31,"\u6784\u6210\u4e86\u8f93\u51fa\u53cc\u5c42\u5e8f\u5217\u7684\u7b2ci\u4e2a":24,"\u6784\u9020":42,"\u6784\u9020paddl":5,"\u67b6\u6784\u5bf9\u591a\u4e2a\u8282\u70b9\u7684":39,"\u67b6\u6784\u6765\u8bad\u7ec3\u60c5\u611f\u5206\u6790\u6a21\u578b":54,"\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u7684\u4e00\u4e2a\u8f93\u5165\u4e3a\u4e0a\u4e00\u4e2a\u65f6\u95f4\u6b65\u7f51\u7edc\u4e2d\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u7684\u8f93\u51fa":25,"\u67d0\u4e9b\u53c2\u6570\u53ea\u53ef\u7528\u4e8e\u7279\u5b9a\u7684\u5c42\u4e2d":35,"\u67e5\u770b":50,"\u67e5\u770b\u5b89\u88c5\u540e\u7684paddl":22,"\u67e5\u770bjob\u7684\u8be6\u7ec6\u60c5\u51b5":41,"\u6807\u51c6\u5dee\u4e3a":17,"\u6807\u51c6lstm\u4ee5\u6b63\u5411\u5904\u7406\u8be5\u5e8f\u5217":53,"\u6807\u793a\u56fe\u7247\u662f\u5f69\u8272\u56fe\u6216\u7070\u5ea6\u56fe":47,"\u6807\u793a\u662f\u5426\u4e3a\u5f69\u8272\u56fe\u7247":47,"\u6807\u7b7e0\u8868\u793a\u8d1f\u9762\u7684\u8bc4\u8bba":54,"\u6807\u7b7e1\u8868\u793a\u6b63\u9762\u7684\u8bc4\u8bba":54,"\u6807\u7b7e\u6587\u4ef6":53,"\u6807\u7b7e\u65b9\u6848\u6765\u81ea":53,"\u6807\u8bb0":39,"\u6807\u8bb0\u7f51\u7edc\u8f93\u51fa\u7684\u51fd\u6570\u4e3a":39,"\u6807\u8bc6\u662f\u5426\u4e3a\u8fde\u7eed\u7684batch\u8ba1\u7b97":36,"\u6839\u636e\u4f60\u7684\u4efb\u52a1":38,"\u6839\u636e\u524d\u6587\u7684\u63cf\u8ff0":42,"\u6839\u636e\u5728\u6a21\u578b\u914d\u7f6e\u6587\u4ef6\u4e2d\u4f7f\u7528\u7684\u540d\u4e3a":34,"\u6839\u636e\u6570\u636e\u91cf\u89c4\u6a21":51,"\u6839\u636e\u7528\u6237\u6307\u5b9a\u7684\u5b57\u5178":46,"\u6839\u636e\u7d22\u5f15\u77e9\u9635\u548c\u5b57\u5178\u6253\u5370\u6587\u672c":28,"\u6839\u636e\u7f51\u7edc\u914d\u7f6e\u4e2d\u7684":36,"\u6839\u636e\u8fd9\u4e9b\u53c2\u6570\u7684\u4f7f\u7528\u573a\u5408":35,"\u6839\u636e\u9ed8\u8ba4\u503c\u9012\u589e":36,"\u6839\u636e\u9ed8\u8ba4\u7aef\u53e3\u53f7\u9012\u589e":36,"\u6839\u636ejob\u5bf9\u5e94\u7684pod\u4fe1\u606f":41,"\u683c\u5f0f":36,"\u683c\u5f0f\u5982\u4e0b":50,"\u683c\u5f0f\u8bf4\u660e":46,"\u68af\u5ea6\u4f1a\u5c31\u5730":30,"\u68af\u5ea6\u53c2\u6570\u7684\u5206\u5757\u6570\u76ee":36,"\u68af\u5ea6\u5c31\u53ef\u4ee5\u901a\u8fc7\u8fd9\u4e2a\u65b9\u7a0b\u8ba1\u7b97\u5f97\u5230":30,"\u68af\u5ea6\u670d\u52a1\u5668\u7684\u6570\u91cf":36,"\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5\u901a\u8fc7\u6709\u9650\u5dee\u5206\u6cd5\u6765\u9a8c\u8bc1\u4e00\u4e2a\u5c42\u7684\u68af\u5ea6":30,"\u68af\u5ea6\u68c0\u67e5\u7684\u8f93\u5165\u6570\u636e\u7684\u6279\u6b21\u5927\u5c0f":30,"\u68d2":50,"\u697c\u5c42":25,"\u6a21\u5757":47,"\u6a21\u5757\u4e2d\u7684":3,"\u6a21\u5757\u63a5\u7ba1\u4e86shuffl":39,"\u6a21\u5757\u901a\u4fe1\u7684\u6700\u57fa\u7840\u534f\u8bae\u662fprotobuf":39,"\u6a21\u578b":53,"\u6a21\u578b\u4fdd\u5b58\u5728\u76ee\u5f55":54,"\u6a21\u578b\u5171\u5305\u542b1":46,"\u6a21\u578b\u5217\u8868\u6587\u4ef6":53,"\u6a21\u578b\u53ca\u53c2\u6570\u4f1a\u88ab\u4fdd\u5b58\u5728\u8def\u5f84":47,"\u6a21\u578b\u5b58\u50a8\u8def\u5f84":50,"\u6a21\u578b\u5c06\u4fdd\u5b58\u5728\u76ee\u5f55":53,"\u6a21\u578b\u5c31\u8bad\u7ec3\u6210\u529f\u4e86":55,"\u6a21\u578b\u6587\u4ef6\u5c06\u88ab\u5199\u5165\u8282\u70b9":34,"\u6a21\u578b\u6765\u5c06\u6cd5\u8bed\u7ffb\u8bd1\u6210\u82f1\u8bed":55,"\u6a21\u578b\u6765\u6307\u5bfc\u4f60\u5b8c\u6210\u8fd9\u4e9b\u6b65\u9aa4":28,"\u6a21\u578b\u68c0\u9a8c":23,"\u6a21\u578b\u6f14\u793a\u5982\u4f55\u914d\u7f6e\u590d\u6742\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u6a21\u578b":28,"\u6a21\u578b\u7684\u4ee3\u7801\u53ef\u4ee5\u5728":28,"\u6a21\u578b\u7684\u7ed3\u6784\u548c\u8bad\u7ec3\u8fc7\u7a0b":46,"\u6a21\u578b\u7684\u7f16\u7801\u5668\u90e8\u5206\u5982\u4e0b\u6240\u793a":28,"\u6a21\u578b\u88ab\u4fdd\u5b58\u5728":52,"\u6a21\u578b\u8bad\u7ec3\u4f1a\u770b\u5230\u7c7b\u4f3c\u4e0a\u9762\u8fd9\u6837\u7684\u65e5\u5fd7\u4fe1\u606f":50,"\u6a21\u578b\u8bad\u7ec3\u548c\u6700\u540e\u7684\u7ed3\u679c\u9a8c\u8bc1":18,"\u6a21\u578b\u8def\u5f84":[48,53],"\u6a21\u578b\u8f93\u51fa\u8def\u5f84":53,"\u6a21\u578b\u914d\u7f6e":39,"\u6a21\u578b\u91c7\u7528":46,"\u6a21\u578b\u9884\u6d4b":5,"\u6a2a\u5411\u5305\u62ec\u4e09\u4e2a\u7248\u672c":20,"\u6b21":25,"\u6b22\u8fce\u901a\u8fc7":29,"\u6b63\u5219\u65b9\u6cd5\u7b49":39,"\u6b63\u5e38\u7684docker":20,"\u6b63\u6837\u672c":50,"\u6b63\u786e\u7684\u89e3\u51b3\u65b9\u6cd5\u662f":17,"\u6b63\u8d1f\u5bf9\u9a8c\u8bc1":35,"\u6b63\u9762\u7684\u8bc4\u8bba\u7684\u5f97\u5927\u4e8e\u7b49\u4e8e7":54,"\u6b63\u9762\u8bc4\u4ef7\u6837\u672c":54,"\u6b64\u5904":46,"\u6b64\u5904\u90fd\u4e3a2":25,"\u6b64\u6559\u7a0b\u5c06\u5411\u60a8\u5206\u6b65\u4ecb\u7ecd\u5982\u4f55\u4f7f\u7528\u5185\u7f6e\u7684\u5b9a\u65f6\u5de5\u5177":33,"\u6b64\u6570\u636e\u96c6\u5305\u542b\u7535\u5f71\u8bc4\u8bba\u53ca\u5176\u76f8\u5173\u8054\u7684\u7c7b\u522b\u6807\u7b7e":54,"\u6bb5\u843d\u53ef\u4ee5\u770b\u4f5c\u662f\u4e00\u4e2a\u5d4c\u5957\u7684\u53cc\u5c42\u7684\u5e8f\u5217":27,"\u6bcf100\u4e2abatch\u6253\u5370\u4e00\u6b21\u7edf\u8ba1\u4fe1\u606f":54,"\u6bcf100\u4e2abatch\u663e\u793a\u53c2\u6570\u7edf\u8ba1":53,"\u6bcf20\u4e2abatch\u6253\u5370\u4e00\u6b21\u65e5\u5fd7":54,"\u6bcf20\u4e2abatch\u8f93\u51fa\u65e5\u5fd7":53,"\u6bcf\u4e00\u4e2a\u4efb\u52a1\u6d41\u7a0b\u90fd\u53ef\u4ee5\u88ab\u5212\u5206\u4e3a\u5982\u4e0b\u4e94\u4e2a\u6b65\u9aa4":50,"\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65":25,"\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u95f4\u7684\u795e\u7ecf\u7f51\u7edc\u5177\u6709\u4e00\u5b9a\u7684\u76f8\u5173\u6027":25,"\u6bcf\u4e00\u4e2a\u6d4b\u8bd5\u5468\u671f\u6d4b\u8bd5\u4e00\u6b21\u6240\u6709\u6570\u636e":52,"\u6bcf\u4e00\u4e2a\u8282\u70b9\u90fd\u6709\u76f8\u540c\u7684\u65e5\u5fd7\u7ed3\u6784":34,"\u6bcf\u4e00\u4e2akey\u7531":52,"\u6bcf\u4e00\u7ec4\u5185\u7684\u6240\u6709\u53e5\u5b50\u548clabel":25,"\u6bcf\u4e00\u884c\u8868\u793a\u4e00\u4e2a\u5b9e\u4f8b":54,"\u6bcf\u4e2a":[28,34,53],"\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":24,"\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":24,"\u6bcf\u4e2a\u5355\u5c42rnn":27,"\u6bcf\u4e2a\u5355\u8bcd\u7684\u9884\u6d4b\u9519\u8bef\u7387":55,"\u6bcf\u4e2a\u53e5\u5b50\u53c8\u662f\u5355\u8bcd\u7684\u6570\u7ec4":25,"\u6bcf\u4e2a\u53e5\u5b50\u90fd\u4ee5\u5f00\u59cb\u6807\u8bb0\u5f00\u5934":28,"\u6bcf\u4e2a\u53e5\u5b50\u90fd\u4ee5\u7ed3\u675f\u6807\u8bb0\u7ed3\u5c3e":28,"\u6bcf\u4e2a\u5b50\u5e8f\u5217\u957f\u5ea6\u53ef\u4ee5\u4e0d\u4e00\u81f4":25,"\u6bcf\u4e2a\u5b50\u6587\u4ef6\u5939\u4e0b\u5b58\u50a8\u76f8\u5e94\u5206\u7c7b\u7684\u56fe\u7247":47,"\u6bcf\u4e2a\u5b57\u5178\u5305\u542b\u603b\u517130000\u4e2a\u5355\u8bcd":55,"\u6bcf\u4e2a\u5b57\u5178\u90fd\u6709dictsize\u4e2a\u5355\u8bcd":55,"\u6bcf\u4e2a\u5c42\u5728\u5176":30,"\u6bcf\u4e2a\u5c42\u90fd\u6709\u4e00\u4e2a\u6216\u591a\u4e2ainput":50,"\u6bcf\u4e2a\u6279\u6b21\u6570\u636e":36,"\u6bcf\u4e2a\u6574\u6570\u5217\u8868\u88ab\u89c6\u4e3a\u4e00\u4e2a\u6574\u6570\u5e8f\u5217":28,"\u6bcf\u4e2a\u6587\u4ef6\u53ea\u6709\u4e00\u4e2a":29,"\u6bcf\u4e2a\u6587\u4ef6\u5939\u90fd\u5305\u542b\u6cd5\u8bed\u5230\u82f1\u8bed\u7684\u5e73\u884c\u8bed\u6599\u5e93":55,"\u6bcf\u4e2a\u6587\u4ef6\u662f\u4e00\u4e2a\u7535\u5f71\u8bc4\u8bba":54,"\u6bcf\u4e2a\u6587\u672c\u6587\u4ef6\u5305\u542b\u4e00\u4e2a\u6216\u8005\u591a\u4e2a\u5b9e\u4f8b":54,"\u6bcf\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u7684\u8fd0\u7b97\u662f\u72ec\u7acb\u7684":27,"\u6bcf\u4e2a\u65f6\u95f4\u6b65\u90fd\u7528\u4e86\u4e0a\u4e00\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51fa\u7ed3\u679c":25,"\u6bcf\u4e2a\u6743\u91cd\u5bf9\u5e94\u4e00\u4e2a\u8f93\u5165":30,"\u6bcf\u4e2a\u6837\u672c\u7531\u4e24\u90e8\u5206\u7ec4\u6210":25,"\u6bcf\u4e2a\u6837\u672c\u95f4\u7528\u7a7a\u884c\u5206\u5f00":25,"\u6bcf\u4e2a\u6d4b\u8bd5\u5468\u671f\u6d4b\u8bd5":52,"\u6bcf\u4e2a\u7279\u5f81\u7684meta\u914d\u7f6e":52,"\u6bcf\u4e2a\u72b6\u6001":27,"\u6bcf\u4e2a\u7c7b\u522b\u4e2d\u968f\u673a\u62bd\u53d6\u4e8610\u5f20\u56fe\u7247":47,"\u6bcf\u4e2a\u7c7b\u5305\u542b6000\u5f20":47,"\u6bcf\u4e2a\u7ebf\u7a0b":36,"\u6bcf\u4e2a\u7ebf\u7a0b\u5206\u914d\u5230128\u4e2a\u6837\u672c\u7528\u4e8e\u8bad\u7ec3":36,"\u6bcf\u4e2a\u8282\u70b9\u6709\u4e24\u4e2a6\u6838cpu":55,"\u6bcf\u4e2a\u8bad\u7ec3\u8282\u70b9\u5fc5\u987b\u6307\u5b9a\u4e00\u4e2a\u552f\u4e00\u7684id\u53f7":36,"\u6bcf\u4e2a\u8bb0\u5fc6\u5355\u5143\u5305\u542b\u56db\u4e2a\u4e3b\u8981\u7684\u5143\u7d20":54,"\u6bcf\u4e2a\u8bc4\u8bba\u7684\u7f51\u5740":54,"\u6bcf\u4e2a\u8f93\u5165\u90fd\u662f\u4e00\u4e2a":30,"\u6bcf\u4e2a\u8f93\u51fa\u8282\u70b9\u90fd\u8fde\u63a5\u5230\u6240\u6709\u7684\u8f93\u5165\u8282\u70b9\u4e0a":30,"\u6bcf\u4e2a\u91cc\u9762\u90fd\u5305\u542b202mb\u7684\u5168\u90e8\u7684\u6a21\u578b\u53c2\u6570":55,"\u6bcf\u4e2alayer\u8fd4\u56de\u7684\u90fd\u662f\u4e00\u4e2a":39,"\u6bcf\u4e2apass\u7684\u7b2c0\u4e2abatch\u5230\u5f53\u524dbatch\u6240\u6709\u6837\u672c\u7684\u5e73\u5747\u5206\u7c7b\u9519\u8bef\u7387":50,"\u6bcf\u4e2apass\u7684\u7b2c0\u4e2abatch\u5230\u5f53\u524dbatch\u6240\u6709\u6837\u672c\u7684\u5e73\u5747cost":50,"\u6bcf\u4e2apod\u5305\u542b\u4e00\u4e2apaddlepaddle\u5bb9\u5668":42,"\u6bcf\u4f4d\u7528\u6237\u81f3\u5c11\u670920\u6761\u8bc4\u5206":51,"\u6bcf\u5c42\u4e0a\u53ea\u80fd\u4fdd\u5b58\u56fa\u5b9a\u6570\u76ee\u4e2a\u6700\u597d\u7684\u72b6\u6001":36,"\u6bcf\u5c42\u4f7f\u7528\u7684gpu\u53f7\u4f9d\u8d56\u4e8e\u53c2\u6570train":38,"\u6bcf\u5f53\u6a21\u578b\u5728\u7ffb\u8bd1\u8fc7\u7a0b\u4e2d\u751f\u6210\u4e86\u4e00\u4e2a\u5355\u8bcd":55,"\u6bcf\u5f53\u7cfb\u7edf\u9700\u8981\u65b0\u7684\u6570\u636e\u8bad\u7ec3\u65f6":39,"\u6bcf\u6279\u6b21":36,"\u6bcf\u6b21\u6d4b\u8bd5\u90fd\u6d4b\u8bd5\u6240\u6709\u6570\u636e":54,"\u6bcf\u6b21\u751f\u62101\u4e2a\u5e8f\u5217":55,"\u6bcf\u6b21\u8bfb\u53d6\u4e00\u6761\u6570\u636e\u540e":50,"\u6bcf\u6b21\u90fd\u4f1a\u4ecepython\u7aef\u8bfb\u53d6\u6570\u636e":3,"\u6bcf\u884c\u5b58\u50a8\u4e00\u4e2a\u8bcd":46,"\u6bcf\u884c\u5b58\u50a8\u7684\u662f\u4e00\u4e2a\u6837\u672c\u7684\u7279\u5f81":48,"\u6bcf\u884c\u6253\u537032\u4e2a\u53c2\u6570\u4ee5":46,"\u6bcf\u884c\u8868\u793a\u4e00\u4e2a\u6279\u6b21\u4e2d\u7684\u5355\u4e2a\u8f93\u5165":30,"\u6bcf\u884c\u90fd\u662f\u4e00\u4e2a\u6cd5\u8bed\u6216\u8005\u82f1\u8bed\u7684\u53e5\u5b50":55,"\u6bcf\u8f6e\u4f1a\u5c06\u6570\u636e\u96c6\u4e2d\u7684\u6240\u6709\u8bad\u7ec3\u6837\u672c\u4f7f\u7528\u4e00\u6b21":36,"\u6bcf\u8f6e\u7ed3\u675f\u65f6\u5bf9\u6240\u6709\u6d4b\u8bd5\u6570\u636e\u8fdb\u884c\u6d4b\u8bd5":36,"\u6bcf\u8f6e\u90fd\u4f1a\u4fdd\u5b58\u9884\u6d4b\u7ed3\u679c":36,"\u6bcf\u8fd0\u884c\u591a\u5c11\u4e2a\u6279\u6b21\u6267\u884c\u4e00\u6b21\u7a00\u758f\u53c2\u6570\u5206\u5e03\u7684\u68c0\u67e5":36,"\u6bcf\u9694\u591a\u5c11batch\u6253\u5370\u4e00\u6b21\u65e5\u5fd7":50,"\u6bcfdot":36,"\u6bcflog":36,"\u6bcfsave":36,"\u6bcftest":36,"\u6bd4\u5982":[17,50],"\u6bd4\u5982\u4e00\u53e5\u8bdd\u4e2d\u7684\u6bcf\u4e00\u4e2a\u5355\u8bcd":25,"\u6bd4\u5982\u8bbe\u7f6e\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42\u7684\u53c2\u6570\u521d\u59cb\u5316\u65b9\u5f0f\u548cbias\u521d\u59cb\u5316\u65b9\u5f0f":17,"\u6bd4\u5982\u901a\u8fc78080\u7aef\u53e3":40,"\u6bd4\u8f83\u5bb9\u6613\u5728\u5927\u6a21\u578b\u4e0b\u6ea2\u51fa":39,"\u6c34\u6e29":25,"\u6c49\u5ead":25,"\u6c60\u5316\u5c42":47,"\u6ca1":25,"\u6ca1\u6709\u4f5c\u7528":3,"\u6ca1\u6709\u4f7f\u7528avx\u6307\u4ee4\u96c6":22,"\u6ca1\u6709\u6d4b\u8bd5\u6570\u636e":3,"\u6ca1\u6709\u8fdb\u884c\u6b63\u786e\u6027\u7684\u68c0\u67e5":51,"\u6ca1\u6709\u8fdb\u884c\u7ed3\u6784\u7684\u5fae\u8c03":52,"\u6cd5\u8bed":55,"\u6ce8\u610f":[3,19,28,30,42,47],"\u6ce8\u610f\u4e0a\u8ff0\u547d\u4ee4\u4e2d":42,"\u6ce8\u610f\u5230\u6211\u4eec\u5df2\u7ecf\u5047\u8bbe\u673a\u5668\u4e0a\u67094\u4e2agpu":38,"\u6ce8\u610f\u5e94\u8be5\u786e\u4fdd\u9ed8\u8ba4\u6a21\u578b\u8def\u5f84":54,"\u6ce8\u610f\u9884\u6d4b\u6570\u636e\u901a\u5e38\u4e0d\u5305\u542blabel":5,"\u6ce8\u610fnode":42,"\u6ce8\u91ca\u6389":54,"\u6cf3\u6c60":25,"\u6d41":25,"\u6d41\u7a0b\u6765\u63d0\u4ea4\u4ee3\u7801":29,"\u6d44":25,"\u6d4b\u8bd5":29,"\u6d4b\u8bd5\u6570\u636e":34,"\u6d4b\u8bd5\u6570\u636e\u4e5f\u5305\u542b":34,"\u6d4b\u8bd5\u6570\u636e\u548c\u6a21\u578b\u914d\u7f6e\u6587\u4ef6":34,"\u6d4b\u8bd5\u6570\u636e\u548c\u751f\u6210\u6570\u636e":55,"\u6d4b\u8bd5\u6570\u636e\u653e\u7f6e\u5728\u5de5\u4f5c\u7a7a\u95f4\u4e2d\u4e0d\u540c\u76ee\u5f55\u7684\u8981\u6c42":34,"\u6d4b\u8bd5\u6570\u636e\u7684\u6240\u6709\u76f8\u5bf9\u6216\u7edd\u5bf9\u6587\u4ef6\u8def\u5f84":34,"\u6d4b\u8bd5\u6570\u6910\u96c6":54,"\u6d4b\u8bd5\u65f6\u6307\u5b9a\u7684\u5b58\u50a8\u6a21\u578b\u5217\u8868\u7684\u6587\u4ef6":36,"\u6d4b\u8bd5\u65f6\u9ed8\u8ba4\u4e0dshuffl":3,"\u6d4b\u8bd5\u662f":29,"\u6d4b\u8bd5\u6837\u672c":34,"\u6d4b\u8bd5\u6a21\u578b\u662f\u6307\u4f7f\u7528\u8bad\u7ec3\u51fa\u7684\u6a21\u578b\u8bc4\u4f30\u5df2\u6807\u8bb0\u7684\u9a8c\u8bc1\u96c6":54,"\u6d4b\u8bd5\u7684\u6a21\u578b\u5305\u62ec\u4ece\u7b2cm\u8f6e\u5230\u7b2cn":38,"\u6d4b\u8bd5\u811a\u672c\u662f":53,"\u6d4b\u8bd5\u96c6\u548c\u8bad\u7ec3\u96c6\u76ee\u5f55\u5305\u542b\u4e0b\u9762\u7684\u6587\u4ef6":54,"\u6d4b\u8bd5model_list":35,"\u6d4b\u8bd5save_dir":35,"\u6d6a\u6f2b\u7247":51,"\u6d6e\u70b9\u6570\u5360\u7528\u7684\u5b57\u8282\u6570":46,"\u6d6e\u70b9\u7a00\u758f\u6570\u636e":30,"\u6dd8\u5b9d\u7b49":54,"\u6df1\u5ea6\u53cc\u5411lstm\u5c42\u63d0\u53d6softmax\u5c42\u7684\u7279\u5f81":53,"\u6df7\u5408":53,"\u6df7\u5408\u5f53\u524d\u8bcd\u5411\u91cf\u548cattention\u52a0\u6743\u7f16\u7801\u5411\u91cf":28,"\u6dfb\u52a0":29,"\u6dfb\u52a0\u4e0a\u6e38":29,"\u6dfb\u52a0\u4fee\u6539\u65e5\u5fd7":29,"\u6dfb\u52a0\u4fee\u6539\u8fc7\u7684\u6587\u4ef6":29,"\u6dfb\u52a0\u542f\u52a8\u811a\u672c":42,"\u6e05\u7406\u6389\u8001\u65e7\u7684paddlepaddle\u5b89\u88c5\u5305":17,"\u6e29\u99a8":25,"\u6e90":55,"\u6e90\u4ee3\u7801":50,"\u6e90\u4ee3\u7801\u683c\u5f0f":29,"\u6e90\u5b57\u5178":55,"\u6e90\u5e8f\u5217":28,"\u6e90\u7801\u4e0edemo":41,"\u6e90\u8bed\u8a00\u5230\u76ee\u6807\u8bed\u8a00\u7684\u5e73\u884c\u8bed\u6599\u5e93\u6587\u4ef6":55,"\u6e90\u8bed\u8a00\u548c\u76ee\u6807\u8bed\u8a00\u5171\u4eab\u76f8\u540c\u7684\u7f16\u7801\u5b57\u5178":46,"\u6e90\u8bed\u8a00\u548c\u76ee\u6807\u8bed\u8a00\u90fd\u662f\u76f8\u540c\u7684\u8bed\u8a00":46,"\u6e90\u8bed\u8a00\u77ed\u8bed\u548c\u76ee\u6807\u8bed\u8a00\u77ed\u8bed\u7684\u5b57\u5178\u5c06\u88ab\u5408\u5e76":46,"\u6ee4\u6ce2\u5668\u6838\u5728\u5782\u76f4\u65b9\u5411\u4e0a\u7684\u5c3a\u5bf8":48,"\u6ee4\u6ce2\u5668\u6838\u5728\u6c34\u5e73\u65b9\u5411\u4e0a\u7684\u5c3a\u5bf8":48,"\u6f14\u793a\u4e2d\u4f7f\u7528\u7684":53,"\u6f14\u793a\u91c7\u7528":53,"\u6fc0\u6d3b":30,"\u6fc0\u6d3b\u51fd\u6570":39,"\u6fc0\u6d3b\u51fd\u6570\u4e3asoftmax":39,"\u6fc0\u6d3b\u51fd\u6570\u7c7b\u578b":50,"\u6fc0\u6d3b\u65b9\u7a0b":30,"\u6fc0\u6d3b\u7684\u7c7b\u578b":30,"\u6fc0\u6d3b\u7c7b\u578b\u7b49":39,"\u7075\u6d3b\u6027\u548c\u53ef\u6269\u5c55\u6027":0,"\u70ed\u60c5":25,"\u7136\u540e":[33,34,46,52],"\u7136\u540e\u4ea4\u7ed9\u7528\u6237\u81ea\u5b9a\u4e49\u7684\u51fd\u6570":18,"\u7136\u540e\u4ea4\u7ed9step\u51fd\u6570":27,"\u7136\u540e\u4ecb\u7ecdpserver\u8fdb\u7a0b\u4e2d\u6982\u5ff5":39,"\u7136\u540e\u4f60\u53ea\u9700\u8981\u8fd0\u884c\u4ee5\u4e0b\u547d\u4ee4":55,"\u7136\u540e\u4f60\u53ef\u4ee5\u901a\u8fc7\u505a\u4e00\u4e2a\u672c\u5730\u5f00\u53d1\u5206\u652f\u5f00\u59cb\u5f00\u53d1":29,"\u7136\u540e\u4f7f\u7528\u4e0b\u9762\u7684\u811a\u672c":54,"\u7136\u540e\u518d\u505a\u4e00\u6b21\u6587\u672c\u5377\u79ef\u7f51\u7edc\u64cd\u4f5c":52,"\u7136\u540e\u5229\u7528\u89c2\u6d4b\u6570\u636e\u8c03\u6574":18,"\u7136\u540e\u52a0":39,"\u7136\u540e\u5355\u51fb":29,"\u7136\u540e\u53ea\u9700\u5728":29,"\u7136\u540e\u53ef\u4ee5\u4f7f\u7528\u547d\u4ee4\u884c\u5de5\u5177\u521b\u5efajob":42,"\u7136\u540e\u53ef\u4ee5\u8f6c\u6362\u4e3a\u56fe\u7247":48,"\u7136\u540e\u5728":55,"\u7136\u540e\u5728\u4e0b\u4e00\u4e2a\u65f6\u95f4\u6b65\u8f93\u5165\u7ed9\u53e6\u4e00\u4e2a\u795e\u7ecf\u5143":25,"\u7136\u540e\u5728\u89e3\u7801\u88ab\u7ffb\u8bd1\u7684\u8bed\u53e5\u65f6":55,"\u7136\u540e\u5728dataprovider\u91cc\u9762\u6839\u636e\u8be5\u5730\u5740\u52a0\u8f7d\u5b57\u5178":17,"\u7136\u540e\u5b9a\u4e49":28,"\u7136\u540e\u5c06\u6784\u5efa\u6210\u529f\u7684\u955c\u50cf\u4e0a\u4f20\u5230\u955c\u50cf\u4ed3\u5e93":42,"\u7136\u540e\u5f97\u5230\u5e73\u5747\u91c7\u6837\u7684\u7ed3\u679c":52,"\u7136\u540e\u6211\u4eec\u5229\u7528\u591a\u8f93\u5165\u7684":52,"\u7136\u540e\u6211\u4eec\u53d1\u73b0pass":55,"\u7136\u540e\u6211\u4eec\u5806\u53e0\u4e00\u5bf9\u5bf9\u7684":53,"\u7136\u540e\u6211\u4eec\u6c42\u8fd9\u4e24\u4e2a\u7279\u5f81\u7684\u4f59\u5f26\u76f8\u4f3c\u5ea6":52,"\u7136\u540e\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4":48,"\u7136\u540e\u628a\u8fd9\u4e2a\u5305\u542b\u4e86\u8bad\u7ec3\u6570\u636e\u7684container\u4fdd\u5b58\u4e3a\u4e00\u4e2a\u65b0\u7684\u955c\u50cf":41,"\u7136\u540e\u62f7\u8d1d\u6570\u636e":42,"\u7136\u540e\u63d0\u53d6\u9690\u85cflstm\u5c42\u7684\u6240\u6709\u65f6\u95f4\u6b65\u957f\u7684\u6700\u5927\u8bcd\u5411\u91cf\u4f5c\u4e3a\u6574\u4e2a\u5e8f\u5217\u7684\u8868\u793a":54,"\u7136\u540e\u662f\u5bf9\u5e94\u7684\u82f1\u8bed\u5e8f\u5217":55,"\u7136\u540e\u6dfb\u52a0\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42":52,"\u7136\u540e\u7528pickle\u547d\u4ee4\u5c06\u7279\u5f81":52,"\u7136\u540e\u7533\u660e\u4e00\u4e2a\u5b58\u50a8\u5377":42,"\u7136\u540e\u89c2\u5bdf\u5230\u8f93\u51fa\u7684\u53d8\u5316\u4e3a":30,"\u7136\u540e\u89e3\u538b":55,"\u7136\u540e\u89e3\u7801\u5668\u901a\u8fc7\u8fd9\u4e2a\u5411\u91cf\u751f\u6210\u4e00\u4e2a\u76ee\u6807\u8bed\u53e5":55,"\u7136\u540e\u8f93\u51fa\u9884\u6d4b\u5206\u6570":52,"\u7136\u540e\u8fd0\u884c\u8fd9\u4e2acontainer\u5373\u53ef":20,"\u7136\u540e\u8fd4\u56de\u7ed9paddlepaddle\u8fdb\u7a0b":3,"\u7136\u540e\u8fdb\u884c\u968f\u673a\u6253\u4e71":52,"\u7136\u540e\u901a\u8fc7\u51fd\u6570":42,"\u7136\u540e\u901a\u8fc7\u81ea\u8eab\u7684ip\u5730\u5740\u5728":42,"\u7136\u800c":[28,36],"\u7136\u800c\u6709\u4e9b\u8bc4\u8bba\u4e0a\u4e0b\u6587\u975e\u5e38\u957f":54,"\u7248\u672c":22,"\u7248\u672c\u57283":29,"\u7279\u522b\u611f\u8c22paddlepaddle\u7684":0,"\u7279\u522b\u662f\u5728lstm\u7b49rnn\u4e2d":17,"\u7279\u522b\u662f\u5f53\u76f8\u540c\u7684\u8bcd\u5728\u53e5\u5b50\u4e2d\u51fa\u73b0\u591a\u4e8e\u4e00\u6b21\u65f6":53,"\u7279\u5f81":52,"\u7279\u5f81\u56fe\u5747\u503c":48,"\u7279\u5f81\u56fe\u65b9\u5dee":48,"\u7279\u5f81\u5c06\u4f1a\u5b58\u5230":48,"\u7279\u5f81\u6587\u4ef6":53,"\u7279\u5f81\u7684\u7c7b\u578b\u548c\u7ef4\u5ea6":52,"\u72af\u7f6a\u7247":51,"\u73af\u5883\u53d8\u91cf\u6765\u6307\u5b9a\u7279\u5b9a\u7684gpu":17,"\u73b0\u5728":29,"\u73b0\u5728\u4f60\u7684":29,"\u73b0\u5728\u6211\u4eec\u53ef\u4ee5\u5f00\u59cbpaddle\u8bad\u7ec3\u4e86":52,"\u751a\u81f3\u4e0d\u540c\u7ade\u4e89\u5bf9\u624b\u4ea7\u54c1\u7684\u504f\u597d":54,"\u751a\u81f3\u53ef\u4ee5\u76f4\u63a5\u914d\u7f6e\u4e00\u4e2a\u5b8c\u6574\u7684lstm":39,"\u751a\u81f3\u80fd\u89e3\u91ca\u4e3a\u4ec0\u4e48\u67d0\u4e2a\u64cd\u4f5c\u82b1\u4e86\u5f88\u957f\u65f6\u95f4":33,"\u751f\u6210":42,"\u751f\u6210\u540e\u7684\u6587\u6863\u5206\u522b\u5b58\u50a8\u5728\u7f16\u8bd1\u76ee\u5f55\u7684":31,"\u751f\u6210\u5e8f\u5217\u7684\u6700\u5927\u957f\u5ea6":28,"\u751f\u6210\u5f53\u524d\u5c42\u7684\u6240\u6709\u540e\u7ee7\u72b6\u6001":55,"\u751f\u6210\u6570\u636e\u51fd\u6570\u63a5\u53e3":39,"\u751f\u6210\u6570\u636e\u7684\u76ee\u5f55":55,"\u751f\u6210\u7684\u6570\u636e\u7f13\u5b58\u5728\u5185\u5b58\u91cc":17,"\u751f\u6210\u7684\u7ed3\u679c\u6587\u4ef6":55,"\u751f\u6210\u7684meta\u914d\u7f6e\u6587\u4ef6\u5982\u4e0b\u6240\u793a":52,"\u751f\u6210\u7ed3\u679c\u6587\u4ef6\u7684\u8def\u5f84":28,"\u751f\u6210\u7f51\u7edc\u5c42\u914d\u7f6e":30,"\u751f\u6210\u8bad\u7ec3\u9700\u8981\u7684\u6837\u672c":52,"\u7528":[51,52,53],"\u75280\u548c1\u8868\u793a":3,"\u7528\u4e86\u4e24\u4e2a\u6708\u4e4b\u540e\u8fd9\u4e2a\u663e\u793a\u5668\u5c4f\u5e55\u788e\u4e86":50,"\u7528\u4e8e":34,"\u7528\u4e8e\u5207\u5206\u5355\u5355\u8bcd\u548c\u6807\u70b9\u7b26\u53f7":54,"\u7528\u4e8e\u521d\u59cb\u5316\u53c2\u6570\u548c\u8bbe\u7f6e":30,"\u7528\u4e8e\u5c06\u4e0b\u4e00\u884c\u7684\u6570\u636e\u8f93\u5165\u51fd\u6570\u6807\u8bb0\u6210\u4e00\u4e2apydataprovider2":3,"\u7528\u4e8e\u5c06\u53c2\u6570\u4f20\u9012\u7ed9\u7f51\u7edc\u914d\u7f6e":38,"\u7528\u4e8e\u5c06\u8bcdid\u8f6c\u6362\u4e3a\u8bcd\u7684\u5b57\u5178\u6587\u4ef6":28,"\u7528\u4e8e\u6307\u5b9a\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6":36,"\u7528\u4e8e\u653e\u7f6e":34,"\u7528\u4e8e\u6784\u6210\u65b0\u7684\u8bcd\u8868":46,"\u7528\u4e8e\u6807\u8bc6\u751f\u6210\u7684\u6587\u4ef6\u4e2d\u7684\u76f8\u5e94\u8f93\u51fa":28,"\u7528\u4e8e\u7a00\u758f\u8bad\u7ec3\u4e2d":36,"\u7528\u4e8e\u7edf\u8ba1\u8bcd\u9891\u7684bow\u6a21\u578b\u7279\u5f81":54,"\u7528\u4e8e\u81ea\u5b9a\u4e49\u6bcf\u6761\u6570\u636e\u7684batch":3,"\u7528\u4e8e\u8ba1\u7b97\u7f16\u7801\u5411\u91cf\u7684\u52a0\u6743\u548c":28,"\u7528\u4e8e\u8bbe\u7f6e\u8bad\u7ec3\u7b97\u6cd5":47,"\u7528\u4e8e\u8bfb\u53d6\u8bad\u7ec3":34,"\u7528\u4e8e\u96c6\u7fa4\u901a\u4fe1\u901a\u9053\u7684\u7aef\u53e3\u6570":34,"\u7528\u53cc\u5411\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7f16\u7801":28,"\u7528\u547d\u4ee4":39,"\u7528\u591a\u5bf9\u6548\u679c\u5b8c\u5168\u76f8\u540c\u7684":25,"\u7528\u6237":34,"\u7528\u62371\u7684\u7279\u5f81":52,"\u7528\u6237\u4e5f\u53ef\u4ee5\u5728c":2,"\u7528\u6237\u53ea\u9700\u5b9a\u4e49rnn\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u5185\u5b8c\u6210\u7684\u8ba1\u7b97":27,"\u7528\u6237\u53ea\u9700\u6267\u884c":53,"\u7528\u6237\u53ea\u9700\u6267\u884c\u4ee5\u4e0b\u547d\u4ee4\u5c31\u53ef\u4ee5\u4e0b\u8f7d\u5e76\u5904\u7406\u539f\u59cb\u6570\u636e":53,"\u7528\u6237\u53ef\u4ee5\u53c2\u8003":39,"\u7528\u6237\u53ef\u4ee5\u5728\u8f93\u51fa\u7684\u6587\u672c\u6a21\u578b\u4e2d\u770b\u5230":46,"\u7528\u6237\u53ef\u4ee5\u6839\u636e\u8bad\u7ec3\u65e5\u5fd7":50,"\u7528\u6237\u53ef\u4ee5\u81ea\u5b9a\u4e49beam":36,"\u7528\u6237\u53ef\u4ee5\u8bbe\u7f6e":38,"\u7528\u6237\u53ef\u4ee5\u9009\u62e9\u5bf9\u5e94\u7248\u672c\u7684docker":20,"\u7528\u6237\u53ef\u4ee5\u901a\u8fc7\u7b80\u5355\u4f7f\u7528python\u63a5\u53e3":2,"\u7528\u6237\u53ef\u5728\u8c03\u7528cmake\u7684\u65f6\u5019\u8bbe\u7f6e\u5b83\u4eec":19,"\u7528\u6237\u53ef\u5728cmake\u7684\u547d\u4ee4\u884c\u4e2d":19,"\u7528\u6237\u540d\u4e3a":20,"\u7528\u6237\u5728\u4f7f\u7528paddlepaddl":17,"\u7528\u6237\u5b9a\u4e49\u7684\u53c2\u6570":3,"\u7528\u6237\u5c06\u914d\u7f6e\u4e0e\u8bad\u7ec3\u6570\u636e\u5207\u5206\u597d\u653e\u5728\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf\u9884\u5148\u5206\u914d\u597d\u7684\u76ee\u5f55\u4e2d":42,"\u7528\u6237\u5e94\u8be5\u63d0\u4f9b\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6":53,"\u7528\u6237\u5f3a\u5236\u6307\u5b9a\u7279\u5b9a\u7684python\u7248\u672c":17,"\u7528\u6237\u6307\u5b9a\u65b0\u7684\u5b57\u5178\u7684\u8def\u5f84":46,"\u7528\u6237\u6587\u4ef6\u4e2d\u6709\u56db\u79cd\u7c7b\u578b\u7684\u5b57\u6bb5":52,"\u7528\u6237\u7279\u5f81":52,"\u7528\u6237\u8fd8\u53ef\u4ee5\u6839\u636e\u6982\u7387\u5206\u5e03\u77e9\u9635\u5b9e\u73b0\u67f1\u641c\u7d22\u6216\u7ef4\u7279\u6bd4\u89e3\u7801":53,"\u7528\u6237\u9700\u8981\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u6307\u5b9a":38,"\u7528\u6237\u9700\u8981\u6307\u5b9a\u672c\u673a\u4e0apython\u7684\u8def\u5f84":17,"\u7528\u6237\u9884\u6d4b\u7684\u547d\u4ee4\u884c\u754c\u9762\u5982\u4e0b":52,"\u7528\u6237id":51,"\u7528\u6237id\u8303\u56f4\u4ece1\u52306040":51,"\u7528\u6700\u65b0\u7684":29,"\u7528\u6765\u4ece\u53c2\u6570\u670d\u52a1\u5668\u9884\u53d6\u53c2\u6570\u77e9\u9635\u76f8\u5e94\u7684\u884c":30,"\u7528\u6765\u4f30\u8ba1\u7ebf\u6027\u51fd\u6570\u7684\u53c2\u6570w":18,"\u7528\u6765\u505a\u9884\u6d4b\u548c\u7b80\u5355\u7684\u5b9a\u5236\u5316":20,"\u7528\u6765\u5177\u4f53\u63cf\u8ff0":52,"\u7528\u6765\u5177\u4f53\u8bf4\u660e\u6570\u636e\u96c6\u7684\u5b57\u6bb5\u548c\u6587\u4ef6\u683c\u5f0f":52,"\u7528\u6765\u8ba1\u7b97\u6a21\u578b\u7684\u8bef\u5dee":18,"\u7528\u8fd9\u4e2a\u955c\u50cf\u521b\u5efa\u7684\u5bb9\u5668\u9700\u8981\u6709\u4ee5\u4e0b\u4e24\u4e2a\u529f\u80fd":42,"\u7531":27,"\u7531\u4e8e":29,"\u7531\u4e8e\u5b83\u5185\u90e8\u5305\u542b\u4e86\u6bcf\u7ec4\u6570\u636e\u4e2d\u7684\u6240\u6709\u53e5\u5b50":25,"\u7531\u4e8e\u5bb9\u5668\u4e4b\u95f4\u5171\u4eabnet":40,"\u7531\u4e8e\u5df2\u7ecf\u77e5\u9053\u4e86\u771f\u5b9e\u7b54\u6848":18,"\u7531\u4e8e\u610f\u5916\u7684\u526f\u672c\u8bb0\u5f55\u548c\u6d4b\u8bd5\u8bb0\u5f55":51,"\u7531\u4e8e\u6211\u4eec\u60f3\u8981\u7684\u53d8\u6362\u662f\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217":25,"\u7531\u4e8e\u6211\u4eec\u652f\u6301\u8bad\u7ec3\u6570\u636e\u6709\u4e0d\u540c\u7684\u6279\u6b21\u5927\u5c0f":30,"\u7531\u4e8e\u6570\u636e\u8bb8\u53ef\u7684\u539f\u56e0":53,"\u7531\u4e8e\u6807\u51c6\u7684\u7ffb\u8bd1\u7ed3\u679c\u5df2\u7ecf\u4e0b\u8f7d\u5230\u8fd9\u91cc":55,"\u7531\u4e8e\u6bcf\u4e2a\u5377\u79ef\u5c42\u540e\u9762\u8fde\u63a5\u7684\u662fbatch":48,"\u7531\u4e8e\u8fd9\u4e2a\u5730\u5740\u4f1a\u88abdataprovider\u4f7f\u7528":2,"\u7531\u4e8e\u8fd9\u6837\u505a\u53ef\u4ee5\u907f\u514d\u5f88\u591a\u6b7b\u9501\u95ee\u9898":3,"\u7531\u4e8e\u987a\u5e8f\u8c03\u7528\u8fd9\u4e9bgenerator\u4e0d\u4f1a\u51fa\u73b0\u4e0a\u8ff0\u95ee\u9898":3,"\u7531\u4e8edocker\u662f\u57fa\u4e8e\u5bb9\u5668\u7684\u8f7b\u91cf\u5316\u865a\u62df\u65b9\u6848":20,"\u7531\u4e8epaddlepaddle\u5df2\u7ecf\u5b9e\u73b0\u4e86\u4e30\u5bcc\u7684\u7f51\u7edc\u5c42":18,"\u7531\u4e8epaddlepaddle\u7684docker\u955c\u50cf\u5e76\u4e0d\u5305\u542b\u4efb\u4f55\u9884\u5b9a\u4e49\u7684\u8fd0\u884c\u547d\u4ee4":20,"\u7531\u4e8estep":27,"\u7531\u4e8etest_data\u5305\u542b\u4e24\u6761\u9884\u6d4b\u6570\u636e":5,"\u7531\u8bcd\u8bed\u6784\u6210\u7684\u53e5\u5b50":24,"\u7531grouplen":51,"\u7535\u5f711\u7684\u7279\u5f81":52,"\u7535\u5f71\u4fe1\u606f\u4ee5\u53ca\u7535\u5f71\u8bc4\u5206":51,"\u7535\u5f71\u540d\u5b57\u6bb5":52,"\u7535\u5f71\u540d\u79f0":51,"\u7535\u5f71\u548c\u7528\u6237":52,"\u7535\u5f71\u548c\u7528\u6237\u6709\u8bb8\u591a\u7684\u7279\u5f81":52,"\u7535\u5f71\u5927\u90e8\u5206\u662f\u624b\u5de5\u8f93\u5165\u6570\u636e":51,"\u7535\u5f71\u7279\u5f81":52,"\u7535\u5f71\u7c7b\u578b":51,"\u7535\u5f71\u7c7b\u578b\u5982\u7b26\u5408\u591a\u79cd\u7528\u7ba1\u9053\u7b26\u53f7":51,"\u7535\u5f71id":51,"\u7535\u5f71id\u8303\u56f4\u4ece1\u52303952":51,"\u7535\u8111":25,"\u767e\u4e07\u6570\u636e\u96c6":51,"\u7684":[25,29,34,41,42,50,54],"\u768410\u7ef4\u6574\u6570\u6807\u7b7e":3,"\u7684\u4e00\u4e2a\u7b80\u5355\u8c03\u7528\u5982\u4e0b":27,"\u7684\u4e00\u4e2a\u7ebf\u6027\u51fd\u6570":18,"\u7684\u4e00\u79cd":55,"\u7684\u4e3a0":36,"\u7684\u4e3b\u8981\u90e8\u5206":53,"\u7684\u4efb\u4e00\u4e00\u79cd":17,"\u7684\u4efb\u52a1":55,"\u7684\u4f5c\u7528":39,"\u7684\u4f7f\u7528\u793a\u4f8b\u5982\u4e0b":24,"\u7684\u504f\u7f6e\u5411\u91cf":30,"\u7684\u5185\u5b58":17,"\u7684\u5185\u5bb9\u5982\u4e0b\u6240\u793a":55,"\u7684\u5185\u6838block\u4f7f\u7528\u60c5\u51b5":33,"\u7684\u51fd\u6570":39,"\u7684\u5206\u7c7b\u4efb\u52a1\u4e2d\u8d62\u5f97\u4e86\u7b2c\u4e00\u540d":48,"\u7684\u522b\u540d":[6,7],"\u7684\u5355\u8bcd\u7ea7\u522b\u7684\u5377\u79ef\u795e\u7ecf\u7f51\u7edc":52,"\u7684\u53cd\u5411\u4f20\u64ad\u5c06\u4f1a\u6253\u5370\u65e5\u5fd7\u4fe1\u606f":36,"\u7684\u53d8\u6362\u77e9\u9635":30,"\u7684\u53e5\u5b50\u7684\u60c5\u611f":54,"\u7684\u540d\u5b57":3,"\u7684\u540d\u79f0\u76f8\u540c":28,"\u7684\u540e\u7f00":51,"\u7684\u5411\u91cf":30,"\u7684\u542f\u52a8\u53c2\u6570":42,"\u7684\u542f\u52a8\u53c2\u6570\u5e76\u6267\u884c\u8fdb\u7a0b":42,"\u7684\u5730\u5740":40,"\u7684\u5747\u5300\u5206\u5e03":17,"\u7684\u5b89\u88c5\u6587\u6863":20,"\u7684\u5dee\u8ddd\u4e0d\u65ad\u51cf\u5c0f":18,"\u7684\u5e73\u5747\u503c":24,"\u7684\u5e8f\u5217\u5f62\u72b6\u4e00\u81f4":25,"\u7684\u603b":34,"\u7684\u6570\u636e":39,"\u7684\u6570\u636e\u8bfb\u53d6\u811a\u672c\u548c\u7c7b\u4f3c\u4e8e":50,"\u7684\u6570\u76ee\u4e00\u81f4":24,"\u7684\u65b9\u6cd5\u5df2\u88ab\u8bc1\u660e\u662f\u4e00\u79cd\u5f3a\u5927\u7684\u6a21\u578b":55,"\u7684\u65b9\u7a0b":30,"\u7684\u65f6\u5019\u5982\u679c\u62a5\u4e00\u4e9b\u4f9d\u8d56\u672a\u627e\u5230\u7684\u9519\u8bef\u662f\u6b63\u5e38\u7684":22,"\u7684\u65f6\u95f4\u6b65\u4fe1\u606f\u6210\u6b63\u6bd4":17,"\u7684\u66f4\u8be6\u7ec6\u51c6\u786e\u7684\u5b9a\u4e49":25,"\u7684\u6700\u5c0f\u503c":36,"\u7684\u67b6\u6784\u7684\u793a\u4f8b":28,"\u7684\u6837\u5f0f":29,"\u7684\u6838\u5fc3\u662f\u8bbe\u8ba1step\u51fd\u6570\u7684\u8ba1\u7b97\u903b\u8f91":27,"\u7684\u6bb5\u843d\u5b9a\u4e49\u4e3a\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":27,"\u7684\u6d4b\u8bd5\u6570\u636e\u96c6":53,"\u7684\u7248\u672c\u53f7":46,"\u7684\u7279\u5f81":48,"\u7684\u72b6\u6001":27,"\u7684\u7528\u6237\u53c2\u8003":34,"\u7684\u76d1\u542c\u7aef\u53e3":36,"\u7684\u76ee\u5f55\u7ed3\u6784\u4e3a":52,"\u7684\u76f8\u5173\u6587\u6863\u8fdb\u884c\u914d\u7f6e":39,"\u7684\u771f\u5b9e\u5173\u7cfb\u4e3a":18,"\u7684\u77e9\u9635":30,"\u7684\u795e\u7ecf\u7f51\u7edc\u673a\u5668\u7ffb\u8bd1":55,"\u7684\u7a20\u5bc6\u5411\u91cf\u4f5c\u4e3a\u8f93\u5165":30,"\u7684\u7aef\u5230\u7aef\u7cfb\u7edf\u6765\u89e3\u51b3srl\u4efb\u52a1":53,"\u7684\u7b2ci\u4e2a\u503c":30,"\u7684\u7b2cj\u4e2a\u503c":30,"\u7684\u7d22\u5f15\u6587\u4ef6\u5f15\u7528\u8bad\u7ec3":34,"\u7684\u7ed3\u6784\u5982\u4e0b":52,"\u7684\u7ef4\u5ea6":46,"\u7684\u7f51\u6865\u6765\u8fdb\u884c\u7f51\u7edc\u901a\u4fe1":20,"\u7684\u884c\u6570\u5e94\u8be5\u4e00\u81f4":55,"\u7684\u8bad\u7ec3\u6a21\u578b\u811a\u672c":50,"\u7684\u8bdd":17,"\u7684\u8def\u5f84\u4e2d":54,"\u7684\u8f93\u5165":27,"\u7684\u8f93\u51fa":33,"\u7684\u8f93\u51fa\u4fe1\u606f\u5165\u624b\u662f\u4e2a\u4e0d\u9519\u7684\u9009\u62e9":33,"\u7684\u8f93\u51fa\u51fd\u6570\u8fd4\u56de\u7684\u662f\u4e0b\u4e00\u4e2a\u65f6\u523b\u8f93\u51fa\u8bcd\u7684":28,"\u7684\u8f93\u51fa\u683c\u5f0f":25,"\u7684\u8f93\u51fa\u88ab\u7528\u4f5c":28,"\u7684\u8fd4\u56de\u503c\u4e00\u81f4":51,"\u7684\u90e8\u5206":34,"\u7684\u914d\u7f6e":[39,46],"\u7684\u9875\u9762":29,"\u7684python\u5305\u662fpaddlepaddle\u7684\u8bad\u7ec3\u4e3b\u8981\u7a0b\u5e8f":20,"\u7684python\u5305\u6765\u505a\u914d\u7f6e\u6587\u4ef6\u89e3\u6790\u7b49\u5de5\u4f5c":20,"\u76ee\u524d":[27,29,53],"\u76ee\u524d\u4f7f\u7528":29,"\u76ee\u524d\u5df2\u88ab\u767e\u5ea6\u5185\u90e8\u591a\u4e2a\u4ea7\u54c1\u7ebf\u5e7f\u6cdb\u4f7f\u7528":0,"\u76ee\u524d\u652f\u6301\u4e24\u79cd":24,"\u76ee\u524d\u652f\u6301fail":36,"\u76ee\u524d\u8be5\u53c2\u6570\u4ec5\u7528\u4e8eaucvalidationlayer\u548cpnpairvalidationlayer\u5c42":36,"\u76ee\u524d\u8fd8\u672a\u652f\u6301":27,"\u76ee\u5f55":[34,41,42,54],"\u76ee\u5f55\u4e0b":[30,50,55],"\u76ee\u5f55\u4e0b\u627e\u5230":50,"\u76ee\u5f55\u4e0b\u7684demo\u8bad\u7ec3\u51fa\u6765":5,"\u76ee\u5f55\u4e0b\u7684python\u5305":17,"\u76ee\u5f55\u4e2d":[34,52],"\u76ee\u5f55\u4e2d\u7684":[33,34],"\u76ee\u5f55\u4e2d\u8fd0\u884c":29,"\u76ee\u5f55\u4e2dpaddl":42,"\u76ee\u5f55\u4f1a\u51fa\u73b0\u5982\u4e0b\u51e0\u4e2a\u65b0\u7684\u6587\u4ef6":53,"\u76ee\u5f55\u5c31\u6210\u4e3a\u4e86\u5171\u4eab\u5b58\u50a8":42,"\u76ee\u5f55\u7ed3\u6784\u5982\u4e0b":55,"\u76ee\u5f55\u91cc\u63d0\u4f9b\u4e86\u8be5\u6570\u636e\u7684\u4e0b\u8f7d\u811a\u672c\u548c\u9884\u5904\u7406\u811a\u672c":50,"\u76ee\u6807":55,"\u76ee\u6807\u51fd\u6570\u662f\u6807\u7b7e\u7684\u4ea4\u53c9\u71b5":53,"\u76ee\u6807\u5411\u91cf":28,"\u76ee\u6807\u5b57\u5178":55,"\u76f4\u5230\u8bad\u7ec3\u6536\u655b\u4e3a\u6b62":17,"\u76f4\u5230\u903c\u8fd1\u771f\u5b9e\u89e3":18,"\u76f4\u63a5\u8fd4\u56de\u8ba1\u7b97\u7ed3\u679c":5,"\u76f4\u63a5\u8fdb\u5165\u8bad\u7ec3\u6a21\u578b\u7ae0\u8282":50,"\u76f8\u5173\u547d\u4ee4\u4e3a":20,"\u76f8\u5173\u6982\u5ff5\u662f":3,"\u76f8\u5173\u7684\u9e1f\u7c7b\u6570\u636e\u96c6\u53ef\u4ee5\u4ece\u5982\u4e0b\u5730\u5740\u4e0b\u8f7d":47,"\u76f8\u5173\u8bba\u6587":53,"\u76f8\u53cd":55,"\u76f8\u540c\u540d\u5b57\u7684\u53c2\u6570":17,"\u76f8\u5bf9":25,"\u76f8\u5bf9\u4e8epaddlepaddle\u7a0b\u5e8f\u8fd0\u884c\u65f6\u7684\u8def\u5f84":2,"\u76f8\u5bf9mnist\u800c\u8a00":3,"\u76f8\u5e94\u7684\u6570\u636e\u8bfb\u53d6\u811a\u672c\u548c\u8bad\u7ec3\u6a21\u578b\u811a\u672c":50,"\u76f8\u5e94\u7684\u6570\u636e\u8fed\u4ee3\u5668\u5982\u4e0b":53,"\u76f8\u5e94\u7684\u6807\u8bb0\u53e5\u5b50\u662f":53,"\u76f8\u5f53":25,"\u77e9\u9635":35,"\u7814\u7a76\u4eba\u5458\u5206\u6790\u4e86\u51e0\u4e2a\u5173\u4e8e\u6d88\u8d39\u8005\u4fe1\u5fc3\u548c\u653f\u6cbb\u89c2\u70b9\u7684\u8c03\u67e5":54,"\u7814\u7a76\u751f":51,"\u786e\u4fdd\u7f16\u8bd1\u5668\u9009\u9879":29,"\u793a":50,"\u793a\u4f8b":[17,48],"\u793a\u4f8b3\u5bf9\u4e8e\u5355\u5c42rnn\u548c\u53cc\u5c42rnn\u6570\u636e\u5b8c\u5168\u76f8\u540c":25,"\u793a\u4f8b3\u7684\u914d\u7f6e\u4f7f\u7528\u4e86\u5355\u5c42rnn\u548c\u53cc\u5c42rnn":25,"\u793a\u4f8b3\u7684\u914d\u7f6e\u5206\u522b\u4e3a":25,"\u795e\u7ecf\u7f51\u7edc\u5728\u8bad\u7ec3\u7684\u65f6\u5019":17,"\u795e\u7ecf\u7f51\u7edc\u673a\u5668\u7ffb\u8bd1":55,"\u795e\u7ecf\u7f51\u7edc\u7684\u67d0\u4e00\u5c42":39,"\u795e\u7ecf\u7f51\u7edc\u7684\u7f51\u7edc\u7ed3\u6784\u4e2d\u5177\u6709\u6709\u5411\u73af\u7ed3\u6784":25,"\u795e\u7ecf\u7f51\u7edc\u7684\u8bad\u7ec3\u672c\u8eab\u662f\u4e00\u4e2a\u975e\u5e38\u6d88\u8017\u5185\u5b58\u548c\u663e\u5b58\u7684\u5de5\u4f5c":17,"\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e":18,"\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e\u4e3b\u8981\u5305\u62ec\u7f51\u7edc\u8fde\u63a5":39,"\u79bb":25,"\u79d1\u5b66\u5bb6":51,"\u79d1\u5e7b\u7247":51,"\u79f0\u4e3a":[28,39],"\u79f0\u4e3a\u8bad\u7ec3\u914d\u7f6e\u6587\u4ef6":39,"\u79f0\u4e4b\u4e3a\u53cc\u5c42\u5e8f\u5217\u7684\u4e00\u4e2a\u5b50\u5e8f\u5217":24,"\u79f0\u4e4b\u4e3a\u96c6\u675f\u5927\u5c0f":36,"\u7a00\u758f\u6570\u636e\u7684\u683c\u5f0f":30,"\u7a00\u758f\u768401\u5411\u91cf":3,"\u7a00\u758f\u7684\u5411\u91cf":3,"\u7a00\u758f\u77e9\u9635\u7684\u4e58\u79ef\u5e94\u7528\u4e8e\u524d\u5411\u4f20\u64ad\u8fc7\u7a0b":38,"\u7a0b\u5e8f\u4ece\u6b64\u76ee\u5f55\u62f7\u8d1d\u6587\u4ef6\u5230\u5bb9\u5668\u5185\u8fdb\u884c\u8bad\u7ec3":42,"\u7a0b\u5e8f\u505c\u6b62":36,"\u7a0b\u5e8f\u5458":51,"\u7a0b\u5e8f\u6216\u8005\u81ea\u5b9a\u4e49\u4e00\u4e2a\u542b\u6709\u542f\u52a8\u811a\u672c\u7684imag":20,"\u7a0b\u5e8f\u76f4\u63a5\u9000\u51fa":36,"\u7a0d\u505a\u8be6\u7ec6\u8bf4\u660e":39,"\u7a20\u5bc6\u5411\u91cf":30,"\u7a20\u5bc6\u7684\u6d6e\u70b9\u6570\u5411\u91cf":3,"\u7a97\u6237":25,"\u7aef\u53e3":34,"\u7aef\u53e3\u6570":34,"\u7aef\u53e3\u9644\u52a0\u5230\u4e3b\u673a\u540d\u4e0a":34,"\u7aef\u81ea\u5b9a\u4e49\u4e00\u4e2a":2,"\u7aef\u8bfb\u53d6\u6570\u636e":17,"\u7b2c":25,"\u7b2c\u4e00\u4e2a\u53c2\u6570\u662fsettings\u5bf9\u8c61":3,"\u7b2c\u4e00\u4e2a\u6837\u672c\u540c\u65f6encode\u4e24\u6761\u6570\u636e\u6210\u4e24\u4e2a\u5411\u91cf":25,"\u7b2c\u4e00\u4e2apass\u4f1a\u4ecepython\u7aef\u8bfb\u53d6\u6570\u636e":3,"\u7b2c\u4e00\u5929":25,"\u7b2c\u4e00\u884c\u4ece":54,"\u7b2c\u4e00\u884c\u5b58\u7684\u662f\u56fe\u50cf":48,"\u7b2c\u4e00\u884c\u662f":46,"\u7b2c\u4e00\u884c\u7684":55,"\u7b2c\u4e00\u90e8\u5206\u5b9a\u4e49\u4e86\u6570\u636e\u8f93\u5165":18,"\u7b2c\u4e00\u90e8\u5206\u662f\u56fe\u7247\u7684\u6807\u7b7e":3,"\u7b2c\u4e09":54,"\u7b2c\u4e09\u5217\u662f\u751f\u6210\u7684\u82f1\u8bed\u5e8f\u5217":55,"\u7b2c\u4e09\u6b65":48,"\u7b2c\u4e8c":54,"\u7b2c\u4e8c\u5217\u662f\u96c6\u675f\u641c\u7d22\u7684\u5f97\u5206":55,"\u7b2c\u4e8c\u6b65":[46,48],"\u7b2c\u4e8c\u884c\u5b58\u7684\u662f\u56fe\u50cf":48,"\u7b2c\u4e8c\u90e8\u5206\u4e3b\u8981\u662f\u9009\u62e9\u5b66\u4e60\u7b97\u6cd5":18,"\u7b2c\u4e8c\u90e8\u5206\u662f28":3,"\u7b2ci\u884c\u7b2cj\u5217\u7684\u6570\u503c":30,"\u7b49\u5176\u4ed6":55,"\u7b49\u53c2\u6570":42,"\u7b49\u591a\u79cd\u516c\u6709\u4e91\u73af\u5883":40,"\u7b49\u5f85\u8fd9\u4e2a\u7a0b\u5e8f\u6267\u884c\u6210\u529f\u5e76\u8fd4\u56de0\u5219\u6210\u529f\u9000\u51fa":40,"\u7b49\u7b49":[29,50,55],"\u7b49\u90fd\u5c5e\u4e8e\u4e00\u4e2a\u547d\u540d\u7a7a\u95f4":40,"\u7b80\u4ecb":32,"\u7b80\u5355\u6765\u8bf4":33,"\u7b80\u5355\u7684\u5168\u8fde\u63a5\u7f51\u7edc":17,"\u7b80\u5355\u7684\u542b\u6709ssh\u7684dockerfile\u5982\u4e0b":20,"\u7b80\u5355\u7684\u57fa\u4e8e\u5b57\u6bcd\u7684\u8bcd\u5d4c\u5165":52,"\u7b80\u5355\u7684\u6027\u80fd\u5206\u6790":33,"\u7b80\u5355\u7684\u6574\u4e2a\u8bcd\u5d4c\u5165":52,"\u7b80\u5355\u7684pydataprovider2\u6837\u4f8b\u5c31\u8bf4\u660e\u5b8c\u6bd5\u4e86":3,"\u7b80\u5355\u7684yaml\u6587\u4ef6\u5982\u4e0b":41,"\u7b80\u76f4":25,"\u7b97\u6cd5":[17,18,28,54],"\u7b97\u6cd5\u4e2d\u7684beam\u5927\u5c0f":28,"\u7b97\u6cd5\u914d\u7f6e":54,"\u7ba1\u7406\u4eba\u5458":51,"\u7ba1\u7406\u5458":51,"\u7c7b\u4f3c":24,"\u7c7b\u4f3c\u5730":53,"\u7c7b\u4f5c\u4e3a\u53c2\u6570\u7684\u62bd\u8c61":30,"\u7c7b\u522b\u4e2a\u6570":47,"\u7c7b\u522b\u4e2d\u7684\u53c2\u6570\u53ef\u7528\u4e8e\u6240\u6709\u573a\u5408":35,"\u7c7b\u522bid":50,"\u7c7b\u522bid\u548c\u6587\u672c\u4fe1\u606f\u7528":50,"\u7c7b\u578b":[36,52],"\u7c7b\u578b\u53ef\u4ee5\u662fpaddlepaddle\u652f\u6301\u7684\u4efb\u610f\u8f93\u5165\u6570\u636e\u7c7b\u578b":24,"\u7c7b\u578b\u662fsparse_binary_vector":3,"\u7c7b\u578b\u662fsparse_float_vector":3,"\u7c7b\u578b\u6765\u8bbe\u7f6e":3,"\u7c7b\u578b\u7684":25,"\u7c7b\u7684\u6784\u9020\u51fd\u6570\u548c\u6790\u6784\u51fd\u6570":30,"\u7c7b\u9700\u8981\u5b9e\u73b0\u521d\u59cb\u5316":30,"\u7cfb\u7edf\u7f16\u8bd1wheel\u5305\u7684\u65f6\u5019":17,"\u7cfb\u7edfc":39,"\u7d2f\u52a0\u6c42\u548c":39,"\u7ea2\u697c\u68a6":46,"\u7eaa\u5f55\u7247":51,"\u7eb5\u5411\u5305\u62ec\u56db\u4e2a\u7248\u672c":20,"\u7ebf\u6027\u56de\u5f52\u7684\u8f93\u5165\u662f\u4e00\u6279\u70b9":18,"\u7ebf\u6027\u56de\u5f52\u7684\u8f93\u51fa\u662f\u4ece\u8fd9\u6279\u70b9\u4f30\u8ba1\u51fa\u6765\u7684\u53c2\u6570":18,"\u7ebf\u6027\u8ba1\u7b97\u7f51\u7edc\u5c42":18,"\u7ebf\u7a0bid\u53f7":38,"\u7ec4\u6210":39,"\u7ec6\u8282\u63cf\u8ff0":37,"\u7ecf\u5178\u7684\u7ebf\u6027\u56de\u5f52\u4efb\u52a1":23,"\u7ecf\u5e38\u4f1a\u6d88\u8017\u657010gb\u7684\u5185\u5b58\u548c\u6570gb\u7684\u663e\u5b58":17,"\u7ed3\u5408":40,"\u7ed3\u675f\u6807\u8bb0":28,"\u7ed3\u6784\u5982\u4e0b":54,"\u7ed3\u6784\u5982\u4e0b\u56fe":46,"\u7ed3\u679c\u4fdd\u5b58\u5728":53,"\u7ed3\u679c\u53d1\u73b0\u5b83\u4eec\u4e0e\u540c\u65f6\u671f\u7684twitter\u6d88\u606f\u4e2d\u7684\u60c5\u7eea\u8bcd\u9891\u7387\u76f8\u5173":54,"\u7ed9":25,"\u7ed9\u51fa\u56fe\u7247\u5c3a\u5bf8":47,"\u7ed9\u51fa\u8f93\u5165\u6570\u636e\u6240\u5728\u8def\u5f84":47,"\u7ed9\u5b9a\u52a8\u8bcd":53,"\u7ed9\u5b9a\u7684\u6587\u672c\u53ef\u4ee5\u662f\u4e00\u4e2a\u6587\u6863":54,"\u7ed9\u5b9aencoder\u8f93\u51fa\u548c\u5f53\u524d\u8bcd":27,"\u7edd\u5927\u591a\u6570\u60c5\u51b5\u4e0b\u4e0d\u5e94\u8be5":29,"\u7ee7\u7eed\u6df1\u5165\u4e86\u89e3":39,"\u7ee7\u7eed\u8bad\u7ec3\u6216\u9884\u6d4b":3,"\u7ef4\u57fa\u767e\u79d1\u4e2d\u6587\u9875\u9762":25,"\u7ef4\u57fa\u767e\u79d1\u9875\u9762":25,"\u7ef4\u5ea6\u4e3aword_dim":50,"\u7ef4\u5ea6\u662f\u7c7b\u522b\u4e2a\u6570":50,"\u7ef4\u5ea6\u662f\u8bcd\u5178\u5927\u5c0f":50,"\u7ef4\u62a4":40,"\u7ef4\u7a7a\u95f4":28,"\u7ef4\u7a7a\u95f4\u5b8c\u6210":28,"\u7f13\u5b58\u6c60\u7684\u51cf\u5c0f":17,"\u7f13\u5b58\u8bad\u7ec3\u6570\u636e\u5230\u5185\u5b58":3,"\u7f16\u5199\u597d\u6570\u636e\u63d0\u4f9b\u811a\u672c\u540e":52,"\u7f16\u5199\u5b8cyaml\u6587\u4ef6\u540e":42,"\u7f16\u5199\u672c\u6b21\u8bad\u7ec3\u7684yaml\u6587\u4ef6":42,"\u7f16\u53f7":52,"\u7f16\u53f7\u4ece0\u5f00\u59cb":17,"\u7f16\u53f7\u5b57\u6bb5":52,"\u7f16\u7801\u5411\u91cf":28,"\u7f16\u7801\u5668\u8f93\u51fa":28,"\u7f16\u7801\u6e90\u5e8f\u5217":28,"\u7f16\u89e3\u7801\u6a21\u578b\u5c06\u4e00\u4e2a\u6e90\u8bed\u53e5\u7f16\u7801\u4e3a\u4e00\u4e2a\u5b9a\u957f\u7684\u5411\u91cf":55,"\u7f16\u8bd1\u5b8c\u6210\u540e":31,"\u7f16\u8bd1\u6210\u52a8\u6001\u5e93":36,"\u7f16\u8bd1\u6d41\u7a0b":23,"\u7f16\u8bd1\u6d41\u7a0b\u4e3b\u8981\u63a8\u8350\u9ad8\u7ea7\u7528\u6237\u67e5\u770b":21,"\u7f16\u8bd1\u73af\u5883\u548c\u6e90\u4ee3\u7801":20,"\u7f16\u8bd1\u751f\u6210":31,"\u7f16\u8bd1\u9009\u9879":19,"\u7f16\u8f91":40,"\u7f29\u653e\u53c2\u6570":48,"\u7f51\u7edc":[53,54],"\u7f51\u7edc\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf":40,"\u7f51\u7edc\u540d\u79f0":50,"\u7f51\u7edc\u5c42\u53ef\u4ee5\u6709\u591a\u4e2a\u8f93\u5165":30,"\u7f51\u7edc\u5c42\u7684\u6807\u8bc6\u7b26\u4e3a":30,"\u7f51\u7edc\u5c42\u7684\u7c7b\u578b":30,"\u7f51\u7edc\u5c42\u7684\u7ec6\u8282\u53ef\u4ee5\u901a\u8fc7\u4e0b\u9762\u8fd9\u4e9b\u4ee3\u7801\u7247\u6bb5\u6765\u6307\u5b9a":30,"\u7f51\u7edc\u5c42\u7684\u8f93\u51fa\u662f\u7ecf\u8fc7\u6fc0\u6d3b\u51fd\u6570\u4e4b\u540e\u7684\u503c":36,"\u7f51\u7edc\u5c42\u914d\u7f6e\u5305\u542b\u4ee5\u4e0b\u51e0\u9879":30,"\u7f51\u7edc\u63a5\u53e3\u5361":34,"\u7f51\u7edc\u6a21\u5757":48,"\u7f51\u7edc\u6a21\u578b\u5c06\u8f93\u51fa\u6807\u7b7e\u7684\u6982\u7387\u5206\u5e03":53,"\u7f51\u7edc\u7684\u8bad\u7ec3\u8fc7\u7a0b":54,"\u7f51\u7edc\u7684\u8f93\u51fa\u4e3a\u795e\u7ecf\u7f51\u7edc\u7684\u4f18\u5316\u76ee\u6807":39,"\u7f51\u7edc\u7684\u8f93\u51fa\u4e5f\u53ef\u901a\u8fc7":39,"\u7f51\u7edc\u7ed3\u6784\u5982\u4e0b\u56fe\u6240\u793a":52,"\u7f51\u7edc\u7ed3\u6784\u914d\u7f6e\u4e09\u90e8\u5206":39,"\u7f51\u7edc\u7ed3\u6784\u914d\u7f6e\u8fd9\u4e09\u90e8\u5206\u8be5\u6982\u5ff5":39,"\u7f51\u7edc\u8fde\u63a5":39,"\u7f51\u7edc\u901a\u4fe1":30,"\u7f51\u7edc\u914d\u7f6e":[34,50,54],"\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6":[48,53],"\u800c":[18,20,28,41,52],"\u800c\u4e0d\u4f7f\u7528docker":20,"\u800c\u4e0d\u4f7f\u7528imdb\u6570\u6910\u96c6\u4e2d\u7684imdb":54,"\u800c\u4e0d\u662f":29,"\u800c\u4e0d\u662f\u4f7f\u7528\u540c\u6b65":34,"\u800c\u4e0d\u662f\u65b0\u6570\u636e\u9a71\u52a8\u7cfb\u7edf":39,"\u800c\u4e0d\u662f\u6e90\u7801\u76ee\u5f55\u91cc":17,"\u800c\u4e0d\u662f\u7279\u5f81\u7684\u96c6\u5408":25,"\u800c\u4e0d\u662f\u7ec4\u5408\u4e0a\u4e0b\u6587\u7ea7\u522b\u4fe1\u606f":54,"\u800c\u4e0d\u7528\u5173\u5fc3\u6570\u636e\u5982\u4f55\u4f20\u8f93":3,"\u800c\u4e14":55,"\u800c\u4e4b\u524d\u7684\u53c2\u6570\u5c06\u4f1a\u88ab\u5220\u9664":36,"\u800c\u4ece\u5e94\u7528\u7684\u89d2\u5ea6":33,"\u800c\u4f18\u5316\u6027\u80fd\u7684\u9996\u8981\u4efb\u52a1":33,"\u800c\u5176\u4ed6\u5c42\u4f7f\u7528cpu\u8ba1\u7b97":38,"\u800c\u53cc\u5c42rnn\u662f\u53ef\u4ee5\u5904\u7406\u8fd9\u79cd\u8f93\u5165\u6570\u636e\u7684\u7f51\u7edc\u7ed3\u6784":25,"\u800c\u53f3\u56fe\u7684\u74f6\u9888\u8fde\u63a5\u6a21\u5757\u7528\u4e8e50\u5c42":48,"\u800c\u5927\u591a\u6570\u65b9\u6cd5\u53ea\u662f\u5229\u7528n":54,"\u800c\u5bf9\u4e8e\u53cc\u5c42\u5e8f\u5217":25,"\u800c\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u5185\u5c42\u7279\u5f81\u6570\u636e\u800c\u8a00":25,"\u800c\u5c06\u8fd9\u4e2a\u6bb5\u843d\u7684\u6bcf\u4e00\u53e5\u8bdd\u7528lstm\u7f16\u7801\u6210\u4e00\u4e2a\u5411\u91cf":25,"\u800c\u5f53\u524d\u5df2\u7ecf\u67095":33,"\u800c\u662f\u76f4\u63a5\u4ece\u5185\u5b58\u7684\u7f13\u5b58\u91cc\u8bfb\u53d6\u6570\u636e":17,"\u800c\u66f4\u6df1\u5165\u7684\u5206\u6790":33,"\u800c\u6709\u4e9b\u53c2\u6570\u9700\u8981\u5728\u96c6\u7fa4\u591a\u673a\u8bad\u7ec3\u4e2d\u4f7f\u7528\u7b49":35,"\u800c\u6ca1\u6709\u77ed\u65f6\u8bb0\u5fc6\u7684\u635f\u5931":54,"\u800c\u6e90\u5e8f\u5217\u7684\u7f16\u7801\u5411\u91cf\u53ef\u4ee5\u88ab\u65e0\u8fb9\u754c\u7684memory\u8bbf\u95ee":28,"\u800c\u7a00\u758f\u66f4\u65b0\u5728\u53cd\u5411\u4f20\u64ad\u4e4b\u540e\u7684\u6743\u91cd\u66f4\u65b0\u65f6\u8fdb\u884c":38,"\u800c\u7cfb\u7edf\u4e2d\u7684":17,"\u800c\u8fd9\u4e00\u53e5\u8bdd\u5c31\u53ef\u4ee5\u8868\u793a\u6210\u8fd9\u4e9b\u4f4d\u7f6e\u7684\u6570\u7ec4":25,"\u800c\u8fd9\u4e2acontext\u53ef\u80fd\u4f1a\u975e\u5e38\u5927":3,"\u800c\u8fd9\u6bcf\u4e00\u4e2a\u6570\u7ec4\u5143\u7d20":25,"\u800c\u975e\u9759\u6001\u52a0\u8f7dcuda\u52a8\u6001\u5e93":19,"\u800cgpu\u7684\u9a71\u52a8\u548c\u8bbe\u5907\u5168\u90e8\u6620\u5c04\u5230\u4e86\u5bb9\u5668\u5185":20,"\u800cpaddlepaddle\u5219\u4f1a\u5e2e\u7528\u6237\u505a\u4ee5\u4e0b\u5de5\u4f5c":3,"\u800crnn\u662f\u6700\u6d41\u884c\u7684\u9009\u62e9":27,"\u800cweight":47,"\u804c\u4e1a":51,"\u804c\u4e1a\u4ece\u4e0b\u9762\u6240\u5217\u4e2d\u9009\u62e9":51,"\u80fd\u591f\u5904\u7406\u53cc\u5c42\u5e8f\u5217":27,"\u80fd\u591f\u5bf9\u53cc\u5411\u5e8f\u5217\u8fdb\u884c\u5904\u7406\u7684\u6709":27,"\u80fd\u591f\u627e\u5230\u8fd9\u91cc\u4f7f\u7528\u7684\u6240\u6709\u6570\u636e":50,"\u80fd\u591f\u8bb0\u5f55\u4e0a\u4e00\u4e2asubseq":27,"\u80fd\u83b7\u53d6":34,"\u811a\u672c":[20,34,47,52],"\u811a\u672c\u4fdd\u5b58\u5728":47,"\u811a\u672c\u53ef\u4ee5\u542f\u52a8paddlepaddle\u7684\u8bad\u7ec3\u8fdb\u7a0b\u548cpserv":20,"\u811a\u672c\u548c":20,"\u811a\u672c\u5f00\u59cb\u65f6":42,"\u811a\u672c\u63d0\u4f9b\u4e86\u4e00\u4e2a\u9884\u6d4b\u63a5\u53e3":54,"\u811a\u672c\u65f6\u9700\u8981\u52a0\u4e0a":54,"\u811a\u672c\u7c7b\u4f3c\u4e8e":20,"\u811a\u672c\u8fd0\u884c\u5b8c\u6210\u540e":47,"\u81ea\u52a8\u5730\u5c06\u8fd9\u4e9b\u9009\u9879\u5e94\u7528\u5230":34,"\u81ea\u52a8\u5b8c\u6210\u8fd9\u4e00\u8fc7\u7a0b":27,"\u81ea\u52a8\u83b7\u53d6\u4e0a\u4e00\u4e2a\u751f\u6210\u7684\u8bcd":28,"\u81ea\u5e95\u5411\u4e0a\u6cd5":50,"\u81ea\u7136\u8bed\u8a00\u5904\u7406\u7b49":38,"\u81ea\u7531\u804c\u4e1a\u8005":51,"\u81f3\u5c11\u5177\u67093":20,"\u81f3\u6b64":[3,20,25],"\u8212\u9002":25,"\u827a\u672f\u5bb6":51,"\u8282\u70b9\u4e2d\u7684":34,"\u82e5":30,"\u82e5\u5e72\u4e2a\u53e5\u5b50\u6784\u6210\u4e00\u4e2a\u6bb5\u843d":24,"\u82e5\u6709\u4e0d\u4e00\u81f4\u4e4b\u5904":33,"\u82e5\u6709\u5fc5\u8981":30,"\u82e5\u8f93\u51fa\u662f\u5355\u5c42\u5e8f\u5217":24,"\u82e5\u8f93\u51fa\u662f\u53cc\u5c42\u5e8f\u5217":24,"\u82f1\u6587\u6587\u6863\u76ee\u5f55":31,"\u82f1\u8bed":55,"\u8303\u56f4":38,"\u83b7\u53d6\u5229\u7528":50,"\u83b7\u53d6\u5b57\u5178\u7ef4\u5ea6":54,"\u83b7\u53d6\u8be5\u6761\u6837\u672c\u7c7b\u522bid":50,"\u83b7\u53d6\u901a\u8fc7":54,"\u83b7\u53d6trainer":42,"\u83b7\u5f97\u53c2\u6570\u5c3a\u5bf8":30,"\u867d\u7136":18,"\u867d\u7136\u6bcf\u4e2agenerator\u5728\u6ca1\u6709\u8c03\u7528\u7684\u65f6\u5019":3,"\u867d\u7136\u8fd9\u4e9b\u6587\u4ef6\u5e76\u975e\u90fd\u9700\u8981\u96c6\u7fa4\u8bad\u7ec3":34,"\u867d\u7136paddle\u770b\u8d77\u6765\u5305\u542b\u4e86\u4f17\u591a\u53c2\u6570":35,"\u884c":46,"\u884c\u4f18\u5148\u6b21\u5e8f\u5b58\u50a8":48,"\u884c\u5185\u4f7f\u7528":3,"\u884c\u653f\u5de5\u4f5c":51,"\u8868\u660e\u4e86\u8fd9\u4e9b\u884c\u7684\u6807\u53f7":30,"\u8868\u660e\u8fd9\u4e2a\u5c42\u7684\u4e00\u4e2a\u5b9e\u4f8b\u662f\u5426\u9700\u8981\u504f\u7f6e":30,"\u8868\u793a":42,"\u8868\u793a\u4e00\u4e2akubernetes\u96c6\u7fa4\u4e2d\u7684\u4e00\u4e2a\u5de5\u4f5c\u8282\u70b9":40,"\u8868\u793a\u4e3adeviceid":38,"\u8868\u793a\u5171\u4eab\u5b58\u50a8\u6302\u8f7d\u7684\u8def\u5f84":42,"\u8868\u793a\u5728\u96c6\u7fa4\u4f5c\u4e1a":34,"\u8868\u793a\u5973\u6027":51,"\u8868\u793a\u5c06\u5916\u5c42\u7684outer_mem\u4f5c\u4e3a\u5185\u5c42memory\u7684\u521d\u59cb\u72b6\u6001":25,"\u8868\u793a\u5f53\u524d\u96c6\u7fa4\u4f5c\u4e1a\u7684\u8282\u70b9":34,"\u8868\u793a\u672c\u6b21\u8bad\u7ec3\u6587\u4ef6\u6240\u5728\u76ee\u5f55":42,"\u8868\u793a\u6a21\u578b\u914d\u7f6e\u6587\u4ef6":34,"\u8868\u793a\u751f\u6210\u6570\u636e\u7684\u5e8f\u5217id":55,"\u8868\u793a\u7528\u4e8e\u8bad\u7ec3\u6216\u9884\u6d4b":3,"\u8868\u793a\u7537\u6027":51,"\u8868\u793a\u7684\u6bcf\u4e2a\u5355\u8bcd":50,"\u8868\u793a\u7a00\u758f\u66f4\u65b0\u7684\u7aef\u53e3\u6570\u91cf":42,"\u8868\u793a\u7b2c0\u4e2abatch\u5230\u5f53\u524dbatch\u7684\u5206\u7c7b\u9519\u8bef":54,"\u8868\u793a\u8bad\u7ec3\u4e86xx\u4e2a\u6837\u672c":54,"\u8868\u793a\u8bad\u7ec3\u4e86xx\u4e2abatch":54,"\u8868\u793a\u8bad\u7ec3\u8282\u70b9\u6570\u91cf":42,"\u8868\u793a\u8bfb\u8005\u6240\u4f7f\u7528\u7684docker\u955c\u50cf\u4ed3\u5e93\u5730\u5740":42,"\u8868\u793a\u8fc7\u4e8620\u4e2abatch":50,"\u8868\u793a\u8fc7\u4e862560\u4e2a\u6837\u672c":50,"\u8868\u793a\u8fd9\u4e2ajob\u7684\u540d\u5b57":42,"\u8868\u793ajob\u540d\u5b57":42,"\u88ab\u6269\u5c55\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":24,"\u88ab\u653e\u5728":30,"\u88ab\u79f0\u4e3a":28,"\u88ab\u79f0\u4e3a\u6570\u636e\u63d0\u4f9b\u5668":39,"\u897f\u90e8\u7247":51,"\u8981\u4e0b\u8f7d\u548c\u89e3\u538b\u6570\u636e\u96c6":52,"\u8981\u4e0b\u8f7d\u89e3\u538b\u8fd9\u4e2a\u6a21\u578b":55,"\u8981\u4f7f\u7528\u547d\u4ee4\u884c\u5206\u6790\u5de5\u5177":33,"\u8981\u5728\u5df2\u6709\u7684kubernetes\u96c6\u7fa4\u4e0a\u8fdb\u884cpaddlepaddle\u7684\u5206\u5e03\u5f0f\u8bad\u7ec3":42,"\u8981\u5728\u6240\u6709\u8282\u70b9\u4e0a\u5b58\u5728":34,"\u8981\u5bf9\u4e00\u4e2a\u56fe\u7247\u7684\u8fdb\u884c\u5206\u7c7b\u9884\u6d4b":47,"\u8981\u5c06\u5b57\u6bb5\u914d\u7f6e\u6587\u4ef6\u8f6c\u5316\u4e3ameta\u914d\u7f6e\u6587\u4ef6":52,"\u8981\u6c42\u5355\u5c42\u5e8f\u5217\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee":24,"\u8981\u751f\u6210\u7684\u76ee\u6807\u5e8f\u5217":27,"\u8981\u8c03\u7528":30,"\u89c2\u5bdf\u5f53\u524d\u8fdc\u7a0b\u4ed3\u5e93\u914d\u7f6e":29,"\u89e3\u51b3\u529e\u6cd5\u662f":17,"\u89e3\u51b3\u65b9\u6848\u662f":17,"\u89e3\u538b":55,"\u89e3\u6790\u5668\u80fd\u901a\u8fc7\u6587\u4ef6\u7684\u6269\u5c55\u540d\u81ea\u52a8\u8bc6\u522b\u6587\u4ef6\u7684\u683c\u5f0f":52,"\u89e3\u6790\u6570\u636e\u96c6\u4e2d\u7684\u6bcf\u4e00\u4e2a\u5b57\u6bb5":52,"\u89e3\u6790\u6a21\u578b\u914d\u7f6e\u6587\u4ef6":5,"\u89e3\u6790\u73af\u5883\u53d8\u91cf\u5f97\u5230":42,"\u89e3\u6790\u8bad\u7ec3\u6a21\u578b\u65f6\u7528\u7684\u914d\u7f6e\u6587\u4ef6":5,"\u89e3\u7801\u5668\u4f7f\u7528":28,"\u89e3\u7801\u5668\u57fa\u4e8e\u7f16\u7801\u6e90\u5e8f\u5217\u548c\u6700\u540e\u751f\u6210\u7684\u76ee\u6807\u8bcd\u9884\u6d4b\u4e0b\u4e00\u76ee\u6807\u8bcd":28,"\u89e3\u7801\u5668\u662f\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":28,"\u89e3\u7801\u5668\u6839\u636e\u4e0a\u4e0b\u6587\u5411\u91cf\u9884\u6d4b\u51fa\u4e00\u4e2a\u76ee\u6807\u5355\u8bcd":55,"\u89e3\u91ca":50,"\u8ba1\u7b97":28,"\u8ba1\u7b97\u504f\u7f6e\u7684\u68af\u5ea6":30,"\u8ba1\u7b97\u5355\u5143\u662f\u795e\u7ecf\u7f51\u7edc\u7684\u6838\u5fc3":18,"\u8ba1\u7b97\u53cd\u5411rnn\u7684\u7b2c\u4e00\u4e2a\u5b9e\u4f8b":28,"\u8ba1\u7b97\u53d8\u6362\u77e9\u9635\u7684\u5927\u5c0f\u548c\u683c\u5f0f":30,"\u8ba1\u7b97\u5f53\u524d\u5c42\u6743\u91cd\u7684\u68af\u5ea6":30,"\u8ba1\u7b97\u6bcf\u4e2a\u8bcd\u7684\u8bcd\u5411\u91cf":28,"\u8ba1\u7b97\u6fc0\u6d3b\u51fd\u6570\u7684\u68af\u5ea6":30,"\u8ba1\u7b97\u7684\u7ec6\u8282\u5c06\u5728\u4e0b\u9762\u7684\u5c0f\u8282\u7ed9\u51fa":30,"\u8ba1\u7b97\u8bef\u5dee\u51fd\u6570":18,"\u8ba1\u7b97\u8f6c\u6362\u77e9\u9635\u548c\u8f93\u5165\u7684\u68af\u5ea6":30,"\u8ba1\u7b97\u8f93\u5165\u548c\u53c2\u6570\u7684\u68af\u5ea6":30,"\u8ba1\u7b97\u8f93\u5165\u5c42\u7684\u504f\u5dee":30,"\u8ba1\u7b97\u8f93\u51fa":30,"\u8ba9\u6a21\u578b\u80fd\u591f\u5f97\u5230\u8bad\u7ec3\u66f4\u65b0":50,"\u8ba9\u795e\u7ecf\u7f51\u7edc\u53ef\u4ee5\u8fdb\u884c\u8bad\u7ec3\u6216\u9884\u6d4b":2,"\u8ba9\u8fd9\u4e2a\u793a\u4f8b\u53d8\u5f97\u66f4\u597d":52,"\u8bad\u7ec3":[20,35,54],"\u8bad\u7ec3\u4f5c\u4e1a":34,"\u8bad\u7ec3\u53ca\u6d4b\u8bd5\u8bef\u5dee\u66f2\u7ebf\u56fe\u4f1a\u88ab":47,"\u8bad\u7ec3\u53ef\u4ee5\u8bbe\u7f6e\u4e3atrue":53,"\u8bad\u7ec3\u540e":53,"\u8bad\u7ec3\u5931\u8d25\u65f6\u53ef\u4ee5\u68c0\u67e5\u9519\u8bef\u65e5\u5fd7":34,"\u8bad\u7ec3\u597d\u4e00\u4e2a\u6df1\u5c42\u795e\u7ecf\u7f51\u7edc\u901a\u5e38\u8981\u8017\u8d39\u975e\u5e38\u957f\u7684\u65f6\u95f4":33,"\u8bad\u7ec3\u5b8c\u6210\u540e":18,"\u8bad\u7ec3\u6570\u636e\u548c\u6d4b\u8bd5\u6570\u636e\u7684\u76ee\u5f55":55,"\u8bad\u7ec3\u6570\u636e\u662f":3,"\u8bad\u7ec3\u6570\u636e\u7684\u683c\u5f0f\u5f80\u5f80\u5404\u4e0d\u76f8\u540c":39,"\u8bad\u7ec3\u6570\u6910\u96c6":54,"\u8bad\u7ec3\u65f6":42,"\u8bad\u7ec3\u65f6\u6240\u9700\u8bbe\u7f6e\u7684\u4e3b\u8981\u53c2\u6570\u5982\u4e0b":50,"\u8bad\u7ec3\u65f6\u9ed8\u8ba4shuffl":3,"\u8bad\u7ec3\u6a21\u578b":23,"\u8bad\u7ec3\u6a21\u578b\u4e4b\u524d":54,"\u8bad\u7ec3\u6a21\u578b\u540e":28,"\u8bad\u7ec3\u7684\u635f\u5931\u51fd\u6570\u9ed8\u8ba4\u6bcf\u969410\u4e2abatch\u6253\u5370\u4e00\u6b21":55,"\u8bad\u7ec3\u7684\u811a\u672c\u662f":53,"\u8bad\u7ec3\u7b97\u6cd5":39,"\u8bad\u7ec3\u7b97\u6cd5\u901a\u5e38\u5b9a\u4e49\u5728\u53e6\u4e00\u5355\u72ecpython\u6587\u4ef6\u4e2d":39,"\u8bad\u7ec3\u7ed3\u675f\u540e\u67e5\u770b\u8f93\u51fa\u7ed3\u679c":42,"\u8bad\u7ec3\u811a\u672c":50,"\u8bad\u7ec3\u811a\u672c\u7b49\u7b49":50,"\u8bad\u7ec3\u81f3\u591a":52,"\u8bad\u7ec3\u8bed\u8a00\u6a21\u578b\u8ddd\u79bb":17,"\u8bad\u7ec3\u8f6e\u6b21":50,"\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u6d4b\u8bd5test_period":35,"\u8bad\u7ec3\u8fc7\u7a0b\u662f\u5426\u4e3a\u672c\u5730\u6a21\u5f0f":36,"\u8bad\u7ec3\u8fc7\u7a0b\u662f\u5426\u4f7f\u7528gpu":36,"\u8bad\u7ec3\u8fdb\u7a0b":39,"\u8bad\u7ec3\u914d\u7f6e\u4e2d\u7684\u8bbe\u5907\u5c5e\u6027\u5c06\u4f1a\u65e0\u6548":36,"\u8bad\u7ec3\u914d\u7f6e\u6587\u4ef6\u4e3b\u8981\u5305\u62ec\u6570\u636e\u6e90":39,"\u8bad\u7ec3\u914d\u7f6e\u6587\u4ef6\u7684\u6570\u636e\u6e90\u914d\u7f6e\u4e2d\u6307\u5b9adataprovider\u6587\u4ef6\u540d\u5b57":39,"\u8bad\u7ec3\u9636\u6bb5":39,"\u8bad\u7ec3\u96c6\u548c\u6d4b\u8bd5\u96c6\u6587\u4ef6\u5217\u8868":54,"\u8bad\u7ec3\u96c6\u5df2\u7ecf\u505a\u4e86\u968f\u673a\u6253\u4e71\u6392\u5e8f\u800c\u6d4b\u8bd5\u96c6\u6ca1\u6709":54,"\u8bad\u7ec3\u96c6\u5df2\u7ecf\u968f\u673a\u6253\u4e71":54,"\u8bad\u7ec3\u96c6\u5e73\u5747\u503c":47,"\u8bad\u7ec3dot_period":35,"\u8bb0\u5fc6\u6a21\u5757":28,"\u8bba\u6587":48,"\u8bbe\u4e3a\u5df2\u90e8\u7f72\u7684\u5de5\u4f5c\u7a7a\u95f4\u76ee\u5f55":34,"\u8bbe\u4e3a\u672c\u5730":34,"\u8bbe\u7f6e\u4e3a":30,"\u8bbe\u7f6e\u4e3atrue\u4f7f\u7528\u672c\u5730\u8bad\u7ec3\u6216\u8005\u4f7f\u7528\u96c6\u7fa4\u4e0a\u7684\u4e00\u4e2a\u8282\u70b9":36,"\u8bbe\u7f6e\u4e3atrue\u4f7f\u7528gpu\u6a21\u5f0f":36,"\u8bbe\u7f6e\u4efb\u52a1\u7684\u6a21\u5f0f\u4e3a\u6d4b\u8bd5":55,"\u8bbe\u7f6e\u4fdd\u5b58\u6a21\u578b\u7684\u8f93\u51fa\u8def\u5f84":55,"\u8bbe\u7f6e\u5168\u5c40\u5b66\u4e60\u7387":54,"\u8bbe\u7f6e\u5185\u5b58\u4e2d\u6682\u5b58\u7684\u6570\u636e\u6761\u6570":3,"\u8bbe\u7f6e\u5185\u5b58\u4e2d\u6700\u5c0f\u6682\u5b58\u7684\u6570\u636e\u6761\u6570":3,"\u8bbe\u7f6e\u53c2\u6570\u7684\u540d\u5b57":17,"\u8bbe\u7f6e\u547d\u4ee4\u884c\u53c2\u6570":[17,32,52],"\u8bbe\u7f6e\u5b57\u5178\u6587\u4ef6":54,"\u8bbe\u7f6e\u5de5\u4f5c\u6a21\u5f0f\u4e3a\u8bad\u7ec3":54,"\u8bbe\u7f6e\u5e73\u5747sgd\u7a97\u53e3":54,"\u8bbe\u7f6e\u6210":17,"\u8bbe\u7f6e\u6210\u4e00\u4e2a\u5c0f\u4e00\u4e9b\u7684\u503c":17,"\u8bbe\u7f6e\u6570\u636e\u904d\u5386\u6b21\u6570":53,"\u8bbe\u7f6e\u6807\u7b7e\u7c7b\u522b\u5b57\u5178":54,"\u8bbe\u7f6e\u6a21\u578b\u8def\u5f84":54,"\u8bbe\u7f6e\u7684\u547d\u4ee4\u884c\u53c2\u6570":54,"\u8bbe\u7f6e\u795e\u7ecf\u7f51\u7edc\u7684\u914d\u7f6e\u6587\u4ef6":55,"\u8bbe\u7f6e\u7c7b\u522b\u6570":54,"\u8bbe\u7f6e\u7ebf\u7a0b\u6570":[53,54],"\u8bbe\u7f6e\u7f51\u7edc\u914d\u7f6e":54,"\u8bbe\u7f6e\u8f93\u51fa\u7684\u5c3a\u5bf8":30,"\u8bbe\u7f6e\u8f93\u51fa\u8def\u5f84\u4ee5\u4fdd\u5b58\u8bad\u7ec3\u5b8c\u6210\u7684\u6a21\u578b":54,"\u8bbe\u7f6e\u8fd9\u4e2apydataprovider2\u8fd4\u56de\u4ec0\u4e48\u6837\u7684\u6570\u636e":3,"\u8bbe\u7f6e\u9ed8\u8ba4\u8bbe\u5907\u53f7\u4e3a0":38,"\u8bbe\u7f6ebatch":54,"\u8bbe\u7f6ecpu\u7ebf\u7a0b\u6570\u6216\u8005gpu\u8bbe\u5907\u6570":55,"\u8bbe\u7f6egpu":36,"\u8bbe\u7f6epass":54,"\u8bbe\u7f6epasses\u7684\u6570\u91cf":55,"\u8bbf\u95eekubernetes\u7684\u63a5\u53e3\u6765\u67e5\u8be2\u6b64job\u5bf9\u5e94\u7684\u6240\u6709pod\u4fe1\u606f":42,"\u8bc4\u4ef7\u9884\u6d4b\u7684\u6548\u679c":18,"\u8bc4\u4f30\u5668":39,"\u8bc4\u4f30\u5668\u53ef\u4ee5\u8bc4\u4ef7\u6a21\u578b\u7ed3\u679c":39,"\u8bc4\u4f30\u8be5\u4ea7\u54c1\u7684\u8d28\u91cf":50,"\u8bc4\u5206":[51,52],"\u8bc4\u5206\u6587\u4ef6\u7684\u6bcf\u4e00\u884c\u4ec5\u4ec5\u63d0\u4f9b\u7535\u5f71\u6216\u7528\u6237\u7684\u7f16\u53f7\u6765\u4ee3\u8868\u76f8\u5e94\u7684\u7535\u5f71\u6216\u7528\u6237":52,"\u8bc4\u5206\u88ab\u8c03\u6574\u4e3a5\u661f\u7684\u89c4\u6a21":51,"\u8bcd\u5411\u91cf":46,"\u8bcd\u5411\u91cf\u6a21\u578b":49,"\u8bcd\u5411\u91cf\u6a21\u578b\u540d\u79f0":46,"\u8bcd\u672c\u8eab\u548c\u8bcd\u9891":46,"\u8bcd\u9891\u6700\u9ad8\u7684":55,"\u8bd5\u7740\u8ba9\u8f93\u51fa\u7684\u5206\u6790\u6570\u636e\u548c\u7406\u8bba\u503c\u5bf9\u5e94":33,"\u8be5":[34,53],"\u8be5\u51fd\u6570\u5177\u6709\u4e24\u4e2a\u53c2\u6570":3,"\u8be5\u51fd\u6570\u5728\u521d\u59cb\u5316\u7684\u65f6\u5019\u4f1a\u88ab\u8c03\u7528":3,"\u8be5\u51fd\u6570\u7684\u529f\u80fd\u662f":3,"\u8be5\u53c2\u6570\u5728\u7f51\u7edc\u914d\u7f6e\u7684output":36,"\u8be5\u53c2\u6570\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u81ea\u52a8\u8bbe\u7f6e":36,"\u8be5\u53c2\u6570\u5df2\u7ecf\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u5b8c\u6210\u8bbe\u7f6e":36,"\u8be5\u53c2\u6570\u5fc5\u987b\u80fd\u88abflag":36,"\u8be5\u53c2\u6570\u6307\u793a\u662f\u5426\u6253\u5370\u65e5\u5fd7\u622a\u65ad\u4fe1\u606f":36,"\u8be5\u53c2\u6570\u6307\u793a\u662f\u5426\u6253\u5370\u9519\u8bef\u622a\u65ad\u65e5\u5fd7":36,"\u8be5\u53c2\u6570\u7528\u4e8e\u6307\u5b9a\u52a8\u6001\u5e93\u8def\u5f84":36,"\u8be5\u53c2\u6570\u7684\u610f\u601d\u662f\u8bad\u7ec3num":36,"\u8be5\u53c2\u6570\u9ed8\u8ba4\u4e3anull":36,"\u8be5\u5bf9\u8c61\u5177\u6709\u4ee5\u4e0b\u4e24\u4e2a\u5c5e\u6027":3,"\u8be5\u5c42\u4ec5\u9700\u8981\u8fd9\u4e9b\u975e\u96f6\u6837\u672c\u4f4d\u7f6e\u6240\u5bf9\u5e94\u7684\u53d8\u6362\u77e9\u9635\u7684\u90a3\u4e9b\u884c":30,"\u8be5\u5c42\u795e\u7ecf\u5143\u4e2a\u6570":50,"\u8be5\u622a\u65ad\u4f1a\u5f71\u54cd":36,"\u8be5\u6279\u6b21\u7684\u8f93\u5165\u4e2d\u4ec5\u6709\u4e00\u4e2a\u5b50\u96c6\u662f\u975e\u96f6\u7684":30,"\u8be5\u63a5\u53e3\u4f7f\u7528\u591a\u7ebf\u7a0b\u8bfb\u53d6\u6570\u636e":3,"\u8be5\u63a5\u53e3\u53ef\u7528\u4e8e\u9884\u6d4b\u548c\u5b9a\u5236\u5316\u8bad\u7ec3":19,"\u8be5\u6570\u636e\u53ca\u6709\u5f88\u591a\u4e0d\u540c\u7684\u7248\u672c":51,"\u8be5\u6570\u636e\u96c6":46,"\u8be5\u6570\u636e\u96c6\u4e8e2003\u5e742\u6708\u53d1\u5e03":51,"\u8be5\u6570\u636e\u96c6\u5305\u542b\u4e00\u4e9b\u7528\u6237\u4fe1\u606f":51,"\u8be5\u6570\u76ee\u662f\u63d0\u524d\u5b9a\u4e49\u597d\u7684":36,"\u8be5\u6587\u4ef6\u53ef\u4ee5\u4ece\u5b57\u6bb5\u914d\u7f6e\u6587\u4ef6\u751f\u6210":52,"\u8be5\u6587\u4ef6\u662f\u7531cpickle\u4ea7\u751f\u7684":48,"\u8be5\u6587\u4ef6\u662fpython\u7684pickle\u5bf9\u8c61":52,"\u8be5\u6587\u4ef6\u8d1f\u8d23\u4ea7\u751f\u56fe\u7247\u6570\u636e\u5e76\u4f20\u9012\u7ed9paddle\u7cfb\u7edf":47,"\u8be5\u6a21\u578b\u4f9d\u7136\u4f7f\u7528\u903b\u8f91\u56de\u5f52\u5206\u7c7b\u7f51\u7edc\u7684\u6846\u67b6":50,"\u8be5\u6a21\u578b\u5728\u957f\u8bed\u53e5\u7ffb\u8bd1\u7684\u573a\u666f\u4e0b\u6548\u679c\u63d0\u5347\u66f4\u52a0\u660e\u663e":55,"\u8be5\u6a21\u578b\u7684\u7f51\u7edc\u914d\u7f6e\u5982\u4e0b":18,"\u8be5\u6a21\u578b\u7684\u8bf4\u660e\u5982\u4e0b\u56fe\u6240\u793a":28,"\u8be5\u6a21\u578b\u7f51\u7edc\u53ea\u662f\u7528\u4e8e\u8fdb\u884cdemo\u5c55\u793apaddle\u5982\u4f55\u5de5\u4f5c":52,"\u8be5\u76ee\u5f55\u4e0b\u4f1a\u751f\u6210\u5982\u4e0b\u4e24\u4e2a\u5b50\u76ee\u5f55":31,"\u8be5\u793a\u4f8b\u5c06\u5c55\u793apaddle\u5982\u4f55\u8fdb\u884c\u8bcd\u5411\u91cf\u5d4c\u5165":52,"\u8be5\u793a\u4f8b\u7684\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6":52,"\u8be5\u7b97\u6cd5\u6bcf\u6279\u91cf":18,"\u8be5\u7c7b\u7684\u5b9e\u73b0\u7ec6\u8282\u5728":30,"\u8be5\u811a\u672c\u4ec5\u4ec5\u662f\u5f00\u59cb\u4e00\u4e2apaddle\u8bad\u7ec3\u8fc7\u7a0b":52,"\u8be5\u811a\u672c\u4f1a\u751f\u6210\u4e00\u4e2adot\u6587\u4ef6":48,"\u8be5\u811a\u672c\u5c06\u8f93\u51fa\u9884\u6d4b\u5206\u7c7b\u7684\u6807\u7b7e":47,"\u8be5\u8bed\u53e5\u4f1a\u4e3a\u6bcf\u4e2a\u5c42\u521d\u59cb\u5316\u5176\u6240\u9700\u8981\u7684\u53d8\u91cf\u548c\u8fde\u63a5":30,"\u8be5layer\u5c06\u591a\u4e2a\u8f93\u5165":39,"\u8be5python\u4ee3\u7801\u53ef\u4ee5\u751f\u6210protobuf\u5305":39,"\u8be6\u7ec6\u4ecb\u7ecd\u53ef\u4ee5\u53c2\u8003":25,"\u8be6\u7ec6\u4fe1\u606f\u8bf7\u68c0\u67e5":34,"\u8be6\u7ec6\u5185\u5bb9\u8bf7\u53c2\u89c1":50,"\u8be6\u7ec6\u53ef\u4ee5\u53c2\u8003":39,"\u8be6\u7ec6\u5730\u5c55\u793a\u4e86\u6574\u4e2a\u7279\u5f81\u63d0\u53d6\u7684\u8fc7\u7a0b":48,"\u8be6\u7ec6\u6587\u6863\u53c2\u8003":17,"\u8be6\u7ec6\u7684\u53c2\u6570\u89e3\u91ca":50,"\u8be6\u7ec6\u7684cmake\u4f7f\u7528\u65b9\u6cd5\u53ef\u4ee5\u53c2\u8003":19,"\u8be6\u7ec6\u89c1":24,"\u8bed\u4e49\u89d2\u8272\u6807\u6ce8":[49,53],"\u8bed\u8a00\u6a21\u578b":46,"\u8bf4\u660e":19,"\u8bf4\u660e\u6bcf\u4e2a\u7279\u5f81\u6587\u4ef6\u5177\u4f53\u5b57\u6bb5\u662f":52,"\u8bf4\u660e\u8fd9\u4e2a\u5c42\u7684\u8f93\u5165":30,"\u8bf7\u4e0d\u8981\u6df7\u6dc6":39,"\u8bf7\u4f7f\u7528":29,"\u8bf7\u53c2\u7167\u7f51\u7edc\u914d\u7f6e\u7684\u6587\u6863\u4e86\u89e3\u66f4\u8be6\u7ec6\u7684\u4fe1\u606f":38,"\u8bf7\u53c2\u8003":[3,17,20,25,28,30,39,50],"\u8bf7\u53c2\u8003\u5982\u4e0b\u8868\u683c":50,"\u8bf7\u53c2\u8003\u9875\u9762":52,"\u8bf7\u53c2\u8003layer\u6587\u6863":47,"\u8bf7\u53c2\u9605":28,"\u8bf7\u53c2\u9605\u60c5\u611f\u5206\u6790\u7684\u6f14\u793a\u4ee5\u4e86\u89e3\u6709\u5173\u957f\u671f\u77ed\u671f\u8bb0\u5fc6\u5355\u5143\u7684\u66f4\u591a\u4fe1\u606f":53,"\u8bf7\u5b89\u88c5cuda":22,"\u8bf7\u6307\u5b9a\u8be5\u76ee\u5f55":36,"\u8bf7\u67e5\u770b":46,"\u8bf7\u6c42\u53ef\u80fd\u4f1a\u5931\u6548":29,"\u8bf7\u6c42\u65f6":29,"\u8bf7\u6ce8\u610f":[28,41,46],"\u8bf7\u770b\u4e0b\u9762\u7684\u4f8b\u5b50":38,"\u8bf7\u786e\u4fdd":29,"\u8bf7\u8bb0\u4f4f":34,"\u8bf7\u9009\u62e9\u6b63\u786e\u7684\u7248\u672c":17,"\u8bf8\u5982\u56fe\u50cf\u5206\u7c7b":38,"\u8bfb\u53d612\u4e2a\u91c7\u6837\u6570\u636e\u8fdb\u884c\u968f\u673a\u68af\u5ea6\u8ba1\u7b97\u6765\u66f4\u65b0\u66f4\u65b0":18,"\u8bfb\u53d6\u6570\u636e":3,"\u8bfb\u53d6\u6bcf\u4e00\u884c":3,"\u8bfb\u53d6volume\u4e2d\u7684\u6570\u636e\u8fdb\u884c\u8fd9\u6b21\u5206\u5e03\u5f0f\u8bad\u7ec3":42,"\u8bfb\u8005\u53ef\u4ee5\u67e5\u770b":42,"\u8bfb\u8005\u9700\u8981\u66ff\u6362\u6210\u81ea\u5df1\u4f7f\u7528\u7684\u4ed3\u5e93\u5730\u5740":42,"\u8c03\u7528":[30,47],"\u8c03\u7528\u4e00\u6b21":3,"\u8c03\u7528\u4e0a\u9762\u7684process\u51fd\u6570\u83b7\u5f97\u89c2\u6d4b\u6570\u636e":18,"\u8c03\u7528\u7684pydataprovider2\u662f":3,"\u8c03\u7528\u7b2c\u4e8c\u6b21\u7684\u65f6\u5019":3,"\u8c03\u7528\u8be5\u51fd\u6570\u540e":30,"\u8c03\u7528\u8fd9\u4e2apydataprovider2\u7684\u65b9\u6cd5":3,"\u8c13\u8bcd\u4e0a\u4e0b\u6587":53,"\u8d1f\u6837\u672c":50,"\u8d1f\u9762\u7684\u8bc4\u8bba\u7684\u5f97\u5206\u5c0f\u4e8e\u7b49\u4e8e4":54,"\u8d1f\u9762\u8bc4\u4ef7\u6837\u672c":54,"\u8d44\u6e90\u5bf9\u8c61\u7684\u540d\u5b57\u662f\u552f\u4e00\u7684":40,"\u8d77":25,"\u8def\u5f84\u4e0b":[18,48],"\u8df3\u8f6c\u5230":29,"\u8f6c\u4e3ajpeg\u6587\u4ef6\u5e76\u5b58\u5165\u7279\u5b9a\u7684\u76ee\u5f55":47,"\u8f6c\u5230":29,"\u8f6c\u6362\u8fc7\u6765\u7684":48,"\u8f6e":52,"\u8f83":25,"\u8f93\u5165":[24,28],"\u8f93\u5165\u5168\u662f\u5176\u4ed6layer\u7684\u8f93\u51fa":39,"\u8f93\u5165\u548c\u8f93\u51fa\u90fd\u662f\u5355\u5c42\u5e8f\u5217":27,"\u8f93\u5165\u548c\u8f93\u51fa\u90fd\u662f\u53cc\u5c42\u5e8f\u5217":27,"\u8f93\u5165\u56fe\u7247\u7684\u9ad8\u5ea6\u53ca\u5bbd\u5ea6":47,"\u8f93\u5165\u5c42\u5c3a\u5bf8":48,"\u8f93\u5165\u6570\u636e\u4e3a\u4e00\u4e2a\u5b8c\u6574\u7684\u65f6\u95f4\u5e8f\u5217":25,"\u8f93\u5165\u6570\u636e\u4e3a\u5728\u5355\u5c42rnn\u6570\u636e\u91cc\u9762":25,"\u8f93\u5165\u6570\u636e\u6574\u4f53\u4e0a\u662f\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":25,"\u8f93\u5165\u6570\u636e\u7684\u5b57\u5178\u7ef4\u6570\u662f1\u767e\u4e07":38,"\u8f93\u5165\u6570\u6910\u6240\u5728\u76ee\u5f55":54,"\u8f93\u5165\u6587\u672c":46,"\u8f93\u5165\u6587\u672c\u4e2d\u6ca1\u6709\u5934\u90e8":46,"\u8f93\u5165\u662f\u5426\u662f\u8f6c\u7f6e\u7684":30,"\u8f93\u5165\u662f\u7531\u4e00\u4e2alist\u4e2d\u7684\u7f51\u7edc\u5c42\u5b9e\u4f8b\u7684\u540d\u5b57\u7ec4\u6210\u7684":30,"\u8f93\u5165\u7279\u5f81\u56fe\u7684\u901a\u9053\u6570\u76ee":48,"\u8f93\u5165\u7684":46,"\u8f93\u5165\u7684\u539f\u59cb\u6570\u636e\u96c6\u8def\u5f84":55,"\u8f93\u5165\u7684\u540d\u5b57":30,"\u8f93\u5165\u7684\u5927\u5c0f":30,"\u8f93\u5165\u7684\u6587\u672c\u683c\u5f0f\u5982\u4e0b":46,"\u8f93\u5165\u7684\u6587\u672c\u8bcd\u5411\u91cf\u6a21\u578b\u540d\u79f0":46,"\u8f93\u5165\u7684\u7c7b\u578b":30,"\u8f93\u5165\u95e8":54,"\u8f93\u5165\u9884\u6d4b\u6837\u672c":54,"\u8f93\u5165n\u4e2a\u5355\u8bcd":50,"\u8f93\u51fa":[24,28],"\u8f93\u51fa\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":27,"\u8f93\u51fa\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":27,"\u8f93\u51fa\u4e3an\u4e2aword_dim\u7ef4\u5ea6\u5411\u91cf":50,"\u8f93\u51fa\u51fd\u6570":28,"\u8f93\u51fa\u5e8f\u5217\u7684\u7c7b\u578b":24,"\u8f93\u51fa\u5e8f\u5217\u7684\u8bcd\u8bed\u6570\u548c\u8f93\u5165\u5e8f\u5217\u4e00\u81f4":27,"\u8f93\u51fa\u5e94\u8be5\u7c7b\u4f3c\u5982\u4e0b":52,"\u8f93\u51fa\u6587\u4ef6\u7684\u683c\u5f0f\u8bf4\u660e":46,"\u8f93\u51fa\u65e5\u5fd7\u4fdd\u5b58\u5728\u8def\u5f84":54,"\u8f93\u51fa\u65e5\u5fd7\u8bf4\u660e\u5982\u4e0b":54,"\u8f93\u51fa\u67092\u5217":46,"\u8f93\u51fa\u7279\u5f81\u56fe\u7684\u901a\u9053\u6570\u76ee":48,"\u8f93\u51fa\u7684\u4e8c\u8fdb\u5236\u8bcd\u5411\u91cf\u6a21\u578b\u540d\u79f0":46,"\u8f93\u51fa\u7684\u6587\u672c\u6a21\u578b\u540d\u79f0":46,"\u8f93\u51fa\u7684\u68af\u5ea6":36,"\u8f93\u51fa\u76ee\u5f55":48,"\u8f93\u51fa\u7ed3\u679c\u53ef\u80fd\u4f1a\u968f\u7740\u5bb9\u5668\u7684\u6d88\u8017\u800c\u88ab\u5220\u9664":41,"\u8fc7\u4e86\u4e00\u4e2a\u5f88\u7b80\u5355\u7684recurrent_group":25,"\u8fc7\u5b8c\u6240\u6709\u8bad\u7ec3\u6570\u636e\u5373\u4e3a\u4e00\u4e2apass":17,"\u8fd0\u884c":[20,22],"\u8fd0\u884c\u4e0b\u9762\u547d\u4ee4\u5373\u53ef":52,"\u8fd0\u884c\u4ee5\u4e0b\u547d\u4ee4\u6765\u4e0b\u8f7d\u8fd9\u4e2a\u811a\u672c":55,"\u8fd0\u884c\u4ee5\u4e0b\u7684\u547d\u4ee4\u4e0b\u8f7d\u548c\u83b7\u53d6\u6211\u4eec\u7684\u5b57\u5178\u548c\u9884\u8bad\u7ec3\u6a21\u578b":46,"\u8fd0\u884c\u4ee5\u4e0b\u7684\u547d\u4ee4\u4e0b\u8f7d\u6570\u636e\u96c6":46,"\u8fd0\u884c\u4ee5\u4e0b\u8bad\u7ec3\u547d\u4ee4":18,"\u8fd0\u884c\u5206\u5e03\u5f0f\u4f5c\u4e1a":34,"\u8fd0\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3":[17,32,50],"\u8fd0\u884c\u5931\u8d25":38,"\u8fd0\u884c\u5b8c\u4ee5\u4e0a\u547d\u4ee4":46,"\u8fd0\u884c\u5b8c\u6210\u540e":34,"\u8fd0\u884c\u5b8c\u811a\u672c":54,"\u8fd0\u884c\u6210\u529f\u4ee5\u540e":46,"\u8fd0\u884c\u6210\u529f\u540e\u76ee\u5f55":54,"\u8fd0\u884c\u65e5\u5fd7":34,"\u8fd0\u884c\u7684\u4e00\u4e9b\u53c2\u6570\u901a\u8fc7\u8fd9\u79cd\u65b9\u5f0f\u4f20\u9012\u5230\u5bb9\u5668\u5185":42,"\u8fd0\u884c\u8fd9\u4e2acontain":20,"\u8fd1":25,"\u8fd1\u671f\u63d0\u51fa\u7684nmt\u6a21\u578b\u901a\u5e38\u90fd\u5c5e\u4e8e\u7f16\u89e3\u7801\u6a21\u578b":55,"\u8fd4\u56de":[8,9,10,11],"\u8fd4\u56de0":3,"\u8fd4\u56de8\u4e2a\u7279\u5f81list\u548c1\u4e2a\u6807\u7b7elist":53,"\u8fd4\u56de\u4e00\u6761\u5b8c\u6574\u7684\u6837\u672c":3,"\u8fd4\u56de\u6570\u636e\u7684\u6bcf\u4e00\u6761\u6837\u672c\u7ed9":52,"\u8fd4\u56de\u65f6":3,"\u8fd4\u56de\u7684\u662f":3,"\u8fd4\u56de\u7684\u987a\u5e8f\u9700\u8981\u548cinput_types\u4e2d\u5b9a\u4e49\u7684\u987a\u5e8f\u4e00\u81f4":3,"\u8fd4\u56de\u7b2ci\u4e2a\u8f93\u5165\u77e9\u9635":30,"\u8fd4\u56de\u7c7b\u578b":[8,9,10,11],"\u8fd8\u4f1a":25,"\u8fd8\u662f":25,"\u8fd8\u6709":25,"\u8fd8\u80fd\u5904\u7406\u5176\u4ed6\u7528\u6237\u81ea\u5b9a\u4e49\u7684\u6570\u636e":54,"\u8fd8\u91c7\u7528\u4e86\u4e24\u4e2a\u5176\u4ed6\u7279\u5f81":53,"\u8fd8\u9700\u8981\u8bbe\u7f6e\u4e0b\u9762\u4e24\u4e2a\u53c2\u6570":39,"\u8fd8\u9700\u8981\u8fdb\u884c\u9884\u5904\u7406":47,"\u8fd9":[17,25,50],"\u8fd9\u4e00\u5757\u7684\u8017\u65f6\u6bd4\u4f8b\u771f\u7684\u592a\u9ad8":33,"\u8fd9\u4e00\u8fc7\u7a0b\u5bf9\u7528\u6237\u662f\u5b8c\u5168\u900f\u660e\u7684":27,"\u8fd9\u4e09\u4e2a\u53d8\u91cf\u7ec4\u5408\u5c31\u53ef\u4ee5\u627e\u5230\u672c\u6b21\u8bad\u7ec3\u9700\u8981\u7684\u6587\u4ef6\u8def\u5f84":42,"\u8fd9\u4e09\u4e2a\u6b65\u9aa4\u53ef\u914d\u7f6e\u4e3a":50,"\u8fd9\u4e0e\u672c\u5730\u8bad\u7ec3\u76f8\u540c":34,"\u8fd9\u4e24\u4e2a\u6587\u4ef6\u5939\u4e0b\u5404\u81ea\u670910\u4e2a\u5b50\u6587\u4ef6\u5939":47,"\u8fd9\u4e24\u4e2a\u6807\u51c6":53,"\u8fd9\u4e24\u4e2a\u9700\u8981\u4e0e":39,"\u8fd9\u4e2a":[25,40],"\u8fd9\u4e2a\u4efb\u52a1\u7684\u914d\u7f6e\u4e3a":17,"\u8fd9\u4e2a\u4efb\u52a1\u7684dataprovider\u4e3a":17,"\u8fd9\u4e2a\u51fd\u6570\u7684":28,"\u8fd9\u4e2a\u51fd\u6570\u8fdb\u884c\u53d8\u6362":25,"\u8fd9\u4e2a\u51fd\u6570\u9700\u8981\u8bbe\u7f6e":28,"\u8fd9\u4e2a\u5305\u91cc\u9762\u5305\u542b\u4e86\u6a21\u578b\u914d\u7f6e\u9700\u8981\u7684\u5404\u4e2a\u6a21\u5757":39,"\u8fd9\u4e2a\u5411\u91cf\u4e0e\u6e90\u4e2d\u641c\u7d22\u51fa\u7684\u4f4d\u7f6e\u548c\u6240\u6709\u4e4b\u524d\u751f\u6210\u7684\u76ee\u6807\u5355\u8bcd\u6709\u5173":55,"\u8fd9\u4e2a\u5730\u5740\u5219\u4e3a\u5b83\u7684\u7edd\u5bf9\u8def\u5f84\u6216\u76f8\u5bf9\u8def\u5f84":2,"\u8fd9\u4e2a\u5730\u5740\u6765\u8868\u793a\u6b64\u6b65\u9aa4\u6240\u6784\u5efa\u51fa\u7684\u955c\u50cf":42,"\u8fd9\u4e2a\u57fa\u7c7b":30,"\u8fd9\u4e2a\u5b57\u5178\u662f\u6574\u6570\u6807\u7b7e\u548c\u5b57\u7b26\u4e32\u6807\u7b7e\u7684\u4e00\u4e2a\u5bf9\u5e94":54,"\u8fd9\u4e2a\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20\u53c8\u662f\u4e00\u4e2a\u5e8f\u5217":27,"\u8fd9\u4e2a\u6570\u636e\u4e5f\u88ab\u5355\u5c42rnn\u7f51\u7edc\u76f4\u63a5\u4f7f\u7528":25,"\u8fd9\u4e2a\u6570\u636e\u5217\u8868\u6587\u4ef6\u4e2d\u5305\u542b\u7684\u662f\u6bcf\u4e00\u4e2a\u8bad\u7ec3\u6216\u8005\u6d4b\u8bd5\u6587\u4ef6\u7684\u8def\u5f84":39,"\u8fd9\u4e2a\u6570\u91cf\u79f0\u4e3abeam":55,"\u8fd9\u4e2a\u663e\u793a\u5668\u5f88\u68d2":50,"\u8fd9\u4e2a\u6a21\u578b\u5bf9\u4e8e\u7f16\u89e3\u7801\u6a21\u578b\u6765\u8bf4":55,"\u8fd9\u4e2a\u795e\u7ecf\u7f51\u7edc\u5355\u5143\u5c31\u53ebmemori":25,"\u8fd9\u4e2a\u7c7b\u7684\u53c2\u6570\u5305\u62ec":30,"\u8fd9\u4e2a\u7c7b\u9700\u8981\u7ee7\u627f":30,"\u8fd9\u4e2a\u7cfb\u7edf\u5c06srl\u4efb\u52a1\u89c6\u4e3a\u5e8f\u5217\u6807\u6ce8\u95ee\u9898":53,"\u8fd9\u4e2a\u8282\u70b9\u53ef\u4ee5\u662f\u7269\u7406\u673a\u6216\u8005\u865a\u62df\u673a":40,"\u8fd9\u4e2a\u8868\u683c":40,"\u8fd9\u4e2a\u8fc7\u7a0b\u5bf9\u7528\u6237\u4e5f\u662f\u900f\u660e\u7684":27,"\u8fd9\u4e2a\u8fc7\u7a0b\u5c31\u662f\u6a21\u578b\u7684\u8bad\u7ec3\u8fc7\u7a0b":18,"\u8fd9\u4e2a\u914d\u7f6e\u4e0e":46,"\u8fd9\u4e2a\u914d\u7f6e\u6587\u4ef6":40,"\u8fd9\u4e2a\u914d\u7f6e\u6587\u4ef6\u7f51\u7edc\u7531":39,"\u8fd9\u4e2a\u914d\u7f6e\u662f\u5426\u7528\u6765\u751f\u6210":55,"\u8fd9\u4e2a\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u751f\u6210\u4e00\u7cfb\u5217\u6743\u91cd":28,"\u8fd9\u4e2a\u95ee\u9898\u662fpydataprovider\u8bfb\u6570\u636e\u65f6\u5019\u7684\u903b\u8f91\u95ee\u9898":3,"\u8fd9\u4e2adataprovider\u8f83\u590d\u6742":3,"\u8fd9\u4e2ajob\u624d\u7b97\u6210\u529f\u7ed3\u675f":42,"\u8fd9\u4e2alayer\u7684\u8f93\u51fa\u4f1a\u4f5c\u4e3a\u6574\u4e2a":27,"\u8fd9\u4e5f\u4f1a\u6781\u5927\u51cf\u5c11\u6570\u636e\u8bfb\u5165\u7684\u8017\u65f6":17,"\u8fd9\u4e9b":34,"\u8fd9\u4e9b\u53c2\u6570\u7684\u5177\u4f53\u63cf\u8ff0":42,"\u8fd9\u4e9b\u53c2\u6570\u7684\u7b80\u77ed\u4ecb\u7ecd\u5982\u4e0b":52,"\u8fd9\u4e9b\u540d\u5b57\u5fc5\u987b\u8981\u5199\u5bf9":30,"\u8fd9\u4e9b\u6570\u636e\u4f1a\u88ab\u7528\u6765\u66f4\u65b0\u53c2\u6570":17,"\u8fd9\u4e9b\u6570\u636e\u4f7f\u7528\u7684\u5185\u5b58\u4e3b\u8981\u548c\u4e24\u4e2a\u53c2\u6570\u6709\u5173\u7cfb":17,"\u8fd9\u4e9b\u6587\u4ef6\u5c06\u4f1a\u88ab\u4fdd\u5b58\u5728":48,"\u8fd9\u4e9b\u6a21\u578b\u90fd\u662f\u7531\u539f\u4f5c\u8005\u63d0\u4f9b\u7684\u6a21\u578b":48,"\u8fd9\u4e9b\u7279\u5f81\u503c\u4e0e\u4e0a\u8ff0\u4f7f\u7528c":48,"\u8fd9\u4e9b\u7279\u5f81\u548c\u6807\u7b7e\u5b58\u50a8\u5728":53,"\u8fd9\u4e9b\u7279\u5f81\u6570\u636e\u4e4b\u95f4\u7684\u987a\u5e8f\u662f\u6709\u610f\u4e49\u7684":25,"\u8fd9\u4efd\u6559\u7a0b\u5c55\u793a\u4e86\u5982\u4f55\u5728paddlepaddle\u4e2d\u5b9e\u73b0\u4e00\u4e2a\u81ea\u5b9a\u4e49\u7684\u7f51\u7edc\u5c42":30,"\u8fd9\u4efd\u7b80\u77ed\u7684\u4ecb\u7ecd\u5c06\u5411\u4f60\u5c55\u793a\u5982\u4f55\u5229\u7528paddlepaddle\u6765\u89e3\u51b3\u4e00\u4e2a\u7ecf\u5178\u7684\u7ebf\u6027\u56de\u5f52\u95ee\u9898":18,"\u8fd9\u4f1a\u81ea\u52a8\u8fdb\u884c\u7f51\u7edc\u914d\u7f6e\u4e2d\u58f0\u660e\u7684\u6fc0\u6d3b\u64cd\u4f5c":30,"\u8fd9\u4f7f\u5f97nmt\u6a21\u578b\u5f97\u4ee5\u89e3\u653e\u51fa\u6765":55,"\u8fd9\u4fbf\u662f\u4e00\u79cd\u53cc\u5c42rnn\u7684\u8f93\u5165\u6570\u636e":25,"\u8fd9\u51e0\u4e2a\u7f16\u8bd1\u9009\u9879\u7684\u8bbe\u7f6e":19,"\u8fd9\u548c\u5355\u5c42rnn\u7684\u914d\u7f6e\u662f\u7b49\u4ef7\u7684":25,"\u8fd9\u56db\u4e2a\u7b80\u5355\u7684\u7279\u5f81\u662f\u6211\u4eec\u7684srl\u7cfb\u7edf\u6240\u9700\u8981\u7684":53,"\u8fd9\u56db\u6761\u6570\u636e\u540c\u65f6\u5904\u7406\u7684\u53e5\u5b50\u6570\u91cf\u4e3a":25,"\u8fd9\u5728\u5f88\u5927\u7a0b\u5ea6\u4e0a\u4f18\u4e8e\u5148\u524d\u7684\u6700\u5148\u8fdb\u7684\u7cfb\u7edf":53,"\u8fd9\u5728\u6784\u9020\u975e\u5e38\u590d\u6742\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u65f6\u662f\u6709\u7528\u7684":28,"\u8fd9\u5c06\u82b1\u8d39\u6570\u5206\u949f\u7684\u65f6\u95f4":55,"\u8fd9\u5c31\u662f":39,"\u8fd9\u5df2\u7ecf\u5728":54,"\u8fd9\u610f\u5473\u7740":28,"\u8fd9\u610f\u5473\u7740\u6a21\u578b\u5728\u8bad\u7ec3\u6570\u636e\u4e0a\u4e0d\u65ad\u7684\u6539\u8fdb":18,"\u8fd9\u610f\u5473\u7740\u9664\u4e86\u6307\u5b9adevic":38,"\u8fd9\u662f\u4e00\u4e2a\u57fa\u4e8e\u7edf\u8ba1\u7684\u673a\u5668\u7ffb\u8bd1\u7cfb\u7edf":54,"\u8fd9\u662f\u4e00\u79cd\u975e\u5e38\u7075\u6d3b\u7684\u6570\u636e\u7ec4\u7ec7\u65b9\u5f0f":24,"\u8fd9\u662f\u56e0\u4e3a\u5b83\u53d1\u6398\u51fa\u4e86\u56fe\u7247\u7684\u4e24\u7c7b\u91cd\u8981\u4fe1\u606f":47,"\u8fd9\u662f\u666e\u901a\u7684\u5355\u5c42\u65f6\u95f4\u5e8f\u5217\u7684dataprovider\u4ee3\u7801":25,"\u8fd9\u662f\u76ee\u524dcmake\u5bfb\u627epython\u7684\u903b\u8f91\u5b58\u5728\u7f3a\u9677":17,"\u8fd9\u662f\u96c6\u675f\u641c\u7d22\u7684\u7ed3\u679c":55,"\u8fd9\u6765\u81ea\u4e8epaddlepaddle\u7684\u5185\u5b58\u4e2d":55,"\u8fd9\u6837":[18,34],"\u8fd9\u6837\u505a\u53ef\u4ee5\u6781\u5927\u7684\u51cf\u5c11\u5185\u5b58\u5360\u7528":17,"\u8fd9\u6837\u5355\u4e2a\u5b50\u7ebf\u7a0b\u7684\u957f\u5ea6\u5c31\u4e0d\u4f1a\u6ea2\u51fa\u4e86":39,"\u8fd9\u6837\u53ef\u4ee5\u51cf\u5c0fgpu\u5185\u5b58":38,"\u8fd9\u6837\u5bb9\u5668\u7684":42,"\u8fd9\u6837\u5c31\u4f1a\u751f\u6210\u4e24\u4e2a\u6587\u4ef6":52,"\u8fd9\u6837\u7684\u88c5\u9970\u5668":30,"\u8fd9\u6837\u7684\u8bdd":41,"\u8fd9\u6837\u7684\u8bdd\u6bcf\u4f4d\u7528\u6237\u5728\u6d4b\u8bd5\u6587\u4ef6\u4e2d\u5c06\u4e0e\u8bad\u7ec3\u6587\u4ef6\u542b\u6709\u540c\u6837\u7684\u4fe1\u606f":52,"\u8fd9\u6b63\u662f\u5b83\u4eec\u901f\u5ea6\u5feb\u7684\u539f\u56e0":33,"\u8fd9\u6bb5\u7b80\u77ed\u7684\u914d\u7f6e\u5c55\u793a\u4e86paddlepaddle\u7684\u57fa\u672c\u7528\u6cd5":18,"\u8fd9\u7528\u4e8e\u5728\u591a\u7ebf\u7a0b\u548c\u591a\u673a\u4e0a\u66f4\u65b0\u53c2\u6570":30,"\u8fd9\u79cd\u521d\u59cb\u5316\u65b9\u5f0f\u5728\u4e00\u822c\u60c5\u51b5\u4e0b\u4e0d\u4f1a\u4ea7\u751f\u5f88\u5dee\u7684\u7ed3\u679c":17,"\u8fd9\u79cd\u60c5\u51b5\u4e0b\u4e0d\u9700\u8981\u91cd\u5199\u8be5\u51fd\u6570":30,"\u8fd9\u79cd\u65b9\u5f0f\u5fc5\u987b\u4f7f\u7528paddle\u5b58\u50a8\u7684\u6a21\u578b\u8def\u5f84\u683c\u5f0f":38,"\u8fd9\u79cd\u751f\u6210\u6280\u672f\u53ea\u7528\u4e8e\u7c7b\u4f3c\u89e3\u7801\u5668\u7684\u751f\u6210\u8fc7\u7a0b":28,"\u8fd9\u79cd\u7c7b\u578b\u7684\u8f93\u5165\u5fc5\u987b\u901a\u8fc7":27,"\u8fd9\u79cd\u96c6\u7fa4\u8282\u70b9\u7ba1\u7406\u65b9\u5f0f\u4f1a\u5728\u5c06\u6765\u4f7f\u7528":42,"\u8fd9\u7bc7\u6587\u7ae0":55,"\u8fd9\u7ec4\u8bed\u4e49\u76f8\u540c\u7684\u793a\u4f8b\u914d\u7f6e\u5982\u4e0b":25,"\u8fd9\u901a\u8fc7\u83b7\u5f97\u53cd\u5411\u5faa\u73af\u7f51\u7edc\u7684\u7b2c\u4e00\u4e2a\u5b9e\u4f8b":28,"\u8fd9\u91cc":[17,28,39,40,42,48,53],"\u8fd9\u91cc\u4e5f\u53ef\u53eb\u5206\u7c7b\u5c42":39,"\u8fd9\u91cc\u4ee5":50,"\u8fd9\u91cc\u4f7f\u7528\u4e00\u4e2a\u57fa\u4e8emomentum\u7684\u968f\u673a\u68af\u5ea6\u4e0b\u964d":18,"\u8fd9\u91cc\u4f7f\u7528\u4e86\u4e09\u79cd\u7f51\u7edc\u5355\u5143":18,"\u8fd9\u91cc\u4f7f\u7528\u4e86paddlepaddle\u7684python\u63a5\u53e3\u6765\u52a0\u8f7d\u6570\u6910":54,"\u8fd9\u91cc\u4f7f\u7528\u4e86paddlepaddle\u9884\u5b9a\u4e49\u597d\u7684rnn\u5904\u7406\u51fd\u6570":25,"\u8fd9\u91cc\u4f7f\u7528\u7b80\u5355\u7684":17,"\u8fd9\u91cc\u5229\u7528\u5b83\u5efa\u6a21\u53d8\u91cf\u4e4b\u95f4\u7684\u7ebf\u6027\u5173\u7cfb":18,"\u8fd9\u91cc\u53ea\u52a0\u8f7d":55,"\u8fd9\u91cc\u53ea\u7b80\u5355\u4ecb\u7ecd\u4e86\u5355\u673a\u8bad\u7ec3":50,"\u8fd9\u91cc\u5bf9":39,"\u8fd9\u91cc\u5c55\u793a\u5982\u4f55\u4f7f\u7528\u89c2\u6d4b\u6570\u636e\u6765\u62df\u5408\u8fd9\u4e00\u7ebf\u6027\u5173\u7cfb":18,"\u8fd9\u91cc\u6211\u4eec\u4f7f\u7528":52,"\u8fd9\u91cc\u6211\u4eec\u4f7f\u7528\u7684\u662f\u4e00\u4e2a\u5c0f\u7684vgg\u7f51\u7edc":47,"\u8fd9\u91cc\u6211\u4eec\u4f7f\u7528\u7684\u662fgpu\u6a21\u5f0f\u8fdb\u884c\u8bad\u7ec3":47,"\u8fd9\u91cc\u6211\u4eec\u5728movielens\u6570\u636e\u96c6\u63cf\u8ff0\u4e00\u79cd":52,"\u8fd9\u91cc\u6211\u4eec\u5c55\u793a\u4e00\u4efd\u7b80\u5316\u8fc7\u7684\u4ee3\u7801":30,"\u8fd9\u91cc\u6307\u5b9a\u8bcd\u5178":50,"\u8fd9\u91cc\u6570\u636e\u5c42\u6709\u4e24\u4e2a":18,"\u8fd9\u91cc\u662f\u4e00\u4e2a\u4f8b\u5b50":55,"\u8fd9\u91cc\u6709\u4e00\u4e9b\u4e0d\u540c\u7684\u53c2\u6570\u9700\u8981\u6307\u5b9a":55,"\u8fd9\u91cc\u68c0\u9a8c\u8fd0\u884c\u65f6\u95f4\u6a21\u578b\u7684\u6536\u655b":34,"\u8fd9\u91cc\u6bcf\u4e2a5\u4e2abatch\u6253\u5370\u4e00\u4e2a\u70b9":55,"\u8fd9\u91cc\u6bcf\u9694100\u4e2abatch\u663e\u793a\u4e00\u6b21\u53c2\u6570\u7edf\u8ba1\u4fe1\u606f":55,"\u8fd9\u91cc\u6bcf\u969410\u4e2abatch\u6253\u5370\u4e00\u6b21\u65e5\u5fd7":55,"\u8fd9\u91cc\u7684\u5217\u51fa\u7684\u548c":47,"\u8fd9\u91cc\u76f4\u63a5\u901a\u8fc7\u9884\u6d4b\u811a\u672c":50,"\u8fd9\u91cc\u7b80\u5355\u4ecb\u7ecdlayer":39,"\u8fd9\u91cc\u7ed9\u51fa\u96c6\u4e2d\u5e38\u89c1\u7684\u90e8\u7f72\u65b9\u6cd5":40,"\u8fd9\u91cc\u8bbe\u7f6e\u4e3a\u4f7f\u7528cpu":55,"\u8fd9\u91cc\u8bbe\u7f6e\u4e3afals":55,"\u8fd9\u91cc\u8bbe\u7f6e\u4e3atrue":55,"\u8fd9\u91cc\u91c7\u7528adam\u4f18\u5316\u65b9\u6cd5":50,"\u8fdb\u5165":54,"\u8fdb\u5165\u5bb9\u5668":41,"\u8fdb\u5165docker":20,"\u8fdb\u7a0b":39,"\u8fdb\u7a0b\u4e2d\u53ef\u4ee5\u542f\u52a8\u591a\u4e2a\u5b50\u7ebf\u7a0b\u53bb\u63a5\u53d7":39,"\u8fdb\u7a0b\u4e4b\u540e":39,"\u8fdb\u7a0b\u5171\u7ed1\u5b9a\u591a\u5c11\u4e2a\u7aef\u53e3\u7528\u6765\u505a\u7a20\u5bc6\u66f4\u65b0":39,"\u8fdb\u7a0b\u542f\u52a8\u7684\u5fc5\u8981\u53c2\u6570":42,"\u8fdb\u7a0b\u7684":34,"\u8fdb\u7a0b\u7684\u542f\u52a8\u53c2\u6570":42,"\u8fdb\u7a0b\u7684\u8fd0\u884c\u73af\u5883":42,"\u8fdb\u7a0b\u7aef\u53e3\u662f":39,"\u8fdb\u7a0b\u9700\u8981\u7684":42,"\u8fdb\u884c\u4e86":25,"\u8fdb\u884c\u4f7f\u7528":47,"\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3\u7684\u65b9\u6848":42,"\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3\u7684\u65b9\u6cd5":42,"\u8fdb\u884c\u540c\u6b65":39,"\u8fdb\u884c\u5f00\u53d1":29,"\u8fdb\u884c\u62c6\u89e3":25,"\u8fdb\u884c\u6fc0\u6d3b\u64cd\u4f5c":30,"\u8fdb\u884c\u8bfb\u5165\u548c\u9884\u5904\u7406\u4ece\u800c\u5f97\u5230\u771f\u5b9e\u8f93\u5165":18,"\u8fdb\u884c\u9884\u6d4b":50,"\u8fdb\u9636\u6307\u5357":45,"\u8fdc\u7a0b\u8bbf\u95ee":20,"\u8fde\u63a5":27,"\u8fde\u63a5\u4e09\u4e2alstm\u9690\u85cf\u5c42":54,"\u9000\u4f11\u4eba\u5458":51,"\u9000\u51fa\u5bb9\u5668":41,"\u9002\u4e2d":25,"\u9009":25,"\u9009\u62e9":25,"\u9009\u62e9\u4f60\u7684\u5f00\u53d1\u5206\u652f\u5e76\u5355\u51fb":29,"\u9009\u62e9\u5b58\u50a8\u65b9\u6848":32,"\u9009\u62e9\u666e\u901acpu\u7248\u672c\u7684devel\u7248\u672c\u7684imag":20,"\u9009\u62e9\u6d4b\u8bd5\u7ed3\u679c\u6700\u597d\u7684\u6a21\u578b\u6765\u9884\u6d4b":50,"\u9009\u62e9\u8def\u5f84\u6765\u52a8\u6001\u52a0\u8f7dnvidia":36,"\u9009\u62e9\u8fc7\u540e\u7684":55,"\u9009\u62e9\u9002\u5408\u60a8\u7684\u573a\u666f\u7684\u5408\u9002\u65b9\u6848":40,"\u9009\u81ea\u4e0b\u5217\u7c7b\u578b":51,"\u9009\u9879":[19,46],"\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":35,"\u901a\u5e38":[34,54],"\u901a\u5e38\u4f1a\u4f7f\u7528\u73af\u5883\u53d8\u91cf\u914d\u7f6ejob\u7684\u914d\u7f6e\u4fe1\u606f":42,"\u901a\u5e38\u4f7f\u7528\u7a00\u758f\u8bad\u7ec3\u6765\u52a0\u901f\u8ba1\u7b97\u8fc7\u7a0b":38,"\u901a\u5e38\u505a\u6cd5\u662f\u4ece\u4e00\u4e2a\u6bd4\u8f83\u5927\u7684learning_rate\u5f00\u59cb\u8bd5":17,"\u901a\u5e38\u5728\u9ad8\u7ea7\u60c5\u51b5\u4e0b":39,"\u901a\u5e38\u60c5\u51b5\u4e0b":33,"\u901a\u5e38\u6211\u4eec\u4f1a\u5b89\u88c5ceph\u7b49\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf\u6765\u5b58\u50a8\u8bad\u7ec3\u6570\u636e":41,"\u901a\u5e38\u662f\u4e00\u4e2apython\u51fd\u6570":39,"\u901a\u5e38\u6bcf\u4e2a\u914d\u7f6e\u6587\u4ef6\u90fd\u4f1a\u5305\u62ec":39,"\u901a\u5e38\u6bcf\u4e2ajob\u5305\u62ec\u4e00\u4e2a\u6216\u8005\u591a\u4e2apod":40,"\u901a\u5e38\u7684\u505a\u6cd5\u662f\u4f7f\u7528":28,"\u901a\u5e38\u7684\u505a\u6cd5\u662f\u5c06\u914d\u7f6e\u5b58\u4e8e":30,"\u901a\u5e38\u8981\u6c42\u65f6\u95f4\u6b65\u4e4b\u95f4\u5177\u6709\u4e00\u4e9b\u4f9d\u8d56\u6027":25,"\u901a\u5e38\u90fd\u4f1a\u4f7f\u7528\u4e0b\u9762\u8fd9\u4e9b\u547d\u4ee4\u884c\u53c2\u6570":38,"\u901a\u7528":35,"\u901a\u77e5":25,"\u901a\u77e5\u7cfb\u7edf\u4e00\u8f6e\u6570\u636e\u8bfb\u53d6\u7ed3\u675f":39,"\u901a\u8fc7":[17,25,30,34,39,50],"\u901a\u8fc7\u4e24\u4e2a\u5d4c\u5957\u7684":27,"\u901a\u8fc7\u4ea4\u66ff\u4f7f\u7528\u5377\u79ef\u548c\u6c60\u5316\u5904\u7406":47,"\u901a\u8fc7\u4f7f\u7528":19,"\u901a\u8fc7\u51fd\u6570":42,"\u901a\u8fc7\u5377\u79ef\u64cd\u4f5c\u4ece\u56fe\u7247\u6216\u7279\u5f81\u56fe\u4e2d\u63d0\u53d6\u7279\u5f81":47,"\u901a\u8fc7\u547d\u4ee4\u884c\u53c2\u6570":17,"\u901a\u8fc7\u5f15\u7528memory\u5f97\u5230\u8fd9\u4e2alayer\u4e0a\u4e00\u4e2a\u65f6\u523b\u7684\u8f93\u51fa":27,"\u901a\u8fc7\u5f15\u7528memory\u5f97\u5230\u8fd9\u4e2alayer\u4e0a\u4e00\u4e2a\u65f6\u523b\u8f93\u51fa":27,"\u901a\u8fc7\u6240\u6709\u5355\u5143\u6d4b\u8bd5":29,"\u901a\u8fc7\u6240\u6709\u8bad\u7ec3\u96c6\u4e00\u6b21\u79f0\u4e3a\u4e00\u904d":54,"\u901a\u8fc7\u67e5\u770b\u4e70\u5bb6\u5bf9\u67d0\u4e2a\u4ea7\u54c1\u7684\u8bc4\u4ef7\u53cd\u9988":50,"\u901a\u8fc7\u7f16\u8bd1\u4f1a\u751f\u6210py_paddle\u8f6f\u4ef6\u5305":5,"\u901a\u8fc7\u7f51\u7edc\u5c42\u7684\u6807\u8bc6\u7b26\u6765\u6307\u5b9a":30,"\u901a\u8fc7\u8c03\u7528":5,"\u901a\u8fc7\u914d\u7f6e\u7c7b\u4f3c\u4e8e":50,"\u901a\u8fc7data":27,"\u901a\u8fc7volum":40,"\u903b\u8f91\u56de\u5f52":50,"\u9053\u6b49":25,"\u9069":25,"\u9075\u5faa\u5982\u4e0b\u7684\u683c\u5f0f":51,"\u9075\u5faa\u6587\u7ae0":46,"\u90a3\u4e48":[27,30],"\u90a3\u4e480\u5c42\u5e8f\u5217\u5373\u4e3a\u4e00\u4e2a\u8bcd\u8bed":27,"\u90a3\u4e48\u53ef\u4ee5\u8ba4\u4e3a\u8bad\u7ec3\u4e0d\u6536\u655b":17,"\u90a3\u4e48\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u4e0d\u4f1a\u6267\u884c\u6d4b\u8bd5\u64cd\u4f5c":2,"\u90a3\u4e48\u5982\u4f55\u5224\u65ad\u8bad\u7ec3\u4e0d\u6536\u655b\u5462":17,"\u90a3\u4e48\u5e38\u6570\u8f93\u51fa\u6240\u80fd\u8fbe\u5230\u7684\u6700\u5c0fcost\u662f":17,"\u90a3\u4e48\u5f53check\u51fa\u6570\u636e\u4e0d\u5408\u6cd5\u65f6":3,"\u90a3\u4e48\u6211\u4eec\u53ef\u4ee5\u5224\u65ad\u4e3a\u8bad\u7ec3\u4e0d\u6536\u655b":17,"\u90a3\u4e48\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u6536\u96c6\u5e02\u573a\u4e0a\u623f\u5b50\u7684\u5927\u5c0f\u548c\u4ef7\u683c":18,"\u90a3\u4e48\u63a8\u8350\u4f7f\u7528":28,"\u90a3\u4e48\u63a8\u8350\u4f7f\u7528\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u65b9\u6cd5":28,"\u90a3\u4e48\u6536\u655b\u53ef\u80fd\u5f88\u6162":17,"\u90a3\u4e48\u6700\u597d\u5c06\u6570\u636e\u6587\u4ef6\u5728\u6bcf\u6b21\u8bfb\u53d6\u4e4b\u524d\u505a\u4e00\u6b21shuffl":17,"\u90a3\u4e48\u8bad\u7ec3\u6709\u53ef\u80fd\u4e0d\u6536\u655b":17,"\u90a3\u4e48\u8be5\u4f18\u5316\u7b97\u6cd5\u81f3\u5c11\u9700\u8981":17,"\u90a3\u4e48fc1\u548cfc2\u5c42\u5c06\u4f1a\u4f7f\u7528\u7b2c1\u4e2agpu\u6765\u8ba1\u7b97":38,"\u90a3\u4e48paddlepaddle\u4f1a\u6839\u636elayer\u7684\u58f0\u660e\u987a\u5e8f":3,"\u90a3\u4e5f\u5c31\u4e0d\u9700\u8981\u6025\u7740\u4f18\u5316\u6027\u80fd\u5566":33,"\u90a3\u4f30\u8ba1\u8fd9\u91cc\u7684\u6f5c\u529b\u5c31\u6ca1\u5565\u597d\u6316\u7684\u4e86":33,"\u90a3\u51cf\u5c11\u5b66\u4e60\u738710\u500d\u7ee7\u7eed\u8bd5\u9a8c":17,"\u90a3\u6211\u4f1a\u671f\u671b\u5206\u6790\u5de5\u5177\u7edf\u8ba1\u5230\u901f\u5ea6\u662f100gb":33,"\u90a3\u7a0b\u5e8f\u5206\u6790\u5de5\u5177\u662f\u5fc5\u4e0d\u53ef\u5c11\u7684\u5229\u5668":33,"\u90ae\u7f16":51,"\u90e8\u7f72\u548c\u914d\u7f6e\u6bd4\u8f83\u7b80\u5355":40,"\u90e8\u7f72kubernetes\u96c6\u7fa4":32,"\u90fd":25,"\u90fd\u4f1a\u4ea7\u751f\u5f53\u524d\u5c42\u72b6\u6001\u7684\u6240\u6709\u7ee7\u627f\u7ed3\u679c":36,"\u90fd\u4f7f\u7528\u968f\u673a\u503c\u521d\u59cb\u5316":18,"\u90fd\u53ea\u662f\u4ecb\u7ecd\u53cc\u5c42rnn\u7684api\u63a5\u53e3":25,"\u90fd\u662f\u5bf9layer1\u5143\u7d20\u7684\u62f7\u8d1d":24,"\u90fd\u662f\u5c06\u6bcf\u4e00\u53e5\u5206\u597d\u8bcd\u540e\u7684\u53e5\u5b50":25,"\u90fd\u9700\u8981\u8c03\u7528\u4e00\u6b21":30,"\u914d\u5408\u4f7f\u7528":39,"\u914d\u7f6e":54,"\u914d\u7f6e\u4e86\u7f51\u7edc":52,"\u914d\u7f6e\u51fa\u975e\u5e38\u590d\u6742\u7684\u7f51\u7edc":39,"\u914d\u7f6e\u521b\u5efa\u5b8c\u6bd5\u540e":47,"\u914d\u7f6e\u5982\u4e0b":46,"\u914d\u7f6e\u6253\u5f00":33,"\u914d\u7f6e\u6570\u636e\u6e90":39,"\u914d\u7f6e\u6587\u4ef6":50,"\u914d\u7f6e\u6587\u4ef6\u63a5\u53e3\u662ffc_layer":30,"\u914d\u7f6e\u6a21\u578b\u6587\u4ef6":46,"\u914d\u7f6e\u7b49\u6587\u4ef6\u7684\u76ee\u5f55\u89c6\u4e3a":34,"\u914d\u7f6e\u7b80\u5355\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u4f8b\u5b50":28,"\u914d\u7f6e\u7f51\u7edc\u5c42\u7684\u8f93\u5165":30,"\u914d\u7f6eapi":24,"\u914d\u7f6ekubectl":32,"\u9152\u5e97":25,"\u91c7\u6837\u5c42":52,"\u91c7\u7528":53,"\u91c7\u7528\u53e6\u4e00\u79cd\u65b9\u6cd5\u6765\u5806\u53e0lstm\u5c42":53,"\u91c7\u7528\u5747\u5300\u5206\u5e03\u6216\u8005\u9ad8\u65af\u5206\u5e03\u521d\u59cb\u5316":36,"\u91c7\u7528multi":17,"\u91cc\u4ecb\u7ecd\u4e86\u7528paddle\u6e90\u7801\u4e2d\u7684\u811a\u672c\u4e0b\u8f7d\u8bad\u7ec3\u6570\u636e\u7684\u8fc7\u7a0b":41,"\u91cc\u4f1a\u7ee7\u7eed\u5b89\u88c5":22,"\u91cc\u6307\u5b9a\u56fe\u50cf\u6570\u636e\u5217\u8868":48,"\u91cc\u7684\u65e5\u5fd7":34,"\u91cc\u901a\u8fc7train_list\u548ctest_list\u6307\u5b9a\u662f\u8bad\u7ec3\u6587\u4ef6\u5217\u8868\u548c\u6d4b\u8bd5\u6587\u4ef6\u5217\u8868":39,"\u91cd\u65b0\u7f16\u8bd1paddlepaddl":33,"\u9488\u5bf9\u4efb\u52a1\u8fd0\u884c\u5b8c\u6210\u540e\u5bb9\u5668\u81ea\u52a8\u9000\u51fa\u7684\u573a\u666f":41,"\u9488\u5bf9\u5185\u5b58\u548c\u663e\u5b58":17,"\u9488\u5bf9\u6587\u672c":52,"\u94a9\u5b50\u4f1a\u68c0\u67e5\u672c\u5730\u4ee3\u7801\u662f\u5426\u5b58\u5728":29,"\u94fe\u63a5\u4f55\u79cdblas\u5e93\u7b49":19,"\u94fe\u63a5\u5f85\u8865\u5145":50,"\u9500\u552e":51,"\u9519\u8bef\u7387":50,"\u9519\u8bef\u7684define_py_data_sources2\u7c7b\u4f3c":17,"\u955c\u50cf":20,"\u955c\u50cf\u91cc\u6709":41,"\u957f\u5ea6":17,"\u95e8\u63a7\u5faa\u73af\u5355\u5143\u5355\u6b65\u51fd\u6570\u548c\u8f93\u51fa\u51fd\u6570":28,"\u95e8\u63a7\u5faa\u73af\u5355\u5143\u7684\u8f93\u51fa\u88ab\u7528\u4f5c\u8f93\u51famemori":28,"\u95ee\u9898":18,"\u95f4\u9694":50,"\u9650\u5236\u5957\u63a5\u5b57\u53d1\u9001\u7f13\u51b2\u533a\u7684\u5927\u5c0f":36,"\u9650\u5236\u5957\u63a5\u5b57\u63a5\u6536\u7f13\u51b2\u533a\u7684\u5927\u5c0f":36,"\u9664\u4e86":3,"\u9664\u4e86boot_lay":25,"\u9664\u53bbdata\u5c42":50,"\u9664\u8bcd\u5411\u91cf\u6a21\u578b\u5916\u7684\u53c2\u6570\u5c06\u4f7f\u7528\u6b63\u6001\u5206\u5e03\u968f\u673a\u521d\u59cb\u5316":46,"\u968f\u673a\u521d\u59cb\u4e0d\u5b58\u5728\u7684\u53c2\u6570":53,"\u968f\u673a\u6570\u7684\u79cd\u5b50":36,"\u968f\u673a\u6570seed":35,"\u968f\u7740\u8f6e\u6570\u589e\u52a0\u8bef\u5dee\u4ee3\u4ef7\u51fd\u6570\u7684\u8f93\u51fa\u5728\u4e0d\u65ad\u7684\u51cf\u5c0f":18,"\u9694\u5f00":48,"\u96c6":51,"\u96c6\u675f\u641c\u7d22\u4e2d\u7684\u6269\u5c55\u5e7f\u5ea6":55,"\u96c6\u675f\u641c\u7d22\u4f7f\u7528\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u6765\u6784\u5efa\u641c\u7d22\u6811":55,"\u96c6\u675f\u641c\u7d22\u4f7f\u7528\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u7684\u65b9\u5f0f\u6784\u5efa\u67e5\u627e\u6811":36,"\u96c6\u7fa4\u4e0a\u542f\u52a8\u4e00\u4e2a\u5355\u673a\u4f7f\u7528cpu\u7684paddle\u8bad\u7ec3\u4f5c\u4e1a":41,"\u96c6\u7fa4\u4f5c\u4e1a\u4e2d\u6240\u6709\u8fdb\u7a0b\u7684\u73af\u5883\u8bbe\u7f6e":34,"\u96c6\u7fa4\u4f5c\u4e1a\u5c06\u4f1a\u5728\u51e0\u79d2\u540e\u542f\u52a8":34,"\u96c6\u7fa4\u5de5\u4f5c":34,"\u96c6\u7fa4\u6d4b\u8bd5":35,"\u96c6\u7fa4\u8bad\u7ec3":35,"\u96c6\u7fa4\u8fdb\u7a0b":34,"\u96c6\u7fa4\u901a\u4fe1\u4fe1\u9053\u7684\u7aef\u53e3\u6570":34,"\u96c6\u7fa4\u901a\u4fe1\u901a\u9053\u7684":34,"\u96c6\u7fa4\u901a\u4fe1\u901a\u9053\u7684\u7aef\u53e3\u53f7":34,"\u9700\u5728nvvp\u754c\u9762\u4e2d\u9009\u4e0a\u624d\u80fd\u5f00\u542f":33,"\u9700\u8981\u4e0e":39,"\u9700\u8981\u4f7f\u7528\u5176\u5236\u5b9a\u7684\u65b9\u5f0f\u6302\u8f7d\u540e\u5e76\u5bfc\u5165\u6570\u636e":42,"\u9700\u8981\u5148\u6302\u8f7d\u5230\u670d\u52a1\u5668node\u4e0a\u518d\u901a\u8fc7kubernet":40,"\u9700\u8981\u53c2\u8003":20,"\u9700\u8981\u542f\u52a8":39,"\u9700\u8981\u542f\u52a8\u7684\u8282\u70b9\u4e2a\u6570\u4ee5\u53ca":42,"\u9700\u8981\u5728":34,"\u9700\u8981\u5728\u521b\u5efa\u5bb9\u5668\u524d\u6302\u8f7d\u5377\u4ee5\u4fbf\u6211\u4eec\u4fdd\u5b58\u8bad\u7ec3\u7ed3\u679c":41,"\u9700\u8981\u5728\u7cfb\u7edf\u91cc\u5148\u5b89\u88c5\u597ddocker\u5de5\u5177\u5305":31,"\u9700\u8981\u5b89\u88c5graphviz\u6765\u8f6c\u6362dot\u6587\u4ef6\u4e3a\u56fe\u7247":48,"\u9700\u8981\u5bf9":40,"\u9700\u8981\u5c06\u5176parameter\u8bbe\u7f6e\u6210":17,"\u9700\u8981\u5c06\u6807\u8bb0\u7684\u8bad\u7ec3\u548c\u6d4b\u8bd5\u6837\u672c\u79fb\u52a8\u5230\u53e6\u4e00\u4e2a\u8def\u5f84":54,"\u9700\u8981\u6307\u5b9a\u4e0e\u67d0\u4e00\u4e2a\u8f93\u5165\u7684\u5e8f\u5217\u4fe1\u606f\u662f\u4e00\u81f4\u7684":25,"\u9700\u8981\u652f\u6301avx\u6307\u4ee4\u96c6\u7684cpu":20,"\u9700\u8981\u660e\u786e\u6307\u5b9a":36,"\u9700\u8981\u6709\u4e00\u4e2a\u5916\u90e8\u7684\u5b58\u50a8\u670d\u52a1\u6765\u4fdd\u5b58\u8bad\u7ec3\u6240\u9700\u6570\u636e\u548c\u8bad\u7ec3\u8f93\u51fa":40,"\u9700\u8981\u6ce8\u610f\u7684\u662f":[36,39,52],"\u9700\u8981\u6ce8\u610f\u7684\u662f\u68af\u5ea6\u68c0\u67e5\u4ec5\u4ec5\u9a8c\u8bc1\u4e86\u68af\u5ea6\u7684\u8ba1\u7b97":30,"\u9700\u8981\u6ce8\u610f\u7684\u662fpaddlepaddle\u76ee\u524d\u53ea\u652f\u6301\u5b50\u5e8f\u5217\u6570\u76ee\u4e00\u6837\u7684\u591a\u8f93\u5165\u53cc\u5c42rnn":25,"\u9700\u8981\u8981\u5148\u6302\u8f7d\u8fd9\u4e2a\u76ee\u5f55":42,"\u9700\u8981\u9075\u5faa\u4ee5\u4e0b\u7ea6\u5b9a":27,"\u9700\u8981import\u8fd9\u4e9b\u51fd\u6570":39,"\u9700\u8981python\u63a5\u53e3\u91cc\u5904\u7406shuffl":39,"\u975e\u5e38\u6570":30,"\u975e\u96f6\u6570\u5b57\u7684\u4e2a\u6570":30,"\u97f3\u4e50\u5267":51,"\u9875\u9762\u4e2d\u7684":29,"\u987a\u5e8f":25,"\u9884\u5904\u7406\u6570\u636e\u4e00\u822c\u7684\u547d\u4ee4\u4e3a":52,"\u9884\u5904\u7406\u811a\u672c":54,"\u9884\u5b9a\u4e49\u7f51\u7edc":54,"\u9884\u5b9a\u4e49\u7f51\u7edc\u5982\u56fe3\u6240\u793a":54,"\u9884\u6d4b\u540e":53,"\u9884\u6d4b\u63a5\u53e3\u811a\u672c":54,"\u9884\u6d4b\u6982\u7387\u53d6\u5e73\u5747":48,"\u9884\u6d4b\u7a0b\u5e8f\u5c06\u8bfb\u53d6\u7528\u6237\u7684\u8f93\u5165":52,"\u9884\u6d4b\u7ed3\u679c\u4ee5\u6587\u672c\u7684\u5f62\u5f0f\u4fdd\u5b58\u5728":50,"\u9884\u6d4b\u811a\u672c\u662f":53,"\u9884\u6d4b\u9636\u6bb5":39,"\u9884\u6d4bid":50,"\u9884\u6d4bimdb\u7684\u672a\u6807\u8bb0\u8bc4\u8bba\u7684\u4e00\u4e2a\u5b9e\u4f8b\u5982\u4e0b":54,"\u9884\u8bad\u7ec3\u6a21\u578b\u4f7f\u7528\u7684\u5b57\u5178\u7684\u8def\u5f84":46,"\u9884\u8bad\u7ec3\u8bcd\u5411\u91cf\u5b57\u5178\u6a21\u578b\u7684\u8def\u5f84":46,"\u989c\u8272\u901a\u9053\u987a\u5e8f\u4e3a":48,"\u989d\u5916\u7684\u53c2\u6570":50,"\u9996\u5148":[3,18,25,28,30,46,48,50,53,54],"\u9996\u5148\u4e0b\u8f7dcifar":47,"\u9996\u5148\u5728\u7cfb\u7edf\u8def\u5f84":19,"\u9996\u5148\u5b89\u88c5paddlepaddl":54,"\u9996\u5148\u5bf9\u8f93\u5165\u505a\u4e00\u4e2a\u5c0f\u7684\u6270\u52a8":30,"\u9996\u5148\u6211\u4eec\u9700\u8981\u63a8\u5bfc\u8be5\u7f51\u7edc\u5c42\u7684":30,"\u9996\u5148\u662f\u6cd5\u8bed\u5e8f\u5217":55,"\u9a71\u52a8":31,"\u9a8c\u8bc1\u65b0\u7684":29,"\u9ad8\u4e2d\u6bd5\u4e1a\u751f":51,"\u9ad8\u4eae\u90e8\u5206":25,"\u9ad8\u53ef\u7528":40,"\u9ad8\u5ea6\u652f\u6301\u7075\u6d3b\u548c\u9ad8\u6548\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e":28,"\u9ad8\u6548\u6027":0,"\u9ad8\u65af\u5206\u5e03":17,"\u9ed1\u8272\u7535\u5f71":51,"\u9ed8\u8ba4":[3,36,55],"\u9ed8\u8ba4\u4e00\u4e2apass\u4fdd\u5b58\u4e00\u6b21\u6a21\u578b":50,"\u9ed8\u8ba4\u4e0d\u663e\u793a":36,"\u9ed8\u8ba4\u4e0d\u8bbe\u7f6e":27,"\u9ed8\u8ba4\u4e3a0":[36,38],"\u9ed8\u8ba4\u4e3a1":[3,38],"\u9ed8\u8ba4\u4e3a100":38,"\u9ed8\u8ba4\u4e3a4096mb":36,"\u9ed8\u8ba4\u4e3a\u4e0d\u4f7f\u7528":52,"\u9ed8\u8ba4\u4e3a\u7b2c\u4e00\u4e2a\u8f93\u5165":27,"\u9ed8\u8ba4\u4e3anull":36,"\u9ed8\u8ba4\u4f7f\u7528\u591a\u7c7b\u4ea4\u53c9\u71b5\u635f\u5931\u51fd\u6570\u548c\u5206\u7c7b\u9519\u8bef\u7387\u7edf\u8ba1\u8bc4\u4f30\u5668":39,"\u9ed8\u8ba4\u4f7f\u7528concurrentremoteparameterupdat":36,"\u9ed8\u8ba4\u503c":[19,24,38],"\u9ed8\u8ba4\u521d\u59cb\u72b6\u4e3a0":27,"\u9ed8\u8ba4\u60c5\u51b5\u4e0b":[17,34,54],"\u9ed8\u8ba4\u60c5\u51b5\u4e0b\u4f7f\u7528\u6b64\u7f51\u7edc":54,"\u9ed8\u8ba4\u6307\u5b9a\u7b2c\u4e00\u4e2a\u8f93\u5165":25,"\u9ed8\u8ba4\u662f0":39,"\u9ed8\u8ba4\u662f1":39,"\u9ed8\u8ba4\u7528\u6765\u5207\u5206\u5355\u8bb0\u548c\u6807\u70b9\u7b26\u53f7":54,"\u9ed8\u8ba4\u7684":41,"\u9ed8\u8ba4\u8bbe\u7f6e\u4e3a\u771f":38,"\u9ed8\u8ba4\u914d\u7f6e\u5982\u4e0b":34,"adamax\u7b49":50,"amazon\u7535\u5b50\u4ea7\u54c1\u8bc4\u8bba\u6570\u636e":50,"api\u5bf9\u6bd4\u4ecb\u7ecd":26,"api\u63a5\u53e3":40,"async_sgd\u8fdb\u884c\u8bad\u7ec3\u65f6":17,"atlas\u7684\u8def\u5f84":19,"awselasticblockstore\u7b49":40,"batch\u4e2d\u5305\u542b":17,"batches\u4e2a\u6279\u6b21\u4fdd\u5b58\u4e00\u6b21\u53c2\u6570":36,"batches\u6b21":36,"bin\u548c\u8bc4\u5206\u6587\u4ef6":52,"blas\u7684\u8def\u5f84":19,"bool\u578b\u53c2\u6570":3,"byte":17,"caoying\u7684pul":55,"case":[10,16,33],"cd\u5230\u542b\u6709dockerfile\u7684\u8def\u5f84\u4e2d":20,"class":[6,7,10,12,13,15,17,30,54],"cmake\u4e2d\u5c06":33,"cmake\u627e\u5230\u7684python\u5e93\u548cpython\u89e3\u91ca\u5668\u7248\u672c\u53ef\u80fd\u6709\u4e0d\u4e00\u81f4\u73b0\u8c61":17,"cmake\u7f16\u8bd1\u65f6":19,"cmake\u914d\u7f6e\u4e2d\u5c06":33,"conf\u4f5c\u4e3a\u914d\u7f6e":55,"const":30,"container\u4e2d":41,"container\u540e":20,"cost\u8fd8\u5927\u4e8e\u8fd9\u4e2a\u6570":17,"count\u4e2agpu\u4e0a\u4f7f\u7528\u6570\u636e\u5e76\u884c\u6765\u8ba1\u7b97\u67d0\u4e00\u5c42":38,"count\u548cgpu":38,"cpu\u7248\u672c":[20,22],"cuda\u5e73\u53f0":22,"cuda\u5e93":36,"cuda\u76f8\u5173\u7684driver\u548c\u8bbe\u5907\u6620\u5c04\u8fdbcontainer\u4e2d":20,"cudnn\u5e93":[19,36],"dat\u4e2d":52,"data\u76ee\u5f55\u4e2d\u5b58\u653e\u5207\u5206\u597d\u7684\u6570\u636e":42,"dataprovider\u5171\u8fd4\u56de\u4e24\u4e2a\u6570\u636e":25,"dataprovider\u5171\u8fd4\u56de\u4e24\u7ec4\u6570\u636e":25,"dataprovider\u662f\u88ab\u7cfb\u7edf\u8c03\u7528":39,"dataprovider\u662fpaddlepaddle\u7cfb\u7edf\u7684\u6570\u636e\u63d0\u4f9b\u5668":39,"dataprovider\u662fpaddlepaddle\u8d1f\u8d23\u63d0\u4f9b\u6570\u636e\u7684\u6a21\u5757":2,"dataprovider\u7684\u4ecb\u7ecd":[4,50],"dataprovider\u7f13\u51b2\u6c60\u5185\u5b58":17,"dataprovider\u8fd4\u56de\u7a7a\u6570\u636e":39,"dataprovider\u91cc\u5b9a\u4e49\u6570\u636e\u8bfb\u53d6\u51fd\u6570":39,"deb\u5b89\u88c5\u5305":22,"decay\u5219\u4e3a0":47,"decoder\u5faa\u73af\u5c55\u5f00\u7684\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u4f1a\u5f15\u7528\u5168\u90e8\u7ed3\u679c":27,"decoder\u63a5\u53d7\u4e24\u4e2a\u8f93\u5165":27,"decoder\u6bcf\u6b21\u9884\u6d4b\u4ea7\u751f\u4e0b\u4e00\u4e2a\u6700\u53ef\u80fd\u7684\u8bcd\u8bed":27,"decoer\u67b6\u6784":27,"default":[7,9,10,11,12,13,15,38,41,42,54],"demo\u9884\u6d4b\u8f93\u51fa\u5982\u4e0b":5,"devel\u548cdemo":20,"dictionary\u662f\u4ece\u7f51\u7edc\u914d\u7f6e\u4e2d\u4f20\u5165\u7684dict\u5bf9\u8c61":3,"dictionary\u7531\u89e3\u6790\u81ea\u52a8\u751f\u6210":52,"dir\u4e2d\u670916\u4e2a\u5b50\u76ee\u5f55":55,"docker\u5b89\u88c5\u8bf7\u53c2\u8003":31,"docker\u7684\u5b98\u65b9\u6587\u6863":20,"docker\u7684\u5b98\u7f51":31,"docker\u955c\u50cf\u662f\u6211\u4eec\u76ee\u524d\u552f\u4e00\u5b98\u65b9\u652f\u6301\u7684\u90e8\u7f72\u548c\u8fd0\u884c\u65b9\u5f0f":20,"dockerfile\u7684\u6587\u6863":20,"dockerfile\u7684\u6700\u4f73\u5b9e\u8df5":20,"dropout\u7684\u6bd4\u4f8b":30,"elec\u6d4b\u8bd5\u96c6":50,"embedding\u6a21\u578b\u9700\u8981\u7a0d\u5fae\u6539\u53d8\u63d0\u4f9b\u6570\u636e\u7684python\u811a\u672c":50,"encode\u6210\u7684\u6700\u540e\u4e00\u4e2a\u5411\u91cf":25,"encoder\u548cdecoder\u53ef\u4ee5\u662f\u80fd\u591f\u5904\u7406\u5e8f\u5217\u7684\u4efb\u610f\u795e\u7ecf\u7f51\u7edc\u5355\u5143":27,"encoder\u8f93\u51fa":27,"entropy\u4f5c\u4e3acost":17,"evaluator\u7684\u503c\u4f4e\u4e8e0":55,"export":[17,20,22,47],"f\u4ee3\u8868\u4e00\u4e2a\u6d6e\u70b9\u6570":3,"false\u7684\u60c5\u51b5":3,"fc1\u548cfc2\u5c42\u5728gpu\u4e0a\u8ba1\u7b97":38,"fc3\u5c42\u4f7f\u7528cpu\u8ba1\u7b97":38,"final":[11,52],"float":[3,7,9,10,12,18,33,48,52],"float\u7b49":38,"function":[8,10,11,12,15,16,28,54],"gen\u6587\u4ef6\u5939\u4e2d\u7684\u6587\u4ef6\u5217\u8868":55,"generator\u4fbf\u4f1a\u5b58\u4e0b\u5f53\u524d\u7684\u4e0a\u4e0b\u6587":3,"generator\u81f3\u5c11\u9700\u8981\u8c03\u7528\u4e24\u6b21\u624d\u4f1a\u77e5\u9053\u662f\u5426\u505c\u6b62":3,"git\u6d41\u5206\u652f\u6a21\u578b":29,"github\u4e0a":29,"github\u5141\u8bb8\u81ea\u52a8\u66f4\u65b0":29,"github\u9996\u9875":29,"gpu\u4e8c\u8fdb\u5236\u6587\u4ef6":19,"gpu\u5219\u8fd8\u9700\u8981\u9ad8\u5e76\u884c\u6027":33,"gpu\u53cc\u7f13\u5b58":3,"gpu\u548ccpu\u901a\u4fe1":39,"gpu\u6027\u80fd\u5206\u6790\u4e0e\u8c03\u4f18":32,"gpu\u6838\u5728\u8bad\u7ec3\u914d\u7f6e\u4e2d\u6307\u5b9a":36,"gpu\u7248\u672c":[20,22],"gpu\u7248\u672c\u5e76\u60f3\u4f7f\u7528":53,"gpu\u7684docker\u955c\u50cf\u7684\u65f6\u5019":17,"gram\u7ea7\u522b\u7684\u77e5\u8bc6":54,"group\u6559\u7a0b":26,"gru\u6216lstm":28,"gru\u6a21\u578b":50,"gru\u6a21\u578b\u914d\u7f6e":50,"hot\u7a20\u5bc6\u5411\u91cf":52,"html\u5373\u53ef\u8bbf\u95ee\u672c\u5730\u6587\u6863":31,"i\u4ee3\u8868\u4e00\u4e2a\u6574\u6570":3,"id\u4e3a0\u7684\u6982\u7387":50,"id\u4e3a1\u7684\u6982\u7387":50,"id\u6307\u5b9a\u4f7f\u7528\u54ea\u4e2agpu\u6838":36,"id\u6307\u5b9a\u7684gpu":38,"id\u65e0\u6548":36,"image\u91cc":41,"imdb\u6570\u636e\u96c6\u5305\u542b25":54,"imdb\u6709\u4e24\u4e2a\u6807\u7b7e":54,"imdb\u7684\u6570\u6910\u96c6":54,"import":[3,5,9,10,14,15,17,18,39,46,47,48,52,54,55],"include\u4e0b\u9700\u8981\u5305\u542bcbla":19,"include\u4e0b\u9700\u8981\u5305\u542bmkl":19,"init_hook\u53ef\u4ee5\u4f20\u5165\u4e00\u4e2a\u51fd\u6570":3,"int":[3,7,9,10,11,12,16,25,30,38,50,52,53],"job\u542f\u52a8\u540e\u4f1a\u521b\u5efa\u8fd9\u4e9bpod\u5e76\u5f00\u59cb\u6267\u884c\u4e00\u4e2a\u7a0b\u5e8f":40,"job\u6216\u8005\u5e94\u7528\u7a0b\u5e8f\u5728\u5bb9\u5668\u4e2d\u8fd0\u884c\u65f6\u751f\u6210\u7684\u6570\u636e\u4f1a\u5728\u5bb9\u5668\u9500\u6bc1\u65f6\u6d88\u5931":40,"job\u662f\u672c\u6b21\u8bad\u7ec3\u5bf9\u5e94\u7684job":42,"kubernetes\u4e3a\u8fd9\u6b21\u8bad\u7ec3\u521b\u5efa\u4e863\u4e2apod\u5e76\u4e14\u8c03\u5ea6\u5230\u4e863\u4e2anode\u4e0a\u8fd0\u884c":42,"kubernetes\u5206\u5e03\u5f0f\u8bad\u7ec3":32,"kubernetes\u5355\u673a\u8bad\u7ec3":32,"kubernetes\u53ef\u4ee5\u5728\u7269\u7406\u673a\u6216\u865a\u62df\u673a\u4e0a\u8fd0\u884c":40,"kubernetes\u53ef\u4ee5\u901a\u8fc7yaml\u6587\u4ef6\u6765\u521b\u5efa\u76f8\u5173\u5bf9\u8c61":42,"kubernetes\u5c31\u4f1a\u521b\u5efa3\u4e2apod\u4f5c\u4e3apaddlepaddle\u8282\u70b9\u7136\u540e\u62c9\u53d6\u955c\u50cf":42,"kubernetes\u63d0\u4f9b\u4e86\u591a\u79cd\u96c6\u7fa4\u90e8\u7f72\u7684\u65b9\u6848":40,"kubernetes\u652f\u6301\u591a\u79cdvolum":40,"kubernetes\u6709job\u7c7b\u578b\u7684\u8d44\u6e90\u6765\u652f\u6301":41,"kubernetes\u96c6\u7fa4\u5c31\u662f\u7531node\u8282\u70b9\u4e0emaster\u8282\u70b9\u7ec4\u6210\u7684":40,"label\u662f\u539f\u59cb\u6570\u636e\u4e2d\u5bf9\u4e8e\u6bcf\u4e00\u53e5\u8bdd\u7684\u5206\u7c7b\u6807\u7b7e":25,"labels\u662f\u6bcf\u7ec4\u5185\u6bcf\u4e2a\u53e5\u5b50\u7684\u6807\u7b7e":25,"layer1\u5fc5\u987b\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":24,"layer1\u5fc5\u987b\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":24,"layer\u62ff\u5230\u7684\u7528\u6237\u8f93\u5165":27,"layer\u7c7b\u53ef\u4ee5\u81ea\u52a8\u8ba1\u7b97\u4e0a\u9762\u7684\u5bfc\u6570":30,"layer\u91cc\u9762\u53ef\u4ee5\u5b9a\u4e49\u53c2\u6570\u5c5e\u6027":39,"lib\u4e0b\u9700\u8981\u5305\u542bcblas\u548catlas\u4e24\u4e2a\u5e93":19,"lib\u4e0b\u9700\u8981\u5305\u542bcblas\u5e93":19,"lib\u4e0b\u9700\u8981\u5305\u542bopenblas\u5e93":19,"lib\u76ee\u5f55\u4e0b\u9700\u8981\u5305\u542bmkl_cor":19,"list\u4e2d\u7684\u6bcf\u4e00\u884c\u90fd\u4f20\u9012\u7ed9process\u51fd\u6570":3,"list\u5199\u5165\u90a3\u4e2a\u6587\u672c\u6587\u4ef6\u7684\u5730\u5740":3,"list\u548ctest":2,"list\u5982\u4e0b\u6240\u793a":38,"list\u5b58\u653e\u5728\u672c\u5730":2,"list\u6216\u8005test":39,"list\u6307\u5b9a\u6d4b\u8bd5\u7684\u6a21\u578b\u5217\u8868":38,"long":[10,11],"lstm\u67b6\u6784\u7684\u6700\u5927\u4f18\u70b9\u662f\u5b83\u53ef\u4ee5\u5728\u957f\u65f6\u95f4\u95f4\u9694\u5185\u8bb0\u5fc6\u4fe1\u606f":54,"lstm\u6a21\u578b":50,"lstm\u6a21\u578b\u914d\u7f6e":50,"lstm\u7f51\u7edc\u7c7b\u4f3c\u4e8e\u5177\u6709\u9690\u85cf\u5c42\u7684\u6807\u51c6\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":54,"memory\u4e0d\u80fd\u72ec\u7acb\u5b58\u5728":27,"memory\u4e5f\u53ef\u4ee5\u5177\u6709":28,"memory\u4e5f\u53ef\u4ee5\u662f\u5e8f\u5217":28,"memory\u53ea\u80fd\u5728":27,"memory\u53ef\u4ee5\u7f13\u5b58\u4e0a\u4e00\u4e2a\u65f6\u523b\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u7684\u8f93\u51fa":25,"memory\u6307\u5411\u4e00\u4e2alay":27,"memory\u662f\u5728\u5355\u6b65\u51fd\u6570\u4e2d\u5faa\u73af\u4f7f\u7528\u7684\u72b6\u6001":28,"memory\u662fpaddlepaddle\u5b9e\u73b0rnn\u65f6\u5019\u4f7f\u7528\u7684\u4e00\u4e2a\u6982\u5ff5":25,"memory\u7684":28,"memory\u7684\u521d\u59cb\u72b6\u6001":27,"memory\u7684\u65f6\u95f4\u5e8f\u5217\u957f\u5ea6\u4e00\u81f4\u7684\u60c5\u51b5":25,"memory\u7684\u66f4\u591a\u8ba8\u8bba\u8bf7\u53c2\u8003\u8bba\u6587":27,"memory\u7684\u8f93\u51fa\u5b9a\u4e49\u5728":28,"memory\u7684i":27,"memory\u9ed8\u8ba4\u521d\u59cb\u5316\u4e3a0":27,"mkl\u7684\u8def\u5f84":19,"mkl_sequential\u548cmkl_intel_lp64\u4e09\u4e2a\u5e93":19,"mnist\u662f\u4e00\u4e2a\u5305\u542b\u670970":3,"mode\u548cattent":55,"mode\u7684python\u51fd\u6570":55,"model\u53ef\u4ee5\u901a\u8fc7":5,"model\u6765\u5b9e\u73b0\u624b\u5199\u8bc6\u522b\u7684\u9884\u6d4b\u4ee3\u7801":5,"movielens\u6570\u636e\u96c6":52,"name\u547d\u540d\u7684\u76ee\u5f55\u4e2d":42,"name\u662f\u4f53\u88c1":52,"name\u662f\u5e74\u9f84":52,"name\u662f\u6027\u522b":52,"name\u662f\u7535\u5f71\u540d":52,"name\u662f\u804c\u4e1a":52,"name\u90fd\u662f":20,"new":[10,16,30],"nfs\u7684\u90e8\u7f72\u65b9\u6cd5\u53ef\u4ee5\u53c2\u8003":40,"nmt\u6a21\u578b\u53d7\u5236\u4e8e\u6e90\u8bed\u53e5\u7684\u7f16\u7801":55,"noavx\u7248\u672c":22,"normalization\u5c42":48,"normalization\u5c42\u7684\u53c2\u6570":48,"null":[10,30,36,52],"openblas\u7684\u8def\u5f84":19,"operator\u7684\u6982\u5ff5":39,"osx\u6216\u8005\u662fwindows\u673a\u5668":20,"osx\u7684\u5b89\u88c5\u6587\u6863":20,"out\u4e0b\u5305\u542b":47,"out\u7684\u6587\u4ef6\u5939":47,"outer_mem\u662f\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5411\u91cf":25,"output\u6587\u4ef6\u5939\u5b58\u653e\u8bad\u7ec3\u7ed3\u679c\u4e0e\u65e5\u5fd7":42,"packages\u91cc\u9762":17,"packages\u91cc\u9762\u7684python\u5305":17,"paddepaddle\u901a\u8fc7\u7f16\u8bd1\u65f6\u6307\u5b9a\u8def\u5f84\u6765\u5b9e\u73b0\u5f15\u7528\u5404\u79cdbla":19,"paddle\u4e2d\u7684\u4e00\u6761pass\u8868\u793a\u8bad\u7ec3\u6570\u636e\u96c6\u4e2d\u6240\u6709\u7684\u6837\u672c\u4e00\u6b21":55,"paddle\u4e2d\u7ecf\u5e38\u4f1a\u5c06\u65f6\u95f4\u5e8f\u5217\u6210\u4e3a":25,"paddle\u7684\u5404\u7248\u672c\u955c\u50cf\u53ef\u4ee5\u53c2\u8003":41,"paddle\u7684dock":41,"paddle\u955c\u50cf":41,"paddlepaddle\u4e2d":[24,27],"paddlepaddle\u4e2d\u7684\u4e00\u4e2apass\u610f\u5473\u7740\u5bf9\u6570\u636e\u96c6\u4e2d\u7684\u6240\u6709\u6837\u672c\u8fdb\u884c\u4e00\u6b21\u8bad\u7ec3":54,"paddlepaddle\u4e2d\u7684\u8bb8\u591alayer\u5e76\u4e0d\u5728\u610f\u8f93\u5165\u662f\u5426\u662f\u65f6\u95f4\u5e8f\u5217":25,"paddlepaddle\u4f1a\u5728\u8c03\u7528\u8bfb\u53d6\u6570\u636e\u7684python\u811a\u672c\u4e4b\u524d":50,"paddlepaddle\u4f7f\u7528\u5747\u503c0":17,"paddlepaddle\u4f7f\u7528avx":17,"paddlepaddle\u4f7f\u7528swig\u5bf9\u5e38\u7528\u7684\u9884\u6d4b\u63a5\u53e3\u8fdb\u884c\u4e86\u5c01\u88c5":5,"paddlepaddle\u4fdd\u7559\u6dfb\u52a0\u53c2\u6570\u7684\u6743\u529b":3,"paddlepaddle\u5148\u4ece\u4e00\u4e2a\u6587\u4ef6\u5217\u8868\u91cc\u83b7\u5f97\u6570\u636e\u6587\u4ef6\u5730\u5740":18,"paddlepaddle\u5305\u62ec\u5f88\u591a\u635f\u5931\u51fd\u6570\u548c\u8bc4\u4f30\u8d77":39,"paddlepaddle\u53ef\u4ee5\u4f7f\u7528cudnn":19,"paddlepaddle\u53ef\u4ee5\u6267\u884c\u7528\u6237\u7684python\u811a\u672c\u7a0b\u5e8f\u6765\u8bfb\u53d6\u5404\u79cd\u683c\u5f0f\u7684\u6570\u636e\u6587\u4ef6":50,"paddlepaddle\u53ef\u4ee5\u6bd4\u8f83\u7b80\u5355\u7684\u5224\u65ad\u54ea\u4e9b\u8f93\u51fa\u662f\u5e94\u8be5\u8de8\u8d8a\u65f6\u95f4\u6b65\u7684":25,"paddlepaddle\u53ef\u4ee5\u901a\u8fc7\u8be5\u673a\u5236\u5224\u65ad\u662f\u5426\u5df2\u7ecf\u6536\u96c6\u9f50\u6240\u6709\u7684\u68af\u5ea6":30,"paddlepaddle\u5728\u5b9e\u73b0rnn\u7684\u65f6\u5019":25,"paddlepaddle\u591a\u673a\u91c7\u7528\u7ecf\u5178\u7684":39,"paddlepaddle\u5b58\u7684\u662f\u6709\u503c\u4f4d\u7f6e\u7684\u7d22\u5f15":3,"paddlepaddle\u5b9a\u4e49\u7684\u53c2\u6570":3,"paddlepaddle\u5c06\u4ee5\u8bbe\u7f6e\u53c2\u6570\u7684\u65b9\u5f0f\u6765\u8bbe\u7f6e":50,"paddlepaddle\u5c06\u5728\u89c2\u6d4b\u6570\u636e\u96c6\u4e0a\u8fed\u4ee3\u8bad\u7ec330\u8f6e":18,"paddlepaddle\u5c06\u6bcf\u4e2a\u6a21\u578b\u53c2\u6570\u4f5c\u4e3a\u4e00\u4e2anumpy\u6570\u7ec4\u5355\u72ec\u5b58\u4e3a\u4e00\u4e2a\u6587\u4ef6":18,"paddlepaddle\u5c06train":3,"paddlepaddle\u63d0\u4f9b\u4e86\u57fa\u4e8e":39,"paddlepaddle\u63d0\u4f9b\u4e86\u5f88\u591a\u4f18\u79c0\u7684\u5b66\u4e60\u7b97\u6cd5":18,"paddlepaddle\u63d0\u4f9b\u4e86ubuntu":22,"paddlepaddle\u63d0\u4f9b\u6570\u4e2a\u9884\u7f16\u8bd1\u7684\u4e8c\u8fdb\u5236\u6765\u8fdb\u884c\u5b89\u88c5":21,"paddlepaddle\u63d0\u4f9b\u7684\u955c\u50cf\u5e76\u4e0d\u5305\u542b\u4efb\u4f55\u547d\u4ee4\u8fd0\u884c":20,"paddlepaddle\u652f\u6301\u4ee5\u4e0b\u4efb\u610f\u4e00\u79cdblas\u5e93":19,"paddlepaddle\u652f\u6301\u5927\u91cf\u7684\u8ba1\u7b97\u5355\u5143\u548c\u4efb\u610f\u6df1\u5ea6\u7684\u7f51\u7edc\u8fde\u63a5":18,"paddlepaddle\u652f\u6301\u975e\u5e38\u591a\u7684\u4f18\u5316\u7b97\u6cd5":17,"paddlepaddle\u652f\u6301sparse\u7684\u8bad\u7ec3":17,"paddlepaddle\u662f\u4e00\u4e2a\u6700\u65e9\u7531\u767e\u5ea6\u79d1\u5b66\u5bb6\u548c\u5de5\u7a0b\u5e08\u5171\u540c\u7814\u53d1\u7684\u5e76\u884c\u5206\u5e03\u5f0f\u6df1\u5ea6\u5b66\u4e60\u5e73\u53f0":0,"paddlepaddle\u662f\u4e00\u4e2a\u6df1\u5ea6\u5b66\u4e60\u6846\u67b6":39,"paddlepaddle\u662f\u6e90\u4e8e\u767e\u5ea6\u7684\u4e00\u4e2a\u6df1\u5ea6\u5b66\u4e60\u5e73\u53f0":18,"paddlepaddle\u7684\u5185\u5b58\u5360\u7528\u4e3b\u8981\u5206\u4e3a\u5982\u4e0b\u51e0\u4e2a\u65b9\u9762":17,"paddlepaddle\u7684\u53c2\u6570\u4f7f\u7528\u540d\u5b57":17,"paddlepaddle\u7684\u6570\u636e\u5305\u62ec\u56db\u79cd\u4e3b\u8981\u7c7b\u578b":3,"paddlepaddle\u7684\u6587\u6863\u5305\u62ec\u82f1\u6587\u6587\u6863":31,"paddlepaddle\u7684\u6587\u6863\u6784\u5efa\u6709\u76f4\u63a5\u6784\u5efa\u548c\u57fa\u4e8edocker\u6784\u5efa\u4e24\u79cd\u65b9\u5f0f":31,"paddlepaddle\u7684\u7f16\u8bd1\u9009\u9879":21,"paddlepaddle\u7684bas":30,"paddlepaddle\u7684trainer\u8fdb\u7a0b\u91cc\u5185\u5d4c\u4e86python\u89e3\u91ca\u5668":39,"paddlepaddle\u76ee\u524d\u53ea\u652f\u6301\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u4e2d":25,"paddlepaddle\u76ee\u524d\u5df2\u7ecf\u5f00\u653e\u6e90\u7801":0,"paddlepaddle\u76ee\u524d\u63d0\u4f9b\u4e24\u79cd\u53c2\u6570\u521d\u59cb\u5316\u7684\u65b9\u5f0f":17,"paddlepaddle\u8c03\u7528process\u51fd\u6570\u6765\u8bfb\u53d6\u6570\u636e":50,"paddlepaddle\u8d1f\u8d23\u5b8c\u6210\u4fe1\u606f\u548c\u68af\u5ea6\u5728\u65f6\u95f4\u5e8f\u5217\u4e0a\u7684\u4f20\u64ad":27,"paddlepaddle\u8d1f\u8d23\u5b8c\u6210\u4fe1\u606f\u548c\u8bef\u5dee\u5728\u65f6\u95f4\u5e8f\u5217\u4e0a\u7684\u4f20\u64ad":27,"paddlepaddle\u955c\u50cf\u9700\u8981\u63d0\u4f9b":42,"paddlepaddle\u9700\u8981\u7528\u6237\u5728\u7f51\u7edc\u914d\u7f6e":2,"paddlepaddle\u9879\u76ee\u63d0\u4f9b\u5b98\u65b9":20,"pass\u4e2a\u6a21\u578b\u5230\u7b2c":36,"pass\u5230":55,"pass\u5c06\u4e0d\u8d77\u4f5c\u7528":36,"pass\u8f6e\u5f00\u59cb\u8bad\u7ec3":36,"pass\u8f6e\u7684\u6a21\u578b\u7528\u4e8e\u6d4b\u8bd5":36,"passes\u8f6e":36,"path\u6307\u5b9a\u6d4b\u8bd5\u7684\u6a21\u578b":38,"period\u4e2a\u6279\u6b21\u5bf9\u6240\u6709\u6d4b\u8bd5\u6570\u636e\u8fdb\u884c\u6d4b\u8bd5":36,"period\u4e2a\u6279\u6b21\u6253\u5370\u65e5\u5fd7\u8fdb\u5ea6":36,"period\u4e2a\u6279\u6b21\u8f93\u51fa\u53c2\u6570\u7edf\u8ba1":36,"period\u4e2a\u6279\u6b21\u8f93\u51fa\u7b26\u53f7":36,"period\u4e2abatch\u5904\u7406\u7684\u5f53\u524d\u635f\u5931":54,"period\u4e2abatch\u7684\u5206\u7c7b\u9519\u8bef":54,"period\u6574\u9664":36,"period\u8f6e\u4fdd\u5b58\u8bad\u7ec3\u53c2\u6570":36,"pod\u4e2d\u7684\u5bb9\u5668\u5171\u4eabnet":40,"pod\u662fkubernetes\u7684\u6700\u5c0f\u8c03\u5ea6\u5355\u5143":40,"pooling\u5bf9\u7279\u5f81\u56fe\u4e0b\u91c7\u6837":47,"process\u51fd\u6570\u4f1a\u7528yield\u8bed\u53e5\u8f93\u51fa\u8fd9\u6761\u6570\u636e":50,"pserver\u8fdb\u7a0b\u7528\u4e8e\u534f\u8c03\u591a\u4e2atrainer\u8fdb\u7a0b\u4e4b\u95f4\u7684\u901a\u4fe1":39,"public":[30,41,54],"py_paddle\u91cc\u9762\u63d0\u4f9b\u4e86\u4e00\u4e2a\u5de5\u5177\u7c7b":5,"pydataprovider2\u4f1a\u5c3d\u53ef\u80fd\u591a\u7684\u4f7f\u7528\u5185\u5b58":3,"pydataprovider2\u63d0\u4f9b\u4e86\u4e24\u79cd\u7b80\u5355\u7684cache\u7b56\u7565":3,"pydataprovider2\u662fpaddlepaddle\u4f7f\u7528python\u63d0\u4f9b\u6570\u636e\u7684\u63a8\u8350\u63a5\u53e3":3,"pydataprovider2\u7684\u4f7f\u7528":[2,4,17,28,39,50,52],"pydataprovider\u4f7f\u7528\u7684\u662f\u5f02\u6b65\u52a0\u8f7d":17,"python\u4ee3\u7801\u5c06\u968f\u673a\u4ea7\u751f2000\u4e2a\u89c2\u6d4b\u70b9":18,"python\u5305":20,"python\u53ef\u4ee5\u89e3\u9664\u6389\u5185\u90e8\u53d8\u91cf\u7684\u5f15\u7528":3,"python\u5c01\u88c5\u7684\u5b9e\u73b0\u4f7f\u5f97\u6211\u4eec\u53ef\u4ee5\u5728\u914d\u7f6e\u6587\u4ef6\u4e2d\u4f7f\u7528\u65b0\u5b9e\u73b0\u7684\u7f51\u7edc\u5c42":30,"python\u7684":20,"python\u811a\u672c\u91cc\u5b9a\u4e49\u4e86\u6a21\u578b\u914d\u7f6e":39,"query\u6539\u5199":55,"rate\u4e3a0":55,"rate\u4e3a5":55,"rate\u88ab\u8bbe\u7f6e\u4e3a0":47,"recommendation\u6587\u4ef6\u5939\u5185\u5b58\u653e\u8bad\u7ec3\u6587\u4ef6":42,"research\u5b9e\u9a8c\u5ba4\u641c\u96c6\u6574\u7406":51,"resnet\u6a21\u578b":49,"return":[3,10,11,13,14,15,18,25,28,30,42,48,50,52],"rnn\u5373\u65f6\u95f4\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":25,"rnn\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u901a\u8fc7\u4e86\u4e00\u4e2alstm\u7f51\u7edc":25,"rnn\u603b\u662f\u5f15\u7528\u4e0a\u4e00\u65f6\u523b\u9884\u6d4b\u51fa\u7684\u8bcd\u7684\u8bcd\u5411\u91cf":27,"rnn\u6a21\u578b":50,"rnn\u76f8\u5173\u6a21\u578b":32,"rnn\u914d\u7f6e":26,"search\u7684\u65b9\u6cd5":36,"sentences\u662f\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217\u7684\u6570\u636e":25,"seq\u53c2\u6570\u5fc5\u987b\u4e3afals":27,"server\u4e2a\u6279\u6b21\u6253\u5370\u65e5\u5fd7\u8fdb\u5ea6":36,"sh\u6765\u8bad\u7ec3\u6a21\u578b":47,"sh\u8c03\u7528\u4e86":48,"short":[10,11],"simd\u6307\u4ee4\u63d0\u9ad8cpu\u6267\u884c\u6548\u7387":17,"size\u4e3a1":55,"size\u4e3a50":55,"size\u4e3a512":36,"size\u53ef\u80fd\u4f1a\u5bf9\u8bad\u7ec3\u7ed3\u679c\u4ea7\u751f\u5f71\u54cd":17,"size\u5927\u5c0f\u4e3a128":54,"size\u662f3":55,"size\u672c\u8eab\u662f\u795e\u7ecf\u7f51\u7edc\u7684\u8d85\u53c2\u6570":17,"size\u7684\u503c":3,"softmax\u5c42":46,"softmax\u6fc0\u6d3b\u7684\u8f93\u51fa\u7684\u548c\u603b\u662f1":30,"sparse\u8bad\u7ec3\u9700\u8981\u8bad\u7ec3\u7279\u5f81\u662f":17,"srl\u4f5c\u4e3a\u5f88\u591a\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1\u4e2d\u7684\u4e2d\u95f4\u6b65\u9aa4\u662f\u5f88\u6709\u7528\u7684":53,"static":10,"step\u51fd\u6570\u4e2d\u7684memori":27,"step\u51fd\u6570\u5185\u90e8\u53ef\u4ee5\u81ea\u7531\u7ec4\u5408paddlepaddle\u652f\u6301\u7684\u5404\u79cdlay":27,"subseq\u7684\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":24,"super":30,"swig_paddle\u4e2d\u7684\u9884\u6d4b\u63a5\u53e3\u7684\u53c2\u6570\u662f\u81ea\u5b9a\u4e49\u7684c":5,"tag\u5206\u522b\u4e3a":20,"test\u548cgen\u8fd9\u4e09\u4e2a\u6587\u4ef6\u5939\u662f\u56fa\u5b9a\u7684":55,"tflops\u4e86":33,"trainer\u8fdb\u7a0b\u4f1a\u8c03\u7528dataprovider\u51fd\u6570\u8fd4\u56de\u6570\u636e":39,"trainer\u8fdb\u7a0b\u53ef\u4ee5\u5229\u7528\u8fd9\u4e2a\u89e3\u91ca\u5668\u6267\u884cpython\u811a\u672c":39,"true":[6,7,9,10,11,12,13,15,16,17,25,28,30,38,48,52,53,54,55],"true\u8868\u793a\u53cd\u5411\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":28,"try":[12,16,17,52],"type\u662fon":52,"ubuntu\u7684deb\u5b89\u88c5\u5305\u7b49":21,"ubuntu\u90e8\u7f72paddlepaddl":21,"update\u53c2\u6570\u65f6\u624d\u6709\u6548":36,"utf8\u7f16\u7801":46,"uts\u7b49linux":40,"v2\u4e4b\u540e\u7684\u4efb\u4f55\u4e00\u4e2a\u7248\u672c\u6765\u7f16\u8bd1\u8fd0\u884c":19,"var":20,"vocab\u4e2d\u6bcf\u4e2a\u5207\u5206\u5355\u8bcd\u7684\u9884\u671f\u8bc4\u7ea7":54,"vocab\u505a\u4e3a\u5b57\u5178":54,"void":30,"volume\u6302\u8f7d\u5230\u5bb9\u5668\u4e2d":40,"w0\u548c":48,"wbias\u662f\u9700\u8981\u5b66\u4e60\u7684\u53c2\u6570":48,"while":[7,9,16,42,55],"words\u5373\u4e3a\u8fd9\u4e2a\u6570\u636e\u4e2d\u7684\u5355\u5c42\u65f6\u95f4\u5e8f\u5217":25,"words\u662f\u539f\u59cb\u6570\u636e\u4e2d\u7684\u6bcf\u4e00\u53e5\u8bdd":25,"yaml\u6587\u4ef6\u4e2d\u5404\u4e2a\u5b57\u6bb5\u7684\u5177\u4f53\u542b\u4e49":42,"yaml\u6587\u4ef6\u63cf\u8ff0\u4e86\u8fd9\u6b21\u8bad\u7ec3\u4f7f\u7528\u7684docker\u955c\u50cf":42,"zero\u4e09\u79cd\u64cd\u4f5c":36,AGE:41,AWS:[40,43,44],Abs:6,And:[9,10,12,16],But:[10,11,17],EOS:10,For:[5,8,9,10,12,15,16,22,33],NFS:40,Not:[15,20],One:[9,10,11],QoS:41,TLS:15,That:[10,16],The:[3,6,7,8,9,10,11,12,14,15,16,30,42,50,52,53,55],Their:10,Then:[10,52],There:[9,10,15],Use:[15,16],Used:11,Using:54,WITH:29,With:[10,11],___embedding_0__:42,___embedding_1__:42,__init__:30,__list_to_map__:52,__main__:[5,48],__meta__:52,__name__:[5,48],__regression_cost_0__:42,__rnn_step__:28,_link:11,_proj:10,_recurrent_group:28,_res2_1_branch1_bn:48,_source_language_embed:[28,46],_target_language_embed:[28,46],abc:10,abl:[10,15],about:[10,11,53,55],abov:[3,10,15,33],abs:11,accept:[15,16,53],access:[10,11,15],accord:[9,10],accrod:11,accuraci:9,acl:54,aclimdb:54,across:10,act:[10,11,14,17,18,25,28,39],act_typ:50,activ:[4,10,11,14,39,50],activi:11,actual:10,adadelta:[12,17,50],adagrad:[12,50],adam:[12,15,50,54],adamax:12,adamoptim:[39,46,50,54,55],adapt:[9,12],add:[10,11,29,52],add_input:30,add_test:30,add_to:10,add_unittest_without_exec:30,addbia:30,added:9,addit:[10,11],addrow:30,addto:10,addtolay:10,adversari:16,affect:10,afi:3,after:10,again:15,age:[42,52],agg_level:[10,24,25],aggregatelevel:[10,24,25],aircraft:55,airplan:47,aistat:10,alex:[10,54],alexnet_pass1:38,alexnet_pass2:38,algo_hrnn_demo:25,algorithm:[10,12,46,54,55],align:[10,11,55],all:[3,7,9,10,12,14,15,27,42,52,53,54],alloc:7,allow:[15,50],allow_only_one_model_on_one_gpu:[35,36,38],almost:11,alreadi:[17,22],also:[9,10,11,15,16,33,50],alwai:[10,11,16],amazon:41,ambigu:16,amd64:40,amend:29,analysi:[53,54],ani:[10,11,15,16],annot:53,annual:53,anoth:[10,15],anyth:[16,53],api:[14,15,33,39,42,45,54],api_pydataprovider2_sequential_model:8,api_trainer_config:52,apiserv:40,apivers:[40,41,42],apo:55,append:[3,16,25,28,42,52],appleyard:33,appli:[10,11],applic:[33,41],approach:[10,50],apt:[20,22,47],arbitrari:10,architectur:55,arg:[3,8,9,10,11,12,17,18,42,47,48,50,52,53,54],arg_nam:10,argpars:42,args_ext:42,argument:[3,8,10,42,50,52,53],argumentpars:42,argv:48,around:[3,10],arrai:[5,10,16,48],arxiv:[10,11,54],assert:5,assign:10,associ:53,assum:10,astyp:16,async:[12,35],async_count:[35,36],async_lagged_grad_discard_ratio:36,async_lagged_ratio_default:[35,36],async_lagged_ratio_min:[35,36],atla:19,atlas_root:19,attenion:11,attent:[10,11,55],attr:[7,11],attribut:[4,10,11],auc:[9,35],author:40,authorized_kei:34,auto:[30,33],automat:[10,15,55],automaticli:10,automobil:47,averag:[9,10,12,13,53],average_test_period:[35,36,53],averagepool:10,avg:[33,50],avgcost:[9,50,52,54,55],avgpool:[10,24,50],avoid:33,avx:20,await:41,awar:15,azur:40,b2t:46,b363:41,b8561f5c79193550d64fa47418a9e67ebdd71546186e840f88de5026b8097465:41,backward:[6,10,11,30],backward_first:28,backwardactiv:30,bag:50,baidu:[10,20,29,41],balasubramanyan:54,bank:53,bardward:11,bare:[40,41],barrierstatset:33,base:[12,13,15],baseactiv:[10,11],basematrix:30,basenam:9,basepoolingtyp:[10,11],baseregular:12,basestr:[6,7,8,9,10,11,13,52],bash:[31,41,42],basic:10,batch:[9,10,11,12,15,18,34,41,42,47,48,50,52,54,55],batch_0:48,batch_norm:10,batch_norm_lay:11,batch_norm_typ:10,batch_read:16,batch_siz:[12,17,18,34,39,46,47,50,52,54,55],batchsiz:[10,30],bcd:10,beam:[10,28,55],beam_gen:[10,28],beam_search:[27,28],beam_siz:[10,28,35,36,38],beamsiz:55,becaus:[10,15,16,25],been:53,befor:[10,11,16,17,52],begin:[9,10],beginiter:15,beginn:28,beginpass:15,begintrain:15,being:16,belong:10,below:[10,14,16],benefit:11,bengio:10,bertolami:54,besid:10,best:[8,10,52],best_model_path:53,besteffort:41,beta1:12,beta2:12,beta:48,better:[10,11],between:[10,12,55],bgr:48,bi_lstm:11,bia:[10,11,12,30,39,48],bias:10,bias_attr:[10,11,17,18,25,28],bias_param:17,bias_param_attr:11,biases_:30,biasparameter_:30,biassiz:30,bidi:41,bidirect:[11,53,54],bidirectional_lstm_net:54,bilinear:10,bilinear_interpol:10,bilinearfwdbwd:33,bin:[22,34,40,41,42,52],binari:[9,10,50],bird:47,bitext:55,blank:10,bleu:55,block:10,block_expand:10,block_i:10,block_x:10,bn_bias_attr:11,bn_layer_attr:11,bn_param_attr:11,bollen:54,bool:[6,7,9,10,11,12,13,30,36,38,50,52,54],boot:[10,27,28],boot_bia:10,boot_bias_active_typ:10,boot_lay:[10,25,28],boot_with_const_id:10,bos_id:[10,28],both:[6,7,10,11,15],bottom:50,bow:50,branch:[10,15,29],brelu:6,brendan:54,bryan:54,buffer:16,buffered_read:16,build:[20,42,43,44,55],build_doc:31,built:33,bunk:54,cach:[17,50,52,53],cache_pass_in_mem:[3,17,50,52,53],cachetyp:[3,17,50,52,53],calc_batch_s:[3,53],calcul:[9,10,11,12],call:[10,11,15,33,42,50],callabl:10,callback:30,calrnn:25,caltech:47,can:[6,7,8,9,10,11,15,16,33,50],can_over_batch_s:[3,53],candid:10,caption:55,card:34,care:[11,16],cat:[20,42,47,48,54],categori:[10,50],categoryfil:41,ccb2_pc30:55,cde:10,ceil:10,ceil_mod:10,cell:[10,11],ceph:40,certif:[15,40],cfg:41,chanc:15,chang:[10,16,54],channel:[10,33],char_bas:52,check:[3,17,22,29,30,36],check_eq:30,check_fail_continu:3,check_l:30,check_sparse_distribution_batch:[35,36],check_sparse_distribution_in_pserv:[35,36],check_sparse_distribution_ratio:[35,36],check_sparse_distribution_unbalance_degre:[35,36],checkgrad:36,checkgrad_ep:36,checkout:29,chpasswd:20,chunk:9,chunk_schem:9,chunktyp:9,cifar:47,cifar_vgg_model:47,clang:29,class1:54,class2:54,class_dim:54,classic:10,classif:[10,50,54,55],classifi:[9,48],classification_cost:[17,25,39,47,50],classification_error_evalu:[50,54,55],classification_threshold:9,clean:17,client:40,clip:[7,12,36,50],clock:10,close:[3,16],cluster:[15,34,40,42],cluster_train:34,cmake:[17,19,31,33],cmakelist:30,cmd:20,cna:10,cnn:[41,50],code:[3,5,14,15,16,29,30,41,52],coded_stream:17,codedinputstream:17,coeff:10,coeffici:10,collect:10,collectbia:30,color:[47,48],column:[9,10,16],com:[10,11,20,22,29,40,41,48],combin:[10,11,52],command:[30,38,41,42,43,44],commandlin:[33,42],comment:[11,25,42,50],commit:41,common_util:[34,52],compil:22,complet:[10,11,41,42],complex:[11,16],complic:10,compos:15,comput:[10,11,15,53,54],conat_lay:10,concat:[10,55],concat_lay:28,concaten:11,concept:15,concern:15,condit:[10,41],conf:[5,10,17,25,34,46,48,55],conf_paddle_gradient_num:42,conf_paddle_n:42,conf_paddle_port:42,conf_paddle_ports_num:42,conf_paddle_ports_num_spars:42,config:[6,7,10,11,14,18,30,34,35,36,38,39,40,41,42,47,50,52,53,54,55],config_:36,config_arg:[35,36,38,48,50,53,54],config_fil:53,config_gener:[34,52],config_lay:30,config_pars:[5,30],configprotostr:17,configur:[8,10,14,30,46,48,55],confront:55,conll05st:53,conll:53,connect:[11,41,50],connectionist:[10,54],connor:54,consequ:[10,11],consid:[9,10,12],consider:11,consist:[10,16],construct:[15,52],construct_featur:52,contain:[3,8,9,10,11,13,15,41,42,50],context:[3,10,11,28,40],context_attr:11,context_len:[10,11,50,52],context_proj_layer_nam:11,context_proj_param_attr:11,context_project:[11,52],context_start:[10,11,50],contrast:10,control:[7,41,55],conv:11,conv_act:11,conv_batchnorm_drop_r:11,conv_bias_attr:11,conv_filter_s:11,conv_layer_attr:11,conv_num_filt:11,conv_op:10,conv_pad:11,conv_param_attr:11,conv_shift:10,conv_strid:11,conv_with_batchnorm:11,conveni:15,convert:[3,5,16,50,52],convlay:10,convolut:[10,11,39],convoper:10,convtranslay:10,copi:[15,52],core:7,corpora:55,corpu:53,correct:[9,10],correctli:9,correspoind:15,correspond:15,corss_entropi:15,cos:10,cos_sim:52,cosin:10,cost:[12,14,15,18,39,52,54,55],cost_id:10,could:[9,10,15,16],couldn:22,count:[16,33,36,38,41,52,53,54,55],cpickl:52,cpp:[17,25,29,30,33,42,50,52,55],cpu:[3,7,10,20,22,33,38,41,42,53],cpuinfo:20,crash:33,creat:[7,10,14,15,30,41,42],create_bias_paramet:30,create_input_paramet:30,createfromconfigproto:5,crf:[10,53],crf_decod:10,critic:54,crop:48,crop_siz:48,cross:[10,17,50],cross_entropi:15,crt:40,csc:30,cslm:55,csr:30,ctc:10,ctc_layer:9,ctrl:[34,52],ctx:53,ctx_0:53,ctx_0_slot:53,ctx_n1:53,ctx_n1_slot:53,ctx_n2:53,ctx_n2_slot:53,ctx_p1:53,ctx_p1_slot:53,ctx_p2:53,ctx_p2_slot:53,cub:47,cuda:[22,33,34,36],cuda_dir:[35,36],cuda_so:[17,20],cuda_visible_devic:17,cudaconfigurecal:33,cudadevicegetattribut:33,cudaeventcr:33,cudaeventcreatewithflag:33,cudafre:33,cudagetdevic:33,cudagetdevicecount:33,cudagetdeviceproperti:33,cudagetlasterror:33,cudahostalloc:33,cudalaunch:33,cudamalloc:33,cudamemcpi:33,cudaprofilerstart:33,cudaprofilerstop:33,cudaprofilestop:33,cudaruntimegetvers:33,cudasetdevic:33,cudasetupargu:33,cudastreamcr:33,cudastreamcreatewithflag:33,cudastreamsynchron:33,cudeviceget:33,cudevicegetattribut:33,cudevicegetcount:33,cudevicegetnam:33,cudevicetotalmem:33,cudnn:10,cudnn_batch_norm:10,cudnn_conv:10,cudnn_conv_workspace_limit_in_mb:[35,36],cudnn_dir:[35,36],cudnnv5:19,cudrivergetvers:33,cuinit:33,cumul:10,curl:40,current:[3,6,10,12,40,50],current_word:28,currentcost:[9,50,52,54,55],currentev:[9,50,52,54,55],curv:15,custom:15,custom_batch_read:16,cyclic:10,dalla:3,dan:53,darwin:40,dat:[34,52],data:[3,8,11,12,14,15,17,22,25,34,35,36,39,41,42,43,46,47,48,50,52,53,54,55],data_config:5,data_dir:[46,47,54,55],data_fil:18,data_initialz:50,data_lay:[3,9,17,18,25,28,39,47,50,52,53],data_provid:8,data_read:16,data_reader_creator_random_imag:16,data_server_port:[35,36],data_sourc:8,data_typ:14,datadim:10,datalay:10,dataprovid:[2,8,17,18,28,34,39,42,50,52,53],dataprovider_:50,dataprovider_bow:50,dataprovider_emb:50,dataproviderconvert:5,datasci:10,dataset:[16,48,50,51,54,55],datasourc:[4,52],date:53,db_lstm:53,dcudnn_root:19,deb:22,decai:12,decid:[15,16],declar:[10,11],decod:[10,11,27,28,55],decoder_boot:28,decoder_group_nam:28,decoder_input:28,decoder_mem:28,decoder_prev:11,decoder_s:28,decoder_st:[11,28],deconv:10,deconvolut:10,decor:3,deep:[10,33,47,48],deer:47,def:[3,5,10,15,16,17,18,25,28,30,42,48,50,52,53],defalut:10,default_decor:42,default_devic:38,default_valu:38,defin:[3,8,9,10,11,14,15,16,17,50,52],define_py_data_sources2:[3,8,17,18,39,47,48,50,52],defini:55,definit:46,degre:10,del:52,delar:50,delimit:[9,52],demo:[5,10,20,28,34,41,42,43,46,47,48,50,52,54,55],dens:[10,52],dense_vector:[3,5,14,18,52],deriv:[6,15],descent:[10,12],describ:[15,41,50],descript:42,design:10,desir:41,detail:[7,10,11,12],detect:9,determin:10,dev:[17,20,47,52,55],devel:20,develop:[29,55],deviat:7,devic:[7,17,20,38],deviceid:38,devid:10,dez:54,dfs:11,dict:[3,8,17,25,42,50,52,54,55],dict_dim:[17,25,54],dict_fil:[9,25,28,50,53],dict_nam:8,dictionai:50,dictionari:[3,8,9,10,15,17,50,55],dictrionari:50,dictsiz:55,differ:[8,9,10],digit:10,dim:[30,46,54],dimens:[6,10,13,17,50],dimes:10,din:52,dir:[34,48,52,53,54,55],direct:[10,11],directli:11,directori:[33,41],disabl:17,discard:36,discount:10,discuss:15,disput:55,dist_train:15,distanc:9,distribut:[10,36,43,44],distribute_test:[35,36],disucss:15,divid:12,diy_beam_search_prob_so:[35,36],dmkl_root:19,do_forward_backward:16,doc:[5,11,31,42],doc_cn:31,docker:[17,20,41,42,43,44],docker_build:15,docker_push:15,dockerfil:42,document:11,documentari:3,doe:[11,16],doesn:[7,10,15,16],dog:[47,48],don:[11,15,16],done:[10,11,33,42],dot:55,dot_period:[36,38,42,47,52,54,55],dotmuloper:10,dotmulproject:10,doubl:36,down:33,download:41,download_cifar:47,doxygen:29,dpkg:22,dpython_execut:17,dpython_include_dir:17,dpython_librari:17,drop_rat:[7,39],dropout:[7,10],dropout_lay:10,dropout_r:11,drwxr:41,dso_handl:22,dtoh:33,dtype:[5,18,48],dubai:55,due:52,dure:[3,10,50,55],dwith_gpu:19,dwith_profil:33,dwith_tim:33,dynam:[3,16],dynamic_cast:30,each:[3,6,9,10,13,16,50,52],each_feature_vector:6,each_meta:52,each_pixel_str:3,each_sequ:[10,24,25],each_time_step_output:6,each_timestep:[10,24],each_word:3,eaqual:10,eas:16,easi:16,easier:[15,16],easili:[15,16],ec2:40,echo:[17,20,52,54],edit:9,editor:29,edu:[41,47],efg:10,either:[10,15,50],electron:41,elem_dim:10,element:[9,10,11,16],elif:[15,52],els:[10,15,20,25,30,48,50,52],emac:29,emb1:25,emb2:25,emb:[17,25,41,50],emb_group:25,emb_sum:17,embed:[10,15,46,52,54],embedding_lay:[17,25,28,50,52],embedding_nam:28,embedding_s:28,empir:10,emplace_back:30,empti:[9,18],enabl:[7,33],enable_grad_shar:[35,36],enable_parallel_vector:36,enc_proj:[11,28],enc_seq:11,enc_vec:28,encod:[11,25,55],encoded_proj:[11,28],encoded_sequ:[11,28],encoded_vector:28,encoder1:25,encoder1_expand:25,encoder1_rep:25,encoder2:25,encoder2_rep:25,encoder_last:10,encoder_proj:28,encoder_s:28,end:[9,10,16,28,53,54],end_pass:15,enditer:15,endpass:15,endtrain:15,english:[10,55],ensembl:11,entir:[10,11],entropi:[10,50],enumer:[6,10,17,50,52],env:[17,29,42],environ:[15,17,33,41],eol:29,eos:10,eos_id:[10,28],epsilon:12,equal:[10,11,12,25],equat:[10,11,12],equival:[10,15],error:[7,9,10,12,15,17,36,50,52,54,55],error_clipping_threshold:[7,25],errorr:9,especi:11,essenc:15,essenti:[10,15],estim:[10,15],eta:41,etc:[12,16,20,55],eth0:[34,39,42],eval:[9,50,52,54,55],eval_bleu:55,evalu:[4,10,33,34,39,52,54,55],evaluate_pass:54,evaluator_bas:9,even:[15,16],event:41,event_handl:15,everi:[9,10,11,15],exactli:[9,10,11],exampl:[8,9,10,11,12,16,48,50],exc_path:17,exceed:10,except:52,excluded_chunk_typ:9,exconv:10,exconvt:10,exe:40,exist:[15,16,54],exit:41,expand:[10,24],expand_a:[10,24,25],expand_lay:25,expand_level:[10,24],expandconvlay:10,expandlevel:[10,24],expect:10,explain:9,explan:10,explicit:30,explicitli:15,explor:10,exponenti:6,expos:20,express:15,extend:52,extens:12,extern:[35,36],extra:[10,11],extraattr:[7,38,39],extract:[10,46,48,53],extract_fea_c:48,extract_fea_pi:48,extralayerattribut:[7,10,11,25],extralayeroutput:11,extrem:10,f1205:17,f120da72:41,fa0wx:41,fabric:34,facotr:10,factor:[7,10,12],fail:[17,22,36,41],fake_imag:16,fals:[7,9,10,11,12,16,17,18,25,28,30,38,41,46,50,52,53,54,55],false_label:16,false_read:16,faq:45,fast:[10,33],faster:[10,11],fbd1f2bb71f4:41,fc1:[30,38],fc2:38,fc3:38,fc4:38,fc_act:11,fc_attr:11,fc_bias_attr:11,fc_layer:[17,18,25,38,39,50,52],fc_layer_nam:11,fc_param:17,fc_param_attr:11,fclayer:30,fdata:[25,53],fea:48,fea_output:48,feat:54,featur:[3,6,10,29,48,50,52,53],feature_a:17,feature_b:17,feature_map:52,feed:[11,15],fernan:54,festiv:3,few:16,fewer:10,fg0:10,field:[10,52],figur:[15,46,55],file1:55,file2:55,file:[3,9,10,15,16,48,50,51,52,54,55],file_list:3,file_nam:[18,25,48,50,53],filenam:[3,17,52],filer:10,fill:[10,50],filter:10,filter_s:[10,11,39],filter_size_i:10,find:[10,12,22],fine:7,finish:41,first:[10,15,50,52],first_seq:28,firstseen:41,fix:7,flexiabl:16,flexibl:[10,11,15],flight:55,float32:[5,16,18,48],floor:10,fly:50,folder:55,follow:[9,10,11,12,15,16,43,44,52],forbid:15,forget:[12,15],form:[11,12],format:[9,29,30],former:15,formula:[10,11],formular:10,forward:[6,11,30],forwardactiv:30,forwardtest:5,found:10,frame:9,framework:[15,50],french:55,frequent:16,frog:47,from:[3,5,10,11,16,17,18,20,27,33,39,41,46,47,50,52,53,54,55],from_sequ:24,from_timestep:[10,24],fromfil:[16,18,48],fulfil:33,full:10,full_matrix_project:[11,25,28,39],fulli:50,fullmatrixproject:10,fully_matrix_project:11,fullyconnectedlay:30,func:3,further:10,fusion:52,gain:10,gamma:48,gan:15,gate:[10,11],gate_act:[10,11,25],gate_recurr:10,gather:[10,52],gauss:7,gce:40,gcepersistentdisk:40,gdebi:22,gen:[10,55],gen_conf:55,gen_data:55,gen_result:55,gen_trans_fil:28,gender:[42,52],gener:[3,9,10,11,14,15,16,33,38,42,46,50,55],generatedinput:[27,28],genr:[42,52],gereat:9,get:[3,10,11,20,22,30,41,47,50,52,53,54],get_batch_s:53,get_best_pass:54,get_config_arg:[38,50,52,54],get_data:[41,50,53],get_imdb:54,get_input_lay:30,get_model:48,get_output_layer_attr:11,get_sample_from_lin:17,getbatchs:30,getenv:[15,42],gethostbynam:42,gethostnam:42,getidmap:42,getinput:30,getinputgrad:30,getinputvalu:30,getoutputgrad:30,getoutputvalu:30,getparameterptr:30,getpodlist:42,getsiz:30,gettranspos:30,getw:30,getweight:30,getwgrad:30,gildea:53,gist:11,git:29,github:[10,11,22,48],give:3,given:[16,50],global:[7,12,15,33,52],global_learning_r:7,globalstat:33,globalstatinfo:33,globe:3,glusterf:40,goe:[10,11],good:[10,16],goodfellow13:10,googl:[15,17],googleapi:40,gpu:[7,10,12,17,20,22,33,38,48,53,54,55],gpu_id:[17,36,38],gpugpu_id:35,grad:36,grad_share_block_num:[35,36],gradient:[7,9,10,12,36,50],gradient_clipping_threshold:[7,12,50,54],gradient_serv:39,gradientmachin:[5,42,52,55],gradientserv:39,gram:46,graph:10,grave:54,greater:10,grep:[20,54],groudtruth:28,ground:[9,10,55],group:11,group_id:52,group_input:[25,28],grouplen:51,gru:[10,50],gru_bias_attr:11,gru_decod:28,gru_decoder_with_attent:28,gru_encoder_decod:[46,55],gru_layer_attr:11,gru_memori:11,gru_siz:50,gru_step:28,gru_step_lay:[11,28],grumemori:[11,28],gserver:[10,30],gsizex:33,guid:41,gur_group:11,gzip:41,hadoop:15,handl:[15,16],handwrit:54,harvest:50,has:[6,10,11,12,15,33,50,53],hassubseq:25,have:[9,10,11,15,16],head:54,header:[18,48,52],height:[10,16,30],hello:15,help:5,helper:[8,10,11],here:[7,10,11,15,16],heurist:[10,55],hidden1:39,hidden2:39,hidden:[10,11,14,17,52],hidden_a:17,hidden_b:17,hidden_dim:25,hidden_s:[11,52],hierach:27,hierarch:[10,25],high:7,him:15,hint:5,hl_dso_load:22,hl_get_sync_flag:30,hold:15,home:[34,41,42],hook2:25,hook:[25,52,53],horizont:10,hors:47,horst:54,host:[20,34,41],hostpath:[40,41,42],hot:50,hous:3,how:[7,10,14,15],howardjohnson:25,howev:[11,16],howto:42,hppl:6,html:[31,47],htod:33,http:[10,11,22,29,40,41,47,48,51,55],huber:10,huge:10,huina:54,hyper:10,i0601:52,i0706:55,i0719:55,i1116:42,i1117:33,ib0:34,icwsm:54,id_input:[9,28],idea:[10,16],ident:6,identityoffsetproject:10,identityproject:10,idmap:42,ids:[9,10,17,50,52],idx:30,ieee:54,ignor:[3,9],ijcnlp:54,ilsvrc:48,imag:[13,15,16,20,41,42,43,44,47,48,55],image_a:16,image_b:16,image_classif:47,image_fil:16,image_lay:16,image_list_provid:48,image_nam:15,image_path:16,image_provid:47,image_reader_cr:16,image_s:48,imageri:10,images_reader_cr:16,imdber:54,img:[3,10,14,39,47],img_conv_lay:11,img_norm_typ:10,img_pool_lay:11,img_siz:47,imgsiz:33,imgsizei:33,imgsizex:33,immutable_paramet:15,implement:[10,11,12],importerror:52,inarg:5,inc_path:17,includ:[10,11,15,33],incorrect:10,increas:17,incupd:30,inde:16,independ:10,index:[9,10,13,25,31,52],indexslot:10,indic:[9,10],infer:15,infiniband:34,info:[9,10,25,30,34,42],inform:9,inherit:6,ininst:15,init:[7,30,42,52,53],init_hook:[25,50,52,53],init_hook_wrapp:8,init_model_path:[35,36,38,46,50,53],initi:[3,7,10,36,50],initial_max:[7,17],initial_mean:[7,10,17],initial_min:[7,17],initial_std:[7,10,17],initpaddl:5,inlcud:11,inner:[17,25],inner_:25,inner_mem:25,inner_param_attr:11,inner_rnn_output:25,inner_rnn_st:25,inner_rnn_state_:25,inner_step:25,inner_step_impl:25,input1:[10,11],input2:10,input:[3,6,9,10,11,13,14,16,17,18,24,25,27,28,30,38,39,42,46,47,50,52,53,55],input_data:30,input_data_target:30,input_featur:6,input_fil:[18,53],input_hassub_sequence_data:30,input_id:10,input_imag:[11,47],input_index:30,input_label:30,input_lay:[10,30],input_nam:15,input_sequence_data:30,input_sequence_label:30,input_sparse_float_value_data:30,input_sparse_non_value_data:30,input_t:30,input_typ:[17,18,25,28,50,52],inputdef:30,inputlayers_:30,insid:[9,10,16],instal:[17,20,22,29,34,41,47,52],instanc:[10,12,14],instead:[10,13,16],int32:[36,39],integ:[3,9,10,50],integer_sequ:17,integer_valu:[3,17,25,50],integer_value_sequ:[3,25,28,50,53],integer_value_sub_sequ:25,integr:53,inter:10,intercept:10,interfac:[7,10,11,34],intergr:10,intern:[6,10,11],interpol:10,interpret:9,invalid:16,invok:[3,10,33,52],iob:9,ioe:9,ip_str:42,ipc:40,ips:42,ipt:[10,17,25,28],ipython:15,is_async:12,is_gener:[10,46,55],is_kei:52,is_layer_typ:10,is_predict:[50,52,54],is_seq:[10,28,52],is_sequ:52,is_stat:7,is_test:[48,53,54],is_train:3,isinst:5,ispodallrun:42,isspars:30,item:[10,16,42],iter:[3,10,11,12,15,16],its:[3,9,10,11,15,22,33],itself:11,jeremi:33,jie:[53,54],jmlr:10,job:[9,34,35,36,38,40,42,48,50,53,54,55],job_dispatch_packag:34,job_mod:46,job_nam:42,job_namespac:42,job_path:42,job_path_output:42,job_workspac:34,jobnam:42,jobpath:42,jobselector:42,johan:54,join:25,joint:55,jointli:[11,55],journal:[53,54],jpg:48,json:[34,41,52],jth:11,just:[6,9,10,11],jypyt:15,k8s:42,k8s_job:15,k8s_token:15,k8s_train:42,k8s_user:15,kaim:10,kaimingh:48,kebilinearinterpbw:33,kebilinearinterpfw:33,keep:10,kei:[3,33,40,42,52],kernel:[10,20],key1:36,key2:36,keyword:42,kind:[15,40,41,42],kingsburi:53,know:[11,15],kriz:47,ksimonyan:11,kube:40,kube_cluster_tl:15,kube_ctrl_start_job:15,kube_list_containers_in_job_and_return_current_containers_rank:15,kubeadm:40,kubectl:[40,41,42],kubernet:[15,32,34,42,43,44],kubernetes_service_host:15,kwarg:[3,9,10,11,12,25,50,52,53],l1_rate:7,l2_rate:7,l2regular:[39,47,50,54],label:[3,9,10,12,16,17,18,25,39,41,47,48,50,52,53,54],label_dict:53,label_dim:[10,25,50],label_fil:[16,53],label_lay:[10,16],label_list:53,label_path:16,label_slot:53,labeledbow:54,labelselector:42,lag:36,lake:3,lambdacost:10,lambdarank:10,languag:[10,46],larg:[13,55],larger:[7,9,10,12],last:[9,10,11,24,25],last_seq:25,last_time_step_output:10,lastseen:41,later:50,latest:[10,17,20,41,42],launcher:15,layer1:[10,11,24],layer2:[10,24],layer3:10,layer:[4,5,6,7,9,11,13,16,24,27,28,30,39,48,50,52,53],layer_0:30,layer_attr:[10,28,38,39],layer_num:[38,48],layer_s:10,layer_typ:10,layerbas:30,layerconfig:30,layergradutil:30,layermap:30,layeroutput:[9,11,39,52],layers_test:17,lbl:[9,47],ld_library_path:[22,34],learn:[7,9,10,11,12,15,16,33,35,47,48,53,54,55],learnabl:10,learning_method:[12,18,39,46,47,50,52,54,55],learning_r:[7,12,17,18,39,46,47,50,52,54,55],least:[9,10],left:10,leman:55,len:[3,10,25,28,30,42,50,52,53],length:[10,11,41],less:[10,15],less_than:15,let02:41,let:[10,15],level:[7,10,27],lib64:[17,20,22,34,36],lib:[19,22],lib_path:17,libcuda:[17,20],libjpeg:47,libnvidia:[17,20],libprotobuf:17,librari:[6,10,22,34,36],like:[9,10,16,48],limit:[10,17,33],line:[3,9,17,25,38,50,52,53],line_count:17,linear:10,linear_comb:10,linearactiv:[10,18],linguist:53,link:[10,11,27,54],linux:40,lipeng:46,lipton:54,list:[2,3,8,9,10,11,15,18,34,38,39,47,48,50,52,53,54,55],lium:55,liwicki:54,load:[10,15,18,42,48,52,53,54,55],load_data_arg:5,load_featur:48,load_feature_c:48,load_feature_pi:48,load_missing_parameter_strategi:[35,36,38,46,53],loadparamet:5,loadsave_parameters_in_pserv:[35,36],local:[7,19,22,34,35,36,42],localhost:40,localip:42,log:[17,30,34,36,41,42,47,52,53,54,55],log_barrier_abstract:[35,36],log_barrier_lowest_nod:[35,36],log_barrier_show_log:[35,36],log_clip:[35,36],log_error_clip:[35,36],log_period:[36,38,41,42,47,50,52,53,54,55],log_period_serv:[35,36],logarithm:6,logger:[3,25],logist:50,look:[3,9,50],loop:16,loss:[10,50],low:10,lst:52,lstm:[6,10,25,28,41,50],lstm_bias_attr:11,lstm_cell_attr:11,lstm_group:[11,25],lstm_group_input:25,lstm_input:25,lstm_last:25,lstm_layer_attr:[11,25],lstm_nest_group:25,lstm_output:25,lstm_size:50,lstm_step:11,lstmemori:[11,25,28],lstmemory_group:[10,25],ltr:10,mac:20,machan:11,machin:[10,11,12,27,54,55],mai:[8,9,10,16],main:5,maintain:[10,20],major:55,make:[3,10,14,15,16,22,30,33,54],mandarin:10,mani:[10,11],manufactur:55,mao:54,map:[10,15,52],mapreduc:15,marcu:54,mark:[6,53],mark_slot:53,market:54,martha:53,mask:[7,10],master:[15,40,54],mat_param_attr:11,math:[11,30,33],matirx:10,matplotlib:47,matrix:[9,10,11,30],matrixptr:30,max:[7,10,13,33,38,52],max_length:[10,28],max_sort_s:10,maxid:[9,10],maxid_lay:9,maxim:10,maximum:9,maxout:10,maxpool:[10,24],mayb:[10,11],mean:[7,9,10,11,12,13,16,17,36,48,50,52],mean_img_s:47,mean_meta:48,mean_meta_224:48,mean_valu:48,mechan:[10,11],meet:53,mem:25,member:15,memcpi:33,memori:[11,28,33,41,50],memory_threshold_on_load_data:[35,36],mere:11,mergedict:[46,55],messag:41,meta:[34,47,48,52],meta_config:[34,52],meta_fil:52,meta_gener:[34,52],meta_path:47,meta_to_head:52,metadata:[41,42],metal:40,metaplotlib:15,method:[3,8,10,11,12,52,55],metric:35,mfs:42,might:10,min:[7,33,38,52],min_pool_s:[3,17,39],mini:10,mini_batch:16,minibatch:10,minikub:40,minim:12,minimum:10,miss:53,mix:[11,39],mixed_bias_attr:11,mixed_lay:[11,25,28,39,53],mixed_layer_attr:11,mixedlayertyp:10,mkdir:20,mkl:19,mkl_root:19,ml_data:[34,52],mnist:[3,5,16],mnist_model:5,mnist_provid:3,mnist_random_image_batch_read:16,mnist_train:[3,16],mnist_train_batch_read:16,mod:53,mode:[10,42,54],model:[10,11,12,14,38,39,46,47,50,52,53,54,55],model_averag:12,model_config:5,model_list:[36,38,53,54],model_output:54,model_path:38,model_zoo:[46,48],modelaverag:12,modul:[3,8,11,17,18,39,47,48,50,52],modulo:10,momentum:[7,12,17,50],momentumoptim:[18,47],mon:41,mono:10,month:55,mood:54,moosef:40,more:[9,10,11,15,16,17,33],morin:10,mose:[54,55],moses_bleu:55,mosesdecod:54,most:[10,15,16],mountpath:[41,42],move:10,movi:[3,52],movie_featur:52,movie_head:52,movie_id:[42,52],movie_meta:52,movie_nam:52,movielen:51,moving_average_fract:10,mpi:34,mse:10,much:[10,16],mul:30,multi:[10,48,55],multi_crop:48,multinomi:10,multipl:[9,10,11,15],multipli:[9,10],must:[6,9,10,11,16,22,30],my_cool_stuff_branch:29,mypaddl:[41,42],name:[3,6,7,8,9,10,11,13,14,15,17,18,20,25,28,30,33,38,39,40,41,42,43,44,47,50,52,55],namespac:[30,40,41,42],nano:29,nativ:10,nchw:10,ndcg:10,ndcg_num:10,necessari:[10,50],need:[10,11,14,15,17,33,42,50],neg:[3,9,10,50,53,54],neg_distribut:10,net:[10,11,20,54],net_conf:54,net_diagram:48,network:[4,5,7,9,10,12,14,15,16,25,34,38,42,46,47,48,52,53,54,55],network_config:38,neural:[10,11,12,14,15,25,27,46,52,53,54,55],neuralnetwork:10,never:[16,41,42],next:[3,10],nic:[34,35,36,39,42],nlp:10,nmt:55,nnz:30,no_cach:3,no_sequ:[3,52],noah:54,noavx:20,node0:42,node:[10,40,41,42],node_0:42,node_1:42,node_2:42,nodefil:34,nois:10,non:10,none:[3,5,7,8,9,10,11,12,13,15,18,28,48,50],norm_by_tim:10,normal:[10,11,20,41,42,48],notat:10,note:[7,10,11,12,13,15,16,22,54],noth:6,novel:54,now:[10,27],ntst1213:55,ntst14:55,nullptr:[22,30],num:[10,34,36,53,54,55],num_channel:[10,11,39,47],num_chunk_typ:9,num_class:[10,11,47],num_filt:[10,11,39],num_gradient_serv:[35,36,39,42],num_group:10,num_neg_sampl:10,num_parameter_serv:15,num_pass:[18,35,36,38,41,42,50,52,53,54,55],num_repeat:10,num_result:9,num_results_per_sampl:10,number:[9,10,16,55],numchunktyp:9,numdevices_:38,numlogicaldevices_:38,numofallsampl:9,numofwrongpredict:9,numpi:[16,18,48],numsampl:33,numtagtyp:9,nvidia:[17,20],obj:[3,8,17,18,39,47,48,50,52],object:[3,7,8,9,10,11,12,15,33,50,52],observ:12,occup:[42,52],oct:41,odd:10,off:[19,22],offset:[10,52],often:9,ograd:30,omit:[17,50],on_init:3,onc:10,one:[3,6,8,9,10,11,12,13,15,16,50,53,54],one_host_dens:52,one_hot_dens:52,onli:[6,9,10,11,15,25,27],onlin:[12,16],open:[3,10,15,16,17,18,25,31,48,50,52,53],openbla:19,openblas_root:19,openssh:20,oper:[10,11,12,39],opinion:54,opt:[15,19,42],optim:[4,7,17,39],option:[9,10,15],order:[10,11,16,42],org:[10,11,51],organ:10,origin:[10,29],other:[9,10,11,12,50,52],otherchunktyp:9,otherwis:[8,10,15,16],our:15,out:[10,15,25,27,28,39,47],out_left:10,out_mem:28,out_right:10,out_size_i:10,out_size_x:10,outer:25,outer_mem:25,outer_rnn_st:25,outer_rnn_state_:25,outer_step:25,output:[6,7,9,10,13,14,15,16,17,18,25,28,34,38,39,41,42,46,47,48,50,52,53,54],output_:10,output_dir:48,output_fil:53,output_id:10,output_lay:48,output_max_index:13,output_mem:[10,28],outputh:10,outputw:10,outsid:[3,10,11],outv:30,over:[10,11,15],packag:[14,17],pad:10,pad_c:10,pad_h:10,pad_w:10,padding_attr:10,padding_i:10,padding_x:10,paddl:[3,5,6,7,8,9,10,11,12,13,14,15,17,18,20,22,29,30,31,33,34,38,39,41,42,46,47,50,52,53,54,55],paddle_n:[34,42],paddle_output:41,paddle_port:[34,42],paddle_ports_num:[34,42],paddle_ports_num_for_spars:34,paddle_ports_num_spars:42,paddle_process_by_paddl:42,paddle_pserver2:34,paddle_root:46,paddle_server_num:42,paddle_source_root:46,paddle_ssh:20,paddle_ssh_machin:20,paddle_train:[34,42],paddledev:[17,20,41,42],paddlepaddl:[10,11,12,16,17,20,22,28,29,33,34,39,43,44,46,53],pair:9,palmer:53,paper:[10,55],para:46,paraconvert:46,parallel:[33,38,41,42,55],parallel_nn:[7,35,36],param:[7,10,14,52],param_attr:[10,11,17,18,28],paramattr:[7,10,17,18,28],paramet:[4,6,9,10,11,12,13,14,16,36,39,42,52,53,54,55],parameter_attribut:10,parameter_block_s:[35,36],parameter_block_size_for_spars:[35,36],parameter_learning_r:7,parameter_nam:15,parameter_serv:15,parameterattribut:[7,10,11],parameterclient2:42,parametermap:30,parameters_:30,parameterset:15,parametris:12,paramutil:52,paraphras:[46,55],paraphrase_data:46,paraphrase_model:46,paraphrase_modeldata:46,paraspars:30,parent:10,pars:[14,52],parse_config:5,parse_known_arg:42,parse_network:14,parsefromstr:17,parser:42,part:[14,52,54],partial:10,pass:[3,8,10,16,17,18,33,36,38,41,42,47,50,52,53,54,55],pass_idx:16,passtyp:30,past:15,path:[9,16,22,34,36,40,41,42,53,54],pattern:[52,54],paul:53,pave:55,pdf:[10,11],pem:15,penn:53,per:[10,16],perform:[10,11,33,35],period:[36,53,54,55],perl:[54,55],permitrootlogin:20,peroid:10,persistentvolum:40,persistentvolumeclaim:40,person:15,pickl:52,picklabl:8,pid:40,piec:[10,11],pillow:47,pip:[17,29,34,47,52],pixel:[3,10,39],pixels_float:3,pixels_str:3,place:3,plain:[9,10,14],pleas:[7,10,11,12,15,16,17,22,42],plot:[15,47],plotcurv:47,png:47,pnpairvalid:35,pod:[40,41,42],podip:42,podlist:42,point:33,poll:54,pool3:30,pool:[4,11,39,52],pool_attr:11,pool_bias_attr:11,pool_layer_attr:11,pool_pad:11,pool_siz:[3,10,11,39],pool_size_i:10,pool_strid:11,pool_typ:[10,11],pooling_lay:[11,17,50,52],pooling_typ:[10,17,24,50],poolingtyp:13,port:[34,35,36,39,41,42],port_num:35,ports_num:[36,39,42],ports_num_for_spars:[35,36,38,39,42],pos:[52,54],posit:[3,9,10,50],positive_label:9,posix:40,possibl:15,potenti:33,power:10,practic:[8,10],pre:[10,11,15,46,54,55],pre_dictandmodel:46,precis:9,pred:[50,53],predetermin:10,predic:53,predicate_dict:53,predicate_dict_fil:53,predicate_slot:53,predict:[3,5,9,12,14,17,34,39,46,47,48,50,52,53,54],predict_fil:[35,36],predict_output_dir:[35,36,50],predict_sampl:5,predin:47,prefer:40,prefetch:30,pregrad:30,premodel:46,prepar:43,preprocess:[34,46,47,50,52,54,55],present:15,prev_batch_st:[35,36],prevent:[12,15],previou:[10,11],primari:14,principl:15,print:[5,7,15,18],printallstatu:33,printer:9,printstatu:33,prite:9,prob:9,probabilist:[10,46],probabl:[9,10],problem:[10,12,15],proc:20,proce:16,proceed:[10,53],process2:25,process:[3,7,8,10,11,12,15,17,18,25,28,39,42,50,52,53],process_predict:50,process_test:8,process_train:8,processdata:[47,48],processor:33,produc:[11,16],productgraph:41,profil:33,proflier:33,prog:42,program:[15,16,33,42],proj:10,project:[10,11,39],promis:[10,11],prone:15,prop:53,propag:12,properli:50,proposit:53,protect:30,proto:[13,14],protobuf:17,provid:[8,10,15,17,18,25,35,39,50,52,53],prune:10,pserver:[34,35,36,39,42],pserver_num_thread:[35,36],pseudo:15,psize:30,pull:20,purpos:33,push:42,push_back:30,put:50,py_paddl:[5,20],pydataprovid:[17,39],pydataprovider2:[3,5,18,39,42,52],pydataproviderwrapp:8,pyramid:10,pyramid_height:10,python:[8,14,15,17,29,30,34,46,47,48,52,53,54,55],pythonpath:[17,47],pzo:54,queri:[10,55],question:[10,15],quick:41,quick_start:[41,43,50],quick_start_data:41,quickstart:41,ramnath:54,ran:33,rand:[33,36,38,53],random:[7,10,16,18],rang:[10,16,42,50],rank:[10,15,48,50],rare:3,rate:[7,9,12,34,42,52],ratio:36,raw:10,raw_meta:52,rdma_tcp:[35,36],read:[3,15,16,18,48,50,52],read_from_realistic_imag:15,read_from_rng:15,read_mnist_imag:15,read_next_from_fil:17,read_ranking_model_data:15,reader_creator_bool:16,reader_creator_random_imag:16,reader_creator_random_imageand_label:16,readi:41,readm:[52,54],real:16,real_process:3,realist:15,reason:[10,11,15,41],rebas:29,recal:9,receiv:8,recognit:[10,48,54],recommend:[11,15,34,42,52],record:[52,53],recordio:15,rectangular:10,recurr:[25,26,53,54],recurrent_group:[11,25,27,28],recurrent_lay:11,recurrentgroup:9,reduc:12,ref:52,refer:[7,8,10,11,12,19],referenc:10,reference_cblas_root:19,refine_unknown_arg:42,regex:52,register_gpu_profil:33,register_lay:30,register_timer_info:33,registri:41,regress:9,regression_cost:[18,52],regular:[7,12,39,47,50,54],rel:11,relat:[8,52],releas:[22,40,53],relu:[6,10],reluactiv:10,remot:[7,29,34,36,38],reorgan:10,repeat:10,repo:29,repres:[10,12,50],represent:50,request:[41,55],requir:[9,10,15,34,52],res5_3_branch2c_bn:48,res5_3_branch2c_conv:48,res:53,research:[10,47],reserveoutput:30,reset:10,reshap:16,reshape_s:10,residu:48,resnet_101:48,resnet_152:48,resnet_50:48,resolv:41,respons:[10,41],rest:10,restart:41,restartpolici:[41,42],resu:16,result:[3,6,9,10,33,50,55],result_fil:[9,28],ret_val:52,return_seq:11,reus:16,reveal:15,revers:[10,11,27,28],review:[29,41,54],reviews_electronics_5:41,rewrit:55,rgb:10,rgen:54,rho:12,right:10,rmsprop:[12,50],rmspropoptim:52,rnn:[10,11,27,28,35,54],rnn_bias_attr:28,rnn_layer_attr:28,rnn_out:28,rnn_state:25,rnn_state_:25,rnn_step:10,rnn_use_batch:[35,36],robot:47,roce:20,role:[15,53,54],roman:54,root:[12,13,20,34,41,42,46],root_dir:34,rot:10,rotat:10,routin:52,routledg:54,row:[9,10],row_id:10,rstrip:42,rtype:52,run:[15,17,20,33,34,41,42,43,44,52],runinitfunct:[33,42],runtim:[3,17],s_fusion:52,s_id:52,same:[3,8,9,10,11,15,25,50],samping_id:10,sampl:[3,9,50,52,54,55],sample_id:9,sample_num:9,santiago:54,save:[3,10,41,52,53,54,55],save_dir:[18,36,38,41,42,47,50,52,53,54,55],save_only_on:[35,36],saving_period:[35,36,42],saving_period_by_batch:[35,36,38],saw:3,sbin:20,scalar:10,scale:[6,10,52],scalingproject:10,scatter:10,scheduler_factor:7,scheme:[9,12],schmidhub:54,schwenk:55,scienc:54,score:[9,10,52],script:31,seaplane_s_000978:47,search:[10,28,55],seat:55,second:[10,15,16,50,52],sed:[20,54],see:[10,11,15,17,50],seed:[33,36],segment:9,sel_fc:10,select:10,selectiv:10,selector:41,self:30,selfnorm:10,semant:[15,53,54],semantic_role_label:28,semat:15,sen_len:53,sens:10,sent:[15,41],sent_id:28,sentanc:17,sentenc:[3,10,25,28,53],sentence_last_state1:25,sentence_last_state2:25,sentiment:[3,53,54],sentiment_data:54,sentiment_net:54,sentimental_provid:3,sentimental_train:3,separ:[9,50,52],seq:[10,25,52],seq_pool:[10,24],seq_text_print:9,seq_to_seq_data:[46,55],seq_typ:52,seqlastin:25,seqtext_printer_evalu:28,seqtoseq:[10,17,28,46,55],seqtoseq_net:[10,28,46,55],sequel:3,sequenc:[3,6,9,10,11,13,17,25,27,50,52,54,55],sequence_conv_pool:50,sequence_layer_group:[10,25],sequence_nest_layer_group:[10,25],sequencegen:25,sequencestartposit:10,sequencetextprint:9,sequencetyp:3,sequenti:[10,53],seri:[11,25,54],server:[15,20,34,36,39,40,42],set:[3,7,9,10,11,15,17,18,25,28,33,34,39,41,46,47,48,50,52,53,54,55],set_active_typ:30,set_default_parameter_nam:7,set_drop_r:30,set_siz:30,set_typ:30,settotalbyteslimit:17,setup:[30,50],sever:10,sgd:[12,15,18,34,35,54],shape:10,share:[10,53],shared_bia:11,shared_bias:10,ship:47,shold:54,should:[9,10,12,15,16,27],should_be_fals:15,should_be_tru:15,should_shuffl:[3,25,53],show:[12,14,53,54,55],show_check_sparse_distribution_log:[35,36],show_layer_stat:[35,36],show_parameter_stats_period:[35,36,38,41,53,54,55],shown:[9,10,15],shuf:[17,52],shuffl:17,side:10,sigint:34,sigmoid:[6,10],sigmoidactiv:[10,11,25],similar:[10,16,52],similarli:10,simpl:[6,9,10,11,42],simple_attent:28,simple_gru:50,simple_img_conv_pool:39,simple_lstm:[10,50],simple_rnn:[10,28],simpli:[10,15],simplifi:15,sinc:[10,16],singl:[9,11,12],size:[3,9,10,11,12,14,16,17,18,25,28,30,39,47,48,50,52,54,55],size_a:10,size_b:10,size_t:30,skip:[16,18,48],sleep:42,slide:12,slope:10,slot:[52,53],slot_dim:52,slot_nam:52,slottyp:52,small_messag:[35,36],small_vgg:47,smaller:10,smith:54,snap:41,sock_recv_buf_s:[35,36],sock_send_buf_s:[35,36],socket:42,softmax:[6,10,11,14,15,17,28,30,50],softmax_param:17,softmax_param_attr:11,softmax_selfnorm_alpha:10,softmaxactiv:[17,25,28,39,50],softrelu:6,solv:15,some:[7,10,12,15],someth:10,sometim:[12,16],sort:[10,42,52,54],sourc:[8,10,16,55],source_dict_dim:28,source_language_word:28,space:9,space_seperated_tokens_from_dictionary_according_to_seq:9,space_seperated_tokens_from_dictionary_according_to_sub_seq:9,spars:[7,10,12,17,30,34,36,38,50],sparse_binary_vector:[3,17,50],sparse_float_vector:3,sparse_upd:[7,17],sparse_vector:17,sparseparam:30,sparseprefetchrowcpumatrix:30,spatial:10,spec:[41,42],special:10,specifi:[9,10,15,22,50],speech:10,speed:11,sphinx:31,split:[3,10,25,34,50,52,53],spp:10,squar:[6,10,12,13],squarerootnpool:10,srand:36,src:[42,55],src_backward:28,src_dict:[17,28],src_dict_path:17,src_embed:28,src_forward:28,src_id:28,src_root:5,src_word_id:28,srl:53,ssh:[20,34],sshd:20,sshd_config:20,sstabl:15,stabl:40,stacked_lstm_net:54,stacked_num:54,stackexchang:10,stake:55,standard:7,stanford:41,start:[10,17,36,41,42],start_paddl:42,start_pass:[35,36],start_pserv:[35,36],startpaddl:42,stat:[33,36,53,54,55],state:[10,11,27,41],state_act:[10,11,25],statfulset:42,staticinput:[10,27,28],statist:10,statset:33,statu:[9,29,33,41,42],status:41,std:[30,36],stderr:34,stdout:34,step:[10,11,12,13,25,27,28],stepout:25,stochast:12,stock:54,stop:[10,20],storag:40,store:[9,10,50,52],str:[38,42],strategi:[13,36,53],street:[10,53],strict:16,stride:10,stride_i:10,stride_x:10,string:[3,8,9,10,30,36,39],strip:[17,25,50,52,53],structur:50,stub:10,stun:3,style:[10,29],sub:[9,10,15],sub_sequ:3,subgradi:12,subnet:15,subobjectpath:41,subseq:[24,27],subsequenceinput:[10,25],succeed:41,success:41,successfulcr:41,sudo:[22,47],suffic:16,suggest:10,sum:[9,10,12,13],sum_to_one_norm:10,sumpool:[10,17],support:[6,7,9,10,12,16,20,25],support_hppl:6,sure:[22,54],swap_channel:48,swig_paddl:5,symbol:10,syncflag:30,synchron:12,syntax:16,sys:48,system:[17,54],t2b:46,tab:50,tabl:10,tableproject:10,tag:9,tagtyp:9,tainer_id:42,take:[3,9,10,11,15],tanh:[6,10,11,30],tanhactiv:[10,11,25,28,39],target:[10,55],target_dict_dim:28,target_language_word:28,targetinlink:[10,25],task:[9,10,53],tbd:[25,31],tconf:54,tcp:[36,39],tcp_rdma:39,team:20,tear:33,tee:[41,47,52,53,54,55],tellig:54,templat:[41,42],tempor:10,tensor:10,term:[10,11],termin:41,tesh:53,test:[2,3,8,9,10,15,16,30,33,34,36,38,39,47,48,50,52,53,54,55],test_all_data_in_one_period:[41,47,52,53,54],test_compar:17,test_comparespars:17,test_comparetwonet:17,test_comparetwoopt:17,test_config_pars:17,test_data:[5,55],test_fcgrad:30,test_gpuprofil:33,test_layergrad:30,test_list:[3,8,17,18,39,47,50],test_networkcompar:17,test_part_000:54,test_pass:[35,36,38,55],test_period:[35,36,38],test_predict:17,test_pydataprovid:17,test_pydataprovider2:17,test_pydataproviderwrapp:17,test_ratio:52,test_recurrent_machine_gener:17,test_recurrentgradientmachin:[17,25],test_swig_api:17,test_train:17,test_traineronepass:17,test_wait:[35,36],testa:15,testb:15,testbilinearfwdbwd:33,testconfig:30,tester:[52,55],testfcgrad:30,testfclay:30,testlayergrad:30,testq:15,testutil:30,text:[3,9,11,15,46,50,54,55],text_conv:50,text_conv_pool:52,text_fil:54,tflop:33,than:[7,9,10,11,12,17],thei:[15,33],them:[11,15,16,33,50,52],therein:10,thi:[3,7,8,9,10,11,12,15,16,33,50,52,54],thing:3,think:15,third:10,those:53,thread:33,thread_local_rand_use_global_se:[35,36],threadid:38,threadloc:33,three:[9,10,12,16,48],threshold:[7,9,12,36],through:10,throughput:33,thu:10,tier:41,time:[10,11,13,15,16,25,33,36,41,42,54],timelin:10,timer:33,timestamp:10,timestep:10,titl:[42,52],tmp:3,to_your_paddle_clone_path:31,todo:[9,11],toend:10,togeth:[10,11],token:[9,10,15,28,54],tool:[31,42],top:[9,48],top_k:9,topolog:[14,15],toronto:47,total:[9,16,33,41,55],total_pass:16,touch:54,tourist:55,track:10,tractabl:10,tradit:10,train:[2,3,7,8,9,10,12,17,18,22,34,36,38,39,41,42,43,44,46,47,48,50,52,53,54,55],train_arg:42,train_args_dict:42,train_args_list:42,train_conf:[46,55],train_config_dir:42,train_data:55,train_list:[3,8,17,18,39,47,48,50],train_part_000:54,trainabl:10,trainer:[3,5,15,18,30,36,38,39,42,52,53,54,55],trainer_config:[2,3,5,18,34,41,42,50,52,54],trainer_config_help:[3,6,7,8,9,10,11,12,13,17,18,30,39,47,52],trainer_count:[17,35,36,38,41,42,52,53,54,55],trainer_id:[36,42],trainerconfighelp:17,trainerid:42,trainerintern:[50,52,55],tran:[10,30],transact:54,transform:10,transform_param_attr:11,translat:[10,11,46,55],transpos:10,transposedfullmatrixproject:10,travel:[3,11],travi:29,treat:10,tree:[10,42],trg:55,trg_dict:28,trg_dict_path:28,trg_embed:28,trg_id:28,trg_ids_next:28,trn:50,truck:47,true_imag:16,true_label:16,true_read:16,truth:[9,10,55],tst:50,tune:[7,35],tupl:[8,10,11,16],ture:10,turn:[10,16,27],tutori:[41,43,44,46,55],tweet:54,twitter:54,two:[6,10,11,15,16,33,50],txt:[3,30,34,40,50,52,54],type:[3,9,10,11,12,13,14,15,16,18,25,30,38,41,48,50,52,53],type_nam:[10,52],typic:9,ubyt:16,ufldl:10,uid:41,unconstrain:54,undeterminist:33,uniform:[7,10,16],uninstal:17,uniqu:15,unique_ptr:30,unit:[10,11],unittest:17,univ:55,unix:34,unk:[46,55],unk_idx:[50,53],unknown:10,unseg:10,unsup:54,unsupbow:54,until:42,unus:52,updat:[7,10,12,20,29,34,38],updatecallback:30,upgrad:17,upstream:29,url:54,urls_neg:54,urls_po:54,urls_unsup:54,usag:[9,10,11,14,42,52],use:[6,7,8,9,10,11,12,13,14,15,33,42,48,50,52,53,54,55],use_global_stat:10,use_gpu:[5,17,35,36,38,41,42,47,48,50,52,53,54,55],use_jpeg:47,use_old_updat:[35,36],use_seq:[18,52],use_seq_or_not:52,used:[3,6,9,10,11,12,13,15,16,33,50,52,54],useful:[10,11],usegpu:30,usepam:20,user:[7,9,10,11,15,16,40,50,52],user_featur:52,user_head:52,user_id:[42,52],user_meta:52,user_nam:52,usernam:29,using:[7,8,10,15,16,22,53],usr:[17,19,20,22,34,36,42],usrdict:46,usrmodel:46,usual:[10,33],utc:51,util:[33,42,47,52],v28:10,valid:16,valu:[3,5,7,9,10,12,13,30,38,42,48,50,53],value1:36,value2:36,vanilla:28,variabl:[10,15,41],varianc:10,vector:[10,11,15,50,52],veri:[10,13,47],version:[10,11,20,22,33,35,36],versu:15,vertic:10,vgg:[11,47],vgg_16_cifar:47,via:[16,22],view:10,vim:29,vision:47,visipedia:47,visual:10,vocab:54,volum:[40,41,42],volumemount:[41,42],wai:[10,11,14,15,55],wait:[12,42],wall:53,want:[3,10,11,14,15,16],warn:[10,17,42],warp:10,wbia:48,wei:[53,54],weight:[9,10,11,12,30,48],weight_act:11,weightlist:30,weights_:30,weights_t:30,wether:10,what:[7,10,11,12,50],when:[3,7,9,10,12,33],where:[10,11,12,14,15],whether:[9,10,11,16,54],which:[6,9,10,11,12,15,16,50,52],whole:[3,9],whole_cont:52,why:[11,33],widht:16,width:[9,10,16,30,55],wiki:10,wikipedia:10,wilder:3,window:[10,20,40],wise:10,with_avx:[19,22],with_doc:19,with_doubl:[19,22,30],with_dso:19,with_gpu:[19,22],with_metric_learn:22,with_predict_sdk:22,with_profil:33,with_python:[19,22],with_rdma:[19,22],with_style_check:19,with_swig_pi:19,with_test:19,with_tim:[19,22,33],within:10,without:[9,10,16,20],wmt14:55,wmt14_data:55,wmt14_model:55,won:25,wonder:3,word2vec:17,word:[3,9,10,17,25,27,50,53],word_dict:[25,50,53],word_dim:[25,50],word_id:[3,17],word_slot:53,word_vector:50,word_vector_dim:[28,46],work:[15,16,25,41,42],workspac:34,would:[16,53],wrapper:[11,33],write:[15,16,53],writelin:18,writer:15,wrong:16,wsj:53,wuyi:40,www:[10,47,55],xarg:[17,20,30],xgbe0:36,xgbe1:36,xiaojun:54,xrang:[16,18,30],xxbow:54,xxx:[15,48,55],yaml:[41,42],yes:20,yield:[3,15,16,17,18,25,28,50,52,53],you:[3,7,10,11,12,22,48,54],your:[10,15,17],your_host_machin:20,your_param_nam:17,your_repo:42,yuyang18:11,zachari:54,zeng:54,zero:[7,10,12,36],zhou:[53,54],zip:[42,51],zoo:46},titles:["\u5173\u4e8ePaddlePaddle","API","DataProvider\u7684\u4ecb\u7ecd","PyDataProvider2\u7684\u4f7f\u7528","API\u4e2d\u6587\u624b\u518c","\u57fa\u4e8ePython\u7684\u9884\u6d4b","Activations","Parameter Attributes","DataSources","Evaluators","Layers","Networks","Optimizers","Poolings","Layers","PaddlePaddle Design Doc","Python Data Reader Design Doc","FAQ","\u7ecf\u5178\u7684\u7ebf\u6027\u56de\u5f52\u4efb\u52a1","PaddlePaddle\u7684\u7f16\u8bd1\u9009\u9879","\u5b89\u88c5PaddlePaddle\u7684Docker\u955c\u50cf","\u5b89\u88c5\u4e0e\u7f16\u8bd1","Ubuntu\u90e8\u7f72PaddlePaddle","\u65b0\u624b\u5165\u95e8","\u652f\u6301\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165\u7684Layer","\u5355\u53cc\u5c42RNN API\u5bf9\u6bd4\u4ecb\u7ecd","RNN\u76f8\u5173\u6a21\u578b","Recurrent Group\u6559\u7a0b","RNN\u914d\u7f6e","\u5982\u4f55\u8d21\u732e\u4ee3\u7801","\u5b9e\u73b0\u65b0\u7684\u7f51\u7edc\u5c42","\u5982\u4f55\u8d21\u732e/\u4fee\u6539\u6587\u6863","\u8fdb\u9636\u6307\u5357","GPU\u6027\u80fd\u5206\u6790\u4e0e\u8c03\u4f18","\u8fd0\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3","\u53c2\u6570\u6982\u8ff0","\u7ec6\u8282\u63cf\u8ff0","\u8bbe\u7f6e\u547d\u4ee4\u884c\u53c2\u6570","\u4f7f\u7528\u6848\u4f8b","\u57fa\u672c\u4f7f\u7528\u6982\u5ff5","Kubernetes \u7b80\u4ecb","Kubernetes\u5355\u673a\u8bad\u7ec3","Kubernetes\u5206\u5e03\u5f0f\u8bad\u7ec3","<no title>","<no title>","PaddlePaddle \u6587\u6863","\u4e2d\u6587\u8bcd\u5411\u91cf\u6a21\u578b\u7684\u4f7f\u7528","\u56fe\u50cf\u5206\u7c7b\u6559\u7a0b","Model Zoo - ImageNet","\u5b8c\u6574\u6559\u7a0b","\u5feb\u901f\u5165\u95e8\u6559\u7a0b","MovieLens\u6570\u636e\u96c6","MovieLens\u6570\u636e\u96c6\u8bc4\u5206\u56de\u5f52\u6a21\u578b","\u8bed\u4e49\u89d2\u8272\u6807\u6ce8\u6559\u7a0b","\u60c5\u611f\u5206\u6790\u6559\u7a0b","\u6587\u672c\u751f\u6210\u6559\u7a0b"],titleterms:{"\u4e00\u4e9b\u7ec6\u8282\u7684\u8865\u5145":42,"\u4e0a\u4f20\u8bad\u7ec3\u6587\u4ef6":42,"\u4e0b\u8f7d\u4e0e\u89e3\u538b\u7f29":55,"\u4e0b\u8f7d\u548c\u6570\u636e\u62bd\u53d6":46,"\u4e0b\u8f7d\u548c\u8fd0\u884cdocker\u955c\u50cf":20,"\u4e0b\u8f7d\u5e76\u89e3\u538b\u6570\u636e\u96c6":52,"\u4e0b\u8f7d\u6570\u636e":41,"\u4e2d\u6587\u5b57\u5178":46,"\u4e2d\u6587\u77ed\u8bed\u6539\u5199\u7684\u4f8b\u5b50":46,"\u4e2d\u6587\u8bcd\u5411\u91cf\u6a21\u578b\u7684\u4f7f\u7528":46,"\u4e2d\u6587\u8bcd\u5411\u91cf\u7684\u9884\u8bad\u7ec3\u6a21\u578b":46,"\u4e3a\u4ec0\u4e48\u9700\u8981\u6027\u80fd\u5206\u6790":33,"\u4ec0\u4e48\u662f\u6027\u80fd\u5206\u6790":33,"\u4ecb\u7ecd":[46,48],"\u4ee3\u7801\u8981\u6c42":29,"\u4efb\u52a1\u7b80\u4ecb":18,"\u4f18\u5316\u7b97\u6cd5":50,"\u4f18\u5316\u7b97\u6cd5\u914d\u7f6e":39,"\u4f7f\u7528":[29,41],"\u4f7f\u7528\u6700\u65b0\u7248\u672c\u66f4\u65b0\u4f60\u7684":29,"\u4f7f\u7528\u6848\u4f8b":38,"\u4f7f\u7528\u6982\u8ff0":50,"\u4f7f\u7528\u6a21\u578b\u521d\u59cb\u5316\u7f51\u7edc":38,"\u4f7f\u7528\u73af\u5883\u53d8\u91cf":42,"\u4f7f\u7528\u7528\u6237\u6307\u5b9a\u7684\u8bcd\u5411\u91cf\u5b57\u5178":46,"\u4f7f\u7528\u8bf4\u660e":32,"\u4f7f\u7528docker\u6784\u5efapaddlepaddle\u7684\u6587\u6863":31,"\u4f7f\u7528paddlepaddle\u751f\u6210\u6a21\u578b":55,"\u4f7f\u7528paddlepaddle\u8bad\u7ec3\u6a21\u578b":55,"\u4fdd\u6301":29,"\u4fee\u6539\u4f60\u7684":29,"\u4fee\u6539\u542f\u52a8\u811a\u672c":41,"\u4fee\u6539\u6587\u6863":31,"\u514b\u9686":29,"\u5173\u4e8epaddlepaddl":0,"\u5185\u5b58\u4e0d\u591f\u7528\u7684\u60c5\u51b5":3,"\u5185\u7f6e\u5b9a\u65f6\u5668":33,"\u5199\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5":30,"\u51c6\u5907\u5de5\u4f5c\u7a7a\u95f4":34,"\u51c6\u5907\u5e8f\u5217\u6570\u636e":28,"\u51c6\u5907\u6570\u636e":[18,52],"\u51c6\u5907\u96c6\u7fa4\u4f5c\u4e1a\u914d\u7f6e":34,"\u51cf\u5c11\u6570\u636e\u8f7d\u5165\u7684\u8017\u65f6":17,"\u51cf\u5c11dataprovider\u7f13\u51b2\u6c60\u5185\u5b58":17,"\u5206\u5272\u8bad\u7ec3":52,"\u5206\u5e03\u5f0f\u8bad\u7ec3":39,"\u521b\u5efajob":42,"\u521b\u5efapaddl":41,"\u5229\u7528\u66f4\u591a\u7684\u8ba1\u7b97\u8d44\u6e90":17,"\u5230":29,"\u5236\u4f5c\u955c\u50cf":42,"\u5236\u4f5cdocker\u955c\u50cf":41,"\u524d\u63d0\u6761\u4ef6":34,"\u52a0\u901f\u8bad\u7ec3\u901f\u5ea6":17,"\u5355\u5143\u6d4b\u8bd5":36,"\u5355\u53cc\u5c42rnn":25,"\u5377\u79ef\u6a21\u578b":50,"\u5377\u79ef\u795e\u7ecf\u7f51\u7edc":47,"\u53c2\u6570\u4fe1\u606f":48,"\u53c2\u6570\u5185\u5b58":17,"\u53c2\u6570\u670d\u52a1\u5668\u548c\u5206\u5e03\u5f0f\u901a\u4fe1":36,"\u53c2\u6570\u6982\u8ff0":35,"\u53c2\u6570\u8bfb\u53d6":48,"\u53c2\u8003":3,"\u53c2\u8003\u6587\u6863":54,"\u53c2\u8003\u8d44\u6599":33,"\u53cc\u5411lstm":54,"\u53cc\u5c42rnn":25,"\u53cc\u5c42rnn\u4ecb\u7ecd":27,"\u53cc\u5c42rnn\u7684\u4f7f\u7528":27,"\u53ef\u80fd\u7684\u5185\u5b58\u6cc4\u9732\u95ee\u9898":3,"\u53ef\u80fd\u9047\u5230\u7684\u95ee\u9898":22,"\u53ef\u9009\u529f\u80fd":46,"\u5411\u7cfb\u7edf\u4f20\u9001\u6570\u636e":50,"\u5411\u91cf":36,"\u542f\u52a8\u4efb\u52a1":42,"\u542f\u52a8\u96c6\u7fa4\u4f5c\u4e1a":34,"\u547d\u4ee4\u884c\u53c2\u6570":50,"\u548c":24,"\u56fe\u50cf\u5206\u7c7b\u6559\u7a0b":47,"\u5728\u4e0d\u540c\u8bbe\u5907\u4e0a\u6307\u5b9a\u5c42":38,"\u5728paddlepaddle\u5e73\u53f0\u8bad\u7ec3\u6a21\u578b":46,"\u57fa\u4e8epython\u7684\u9884\u6d4b":5,"\u57fa\u672c\u4f7f\u7528\u6982\u5ff5":39,"\u57fa\u672c\u539f\u7406":27,"\u5982\u4f55\u4e66\u5199paddlepaddle\u7684\u6587\u6863":31,"\u5982\u4f55\u5171\u4eab\u53c2\u6570":17,"\u5982\u4f55\u51cf\u5c11\u5185\u5b58\u5360\u7528":17,"\u5982\u4f55\u521d\u59cb\u5316\u53c2\u6570":17,"\u5982\u4f55\u52a0\u901fpaddlepaddle\u7684\u8bad\u7ec3\u901f\u5ea6":17,"\u5982\u4f55\u6307\u5b9agpu\u8bbe\u5907":17,"\u5982\u4f55\u66f4\u65b0www":31,"\u5982\u4f55\u6784\u5efapaddlepaddle\u7684\u6587\u6863":31,"\u5982\u4f55\u8d21\u732e":31,"\u5982\u4f55\u8d21\u732e\u4ee3\u7801":29,"\u5982\u4f55\u8fdb\u884c\u6027\u80fd\u5206\u6790":33,"\u5982\u4f55\u9009\u62e9sgd\u7b97\u6cd5\u7684\u5b66\u4e60\u7387":17,"\u5b50\u5e8f\u5217\u95f4\u65e0memori":25,"\u5b50\u5e8f\u5217\u95f4\u6709memori":25,"\u5b57\u6bb5\u914d\u7f6e\u6587\u4ef6":52,"\u5b89\u88c5":[22,50],"\u5b89\u88c5\u4e0e\u7f16\u8bd1":21,"\u5b89\u88c5\u6d41\u7a0b":21,"\u5b89\u88c5kubectl":40,"\u5b89\u88c5paddlepaddle\u7684docker\u955c\u50cf":20,"\u5b8c\u6574\u6559\u7a0b":49,"\u5b9e\u73b0\u65b0\u7684\u7f51\u7edc\u5c42":30,"\u5b9e\u73b0c":30,"\u5b9e\u73b0python\u5c01\u88c5":30,"\u5c06\u547d\u4ee4\u53c2\u6570\u4f20\u7ed9\u7f51\u7edc\u914d\u7f6e":38,"\u5c0f\u7ed3":3,"\u5de5\u5177":33,"\u5e38\u7528\u6a21\u578b":49,"\u5ea6\u91cf\u5b66\u4e60":36,"\u5f00\u53d1\u6807\u51c6":32,"\u5f02\u6b65\u968f\u673a\u68af\u5ea6\u4e0b\u964d":36,"\u5f15\u7528":53,"\u5feb\u901f\u5165\u95e8\u6559\u7a0b":50,"\u6027\u80fd\u4f18\u5316":32,"\u6027\u80fd\u5206\u6790\u5c0f\u6280\u5de7":33,"\u6027\u80fd\u5206\u6790\u5de5\u5177\u4ecb\u7ecd":33,"\u6027\u80fd\u8c03\u4f18":36,"\u6027\u80fd\u95ee\u9898":20,"\u603b\u4f53\u6548\u679c\u603b\u7ed3":50,"\u60c5\u611f\u5206\u6790\u6559\u7a0b":54,"\u6216\u8005\u662f":17,"\u627e\u5230\u7684pythonlibs\u548cpythoninterp\u7248\u672c\u4e0d\u4e00\u81f4":17,"\u62c9\u53d6\u8bf7\u6c42":29,"\u63a5\u53e3":48,"\u63a8\u5bfc\u65b9\u7a0b":30,"\u63a8\u9001":29,"\u63d0\u4ea4":29,"\u63d0\u4ea4\u955c\u50cf":41,"\u63d0\u53d6\u7535\u5f71\u6216\u7528\u6237\u7684\u7279\u5f81\u5e76\u751f\u6210python\u5bf9\u8c61":52,"\u652f\u6301\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165\u7684layer":24,"\u6570\u636e\u51c6\u5907":[47,52,55],"\u6570\u636e\u63cf\u8ff0":53,"\u6570\u636e\u63d0\u4f9b":53,"\u6570\u636e\u63d0\u4f9b\u5668":39,"\u6570\u636e\u63d0\u4f9b\u811a\u672c":52,"\u6570\u636e\u652f\u6301":36,"\u6570\u636e\u683c\u5f0f\u51c6\u5907":50,"\u6570\u636e\u6e90\u914d\u7f6e":39,"\u6570\u636e\u7684\u51c6\u5907\u548c\u9884\u5904\u7406":46,"\u6570\u636e\u96c6\u7279\u5f81":51,"\u6570\u636e\u9884\u5904\u7406":55,"\u6570\u6910\u4ecb\u7ecd":54,"\u6570\u6910\u51c6\u5907":54,"\u6574\u4f53\u65b9\u6848":42,"\u6587\u672c\u751f\u6210":55,"\u6587\u672c\u751f\u6210\u6559\u7a0b":55,"\u6587\u6863":45,"\u65b0\u624b\u5165\u95e8":23,"\u65f6\u5e8f\u6a21\u578b":50,"\u65f6\u5e8f\u6a21\u578b\u7684\u4f7f\u7528\u573a\u666f":3,"\u65f6\u95f4\u5e8f\u5217":25,"\u65f6\u95f4\u6b65":25,"\u672c\u5730\u6d4b\u8bd5":38,"\u672c\u5730\u8bad\u7ec3":38,"\u67e5\u770b\u8bad\u7ec3\u7ed3\u679c":41,"\u67e5\u770b\u8f93\u51fa":42,"\u6837\u4f8b\u6570\u636e":3,"\u6848\u4f8b\u4e00":38,"\u6848\u4f8b\u4e8c":38,"\u68c0\u67e5\u6a21\u578b\u8f93\u51fa":34,"\u68c0\u67e5\u96c6\u7fa4\u8bad\u7ec3\u7ed3\u679c":34,"\u6982\u8ff0":[24,27],"\u6a21\u578b":48,"\u6a21\u578b\u4e0b\u8f7d":48,"\u6a21\u578b\u68c0\u9a8c":18,"\u6a21\u578b\u7f51\u7edc\u7ed3\u6784":50,"\u6a21\u578b\u8bad\u7ec3":[47,55],"\u6a21\u578b\u8bc4\u4f30\u548c\u9884\u6d4b":52,"\u6a21\u578b\u914d\u7f6e":[25,32],"\u6a21\u578b\u914d\u7f6e\u7684\u6a21\u578b\u914d\u7f6e":25,"\u6ce8\u610f\u4e8b\u9879":[3,20],"\u6d4b\u8bd5":[36,53],"\u6d4b\u8bd5\u6587\u4ef6":52,"\u6d4b\u8bd5\u6a21\u578b":54,"\u7279\u5f81":53,"\u7279\u5f81\u63d0\u53d6":48,"\u72b6\u6001\u6700\u65b0":29,"\u751f\u6210\u5e8f\u5217":28,"\u751f\u6210\u6a21\u578b\u7684\u547d\u4ee4\u4e0e\u7ed3\u679c":55,"\u751f\u6210\u6d41\u7a0b\u7684\u4f7f\u7528\u65b9\u6cd5":27,"\u7528\u6237\u6587\u4ef6\u63cf\u8ff0":51,"\u7528\u6237\u81ea\u5b9a\u4e49\u6570\u636e\u96c6":55,"\u7528\u6237\u81ea\u5b9a\u4e49\u6570\u6910\u9884\u5904\u7406":54,"\u7535\u5f71\u6587\u4ef6\u63cf\u8ff0":51,"\u76f4\u63a5\u6784\u5efapaddlepaddle\u7684\u6587\u6863":31,"\u76f8\u5173\u6982\u5ff5":27,"\u77e9\u9635":36,"\u793a\u4f8b1":25,"\u793a\u4f8b2":25,"\u793a\u4f8b3":25,"\u793a\u4f8b4":25,"\u795e\u7ecf\u5143\u6fc0\u6d3b\u5185\u5b58":17,"\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u914d\u7f6e":52,"\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e":53,"\u7a00\u758f\u8bad\u7ec3":38,"\u7b80\u4ecb":[40,55],"\u7b80\u5355\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":28,"\u7c7b":30,"\u7cfb\u7edf\u6846\u56fe":39,"\u7ec3\u4e60":47,"\u7ec6\u8282\u63a2\u7a76":47,"\u7ec6\u8282\u63cf\u8ff0":36,"\u7ec8\u6b62\u96c6\u7fa4\u4f5c\u4e1a":34,"\u7ecf\u5178\u7684\u7ebf\u6027\u56de\u5f52\u4efb\u52a1":18,"\u7f16\u5199yaml\u6587\u4ef6":41,"\u7f16\u8bd1\u6d41\u7a0b":21,"\u7f16\u8bd1\u9009\u9879\u7684\u8bbe\u7f6e":19,"\u7f51\u7edc\u53ef\u89c6\u5316":48,"\u7f51\u7edc\u7ed3\u6784\u914d\u7f6e":39,"\u7f51\u7edc\u914d\u7f6e\u4e2d\u7684\u8c03\u7528":3,"\u81ea\u7136\u8bed\u8a00\u5904\u7406":36,"\u81f4\u8c22":0,"\u89c2\u6d4b\u8bcd\u5411\u91cf":46,"\u8bad\u7ec3":[36,52,53],"\u8bad\u7ec3\u5668\u914d\u7f6e\u6587\u4ef6":52,"\u8bad\u7ec3\u6a21\u578b":[18,50,54],"\u8bad\u7ec3\u6a21\u578b\u7684\u547d\u4ee4\u4e0e\u7ed3\u679c":55,"\u8bad\u7ec3\u6d41\u7a0b\u7684\u4f7f\u7528\u65b9\u6cd5":27,"\u8bad\u7ec3\u914d\u7f6e\u6587\u4ef6":39,"\u8bbe\u7f6e\u547d\u4ee4\u884c\u53c2\u6570":37,"\u8bc4\u5206\u6587\u4ef6\u63cf\u8ff0":51,"\u8bcd\u5411\u91cf\u6a21\u578b":50,"\u8bcd\u5411\u91cf\u6a21\u578b\u7684\u4fee\u6b63":46,"\u8bcd\u6c47\u8868":25,"\u8be6\u7ec6\u6559\u7a0b":33,"\u8bed\u4e49\u89d2\u8272\u6807\u6ce8\u6559\u7a0b":53,"\u8bf7\u6c42":29,"\u8bfb\u53d6\u53cc\u5c42\u5e8f\u5217\u6570\u636e":25,"\u8f93\u5165":27,"\u8f93\u5165\u4e0d\u7b49\u957f":25,"\u8f93\u5165\u793a\u4f8b":27,"\u8f93\u51fa":27,"\u8f93\u51fa\u65e5\u5fd7":50,"\u8fd0\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3":34,"\u8fd0\u884c\u5bb9\u5668":41,"\u8fd0\u884cdocker":17,"\u8fdb\u884c\u8bad\u7ec3":41,"\u8fdb\u9636\u6307\u5357":32,"\u8fdc\u7a0b\u8bbf\u95ee\u95ee\u9898\u548c\u4e8c\u6b21\u5f00\u53d1":20,"\u9009\u62e9\u5b58\u50a8\u65b9\u6848":40,"\u901a\u7528":36,"\u903b\u8f91\u56de\u5f52\u6a21\u578b":50,"\u9047\u5230":17,"\u90e8\u7f72kubernetes\u96c6\u7fa4":40,"\u914d\u7f6e\u4e2d\u7684\u6570\u636e\u52a0\u8f7d\u5b9a\u4e49":50,"\u914d\u7f6e\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u67b6\u6784":28,"\u914d\u7f6ekubectl":40,"\u914d\u7f6ekubectl\u8bbf\u95ee\u4f60\u7684kubernetes\u96c6\u7fa4":40,"\u94a9\u5b50":29,"\u9644\u5f55":50,"\u968f\u673a\u6570":36,"\u96c6\u7fa4\u8bad\u7ec3":38,"\u975e\u6cd5\u6307\u4ee4":17,"\u9884\u5904\u7406":47,"\u9884\u5904\u7406\u547d\u4ee4\u548c\u7ed3\u679c":55,"\u9884\u5904\u7406\u5de5\u4f5c\u6d41\u7a0b":55,"\u9884\u6d4b":[47,48,50,53,54],"\u9884\u6d4b\u6d41\u7a0b":5,"\u9884\u6d4bdemo":5,"\u9884\u8bad\u7ec3\u7684\u6a21\u578b":55,"api\u4e2d\u6587\u624b\u518c":4,"api\u5bf9\u6bd4\u4ecb\u7ecd":25,"beam_search\u7684\u751f\u6210":25,"blas\u8def\u5f84\u76f8\u5173\u7684\u7f16\u8bd1\u9009\u9879":19,"bleu\u8bc4\u4f30":55,"bool\u578b\u7684\u7f16\u8bd1\u9009\u9879":19,"cmake\u6e90\u7801\u7f16\u8bd1":17,"cudnn\u7684\u7f16\u8bd1\u9009\u9879":19,"dataprovider\u7684\u4ecb\u7ecd":2,"dataprovider\u7684\u4f7f\u7528":3,"gpu\u548ccpu\u6df7\u5408\u4f7f\u7528":38,"gpu\u6027\u80fd\u5206\u6790\u4e0e\u8c03\u4f18":33,"gpu\u955c\u50cf\u51fa\u73b0":17,"group\u6559\u7a0b":27,"kubernetes\u5206\u5e03\u5f0f\u8bad\u7ec3":42,"kubernetes\u5355\u673a\u8bad\u7ec3":41,"meta\u6587\u4ef6":52,"meta\u914d\u7f6e\u6587\u4ef6":52,"mnist\u7684\u4f7f\u7528\u573a\u666f":3,"movielens\u6570\u636e\u96c6":51,"movielens\u6570\u636e\u96c6\u8bc4\u5206\u56de\u5f52\u6a21\u578b":52,"org\u6587\u6863":31,"paddlepaddle\u63d0\u4f9b\u7684docker\u955c\u50cf\u7248\u672c":20,"paddlepaddle\u7684\u7f16\u8bd1\u9009\u9879":19,"pod\u95f4\u901a\u4fe1":42,"pydataprovider2\u7684\u4f7f\u7528":3,"python\u63a5\u53e3":48,"python\u76f8\u5173\u7684\u5355\u5143\u6d4b\u8bd5\u90fd\u8fc7\u4e0d\u4e86":17,"python\u811a\u672c\u8bfb\u53d6\u6570\u636e":50,"return":16,"rnn\u76f8\u5173\u6a21\u578b":26,"rnn\u914d\u7f6e":28,"so\u627e\u4e0d\u5230":22,"ubuntu\u90e8\u7f72paddlepaddl":22,absactiv:6,activ:6,adadeltaoptim:12,adagradoptim:12,adamaxoptim:12,adamoptim:12,addto_lay:10,aggreg:10,api:[1,4],applic:4,argument:16,async:36,attent:28,attribut:7,auc_evalu:9,avgpool:13,base:[9,10],baseactiv:6,basepoolingtyp:13,basesgdoptim:12,batch:16,batch_norm_lay:10,batch_siz:16,beam_search:10,becaus:17,between:15,bidirectional_lstm:11,big:17,bilinear_interp_lay:10,bla:19,block_expand_lay:10,breluactiv:6,cach:3,check:10,chunk_evalu:9,classif:9,classification_error_evalu:9,classification_error_printer_evalu:9,clone:29,column_sum_evalu:9,commit:29,compos:16,concat_lay:10,config:4,connect:10,content:[3,17,24,33,39],context_project:10,conv:10,conv_oper:10,conv_project:10,conv_shift_lay:10,cos_sim:10,cost:10,cp27mu:17,creat:16,creator:16,crf_decoding_lay:10,crf_layer:10,cross_entropi:10,cross_entropy_with_selfnorm:10,ctc_error_evalu:9,ctc_layer:10,cuda:[17,19],cudnn:19,custom:16,dat:51,data:[10,16],data_lay:10,dataprovid:[4,36],datasourc:8,decayedadagradoptim:12,decor:16,design:[15,16],dictionari:16,distribut:15,doc:[15,16],dotmul_oper:10,dotmul_project:10,driver:17,dropout_lay:11,embedding_lay:10,entri:16,eos_lay:10,evalu:9,event:15,exampl:15,expactiv:6,expand_lay:[10,24],faq:17,fc_layer:10,first_seq:[10,24],fork:29,from:15,full_matrix_project:10,fulli:10,gate:28,get_output_lay:10,github:29,gpu:36,gradient_printer_evalu:9,group:10,gru:[11,36],gru_group:11,gru_step_lay:10,gru_unit:11,grumemori:10,handler:15,how:16,hsigmoid:10,huber_cost:10,identity_project:10,identityactiv:6,illeg:17,imag:[10,11],imagenet:48,imdb:54,img_cmrnorm_lay:10,img_conv_bn_pool:11,img_conv_group:11,img_conv_lay:10,img_pool_lay:10,implement:16,ingredi:15,init_hook:3,input_typ:3,instruct:17,insuffici:17,interfac:16,interpolation_lay:10,isn:16,job:41,join:10,kubernet:[40,41],lambda_cost:10,last_seq:[10,24],layer:[10,14,15],layeroutput:10,layertyp:10,learn:36,libcudart:22,libcudnn:22,linear_comb_lay:10,linearactiv:6,linux_x86_64:17,list:16,logactiv:6,lstm:[11,36,53,54],lstm_step_lay:10,lstmemori:10,lstmemory_group:11,lstmemory_unit:11,map:16,math:10,maxframe_printer_evalu:9,maxid_lay:10,maxid_printer_evalu:9,maxout_lay:10,maxpool:13,memori:[10,25,27],messag:17,metric:36,mini:16,misc:11,mix:10,mixed_lay:10,model:[4,15,28,48],momentumoptim:12,movi:51,multi_binary_label_cross_entropi:10,multipl:16,nce_lay:10,need:16,network:[11,28],neural:28,nlp:[11,36],norm:10,nvprof:33,nvvp:33,onli:16,optim:12,output:11,pad_lay:10,paddl:16,paddlepaddl:[15,31,45],parallel_nn:38,paramet:[7,15],perform:36,platform:17,pnpair_evalu:9,pool:[10,13],pooling_lay:[10,24],power_lay:10,pre:29,precision_recall_evalu:9,prefetch:16,print:9,protocol:17,provid:[3,16],pull:29,push:29,python:16,rank:9,rank_cost:10,rate:51,reader:[15,16],recurr:[10,11,27,28],recurrent_group:10,recurrent_lay:10,refer:3,reject:17,reluactiv:6,repeat_lay:10,request:29,reshap:10,resnet:48,rmspropoptim:12,rnn:[25,36],rotate_lay:10,sampl:10,sampling_id_lay:10,scaling_lay:10,scaling_project:10,selective_fc_lay:10,seq_concat_lay:10,seq_reshape_lay:10,seqtext_printer_evalu:9,sequenc:28,sequence_conv_pool:11,sequencesoftmaxactiv:6,set:12,sgd:36,share:15,shuffl:16,sigmoidactiv:6,simple_attent:11,simple_gru:11,simple_img_conv_pool:11,simple_lstm:11,singl:16,slice:10,slope_intercept_lay:10,softmaxactiv:6,softreluactiv:6,spp_layer:10,squareactiv:6,squarerootnpool:13,stack:54,stanhactiv:6,start:15,suffici:16,sum_cost:10,sum_evalu:9,sum_to_one_norm_lay:10,summar:15,sumpool:13,support:17,table_project:10,take:16,tanhactiv:6,tensor_lay:10,text_conv_pool:11,thi:17,too:17,train:[15,16],trans_full_matrix_project:10,trans_lay:10,tune:36,updat:15,usag:16,use:16,user:51,util:9,value_printer_evalu:9,version:17,vgg_16_network:11,warp_ctc_lay:10,wheel:17,whl:17,why:16,zoo:48}}) \ No newline at end of file +Search.setIndex({docnames:["about/index_cn","api/index_cn","api/v1/data_provider/dataprovider_cn","api/v1/data_provider/pydataprovider2_cn","api/v1/index_cn","api/v1/predict/swig_py_paddle_cn","api/v1/trainer_config_helpers/activations","api/v1/trainer_config_helpers/attrs","api/v1/trainer_config_helpers/data_sources","api/v1/trainer_config_helpers/evaluators","api/v1/trainer_config_helpers/layers","api/v1/trainer_config_helpers/networks","api/v1/trainer_config_helpers/optimizers","api/v1/trainer_config_helpers/poolings","api/v2/model_configs","design/api","design/reader/README","faq/index_cn","getstarted/basic_usage/index_cn","getstarted/build_and_install/cmake/build_from_source_cn","getstarted/build_and_install/docker_install_cn","getstarted/build_and_install/index_cn","getstarted/build_and_install/ubuntu_install_cn","getstarted/index_cn","howto/deep_model/rnn/hierarchical_layer_cn","howto/deep_model/rnn/hrnn_rnn_api_compare_cn","howto/deep_model/rnn/index_cn","howto/deep_model/rnn/recurrent_group_cn","howto/deep_model/rnn/rnn_config_cn","howto/dev/contribute_to_paddle_cn","howto/dev/new_layer_cn","howto/dev/write_docs_cn","howto/index_cn","howto/optimization/gpu_profiling_cn","howto/usage/cluster/cluster_train_cn","howto/usage/cmd_parameter/arguments_cn","howto/usage/cmd_parameter/detail_introduction_cn","howto/usage/cmd_parameter/index_cn","howto/usage/cmd_parameter/use_case_cn","howto/usage/concepts/use_concepts_cn","howto/usage/k8s/k8s_basis_cn","howto/usage/k8s/k8s_cn","howto/usage/k8s/k8s_distributed_cn","howto/usage/k8s/src/k8s_data/README","howto/usage/k8s/src/k8s_train/README","index_cn","tutorials/embedding_model/index_cn","tutorials/image_classification/index_cn","tutorials/imagenet_model/resnet_model_cn","tutorials/index_cn","tutorials/quick_start/index_cn","tutorials/rec/ml_dataset_cn","tutorials/rec/ml_regression_cn","tutorials/semantic_role_labeling/index_cn","tutorials/sentiment_analysis/index_cn","tutorials/text_generation/index_cn"],envversion:50,filenames:["about/index_cn.md","api/index_cn.rst","api/v1/data_provider/dataprovider_cn.rst","api/v1/data_provider/pydataprovider2_cn.rst","api/v1/index_cn.rst","api/v1/predict/swig_py_paddle_cn.rst","api/v1/trainer_config_helpers/activations.rst","api/v1/trainer_config_helpers/attrs.rst","api/v1/trainer_config_helpers/data_sources.rst","api/v1/trainer_config_helpers/evaluators.rst","api/v1/trainer_config_helpers/layers.rst","api/v1/trainer_config_helpers/networks.rst","api/v1/trainer_config_helpers/optimizers.rst","api/v1/trainer_config_helpers/poolings.rst","api/v2/model_configs.rst","design/api.md","design/reader/README.md","faq/index_cn.rst","getstarted/basic_usage/index_cn.rst","getstarted/build_and_install/cmake/build_from_source_cn.rst","getstarted/build_and_install/docker_install_cn.rst","getstarted/build_and_install/index_cn.rst","getstarted/build_and_install/ubuntu_install_cn.rst","getstarted/index_cn.rst","howto/deep_model/rnn/hierarchical_layer_cn.rst","howto/deep_model/rnn/hrnn_rnn_api_compare_cn.rst","howto/deep_model/rnn/index_cn.rst","howto/deep_model/rnn/recurrent_group_cn.md","howto/deep_model/rnn/rnn_config_cn.rst","howto/dev/contribute_to_paddle_cn.md","howto/dev/new_layer_cn.rst","howto/dev/write_docs_cn.rst","howto/index_cn.rst","howto/optimization/gpu_profiling_cn.rst","howto/usage/cluster/cluster_train_cn.md","howto/usage/cmd_parameter/arguments_cn.md","howto/usage/cmd_parameter/detail_introduction_cn.md","howto/usage/cmd_parameter/index_cn.rst","howto/usage/cmd_parameter/use_case_cn.md","howto/usage/concepts/use_concepts_cn.rst","howto/usage/k8s/k8s_basis_cn.md","howto/usage/k8s/k8s_cn.md","howto/usage/k8s/k8s_distributed_cn.md","howto/usage/k8s/src/k8s_data/README.md","howto/usage/k8s/src/k8s_train/README.md","index_cn.rst","tutorials/embedding_model/index_cn.md","tutorials/image_classification/index_cn.md","tutorials/imagenet_model/resnet_model_cn.md","tutorials/index_cn.md","tutorials/quick_start/index_cn.rst","tutorials/rec/ml_dataset_cn.md","tutorials/rec/ml_regression_cn.rst","tutorials/semantic_role_labeling/index_cn.md","tutorials/sentiment_analysis/index_cn.md","tutorials/text_generation/index_cn.md"],objects:{"paddle.trainer_config_helpers":{attrs:[7,0,0,"-"],data_sources:[8,0,0,"-"]},"paddle.trainer_config_helpers.attrs":{ExtraAttr:[7,1,1,""],ExtraLayerAttribute:[7,2,1,""],ParamAttr:[7,1,1,""],ParameterAttribute:[7,2,1,""]},"paddle.trainer_config_helpers.attrs.ParameterAttribute":{set_default_parameter_name:[7,3,1,""]},"paddle.trainer_config_helpers.data_sources":{define_py_data_sources2:[8,4,1,""]},"paddle.v2":{activation:[14,0,0,"-"],attr:[14,0,0,"-"],layer:[14,0,0,"-"],networks:[14,0,0,"-"],pooling:[14,0,0,"-"]},"paddle.v2.activation":{Abs:[14,2,1,""],BRelu:[14,2,1,""],Base:[14,2,1,""],Exp:[14,2,1,""],Identity:[14,1,1,""],Linear:[14,2,1,""],Log:[14,2,1,""],Relu:[14,2,1,""],STanh:[14,2,1,""],SequenceSoftmax:[14,2,1,""],Sigmoid:[14,2,1,""],SoftRelu:[14,2,1,""],Softmax:[14,2,1,""],Square:[14,2,1,""],Tanh:[14,2,1,""]},"paddle.v2.attr":{Extra:[14,1,1,""],ExtraAttr:[14,1,1,""],ExtraLayerAttribute:[14,2,1,""],Param:[14,1,1,""],ParamAttr:[14,1,1,""],ParameterAttribute:[14,2,1,""]},"paddle.v2.attr.ParameterAttribute":{set_default_parameter_name:[14,3,1,""]},"paddle.v2.layer":{addto:[14,2,1,""],batch_norm:[14,2,1,""],bilinear_interp:[14,2,1,""],block_expand:[14,2,1,""],classification_cost:[14,2,1,""],concat:[14,2,1,""],context_projection:[14,2,1,""],conv_operator:[14,2,1,""],conv_projection:[14,2,1,""],conv_shift:[14,2,1,""],convex_comb:[14,2,1,""],cos_sim:[14,2,1,""],crf:[14,2,1,""],crf_decoding:[14,2,1,""],cross_entropy_cost:[14,2,1,""],cross_entropy_with_selfnorm_cost:[14,2,1,""],ctc:[14,2,1,""],data:[14,2,1,""],dotmul_operator:[14,2,1,""],dotmul_projection:[14,2,1,""],dropout:[14,2,1,""],embedding:[14,2,1,""],eos:[14,2,1,""],expand:[14,2,1,""],fc:[14,2,1,""],first_seq:[14,2,1,""],full_matrix_projection:[14,2,1,""],get_output:[14,2,1,""],gru_step:[14,2,1,""],grumemory:[14,2,1,""],hsigmoid:[14,2,1,""],huber_cost:[14,2,1,""],identity_projection:[14,2,1,""],img_cmrnorm:[14,2,1,""],img_conv:[14,2,1,""],img_pool:[14,2,1,""],interpolation:[14,2,1,""],lambda_cost:[14,2,1,""],last_seq:[14,2,1,""],linear_comb:[14,2,1,""],lstm_step:[14,2,1,""],lstmemory:[14,2,1,""],max_id:[14,2,1,""],maxout:[14,2,1,""],multi_binary_label_cross_entropy_cost:[14,2,1,""],nce:[14,2,1,""],out_prod:[14,2,1,""],pad:[14,2,1,""],parse_network:[14,4,1,""],pooling:[14,2,1,""],power:[14,2,1,""],print:[14,2,1,""],priorbox:[14,2,1,""],rank_cost:[14,2,1,""],recurrent:[14,2,1,""],regression_cost:[14,2,1,""],repeat:[14,2,1,""],rotate:[14,2,1,""],sampling_id:[14,2,1,""],scaling:[14,2,1,""],scaling_projection:[14,2,1,""],selective_fc:[14,2,1,""],seq_concat:[14,2,1,""],seq_reshape:[14,2,1,""],slope_intercept:[14,2,1,""],spp:[14,2,1,""],sum_cost:[14,2,1,""],sum_to_one_norm:[14,2,1,""],table_projection:[14,2,1,""],tensor:[14,2,1,""],trans:[14,2,1,""],trans_full_matrix_projection:[14,2,1,""],warp_ctc:[14,2,1,""]},"paddle.v2.networks":{bidirectional_gru:[14,2,1,""],bidirectional_lstm:[14,2,1,""],dropout_layer:[14,2,1,""],gru_group:[14,2,1,""],gru_unit:[14,2,1,""],img_conv_bn_pool:[14,2,1,""],img_conv_group:[14,2,1,""],lstmemory_group:[14,2,1,""],lstmemory_unit:[14,2,1,""],sequence_conv_pool:[14,2,1,""],simple_attention:[14,2,1,""],simple_gru2:[14,2,1,""],simple_gru:[14,2,1,""],simple_img_conv_pool:[14,2,1,""],simple_lstm:[14,2,1,""],text_conv_pool:[14,2,1,""],vgg_16_network:[14,2,1,""]},"paddle.v2.pooling":{Avg:[14,2,1,""],BasePool:[14,2,1,""],CudnnAvg:[14,2,1,""],CudnnMax:[14,2,1,""],Max:[14,2,1,""],SquareRootN:[14,2,1,""],Sum:[14,2,1,""]}},objnames:{"0":["py","module","Python \u6a21\u5757"],"1":["py","attribute","Python \u5c5e\u6027"],"2":["py","class","Python \u7c7b"],"3":["py","method","Python \u65b9\u6cd5"],"4":["py","function","Python \u51fd\u6570"]},objtypes:{"0":"py:module","1":"py:attribute","2":"py:class","3":"py:method","4":"py:function"},terms:{"00012\u7684\u6a21\u578b\u6709\u7740\u6700\u9ad8\u7684bleu\u503c27":55,"0005\u4e58\u4ee5batch":47,"000\u4e2a\u5df2\u6807\u6ce8\u8fc7\u7684\u9ad8\u6781\u6027\u7535\u5f71\u8bc4\u8bba\u7528\u4e8e\u8bad\u7ec3":54,"000\u4e2a\u7528\u4e8e\u6d4b\u8bd5":54,"000\u4e2atxt\u6587\u4ef6":54,"000\u4f4d\u7528\u6237\u5bf94":51,"000\u5e45\u56fe\u50cf\u4e0a\u6d4b\u8bd5\u4e86\u6a21\u578b\u7684\u5206\u7c7b\u9519\u8bef\u7387":48,"000\u5f20\u7070\u5ea6\u56fe\u7247\u7684\u6570\u5b57\u5206\u7c7b\u6570\u636e\u96c6":3,"000\u6761\u8bc4\u4ef7":51,"000\u90e8\u7535\u5f71\u76841":51,"00186201e":5,"00m":33,"02595v1":[10,14],"03m":33,"0424m":33,"0473v3":[11,14],"05d":47,"0630u":33,"06u":33,"0810u":33,"08823112e":5,"0957m":33,"0\u53f7\u8bad\u7ec3\u8282\u70b9\u662f\u4e3b\u8bad\u7ec3\u8282\u70b9":36,"0\u5c42\u5e8f\u5217":24,"0\u8868\u793a\u7b2c\u4e00\u6b21\u7ecf\u8fc7\u8bad\u7ec3\u96c6":54,"0ab":[10,14],"0b1":22,"10000\u5f20\u4f5c\u4e3a\u6d4b\u8bd5\u96c6":47,"10007_10":54,"10014_7":54,"100m":17,"101\u5c42\u548c152\u5c42\u7684\u7f51\u7edc\u7ed3\u6784\u4e2d":48,"101\u5c42\u548c152\u5c42\u7684\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6\u53ef\u53c2\u7167":48,"101\u5c42\u7f51\u7edc\u6a21\u578b":48,"10\u4e2d\u7684\u8bad\u7ec3\u96c6\u548c\u6d4b\u8bd5\u96c6":47,"10\u4ee5\u4e0a\u7684linux":20,"10\u6570\u636e\u96c6":47,"10\u6570\u636e\u96c6\u5305\u542b60000\u5f2032x32\u7684\u5f69\u8272\u56fe\u7247":47,"10\u6570\u636e\u96c6\u7684\u5b98\u65b9\u7f51\u5740":47,"10\u6570\u636e\u96c6\u8bad\u7ec3\u4e00\u4e2a\u5377\u79ef\u795e\u7ecf\u7f51\u7edc":47,"10gbe":20,"1150u":33,"11e6":41,"12194102e":5,"124n":33,"128\u7ef4\u548c256\u7ef4":46,"13m":41,"1490u":33,"14\u6570\u636e\u96c6":55,"14\u6570\u636e\u96c6\u4e0a\u5f97\u5230\u826f\u597d\u8868\u73b0\u7684\u8bad\u7ec3\u8fc7\u7a0b":55,"14\u8fd9\u79cd\u5199\u6cd5\u5c06\u4f1a\u6d4b\u8bd5\u6a21\u578b":38,"152\u5c42\u7f51\u7edc\u6a21\u578b":48,"15501715e":5,"1550u":33,"15\u884c":25,"1636k":55,"16u":33,"173m":48,"173n":33,"1770u":33,"18\u5c81\u4ee5\u4e0b":51,"18e457ce3d362ff5f3febf8e7f85ffec852f70f3b629add10aed84f930a68750":41,"197u":33,"1\u7684\u5c42\u4e4b\u5916":38,"1\u7a00\u758f\u6570\u636e":30,"1\u8f6e\u5b58\u50a8\u7684\u6240\u6709\u6a21\u578b":38,"1\u9664\u4ee5batch":47,"1m\u6570\u636e\u96c6\u4e2d":52,"1m\u7684\u5b57\u6bb5\u914d\u7f6e\u6587\u4ef6\u5728\u76ee\u5f55":52,"200\u6570\u636e\u96c6\u4e0a\u4f7f\u7528vgg\u6a21\u578b\u8bad\u7ec3\u4e00\u4e2a\u9e1f\u7c7b\u56fe\u7247\u5206\u7c7b\u6a21\u578b":47,"210u":33,"211839e770f7b538e2d8":[11,14],"215n":33,"228u":33,"234m":48,"24\u5c81":51,"2520u":33,"25639710e":5,"25k":50,"2680u":33,"26\u884c":25,"27787406e":5,"279n":33,"27m":33,"285m":33,"2863m":33,"28\u7684\u56fe\u7247\u50cf\u7d20\u7070\u5ea6\u503c":3,"28\u7ef4\u7684\u7a20\u5bc6\u6d6e\u70b9\u6570\u5411\u91cf\u548c\u4e00\u4e2a":3,"28m":33,"2977m":33,"29997\u4e2a\u6700\u9ad8\u9891\u5355\u8bcd\u548c3\u4e2a\u7279\u6b8a\u7b26\u53f7":55,"2\u4e09\u7c7b\u7684\u6bd4\u4f8b\u4e3a":17,"2\u4e2a\u6d6e\u70b9\u6570":18,"2\u5206\u522b\u4ee3\u88683\u4e2a\u8282\u70b9\u7684trainer":42,"2\u610f\u5473\u77400\u53f7\u548c1\u53f7gpu\u5c06\u4f1a\u4f7f\u7528\u6570\u636e\u5e76\u884c\u6765\u8ba1\u7b97fc1\u548cfc2\u5c42":38,"2\u8fd9\u51e0\u4e2a\u76ee\u5f55\u8868\u793apaddlepaddle\u8282\u70b9\u4e0etrain":42,"2nd":[10,14],"302n":33,"30u":33,"3206325\u4e2a\u8bcd\u548c3\u4e2a\u7279\u6b8a\u6807\u8bb0":46,"32777140e":5,"328n":33,"32\u7ef4":46,"32u":33,"331n":33,"3320u":33,"34\u5c81":51,"35\u65f6":55,"36540484e":5,"36u":33,"3710m":33,"3768m":33,"387u":33,"38u":33,"3920u":33,"39u":33,"3\u4e2a\u7279\u6b8a\u7b26\u53f7":55,"3\u53f7gpu":17,"4035m":33,"4090u":33,"4096mb":36,"40gbe":20,"4279m":33,"43630644e":5,"43u":33,"448a5b355b84":41,"44\u5c81":51,"4560u":33,"4563m":33,"45u":33,"4650u":33,"4726m":33,"473m":41,"48565123e":5,"48684503e":5,"49316648e":5,"49\u5c81":51,"4gb":36,"500\u4e2atxt\u6587\u4ef6":54,"500m":17,"50\u5c42":48,"50\u5c42\u7f51\u7edc\u6a21\u578b":48,"51111044e":5,"514u":33,"525n":33,"526u":33,"53018653e":5,"536u":33,"5460u":33,"5470u":33,"54u":33,"55\u5c81":51,"55g":55,"5690m":33,"56gbe":20,"573u":33,"578n":33,"5798m":33,"586u":33,"58s":41,"5969m":33,"5\u4e2a\u6d4b\u8bd5\u6837\u4f8b\u548c2\u4e2a\u751f\u6210\u5f0f\u6837\u4f8b":46,"5\u5230\u672c\u5730\u73af\u5883\u4e2d":22,"6080u":33,"6082v4":[10,14],"6140u":33,"6305m":33,"639u":33,"64\u7ef4":46,"655u":33,"6780u":33,"6810u":33,"682u":33,"6970u":33,"6\u4e07\u4ebf\u6b21\u6d6e\u70b9\u8fd0\u7b97\u6bcf\u79d2":33,"6\u4e2a\u8282\u70b9":34,"6\u5143\u4e0a\u4e0b\u6587\u4f5c\u4e3a\u8f93\u5165\u5c42":46,"704u":33,"70634608e":5,"7090u":33,"72296313e":5,"72u":33,"73u":33,"75u":33,"760u":33,"767u":33,"783n":33,"784u":33,"78m":33,"7kb":41,"8250u":33,"8300u":33,"830n":33,"849m":33,"85625684e":5,"861u":33,"864k":55,"8661m":33,"877\u4e2a\u88ab\u5411\u91cf\u5316\u7684\u8bcd":46,"877\u884c":46,"892m":33,"8\u4ee5\u4e0a":29,"901n":33,"90u":33,"918u":33,"9247m":33,"924n":33,"9261m":33,"93137714e":5,"9330m":33,"94u":33,"9530m":33,"96644767e":5,"983m":33,"988u":33,"997u":33,"99982715e":5,"99m":48,"99u":33,"9\u4e2d\u7684\u4e00\u4e2a\u6570\u5b57":3,"9f18":41,"\u0233":18,"\u03b5":18,"\u4e00":25,"\u4e00\u4e2a":39,"\u4e00\u4e2a0\u5c42\u5e8f\u5217":24,"\u4e00\u4e2a0\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u6269\u5c55\u6210\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":24,"\u4e00\u4e2a\u4f8b\u5b50\u662f\u623f\u4ea7\u4f30\u503c":18,"\u4e00\u4e2a\u5178\u578b\u7684\u795e\u7ecf\u7f51\u7edc\u5982\u4e0b\u56fe\u6240\u793a":47,"\u4e00\u4e2a\u5206\u5e03\u5f0f\u4f5c\u4e1a\u91cc\u5305\u62ec\u82e5\u5e72trainer\u8fdb\u7a0b\u548c\u82e5\u5e72paramet":39,"\u4e00\u4e2a\u5206\u5e03\u5f0f\u7684\u5b58\u50a8\u7cfb\u7edf":40,"\u4e00\u4e2a\u5206\u5e03\u5f0fpaddle\u8bad\u7ec3\u4efb\u52a1\u4e2d\u7684\u6bcf\u4e2a\u8fdb\u7a0b\u90fd\u53ef\u4ee5\u4ececeph\u8bfb\u53d6\u6570\u636e":41,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":24,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u6216\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":24,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u6269\u5c55\u6210\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":24,"\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u8fdb\u5165":27,"\u4e00\u4e2a\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u5305\u542b\u5982\u4e0b\u5c42":47,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":24,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":24,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":24,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":24,"\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217\u8fdb\u5165":27,"\u4e00\u4e2a\u53cc\u5c42rnn\u7531\u591a\u4e2a\u5355\u5c42rnn\u7ec4\u6210":27,"\u4e00\u4e2a\u53ef\u8c03\u7528\u7684\u51fd\u6570":27,"\u4e00\u4e2a\u57fa\u672c\u7684\u5e94\u7528\u573a\u666f\u662f\u533a\u5206\u7ed9\u5b9a\u6587\u672c\u7684\u8912\u8d2c\u4e24\u6781\u6027":54,"\u4e00\u4e2a\u6216\u591a\u4e2a":40,"\u4e00\u4e2a\u6570\u636e\u96c6\u5927\u90e8\u5206\u5e8f\u5217\u957f\u5ea6\u662f100":17,"\u4e00\u4e2a\u6587\u4ef6":3,"\u4e00\u4e2a\u662f\u6d6e\u70b9\u8ba1\u7b97\u91cf":33,"\u4e00\u4e2a\u72ec\u7acb\u7684\u5143\u7d20":24,"\u4e00\u4e2a\u72ec\u7acb\u7684\u8bcd\u8bed":24,"\u4e00\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50\u5982":54,"\u4e00\u4e2a\u7b80\u5355\u7684\u8bad\u7ec3\u914d\u7f6e\u6587\u4ef6\u4e3a":39,"\u4e00\u4e2a\u7f51\u7edc\u5c42\u7684\u524d\u5411\u4f20\u64ad\u90e8\u5206\u628a\u8f93\u5165\u8f6c\u5316\u4e3a\u76f8\u5e94\u7684\u8f93\u51fa":30,"\u4e00\u4e2a\u7f51\u7edc\u5c42\u7684\u53c2\u6570\u662f\u5728":30,"\u4e00\u4e2a\u7f51\u7edc\u5c42\u7684c":30,"\u4e00\u4e2a\u91cd\u8981\u7684\u95ee\u9898\u662f\u9009\u62e9\u6b63\u786e\u7684learning_r":17,"\u4e00\u4e2agpu\u8bbe\u5907\u4e0a\u4e0d\u5141\u8bb8\u914d\u7f6e\u591a\u4e2a\u6a21\u578b":36,"\u4e00\u4e2alabel":25,"\u4e00\u4e2alogging\u5bf9\u8c61":3,"\u4e00\u4e2amemory\u5305\u542b":28,"\u4e00\u4e2apass\u610f\u5473\u7740paddlepaddle\u8bad\u7ec3\u6570\u636e\u96c6\u4e2d\u7684\u6240\u6709\u6837\u672c\u88ab\u904d\u5386\u4e00\u6b21":53,"\u4e00\u4e2apass\u8868\u793a\u8fc7\u4e00\u904d\u6240\u6709\u8bad\u7ec3\u6837\u672c":50,"\u4e00\u4e2apod\u4e2d\u7684\u6240\u6709\u5bb9\u5668\u4f1a\u88ab\u8c03\u5ea6\u5230\u540c\u4e00\u4e2anode\u4e0a":40,"\u4e00\u4e2apserver\u8fdb\u7a0b\u5171\u7ed1\u5b9a\u591a\u5c11\u7aef\u53e3\u7528\u6765\u505a\u7a00\u758f\u66f4\u65b0":39,"\u4e00\u4e9b\u60c5\u51b5\u4e0b":39,"\u4e00\u4e9b\u968f\u673a\u5316\u566a\u58f0\u6dfb\u52a0\u90fd\u5e94\u8be5\u5728dataprovider\u4e2d\u5b8c\u6210":39,"\u4e00\u4eba":25,"\u4e00\u53e5\u8bdd\u662f\u7531\u8bcd\u8bed\u6784\u6210\u7684\u5e8f\u5217":27,"\u4e00\u53f0\u673a\u5668\u4e0a\u9762\u7684\u7ebf\u7a0b\u6570\u91cf":52,"\u4e00\u65e6\u4f60\u521b\u5efa\u4e86\u4e00\u4e2afork":29,"\u4e00\u65e9":25,"\u4e00\u662fbatch":17,"\u4e00\u6761\u6837\u672c":3,"\u4e00\u6837\u8bbe\u7f6e":34,"\u4e00\u6b21\u4f5c\u4e1a\u79f0\u4e3a\u4e00\u4e2ajob":40,"\u4e00\u6b21\u6027\u676f\u5b50":25,"\u4e00\u6b21yield\u8c03\u7528":3,"\u4e00\u79cd\u5e38\u7528\u7684\u505a\u6cd5\u662f\u7528\u5b66\u4e60\u7684\u6a21\u578b\u5bf9\u53e6\u5916\u4e00\u7ec4\u6d4b\u8bd5\u6570\u636e\u8fdb\u884c\u9884\u6d4b":18,"\u4e00\u7bc7\u8bba\u6587":55,"\u4e00\u7ea7\u76ee\u5f55":[54,55],"\u4e00\u81f4":[24,25],"\u4e00\u822c\u5728paddlepaddle\u4e2d":25,"\u4e00\u822c\u60c5\u51b5\u4e0b":[2,18],"\u4e00\u822c\u63a8\u8350\u8bbe\u7f6e\u6210true":3,"\u4e00\u822c\u662f\u5c01\u88c5\u4e86\u8bb8\u591a\u590d\u6742\u64cd\u4f5c\u7684\u96c6\u5408":39,"\u4e00\u822c\u662f\u7531\u4e8e\u76f4\u63a5\u4f20\u9012\u5927\u5b57\u5178\u5bfc\u81f4\u7684":17,"\u4e00\u822c\u6765\u8bf4":28,"\u4e00\u822c\u800c\u8a00":55,"\u4e00\u822c\u8868\u793a":25,"\u4e00\u884c\u4e3a\u4e00\u4e2a\u6837\u672c":50,"\u4e09\u79cd\u5e8f\u5217\u6a21\u5f0f":3,"\u4e09\u7ea7\u76ee\u5f55":[54,55],"\u4e0a":29,"\u4e0a\u4e0b\u6587\u5927\u5c0f\u8bbe\u7f6e\u4e3a1\u7684\u4e00\u4e2a\u6837\u672c\u7684\u7279\u5f81\u5982\u4e0b":53,"\u4e0a\u4f20\u5230volume\u6240\u5728\u7684\u5171\u4eab\u5b58\u50a8":42,"\u4e0a\u53d1\u8868\u7684\u8bc4\u8bba\u5206\u6210\u6b63\u9762\u8bc4\u8bba\u548c\u8d1f\u9762\u8bc4\u8bba\u4e24\u7c7b":54,"\u4e0a\u56fe\u4e2d\u865a\u7ebf\u7684\u8fde\u63a5":25,"\u4e0a\u56fe\u63cf\u8ff0\u4e86\u4e00\u4e2a3\u8282\u70b9\u7684\u5206\u5e03\u5f0f\u8bad\u7ec3\u573a\u666f":42,"\u4e0a\u7f51":25,"\u4e0a\u8ff0\u4ee3\u7801\u5c06bias\u5168\u90e8\u521d\u59cb\u5316\u4e3a1":17,"\u4e0a\u8ff0\u7684\u4ee3\u7801\u7247\u6bb5\u5305\u542b\u4e86\u4e24\u79cd\u65b9\u6cd5":33,"\u4e0a\u8ff0\u811a\u672c\u4f7f\u7528":34,"\u4e0b":47,"\u4e0b\u56fe\u4e2d\u5c31\u5c55\u793a\u4e86\u4e00\u4e9b\u5173\u4e8e\u5185\u5b58\u6570\u636e\u8fc1\u5f99\u548c\u8ba1\u7b97\u8d44\u6e90\u5229\u7528\u7387\u7684\u5efa\u8bae":33,"\u4e0b\u56fe\u5c55\u793a\u4e86\u6240\u6709\u7684\u56fe\u7247\u7c7b\u522b":47,"\u4e0b\u56fe\u5c55\u793a\u4e86\u65f6\u95f4\u6269\u5c55\u76842\u5c42":53,"\u4e0b\u56fe\u5c55\u793a\u7684\u662f\u57fa\u4e8e\u6b8b\u5dee\u7684\u8fde\u63a5\u65b9\u5f0f":48,"\u4e0b\u56fe\u63cf\u8ff0\u4e86\u7528\u6237\u4f7f\u7528\u6846\u56fe":39,"\u4e0b\u56fe\u662f\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42\u7684\u793a\u610f\u56fe":30,"\u4e0b\u6587\u4ee5nlp\u4efb\u52a1\u4e3a\u4f8b":27,"\u4e0b\u6587\u4f7f\u7528":42,"\u4e0b\u6587\u5c31\u662f\u7528job\u7c7b\u578b\u7684\u8d44\u6e90\u6765\u8fdb\u884c\u8bad\u7ec3":41,"\u4e0b\u6b21":25,"\u4e0b\u7684":42,"\u4e0b\u8868\u5c55\u793a\u4e86batch":48,"\u4e0b\u8f7d\u5b8c\u6570\u636e\u540e":41,"\u4e0b\u8f7d\u5b8c\u76f8\u5173\u5b89\u88c5\u5305\u540e":22,"\u4e0b\u8f7d\u6570\u636e\u96c6":47,"\u4e0b\u8f7dwmt":55,"\u4e0b\u8ff0\u5185\u5bb9\u5c06\u5206\u4e3a\u5982\u4e0b\u51e0\u4e2a\u7c7b\u522b\u63cf\u8ff0":20,"\u4e0b\u9762\u4e3e\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50":33,"\u4e0b\u9762\u4ecb\u7ecd\u9884\u5904\u7406\u8fc7\u7a0b\u5177\u4f53\u7684\u6b65\u9aa4":52,"\u4e0b\u9762\u5148\u7b80\u8981\u4ecb\u7ecd\u4e00\u4e0b\u672c\u6587\u7528\u5230\u7684\u51e0\u4e2akubernetes\u6982\u5ff5":40,"\u4e0b\u9762\u5206\u522b\u4ecb\u7ecd\u6570\u636e\u6e90\u914d\u7f6e":39,"\u4e0b\u9762\u5217\u51fa\u4e86":28,"\u4e0b\u9762\u5217\u51fa\u4e86\u5168\u8fde\u63a5\u5c42\u7684\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5":30,"\u4e0b\u9762\u5c06\u5206\u522b\u4ecb\u7ecd\u8fd9\u4e24\u90e8\u5206":39,"\u4e0b\u9762\u5c31\u6839\u636e\u8fd9\u51e0\u4e2a\u6b65\u9aa4\u5206\u522b\u4ecb\u7ecd":42,"\u4e0b\u9762\u6211\u4eec\u7ed9\u51fa\u4e86\u4e00\u4e2a\u914d\u7f6e\u793a\u4f8b":47,"\u4e0b\u9762\u662f\u4e00\u4e2a\u8bef\u5dee\u66f2\u7ebf\u56fe\u7684\u793a\u4f8b":47,"\u4e0b\u9762\u662fcifar":47,"\u4e0b\u9762\u7684\u4ee3\u7801\u7247\u6bb5\u5b9e\u73b0\u4e86":30,"\u4e0b\u9762\u7684\u4f8b\u5b50\u4f7f\u7528\u4e86":48,"\u4e0b\u9762\u7684\u4f8b\u5b50\u540c\u6837\u4f7f\u7528\u4e86":48,"\u4e0b\u9762\u7ed9\u51fa\u4e86\u4e00\u4e2a\u4f8b\u5b50":30,"\u4e0b\u9762\u811a\u672c\u7b26\u5408paddlepaddle\u671f\u5f85\u7684\u8bfb\u53d6\u6570\u636e\u7684python\u7a0b\u5e8f\u7684\u6a21\u5f0f":18,"\u4e0b\u9762\u8fd9\u4e9blayer\u80fd\u591f\u63a5\u53d7\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165":24,"\u4e0d":25,"\u4e0d\u4e00\u5b9a\u548c\u65f6\u95f4\u6709\u5173\u7cfb":3,"\u4e0d\u4f1a\u518d\u4ece":17,"\u4e0d\u4f7f\u7528\u989d\u5916\u7a7a\u95f4":30,"\u4e0d\u5305\u542b\u5728\u5b57\u5178\u4e2d\u7684\u5355\u8bcd":55,"\u4e0d\u540c":53,"\u4e0d\u540c\u4e3b\u673a":40,"\u4e0d\u540c\u4ea7\u54c1":54,"\u4e0d\u540c\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u6570\u636e\u5927\u5c0f\u7684\u6700\u5927\u503c\u4e0e\u6700\u5c0f\u503c\u7684\u6bd4\u7387":36,"\u4e0d\u540c\u5c42\u7684\u7279\u5f81\u7531\u5206\u53f7":48,"\u4e0d\u540c\u65f6\u95f4\u6b65\u7684\u8f93\u5165\u662f\u4e0d\u540c\u7684":28,"\u4e0d\u540c\u7684\u4f18\u5316\u7b97\u6cd5\u9700\u8981\u4f7f\u7528\u4e0d\u540c\u5927\u5c0f\u7684\u5185\u5b58":17,"\u4e0d\u540c\u7684\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf":42,"\u4e0d\u540c\u7684\u6570\u636e\u7c7b\u578b\u548c\u5e8f\u5217\u6a21\u5f0f\u8fd4\u56de\u7684\u683c\u5f0f\u4e0d\u540c":3,"\u4e0d\u540c\u7a7a\u95f4\u7684\u8d44\u6e90\u540d\u53ef\u4ee5\u91cd\u590d":40,"\u4e0d\u540c\u8f93\u5165\u542b\u6709\u7684\u5b50\u53e5":27,"\u4e0d\u540c\u8f93\u5165\u5e8f\u5217\u542b\u6709\u7684\u8bcd\u8bed\u6570\u5fc5\u987b\u4e25\u683c\u76f8\u7b49":27,"\u4e0d\u540cdataprovider\u5bf9\u6bd4\u5982\u4e0b":25,"\u4e0d\u540cpod\u4e4b\u95f4\u53ef\u4ee5\u901a\u8fc7ip\u5730\u5740\u8bbf\u95ee":40,"\u4e0d\u542b\u53ef\u5b66\u4e60\u53c2\u6570":39,"\u4e0d\u5c11":25,"\u4e0d\u5e94\u8be5\u88ab\u62c6\u89e3":27,"\u4e0d\u5fc5\u518d\u5c06\u4efb\u610f\u957f\u5ea6\u6e90\u8bed\u53e5\u4e2d\u7684\u6240\u6709\u4fe1\u606f\u538b\u7f29\u81f3\u4e00\u4e2a\u5b9a\u957f\u7684\u5411\u91cf\u4e2d":55,"\u4e0d\u6307\u5b9a\u65f6":27,"\u4e0d\u63d0\u4f9b\u5206\u5e03\u5f0f\u5b58\u50a8":40,"\u4e0d\u652f\u6301":53,"\u4e0d\u652f\u6301avx\u6307\u4ee4\u96c6\u7684cpu\u4e5f\u53ef\u4ee5\u8fd0\u884c":20,"\u4e0d\u662f\u4e00\u6761\u5e8f\u5217":3,"\u4e0d\u6ee1\u8db3\u94a9\u5b50":29,"\u4e0d\u7f13\u5b58\u4efb\u4f55\u6570\u636e":3,"\u4e0d\u80fd\u63d0\u4ea4\u4ee3\u7801\u5230":29,"\u4e0d\u8fc7":25,"\u4e0d\u8fdc":25,"\u4e0d\u9002\u5408\u63d0\u4ea4\u7684\u4e1c\u897f":29,"\u4e0d\u9519":25,"\u4e0d\u9700\u8981\u5bf9\u5e8f\u5217\u6570\u636e\u8fdb\u884c\u4efb\u4f55\u9884\u5904\u7406":28,"\u4e0d\u9700\u8981avx\u6307\u4ee4\u96c6\u7684cpu\u4e5f\u53ef\u4ee5\u8fd0\u884c":20,"\u4e0e":[42,46,55],"\u4e0e\u5355\u5c42rnn\u7684\u914d\u7f6e\u7c7b\u4f3c":25,"\u4e0e\u5728":53,"\u4e0e\u672c\u5730\u8bad\u7ec3\u76f8\u540c":34,"\u4e0e\u6b64\u4e0d\u540c\u7684\u662f":42,"\u4e0e\u7ffb\u8bd1":55,"\u4e0e\u8bad\u7ec3\u4e0d\u540c":54,"\u4e0e\u8bad\u7ec3\u6a21\u578b\u4e0d\u540c\u7684\u662f":55,"\u4e0e\u8fd9\u4e2a\u8bad\u7ec3\u6570\u636e\u4ea4\u4e92\u7684layer":17,"\u4e0eimdb\u7f51\u7ad9\u63d0\u4f9b\u7684\u4e00\u81f4":51,"\u4e0etime":51,"\u4e14":25,"\u4e14\u5e8f\u5217\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20\u8fd8\u662f\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":3,"\u4e14\u652f\u6301\u90e8\u7f72\u5230":40,"\u4e14\u6bcf\u4e2a\u53e5\u5b50\u8868\u793a\u4e3a\u5bf9\u5e94\u7684\u8bcd\u8868\u7d22\u5f15\u6570\u7ec4":25,"\u4e14\u9ed8\u8ba4\u5728\u8bad\u7ec3\u96c6\u4e0a\u6784\u5efa\u5b57\u5178":54,"\u4e24":25,"\u4e24\u4e2a\u5217\u8868\u6587\u4ef6":34,"\u4e24\u4e2a\u5b50\u76ee\u5f55\u4e0b":31,"\u4e24\u4e2a\u5d4c\u5957\u7684":27,"\u4e24\u4e2a\u64cd\u4f5c":33,"\u4e24\u4e2a\u6587\u4ef6\u5939":47,"\u4e24\u4e2a\u6587\u6863":20,"\u4e24\u4e2a\u8f93\u5165\u7279\u5f81\u5728\u8fd9\u4e2a\u6d41\u7a0b\u4e2d\u8d77\u7740\u81f3\u5173\u91cd\u8981\u7684\u4f5c\u7528":53,"\u4e24\u4e2a\u8f93\u5165\u7684\u5b50\u5e8f\u5217\u957f\u5ea6\u4e5f\u5e76\u4e0d\u76f8\u540c":25,"\u4e24\u4e2a\u90e8\u5206":31,"\u4e24\u79cd\u7c7b\u522b":50,"\u4e24\u8005\u5747\u4e3a\u7eaf\u6587\u672c\u6587\u4ef6":2,"\u4e2a":50,"\u4e2a\u5185\u5b58\u6c60\u5b9e\u9645\u4e0a\u51b3\u5b9a\u4e86shuffle\u7684\u7c92\u5ea6":17,"\u4e2a\u5355\u8bcd":55,"\u4e2a\u6027\u5316\u63a8\u8350":49,"\u4e2a\u6279\u6b21\u540e\u6253\u5370\u4e00\u4e2a":52,"\u4e2a\u6279\u6b21\u7684\u53c2\u6570\u5e73\u5747\u503c\u8fdb\u884c\u6d4b\u8bd5":36,"\u4e2a\u6a21\u578b\u6d4b\u8bd5\u6570\u636e":36,"\u4e2d":[17,30,39,42,47,50,52,53,54],"\u4e2d\u4e0d\u8981\u6dfb\u52a0\u5927\u6587\u4ef6":29,"\u4e2d\u4ecb\u7ecd\u7684\u65b9\u6cd5":46,"\u4e2d\u4efb\u610f\u7b2ci\u884c\u7684\u53e5\u5b50\u4e4b\u95f4\u90fd\u5fc5\u987b\u6709\u7740\u4e00\u4e00\u5bf9\u5e94\u7684\u5173\u7cfb":55,"\u4e2d\u4efb\u610f\u7b2ci\u884c\u7684\u53e5\u5b50\u4e4b\u95f4\u90fd\u6709\u7740\u4e00\u4e00\u5bf9\u5e94\u7684\u5173\u7cfb":55,"\u4e2d\u5173\u4e8e\u65f6\u95f4\u9012\u5f52\u795e\u7ecf\u7f51\u7edc\u7684\u4ecb\u7ecd":25,"\u4e2d\u5305\u542b\u4e86\u8bad\u7ec3\u6a21\u578b\u7684\u57fa\u672c\u547d\u4ee4":50,"\u4e2d\u5305\u542b\u5982\u4e0b\u8868\u6240\u793a\u76843\u4e2a\u6587\u4ef6\u5939":55,"\u4e2d\u5355\u5143\u6d4b\u8bd5\u7684\u4e00\u90e8\u5206":29,"\u4e2d\u5b89\u88c5":34,"\u4e2d\u5b8c\u6210":54,"\u4e2d\u5b9a\u4e49":28,"\u4e2d\u5b9a\u4e49\u4f7f\u7528\u54ea\u79cddataprovid":2,"\u4e2d\u5b9a\u4e49\u548c\u4f7f\u7528":27,"\u4e2d\u5bfc\u51fa\u9884\u5b9a\u4e49\u7684\u7f51\u7edc":54,"\u4e2d\u5c55\u793a\u4e86\u5982\u4f55\u4f7f\u7528python\u6765\u63d0\u53d6\u7279\u5f81":48,"\u4e2d\u6307\u5b9a":36,"\u4e2d\u6307\u5b9a\u7684\u540d\u5b57":38,"\u4e2d\u6307\u5b9a\u7684\u5c42\u987a\u5e8f\u4e00\u81f4":48,"\u4e2d\u63d0\u51fa\u7684resnet\u7f51\u7edc\u7ed3\u6784\u57282015\u5e74imagenet\u5927\u89c4\u6a21\u89c6\u89c9\u8bc6\u522b\u7ade\u8d5b":48,"\u4e2d\u641c\u7d22\u8fd9\u51e0\u4e2a\u5e93":19,"\u4e2d\u6587\u6587\u6863\u76ee\u5f55":31,"\u4e2d\u6587\u7ef4\u57fa\u767e\u79d1\u9875\u9762":25,"\u4e2d\u65b0\u7684\u63d0\u4ea4\u5bfc\u81f4\u4f60\u7684":29,"\u4e2d\u6709\u8bb8\u591a\u7684\u7279\u5f81":51,"\u4e2d\u6bcf\u4e2apod\u7684ip\u5730\u5740":42,"\u4e2d\u6bcf\u5c42\u7684\u6570\u503c\u7edf\u8ba1":36,"\u4e2d\u7684":48,"\u4e2d\u7684\u4e00\u884c":3,"\u4e2d\u7684\u4e8c\u8fdb\u5236\u4f7f\u7528\u4e86":20,"\u4e2d\u7684\u5185\u5bb9":53,"\u4e2d\u7684\u63a5\u53e3":52,"\u4e2d\u7684\u6570\u636e":48,"\u4e2d\u7684\u6570\u636e\u662f\u5426\u4e3a\u5e8f\u5217\u6a21\u5f0f":52,"\u4e2d\u7684\u6570\u636e\u8fdb\u884c\u9884\u6d4b":48,"\u4e2d\u7684\u6570\u6910\u96c6\u7684\u7ed3\u6784\u5982\u4e0b":54,"\u4e2d\u7684\u6bcf\u4e00\u884c\u547d\u4ee4":52,"\u4e2d\u7684\u751f\u6210\u7ed3\u679c\u5982\u4e0b\u6240\u793a":55,"\u4e2d\u7684\u7528\u6237\u8bc1\u4e66":40,"\u4e2d\u7684\u7b2ci\u884c":55,"\u4e2d\u7684\u8bf4\u660e":3,"\u4e2d\u7684\u8fd9\u4e9b\u6570\u636e\u6587\u4ef6":51,"\u4e2d\u770b\u5230\u4e0b\u9762\u7684\u6587\u4ef6":54,"\u4e2d\u83b7\u53d6":42,"\u4e2d\u8ba4\u771f\u8bbe\u7f6e":34,"\u4e2d\u8bbe\u7f6e":34,"\u4e2d\u8bbe\u7f6e\u7684\u6240\u6709\u8282\u70b9":34,"\u4e2d\u8be6\u7ec6\u4ecb\u7ecd":30,"\u4e2d\u8bfb\u53d6":3,"\u4e2d\u914d\u7f6e\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":28,"\u4e2d\u914d\u7f6e\u7684\u6548\u679c\u4e00\u81f4":3,"\u4e34\u65f6\u53d8\u91cf\u7b49\u7b49":17,"\u4e3a":[3,28],"\u4e3a0":3,"\u4e3a\u4e86\u4f7f\u7528\u63d0\u524d\u7f16\u5199\u7684\u811a\u672c":54,"\u4e3a\u4e86\u4fdd\u8bc1\u6548\u7387":30,"\u4e3a\u4e86\u5145\u5206\u7684\u968f\u673a\u6253\u4e71\u8bad\u7ec3\u96c6":54,"\u4e3a\u4e86\u5b8c\u6210\u5206\u5e03\u5f0f\u673a\u5668\u5b66\u4e60\u8bad\u7ec3\u4efb\u52a1":40,"\u4e3a\u4e86\u5c01\u88c5\u80fd\u591f\u6b63\u786e\u5de5\u4f5c":30,"\u4e3a\u4e86\u63cf\u8ff0\u65b9\u4fbf":27,"\u4e3a\u4e86\u65b9\u4fbf\u8d77\u89c1":34,"\u4e3a\u4e86\u66f4\u7075\u6d3b\u7684\u914d\u7f6e":39,"\u4e3a\u4e86\u6ee1\u8db3\u8bad\u7ec3":34,"\u4e3a\u4e86\u7528\u6237\u80fd\u591f\u7075\u6d3b\u7684\u5904\u7406\u6570\u636e":39,"\u4e3a\u4e86\u8fbe\u5230\u6027\u80fd\u6700\u4f18":33,"\u4e3a\u4e86\u8fd0\u884cpaddlepaddle\u7684docker\u955c\u50cf":20,"\u4e3a\u4e86\u8fd8\u539f":18,"\u4e3a\u4e86\u907f\u514d\u7528\u6237\u76f4\u63a5\u5199\u590d\u6742\u7684protobuf":39,"\u4e3a\u4f8b":50,"\u4e3a\u4f8b\u521b\u5efa\u5206\u5e03\u5f0f\u7684\u5355\u8fdb\u7a0b\u8bad\u7ec3":34,"\u4e3a\u4f8b\u8fdb\u884c\u9884\u6d4b":50,"\u4e3a\u53c2\u6570\u77e9\u9635\u7684\u5bbd\u5ea6":17,"\u4e3a\u60a8\u505a\u6027\u80fd\u8c03\u4f18\u63d0\u4f9b\u4e86\u65b9\u5411":33,"\u4e3a\u60f3\u4fee\u6b63\u8bcd\u5411\u91cf\u6a21\u578b\u7684\u7528\u6237\u63d0\u4f9b\u4e86\u5c06\u6587\u672c\u8bcd\u5411\u91cf\u6a21\u578b\u8f6c\u6362\u4e3a\u4e8c\u8fdb\u5236\u6a21\u578b\u7684\u547d\u4ee4":46,"\u4e3a\u65b9\u4fbf\u4f5c\u4e1a\u542f\u52a8\u63d0\u4f9b\u4e86\u4e24\u4e2a\u72ec\u7279\u7684\u547d\u4ee4\u9009\u9879":34,"\u4e3a\u6b64":[29,41],"\u4e3a\u8f93\u51fa\u5206\u914d\u5185\u5b58":30,"\u4e3a\u96c6\u7fa4\u4f5c\u4e1a\u8bbe\u7f6e\u989d\u5916\u7684":34,"\u4e3ajson\u6216yaml\u683c\u5f0f":52,"\u4e3aoutput_\u7533\u8bf7\u5185\u5b58":30,"\u4e3b\u8981\u4e3a\u5f00\u53d1\u8005\u4f7f\u7528":36,"\u4e3b\u8981\u5305\u62ec\u4ee5\u4e0b\u4e94\u4e2a\u6b65\u9aa4":5,"\u4e3b\u8981\u539f\u56e0":25,"\u4e3b\u8981\u539f\u56e0\u662f\u589e\u52a0\u4e86\u521d\u59cb\u5316\u673a\u5236":3,"\u4e3b\u8981\u6765\u81ea\u5317\u7f8e\u6d32":47,"\u4e3b\u8981\u7528\u5728\u5ea6\u91cf\u5b66\u4e60\u4e2d":36,"\u4e3b\u8981\u7531layer\u7ec4\u6210":39,"\u4e3b\u8981\u804c\u8d23\u5728\u4e8e\u5c06\u8bad\u7ec3\u6570\u636e\u4f20\u5165\u5185\u5b58\u6216\u8005\u663e\u5b58":50,"\u4e3e\u4e00\u4e2a\u4f8b\u5b50":17,"\u4e3e\u4f8b":17,"\u4e3e\u4f8b\u8bf4\u660e":25,"\u4e4b\u524d":29,"\u4e4b\u524d\u914d\u7f6e\u6587\u4ef6\u4e2d":50,"\u4e4b\u540e":[18,30],"\u4e4b\u540e\u4f60\u4f1a\u5f97\u5230\u8bad\u7ec3":34,"\u4e4b\u540e\u4f7f\u7528":30,"\u4e4b\u540e\u4f7f\u7528\u77e9\u9635\u8fd0\u7b97\u51fd\u6570\u6765\u8ba1\u7b97":30,"\u4e4b\u540e\u521d\u59cb\u5316\u6240\u6709\u7684\u6743\u91cd\u77e9\u9635":30,"\u4e4b\u540e\u5b9a\u4e49\u7684":47,"\u4e4b\u95f4\u7684\u8ddd\u79bb":18,"\u4e4b\u95f4\u7684\u8fd0\u7b97\u662f\u72ec\u7acb\u7684":27,"\u4e58\u4e0a\u8f93\u51fa\u7684\u68af\u5ea6":30,"\u4e5d\u4e2a":53,"\u4e5f":25,"\u4e5f\u4e0d\u5b58\u5728\u4e00\u4e2asubseq\u76f4\u63a5\u751f\u6210\u4e0b\u4e00\u4e2asubseq\u7684\u60c5\u51b5":27,"\u4e5f\u53ef\u4ee5\u53bb\u6389\u8fd9\u4e9b\u8bc1\u4e66\u7684\u914d\u7f6e":40,"\u4e5f\u53ef\u4ee5\u662f\u4e00\u4e2a\u8bcd\u8bed":27,"\u4e5f\u53ef\u4ee5\u76f4\u63a5\u6267\u884c":20,"\u4e5f\u53ef\u4ee5\u8bf4\u662f\u67d0\u4e9b\u7279\u5b9a\u6307\u4ee4\u7684\u4f7f\u7528\u60c5\u51b5":33,"\u4e5f\u53ef\u4ee5\u901a\u8fc7saving_period_by_batches\u8bbe\u7f6e\u6bcf\u9694\u591a\u5c11batch\u4fdd\u5b58\u4e00\u6b21\u6a21\u578b":50,"\u4e5f\u53ef\u4ee5\u914d\u7f6e\u4e0d\u540c\u7684\u91cd\u8bd5\u673a\u5236":40,"\u4e5f\u5c31\u662f":42,"\u4e5f\u5c31\u662f\u5c06\u8bcd\u5411\u91cf\u6a21\u578b\u8fdb\u4e00\u6b65\u6f14\u5316\u4e3a\u4e09\u4e2a\u65b0\u6b65\u9aa4":50,"\u4e5f\u5c31\u662f\u8bf4":[36,38,46],"\u4e5f\u5f97\u5230\u4e00\u4e2a\u7528\u6237\u7279\u5f81":52,"\u4e5f\u63cf\u8ff0\u4e86\u5bb9\u5668\u9700\u8981\u4f7f\u7528\u7684\u5b58\u50a8\u5377\u6302\u8f7d\u7684\u60c5\u51b5":42,"\u4e5f\u652f\u6301cpu\u7684\u6027\u80fd\u5206\u6790":33,"\u4e5f\u662f\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":25,"\u4e5f\u662f\u5bb9\u5668\u4e0enode\u4e4b\u95f4\u5171\u4eab\u6587\u4ef6\u7684\u65b9\u5f0f":40,"\u4e5f\u662fdecoder\u5faa\u73af\u5c55\u5f00\u7684\u4f9d\u636e":27,"\u4e5f\u662fpaddlepaddle\u6240\u80fd\u591f\u4fdd\u8bc1\u7684shuffle\u7c92\u5ea6":3,"\u4e5f\u6ca1\u7528":17,"\u4e5f\u79f0\u4e3arnn\u6a21\u578b":50,"\u4e5f\u79f0\u4f5c":39,"\u4e5f\u8bb8\u662f\u56e0\u4e3a\u9700\u8981\u5b89\u88c5":47,"\u4e5f\u9700\u8981\u4e24\u6b21\u968f\u673a\u9009\u62e9\u5230\u76f8\u540cgenerator\u7684\u65f6\u5019":3,"\u4e7e":25,"\u4e86":25,"\u4e86\u89e3\u60a8\u7684\u786c\u4ef6":33,"\u4e86\u89e3\u66f4\u591a\u7ec6\u8282":28,"\u4e86\u89e3\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f":28,"\u4e8c\u6b21\u5f00\u53d1\u53ef\u4ee5":20,"\u4e8c\u7ea7\u76ee\u5f55":[54,55],"\u4e8c\u7ef4\u77e9\u9635":48,"\u4e8c\u8005\u8bed\u610f\u4e0a\u5b8c\u5168\u4e00\u81f4":25,"\u4e8c\u8fdb\u5236":46,"\u4e92\u76f8\u901a\u4fe1":40,"\u4e92\u8054\u7f51\u7535\u5f71\u6570\u636e\u5e93":54,"\u4e94\u661f\u7ea7":25,"\u4e9a\u9a6c\u900a":54,"\u4ea4\u901a":25,"\u4ea4\u901a\u4fbf\u5229":25,"\u4ec0\u4e48":52,"\u4ec5\u4ec5\u662f\u4e00\u4e9b\u5173\u952e\u8bcd":54,"\u4ec5\u4ec5\u662f\u4e24\u4e2a\u5168\u8fde\u63a5\u5c42":52,"\u4ec5\u4ec5\u662f\u7b80\u5355\u7684\u5d4c\u5165":52,"\u4ec5\u5305\u542b\u8bad\u7ec3\u548c\u6d4b\u8bd5\u6570\u6910\u96c6":54,"\u4ec5\u5728\u8fdc\u7a0b\u7a00\u758f\u8bad\u7ec3\u65f6\u6709\u6548":30,"\u4ec5\u5bf9\u7a00\u758f\u6570\u636e\u6709\u6548":30,"\u4ec5\u9700\u8981\u77e5\u9053\u5982\u4f55\u4ece":3,"\u4ecb\u7ecd\u4e86\u4e00\u79cd\u901a\u8fc7ssh\u8fdc\u7a0b\u5206\u53d1\u4efb\u52a1":42,"\u4ecb\u7ecd\u5206\u5e03\u5f0f\u8bad\u7ec3\u4e4b\u524d":40,"\u4ecb\u7ecdpaddlepaddle\u7684\u57fa\u672c\u4f7f\u7528\u65b9\u6cd5":50,"\u4ece":[33,53],"\u4ece0\u5230num":36,"\u4ece\u4e00\u4e2aword\u751f\u6210\u4e0b\u4e00\u4e2aword":27,"\u4ece\u5185\u6838\u51fd\u6570\u7684\u89d2\u5ea6":33,"\u4ece\u56fe\u4e2d\u53ef\u4ee5\u770b\u5230":18,"\u4ece\u5916\u90e8\u7f51\u7ad9\u4e0a\u4e0b\u8f7d\u7684\u539f\u59cb\u6570\u6910\u96c6":54,"\u4ece\u5927\u5230\u5c0f":55,"\u4ece\u6570\u636e\u63d0\u4f9b\u7a0b\u5e8f\u52a0\u8f7d\u5b9e\u4f8b":53,"\u4ece\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u6765\u770b":25,"\u4ece\u6bcf\u4e2a\u5355\u8bcd\u5de6\u53f3\u4e24\u7aef\u5206\u522b\u83b7\u53d6k\u4e2a\u76f8\u90bb\u7684\u5355\u8bcd":50,"\u4ece\u7b2c0\u4e2a\u8bc4\u4f30\u5230\u5f53\u524d\u8bc4\u4f30\u4e2d":55,"\u4ece\u7b2c0\u4e2abatch\u5230\u5f53\u524dbatch\u7684\u5e73\u5747\u635f\u5931":54,"\u4ece\u7b2c0\u4e2abatch\u5230\u5f53\u524dbatch\u7684\u5e73\u5747cost":55,"\u4ece\u800c\u53ef\u4ee5\u505a\u4e00\u4e9b\u4e0e\u8ba1\u7b97\u91cd\u53e0\u7684\u5de5\u4f5c":30,"\u4ece\u800c\u53ef\u4ee5\u62df\u5408\u4efb\u610f\u7684\u51fd\u6570\u6765\u5b66\u4e60\u590d\u6742\u7684\u6570\u636e\u5173\u7cfb":18,"\u4ece\u800c\u751f\u6210\u591a\u4e2agener":3,"\u4ece\u800c\u80fd\u591f\u88abpaddlepaddl":50,"\u4ece\u800c\u9632\u6b62\u8fc7\u62df\u5408":2,"\u4ece\u8be5\u94fe\u63a5":55,"\u4ece\u8bed\u4e49\u4e0a\u770b":27,"\u4ece\u8f93\u5165\u6570\u636e\u4e0a\u770b":25,"\u4ece\u8f93\u51fa\u65e5\u5fd7\u53ef\u4ee5\u770b\u5230":18,"\u4ece\u9884\u8bad\u7ec3\u6a21\u578b\u4e2d":46,"\u4ecestart":36,"\u4ecetest":55,"\u4ed3\u5e93":29,"\u4ed4\u7ec6\u89c2\u5bdf":48,"\u4ed6\u4eec\u5206\u522b\u662f":25,"\u4ed6\u4eec\u5728paddle\u7684\u6587\u6863\u548capi\u4e2d\u662f\u4e00\u4e2a\u6982\u5ff5":25,"\u4ed6\u4eec\u63d0\u51fa\u6b8b\u5dee\u5b66\u4e60\u7684\u6846\u67b6\u6765\u7b80\u5316\u7f51\u7edc\u7684\u8bad\u7ec3":48,"\u4ed6\u4eec\u662f":20,"\u4ed6\u4eec\u7684imag":20,"\u4ee3\u66ff":42,"\u4ee3\u7801":52,"\u4ee3\u7801\u4e2d9":25,"\u4ee3\u7801\u5982\u4e0b":28,"\u4ee3\u8868\u5bbf\u4e3b\u673a\u76ee\u5f55":42,"\u4ee3\u8868\u7f16\u53f7":52,"\u4ee5\u4e0b":52,"\u4ee5\u4e0b\u4ee3\u7801\u6bb5\u5b9a\u4e49\u4e86\u4e09\u4e2a\u8f93\u5165":28,"\u4ee5\u4e0b\u4ee3\u7801\u7247\u6bb5\u5b9a\u4e49":28,"\u4ee5\u4e0b\u6211\u4eec\u7ffb\u8bd1\u6570\u636e\u96c6\u7f51\u7ad9\u4e2dreadme\u6587\u4ef6\u7684\u63cf\u8ff0":51,"\u4ee5\u4e0b\u6559\u7a0b\u5c06\u6307\u5bfc\u60a8\u63d0\u4ea4\u4ee3\u7801":29,"\u4ee5\u4e0b\u662f\u5bf9\u4e0a\u8ff0\u6570\u636e\u52a0\u8f7d\u7684\u89e3\u91ca":50,"\u4ee5\u4e0b\u6b65\u9aa4\u57fa\u4e8e":34,"\u4ee5\u4e0b\u793a\u8303\u5982\u4f55\u4f7f\u7528\u9884\u8bad\u7ec3\u7684\u4e2d\u6587\u5b57\u5178\u548c\u8bcd\u5411\u91cf\u8fdb\u884c\u77ed\u8bed\u6539\u5199":46,"\u4ee5\u4e0b\u9009\u9879\u5fc5\u987b\u5728":34,"\u4ee5\u4fbf\u5ba1\u9605\u8005\u53ef\u4ee5\u770b\u5230\u65b0\u7684\u8bf7\u6c42\u548c\u65e7\u7684\u8bf7\u6c42\u4e4b\u95f4\u7684\u533a\u522b":29,"\u4ee5\u4fbf\u7528\u6237":34,"\u4ee5\u4fdd\u8bc1\u68af\u5ea6\u7684\u6b63\u786e\u8ba1\u7b97":30,"\u4ee5\u4fdd\u8bc1\u68af\u5ea6\u8ba1\u7b97\u7684\u6b63\u786e\u6027":30,"\u4ee5\u5206\u7c7b\u6765\u81ea":54,"\u4ee5\u53ca":30,"\u4ee5\u53ca\u4f7f\u7528\u5b50\u5e8f\u5217\u6765\u5b9a\u4e49\u5206\u7ea7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u67b6\u6784":28,"\u4ee5\u53ca\u53cc\u5c42\u5e8f\u5217":24,"\u4ee5\u53ca\u5728wmt":55,"\u4ee5\u53ca\u5982\u4f55\u5728\u5c42\u4e4b\u95f4\u8fdb\u884c\u8fde\u63a5":47,"\u4ee5\u53ca\u6570\u636e\u8bfb\u53d6\u51fd\u6570":39,"\u4ee5\u53ca\u8ba1\u7b97\u903b\u8f91\u5728\u5e8f\u5217\u4e0a\u7684\u5faa\u73af\u5c55\u5f00":27,"\u4ee5\u53ca\u8f93\u5165\u7684\u68af\u5ea6":30,"\u4ee5\u53capaddle\u5982\u4f55\u5904\u7406\u591a\u79cd\u7c7b\u578b\u7684\u8f93\u5165":52,"\u4ee5\u53carelu":30,"\u4ee5\u592a\u7f51\u5361":20,"\u4ee5\u76f8\u5bf9\u8def\u5f84\u5f15\u7528":2,"\u4ee5\u83b7\u5f97\u66f4\u597d\u7684\u7f51\u7edc\u6027\u80fd":34,"\u4ee5\u9017\u53f7":46,"\u4ee5\u9017\u53f7\u95f4\u9694":36,"\u4ef7\u683c":25,"\u4efb\u52a1":52,"\u4efb\u52a1\u6765\u7ec8\u6b62\u96c6\u7fa4\u4f5c\u4e1a":34,"\u4efb\u52a1\u7b80\u4ecb":23,"\u4efb\u610f\u5c06\u4e00\u4e9b\u6570\u636e\u7ec4\u5408\u6210\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217":25,"\u4f18\u5316":54,"\u4f18\u5316\u5668\u5219\u7528\u94fe\u5f0f\u6cd5\u5219\u6765\u5bf9\u6bcf\u4e2a\u53c2\u6570\u8ba1\u7b97\u635f\u5931\u51fd\u6570\u7684\u68af\u5ea6":30,"\u4f18\u5316\u7b97\u6cd5":39,"\u4f1a\u5148\u8fdb\u884c\u53c2\u6570\u7684\u521d\u59cb\u5316\u4e0e\u89e3\u6790":42,"\u4f1a\u5171\u4eab\u53c2\u6570":17,"\u4f1a\u52a0\u8f7d\u4e0a\u4e00\u8f6e\u7684\u53c2\u6570":36,"\u4f1a\u53d8\u6210\u8bcd\u8868\u4e2d\u7684\u4f4d\u7f6e":25,"\u4f1a\u542f\u52a8pserver\u4e0etrainer\u8fdb\u7a0b":42,"\u4f1a\u5bf9\u6bcf\u4e00\u4e2a\u6fc0\u6d3b\u6682\u5b58\u4e00\u4e9b\u6570\u636e":17,"\u4f1a\u5bf9\u8fd9\u7c7b\u8f93\u5165\u8fdb\u884c\u62c6\u89e3":27,"\u4f1a\u5c06\u6bcf\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51fa\u62fc\u63a5":27,"\u4f1a\u5c06\u7b2c\u4e00\u4e2a":17,"\u4f1a\u6210\u4e3astep\u51fd\u6570\u7684\u8f93\u5165":27,"\u4f1a\u6254\u5230\u8fd9\u6761\u6570\u636e":3,"\u4f1a\u62a5\u9519":27,"\u4f1a\u6839\u636e\u547d\u4ee4\u884c\u53c2\u6570\u6307\u5b9a\u7684\u6d4b\u8bd5\u65b9\u5f0f":2,"\u4f1a\u6839\u636einput_types\u68c0\u67e5\u6570\u636e\u7684\u5408\u6cd5\u6027":3,"\u4f1a\u76f8\u5e94\u5730\u6539\u53d8\u8f93\u51fa\u7684\u5c3a\u5bf8":30,"\u4f1a\u81ea\u9002\u5e94\u5730\u4ece\u8fd9\u4e9b\u5411\u91cf\u4e2d\u9009\u62e9\u4e00\u4e2a\u5b50\u96c6\u51fa\u6765":55,"\u4f1a\u83b7\u53d6\u5f53\u524dnamespace\u4e0b\u7684\u6240\u6709pod":42,"\u4f1a\u88ab\u62c6\u89e3\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":27,"\u4f1a\u88ab\u62c6\u89e3\u4e3a\u975e\u5e8f\u5217":27,"\u4f20\u5165":3,"\u4f20\u5165\u4e0a\u4e00\u6b65\u89e3\u6790\u51fa\u6765\u7684\u6a21\u578b\u914d\u7f6e\u5c31\u53ef\u4ee5\u521b\u5efa\u4e00\u4e2a":5,"\u4f20\u5165\u9884\u6d4b\u6570\u636e":5,"\u4f20\u7ed9dataprovider\u7684\u67d0\u4e00\u4e2aargs\u8fc7\u5927":17,"\u4f20\u9012\u7ed9\u914d\u7f6e\u6587\u4ef6\u7684\u53c2\u6570":36,"\u4f46\u4e0d\u7528\u4e8e\u8ba1\u7b97\u68af\u5ea6":30,"\u4f46\u4e0d\u9700\u8981\u63d0\u524d\u521b\u5efa":36,"\u4f46\u4e8e\u53cc\u5c42\u5e8f\u5217\u7684lstm\u6765\u8bf4":25,"\u4f46\u548c\u5355\u5c42rnn\u4e0d\u540c":25,"\u4f46\u5728\u8d77\u521d\u7684\u51e0\u8f6e\u8bad\u7ec3\u4e2d\u5b83\u4eec\u90fd\u5728\u5feb\u901f\u903c\u8fd1\u771f\u5b9e\u503c":18,"\u4f46\u5b50\u53e5\u542b\u6709\u7684\u8bcd\u8bed\u6570\u53ef\u4ee5\u4e0d\u76f8\u7b49":27,"\u4f46\u5c3d\u91cf\u8bf7\u4fdd\u6301\u7f16\u8bd1\u548c\u8fd0\u884c\u4f7f\u7528\u7684cudnn\u662f\u540c\u4e00\u4e2a\u7248\u672c":19,"\u4f46\u5e8f\u5217\u8f93\u51fa\u65f6":25,"\u4f46\u5f53\u8c03\u7528\u8fc7\u4e00\u6b21\u540e":3,"\u4f46\u662f":[17,25,29],"\u4f46\u662f\u4e5f\u6ca1\u6709\u5fc5\u8981\u5220\u9664\u65e0\u7528\u7684\u6587\u4ef6":34,"\u4f46\u662f\u5927\u90e8\u5206\u53c2\u6570\u662f\u4e3a\u5f00\u53d1\u8005\u63d0\u4f9b\u7684":35,"\u4f46\u662f\u5982\u679c\u4f7f\u7528\u4e86\u9ad8\u6027\u80fd\u7684\u7f51\u5361":20,"\u4f46\u662f\u5982\u679c\u5b58\u5728\u4ee3\u7801\u51b2\u7a81":29,"\u4f46\u662f\u5b50\u5e8f\u5217\u7684\u6570\u76ee\u5fc5\u987b\u4e00\u6837":25,"\u4f46\u662f\u65b9\u4fbf\u8c03\u8bd5\u548c\u6d4bbenchmark":19,"\u4f46\u662f\u6bcf\u4e2a\u6837\u672c\u4ec5\u5305\u542b\u51e0\u4e2a\u8bcd":38,"\u4f46\u662f\u7a81\u7136\u6709\u4e00\u4e2a10000\u957f\u7684\u5e8f\u5217":17,"\u4f46\u662f\u8fd9\u4e2a\u503c\u4e0d\u53ef\u4ee5\u8c03\u7684\u8fc7\u5927":39,"\u4f46\u662f\u8fd9\u79cd\u65b9\u6cd5\u5728\u6bcf\u5c42\u53ea\u4fdd\u5b58\u9884\u8bbe\u6570\u91cf\u7684\u6700\u4f18\u72b6\u6001":55,"\u4f46\u662f\u8fdc\u672a\u5b8c\u5584":0,"\u4f46\u662f\u9690\u85cf\u5c42\u4e2d\u7684\u6bcf\u4e2a\u666e\u901a\u8282\u70b9\u88ab\u4e00\u4e2a\u8bb0\u5fc6\u5355\u5143\u66ff\u6362":54,"\u4f46\u662fbatch":17,"\u4f46\u6709\u503c\u7684\u5730\u65b9\u5fc5\u987b\u4e3a1":3,"\u4f46\u6709\u503c\u7684\u90e8\u5206\u53ef\u4ee5\u662f\u4efb\u4f55\u6d6e\u70b9\u6570":3,"\u4f46\u8fd9\u4e2a\u5173\u7cfb\u53ef\u80fd\u4e0d\u6b63\u786e":3,"\u4f4d\u7f6e":25,"\u4f4f":25,"\u4f53\u88c1\u5b57\u5178":52,"\u4f53\u88c1\u5b57\u6bb5":52,"\u4f59\u5f26\u76f8\u4f3c\u5ea6\u56de\u5f52":52,"\u4f59\u5f26\u76f8\u4f3c\u5ea6\u5c42":52,"\u4f5c\u4e3a\u4e0b\u4e00\u4e2a\u5b50\u53e5memory\u7684\u521d\u59cb\u72b6\u6001":25,"\u4f5c\u4e3a\u4f8b\u5b50\u6f14\u793a\u5982\u4f55\u914d\u7f6e\u590d\u6742\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u6a21\u578b":28,"\u4f5c\u4e3a\u53c2\u6570\u7684id":17,"\u4f5c\u4e3a\u5f53\u524d\u65f6\u523b\u8f93\u5165":27,"\u4f5c\u4e3a\u6d88\u606f\u957f\u5ea6":39,"\u4f5c\u4e3a\u793a\u4f8b\u6570\u636e":51,"\u4f5c\u4e3a\u7ebf\u6027\u56de\u5f52\u7684\u8f93\u5165":18,"\u4f5c\u4e3a\u8f93\u51fa":28,"\u4f5c\u4e3a\u8fd9\u6b21\u8bad\u7ec3\u7684\u5185\u5bb9":42,"\u4f5c\u4e3a\u96c6\u7fa4\u8bad\u7ec3\u7684\u5de5\u4f5c\u7a7a\u95f4":34,"\u4f5c\u4e3aboot_layer\u4f20\u7ed9\u4e0b\u4e00\u4e2a\u5b50\u53e5\u7684memori":25,"\u4f5c\u5bb6":51,"\u4f5c\u7528":24,"\u4f60":29,"\u4f60\u4e5f\u53ef\u4ee5\u4f7f\u7528\u8fd9\u4e09\u4e2a\u503c":48,"\u4f60\u4e5f\u53ef\u4ee5\u5148\u8df3\u8fc7\u672c\u6587\u7684\u89e3\u91ca\u73af\u8282":50,"\u4f60\u4e5f\u53ef\u4ee5\u7b80\u5355\u7684\u8fd0\u884c\u4ee5\u4e0b\u7684\u547d\u4ee4":46,"\u4f60\u4e5f\u53ef\u4ee5\u901a\u8fc7\u5728\u547d\u4ee4\u884c\u53c2\u6570\u4e2d\u589e\u52a0\u4e00\u4e2a\u53c2\u6570\u5982":48,"\u4f60\u53ea\u9700\u5b8c\u6210":34,"\u4f60\u53ea\u9700\u81ea\u5df1\u521b\u5efa\u5b83":29,"\u4f60\u53ea\u9700\u8981\u5728\u547d\u4ee4\u884c\u8f93\u5165\u4ee5\u4e0b\u547d\u4ee4":50,"\u4f60\u53ea\u9700\u8981\u6309\u7167\u5982\u4e0b\u65b9\u5f0f\u7ec4\u7ec7\u6570\u636e":55,"\u4f60\u53ef\u4ee5\u4f7f\u7528":48,"\u4f60\u53ef\u4ee5\u4f7f\u7528\u4e0b\u9762\u7684\u811a\u672c\u4e0b\u8f7d":54,"\u4f60\u53ef\u4ee5\u4f7f\u7528\u4f60\u6700\u559c\u6b22\u7684":29,"\u4f60\u53ef\u4ee5\u4f7f\u7528\u5b83\u6765\u8bbe\u7f6e":34,"\u4f60\u53ef\u4ee5\u4f7f\u7528\u672c\u5730\u8bad\u7ec3\u4e2d\u7684\u76f8\u540c\u6a21\u578b\u6587\u4ef6\u8fdb\u884c\u96c6\u7fa4\u8bad\u7ec3":34,"\u4f60\u53ef\u4ee5\u5728\u4efb\u4f55\u65f6\u5019\u7528":52,"\u4f60\u53ef\u4ee5\u5bf9\u6a21\u578b\u8fdb\u884c\u8bc4\u4f30":52,"\u4f60\u53ef\u4ee5\u5c06\u7f51\u7edc\u914d\u7f6e\u6210\u67d0\u4e9b\u5c42\u4f7f\u7528gpu\u8ba1\u7b97":38,"\u4f60\u53ef\u4ee5\u6267\u884c\u4e0a\u8ff0\u547d\u4ee4\u6765\u4e0b\u8f7d\u6240\u6709\u7684\u6a21\u578b\u548c\u5747\u503c\u6587\u4ef6":48,"\u4f60\u53ef\u4ee5\u70b9\u51fb":29,"\u4f60\u53ef\u4ee5\u7528":29,"\u4f60\u53ef\u4ee5\u901a\u8fc7":29,"\u4f60\u53ef\u4ee5\u901a\u8fc7\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u6765\u5f97\u5230resnet\u7f51\u7edc\u7684\u7ed3\u6784\u53ef\u89c6\u5316\u56fe":48,"\u4f60\u53ef\u4ee5\u9884\u6d4b\u4efb\u4f55\u7528\u6237\u5bf9\u4e8e\u4efb\u4f55\u4e00\u90e8\u7535\u5f71\u7684\u8bc4\u4ef7":52,"\u4f60\u53ef\u80fd\u8981\u5904\u7406\u51b2\u7a81":29,"\u4f60\u53ef\u80fd\u9700\u8981\u6839\u636egit\u63d0\u793a\u89e3\u51b3\u51b2\u7a81":29,"\u4f60\u5c06\u4f1a\u770b\u5230\u4ee5\u4e0b\u7684\u6a21\u578b\u7ed3\u6784":46,"\u4f60\u5c06\u4f1a\u770b\u5230\u5982\u4e0b\u6d88\u606f":55,"\u4f60\u5c06\u4f1a\u770b\u5230\u5982\u4e0b\u7ed3\u679c":48,"\u4f60\u5c06\u4f1a\u770b\u5230\u7279\u5f81\u5b58\u50a8\u5728":48,"\u4f60\u5c06\u4f1a\u770b\u5230\u8fd9\u6837\u7684\u6d88\u606f":55,"\u4f60\u5c06\u5728\u76ee\u5f55":54,"\u4f60\u5c06\u770b\u5230\u5982\u4e0b\u7684\u4fe1\u606f":52,"\u4f60\u5e94\u8be5\u4ece\u6700\u65b0\u7684":29,"\u4f60\u7684\u4ed3\u5e93":29,"\u4f60\u7684\u4ee3\u7801\u5fc5\u987b\u5b8c\u5168\u9075\u5b88":29,"\u4f60\u7684\u5de5\u4f5c\u7a7a\u95f4\u5e94\u5982\u4e0b\u6240\u793a":34,"\u4f60\u7684\u672c\u5730\u4e3b\u5206\u652f\u4e0e\u4e0a\u6e38\u4fee\u6539\u7684\u4e00\u81f4\u5e76\u662f\u6700\u65b0\u7684":29,"\u4f60\u7684\u8bf7\u6c42":29,"\u4f60\u8fd8\u53ef\u4ee5\u5c06\u7528\u6237\u548c":34,"\u4f60\u9700\u8981\u4e00\u4e9b\u66f4\u590d\u6742\u7684\u5355\u5143\u6d4b\u8bd5\u6765\u4fdd\u8bc1\u4f60\u5b9e\u73b0\u7684\u7f51\u7edc\u5c42\u662f\u6b63\u786e\u7684":30,"\u4f60\u9700\u8981\u5728\u672c\u5730\u4ed3\u5e93\u6267\u884c\u5982\u4e0b\u547d\u4ee4":29,"\u4f60\u9700\u8981\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u6307\u5b9a\u8bbe\u5907\u7684id\u53f7":38,"\u4f60\u9700\u8981\u5728\u914d\u7f6ecmake\u65f6\u5c06":30,"\u4f60\u9700\u8981\u5b89\u88c5python\u7684\u7b2c\u4e09\u65b9\u5e93":52,"\u4f60\u9700\u8981\u624b\u52a8\u8fdb\u884c\u66f4\u65b0":29,"\u4f60\u9700\u8981\u628a\u8be5\u6587\u4ef6\u52a0\u5165":30,"\u4f60\u9700\u8981\u9996\u5148\u6dfb\u52a0\u8fdc\u7a0b":29,"\u4f7f\u5176\u8f6c\u53d8\u4e3a\u7ef4\u5ea6\u4e3ahidden_dim\u7684\u65b0\u5411\u91cf":50,"\u4f7f\u5f97":18,"\u4f7f\u5f97\u4e24\u4e2a\u5b57\u5178\u6709\u76f8\u540c\u7684\u4e0a\u4e0b\u6587":55,"\u4f7f\u5f97\u5355\u5143\u6d4b\u8bd5\u6709\u4e00\u4e2a\u5e72\u51c0\u7684\u73af\u5883":17,"\u4f7f\u5f97\u642d\u6a21\u578b\u65f6\u66f4\u65b9\u4fbf":30,"\u4f7f\u5f97\u6700\u7ec8\u5f97\u5230\u7684\u6a21\u578b\u51e0\u4e4e\u4e0e\u771f\u5b9e\u6a21\u578b\u4e00\u81f4":18,"\u4f7f\u7528":[17,20,25,27,28,30,33,36,39,50,53,54],"\u4f7f\u75280\u53f7\u548c1\u53f7gpu\u8ba1\u7b97fc2\u5c42":38,"\u4f7f\u75280\u53f7gpu\u8ba1\u7b97fc2\u5c42":38,"\u4f7f\u752810\u4e2a\u88c1\u526a\u56fe\u50cf\u5757":48,"\u4f7f\u75281\u53f7gpu\u8ba1\u7b97fc3\u5c42":38,"\u4f7f\u75282\u53f7\u548c3\u53f7gpu\u8ba1\u7b97fc3\u5c42":38,"\u4f7f\u7528\u4e00\u4e2a\u5c3a\u5ea6\u4e3a":30,"\u4f7f\u7528\u4e00\u4e2a\u8bcd\u524d\u4e24\u4e2a\u8bcd\u548c\u540e\u4e24\u4e2a\u8bcd":17,"\u4f7f\u7528\u4e0a\u6587\u521b\u5efa\u7684yaml\u6587\u4ef6\u521b\u5efakubernet":41,"\u4f7f\u7528\u4e0d\u540c\u5206\u5e03\u5f0f\u5b58\u50a8\u4f1a\u6709\u4e0d\u540c\u7684\u6302\u8f7d\u65b9\u5f0f":42,"\u4f7f\u7528\u4e86":39,"\u4f7f\u7528\u4e86\u540c\u6837\u7684parameter\u548cbia":17,"\u4f7f\u7528\u4e86\u57fa\u4e8e\u53e5\u6cd5\u7ed3\u6784\u7684\u9884\u5b9a\u4e49\u7279\u5f81\u6a21\u677f":53,"\u4f7f\u7528\u4e86avx\u6307\u4ee4\u96c6":22,"\u4f7f\u7528\u4ee5\u4e0b\u547d\u4ee4\u8fdb\u884c\u6a21\u578b\u8bad\u7ec3":46,"\u4f7f\u7528\u5177\u6709softmax\u6fc0\u6d3b\u7684\u5168\u8fde\u63a5\u524d\u9988\u5c42\u6765\u6267\u884c\u5206\u7c7b\u4efb\u52a1":54,"\u4f7f\u7528\u591a\u5757\u663e\u5361\u8bad\u7ec3":17,"\u4f7f\u7528\u591a\u7ebf\u7a0b\u8bad\u7ec3":17,"\u4f7f\u7528\u5982\u4e0b\u53c2\u6570":47,"\u4f7f\u7528\u5982\u4e0b\u547d\u4ee4":46,"\u4f7f\u7528\u5982\u4e0b\u811a\u672c\u53ef\u4ee5\u786e\u5b9a\u672c\u673a\u7684cpu\u662f\u5426\u652f\u6301":20,"\u4f7f\u7528\u5b66\u4e60\u5b8c\u6210\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u6a21\u578b\u751f\u6210\u5e8f\u5217":28,"\u4f7f\u7528\u5bb9\u5668\u65b9\u5f0f\u8fd0\u884c\u8bad\u7ec3\u4efb\u52a1\u7684kubernet":42,"\u4f7f\u7528\u6211\u4eec\u4e4b\u524d\u6784\u9020\u7684\u955c\u50cf":41,"\u4f7f\u7528\u624b\u5de5\u6307\u5b9a\u7aef\u53e3\u6570\u91cf":39,"\u4f7f\u7528\u663e\u5361\u8bad\u7ec3":17,"\u4f7f\u7528\u6848\u4f8b":37,"\u4f7f\u7528\u7684":17,"\u4f7f\u7528\u8005\u4e0d\u9700\u8981\u5173\u5fc3":36,"\u4f7f\u7528\u8005\u53ea\u9700\u8981\u5173\u6ce8\u4e8e\u8bbe\u8ba1rnn\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u5b8c\u6210\u7684\u8ba1\u7b97":27,"\u4f7f\u7528\u8005\u53ef\u4ee5\u4f7f\u7528\u4e0b\u9762\u7684python\u811a\u672c\u6765\u8bfb\u53d6\u53c2\u6570\u503c":48,"\u4f7f\u7528\u8005\u65e0\u9700\u5173\u5fc3\u8fd9\u4e2a\u53c2\u6570":36,"\u4f7f\u7528\u8005\u901a\u5e38\u65e0\u9700\u5173\u5fc3":36,"\u4f7f\u7528\u81ea\u52a8\u7684\u66ff\u8865\u6765\u66ff\u4ee3\u7ecf\u9a8c\u4e30\u5bcc\u7684\u4eba\u5de5\u8bc4\u5224":55,"\u4f7f\u7528\u8be5dockerfile\u6784\u5efa\u51fa\u955c\u50cf":20,"\u4f7f\u7528\u8c13\u8bcd\u4e0a\u4e0b\u6587":53,"\u4f7f\u7528\u8fd9\u4e2a\u811a\u672c\u524d\u8bf7\u786e\u8ba4\u5df2\u7ecf\u5b89\u88c5\u4e86pillow\u53ca\u76f8\u5173\u4f9d\u8d56\u6a21\u5757":47,"\u4f7f\u7528\u8fd9\u79cd\u65b9\u5f0f":25,"\u4f7f\u7528\u8fdc\u7a0b\u7a00\u758f\u65b9\u5f0f\u8bad\u7ec3\u65f6":30,"\u4f7f\u7528\u968f\u673a\u68af\u5ea6\u4e0b\u964d":54,"\u4f7f\u7528\u9884\u8bad\u7ec3\u7684\u6807\u51c6\u683c\u5f0f\u8bcd\u5411\u91cf\u6a21\u578b":46,"\u4f7f\u7528args\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u8bbe\u7f6e":3,"\u4f7f\u7528checkgrad\u6a21\u5f0f\u65f6\u7684\u53c2\u6570\u53d8\u5316\u5927\u5c0f":36,"\u4f7f\u7528cpu\u4e24\u7ebf\u7a0b\u8ba1\u7b97fc4\u5c42":38,"\u4f7f\u7528cpu\u8ba1\u7b97fc4\u5c42":38,"\u4f7f\u7528cpu\u8bad\u7ec3":54,"\u4f7f\u7528dockerfile\u6784\u5efa\u4e00\u4e2a\u5168\u65b0\u7684dock":20,"\u4f7f\u7528init":38,"\u4f7f\u7528lstm\u4f5c\u4e3aencod":25,"\u4f7f\u7528max":47,"\u4f7f\u7528memory\u7684rnn\u5b9e\u73b0\u4fbf\u5982\u4e0b\u56fe\u6240\u793a":25,"\u4f7f\u7528model":38,"\u4f7f\u7528paddlepaddl":50,"\u4f7f\u7528python\u6570\u636e\u63d0\u4f9b\u5668":47,"\u4f7f\u7528rdma\u8fd8\u662ftcp\u4f20\u8f93\u534f\u8bae":36,"\u4f7f\u7528ssh\u8bbf\u95eepaddlepaddle\u955c\u50cf":20,"\u4f7f\u8f93\u5165\u5c42\u5230\u9690\u85cf\u5c42\u7684\u795e\u7ecf\u5143\u662f\u5168\u90e8\u8fde\u63a5\u7684":47,"\u4f86":25,"\u4f8b\u5982":[3,17,19,25,28,30,33,34,35,36,38,39,42,48,50,52,54],"\u4f8b\u5982\u4e0a\u6587\u7684pod":40,"\u4f8b\u5982\u4e0a\u9762\u7684":18,"\u4f8b\u5982\u4ee5\u592a\u7f51\u7684":34,"\u4f8b\u5982\u4f7f\u7528":17,"\u4f8b\u5982\u586b\u5145":28,"\u4f8b\u5982\u5c06\u7b2c\u4e00\u6761\u6570\u636e\u8f6c\u5316\u4e3a":25,"\u4f8b\u5982\u6587\u672c\u5206\u7c7b\u4e2d":25,"\u4f8b\u5982\u672c\u4f8b\u4e2d\u7684\u4e24\u4e2a\u7279\u5f81":25,"\u4f8b\u5982\u673a\u5668\u4e0a\u67094\u5757gpu":17,"\u4f8b\u5982\u7b2c300\u4e2apass\u7684\u6a21\u578b\u4f1a\u88ab\u4fdd\u5b58\u5728":47,"\u4f8b\u5982hostpath":40,"\u4f8b\u5982output\u76ee\u5f55\u4e0b\u5c31\u5b58\u653e\u4e86\u8f93\u51fa\u7ed3\u679c":42,"\u4f8b\u5982rdma\u7f51\u5361":20,"\u4f8b\u5982sigmoid":30,"\u4f8b\u5982sigmoid\u53d8\u6362":50,"\u4f8b\u5b50\u4e2d\u662f":30,"\u4f8b\u5b50\u4e2d\u662f0":30,"\u4f8b\u5b50\u4e2d\u662f100":30,"\u4f8b\u5b50\u4e2d\u662f4096":30,"\u4f8b\u5b50\u4e2d\u662f8192":30,"\u4f8b\u5b50\u4e2d\u662ffc":30,"\u4f8b\u5b50\u4e2d\u662fsoftmax":30,"\u4f8b\u5b50\u4f7f\u7528":40,"\u4f9bpaddlepaddle\u52a0\u8f7d":36,"\u4f9d\u636e\u5206\u7c7b\u9519\u8bef\u7387\u83b7\u5f97\u6700\u4f73\u6a21\u578b\u8fdb\u884c\u6d4b\u8bd5":54,"\u4f9d\u8d56\u4e8epython\u7684":47,"\u4fbf\u4e8e\u5b58\u50a8\u8d44\u6e90\u7ba1\u7406\u548cpod\u5f15\u7528":40,"\u4fbf\u4e8e\u672c\u5730\u9a8c\u8bc1\u548c\u6d4b\u8bd5":40,"\u4fbf\u5229":25,"\u4fbf\u548c\u5355\u5c42rnn\u914d\u7f6e\u4e2d\u7684":25,"\u4fbf\u5b9c":25,"\u4fdd\u5b58\u6a21\u578b\u53c2\u6570\u7684\u76ee\u5f55":36,"\u4fdd\u5b58\u751f\u6210\u7ed3\u679c\u7684\u6587\u4ef6":55,"\u4fdd\u5b58\u7f51\u7edc\u5c42\u8f93\u51fa\u7ed3\u679c\u7684\u76ee\u5f55":36,"\u4fdd\u5b58\u9884\u6d4b\u7ed3\u679c\u7684\u6587\u4ef6\u540d":36,"\u4fdd\u6301\u5bbd\u9ad8\u6bd4\u7f29\u653e\u5230\u77ed\u8fb9\u4e3a256":48,"\u4fe1\u53f7\u6765\u81ea\u52a8\u7ec8\u6b62\u5b83\u542f\u52a8\u7684\u6240\u6709\u8fdb\u7a0b":34,"\u4fe1\u606f":20,"\u4fee\u6539":[40,41],"\u4fee\u6539\u542f\u52a8\u811a\u672c\u540e":41,"\u4fee\u6539\u6210\u66f4\u5feb\u7684\u7248\u672c":33,"\u4fee\u6539\u6587\u6863":32,"\u503c\u5f97\u6ce8\u610f\u7684\u662f":25,"\u503c\u5f97\u6df1\u5165\u5206\u6790":33,"\u503c\u7c7b\u578b":38,"\u5047\u5982\u6211\u4eec\u662f\u4e09\u5206\u7c7b\u95ee\u9898":17,"\u5047\u8bbe":30,"\u5047\u8bbe\u53d8\u91cf":18,"\u5047\u8bbe\u635f\u5931\u51fd\u6570\u662f":30,"\u5047\u8bbe\u8bcd\u5411\u91cf\u7ef4\u5ea6\u4e3a32":46,"\u504f\u7f6e\u53c2\u6570":48,"\u504f\u7f6e\u53c2\u6570\u7684\u5927\u5c0f":30,"\u505c\u6b62\u52a0\u8f7d\u6570\u636e":36,"\u505c\u7535":25,"\u513f\u7ae5\u7247":51,"\u5143\u7d20":24,"\u5143\u7d20\u4e4b\u95f4\u7684\u987a\u5e8f\u662f\u91cd\u8981\u7684\u8f93\u5165\u4fe1\u606f":24,"\u5148\u4f7f\u7528\u547d\u4ee4":39,"\u5148\u8c03\u7528initializer\u51fd\u6570":50,"\u5168\u5bb6":25,"\u5168\u8fde\u63a5\u5c42":[18,39,46,47,52],"\u5168\u8fde\u63a5\u5c42\u4ee5\u4e00\u4e2a\u7ef4\u5ea6\u4e3a":30,"\u5168\u8fde\u63a5\u5c42\u5c06\u7535\u5f71\u7684\u6bcf\u4e2a\u7279\u5f81\u7ed3\u5408\u6210\u4e00\u4e2a\u7535\u5f71\u7279\u5f81":52,"\u5168\u8fde\u63a5\u5c42\u6743\u91cd":48,"\u5168\u8fde\u63a5\u5c42\u6ca1\u6709\u7f51\u7edc\u5c42\u914d\u7f6e\u7684\u8d85\u53c2\u6570":30,"\u5168\u8fde\u63a5\u5c42\u7684\u5b9e\u73b0\u4f4d\u4e8e":30,"\u5168\u8fde\u63a5\u5c42\u7684\u6bcf\u4e2a\u8f93\u51fa\u90fd\u8fde\u63a5\u5230\u4e0a\u4e00\u5c42\u7684\u6240\u6709\u7684\u795e\u7ecf\u5143\u4e0a":30,"\u5168\u8fde\u63a5\u5c42python\u5c01\u88c5\u7684\u4f8b\u5b50\u4e2d\u5305\u542b\u4e0b\u9762\u51e0\u6b65":30,"\u516b\u4e2a\u7279\u5f81\u5206\u522b\u8f6c\u6362\u4e3a\u5411\u91cf":53,"\u516c\u94a5\u5199\u5165":34,"\u516d\u4e2a\u7279\u5f81\u548c\u6807\u7b7e\u90fd\u662f\u7d22\u5f15\u69fd":53,"\u5171\u4eab\u4efb\u52a1\u4e2d\u8bbe\u7f6e\u7684\u6570\u636e\u8fdb\u884c\u8bad\u7ec3\u548c\u6d4b\u8bd5":53,"\u5171\u670932":46,"\u5173\u4e8e\u5982\u4f55\u5b9a\u4e49\u7f51\u7edc\u4e2d\u7684\u5c42":47,"\u5173\u4e8e\u65f6\u95f4\u5e8f\u5217":25,"\u5173\u4e8epaddlepaddle\u7684\u5206\u5e03\u5f0f\u8bad\u7ec3":42,"\u5173\u4e8eunbound":27,"\u5173\u4e8evgg\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u7684\u63cf\u8ff0\u53ef\u4ee5\u53c2\u8003":47,"\u5173\u95edcontain":20,"\u5176\u4e0b\u5b50\u6587\u4ef6\u5939\u7684\u7ed3\u6784\u5982\u4e0b":47,"\u5176\u4e2d":[3,17,18,20,28,30,39,46,47,48],"\u5176\u4e2d156\u548c285\u662f\u8fd9\u4e9b\u56fe\u50cf\u7684\u5206\u7c7b\u6807\u7b7e":48,"\u5176\u4e2d50000\u5f20\u56fe\u7247\u4f5c\u4e3a\u8bad\u7ec3\u96c6":47,"\u5176\u4e2d\u5206\u522b\u5305\u542b\u4e86cifar":47,"\u5176\u4e2d\u5305\u542b6":51,"\u5176\u4e2d\u5305\u542b\u4e86200\u79cd\u9e1f\u7c7b\u7684\u7167\u7247":47,"\u5176\u4e2d\u5305\u542b\u7b97\u6cd5\u548c\u7f51\u7edc\u914d\u7f6e":54,"\u5176\u4e2d\u5305\u62ec\u51fd\u6570":53,"\u5176\u4e2d\u5b9a\u4e49\u4e86\u6a21\u578b\u67b6\u6784\u548csolver\u914d\u7f6e":55,"\u5176\u4e2d\u6570\u636e\u6e90\u914d\u7f6e\u4e0edataprovider\u7684\u5173\u7cfb\u662f":39,"\u5176\u4e2d\u6587\u672c\u8f93\u5165\u7c7b\u578b\u5b9a\u4e49\u4e3a\u6574\u6570\u65f6\u5e8f\u7c7b\u578binteger_value_sequ":50,"\u5176\u4e2d\u6bcf\u4e00\u884c\u5bf9\u5e94\u4e00\u4e2a\u6570\u636e\u6587\u4ef6\u5730\u5740":2,"\u5176\u4e2d\u6bcf\u4e2a\u5143\u7d20\u662f\u53cc\u5c42\u5e8f\u5217\u4e2d\u6bcf\u4e2asubseq\u6700\u540e\u4e00\u4e2a":24,"\u5176\u4e2d\u6bcf\u4e2a\u5411\u91cf\u5bf9\u5e94\u8f93\u5165\u8bed\u53e5\u4e2d\u7684\u4e00\u4e2a\u5143\u7d20":55,"\u5176\u4e2d\u6bcf\u6761pass\u82b1\u8d39\u4e867\u4e2a\u5c0f\u65f6":55,"\u5176\u4e2d\u6bcf\u884c\u6570\u636e\u4ee3\u8868\u4e00\u5f20\u56fe\u7247":3,"\u5176\u4e2d\u8be6\u7ec6\u8bf4\u660e\u4e86\u6a21\u578b\u67b6\u6784":55,"\u5176\u4e2d\u8f93\u5165\u56fe\u50cf\u7684\u989c\u8272\u901a\u9053\u987a\u5e8f\u4e3a":48,"\u5176\u4e2dbeam":55,"\u5176\u4e2dcheckgrad\u4e3b\u8981\u4e3a\u5f00\u53d1\u8005\u4f7f\u7528":36,"\u5176\u4e2dmean\u548cstd\u662f\u8bad\u7ec3\u914d\u7f6e\u4e2d\u7684\u53c2\u6570":36,"\u5176\u4e2dvalue\u5373\u4e3asoftmax\u5c42\u7684\u8f93\u51fa":5,"\u5176\u4ed6":51,"\u5176\u4ed6\u516d\u884c\u5217\u51fa\u4e86\u96c6\u675f\u641c\u7d22\u7684\u7ed3\u679c":55,"\u5176\u4ed6\u5185\u5b58\u6742\u9879":17,"\u5176\u4ed6\u5185\u5b58\u6742\u9879\u662f\u6307paddlepaddle\u672c\u8eab\u6240\u7528\u7684\u4e00\u4e9b\u5185\u5b58":17,"\u5176\u4ed6\u53c2\u6570\u4f7f\u7528":3,"\u5176\u4ed6\u53c2\u6570\u8bf7\u53c2\u8003":50,"\u5176\u4ed6\u6240\u6709\u5c42\u90fd\u4f1a\u4f7f\u7528gpu\u8ba1\u7b97":38,"\u5176\u4ed6\u7528\u6237\u5206\u652f\u662f\u7279\u5f81\u5206\u652f":29,"\u5176\u4ed6\u884c\u53ef\u4ee5\u6dfb\u52a0\u4e00\u4e9b\u7ec6\u8282":29,"\u5176\u4ed6\u9ad8\u7ea7\u529f\u80fd\u5305\u62ec\u5b9a\u4e49\u591a\u4e2amemori":28,"\u5176\u4f1a\u81ea\u52a8\u88ab\u52a0\u5165\u7f16\u8bd1\u5217\u8868":30,"\u5176\u4f59\u884c\u662f":46,"\u5176\u4f5c\u7528\u662f\u5c06\u6570\u636e\u4f20\u5165\u5185\u5b58\u6216\u663e\u5b58":2,"\u5176\u5177\u4f53\u8bf4\u660e\u4e86\u5b57\u6bb5\u7c7b\u578b\u548c\u6587\u4ef6\u540d\u79f0":52,"\u5176\u5185\u90e8\u7684\u6587\u4ef6\u4e5f\u4f1a\u968f\u4e4b\u6d88\u5931":40,"\u5176\u5305\u62ec\u4e24\u4e2a\u51fd\u6570":50,"\u5176\u53c2\u6570\u5982\u4e0b":3,"\u5176\u5b83\u90e8\u5206\u548c\u903b\u8f91\u56de\u5f52\u7f51\u7edc\u7ed3\u6784\u4e00\u81f4":50,"\u5176\u5b83layer\u7684\u8f93\u51fa":27,"\u5176\u5b9e\u4e5f\u662f\u548c\u6bcf\u4e2amini":17,"\u5176\u63d0\u4f9b\u5e94\u7528\u90e8\u7f72":40,"\u5176\u6b21":[3,25,50],"\u5176\u76ee\u7684\u662f\u5728\u7ed9\u5b9a\u7684\u8f93\u5165\u53e5\u5b50\u4e2d\u53d1\u73b0\u6bcf\u4e2a\u8c13\u8bcd\u7684\u8c13\u8bcd\u8bba\u5143\u7ed3\u6784":53,"\u5176\u8bf4\u660e\u5982\u4e0b":25,"\u5176\u8f93\u5165\u53c2\u6570\u5982\u4e0b":55,"\u5176\u8f93\u51fa\u88ab\u7528\u4f5cmemory\u7684\u521d\u59cb\u503c":28,"\u5177\u4f53\u4f7f\u7528\u65b9\u6cd5\u4e3a":17,"\u5177\u4f53\u53ef\u4ee5\u53c2\u8003":[3,30],"\u5177\u4f53\u53ef\u53c2\u8003\u6587\u6863":27,"\u5177\u4f53\u60c5\u51b5\u56e0\u4eba\u800c\u5f02":33,"\u5177\u4f53\u64cd\u4f5c\u5982\u4e0b":17,"\u5177\u4f53\u6d41\u7a0b\u5982\u4e0b":50,"\u5177\u4f53\u7684\u4f7f\u7528\u65b9\u6cd5\u8bf7\u53c2\u8003":39,"\u5177\u4f53\u7684\u683c\u5f0f\u8bf4\u660e":3,"\u5177\u4f53\u7684\u89e3\u51b3\u65b9\u6cd5\u662f":17,"\u5177\u4f53\u8ba1\u7b97\u662f\u901a\u8fc7\u5185\u90e8\u7684":39,"\u5177\u4f53\u8bf7\u53c2\u7167\u793a\u4f8b":48,"\u5177\u4f53\u8bf7\u53c2\u8003":3,"\u5177\u4f53\u8bf7\u53c2\u8003\u6ce8\u610f\u4e8b\u9879\u4e2d\u7684":20,"\u5177\u6709\u76f8\u540c\u7684\u7ed3\u679c\u4e86":25,"\u5177\u6709\u81ea\u5faa\u73af\u8fde\u63a5\u7684\u795e\u7ecf\u5143":54,"\u517c\u5907\u6613\u7528\u6027":0,"\u5185":28,"\u5185\u5b58":33,"\u5185\u5b58\u5bb9\u9650\u9608\u503c":36,"\u5185\u5bb9":50,"\u5185\u5bb9\u5982\u4e0b":41,"\u5185\u5c42inner_step\u7684recurrent_group\u548c\u5355\u5c42\u5e8f\u5217\u7684\u51e0\u4e4e\u4e00\u6837":25,"\u5185\u5df2\u7ecf\u5305\u542bpaddlepaddle\u7684\u6267\u884c\u7a0b\u5e8f\u4f46\u662f\u8fd8\u6ca1\u4e0a\u8ff0\u529f\u80fd":42,"\u5185\u90e8":42,"\u518d\u4e3apaddle\u7684\u8bad\u7ec3\u8fc7\u7a0b\u63d0\u4f9b\u6587\u4ef6\u5217\u8868":52,"\u518d\u4f20\u5165\u7ed9train":39,"\u518d\u5bf9\u6bcf\u4e00\u4e2a\u5355\u5c42\u65f6\u95f4\u5e8f\u5217\u8fdb\u884c\u5904\u7406":25,"\u518d\u5bf9\u6bcf\u4e00\u53e5\u8bdd\u7684\u7f16\u7801\u5411\u91cf\u7528lstm\u7f16\u7801\u6210\u4e00\u4e2a\u6bb5\u843d\u7684\u5411\u91cf":25,"\u518d\u5bf9\u8fd9\u4e2a\u6bb5\u843d\u5411\u91cf\u8fdb\u884c\u5206\u7c7b":25,"\u518d\u6307\u5b9a":19,"\u518d\u6b21\u5bf9\u4ee3\u7801\u8fdb\u884c\u6027\u80fd\u5206\u6790":33,"\u518d\u7528\u8fd9\u4e2a\u68af\u5ea6\u53bb\u548c":30,"\u518d\u901a\u8fc7\u51fd\u6570":42,"\u5192\u9669\u7247":51,"\u5197\u4f59\u7b49\u529f\u80fd":40,"\u5199\u4e0b\u4f60\u7684\u6ce8\u91ca":29,"\u5199\u5b8c\u6a21\u578b\u914d\u7f6e\u4e4b\u540e":55,"\u5199\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5\u662f\u4e00\u4e2a\u9a8c\u8bc1\u65b0\u5b9e\u73b0\u7684\u5c42\u662f\u5426\u6b63\u786e\u7684\u76f8\u5bf9\u7b80\u5355\u7684\u529e\u6cd5":30,"\u519c\u6c11":51,"\u51c6\u5907":25,"\u51c6\u5907\u597d\u6570\u636e":52,"\u51c6\u5907\u6570\u636e":23,"\u51c6\u5907\u7528\u6765\u5b66\u4e60\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u5e8f\u5217\u6570\u636e":28,"\u51c6\u5907\u9884\u6d4b\u6570\u636e":5,"\u51cf\u5c0f\u5e8f\u5217\u7684\u957f\u5ea6":17,"\u51cf\u5c0f\u8fd9\u4e2a\u5185\u5b58\u6c60\u5373\u53ef\u51cf\u5c0f\u5185\u5b58\u5360\u7528":17,"\u51cf\u5c0fbatch":17,"\u51fa\u53bb\u73a9":25,"\u51fa\u5dee":25,"\u51fa\u6765":25,"\u51fa\u73b0\u4ee5\u4e0b\u9519\u8bef":17,"\u51fa\u73b0\u8fd9\u4e2a\u95ee\u9898\u7684\u4e3b\u8981\u539f\u56e0\u662f":17,"\u51fd\u6570":[3,18,28,30,33,53,54],"\u51fd\u6570\u4e2d":28,"\u51fd\u6570\u4e2d\u4f7f\u7528":3,"\u51fd\u6570\u4e2d\u8bbe\u7f6e\u7684":34,"\u51fd\u6570\u5047\u8bbe":28,"\u51fd\u6570\u52a0\u5230\u4ee3\u7801\u4e2d":33,"\u51fd\u6570\u53ea\u5173\u6ce8\u4e8ernn\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u7684\u8ba1\u7b97":27,"\u51fd\u6570\u5c06\u8fd4\u56de\u4e09\u4e2a\u6574\u6570\u5217\u8868":28,"\u51fd\u6570\u5c31\u662f\u6839\u636e\u8be5\u673a\u5236\u914d\u7f6e\u7684":3,"\u51fd\u6570\u5f97\u5230\u7684\u68af\u5ea6\u53bb\u5bf9\u6bd4":30,"\u51fd\u6570\u5fc5\u987b\u5148\u8c03\u7528\u57fa\u7c7b\u4e2d\u7684\u51fd\u6570":30,"\u51fd\u6570\u5fc5\u987b\u8fd4\u56de\u4e00\u4e2a\u6216\u591a\u4e2alayer\u7684\u8f93\u51fa":27,"\u51fd\u6570\u6307\u51fa\u4e86\u5728\u8bad\u7ec3\u65f6\u9700\u8981\u4ece\u53c2\u6570\u670d\u52a1\u5668\u53d6\u51fa\u7684\u884c":30,"\u51fd\u6570\u6765\u5c06\u4fe1\u606f\u8f93\u51fa\u5230\u754c\u9762\u4e2d":33,"\u51fd\u6570\u67e5\u8be2\u8f6f\u4ef6\u5305\u76f8\u5173api\u8bf4\u660e":5,"\u51fd\u6570\u7684":3,"\u51fd\u6570\u7684\u5b9e\u73b0\u662f\u6b63\u786e\u7684":30,"\u51fd\u6570\u7684\u5f00\u5934\u5fc5\u987b\u8c03\u7528":30,"\u5206\u4e3a\u597d\u8bc4":50,"\u5206\u522b\u4e3a":46,"\u5206\u522b\u4e3atrain":55,"\u5206\u522b\u4ece\u8bcd\u8bed\u548c\u53e5\u5b50\u7ea7\u522b\u7f16\u7801\u8f93\u5165\u6570\u636e":27,"\u5206\u522b\u4f7f\u7528\u5355\u53cc\u5c42rnn\u4f5c\u4e3a\u7f51\u7edc\u914d\u7f6e\u7684\u6a21\u578b":25,"\u5206\u522b\u5305\u542b\u4e86\u6cd5\u8bed\u5230\u82f1\u8bed\u7684\u5e73\u884c\u8bed\u6599\u5e93\u7684\u8bad\u7ec3\u6570\u636e":55,"\u5206\u522b\u5b9a\u4e49\u5b50\u53e5\u7ea7\u522b\u548c\u8bcd\u8bed\u7ea7\u522b\u4e0a\u9700\u8981\u5b8c\u6210\u7684\u8fd0\u7b97":27,"\u5206\u522b\u5bf9\u5e94\u4e8e\u53d8\u91cf":18,"\u5206\u522b\u662f":24,"\u5206\u522b\u662frnn\u72b6\u6001\u548c\u8f93\u5165\u7684\u53d8\u6362\u77e9\u9635":28,"\u5206\u522b\u662fsentences\u548clabel":25,"\u5206\u522b\u662fwords\u548clabel":25,"\u5206\u522b\u8ba1\u7b97\u6bcf\u4e2a\u53c2\u6570\u7684\u68af\u5ea6":30,"\u5206\u522b\u8fdb\u884c\u5e8f\u5217\u64cd\u4f5c":25,"\u5206\u5272":[51,53],"\u5206\u5272\u6587\u4ef6\u7684\u65b9\u6cd5\u662f":52,"\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf":40,"\u5206\u6210\u4e24\u90e8\u5206":3,"\u5206\u652f":29,"\u5206\u6790\u5f97\u5230\u7684\u4fe1\u606f\u7528\u4e8e\u534f\u52a9\u8fdb\u884c\u7a0b\u5e8f\u7684\u4f18\u5316":33,"\u5206\u7c7b\u6210\u6b63\u9762\u60c5\u7eea\u548c\u8d1f\u9762\u60c5\u7eea\u4e24\u7c7b":3,"\u5206\u7c7b\u8bef\u5dee\u662f0":54,"\u5206\u7c7b\u9519\u8bef\u7387\u548c\u6a21\u578b\u5927\u5c0f\u7531\u4e0b\u8868\u7ed9\u51fa":48,"\u5206\u8bcd\u5e8f\u5217\u7684\u5f00\u59cb":46,"\u5206\u8bcd\u5e8f\u5217\u7684\u7ed3\u675f":46,"\u5206\u8bcd\u98ce\u683c\u5982\u4e0b":46,"\u5206\u914d\u5230\u5f53\u524d\u6570\u636e\u5757\u6837\u672c\u6570\u7684\u56db\u5206\u4e4b\u4e00":36,"\u5206\u9694":[46,52],"\u5206\u9694\u7b26\u4e3a":51,"\u5217\u8868":52,"\u5217\u8868\u5982\u4e0b":3,"\u5219\u4e0d\u5728\u4e4e\u5185\u5b58\u6682\u5b58\u591a\u5c11\u6761\u6570\u636e":3,"\u5219\u4e0d\u9700\u8981\u91cd\u5199\u8be5\u51fd\u6570":30,"\u5219\u4f1a\u9884\u5148\u8bfb\u53d6\u5168\u90e8\u6570\u636e\u5230\u5185\u5b58\u4e2d":3,"\u5219\u4f1a\u9ed8\u8ba4\u751f\u6210\u4e00\u4e2alist\u6587\u4ef6":39,"\u5219\u4f7f\u7528\u533a\u57df\u6807\u8bb0":53,"\u5219\u4f7f\u7528\u540c\u6b65\u8bad\u7ec3":36,"\u5219\u4f7f\u7528\u8be5\u53c2\u6570\u4f5c\u4e3a\u9ed8\u8ba4\u503c":36,"\u5219\u5148\u505a\u5d4c\u5165":52,"\u5219\u53ef\u4ee5\u4f7f\u7528":20,"\u5219\u53ef\u4ee5\u50cf":34,"\u5219\u53ef\u4ee5\u9009\u62e9\u4e0a\u8868\u4e2d\u7684avx\u7248\u672cpaddlepaddl":20,"\u5219\u5b57\u4e0e\u5b57\u4e4b\u95f4\u7528\u7a7a\u683c\u5206\u9694":50,"\u5219\u603b\u4f1a\u663e\u793a\u963b\u9694\u6458\u8981\u4fe1\u606f":36,"\u5219\u63a8\u8350\u5927\u4e8e\u8bad\u7ec3\u65f6batch":3,"\u5219\u662f\u5e26gui\u7684nvidia\u53ef\u89c6\u5316\u6027\u80fd\u5206\u6790\u5de5\u5177":33,"\u5219\u663e\u793a\u963b\u9694\u6027\u80fd\u7684\u6458\u8981\u4fe1\u606f":36,"\u5219\u8868\u793a\u7a20\u5bc6\u66f4\u65b0\u7684\u7aef\u53e3\u6570\u91cf":42,"\u5219\u9700\u8981\u4f7f\u7528\u7b49\u4e8e\u6743\u91cd\u53c2\u6570\u89c4\u6a21\u5927\u7ea65\u500d\u7684\u5185\u5b58":17,"\u5219\u9700\u8981\u5148\u5c06":20,"\u5219\u9700\u8981\u8fdb\u884c\u4e00\u5b9a\u7684\u4e8c\u6b21\u5f00\u53d1":20,"\u5219\u9700\u8981\u914d\u7f6e":40,"\u521b\u5efa":29,"\u521b\u5efa\u4e00\u4e2akubernet":42,"\u521b\u5efa\u5e76\u6d4b\u8bd5\u4f60\u7684\u4ee3\u7801":29,"\u521b\u5efa\u6210\u529f\u540e":42,"\u521b\u5efa\u8bad\u7ec3\u6570\u636e\u7684":55,"\u521b\u5efa\u8fdc\u7a0b\u5206\u652f":29,"\u521b\u5efagener":3,"\u521d\u59cb\u5316\u4e4b\u540e":5,"\u521d\u59cb\u5316\u504f\u7f6e\u5411\u91cf":30,"\u521d\u59cb\u5316\u65f6\u8c03\u7528\u7684\u51fd\u6570":3,"\u521d\u59cb\u5316\u6743\u91cd\u8868":30,"\u521d\u59cb\u5316\u6a21\u578b\u7684\u8def\u5f84":36,"\u521d\u59cb\u5316\u6a21\u578b\u7684\u8def\u5f84\u914d\u7f6e\u4e3a":46,"\u521d\u59cb\u5316\u7236\u7c7b":30,"\u521d\u59cb\u5316biases_":30,"\u521d\u59cb\u5316paddlepaddle\u73af\u5883":5,"\u521d\u59cb\u72b6\u6001":27,"\u5220\u9664contain":20,"\u5229\u7528\u5206\u5e03\u5f0f\u8bad\u7ec3\u9a7e\u9a6d\u66f4\u591a\u7684\u8ba1\u7b97\u8d44\u6e90":17,"\u5229\u7528\u5355\u8bcdid\u67e5\u627e\u8be5\u5355\u8bcd\u5bf9\u5e94\u7684\u8fde\u7eed\u5411\u91cf":50,"\u5229\u7528\u66f4\u591a\u7684\u8ba1\u7b97\u8d44\u6e90\u53ef\u4ee5\u5206\u4e3a\u4e00\u4e0b\u51e0\u4e2a\u65b9\u5f0f\u6765\u8fdb\u884c":17,"\u5229\u7528\u6b63\u5219\u8868\u8fbe\u5f0f\u6765\u89e3\u6790\u8be5\u7279\u5f81":52,"\u5229\u7528\u8bad\u7ec3\u96c6\u751f\u6210\u7684\u5b57\u5178":54,"\u5229\u7528\u8fd9\u79cd\u7279\u6027":27,"\u5229\u7528\u903b\u8f91\u56de\u5f52\u6a21\u578b\u5bf9\u8be5\u5411\u91cf\u8fdb\u884c\u5206\u7c7b":50,"\u5229\u7528kubernetes\u80fd\u65b9\u4fbf\u5730\u7ba1\u7406\u8de8\u673a\u5668\u8fd0\u884c\u5bb9\u5668\u5316\u7684\u5e94\u7528":40,"\u5229\u843d":25,"\u5230":[17,28],"\u5230\u6240\u6709\u8282\u70b9\u800c\u4e0d\u7528\u5bc6\u7801":34,"\u5230\u672c\u5730":29,"\u5230\u76ee\u524d\u4e3a\u6b62":53,"\u5236\u4f5c\u65b0\u955c\u50cf\u6765\u5b8c\u6210\u4ee5\u4e0a\u7684\u5de5\u4f5c":42,"\u5236\u4f5cpaddlepaddle\u955c\u50cf":42,"\u5237\u7259":25,"\u524d\u4e00\u7bc7\u6587\u7ae0\u4ecb\u7ecd\u4e86\u5982\u4f55\u5728kubernetes\u96c6\u7fa4\u4e0a\u542f\u52a8\u4e00\u4e2a\u5355\u673apaddlepaddle\u8bad\u7ec3\u4f5c\u4e1a":42,"\u524d\u4e09\u884cimport\u4e86\u5b9a\u4e49network":55,"\u524d\u53f0":25,"\u524d\u5411\u4f20\u64ad":30,"\u524d\u5411\u4f20\u64ad\u7ed9\u5b9a\u8f93\u5165":30,"\u524d\u5411\u548c\u540e\u5411":30,"\u5269\u4e0b\u7684pass\u4f1a\u76f4\u63a5\u4ece\u5185\u5b58\u91cc":3,"\u52a0\u4e0a\u504f\u7f6e\u5411\u91cf":30,"\u52a0\u4e86l2\u6b63\u5219\u548c\u68af\u5ea6\u622a\u65ad":50,"\u52a0\u5165":33,"\u52a0\u6743\u548c\u7528\u6765\u751f\u6210":28,"\u52a0\u6743\u7f16\u7801\u5411\u91cf":28,"\u52a0\u8f7d\u6570\u636e":53,"\u52a0\u8f7d\u6a21\u578b":53,"\u52a0\u8f7d\u6a21\u578b\u53c2\u6570":55,"\u52a0\u8f7dtest":36,"\u52a0\u901fpaddlepaddle\u8bad\u7ec3\u53ef\u4ee5\u8003\u8651\u4ece\u4ee5\u4e0b\u51e0\u4e2a\u65b9\u9762":17,"\u52a8\u4f5c\u7247":51,"\u52a8\u753b\u7247":51,"\u52a8\u8bcd":53,"\u52a9\u624b":30,"\u5305":20,"\u5305\u542b12":54,"\u5305\u542b20\u4e2a\u8bad\u7ec3\u6837\u4f8b":46,"\u5305\u542b3\u4e2a\u5c5e\u6027":46,"\u5305\u542b50":54,"\u5305\u548c":20,"\u5305\u5e76\u91cd\u65b0\u7f16\u8bd1paddlepaddl":17,"\u5305\u62ec":[36,50,53,55],"\u5305\u62ec\u4e86\u56fe\u50cf\u7684\u5377\u79ef":39,"\u5305\u62ec\u4ee5\u4e0b\u4e24\u79cd":3,"\u5305\u62ec\u53d1\u884c\u65f6\u95f4":51,"\u5305\u62ec\u5b57\u7b26\u4e32\u5206\u914d":17,"\u5305\u62ec\u5b66\u4e60\u7387":39,"\u5305\u62ec\u6570\u636e\u8f93\u5165":18,"\u5305\u62ec\u751f\u6210cpu":19,"\u5305\u62ec\u7b80\u5355\u7684":50,"\u5305\u62ecbool":38,"\u5305\u62ecdocker\u955c\u50cf":21,"\u5305\u62ecpaddle\u7684\u4e8c\u8fdb\u5236":20,"\u5305\u62ecpaddle\u8fd0\u884cdemo\u6240\u9700\u8981\u7684\u4f9d\u8d56":20,"\u5305\u662f\u6700\u65b0\u7684":17,"\u5305\u6bd4\u8f83\u8001":17,"\u5305\u7684\u65b9\u6cd5\u662f":17,"\u533a\u522b\u662f\u540c\u65f6\u5904\u7406\u4e86\u4e24\u4e2a\u8f93\u5165":25,"\u533a\u522b\u662frnn\u4f7f\u7528\u4e24\u5c42\u5e8f\u5217\u6a21\u578b":25,"\u533b\u751f":51,"\u533b\u7597\u4fdd\u5065":51,"\u5341\u4e00":25,"\u5347\u5e8f\u6392\u5217":55,"\u534e\u6da6\u4e07\u5bb6":25,"\u5355\u4f4d\u662fmb":36,"\u5355\u5143\u6d4b\u8bd5\u4f1a\u5f15\u7528site":17,"\u5355\u5143\u6d4b\u8bd5checkgrad_ep":35,"\u5355\u53cc\u5c42\u5e8f\u5217\u7684\u53e5\u5b50\u662f\u4e00\u6837\u7684":25,"\u5355\u53cc\u5c42rnn":26,"\u5355\u53d8\u91cf\u7684\u7ebf\u6027\u56de\u5f52":18,"\u5355\u5c42":27,"\u5355\u5c42\u4e0d\u7b49\u957frnn":25,"\u5355\u5c42\u548c\u53cc\u5c42\u5e8f\u5217\u7684\u4f7f\u7528\u548c\u793a\u4f8b2\u4e2d\u7684\u793a\u4f8b\u7c7b\u4f3c":25,"\u5355\u5c42\u5e8f\u5217":24,"\u5355\u5c42\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20":24,"\u5355\u5c42\u5e8f\u5217\u7b2ci\u4e2a\u5143\u7d20":24,"\u5355\u5c42\u6216\u53cc\u5c42":24,"\u5355\u5c42\u65f6\u95f4\u5e8f\u5217":25,"\u5355\u5c42rnn":[25,27],"\u5355\u5c42rnn\u548c\u53cc\u5c42rnn\u7684\u7f51\u7edc\u914d\u7f6e":25,"\u5355\u673a\u6a21\u5f0f\u7528\u547d\u4ee4":39,"\u5355\u673a\u8bad\u7ec3\u901a\u5e38\u53ea\u5305\u62ec\u4e00\u4e2atrainer\u8fdb\u7a0b":39,"\u5355\u673acpu\u8bad\u7ec3":17,"\u5355\u673agpu\u8bad\u7ec3":17,"\u5355\u6b65\u51fd\u6570":28,"\u5355\u6b65\u51fd\u6570\u548c\u8f93\u51fa\u51fd\u6570\u5728":28,"\u5355\u6b65\u51fd\u6570\u548c\u8f93\u51fa\u51fd\u6570\u90fd\u975e\u5e38\u7b80\u5355":28,"\u5355\u6b65\u51fd\u6570\u7684\u5b9e\u73b0\u5982\u4e0b\u6240\u793a":28,"\u5355\u8fdb\u5355\u51fa":27,"\u536b\u751f":25,"\u5373":[17,18,20,31,42,50,54],"\u5373\u4e00\u4e2a\u5c06\u5355\u8bcd\u5b57\u7b26\u4e32\u6620\u5c04\u5230\u5355\u8bcdid\u7684\u5b57\u5178":3,"\u5373\u4e0a\u8ff0\u4ee3\u7801\u4e2d\u7684\u7b2c19\u884c":25,"\u5373\u4e0d\u8981\u5c06\u6bcf\u4e00\u4e2a\u6837\u672c\u90fd\u653e\u5165train":3,"\u5373\u4e0d\u9700\u8981\u4f7f\u7528memori":25,"\u5373\u4e3a\u4e00\u4e2a\u65f6\u95f4\u6b65":25,"\u5373\u4e3a\u5355\u5c42rnn\u5e8f\u5217\u7684\u4f7f\u7528\u4ee3\u7801":25,"\u5373\u4e3a\u65f6\u95f4\u5e8f\u5217\u7684\u8f93\u5165":25,"\u5373\u4e3a\u8fd9\u4e2a\u53cc\u5c42rnn\u7684\u7f51\u7edc\u7ed3\u6784":25,"\u5373\u4e3a\u8fd9\u4e2a\u6570\u636e\u6587\u4ef6\u7684\u540d\u5b57":3,"\u5373\u4e8c\u7ef4\u6570\u7ec4":25,"\u5373\u4f7f\u95f4\u9694\u5f88\u5c0f":36,"\u5373\u4f7fprocess\u51fd\u6570\u91cc\u9762\u53ea\u6709\u4e00\u4e2ayield":3,"\u5373\u4fbf\u8bbe\u7f6e":17,"\u5373\u521d\u59cb\u72b6\u6001\u4e3a0":27,"\u5373\u5305\u542b\u65f6\u95f4\u6b65\u4fe1\u606f":3,"\u5373\u5355\u65f6\u95f4\u6b65\u6267\u884c\u7684\u51fd\u6570":28,"\u5373\u53cc\u5411lstm\u548c\u4e09\u5c42\u5806\u53e0lstm":54,"\u5373\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217":25,"\u5373\u53cc\u5c42rnn\u7684\u6bcf\u4e2a\u72b6\u6001":27,"\u5373\u53ef":18,"\u5373\u53ef\u4ee5\u4f7f\u7528ssh\u8bbf\u95ee\u5bbf\u4e3b\u673a\u76848022\u7aef\u53e3":20,"\u5373\u53ef\u4ee5\u6781\u5927\u7684\u52a0\u901f\u6570\u636e\u8f7d\u5165\u6d41\u7a0b":17,"\u5373\u53ef\u542f\u52a8\u548c\u8fdb\u5165paddlepaddle\u7684contain":20,"\u5373\u53ef\u6253\u5370\u51fapaddlepaddle\u7684\u7248\u672c\u548c\u6784\u5efa":20,"\u5373\u5728\u53cc\u5c42\u5e8f\u5217\u7684\u539f\u59cb\u6570\u636e\u4e2d":25,"\u5373\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d":17,"\u5373\u5927\u90e8\u5206\u503c\u4e3a0":3,"\u5373\u5bf9\u7b2c\u4e09\u6b65\u8fdb\u884c\u66ff\u6362":50,"\u5373\u5c06\u4e00\u6bb5\u82f1\u6587\u6587\u672c\u6570\u636e":3,"\u5373\u5c06\u4e00\u6bb5\u8bdd\u8fdb\u884c\u5206\u7c7b":25,"\u5373\u5f53\u524d\u65f6\u95f4\u6b65\u4e0b\u7684\u795e\u7ecf\u7f51\u7edc\u4f9d\u8d56\u524d\u4e00\u4e2a\u65f6\u95f4\u6b65\u795e\u7ecf\u7f51\u7edc\u4e2d\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u8f93\u51fa":25,"\u5373\u6211\u4eec\u7684\u8bad\u7ec3\u76ee\u6807":18,"\u5373\u628a\u5355\u5c42rnn\u751f\u6210\u540e\u7684subseq\u7ed9\u62fc\u63a5\u6210\u4e00\u4e2a\u65b0\u7684\u53cc\u5c42seq":27,"\u5373\u6574\u4e2a\u53cc\u5c42group\u662f\u5c06\u524d\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5411\u91cf":25,"\u5373\u6574\u4e2a\u8f93\u5165\u5e8f\u5217":24,"\u5373\u6574\u6570\u6570\u7ec4":25,"\u5373\u65f6\u95f4\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":25,"\u5373\u662f\u8de8\u8d8a\u65f6\u95f4\u6b65\u7684\u7f51\u7edc\u8fde\u63a5":25,"\u5373\u6b63\u9762\u548c\u8d1f\u9762":54,"\u5373\u6b63\u9762\u8bc4\u4ef7\u6807\u7b7e\u548c\u8d1f\u9762\u8bc4\u4ef7\u6807\u7b7e":54,"\u5373\u7279\u5f81\u7684\u6570\u7ec4":25,"\u5373\u7f51\u5361\u540d":42,"\u5373\u82e5\u5e72\u6570\u636e\u6587\u4ef6\u8def\u5f84\u7684\u67d0\u4e00\u4e2a":3,"\u5373\u8bbe\u7f6e":17,"\u5373define_py_data_sources2\u5e94\u6539\u4e3a":17,"\u5373input":27,"\u5373rnn\u4e4b\u95f4\u6709\u4e00\u6b21\u5d4c\u5957\u5173\u7cfb":25,"\u5377\u79ef\u5c42":47,"\u5377\u79ef\u5c42\u6743\u91cd":48,"\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u53ef\u4ee5\u8fa8\u8bc6\u56fe\u7247\u4e2d\u7684\u4e3b\u4f53":47,"\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u5728\u56fe\u7247\u5206\u7c7b\u4e0a\u6709\u7740\u60ca\u4eba\u7684\u6027\u80fd":47,"\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u662f\u4e00\u79cd\u4f7f\u7528\u5377\u79ef\u5c42\u7684\u524d\u5411\u795e\u7ecf\u7f51\u7edc":47,"\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u80fd\u591f\u5f88\u597d\u7684\u8868\u793a\u8fd9\u4e24\u7c7b\u4fe1\u606f":47,"\u5377\u79ef\u7f51\u7edc\u662f\u4e00\u79cd\u7279\u6b8a\u7684\u4ece\u8bcd\u5411\u91cf\u8868\u793a\u5230\u53e5\u5b50\u8868\u793a\u7684\u65b9\u6cd5":50,"\u5378\u8f7dpaddlepaddle\u5305":17,"\u538b\u7f29\u6210\u4e00\u4e2a\u5411\u91cf":25,"\u539f\u56e0\u5728\u4e8e\u6ca1\u6709\u628a\u673a\u5668\u4e0acuda\u76f8\u5173\u7684\u9a71\u52a8\u548c\u5e93\u6620\u5c04\u5230\u5bb9\u5668\u5185\u90e8":17,"\u539f\u56e0\u662f\u672a\u8bbe\u7f6ecuda\u8fd0\u884c\u65f6\u73af\u5883\u53d8\u91cf":22,"\u53bb\u8fc7":25,"\u53c2\u6570":[3,7,8,9,10,11,12,14,30,35,42,46,48,54],"\u53c2\u6570\u5171\u4eab\u7684\u914d\u7f6e\u793a\u4f8b\u4e3a":17,"\u53c2\u6570\u521d\u59cb\u5316\u8def\u5f84":53,"\u53c2\u6570\u5373\u53ef":54,"\u53c2\u6570\u540d":48,"\u53c2\u6570\u6570\u91cf":50,"\u53c2\u6570\u670d\u52a1\u5668":35,"\u53c2\u6570\u670d\u52a1\u5668\u7684\u53c2\u6570\u5206\u5757\u5927\u5c0f":36,"\u53c2\u6570\u670d\u52a1\u5668\u7684\u76d1\u542c\u7aef\u53e3":36,"\u53c2\u6570\u670d\u52a1\u5668\u7684\u7f51\u7edc\u8bbe\u5907\u540d\u79f0":36,"\u53c2\u6570\u670d\u52a1\u5668\u7684ip\u5730\u5740":36,"\u53c2\u6570\u670d\u52a1\u5668\u7a00\u758f\u66f4\u65b0\u7684\u53c2\u6570\u5206\u5757\u5927\u5c0f":36,"\u53c2\u6570\u6765\u63a7\u5236\u7f13\u5b58\u65b9\u6cd5":17,"\u53c2\u6570\u6982\u8ff0":37,"\u53c2\u6570\u7684\u89e3\u6790":42,"\u53c2\u6570\u7ef4\u5ea6":46,"\u53c2\u6570\u884c":46,"\u53c2\u6570\u8bbe\u7f6e\u4e86\u5916\u5c42":25,"\u53c2\u6570\u9700\u8981\u5b9e\u73b0":28,"\u53c2\u8003":40,"\u53c2\u8003\u5f3a\u8c03\u90e8\u5206":33,"\u53c2\u8003\u6587\u732e":55,"\u53c2\u8003\u65f6\u95f4\u5e8f\u5217":25,"\u53c2\u8003\u955c\u50cf\u7684":42,"\u53c8":25,"\u53c8\u662f\u4e00\u4e2a\u5355\u5c42\u7684\u5e8f\u5217":24,"\u53c8\u8981\u4fdd\u8bc1\u6570\u636e\u662f\u968f\u673a\u7684":17,"\u53ca":30,"\u53cc\u5411\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u9690\u85cf\u72b6\u6001":28,"\u53cc\u5c42":27,"\u53cc\u5c42\u4e0d\u7b49\u957frnn":25,"\u53cc\u5c42\u5e8f\u5217":24,"\u53cc\u5c42\u5e8f\u5217\u6216\u5355\u5c42\u5e8f\u5217":24,"\u53cc\u5c42\u5e8f\u5217\u6570\u636e\u4e00\u5171\u67094\u4e2a\u6837\u672c":25,"\u53cc\u5c42\u5e8f\u5217\u662f\u4e00\u4e2a\u5d4c\u5957\u7684\u5e8f\u5217":24,"\u53cc\u5c42\u5e8f\u5217\u662fpaddlepaddle\u652f\u6301\u7684\u4e00\u79cd\u975e\u5e38\u7075\u6d3b\u7684\u6570\u636e\u7ec4\u7ec7\u65b9\u5f0f":27,"\u53cc\u5c42\u5e8f\u5217\u6bcf\u4e2asubseq\u4e2d\u6bcf\u4e2a\u5143\u7d20":24,"\u53cc\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":24,"\u53cc\u5c42\u6216\u8005\u5355\u5c42":24,"\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217\u7684dataprovider\u7684\u4ee3\u7801":25,"\u53cc\u5c42rnn":27,"\u53cc\u5c42rnn\u6570\u636e\u968f\u610f\u52a0\u4e86\u4e00\u4e9b\u9694\u65ad":25,"\u53cc\u5c42rnn\u987e\u540d\u601d\u4e49":25,"\u53cc\u7f13\u51b2":39,"\u53cc\u8fdb\u5355\u51fa":27,"\u53cc\u8fdb\u53cc\u51fa":27,"\u53cd\u4e4b\u5219":53,"\u53cd\u5411\u4f20\u64ad":30,"\u53cd\u5411\u4f20\u64ad\u6839\u636e\u8f93\u51fa\u7684\u68af\u5ea6":30,"\u53d1\u884c\u548c\u7ef4\u62a4":29,"\u53d1\u9001\u53c2\u6570\u7684\u7aef\u53e3\u53f7":36,"\u53d6\u51b3\u4e8e\u662f\u5426\u5bfb\u627e\u5230cuda\u5de5\u5177\u94fe":19,"\u53d6\u51b3\u4e8e\u662f\u5426\u5bfb\u627e\u5230gtest":19,"\u53d6\u51b3\u4e8e\u662f\u5426\u5bfb\u627e\u5230swig":19,"\u53d8\u6362\u77e9\u9635":30,"\u53d8\u91cf\u6765\u8bbe\u7f6e\u5185\u5b58\u4e2d\u6682\u5b58\u7684\u6570\u636e\u6761":3,"\u53e3\u5934":25,"\u53e3\u7edf\u8ba1\u5b66\u4fe1\u606f\u7684\u7528\u6237\u624d\u88ab\u5305\u542b\u5728\u6570\u636e\u96c6\u4e2d":51,"\u53e5\u5b50":54,"\u53e5\u5b50\u4e2d\u7684\u7ec4\u5757\u5c06\u4f1a\u626e\u6f14\u67d0\u4e9b\u8bed\u4e49\u89d2\u8272":53,"\u53e5\u5b50\u8868\u793a\u7684\u8ba1\u7b97\u66f4\u65b0\u4e3a\u4e24\u6b65":50,"\u53e6\u4e00\u4e2a\u4f8b\u5b50\u662f\u901a\u8fc7\u5206\u6790\u6bcf\u65e5twitter\u535a\u5ba2\u7684\u6587\u672c\u5185\u5bb9\u6765\u9884\u6d4b\u80a1\u7968\u53d8\u52a8":54,"\u53e6\u4e00\u4e2a\u662f\u5185\u5b58\u64cd\u4f5c\u91cf":33,"\u53e6\u4e00\u4e2a\u662f\u6bcf\u6761\u5e8f\u5217":17,"\u53e6\u4e00\u65b9\u9762":54,"\u53e6\u4e00\u79cd\u65b9\u5f0f\u662f\u5c06\u7f51\u7edc\u5c42\u5212\u5206\u5230\u4e0d\u540c\u7684gpu\u4e0a\u53bb\u8ba1\u7b97":38,"\u53e6\u5916":[25,39],"\u53e6\u5916\u4e24\u4e2a\u5206\u522b\u662f\u6ed1\u52a8\u5747\u503c\u548c\u65b9\u5dee":48,"\u53e6\u5916\u7a00\u758f\u66f4\u65b0\u7684\u7aef\u53e3\u5982\u679c\u592a\u5927\u7684\u8bdd":39,"\u53ea\u4f5c\u4e3aread":27,"\u53ea\u4fdd\u5b58\u6700\u540e\u4e00\u8f6e\u7684\u53c2\u6570":36,"\u53ea\u5141\u8bb8\u6574\u6570\u7684\u661f\u7ea7":51,"\u53ea\u5305\u62ecpaddle\u7684\u4e8c\u8fdb\u5236":20,"\u53ea\u5728\u7b2c\u4e00\u6b21cmake\u7684\u65f6\u5019\u6709\u6548":19,"\u53ea\u622a\u53d6\u4e2d\u5fc3\u65b9\u5f62\u7684\u56fe\u50cf\u533a\u57df":48,"\u53ea\u662f\u53cc\u5c42\u5e8f\u5217\u5c06\u5176\u53c8\u505a\u4e86\u5b50\u5e8f\u5217\u5212\u5206":25,"\u53ea\u662f\u5c06\u53e5\u5b50\u7528\u8fde\u7eed\u5411\u91cf\u8868\u793a\u66ff\u6362\u4e3a\u7528\u7a00\u758f\u5411\u91cf\u8868\u793a":50,"\u53ea\u662f\u8bf4\u660e\u6570\u636e\u7684\u987a\u5e8f\u662f\u91cd\u8981\u7684":3,"\u53ea\u6709":25,"\u53ea\u67092\u4e2a\u914d\u7f6e\u4e0d\u4e00\u6837":46,"\u53ea\u6709\u542b\u6709\u4eba":51,"\u53ea\u6709\u5f53\u8bbe\u7f6e\u4e86spars":36,"\u53ea\u7528\u4e8e\u5728\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u4e2d\u6307\u5b9a\u8f93\u5165\u6570\u636e":27,"\u53ea\u80fd\u6d4b\u8bd5\u5355\u4e2a\u6a21\u578b":38,"\u53ea\u8981\u4e00\u7cfb\u5217\u7279\u5f81\u6570\u636e\u4e2d\u7684":25,"\u53ea\u8bfbmemory\u8f93\u5165":27,"\u53ea\u9488\u5bf9\u5185\u5b58":17,"\u53ea\u9700\u4e2d\u65ad":34,"\u53ea\u9700\u4f7f\u7528":34,"\u53ea\u9700\u5220\u9664\u6700\u540e\u4e00\u884c\u4e2d\u7684\u6ce8\u91ca\u5e76\u628a":54,"\u53ea\u9700\u5728linux\u4e0b\u8fd0\u884c\u5982\u4e0b\u547d\u4ee4":55,"\u53ea\u9700\u7528\u4f60\u5b9a\u4e49\u7684\u76ee\u5f55\u4fee\u6539":34,"\u53ea\u9700\u77e5\u9053\u8fd9\u662f\u4e00\u4e2a\u6807\u8bb0\u5c5e\u6027\u7684\u65b9\u6cd5\u5c31\u53ef\u4ee5\u4e86":3,"\u53ea\u9700\u8981":28,"\u53ea\u9700\u8981\u4e00\u884c\u4ee3\u7801\u5c31\u53ef\u4ee5\u8c03\u7528\u8fd9\u4e2apydataprovider2":3,"\u53ea\u9700\u8981\u5728\u51fd\u6570\u4e2d\u8c03\u7528\u591a\u6b21yield\u5373\u53ef":3,"\u53ea\u9700\u8981\u7b80\u5355\u5730\u8fd0\u884c\u4ee5\u4e0b\u547d\u4ee4":55,"\u53ea\u9700\u8981\u7b80\u5355\u7684\u8fd0\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u5373\u53ef":52,"\u53ea\u9700\u8981\u8fd0\u884c":52,"\u53ef\u4ee5":[25,34],"\u53ef\u4ee5\u4f20\u5165\u4e00\u4e2a\u51fd\u6570":3,"\u53ef\u4ee5\u4f30\u8ba1\u51fa\u5982\u679c\u6a21\u578b\u91c7\u7528\u4e0d\u53d8\u7684\u8f93\u51fa\u6700\u5c0f\u7684cost0\u662f\u591a\u5c11":17,"\u53ef\u4ee5\u4f7f\u7528":[17,39],"\u53ef\u4ee5\u4f7f\u7528\u547d\u4ee4":22,"\u53ef\u4ee5\u4f7f\u7528\u5982\u4e0b\u4ee3\u7801":17,"\u53ef\u4ee5\u4f7f\u7528\u8be5\u53c2\u6570":36,"\u53ef\u4ee5\u4f7f\u7528kubernetes\u7684\u547d\u4ee4\u884c\u5de5\u5177\u521b\u5efajob":42,"\u53ef\u4ee5\u4f7f\u7528python\u7684":5,"\u53ef\u4ee5\u51cf\u5c11\u7f13\u5b58\u6c60\u7684\u5927\u5c0f":17,"\u53ef\u4ee5\u521b\u5efa\u4e00\u4e2a":41,"\u53ef\u4ee5\u53c2\u7167\u4e0b\u9762\u7684\u547d\u4ee4\u8fdb\u884c\u5b89\u88c5":47,"\u53ef\u4ee5\u53c2\u8003":[25,28,39,40,42,55],"\u53ef\u4ee5\u53c2\u8003\u4fdd\u5b58\u5728":46,"\u53ef\u4ee5\u542f\u52a8":39,"\u53ef\u4ee5\u542f\u52a8\u4e00\u4e2atrainer\u8fdb\u7a0b":39,"\u53ef\u4ee5\u542f\u52a8\u5206\u5e03\u5f0f\u4f5c\u4e1a":39,"\u53ef\u4ee5\u544a\u8bc9\u60a8\u67d0\u4e2a\u64cd\u4f5c\u5230\u5e95\u82b1\u4e86\u591a\u957f\u65f6\u95f4":33,"\u53ef\u4ee5\u5728\u5171\u4eab\u5b58\u50a8\u4e0a\u67e5\u770b\u8f93\u51fa\u7684\u65e5\u5fd7\u548c\u6a21\u578b":42,"\u53ef\u4ee5\u5728\u5f88\u5927\u7a0b\u5ea6\u4e0a\u6d88\u9664\u6b67\u4e49":53,"\u53ef\u4ee5\u5728\u7f51\u7ad9\u4e0a\u627e\u5230":53,"\u53ef\u4ee5\u5728kubernetes\u4e2d\u6309\u7167":40,"\u53ef\u4ee5\u5c06\u67d0\u4e00\u4e2a\u51fd\u6570\u6807\u8bb0\u6210\u4e00\u4e2apydataprovider2":3,"\u53ef\u4ee5\u5c06\u78c1\u76d8\u4e0a\u67d0\u4e2a\u76ee\u5f55\u5171\u4eab\u7ed9\u7f51\u7edc\u4e2d\u5176\u4ed6\u673a\u5668\u8bbf\u95ee":40,"\u53ef\u4ee5\u5c06memory\u7406\u89e3\u4e3a\u4e00\u4e2a\u65f6\u5ef6\u64cd\u4f5c":27,"\u53ef\u4ee5\u5e2e\u60a8\u63d0\u4f9b\u4e00\u4e9b\u5b9a\u4f4d\u6027\u80fd\u74f6\u9888\u7684\u5efa\u8bae":33,"\u53ef\u4ee5\u6307\u5b9a\u54ea\u4e00\u4e2a\u8f93\u5165\u548c\u8f93\u51fa\u5e8f\u5217\u4fe1\u606f\u4e00\u81f4":25,"\u53ef\u4ee5\u6309\u5982\u4e0b\u7684\u7ed3\u6784\u6765\u51c6\u5907\u6570\u6910":54,"\u53ef\u4ee5\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":[24,27],"\u53ef\u4ee5\u662f\u4e00\u4e2a\u975e\u5e8f\u5217":27,"\u53ef\u4ee5\u662f\u4ee5\u4e0b\u51e0\u79cd":30,"\u53ef\u4ee5\u663e\u793a\u5730\u6307\u5b9a\u4e00\u4e2alayer\u7684\u8f93\u51fa\u7528\u4e8e\u521d\u59cb\u5316memori":27,"\u53ef\u4ee5\u6709\u4ee5\u4e0b\u4e24\u79cd":27,"\u53ef\u4ee5\u6709\u53ef\u5b66\u4e60\u7684\u53c2\u6570":39,"\u53ef\u4ee5\u6709\u6548\u51cf\u5c0f\u7f51\u7edc\u7684\u963b\u585e":36,"\u53ef\u4ee5\u67e5\u770b":42,"\u53ef\u4ee5\u67e5\u770b\u6b64pod\u8fd0\u884c\u7684\u5bbf\u4e3b\u673a":41,"\u53ef\u4ee5\u6d4b\u8bd5\u591a\u4e2a\u6a21\u578b":38,"\u53ef\u4ee5\u7528\u4e8e\u4ece\u5b98\u65b9\u7f51\u7ad9\u4e0a\u4e0b\u8f7dcifar":47,"\u53ef\u4ee5\u7528\u4e8e\u5c0f\u91cf\u6570\u636e\u7684\u9a8c\u8bc1":40,"\u53ef\u4ee5\u7528\u4e8e\u63a5\u6536\u548cpydataprovider2\u4e00\u6837\u7684\u8f93\u5165\u6570\u636e\u5e76\u8f6c\u6362\u6210\u9884\u6d4b\u63a5\u53e3\u6240\u9700\u7684\u6570\u636e\u7c7b\u578b":5,"\u53ef\u4ee5\u7528\u6765\u8ba1\u7b97cpu\u51fd\u6570\u6216cuda\u5185\u6838\u7684\u65f6\u95f4\u6d88\u8017":33,"\u53ef\u4ee5\u770b\u4f5c\u662f\u4e00\u4e2a\u975e\u5e8f\u5217\u8f93\u5165":24,"\u53ef\u4ee5\u7cbe\u786e\u8bf4\u660e\u4e00\u4e2a\u957f\u8017\u65f6\u64cd\u4f5c\u7684\u5177\u4f53\u539f\u56e0":33,"\u53ef\u4ee5\u8003\u8651\u4f7f\u7528\u4e00\u4e9b\u4f18\u5316\u7b97\u6cd5":17,"\u53ef\u4ee5\u8bbe\u7f6e":47,"\u53ef\u4ee5\u8fd0\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u6765\u751f\u6210":52,"\u53ef\u4ee5\u8fd0\u884c\u811a\u672ctrain":47,"\u53ef\u4ee5\u9009\u62e9\u662f\u5426\u4f7f\u7528\u53c2\u6570":38,"\u53ef\u4ee5\u901a\u8fc7":40,"\u53ef\u4ee5\u901a\u8fc7\u4fee\u6539\u8fd9\u4e24\u4e2a\u51fd\u6570\u6765\u5b9e\u73b0\u590d\u6742\u7684\u7f51\u7edc\u914d\u7f6e":28,"\u53ef\u4ee5\u901a\u8fc7\u8c03\u7528":5,"\u53ef\u4ee5\u901a\u8fc7show_parameter_stats_period\u8bbe\u7f6e\u6253\u5370\u53c2\u6570\u4fe1\u606f\u7b49":50,"\u53ef\u7528\u4e8e\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u89e3\u6790\u8fd9\u4e9b\u53c2\u6570":38,"\u53ef\u7528\u5728\u6d4b\u8bd5\u6216\u8bad\u7ec3\u65f6\u6307\u5b9a\u521d\u59cb\u5316\u6a21\u578b":50,"\u53ef\u80fd\u4f1a\u53d1\u751f\u4e00\u4e9b\u51b2\u7a81":29,"\u53ef\u80fd\u4f1a\u5bfc\u81f4\u51fa\u9519":42,"\u53ef\u80fd\u7684\u4ee3\u7801\u4e3a":17,"\u53ef\u80fd\u7684\u539f\u56e0\u662f":17,"\u53ef\u80fd\u7684\u53c2\u6570\u662f":39,"\u53ef\u80fd\u7684\u547d\u4ee4\u662f":29,"\u53ef\u80fd\u7684\u60c5\u51b5\u4e0b":33,"\u53ef\u9009":[3,30],"\u53f3\u8fb9\u662f":48,"\u5403":25,"\u5403\u996d":25,"\u5404\u65b9\u9762":25,"\u5404\u9879\u53c2\u6570\u7684\u8be6\u7ec6\u8bf4\u660e\u53ef\u4ee5\u5728\u547d\u4ee4\u884c\u53c2\u6570\u76f8\u5173\u6587\u6863\u4e2d\u627e\u5230":47,"\u5408":25,"\u5408\u5e76":55,"\u5408\u5e76\u6bcf\u4e2a":55,"\u5408\u7406":25,"\u540c\u65f6":[17,33],"\u540c\u65f6\u4e5f\u4f1a\u8bfb\u53d6\u76f8\u5173\u8def\u5f84\u53d8\u91cf\u6765\u8fdb\u884c\u641c\u7d22":19,"\u540c\u65f6\u4e5f\u53ef\u4ee5\u52a0\u901f\u5f00\u59cb\u8bad\u7ec3\u524d\u6570\u636e\u8f7d\u5165\u7684\u8fc7\u7a0b":17,"\u540c\u65f6\u4e5f\u80fd\u591f\u5f15\u5165\u66f4\u52a0\u590d\u6742\u7684\u8bb0\u5fc6\u673a\u5236":27,"\u540c\u65f6\u4f1a\u8ba1\u7b97\u5206\u7c7b\u51c6\u786e\u7387":50,"\u540c\u65f6\u4f60\u53ef\u4ee5\u4f7f\u7528":48,"\u540c\u65f6\u4f7f\u7528\u4e86l2\u6b63\u5219":50,"\u540c\u65f6\u5176\u5185\u90e8\u5b9e\u73b0\u53ef\u4ee5\u907f\u514d\u7eafcpu\u7248\u672cpaddlepaddle\u5728\u6267\u884c\u672c\u8bed\u53e5\u65f6\u53d1\u751f\u5d29\u6e83":33,"\u540c\u65f6\u53ef\u4ee5\u4f7f\u7528\u6237\u53ea\u5173\u6ce8\u5982\u4f55\u4ece\u6587\u4ef6\u4e2d\u8bfb\u53d6\u6bcf\u4e00\u6761\u6570\u636e":3,"\u540c\u65f6\u5728\u5185\u5b58\u91cc\u76f4\u63a5\u968f\u5373\u9009\u53d6\u6570\u636e\u6765\u505ashuffl":17,"\u540c\u65f6\u5c06\u53c2\u6570\u521d\u59cb\u5316\u4e3a":17,"\u540c\u65f6\u6211\u4eec\u5e0c\u671b\u5e7f\u5927\u5f00\u53d1\u8005\u79ef\u6781\u63d0\u4f9b\u53cd\u9988\u548c\u8d21\u732e\u6e90\u4ee3\u7801":0,"\u540c\u65f6\u6b22\u8fce\u8d21\u732e\u66f4\u591a\u7684\u5b89\u88c5\u5305":21,"\u540c\u65f6\u7528\u6237\u9700\u8981\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u6307\u5b9a":38,"\u540c\u65f6\u8bbe\u7f6e\u5185\u5b58\u7f13\u5b58\u529f\u80fd":17,"\u540c\u65f6\u8bbe\u7f6e\u5b83\u7684input_types\u5c5e\u6027":3,"\u540c\u65f6\u9884\u6d4b\u7f51\u7edc\u901a\u5e38\u76f4\u63a5\u8f93\u51fa\u6700\u540e\u4e00\u5c42\u7684\u7ed3\u679c\u800c\u4e0d\u662f\u50cf\u8bad\u7ec3\u7f51\u7edc\u4e00\u6837\u518d\u63a5\u4e00\u5c42cost":5,"\u540c\u6837\u4e5f\u53ef\u4ee5\u5728\u6d4b\u8bd5\u6a21\u5f0f\u4e2d\u6307\u5b9a\u6a21\u578b\u8def\u5f84":36,"\u540c\u6837\u529f\u80fd\u7684":39,"\u540c\u6837\u53ef\u4ee5\u6269\u5c55\u5230\u53cc\u5c42\u5e8f\u5217\u7684\u5904\u7406\u4e0a":27,"\u540c\u6b65\u4ee3\u7801":29,"\u540c\u6b65\u6267\u884c\u64cd\u4f5c\u7684\u7ebf\u7a0b\u6570":36,"\u540d\u79f0":50,"\u540e":[17,19,42,54],"\u540e\u5411\u4f20\u64ad":30,"\u540e\u5411\u4f20\u64ad\u7ed9\u5b9a\u8f93\u51fa\u7684\u68af\u5ea6":30,"\u540e\u9762\u8fde\u5168\u8fde\u63a5\u5c42\u548csoftmax\u5c42":54,"\u5411\u91cfenable_parallel_vector":35,"\u5426":19,"\u5426\u5219":[2,34,52],"\u5426\u5219\u4f60\u9700\u8981\u81ea\u5df1\u4e0b\u8f7d":55,"\u5426\u5219\u4f7f\u7528\u591a\u673a\u8bad\u7ec3":36,"\u5426\u5219\u4f7f\u7528cpu\u6a21\u5f0f":36,"\u5426\u5219\u4f7f\u7528gpu":38,"\u5426\u5219\u5b83\u4ee5\u4e00\u4e2a\u5e8f\u5217\u8f93\u5165":28,"\u5426\u5219\u9700\u8981\u9009\u62e9\u975eavx\u7684paddlepaddl":20,"\u5426\u5219\u9891\u7e41\u7684\u591a\u8282\u70b9\u5de5\u4f5c\u7a7a\u95f4\u90e8\u7f72\u53ef\u80fd\u4f1a\u5f88\u9ebb\u70e6":34,"\u5426\u5b9a":53,"\u542b\u4e49":[48,54],"\u542b\u53ef\u5b66\u4e60\u53c2\u6570":39,"\u542b\u6709":51,"\u542b\u6709\u5e8f\u5217\u4fe1\u606f\u548c\u5b50\u5e8f\u5217\u4fe1\u606f\u7684\u7a20\u5bc6\u5411\u91cf":30,"\u542b\u6709\u5e8f\u5217\u4fe1\u606f\u7684\u6574\u6570":30,"\u542b\u6709\u5e8f\u5217\u4fe1\u606f\u7684\u7a20\u5bc6\u5411\u91cf":30,"\u542f\u52a8\u4e00\u4e2apserver\u8fdb\u7a0b":39,"\u542f\u52a8\u4e4b\u540e":39,"\u542f\u52a8\u5bb9\u5668\u5f00\u59cb\u8bad\u7ec3":42,"\u542f\u52a8\u5e76\u884c\u5411\u91cf\u7684\u9608\u503c":36,"\u542f\u52a8\u5feb\u901f\u5e94\u7b54":36,"\u542f\u7528\u68af\u5ea6\u53c2\u6570\u7684\u9608\u503c":36,"\u5440":25,"\u544a\u8bc9paddle\u54ea\u4e2a\u6587\u4ef6\u662f\u795e\u7ecf\u7f51\u7edc\u7684\u914d\u7f6e\u6587\u4ef6":52,"\u544a\u8bc9paddle\u5c06\u6a21\u578b\u4fdd\u5b58\u5728":52,"\u5468\u56f4":25,"\u547d\u4ee4":34,"\u547d\u4ee4\u4e3a":[20,41],"\u547d\u4ee4\u521b\u5efa\u65b0\u955c\u50cf":41,"\u547d\u4ee4\u53ef\u4ee5\u8bbe\u7f6e":19,"\u547d\u4ee4\u6307\u5b9a\u7684\u53c2\u6570\u4f1a\u4f20\u5165\u7f51\u7edc\u914d\u7f6e\u4e2d":50,"\u547d\u4ee4\u884c\u53c2\u6570\u6587\u6863":50,"\u547d\u4ee4\u8bbe\u7f6e\u8be5\u7c7b\u7f16\u8bd1\u9009\u9879":19,"\u547d\u4ee4\u8fd0\u884c\u955c\u50cf":20,"\u547d\u4ee4\u9009\u9879\u5e76\u4e14":34,"\u547d\u4ee4\u9884\u5148\u4e0b\u8f7d\u955c\u50cf":20,"\u547d\u540d\u7a7a\u95f4":40,"\u547d\u540d\u7a7a\u95f4\u4e3b\u8981\u4e3a\u4e86\u5bf9\u8c61\u8fdb\u884c\u903b\u8f91\u4e0a\u7684\u5206\u7ec4\u4fbf\u4e8e\u7ba1\u7406":40,"\u548c":[17,18,19,20,25,28,29,30,31,33,34,38,39,40,46,47,50,52,55],"\u548c\u4e00\u4e2a\u5df2\u7ecf\u5206\u8bcd\u540e\u7684\u53e5\u5b50":25,"\u548c\u4e09\u79cd\u5e8f\u5217\u6a21\u5f0f":3,"\u548c\u4e2d\u6587\u6587\u6863":31,"\u548c\u4e4b\u524d\u51cf\u5c0f\u901a\u8fc7\u51cf\u5c0f\u7f13\u5b58\u6c60\u6765\u51cf\u5c0f\u5185\u5b58\u5360\u7528\u7684\u539f\u7406\u4e00\u81f4":17,"\u548c\u504f\u7f6e\u5411\u91cf":30,"\u548c\u533a\u57df\u6807\u8bb0":53,"\u548c\u53cc\u5c42\u5e8f\u5217\u542b\u6709subseq":24,"\u548c\u5728":3,"\u548c\u5bf9\u8c61\u5b58\u50a8api":40,"\u548c\u5dee\u8bc4":50,"\u548c\u5e8f\u5217\u4e2d\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee\u540c":24,"\u548c\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u8f93\u5165":28,"\u548c\u68af\u5ea6\u622a\u65ad":50,"\u548c\u6a21\u578b\u8def\u5f84":54,"\u548c\u6c60\u5316":39,"\u548c\u771f\u5b9e":18,"\u548c\u793a\u4f8b2\u4e2d\u7684\u914d\u7f6e\u7c7b\u4f3c":25,"\u548c\u7b2c6\u884c\u7684":55,"\u548c\u90e8\u5206layer":27,"\u548cadam\u5b66\u4e60\u65b9\u6cd5":55,"\u548cargument":53,"\u548cavgpool":24,"\u548ccudnn":22,"\u548cpython\u63a5\u53e3\u6765\u63d0\u53d6\u7279\u5f81":48,"\u54c1\u8d28":25,"\u54ea\u4e9b\u4e0d\u662f":25,"\u552f\u4e00\u9700\u8981\u505a\u7684\u662f\u5c06\u76f8\u5e94\u7c7b\u578b\u8bbe\u7f6e\u4e3a\u8f93\u5165":28,"\u5546\u52a1":25,"\u554a":25,"\u559c\u5267\u7247":51,"\u5668":50,"\u56db\u79cd\u6570\u636e\u7c7b\u578b":3,"\u56de\u5f52\u8bef\u5dee\u4ee3\u4ef7\u5c42":18,"\u56e0\u4e3a\u5168\u8fde\u63a5\u5c42\u7684\u6fc0\u6d3b\u53ef\u4ee5\u662fsoftmax":30,"\u56e0\u4e3a\u5176\u4e3a\u8d1f\u8d23\u63d0\u4f9bgradient":39,"\u56e0\u4e3a\u5355\u4e2a\u8c13\u8bcd\u4e0d\u80fd\u7cbe\u786e\u5730\u63cf\u8ff0\u8c13\u8bcd\u4fe1\u606f":53,"\u56e0\u4e3a\u53c2\u6570":38,"\u56e0\u4e3a\u589e\u52a0\u8fd9\u4e2a\u503c":39,"\u56e0\u4e3a\u5b83\u4eec\u7684\u8ba1\u7b97\u6548\u7387\u6bd4":28,"\u56e0\u4e3a\u5b83\u6bd4":28,"\u56e0\u4e3a\u5b98\u65b9\u955c\u50cf":42,"\u56e0\u4e3a\u5bb9\u5668\u5185\u7684\u6587\u4ef6\u90fd\u662f\u6682\u65f6\u5b58\u5728\u7684":40,"\u56e0\u4e3a\u8be5\u6587\u4ef6\u53ef\u9002\u7528\u4e8e\u9884\u6d4b":47,"\u56e0\u4e3apython\u7684\u641c\u7d22\u8def\u5f84\u662f\u4f18\u5148\u5df2\u7ecf\u5b89\u88c5\u7684python\u5305":17,"\u56e0\u6b64":[2,3,25,27,30,39],"\u56e0\u6b64\u4f7f\u7528":3,"\u56e0\u6b64\u53cc\u5c42\u5e8f\u5217\u7684\u914d\u7f6e\u4e2d":25,"\u56e0\u6b64\u53ef\u4ee5\u4f7f\u7528\u8be5\u9009\u9879":46,"\u56e0\u6b64\u53ef\u80fd\u4f1a\u6709\u4e00\u4e9b\u9519\u8bef\u548c\u4e0d\u4e00\u81f4\u53d1\u751f":51,"\u56e0\u6b64\u5982\u679c\u8fd9\u4e2a\u811a\u672c\u8fd0\u884c\u5931\u8d25":47,"\u56e0\u6b64\u5b83\u662finteger_value_sub_sequ":25,"\u56e0\u6b64\u6211\u4eec\u91c7\u7528\u8f93\u51fa\u7684\u52a0\u6743\u548c":30,"\u56e0\u6b64\u6709\u4e24\u79cd\u89e3\u51b3\u65b9\u6848":3,"\u56e0\u6b64\u7528\u6237\u5e76\u4e0d\u9700\u8981\u5173\u5fc3\u5b83\u4eec":35,"\u56e0\u6b64\u8be5\u5c42\u4e2d\u6ca1\u6709\u504f\u7f6e":48,"\u56e0\u6b64\u9519\u8bef\u7684\u4f7f\u7528\u4e8c\u8fdb\u5236\u53d1\u884c\u7248\u53ef\u80fd\u4f1a\u5bfc\u81f4\u8fd9\u79cd\u9519\u8bef":17,"\u56e0\u6b64init_hook\u5c3d\u91cf\u4f7f\u7528":3,"\u56e2\u8d2d\u7f51\u7ad9":54,"\u56fe":[48,54],"\u56fe2\u662f\u53cc\u5411lstm\u7f51\u7edc":54,"\u56fe3\u662f\u4e09\u5c42lstm\u7ed3\u6784":54,"\u56fe\u4e2d\u6bcf\u4e2a\u7070\u8272\u65b9\u5757\u662f\u4e00\u53f0\u673a\u5668":39,"\u56fe\u50cf\u5206\u7c7b":49,"\u56fe\u50cf\u5927\u5c0f\u4e3a3":48,"\u56fe\u50cf\u63cf\u8ff0":55,"\u56fe\u7247\u5206\u4e3a10\u7c7b":47,"\u56fe\u7684\u5e95\u90e8\u662fword":54,"\u56fe\u8868":54,"\u5728":[3,22,24,25,28,29,34,39,48,50,51,53],"\u5728\u4e00\u4e2a\u529f\u80fd\u9f50\u5168\u7684kubernetes\u673a\u7fa4\u91cc":41,"\u5728\u4e00\u4e2a\u53c2\u6570\u7684\u68af\u5ea6\u88ab\u66f4\u65b0\u540e":30,"\u5728\u4e00\u4e2a\u5468\u671f\u5185\u6d4b\u8bd5\u6240\u6709\u6570\u636e":53,"\u5728\u4e00\u8f6e\u4e2d\u6bcfsave":36,"\u5728\u4e0a\u9762\u4ee3\u7801\u4e2d":25,"\u5728\u4e0b\u4e00\u7bc7\u4e2d":41,"\u5728\u4e0b\u9762\u4f8b\u5b50\u91cc":50,"\u5728\u4e0b\u9762\u7684\u4f8b\u5b50\u4e2d":47,"\u5728\u4e0d\u540c\u64cd\u4f5c\u7cfb\u7edf":40,"\u5728\u4e0d\u540c\u7684\u5e94\u7528\u91cc":39,"\u5728\u4e4b\u540e\u7684":17,"\u5728\u4ee3\u7801\u5ba1\u67e5":29,"\u5728\u4efb\u610f\u957f\u5ea6\u8bed\u53e5\u7ffb\u8bd1\u7684\u573a\u666f\u4e0b\u90fd\u53ef\u4ee5\u89c2\u5bdf\u5230\u5176\u6548\u679c\u7684\u63d0\u5347":55,"\u5728\u4f7f\u7528\u5b83\u4e4b\u524d\u8bf7\u5b89\u88c5paddlepaddle\u7684python":54,"\u5728\u5168\u8fde\u63a5\u5c42\u4e2d":30,"\u5728\u51fd\u6570":42,"\u5728\u5206\u5e03\u5f0f\u73af\u5883\u4e2d\u6d4b\u8bd5":36,"\u5728\u5206\u5e03\u5f0f\u8bad\u7ec3\u4e2d":36,"\u5728\u5355\u5c42\u6570\u636e\u7684\u57fa\u7840\u4e0a":25,"\u5728\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u52a0\u8f7d\u548c\u4fdd\u5b58\u53c2\u6570":36,"\u5728\u53c2\u6570\u670d\u52a1\u5668\u7ec8\u7aef\u6bcflog":36,"\u5728\u53cc\u5c42rnn\u4e2d\u7684\u7ecf\u5178\u60c5\u51b5\u662f\u5c06\u5185\u5c42\u7684\u6bcf\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217\u6570\u636e":25,"\u5728\u53cd\u5411\u4f20\u9012\u7684\u65f6\u5019":17,"\u5728\u53d8\u6362\u65f6\u9700\u8981\u5c06\u8f93\u5165\u5e8f\u5217\u4f20\u5165":25,"\u5728\u5404\u4e2a\u673a\u5668\u4e0a\u8fd0\u884c\u5982\u4e0b\u547d\u4ee4":39,"\u5728\u540c\u4e00\u4e2a\u547d\u540d\u7a7a\u95f4\u4e2d":40,"\u5728\u58f0\u660edataprovider\u7684\u65f6\u5019\u4f20\u5165dictionary\u4f5c\u4e3a\u53c2\u6570":3,"\u5728\u591acpu\u8bad\u7ec3\u65f6\u5171\u4eab\u8be5\u53c2\u6570":36,"\u5728\u5bb9\u5668\u521b\u5efa\u540e":42,"\u5728\u5bf9\u5bb9\u5668\u7684\u63cf\u8ff0":42,"\u5728\u5c42\u4e2d\u6307\u5b9a":38,"\u5728\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u4e2d":27,"\u5728\u5f00\u59cb\u8bad\u7ec3\u4e4b\u524d":47,"\u5728\u5f53\u524d\u7684\u5b9e\u73b0\u65b9\u5f0f\u4e0b":30,"\u5728\u5f97\u5230":42,"\u5728\u6211\u4eec\u7684\u4f8b\u5b50\u4e2d":28,"\u5728\u6211\u4eec\u7684\u6d4b\u8bd5\u4e2d":54,"\u5728\u62c9":29,"\u5728\u63d0\u4ea4\u524d\u68c0\u67e5\u4e00\u4e9b\u57fa\u672c\u4e8b\u5b9c":29,"\u5728\u6570\u636e\u52a0\u8f7d\u548c\u7f51\u7edc\u914d\u7f6e\u5b8c\u6210\u4e4b\u540e":50,"\u5728\u6587\u4ef6":52,"\u5728\u6587\u4ef6\u7684\u5f00\u59cb":39,"\u5728\u6709\u65b0\u7684\u5355\u8bcd\u6765\u4e34\u7684\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u9aa4\u5185":54,"\u5728\u672c\u4f8b\u4e2d":[25,38],"\u5728\u672c\u4f8b\u4e2d\u6ca1\u6709\u4f7f\u7528":3,"\u5728\u672c\u6559\u7a0b\u4e2d":[28,47],"\u5728\u672c\u6587\u4e2d":34,"\u5728\u672c\u6587\u4e2d\u4f7f\u7528\u7684":34,"\u5728\u672c\u6f14\u793a\u4e2d":54,"\u5728\u672c\u793a\u4f8b\u4e2d":[25,54],"\u5728\u672c\u8282\u4e2d":28,"\u5728\u6811\u7684\u6bcf\u4e00\u5c42\u4e0a":36,"\u5728\u6a21\u578b\u6587\u4ef6\u7684":34,"\u5728\u6a21\u578b\u914d\u7f6e\u4e2d\u901a\u8fc7":50,"\u5728\u6b64":[0,35,38],"\u5728\u6b64\u4e3a\u65b9\u4fbf\u5bf9\u6bd4\u4e0d\u540c\u7f51\u7edc\u7ed3\u6784":50,"\u5728\u6b64\u611f\u8c22":46,"\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u4e2d":28,"\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u7684\u5b50\u5e8f\u5217\u957f\u5ea6\u53ef\u4ee5\u4e0d\u76f8\u7b49":25,"\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u957f":28,"\u5728\u6bcf\u4e2a\u673a\u5668\u4e2d":39,"\u5728\u6bcf\u4e2apod\u4e0a\u90fd\u901a\u8fc7volume\u65b9\u5f0f\u6302\u8f7d\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf\u7684\u4e00\u4e2a\u76ee\u5f55\u7528\u4e8e\u4fdd\u5b58\u8bad\u7ec3\u6570\u636e\u548c\u8f93\u51fa\u7ed3\u679c":42,"\u5728\u6bcf\u8bad\u7ec3":52,"\u5728\u6d4b\u8bd5\u9636\u6bb5":36,"\u5728\u6d4b\u8bd5\u9636\u6bb5\u5b83\u4eec\u5c06\u4f1a\u88ab\u52a0\u8f7d\u5230\u6a21\u578b\u4e2d":48,"\u5728\u6f14\u793a\u4e2d":53,"\u5728\u7269\u7406\u673a\u4e0a\u624b\u52a8\u90e8\u7f72":40,"\u5728\u751f\u6210\u65f6":28,"\u5728\u751f\u6210\u8fc7\u7a0b\u4e2d":55,"\u5728\u751f\u6210\u8fc7\u7a0b\u4e2d\u6211\u4eec\u4f7f\u7528sgd\u8bad\u7ec3\u7b97\u6cd5":55,"\u5728\u7528\u6237\u6587\u4ef6user":52,"\u5728\u7535\u5f71\u6587\u4ef6movi":52,"\u5728\u793a\u4f8b\u4e2d\u6211\u4eec\u4f7f\u7528attention\u7248\u672c\u7684gru\u7f16\u89e3\u7801\u7f51\u7edc":55,"\u5728\u793a\u4f8b\u4e2d\u6211\u4eec\u4f7f\u7528sgd\u8bad\u7ec3\u7b97\u6cd5":55,"\u5728\u793a\u4f8b\u4e2d\u6211\u4eec\u5b9a\u4e49\u4e86\u4e00\u4e2a\u5e8f\u5217\u5230\u5e8f\u5217\u7684\u751f\u6210\u6570\u636e":55,"\u5728\u793a\u4f8b\u4e2d\u6211\u4eec\u5b9a\u4e49\u4e86\u4e00\u4e2a\u5e8f\u5217\u5230\u5e8f\u5217\u7684\u8bad\u7ec3\u548c\u6d4b\u8bd5\u6570\u636e":55,"\u5728\u7a0b\u5e8f\u5f00\u59cb\u9636\u6bb5":5,"\u5728\u7b2c\u4e00\u884c\u4e2d\u6211\u4eec\u8f7d\u5165\u7528\u4e8e\u5b9a\u4e49\u7f51\u7edc\u7684\u51fd\u6570":47,"\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d":30,"\u5728\u7f51\u7edc\u914d\u7f6e\u91cc":3,"\u5728\u7ffb\u8bd1\u6cd5\u8bed\u53e5\u5b50\u4e4b\u524d":55,"\u5728\u811a\u672c":52,"\u5728\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1\u4e2d":24,"\u5728\u8bad\u7ec3\u4e2d":28,"\u5728\u8bad\u7ec3\u4e4b\u524d":42,"\u5728\u8bad\u7ec3\u4e86":52,"\u5728\u8bad\u7ec3\u4e86\u51e0\u4e2a\u8f6e\u6b21\u4ee5\u540e":52,"\u5728\u8bad\u7ec3\u5b8c\u6210\u540e":47,"\u5728\u8bad\u7ec3\u6570\u96c6\u4e0a\u8bad\u7ec3\u751f\u6210\u8bcd\u5411\u91cf\u5b57\u5178":46,"\u5728\u8bad\u7ec3\u65f6":41,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d":[42,55],"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u6bcfshow":36,"\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u8fdb\u884c\u6d4b\u8bd5":2,"\u5728\u8be5\u914d\u7f6e\u76847":25,"\u5728\u8bed\u8a00\u751f\u6210\u9886\u57df\u4e2d":55,"\u5728\u8d2d\u7269\u7f51\u7ad9\u4e0a":50,"\u5728\u8f6f\u4ef6\u5de5\u7a0b\u7684\u8303\u7574\u91cc":33,"\u5728\u8f93\u51fa\u7684\u8fc7\u7a0b\u4e2d":27,"\u5728\u8fd0\u884c":54,"\u5728\u8fd9\u4e2a\u4efb\u52a1\u4e2d":55,"\u5728\u8fd9\u4e2a\u4f8b\u5b50\u4e2d":[18,54],"\u5728\u8fd9\u4e2a\u4f8b\u5b50\u91cc":[30,41],"\u5728\u8fd9\u4e2a\u51fd\u6570\u4e2d":25,"\u5728\u8fd9\u4e2a\u6559\u7a0b\u4e2d":33,"\u5728\u8fd9\u4e2a\u6a21\u578b\u4e2d":28,"\u5728\u8fd9\u4e2a\u793a\u4f8b\u4e2d":53,"\u5728\u8fd9\u4e9b\u7f51\u7edc\u4e2d":52,"\u5728\u8fd9\u4e9blayer\u4e2d":25,"\u5728\u8fd9\u6b65\u4efb\u52a1\u4e2d":54,"\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b":[28,30],"\u5728\u8fd9\u79cd\u7ed3\u6784\u4e2d":27,"\u5728\u8fd9\u7bc7\u6587\u6863\u91cc":41,"\u5728\u8fd9\u7bc7\u6587\u7ae0\u91cc":42,"\u5728\u8fd9\u91cc":27,"\u5728\u8fd9\u91cc\u6211\u4eec\u4f7f\u7528\u5168\u8fde\u63a5\u5c42\u4f5c\u4e3a\u4f8b\u5b50\u6765\u5c55\u793a\u5b9e\u73b0\u65b0\u7f51\u7edc\u5c42\u6240\u9700\u8981\u7684\u56db\u4e2a\u6b65\u9aa4":30,"\u5728\u914d\u7f6e\u4e2d\u9700\u8981\u8bfb\u53d6\u5916\u90e8\u5b57\u5178":3,"\u5728\u914d\u7f6e\u6587\u4ef6\u4e2d\u7684":48,"\u5728\u91c7\u7528sgd":17,"\u5728\u96c6\u7fa4\u4e0a\u8bad\u7ec3\u4e00\u4e2a\u7a00\u758f\u6a21\u578b\u9700\u8981\u52a0\u4e0a\u4e0b\u9762\u7684\u53c2\u6570":38,"\u5728\u9884\u5904\u7406\u542b\u6709\u591a\u884c\u6570\u6910\u7684\u6587\u672c\u6587\u4ef6\u65f6\u53c2\u6570\u8bbe\u7f6e\u7a0d\u6709\u4e0d\u540c":54,"\u5728\u9884\u6d4b\u5e8f\u5217\u6216\u6bb5\u843d\u7684\u60c5\u611f\u4e2d\u8d77\u4e3b\u8981\u4f5c\u7528":54,"\u5728aws\u4e0a\u5feb\u901f\u90e8\u7f72\u96c6\u7fa4":40,"\u5728cub":47,"\u5728generator\u7684\u4e0a\u4e0b\u6587\u4e2d\u5c3d\u91cf\u7559\u4e0b\u975e\u5e38\u5c11\u7684\u53d8\u91cf\u5f15\u7528":3,"\u5728kubernetes\u4e2d\u521b\u5efa\u7684\u6240\u6709\u8d44\u6e90\u5bf9\u8c61":40,"\u5728linux\u4e0b":55,"\u5728meta\u6587\u4ef6\u4e2d\u6709\u4e24\u79cd\u7279\u5f81":52,"\u5728movielen":52,"\u5728paddl":42,"\u5728paddle\u4e2d":38,"\u5728paddlepaddle\u4e2d":27,"\u5728paddlepaddle\u7684\u6587\u6863\u4e2d":25,"\u5728paddlepaddle\u91cc":18,"\u5728step\u51fd\u6570\u4e2d\u5b9a\u4e49":27,"\u5728step\u51fd\u6570\u4e2d\u5b9a\u4e49memori":27,"\u5728trainer":38,"\u5730\u5740\u4e5f\u53ef\u4ee5\u4e3ahdfs\u6587\u4ef6\u8def\u5f84":2,"\u5730\u6bb5":25,"\u5730\u7406\u4f4d\u7f6e":25,"\u5730\u94c1\u7ad9":25,"\u5747\u503c\u56fe\u50cf\u6587\u4ef6":48,"\u5747\u5300\u5206\u5e03":17,"\u5747\u5300\u5206\u5e03\u7684\u8303\u56f4\u662f":36,"\u5747\u6709\u4e09\u4e2a\u5b50\u5e8f\u5217":25,"\u5747\u6709\u4e24\u7ec4\u7279\u5f81":25,"\u57fa\u4e8e\u53cc\u5c42\u5e8f\u5217\u8f93\u5165":27,"\u57fa\u4e8e\u5b57\u6bcd\u7684\u8bcd\u5d4c\u5165\u7279\u5f81":52,"\u57fa\u4e8epython\u7684\u6a21\u578b\u9884\u6d4b":5,"\u57fa\u4e8epython\u7684\u9884\u6d4b":[4,50],"\u57fa\u672c\u4e0a\u548cmnist\u6837\u4f8b\u4e00\u81f4":3,"\u57fa\u672c\u4f7f\u7528\u6982\u5ff5":32,"\u57fa\u672c\u76f8\u540c":46,"\u589e\u52a0\u4e86\u4e00\u6761cd\u547d\u4ee4":41,"\u589e\u52a0\u5982\u4e0b\u53c2\u6570":38,"\u589e\u52a0\u68af\u5ea6\u68c0\u6d4b\u7684\u5355\u5143\u6d4b\u8bd5":30,"\u58f0\u660epython\u6570\u636e\u6e90":52,"\u5904\u7406\u5668\u6709\u4e24\u4e2a\u5173\u952e\u6027\u80fd\u9650\u5236":33,"\u5904\u7406\u6570\u636e\u7684python\u811a\u672c\u6587\u4ef6":50,"\u5904\u7406\u7684\u8f93\u5165\u5e8f\u5217\u4e3b\u8981\u5206\u4e3a\u4ee5\u4e0b\u4e09\u79cd\u7c7b\u578b":27,"\u5904\u7406\u76f8\u4f3c\u5ea6\u56de\u5f52":52,"\u5904\u7406\u8fc7\u7a0b\u4e2d\u6570\u636e\u5b58\u50a8\u683c\u5f0f":47,"\u5904\u7406batch":39,"\u5907\u6ce8":33,"\u590d\u6742\u5ea6\u6216\u65f6\u95f4\u590d\u6742\u5ea6":33,"\u5916\u5c42memory\u662f\u4e00\u4e2a\u5143\u7d20":25,"\u5916\u5c42outer_step\u4e2d":25,"\u591a\u4e2ainput\u4ee5list\u65b9\u5f0f\u8f93\u5165":50,"\u591a\u53e5\u8bdd\u8fdb\u4e00\u6b65\u6784\u6210\u4e86\u6bb5\u843d":27,"\u591a\u673a\u8bad\u7ec3":17,"\u591a\u673a\u8bad\u7ec3\u7684\u7ecf\u5178\u62d3\u6251\u7ed3\u6784\u5982\u4e0b":39,"\u591a\u7ebf\u7a0b\u7684\u6570\u636e\u8bfb\u53d6":3,"\u591a\u8f6e\u5bf9\u8bdd\u7b49\u66f4\u4e3a\u590d\u6742\u7684\u8bed\u8a00\u6570\u636e":27,"\u5927\u578b\u7535\u5f71\u8bc4\u8bba\u6570\u636e\u96c6":54,"\u5927\u591a\u6570\u5c42\u4e0d\u9700\u8981\u8fdc\u7a0b\u7a00\u758f\u8bad\u7ec3\u51fd\u6570":30,"\u5927\u591a\u6570\u5c42\u9700\u8981\u8bbe\u7f6e\u4e3a":30,"\u5927\u591a\u6570\u6210\u529f\u7684srl\u7cfb\u7edf\u662f\u5efa\u7acb\u5728\u67d0\u79cd\u5f62\u5f0f\u7684\u53e5\u6cd5\u5206\u6790\u7ed3\u679c\u4e4b\u4e0a\u7684":53,"\u5927\u591a\u6570\u7f51\u7edc\u5c42\u4e0d\u9700\u8981\u652f\u6301\u8fdc\u7a0b\u7a00\u758f\u66f4\u65b0":30,"\u5927\u5b66\u751f":51,"\u5927\u5c0f":34,"\u5929":25,"\u5929\u4e00\u5e7f\u573a":25,"\u5929\u4e00\u9601":25,"\u5929\u732b":54,"\u5934\u6587\u4ef6\u4e2d\u628a\u53c2\u6570\u5b9a\u4e49\u4e3a\u7c7b\u7684\u6210\u5458\u53d8\u91cf":30,"\u5934\u6587\u4ef6\u5982\u4e0b":30,"\u5947\u5e7b\u7247":51,"\u597d":25,"\u597d\u5403":25,"\u597d\u8bc4":50,"\u5982":[3,28,34,38,39],"\u59822":34,"\u5982\u4e0b":[3,52,54],"\u5982\u4e0b\u56fe\u6240\u793a":[25,33,47],"\u5982\u4e0b\u6240\u793a":[38,48,52],"\u5982\u4e0b\u662f\u4e00\u6bb5\u4f7f\u7528mnist":5,"\u5982\u4e0b\u8868\u683c":50,"\u5982\u4f55":52,"\u5982\u4f55\u5b58\u50a8\u7b49\u7b49":3,"\u5982\u4f55\u89e3\u6790\u8be5\u5730\u5740\u4e5f\u662f\u7528\u6237\u81ea\u5b9a\u4e49dataprovider\u65f6\u9700\u8981\u8003\u8651\u7684\u5730\u65b9":2,"\u5982\u4f55\u8d21\u732e":32,"\u5982\u4f55\u8d21\u732e\u4ee3\u7801":32,"\u5982\u4f55\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3":50,"\u5982\u4fe1\u606f\u63d0\u53d6":53,"\u5982\u56fe2\u6240\u793a":54,"\u5982\u5f62\u5bb9\u8bcd\u548c\u526f\u8bcd":54,"\u5982\u60f3\u4e86\u89e3\u66f4\u591a\u8be6\u7ec6\u7684\u89e3\u91ca":55,"\u5982\u672c\u4f8b\u4e2d":3,"\u5982\u672c\u4f8b\u7684":3,"\u5982\u679c\u4e00\u4e2a\u7f51\u7edc\u5c42\u9700\u8981\u914d\u7f6e\u7684\u8bdd":30,"\u5982\u679c\u4e0b\u8f7d\u6210\u529f":48,"\u5982\u679c\u4e0d\u4e3a0":36,"\u5982\u679c\u4e0d\u4e86\u89e3":3,"\u5982\u679c\u4e0d\u5207\u8bcd":50,"\u5982\u679c\u4e0d\u6536\u655b":17,"\u5982\u679c\u4e0d\u662f\u5e8f\u5217":52,"\u5982\u679c\u4e3a":3,"\u5982\u679c\u4e3a0":36,"\u5982\u679c\u4e3afals":36,"\u5982\u679c\u4e3atrue":[3,36],"\u5982\u679c\u4e4b\u540e\u60f3\u8981\u91cd\u65b0\u8bbe\u7f6e":19,"\u5982\u679c\u4ed4\u7ec6\u8bbe\u7f6e\u7684\u8bdd":36,"\u5982\u679c\u4f20\u5165\u4e00\u4e2alist\u7684\u8bdd":39,"\u5982\u679c\u4f20\u5165\u5b57\u7b26\u4e32\u7684\u8bdd":39,"\u5982\u679c\u4f60\u4e00\u76f4\u5728\u505a\u4e00\u4e9b\u6539\u53d8":29,"\u5982\u679c\u4f60\u4e0d\u9700\u8981\u8fd9\u4e2a\u64cd\u4f5c":54,"\u5982\u679c\u4f60\u53ea\u9700\u8981\u4f7f\u7528\u7b80\u5355\u7684rnn":28,"\u5982\u679c\u4f60\u5b89\u88c5gpu\u7248\u672c\u7684paddlepaddl":54,"\u5982\u679c\u4f60\u60f3\u4f7f\u7528\u8fd9\u4e9b\u7279\u6027":38,"\u5982\u679c\u4f60\u60f3\u8981\u4fdd\u5b58\u67d0\u4e9b\u5c42\u7684\u7279\u5f81\u56fe":36,"\u5982\u679c\u4f60\u60f3\u8fdb\u884c\u8bf8\u5982\u8bed\u4e49\u8f6c\u8ff0":55,"\u5982\u679c\u4f60\u6267\u884c\u5176\u5b83\u7684\u7528\u60c5\u611f\u5206\u6790\u6765\u5206\u7c7b\u6587\u672c\u7684\u4efb\u52a1":54,"\u5982\u679c\u4f60\u6b63\u5728\u5904\u7406\u5e8f\u5217\u6807\u8bb0\u4efb\u52a1":28,"\u5982\u679c\u4f60\u6ca1\u6709gpu\u73af\u5883":47,"\u5982\u679c\u4f60\u7684\u4ed3\u5e93\u4e0d\u5305\u542b":29,"\u5982\u679c\u4f60\u8981\u4e3a\u4e86\u6d4b\u8bd5\u800c\u589e\u52a0\u65b0\u7684\u6587\u4ef6":30,"\u5982\u679c\u4f7f\u7528":[34,46],"\u5982\u679c\u4f7f\u7528gpu\u7248\u672c\u7684paddlepaddl":22,"\u5982\u679c\u4f7f\u7528ssl\u8ba4\u8bc1":40,"\u5982\u679c\u51fa\u73b0\u4ee5\u4e0bpython\u76f8\u5173\u7684\u5355\u5143\u6d4b\u8bd5\u90fd\u8fc7\u4e0d\u4e86\u7684\u60c5\u51b5":17,"\u5982\u679c\u53c2\u6570\u4fdd\u5b58\u4e0b\u6765\u7684\u6a21\u578b\u76ee\u5f55":17,"\u5982\u679c\u53c2\u6570\u6a21\u578b\u6587\u4ef6\u7f3a\u5931":46,"\u5982\u679c\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u672a\u8bbe\u7f6easync":36,"\u5982\u679c\u5728\u8bad\u7ec3\u671f\u95f4\u540c\u65f6\u53d1\u8d77\u53e6\u5916\u4e00\u4e2a\u8fdb\u7a0b\u8fdb\u884c\u6d4b\u8bd5":36,"\u5982\u679c\u5728\u8bad\u7ec3\u914d\u7f6e\u4e2d\u8bbe\u7f6ebatch":36,"\u5982\u679c\u5728\u8bad\u7ec3nlp\u76f8\u5173\u6a21\u578b\u65f6":17,"\u5982\u679c\u5b83\u4f4d\u4e8e\u8c13\u8bcd\u4e0a\u4e0b\u6587\u533a\u57df\u4e2d":53,"\u5982\u679c\u5c06\u8fd9\u4e2a\u5185\u5b58\u6c60\u51cf\u5c0f":17,"\u5982\u679c\u5df2\u5b89\u88c5":53,"\u5982\u679c\u5df2\u7ecf\u6709pod\u8fd0\u884c":42,"\u5982\u679c\u5f00\u542f\u4f1a\u5bfc\u81f4\u8fd0\u884c\u7565\u6162":19,"\u5982\u679c\u60a8\u4f7f\u7528":20,"\u5982\u679c\u60a8\u6709\u597d\u7684\u5efa\u8bae\u6765":52,"\u5982\u679c\u60a8\u7684gpu\u7406\u8bba\u53ef\u4ee5\u8fbe\u52306":33,"\u5982\u679c\u60f3\u4e3a\u4e00\u4e2a\u6570\u636e\u6587\u4ef6\u8fd4\u56de\u591a\u6761\u6837\u672c":3,"\u5982\u679c\u60f3\u4f7f\u7528\u53ef\u89c6\u5316\u7684\u5206\u6790\u5668":33,"\u5982\u679c\u60f3\u5f88\u597d\u7684\u7406\u89e3\u7a0b\u5e8f\u7684\u884c\u4e3a":33,"\u5982\u679c\u60f3\u8981\u4e86\u89e3\u53cc\u5c42rnn\u5728\u5177\u4f53\u95ee\u9898\u4e2d\u7684\u4f7f\u7528":25,"\u5982\u679c\u60f3\u8981\u542f\u7528paddlepaddle\u7684\u5185\u7f6e\u5b9a\u65f6\u5668":33,"\u5982\u679c\u60f3\u8981\u5728\u5916\u90e8\u673a\u5668\u8bbf\u95ee\u8fd9\u4e2acontain":20,"\u5982\u679c\u6211\u77e5\u9053\u5185\u6838\u82b1\u4e8610ms\u6765\u79fb\u52a81gb\u6570\u636e":33,"\u5982\u679c\u6267\u884c\u5931\u8d25":40,"\u5982\u679c\u6267\u884c\u6210\u529f":48,"\u5982\u679c\u6570\u636e\u6587\u4ef6\u5b58\u4e8e\u672c\u5730\u78c1\u76d8":2,"\u5982\u679c\u6570\u636e\u89c4\u6a21\u6bd4\u8f83\u5927":39,"\u5982\u679c\u6570\u6910\u83b7\u53d6\u6210\u529f":54,"\u5982\u679c\u662f\u4f7f\u7528\u975essl\u65b9\u5f0f\u8bbf\u95ee":40,"\u5982\u679c\u662f\u5e8f\u5217":52,"\u5982\u679c\u6709\u591a\u4e2a\u8f93\u5165":27,"\u5982\u679c\u6709\u591a\u4e2a\u8f93\u5165\u5e8f\u5217":27,"\u5982\u679c\u6709\u5fc5\u8981\u7684\u8bdd":29,"\u5982\u679c\u6709\u66f4\u590d\u6742\u7684\u4f7f\u7528":2,"\u5982\u679c\u672a\u8bbe\u7f6e":36,"\u5982\u679c\u672a\u8bbe\u7f6egpu":38,"\u5982\u679c\u672c\u5730\u6ca1\u6709\u63d0\u4ea4":29,"\u5982\u679c\u67d0\u4e00\u5757\u6839\u672c\u5c31\u4e0d\u600e\u4e48\u8017\u65f6":33,"\u5982\u679c\u68c0\u67e5\u5230\u5206\u914d\u5728\u4e0d\u540c\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u7684\u53c2\u6570\u7684\u5206\u5e03\u4e0d\u5747\u5300\u6b21\u6570\u5927\u4e8echeck":36,"\u5982\u679c\u6ca1\u6709\u51b2\u7a81":29,"\u5982\u679c\u6ca1\u6709\u5b9a\u4e49memori":27,"\u5982\u679c\u6ca1\u6709\u8bbe\u7f6e":55,"\u5982\u679c\u6ca1\u6709\u8bbe\u7f6etest":2,"\u5982\u679c\u6d88\u606f\u6570\u636e\u592a\u5c0f":36,"\u5982\u679c\u7528\u6237\u4e0d\u663e\u793a\u6307\u5b9a\u8fd4\u56de\u6570\u636e\u7684\u5bf9\u5e94\u5173\u7cfb":3,"\u5982\u679c\u7528\u6237\u60f3\u8981\u4e86\u89e3\u8be6\u7ec6\u7684\u6570\u636e\u96c6\u7684\u683c\u5f0f":46,"\u5982\u679c\u7528\u6237\u60f3\u8981\u81ea\u5b9a\u4e49\u521d\u59cb\u5316\u65b9\u5f0f":17,"\u5982\u679c\u771f\u60f3\u6316\u6398\u5185\u6838\u6df1\u5904\u7684\u67d0\u4e2a\u79d8\u5bc6":33,"\u5982\u679c\u7a0b\u5e8f\u5d29\u6e83\u4f60\u4e5f\u53ef\u4ee5\u624b\u52a8\u7ec8\u6b62":34,"\u5982\u679c\u7cfb\u7edf\u5b89\u88c5\u4e86\u591a\u4e2apython\u7248\u672c":17,"\u5982\u679c\u7f51\u7edc\u5c42\u4e0d\u9700\u8981\u8fdc\u7a0b\u7a00\u758f\u66f4\u65b0":30,"\u5982\u679c\u7f51\u7edc\u67b6\u6784\u7b80\u5355":28,"\u5982\u679c\u8981\u4f7f\u7528\u53cc\u5411lstm":54,"\u5982\u679c\u8981\u542f\u7528gpu":34,"\u5982\u679c\u8bad\u7ec3\u4e00\u4e2apass":17,"\u5982\u679c\u8bad\u7ec3\u8fc7\u7a0b\u542f\u52a8\u6210\u529f\u7684\u8bdd":52,"\u5982\u679c\u8bad\u7ec3\u8fc7\u7a0b\u7684\u7684cost\u660e\u663e\u9ad8\u4e8e\u8fd9\u4e2a\u5e38\u6570\u8f93\u51fa\u7684cost":17,"\u5982\u679c\u8bbe\u7f6e":3,"\u5982\u679c\u8bbe\u7f6e\u8be5\u53c2\u6570":36,"\u5982\u679c\u8f93\u51fa":20,"\u5982\u679c\u8fd0\u884c\u6210\u529f":[48,54],"\u5982\u679c\u8fd0\u884cgpu\u7248\u672c\u7684paddlepaddl":20,"\u5982\u679c\u96c6\u7fa4\u8282\u70b9\u6570\u91cf\u5c11":34,"\u5982\u679c\u9700\u8981\u6269\u5927\u77e9\u9635":30,"\u5982\u679c\u9700\u8981\u7f29\u51cf\u77e9\u9635":30,"\u5982\u679clearning_rate\u592a\u5927":17,"\u5982\u679clearning_rate\u592a\u5c0f":17,"\u5982\u679cpaddlepaddle\u5305\u5df2\u7ecf\u5728python\u7684sit":17,"\u5982\u795e\u7ecf\u5143\u6fc0\u6d3b\u503c\u7b49":17,"\u5982\u9ad8\u4eae\u90e8\u5206":33,"\u5b50":25,"\u5b50\u53e5":27,"\u5b50\u53e5\u7684\u5355\u8bcd\u6570\u548c\u6307\u5b9a\u7684\u4e00\u4e2a\u8f93\u5165\u5e8f\u5217\u4e00\u81f4":27,"\u5b57\u5178":55,"\u5b57\u5178\u4f1a\u5305\u542b\u8f93\u5165\u6570\u636e\u96c6\u4e2d\u7684\u6240\u6709\u5355\u8bcd":55,"\u5b57\u5178\u5171\u5305\u542b":46,"\u5b57\u5178\u6587\u4ef6":[53,54],"\u5b57\u5178\u91c7\u7528utf8\u7f16\u7801":46,"\u5b57\u5178imdb":54,"\u5b57\u6bb5\u4e2d":42,"\u5b57\u6bb5\u8868\u793a\u5bb9\u5668\u7684\u73af\u5883\u53d8\u91cf":42,"\u5b57\u6bb5\u8868\u793a\u8fd9\u4e2ajob\u4f1a\u540c\u65f6\u5f00\u542f3\u4e2apaddlepaddle\u8282\u70b9":42,"\u5b58\u50a8\u5377":40,"\u5b58\u50a8\u5728\u8bb0\u5fc6\u5355\u5143\u533a\u5757\u7684\u5386\u53f2\u4fe1\u606f\u88ab\u66f4\u65b0\u7528\u6765\u8fed\u4ee3\u7684\u5b66\u4e60\u5355\u8bcd\u4ee5\u5408\u7406\u7684\u5e8f\u5217\u7a0b\u73b0":54,"\u5b58\u50a8\u6a21\u578b\u7684\u8def\u5f84":55,"\u5b58\u50a8\u7740\u7535\u5f71\u6216\u7528\u6237\u4fe1\u606f":52,"\u5b58\u5165settings\u5bf9\u8c61":3,"\u5b58\u5728\u6216\u66f4\u6539\u4e3a\u5176\u5b83\u6a21\u578b\u8def\u5f84":54,"\u5b66\u4e60\u7b97\u6cd5":18,"\u5b66\u672f":51,"\u5b81\u6ce2":25,"\u5b83\u4e0d\u4ec5\u80fd\u591f\u5904\u7406imdb\u6570\u636e":54,"\u5b83\u4eec\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4f5c\u4e3a\u7f51\u7edc\u7684\u51fa\u53e3":18,"\u5b83\u4eec\u7684\u5927\u5c0f\u662f":28,"\u5b83\u4eec\u8fd8\u53ef\u4ee5\u4f9b\u90a3\u4e9b\u8fd0\u884c\u66f4\u590d\u6742\u7684\u96c6\u7fa4\u7ba1\u7406\u7cfb\u7edf":34,"\u5b83\u4eec\u90fd\u662f\u5e8f\u5217":28,"\u5b83\u4f1a\u5728dataprovider\u521b\u5efa\u7684\u65f6\u5019\u6267\u884c":3,"\u5b83\u4f7f\u752850\u5c42\u7684resnet\u6a21\u578b\u6765\u5bf9":48,"\u5b83\u5305\u542b\u4ee5\u4e0b\u51e0\u6b65":30,"\u5b83\u5305\u542b\u4ee5\u4e0b\u53c2\u6570":30,"\u5b83\u5305\u542b\u56db\u4e2a\u7248\u672c":22,"\u5b83\u5305\u542b\u7684\u5c5e\u6027\u53c2\u6570\u5982\u4e0b":3,"\u5b83\u5305\u62ec\u4e86\u4e00\u4e2a\u53cc\u5411\u7684gru\u4f5c\u4e3a\u7f16\u7801\u5668\u548c\u89e3\u7801\u5668":55,"\u5b83\u53eb\u505a":28,"\u5b83\u53ef\u4ee5\u5728\u53e5\u5b50\u7ea7\u522b\u5229\u7528\u53ef\u6269\u5c55\u7684\u4e0a\u4e0b\u6587":54,"\u5b83\u53ef\u4ee5\u5e2e\u52a9\u51cf\u5c11\u5206\u53d1\u5ef6\u8fdf":34,"\u5b83\u53ef\u4ee5\u5e2e\u52a9\u6211\u4eec\u683c\u5f0f\u5316\u6e90\u4ee3\u7801":29,"\u5b83\u53ef\u4ee5\u6307\u6d4b\u91cf\u4e00\u4e2a\u7a0b\u5e8f\u7684\u7a7a\u95f4":33,"\u5b83\u53ef\u4ee5\u88ab\u5e94\u7528\u4e8e\u8fdb\u884c\u673a\u5668\u7ffb\u8bd1":55,"\u5b83\u53ef\u80fd\u6709\u4e0d\u6b62\u4e00\u4e2a\u6743\u91cd":30,"\u5b83\u540c\u65f6\u5b66\u4e60\u6392\u5217":55,"\u5b83\u548c\u6570\u636e\u4f20\u5165\u51fd\u6570\u7684\u7b2c\u4e00\u4e2a\u53c2\u6570":3,"\u5b83\u5b58\u50a8\u5f53\u524d\u8282\u70b9\u6240\u6709\u8bad\u7ec3":34,"\u5b83\u5b9a\u4e49\u4e86":28,"\u5b83\u5b9a\u4e49\u4e86\u6a21\u578b\u53c2\u6570\u6539\u53d8\u7684\u89c4\u5219":18,"\u5b83\u5b9a\u4e49\u89e3\u7801\u7f51\u7edc\u7684":28,"\u5b83\u5c06\u88ab\u5206\u53d1\u5230":34,"\u5b83\u5c06\u8f93\u5165\u8bed\u53e5\u7f16\u7801\u4e3a\u5411\u91cf\u7684\u5e8f\u5217":55,"\u5b83\u5c06\u8fd4\u56de\u5982\u4e0b\u7684\u5b57\u5178":48,"\u5b83\u5c31\u4f1a\u5728\u6e90\u8bed\u53e5\u4e2d\u641c\u7d22\u51fa\u6700\u76f8\u5173\u4fe1\u606f\u7684\u4f4d\u7f6e\u7684\u96c6\u5408":55,"\u5b83\u652f\u6301\u591a\u7ebf\u7a0b\u66f4\u65b0":30,"\u5b83\u662finteger_value\u7c7b\u578b\u7684":25,"\u5b83\u662finteger_value_sequence\u7c7b\u578b\u7684":25,"\u5b83\u6709\u52a9\u4e8e\u5e2e\u52a9\u9891\u7e41\u4fee\u6539\u548c\u8bbf\u95ee\u5de5\u4f5c\u533a\u6587\u4ef6\u7684\u7528\u6237\u51cf\u5c11\u8d1f\u62c5":34,"\u5b83\u6a21\u62df\u4e86\u89e3\u7801\u7ffb\u8bd1\u8fc7\u7a0b\u4e2d\u5728\u6e90\u8bed\u53e5\u4e2d\u7684\u641c\u7d22":55,"\u5b83\u7684":28,"\u5b83\u7684\u6536\u655b\u901f\u5ea6\u6bd4":54,"\u5b83\u7684\u6bcf\u4e00\u4e2a\u5143\u7d20":24,"\u5b83\u7684\u76ee\u7684\u662f\u9884\u6d4b\u5728\u4e00\u4e2a\u5e8f\u5217\u4e2d\u8868\u8fbe\u7684\u60c5\u611f\u6001\u5ea6":54,"\u5b83\u7684\u8f93\u5165\u4e0e\u7ecf\u8fc7\u5b66\u4e60\u7684\u53c2\u6570\u505a\u5185\u79ef\u5e76\u52a0\u4e0a\u504f\u7f6e":30,"\u5b83\u76f4\u63a5\u5b66\u4e60\u6bb5\u843d\u8868\u793a":54,"\u5b83\u80fd\u591f\u4ece\u8bcd\u7ea7\u5230\u5177\u6709\u53ef\u53d8\u4e0a\u4e0b\u6587\u957f\u5ea6\u7684\u4e0a\u4e0b\u6587\u7ea7\u522b\u6765\u603b\u7ed3\u8868\u793a":54,"\u5b83\u8bfb\u5165\u6570\u636e\u5e76\u5c06\u5b83\u4eec\u4f20\u8f93\u5230\u63a5\u4e0b\u6765\u7684\u7f51\u7edc\u5c42":18,"\u5b83\u8fd4\u56degen":55,"\u5b83\u8fd4\u56detrain":55,"\u5b83\u9700\u8981\u5728\u8fd9\u91cc\u6307\u5b9a":54,"\u5b83\u9996\u5148\u8c03\u7528\u57fa\u6784\u9020\u51fd\u6570":30,"\u5b89\u6392":25,"\u5b89\u88c5":29,"\u5b89\u88c5\u4e0e\u7f16\u8bd1":23,"\u5b89\u88c5\u5305\u7684\u4e0b\u8f7d\u5730\u5740\u662f":22,"\u5b89\u88c5\u597ddocker\u4e4b\u540e\u53ef\u4ee5\u4f7f\u7528\u6e90\u7801\u76ee\u5f55\u4e0b\u7684\u811a\u672c\u6784\u5efa\u6587\u6863":31,"\u5b89\u88c5\u5b8c\u6210\u540e":22,"\u5b89\u88c5\u5b8c\u6210\u7684paddlepaddle\u4e3b\u4f53\u5305\u62ec\u4e09\u4e2a\u90e8\u5206":20,"\u5b89\u88c5\u65b9\u6cd5\u8bf7\u53c2\u8003":20,"\u5b89\u88c5\u6d41\u7a0b":[23,50],"\u5b89\u88c5\u8be5\u8f6f\u4ef6\u5305\u5c31\u53ef\u4ee5\u5728python\u73af\u5883\u4e0b\u5b9e\u73b0\u6a21\u578b\u9884\u6d4b":5,"\u5b89\u88c5docker\u9700\u8981\u60a8\u7684\u673a\u5668":20,"\u5b89\u88c5paddlepaddl":50,"\u5b89\u88c5paddlepaddle\u7684docker\u955c\u50cf":21,"\u5b89\u88c5pillow":47,"\u5b89\u9759":25,"\u5b8c\u6210":39,"\u5b8c\u6210\u4efb\u610f\u7684\u8fd0\u7b97\u903b\u8f91":27,"\u5b8c\u6210\u540evolume\u4e2d\u7684\u6587\u4ef6\u5185\u5bb9\u5927\u81f4\u5982\u4e0b":42,"\u5b8c\u6210\u76f8\u5e94\u7684\u8ba1\u7b97":24,"\u5b8c\u6574\u6559\u7a0b":45,"\u5b8c\u6574\u6e90\u7801\u53ef\u53c2\u8003":17,"\u5b8c\u6574\u7684\u4ee3\u7801\u89c1":5,"\u5b8c\u6574\u7684\u53c2\u6570\u77e9\u9635\u88ab\u5206\u5e03\u5728\u4e0d\u540c\u7684\u53c2\u6570\u670d\u52a1\u5668\u4e0a":30,"\u5b8c\u6574\u7684\u6570\u636e\u63d0\u4f9b\u6587\u4ef6\u5728":28,"\u5b8c\u6574\u7684\u914d\u7f6e\u6587\u4ef6\u5728":28,"\u5b98\u65b9\u6587\u6863":19,"\u5b9a\u4e49\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185rnn\u5355\u5143\u5b8c\u6210\u7684\u8ba1\u7b97":27,"\u5b9a\u4e49\u4e00\u4e2apython\u7684":3,"\u5b9a\u4e49\u4e86\u4e00\u4e2a\u53ea\u8bfb\u7684memori":27,"\u5b9a\u4e49\u4e86\u7f51\u7edc\u7684\u6570\u636e\u69fd":53,"\u5b9a\u4e49\u4e86\u7f51\u7edc\u7ed3\u6784":47,"\u5b9a\u4e49\u4e86\u7f51\u7edc\u7ed3\u6784\u5e76\u4fdd\u5b58\u4e3a":18,"\u5b9a\u4e49\u5728\u5916\u5c42":27,"\u5b9a\u4e49\u5f02\u6b65\u8bad\u7ec3\u7684\u957f\u5ea6":36,"\u5b9a\u4e49\u6570\u636e\u6765\u6e90":18,"\u5b9a\u4e49\u6e90\u8bed\u53e5\u7684\u6570\u636e\u5c42":28,"\u5b9a\u4e49\u89e3\u7801\u5668\u7684memori":28,"\u5b9a\u4e49\u8bad\u7ec3\u6570\u6910\u548c\u6d4b\u8bd5\u6570\u6910\u63d0\u4f9b\u8005":54,"\u5b9a\u4e49\u8f93\u5165\u6570\u636e\u5927\u5c0f":39,"\u5b9a\u4e49\u8f93\u5165\u6570\u636e\u7684\u7c7b\u578b":18,"\u5b9a\u4e49\u8f93\u51fa\u51fd\u6570":28,"\u5b9a\u4e49\u95e8\u63a7\u5faa\u73af\u5355\u5143\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u5355\u6b65\u51fd\u6570":28,"\u5b9e\u4f8b\u5982\u4e0b":53,"\u5b9e\u73b0\u4e24\u4e2a\u5b8c\u5168\u7b49\u4ef7\u7684\u5168\u8fde\u63a5rnn":25,"\u5b9e\u73b0\u524d\u5411\u4f20\u64ad\u7684\u90e8\u5206\u6709\u4e0b\u9762\u51e0\u4e2a\u6b65\u9aa4":30,"\u5b9e\u73b0\u5355\u6b65\u51fd\u6570":28,"\u5b9e\u73b0\u540e\u5411\u4f20\u64ad\u7684\u90e8\u5206\u6709\u4e0b\u9762\u51e0\u4e2a\u6b65\u9aa4":30,"\u5b9e\u73b0\u6570\u636e\u8f93\u5165\u51fd\u6570":3,"\u5b9e\u73b0\u6784\u9020\u51fd\u6570":30,"\u5b9e\u73b0\u7ec6\u8282":30,"\u5b9e\u73b0\u7f51\u7edc\u5c42\u7684\u524d\u5411\u4f20\u64ad":30,"\u5b9e\u73b0\u7f51\u7edc\u5c42\u7684\u540e\u5411\u4f20\u64ad":30,"\u5b9e\u73b0\u8bcd\u8bed\u548c\u53e5\u5b50\u4e24\u4e2a\u7ea7\u522b\u7684\u53cc\u5c42rnn\u7ed3\u6784":27,"\u5b9e\u73b0\u8be5\u5c42\u7684c":30,"\u5b9e\u9645\u4e0a\u53ea\u6709":48,"\u5b9e\u9645\u4e0a\u662fcsv\u6587\u4ef6":51,"\u5ba2\u6237":25,"\u5ba2\u6237\u670d\u52a1":51,"\u5ba2\u6237\u7aef\u514b\u9686\u4f60\u7684\u4ed3\u5e93":29,"\u5bb6":25,"\u5bb9\u5668":40,"\u5bb9\u5668\u4e0d\u4f1a\u4fdd\u7559\u5728\u8fd0\u884c\u65f6\u751f\u6210\u7684\u6570\u636e":40,"\u5bb9\u5668\u8fd0\u884c\u90fd\u8fd0\u884c":42,"\u5bbf\u4e3b\u673a\u76ee\u5f55":40,"\u5bc4\u5b58\u5668\u4f7f\u7528\u60c5\u51b5\u548c\u5171\u4eab\u5185\u5b58\u4f7f\u7528\u60c5\u51b5\u80fd\u8ba9\u6211\u4eec\u5bf9gpu\u7684\u6574\u4f53\u4f7f\u7528\u6709\u66f4\u597d\u7684\u7406\u89e3":33,"\u5bc6\u7801\u4e5f\u662froot":20,"\u5bf9":25,"\u5bf9\u4e00\u4e2a5\u7ef4\u975e\u5e8f\u5217\u7684\u7a00\u758f01\u5411\u91cf":3,"\u5bf9\u4e00\u4e2a5\u7ef4\u975e\u5e8f\u5217\u7684\u7a00\u758f\u6d6e\u70b9\u5411\u91cf":3,"\u5bf9\u4e8e":28,"\u5bf9\u4e8e\u4e24\u79cd\u4e0d\u540c\u7684\u8f93\u5165\u6570\u636e\u7c7b\u578b":25,"\u5bf9\u4e8e\u5185\u5b58\u8f83\u5c0f\u7684\u673a\u5668":3,"\u5bf9\u4e8e\u5355\u5c42rnn":25,"\u5bf9\u4e8e\u5355\u5c42rnn\u7684\u6570\u636e\u4e00\u5171\u6709\u4e24\u4e2a\u6837\u672c":25,"\u5bf9\u4e8e\u53cc\u5c42rnn":25,"\u5bf9\u4e8e\u540c\u6837\u7684\u6570\u636e":25,"\u5bf9\u4e8e\u6211\u4eec\u652f\u6301\u7684\u5168\u90e8\u77e9\u9635\u64cd\u4f5c":30,"\u5bf9\u4e8e\u6811\u7684\u6bcf\u4e00\u5c42":55,"\u5bf9\u4e8e\u6bb5\u843d\u7684\u6587\u672c\u5206\u7c7b":25,"\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u5355\u5c42rnn\u7684\u6570\u636e":25,"\u5bf9\u4e8e\u6bcf\u4f4d\u7528\u6237":52,"\u5bf9\u4e8e\u7b80\u5355\u7684\u591a\u673a\u534f\u540c\u8bad\u7ec3\u4f7f\u7528\u4e0a\u8ff0\u65b9\u5f0f\u5373\u53ef":39,"\u5bf9\u4e8e\u7ed9\u5b9a\u7684\u4e00\u6761\u6587\u672c":50,"\u5bf9\u4e8e\u914d\u5907\u6709\u6ce8\u610f\u529b\u673a\u5236\u7684\u89e3\u7801\u5668":28,"\u5bf9\u4e8eamazon":50,"\u5bf9\u4ee3\u7801\u8fdb\u884c\u6027\u80fd\u5206\u6790":33,"\u5bf9\u5168\u8fde\u63a5\u5c42\u6765\u8bf4":30,"\u5bf9\u56fe\u7247\u8fdb\u884c\u9884\u5904\u7406":47,"\u5bf9\u5e94\u4e00\u4e2a\u5b50\u53e5":27,"\u5bf9\u5e94\u4e00\u4e2a\u8bcd":27,"\u5bf9\u5e94\u4e8e\u5b57\u5178":46,"\u5bf9\u5e94\u7684":3,"\u5bf9\u6027\u80fd\u5c24\u5176\u662f\u5185\u5b58\u5360\u7528\u6709\u4e00\u5b9a\u7684\u5f00\u9500":39,"\u5bf9\u6570\u636e\u96c6\u8fdb\u884c\u9884\u5904\u7406\u7684\u57fa\u672c\u547d\u4ee4\u662f":55,"\u5bf9\u6574\u4e2a\u65b0\u5411\u91cf\u96c6\u5408\u7684\u6bcf\u4e00\u4e2a\u7ef4\u5ea6\u53d6\u6700\u5927\u503c\u6765\u8868\u793a\u6700\u540e\u7684\u53e5\u5b50":50,"\u5bf9\u6587\u6863\u5904\u7406\u540e\u5f62\u6210\u7684\u5355\u8bcd\u5411\u91cf":54,"\u5bf9\u673a\u5668\u7ffb\u8bd1\u7684\u4eba\u5de5\u8bc4\u4f30\u5de5\u4f5c\u5f88\u5e7f\u6cdb\u4f46\u4e5f\u5f88\u6602\u8d35":55,"\u5bf9\u6bcf\u4e2a\u8f93\u5165":30,"\u5bf9\u6bcf\u4e2a\u8f93\u5165\u4e58\u4e0a\u53d8\u6362\u77e9\u9635":30,"\u5bf9\u6fc0\u6d3b\u6c42\u5bfc":30,"\u5bf9\u7528\u6237\u6765\u8bf4":3,"\u5bf9\u8bad\u7ec3\u6570\u636e\u8fdb\u884cshuffl":3,"\u5bf9\u8be5\u5411\u91cf\u8fdb\u884c\u975e\u7ebf\u6027\u53d8\u6362":50,"\u5bf9\u8c61":[17,39],"\u5bf9\u8c61\u5b58\u50a8\u4e3a\u6587\u4ef6":52,"\u5bf9\u8f93\u51fa\u7684\u5408\u5e76":27,"\u5bf9\u9762":25,"\u5bf9check":3,"\u5bf9sparse_binary_vector\u548csparse_float_vector":3,"\u5bfc\u81f4\u7f16\u8bd1paddlepaddle\u5931\u8d25":17,"\u5bfc\u81f4\u8bad\u7ec3\u65f6\u95f4\u8fc7\u957f":17,"\u5c01\u88c5\u4e86":33,"\u5c01\u88c5\u8be5\u5c42\u7684python\u63a5\u53e3":30,"\u5c06":[3,17,33,39,50],"\u5c06\u4e0a\u4e00\u65f6\u95f4\u6b65\u6240\u751f\u6210\u7684\u8bcd\u7684\u5411\u91cf\u6765\u4f5c\u4e3a\u5f53\u524d\u65f6\u95f4\u6b65\u7684\u8f93\u5165":28,"\u5c06\u4ed6\u4eec\u79fb\u52a8\u5230\u76ee\u5f55":52,"\u5c06\u4f1a\u81ea\u52a8\u8ba1\u7b97\u51fa\u4e00\u4e2a\u5408\u9002\u7684\u503c":36,"\u5c06\u5176\u8bbe\u7f6e\u6210":17,"\u5c06\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217\u6570\u636e\u5148\u53d8\u6362\u6210\u5355\u5c42\u65f6\u95f4\u5e8f\u5217\u6570\u636e":25,"\u5c06\u542b\u6709\u5b50\u53e5":27,"\u5c06\u542b\u6709\u8bcd\u8bed\u7684\u53e5\u5b50\u5b9a\u4e49\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":27,"\u5c06\u56fe\u7247\u6309\u7167\u4e0a\u8ff0\u7ed3\u6784\u5b58\u50a8\u597d\u4e4b\u540e":47,"\u5c06\u5728":47,"\u5c06\u5728\u8fd0\u884c\u65f6\u62a5\u9519":34,"\u5c06\u5916\u90e8\u7684\u5b58\u50a8\u670d\u52a1\u5728kubernetes\u4e2d\u63cf\u8ff0\u6210\u4e3a\u7edf\u4e00\u7684\u8d44\u6e90\u5f62\u5f0f":40,"\u5c06\u591a\u53e5\u8bdd\u770b\u6210\u4e00\u4e2a\u6574\u4f53\u540c\u65f6\u4f7f\u7528encoder\u538b\u7f29":25,"\u5c06\u591a\u53f0\u673a\u5668\u7684\u6d4b\u8bd5\u7ed3\u679c\u5408\u5e76":36,"\u5c06\u5b57\u5178\u7684\u5730\u5740\u4f5c\u4e3aargs\u4f20\u7ed9dataprovid":17,"\u5c06\u5bbf\u4e3b\u673a\u76848022\u7aef\u53e3\u6620\u5c04\u5230container\u768422\u7aef\u53e3\u4e0a":20,"\u5c06\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u524d\u5411\u548c\u53cd\u5411\u90e8\u5206\u6df7\u5408\u5728\u4e00\u8d77":28,"\u5c06\u6570\u636e\u5904\u7406\u6210\u89c4\u8303\u683c\u5f0f":46,"\u5c06\u6570\u636e\u7ec4\u5408\u6210batch\u8fdb\u884c\u8bad\u7ec3":3,"\u5c06\u6570\u636e\u8f6c\u6362\u4e3apaddle\u7684\u683c\u5f0f":47,"\u5c06\u65b0\u5efa\u7684\u6743\u91cd\u52a0\u5165\u6743\u91cd\u8868":30,"\u5c06\u65e5\u5fd7\u5199\u5165\u6587\u4ef6":52,"\u5c06\u672c\u5730\u66f4\u65b0\u5230\u6700\u65b0\u7684\u4ee3\u7801\u5e93":29,"\u5c06\u6837\u672c\u7684\u5730\u5740\u653e\u5165\u53e6\u4e00\u4e2a\u6587\u672c\u6587\u4ef6":3,"\u5c06\u6b64\u76ee\u5f55\u6302\u8f7d\u4e3a\u5bb9\u5668\u7684":42,"\u5c06\u6bcf\u4e2a\u6e90\u8bed\u8a00\u5230\u76ee\u6807\u8bed\u8a00\u7684\u5e73\u884c\u8bed\u6599\u5e93\u6587\u4ef6\u5408\u5e76\u4e3a\u4e00\u4e2a\u6587\u4ef6":55,"\u5c06\u73af\u5883\u53d8\u91cf\u8f6c\u6362\u6210paddle\u7684\u547d\u4ee4\u884c\u53c2\u6570":42,"\u5c06\u7528\u6237\u7684\u539f\u59cb\u6570\u636e\u8f6c\u6362\u6210\u7cfb\u7edf\u53ef\u4ee5\u8bc6\u522b\u7684\u6570\u636e\u7c7b\u578b":39,"\u5c06\u7b80\u5355\u5730\u6267\u884c\u5feb\u8fdb":29,"\u5c06\u7ed3\u679c\u4fdd\u5b58\u5230\u6b64\u76ee\u5f55\u91cc":42,"\u5c06\u884c\u4e2d\u7684\u6570\u636e\u8f6c\u6362\u6210\u4e0einput_types\u4e00\u81f4\u7684\u683c\u5f0f":3,"\u5c06\u88ab\u5206\u4e3a":46,"\u5c06\u8bad\u7ec3\u6587\u4ef6\u4e0e\u5207\u5206\u597d\u7684\u6570\u636e\u4e0a\u4f20\u5230\u5171\u4eab\u5b58\u50a8":42,"\u5c06\u8be5\u53e5\u8bdd\u5305\u542b\u7684\u6240\u6709\u5355\u8bcd\u5411\u91cf\u6c42\u5e73\u5747":50,"\u5c06\u8df3\u8fc7\u5206\u53d1\u9636\u6bb5\u76f4\u63a5\u542f\u52a8\u6240\u6709\u8282\u70b9\u7684\u96c6\u7fa4\u4f5c\u4e1a":34,"\u5c06\u8fd9\u79cd\u8de8\u8d8a\u65f6\u95f4\u6b65\u7684\u8fde\u63a5\u7528\u4e00\u4e2a\u7279\u6b8a\u7684\u795e\u7ecf\u7f51\u7edc\u5355\u5143\u5b9e\u73b0":25,"\u5c06\u900f\u660e":34,"\u5c06ip\u6392\u5e8f\u751f\u6210\u7684\u5e8f\u53f7\u4f5c\u4e3atrain":42,"\u5c06ssh\u88c5\u5165\u7cfb\u7edf\u5185\u5e76\u5f00\u542f\u8fdc\u7a0b\u8bbf\u95ee":20,"\u5c11\u4e8e5":34,"\u5c1a\u53ef":25,"\u5c31":25,"\u5c31\u4f1a\u751f\u6210\u975e\u5e38\u591a\u7684gener":3,"\u5c31\u53ef\u4ee5\u5c06\u6570\u636e\u4f20\u9001\u7ed9paddlepaddle\u4e86":3,"\u5c31\u53ef\u4ee5\u5c06\u8fd9\u4e9b\u6587\u4ef6\u6301\u4e45\u5316\u5b58\u50a8":40,"\u5c31\u5f88\u5bb9\u6613\u5bfc\u81f4\u5185\u5b58\u8d85\u9650":17,"\u5c31\u662f":25,"\u5c31\u662f\u6a21\u578b\u7684\u53c2\u6570":18,"\u5c31\u662f\u7528\u4e8e\u5c55\u793a\u4e0a\u8ff0\u5206\u6790\u5de5\u5177\u7684\u7528\u6cd5":33,"\u5c31\u80fd\u591f\u5f88\u65b9\u4fbf\u7684\u5b8c\u6210\u6570\u636e\u4e0b\u8f7d\u548c\u76f8\u5e94\u7684\u9884\u5904\u7406\u5de5\u4f5c":50,"\u5c31\u901a\u5e38\u7684gpu\u6027\u80fd\u5206\u6790\u6765\u8bf4":33,"\u5c3a\u5bf8":48,"\u5c40\u90e8\u5173\u8054\u6027\u8d28\u548c\u7a7a\u95f4\u4e0d\u53d8\u6027\u8d28":47,"\u5c42\u540e\u5f97\u5230\u6df1\u5ea6":53,"\u5c42\u548c\u8f93\u5165\u7684\u914d\u7f6e":30,"\u5c42\u6743\u91cd":48,"\u5c42\u6b21\u5316\u7684rnn":27,"\u5c42\u7279\u5f81":48,"\u5c42\u7684\u540d\u79f0\u4e0e":28,"\u5c42\u7684\u5927\u5c0f":30,"\u5c42\u7684\u7279\u5f81":48,"\u5c42\u7684\u7c7b\u578b":30,"\u5c42\u7684\u8f93\u5165":53,"\u5c42\u7684\u8f93\u5165\u548c\u8f93\u51fa\u4f5c\u4e3a\u4e0b\u4e00\u4e2a":53,"\u5c42\u7684\u8f93\u51fa\u88ab\u7528\u4f5c\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684":28,"\u5c42\u7ec4\u6210\u4e00\u5bf9":53,"\u5c45\u7136":25,"\u5c55\u793a\u4e86\u4e00\u79cd\u65b9\u6cd5":55,"\u5c55\u793a\u4e86\u4e0a\u8ff0\u7f51\u7edc\u6a21\u578b\u7684\u8bad\u7ec3\u6548\u679c":50,"\u5c55\u793a\u4e86\u5982\u4f55\u5c06\u6bcf\u4e2a\u7279\u5f81\u6620\u5c04\u5230\u4e00\u4e2a\u5411\u91cf":52,"\u5c5e\u6027":53,"\u5d4c\u5165\u5c42":52,"\u5d4c\u5165\u7279\u5f81\u5b57\u5178":52,"\u5d4c\u5165\u7f16\u53f7\u4f1a\u6839\u636e\u5355\u8bcd\u6392\u5e8f":52,"\u5de5\u4f5c\u6a21\u5f0f":36,"\u5de5\u4f5c\u7a7a\u95f4":34,"\u5de5\u4f5c\u7a7a\u95f4\u4e2d\u7684":34,"\u5de5\u4f5c\u7a7a\u95f4\u6839\u76ee\u5f55":34,"\u5de5\u4f5c\u7a7a\u95f4\u76ee\u5f55\u7684\u5de5\u4f5c\u7a7a\u95f4":34,"\u5de5\u4f5c\u7a7a\u95f4\u914d\u7f6e":34,"\u5de5\u5177":54,"\u5de5\u5177\u4e2d\u7684\u811a\u672c":54,"\u5de5\u5177\u6765\u7ba1\u7406git\u9884\u63d0\u4ea4\u94a9\u5b50":29,"\u5de5\u7a0b\u5e08":51,"\u5de6\u56fe\u6784\u9020\u7f51\u7edc\u6a21\u5757\u7684\u65b9\u5f0f\u88ab\u7528\u4e8e34\u5c42\u7684\u7f51\u7edc\u4e2d":48,"\u5de6\u8fb9\u662f":48,"\u5dee\u8bc4":50,"\u5df2\u6253\u5f00":29,"\u5df2\u7ecf\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u5b8c\u6210\u8bbe\u7f6e":36,"\u5df2\u7ecf\u63d0\u4f9b\u4e86\u811a\u672c\u6765\u5e2e\u52a9\u60a8\u521b\u5efa\u8fd9\u4e24\u4e2a\u6587\u4ef6":34,"\u5e02\u573a":51,"\u5e02\u9762\u4e0a\u5df2\u7ecf\u6709nvidia\u6216\u7b2c\u4e09\u65b9\u63d0\u4f9b\u7684\u4f17\u591a\u5de5\u5177":33,"\u5e0c\u671b\u52a0\u901f\u8bad\u7ec3":39,"\u5e0c\u671b\u80fd\u8ba9\u6211\u4eec\u77e5\u6653":52,"\u5e2e\u52a9\u6211\u4eec\u5b8c\u6210\u5bf9\u8f93\u5165\u5e8f\u5217\u7684\u62c6\u5206":27,"\u5e2e\u52a9\u6211\u4eec\u66f4\u597d\u5730\u63cf\u8ff0\u6bb5\u843d":27,"\u5e2e\u52a9\u6211\u4eec\u6784\u9020\u4e00\u4e9b\u590d\u6742\u7684\u8f93\u5165\u4fe1\u606f":24,"\u5e38\u5e38\u51fa\u73b0":17,"\u5e38\u7528\u4f18\u5316\u7b97\u6cd5\u5305\u62ecmomentum":50,"\u5e38\u89c1\u7684\u53ef\u9009\u5b58\u50a8\u670d\u52a1\u5305\u62ec":40,"\u5e72\u51c0":25,"\u5e73\u53f0\u4e3a\u60f3\u89c2\u6d4b\u8bcd\u5411\u91cf\u7684\u7528\u6237\u63d0\u4f9b\u4e86\u5c06\u4e8c\u8fdb\u5236\u8bcd\u5411\u91cf\u6a21\u578b\u8f6c\u6362\u4e3a\u6587\u672c\u6a21\u578b\u7684\u529f\u80fd":46,"\u5e73\u5747\u7279\u5f81\u56fe\u7684\u9ad8\u5ea6\u53ca\u5bbd\u5ea6":47,"\u5e74\u9f84":51,"\u5e74\u9f84\u4ece\u4e0b\u5217\u5217\u8868\u8303\u56f4\u4e2d\u9009\u53d6":51,"\u5e74\u9f84\u548c\u804c\u4e1a":52,"\u5e76\u4e0d\u4fdd\u8bc1":30,"\u5e76\u4e0d\u662f\u4f7f\u7528\u53cc\u5c42rnn\u89e3\u51b3\u5b9e\u9645\u7684\u95ee\u9898":25,"\u5e76\u4e0d\u662fkubernetes\u4e2d\u7684node\u6982\u5ff5":42,"\u5e76\u4e0d\u771f\u6b63\u7684\u548c":25,"\u5e76\u4e14":[3,28],"\u5e76\u4e14\u5185\u5c42\u7684\u5e8f\u5217\u64cd\u4f5c\u4e4b\u95f4\u72ec\u7acb\u65e0\u4f9d\u8d56":25,"\u5e76\u4e14\u5206\u522b\u91cd\u547d\u540d\u6587\u4ef6\u540e\u7f00":55,"\u5e76\u4e14\u5220\u9664container\u4e2d\u7684\u6570\u636e":20,"\u5e76\u4e14\u52a0\u4e0a\u4e0b\u9762\u7684\u547d\u4ee4\u884c\u53c2\u6570":38,"\u5e76\u4e14\u53ea\u6709\u4e00\u4e2a\u6743\u91cd":48,"\u5e76\u4e14\u53ef\u80fd\u4f1a\u52a0\u901f\u8bad\u7ec3\u8fc7\u7a0b":17,"\u5e76\u4e14\u540e\u7eed\u4ecd\u5728\u4e0d\u65ad\u6539\u8fdb":18,"\u5e76\u4e14\u542f\u52a8\u8bad\u7ec3":42,"\u5e76\u4e14\u5728\u5185\u5b58\u8db3\u591f\u7684\u60c5\u51b5\u4e0b\u8d8a\u5927\u8d8a\u597d":3,"\u5e76\u4e14\u5728\u968f\u540e\u7684\u8bfb\u53d6\u6570\u636e\u8fc7\u7a0b\u4e2d\u586b\u5145\u8bcd\u8868":50,"\u5e76\u4e14\u5728dataprovider\u4e2d\u5b9e\u73b0\u5982\u4f55\u8bbf\u95ee\u8bad\u7ec3\u6587\u4ef6\u5217\u8868":2,"\u5e76\u4e14\u5b83\u4eec\u7684\u987a\u5e8f\u4e0e":48,"\u5e76\u4e14\u5bf9\u7528\u6237\u7684\u7279\u5f81\u505a\u540c\u6837\u7684\u64cd\u4f5c":52,"\u5e76\u4e14\u5c06\u9884\u5904\u7406\u597d\u7684\u6570\u636e\u96c6\u5b58\u653e\u5728":55,"\u5e76\u4e14\u67e5\u8be2paddlepaddle\u5355\u5143\u6d4b\u8bd5\u7684\u65e5\u5fd7":17,"\u5e76\u4e14\u7b2c\u4e8c\u4e2a\u662f\u53cd\u5411lstm":54,"\u5e76\u4e14\u7cfb\u7edf\u6bcf\u4e00\u8f6e\u8bad\u7ec3\u5f00\u59cb\u65f6\u4f1a\u91cd\u7f6edataprovid":39,"\u5e76\u4e14\u7f16\u8bd1\u80fd\u901a\u8fc7\u4ee3\u7801\u6837\u5f0f\u68c0\u67e5":29,"\u5e76\u4e14\u901a\u8fc7\u7ed9\u51fa\u5f53\u524d\u76ee\u6807\u5355\u8bcd\u6765\u9884\u6d4b\u4e0b\u4e00\u4e2a\u76ee\u6807\u5355\u8bcd":55,"\u5e76\u4e14\u96c6\u7fa4\u4f5c\u4e1a\u4e2d\u7684\u6240\u6709\u8282\u70b9\u5c06\u5728\u6b63\u5e38\u60c5\u51b5\u4e0b\u5904\u7406\u5177\u6709\u76f8\u540c\u903b\u8f91\u4ee3\u7801\u7684\u6587\u4ef6":34,"\u5e76\u4e14\u9700\u8981\u91cd\u5199\u57fa\u7c7b\u4e2d\u7684\u4ee5\u4e0b\u51e0\u4e2a\u865a\u51fd\u6570":30,"\u5e76\u4e14softmax\u5c42\u7684\u4e24\u4e2a\u8f93\u5165\u4e5f\u4f7f\u7528\u4e86\u540c\u6837\u7684\u53c2\u6570":17,"\u5e76\u4f20\u5165\u76f8\u5e94\u7684\u547d\u4ee4\u884c\u53c2\u6570\u521d\u59cb\u5316paddlepaddl":5,"\u5e76\u4f7f\u7528":53,"\u5e76\u4f7f\u7528\u4e86dropout":50,"\u5e76\u4f7f\u7528\u8fd9\u4e2a\u795e\u7ecf\u7f51\u7edc\u6765\u5bf9\u56fe\u7247\u8fdb\u884c\u5206\u7c7b":47,"\u5e76\u5728\u4e58\u79ef\u7ed3\u679c\u4e0a\u518d\u52a0\u4e0a\u7ef4\u5ea6\u4e3a":30,"\u5e76\u5728\u6700\u5f00\u59cb\u521d\u59cb\u5316\u4e3a\u8d77\u59cb\u8bcd":28,"\u5e76\u5728\u7c7b\u6784\u5efa\u51fd\u6570\u4e2d\u628a\u5b83\u653e\u5165\u4e00\u4e2a\u7c7b\u6210\u5458\u53d8\u91cf\u91cc":30,"\u5e76\u5bf9\u76f8\u5e94\u7684\u53c2\u6570\u8c03\u7528":30,"\u5e76\u5c06\u5176\u6295\u5c04\u5230":28,"\u5e76\u5c06\u5b83\u4eec\u6309\u7167\u542f\u53d1\u4ee3\u4ef7":55,"\u5e76\u5c06\u5b83\u4eec\u653e\u5728":55,"\u5e76\u5c06\u6bcf\u8f6e\u7684\u6a21\u578b\u7ed3\u679c\u5b58\u653e\u5728":18,"\u5e76\u5c06develop\u548ctest\u6570\u636e\u5206\u522b\u653e\u5165\u4e0d\u540c\u7684\u6587\u4ef6\u5939":55,"\u5e76\u60f3\u4f7f\u7528gpu\u6765\u8bad\u7ec3\u8bbe\u7f6e\u4e3atru":54,"\u5e76\u6307\u5b9a\u7aef\u53e3\u53f7":39,"\u5e76\u6307\u5b9abatch":55,"\u5e76\u63d0\u4f9b\u4e86\u7b80\u5355\u7684cache\u529f\u80fd":3,"\u5e76\u6b22\u8fce\u60a8\u6765\u53c2\u4e0e\u8d21\u732e":54,"\u5e76\u7531":53,"\u5e76\u7ed9\u51fa\u5206\u7c7b\u7ed3\u679c":47,"\u5e76\u7ed9\u51fa\u7684\u76f8\u5173\u6a21\u578b\u683c\u5f0f\u7684\u5b9a\u4e49":46,"\u5e76\u88ab\u53cd\u5411\u5904\u7406":53,"\u5e76\u89c2\u5bdf\u7ed3\u679c":33,"\u5e76\u8bbe\u7f6e":[22,34],"\u5e76\u9010\u6e10\u5c55\u793a\u66f4\u52a0\u6df1\u5165\u7684\u529f\u80fd":50,"\u5e8a\u4e0a\u7528\u54c1":25,"\u5e8a\u57ab":25,"\u5e8f\u5217\u4e2d\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee\u540c":24,"\u5e8f\u5217\u5230\u5e8f\u5217":55,"\u5e8f\u5217\u6570\u636e\u662f\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1\u9762\u5bf9\u7684\u4e00\u79cd\u4e3b\u8981\u8f93\u5165\u6570\u636e\u7c7b\u578b":27,"\u5e8f\u5217\u662f\u4e00\u79cd\u5e38\u89c1\u7684\u6570\u636e\u7c7b\u578b":24,"\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u5927\u591a\u9075\u5faaencod":27,"\u5e8f\u5217\u751f\u6210\u4efb\u52a1\u7684\u8f93\u5165":27,"\u5e8f\u5217\u7684\u5f00\u59cb":55,"\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20\u662f\u539f\u6765\u53cc\u5c42\u5e8f\u5217\u6bcf\u4e2asubseq\u5143\u7d20\u7684\u5e73\u5747\u503c":24,"\u5e8f\u5217\u7684\u7ed3\u5c3e":55,"\u5e8f\u5217\u7684\u7ed3\u675f":55,"\u5e93":34,"\u5e93\u7684\u8def\u5f84":34,"\u5e94\u7528\u524d\u5411\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":28,"\u5e94\u7528\u53cd\u5411\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":28,"\u5e94\u7528\u6a21\u578b":50,"\u5e94\u8be5":25,"\u5e94\u8be5\u4e0e\u5b83\u7684memory\u540d\u5b57\u76f8\u540c":28,"\u5e94\u8be5\u964d\u4f4e\u5b66\u4e60\u7387":17,"\u5e95\u5c42\u8fdb\u7a0b":34,"\u5ea6\u91cf\u5b66\u4e60":35,"\u5efa\u7acb\u4e00\u4e2a\u6d3b\u8dc3\u7684\u5f00\u6e90\u793e\u533a":0,"\u5efa\u8bae\u5c06\u5176\u8bbe\u7f6e\u4e3a\u8f83\u5927":34,"\u5efa\u8bae\u5c06\u8be5\u53c2\u6570\u8bbe\u4e3atrue":36,"\u5f00\u53d1\u4eba\u5458\u4f7f\u7528":29,"\u5f00\u59cb":18,"\u5f00\u59cb\u5f00\u53d1\u5427":29,"\u5f00\u59cb\u6807\u8bb0":28,"\u5f00\u59cb\u8bad\u7ec3\u6a21\u578b":50,"\u5f00\u59cb\u9636\u6bb5":33,"\u5f02\u6b65\u8bfb\u53d6\u7b49\u95ee\u9898":39,"\u5f02\u6b65\u968f\u673a\u68af\u5ea6\u4e0b\u964d":35,"\u5f15\u5165lstm\u6a21\u578b\u4e3b\u8981\u662f\u4e3a\u4e86\u514b\u670d\u6d88\u5931\u68af\u5ea6\u7684\u95ee\u9898":54,"\u5f15\u5165paddlepaddle\u7684pydataprovider2\u5305":3,"\u5f15\u5bfc\u5c42":28,"\u5f15\u7528":34,"\u5f15\u7528memory\u5f97\u5230\u8fd9layer\u4e0a\u4e00\u65f6\u523b\u8f93\u51fa":27,"\u5f3a\u70c8\u63a8\u8350":25,"\u5f3a\u70c8\u63a8\u8350\u4f7f\u7528virtualenv\u6765\u521b\u9020\u4e00\u4e2a\u5e72\u51c0\u7684python\u73af\u5883":52,"\u5f52\u4e00\u5316\u6982\u7387\u5411\u91cf":28,"\u5f53":38,"\u5f53\u4f20\u9012\u76f8\u540c\u7684\u6837\u672c\u6570\u65f6":54,"\u5f53\u4f60":29,"\u5f53\u4f60\u6267\u884c\u547d\u4ee4":30,"\u5f53\u51fd\u6570\u8fd4\u56de\u7684\u65f6\u5019":3,"\u5f53\u524d\u5355\u8bcd\u5728\u76f8\u6bd4\u4e4b\u4e0b\u603b\u662f\u88ab\u5f53\u4f5c\u771f\u503c":55,"\u5f53\u524d\u5355\u8bcd\u662f\u89e3\u7801\u5668\u6700\u540e\u4e00\u6b65\u7684\u8f93\u51fa":55,"\u5f53\u524d\u65f6\u95f4\u6b65\u5904\u7684memory\u7684\u8f93\u51fa\u4f5c\u4e3a\u4e0b\u4e00\u65f6\u95f4\u6b65memory\u7684\u8f93\u5165":28,"\u5f53\u524d\u7684\u5b9e\u73b0\u65b9\u5f0f\u4e0b":30,"\u5f53\u524d\u7684\u8f93\u5165y\u548c\u4e0a\u4e00\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51farnn_state\u505a\u4e86\u4e00\u4e2a\u5168\u94fe\u63a5":25,"\u5f53\u524d\u8bc4\u4f30\u4e2d":55,"\u5f53\u524dbatch\u7684cost":55,"\u5f53\u524dlog_period\u4e2abatch\u6240\u6709\u6837\u672c\u7684\u5e73\u5747\u5206\u7c7b\u9519\u8bef\u7387":50,"\u5f53\u524dlog_period\u4e2abatch\u6240\u6709\u6837\u672c\u7684\u5e73\u5747cost":50,"\u5f53\u5728\u7f51\u7edc\u5c42\u914d\u7f6e\u4e2d\u8bbe\u7f6e":36,"\u5f53\u5728\u8bad\u7ec3\u914d\u7f6e\u4e2d\u8bbe\u7f6e":36,"\u5f53\u5bb9\u5668\u56e0\u4e3a\u5404\u79cd\u539f\u56e0\u88ab\u9500\u6bc1\u65f6":40,"\u5f53\u6240\u6709\u6570\u636e\u8bfb\u53d6\u5b8c\u4e00\u8f6e\u540e":39,"\u5f53\u6240\u6709pod\u90fd\u5904\u4e8erunning\u72b6\u6001":42,"\u5f53\u6839\u636e\u5ba1\u9605\u8005\u7684\u610f\u89c1\u4fee\u6539":29,"\u5f53\u6a21\u578b\u53c2\u6570\u4e0d\u5b58\u5728\u65f6":36,"\u5f53\u6a21\u578b\u8bad\u7ec3\u597d\u4e86\u4e4b\u540e":50,"\u5f53\u6a21\u5f0f\u4e3a":36,"\u5f53\u7136":33,"\u5f53\u7f51\u7edc\u5c42\u7528\u4e00\u4e2a\u6279\u6b21\u505a\u8bad\u7ec3\u65f6":30,"\u5f53\u89e3\u8bfb\u6bcf\u4e00\u4e2a":28,"\u5f53\u8bad\u7ec3\u6570\u636e\u975e\u5e38\u591a\u65f6":3,"\u5f53\u8d85\u8fc7\u8be5\u9608\u503c\u65f6":36,"\u5f53\u8f93\u5165\u662f\u7ef4\u5ea6\u5f88\u9ad8\u7684\u7a00\u758f\u6570\u636e\u65f6":38,"\u5f53\u9700\u8981\u5feb\u901f\u6216\u8005\u9891\u7e41\u7684\u8bc4\u4f30\u65f6":55,"\u5f53classif":55,"\u5f62\u6210recurr":27,"\u5f62\u6210recurrent\u8fde\u63a5":27,"\u5f62\u72b6":48,"\u5f88":[25,50],"\u5f88\u591a":25,"\u5f88\u5b89\u9759":25,"\u5f88\u5bb9\u6613\u5bfc\u81f4\u67d0\u4e00\u4e2a\u53c2\u6570\u670d\u52a1\u5668\u6ca1\u6709\u5206\u914d\u5230\u4efb\u4f55\u53c2\u6570":39,"\u5f88\u5e72\u51c0":25,"\u5f88\u65b9\u4fbf":25,"\u5f88\u6709\u53ef\u80fd\u5b9e\u9645\u5e94\u7528\u5c31\u662f\u6ca1\u6709\u6309\u7167\u60a8\u7684\u9884\u671f\u60c5\u51b5\u8fd0\u884c":33,"\u5f88\u9002\u5408\u6784\u5efa\u7528\u4e8e\u7406\u89e3\u56fe\u7247\u5185\u5bb9\u7684\u6a21\u578b":47,"\u5f88\u96be\u6574\u4f53\u4fee\u6b63":3,"\u5f8b\u5e08":51,"\u5f97":25,"\u5f97\u5230\u53e5\u5b50\u7684\u8868\u793a":50,"\u5f97\u5230\u6700\u597d\u8f6e\u6b21\u4e0b\u7684\u6a21\u578b":52,"\u5faa\u73af\u5c55\u5f00\u7684\u6bcf\u4e2a\u65f6\u95f4\u6b65\u603b\u662f\u80fd\u591f\u5f15\u7528\u6240\u6709\u8f93\u5165":27,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u4e2d":28,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u4f5c\u4e3a\u4f7f\u7528":28,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u548c":28,"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u9aa4\u987a\u5e8f\u5730\u5904\u7406\u5e8f\u5217":28,"\u5faa\u73af\u7f51\u7edc\u4ece":28,"\u5fc5\u987b":30,"\u5fc5\u987b\u4e00\u81f4":3,"\u5fc5\u987b\u4f7f\u7528python\u5173\u952e\u8bcd":3,"\u5fc5\u987b\u5c06\u524d\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5143\u7d20":25,"\u5fc5\u987b\u6307\u5411\u4e00\u4e2apaddlepaddle\u5b9a\u4e49\u7684lay":27,"\u5fc5\u987b\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":27,"\u5fc5\u987b\u662f\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":24,"\u5fc5\u987b\u7531\u53ea\u8bfbmemory\u7684":28,"\u5fd8\u8bb0\u95e8\u548c\u8f93\u51fa\u95e8":54,"\u5feb":[25,54],"\u5feb\u901f\u5165\u95e8":49,"\u5feb\u901f\u5728\u672c\u5730\u542f\u52a8\u4e00\u4e2a\u5355\u673a\u7684kubernetes\u670d\u52a1\u5668":40,"\u5feb\u901f\u90e8\u7f72\u96c6\u7fa4":40,"\u6027\u4ef7\u6bd4":25,"\u6027\u522b":[51,52],"\u6027\u80fd\u5206\u6790":33,"\u6027\u80fd\u5206\u6790\u5de5\u5177\u662f\u7528\u4e8e\u7ed9\u5e94\u7528\u7a0b\u5e8f\u7684\u6027\u80fd\u505a\u5b9a\u91cf\u5206\u6790\u7684":33,"\u6027\u80fd\u5206\u6790\u662f\u6027\u80fd\u4f18\u5316\u7684\u5173\u952e\u4e00\u6b65":33,"\u6027\u80fd\u8c03\u4f18":35,"\u603b\u4f53\u6765\u8bf4":25,"\u603b\u8ba1\u7684\u53c2\u6570\u4e2a\u6570":46,"\u603b\u8bc4\u520610\u5206":54,"\u6050\u6016\u7247":51,"\u60a8\u4f1a\u5728\u63a5\u4e0b\u6765\u7684\u90e8\u5206\u4e2d\u83b7\u5f97\u66f4\u591a\u7684\u7ec6\u8282\u4ecb\u7ecd":33,"\u60a8\u53ef\u4ee5\u4efb\u610f\u4f7f\u7528\u4e00\u4e2a\u6216\u4e24\u4e2a\u6765\u5bf9\u611f\u5174\u8da3\u7684\u4ee3\u7801\u6bb5\u505a\u6027\u80fd\u5206\u6790":33,"\u60a8\u53ef\u4ee5\u4f7f\u7528":20,"\u60a8\u53ef\u4ee5\u5bfc\u5165":33,"\u60a8\u53ef\u4ee5\u91c7\u7528\u4e0b\u9762\u4e94\u4e2a\u6b65\u9aa4":33,"\u60a8\u5c06\u4e86\u89e3\u5982\u4f55":28,"\u60a8\u5c31\u53ef\u4ee5\u8fdc\u7a0b\u7684\u4f7f\u7528paddlepaddle\u5566":20,"\u60a8\u5c31\u80fd\u83b7\u5f97\u5982\u4e0b\u7684\u5206\u6790\u7ed3\u679c":33,"\u60a8\u6309\u5982\u4e0b\u6b65\u9aa4\u64cd\u4f5c\u5373\u53ef":33,"\u60a8\u6700\u597d\u5148\u786e\u8ba4":33,"\u60a8\u9700\u8981\u5728\u673a\u5668\u4e2d\u5b89\u88c5\u597ddocker":20,"\u60a8\u9700\u8981\u8fdb\u5165\u955c\u50cf\u8fd0\u884cpaddlepaddl":20,"\u60a8\u9996\u5148\u9700\u8981\u5728\u76f8\u5173\u4ee3\u7801\u6bb5\u4e2d\u52a0\u5165":33,"\u60ac\u7591\u7247":51,"\u60c5\u6001\u52a8\u8bcd":53,"\u60c5\u611f\u5206\u6790":49,"\u60c5\u611f\u5206\u6790\u4e5f\u5e38\u7528\u4e8e\u57fa\u4e8e\u5927\u91cf\u8bc4\u8bba\u548c\u4e2a\u4eba\u535a\u5ba2\u6765\u76d1\u63a7\u793e\u4f1a\u5a92\u4f53":54,"\u60c5\u611f\u5206\u6790\u662f\u81ea\u7136\u8bed\u8a00\u7406\u89e3\u4e2d\u6700\u5178\u578b\u7684\u95ee\u9898\u4e4b\u4e00":54,"\u60c5\u611f\u5206\u6790\u6709\u8bb8\u591a\u5e94\u7528\u573a\u666f":54,"\u60ca\u9669\u7535\u5f71":51,"\u60f3\u4e86\u89e3\u66f4\u591a\u7ec6\u8282\u53ef\u4ee5\u53c2\u8003pydataprovider\u90e8\u5206\u7684\u6587\u6863":54,"\u60f3\u8981\u8fd0\u884cpaddlepaddl":20,"\u610f\u5473\u7740\u4e0d\u540c\u65f6\u95f4\u6b65\u7684\u8f93\u5165\u90fd\u662f\u76f8\u540c\u7684\u503c":28,"\u610f\u601d\u662f\u4e0d\u4f7f\u7528\u5e73\u5747\u53c2\u6570\u6267\u884c\u6d4b\u8bd5":36,"\u610f\u601d\u662f\u4e0d\u4fdd\u5b58\u7ed3\u679c":36,"\u610f\u601d\u662f\u4f7f\u7528\u7b2ctest":36,"\u610f\u601d\u662f\u5728gpu\u6a21\u5f0f\u4e0b\u4f7f\u75284\u4e2agpu":36,"\u611f\u89c9":25,"\u620f\u5267":51,"\u6210\u529f\u8bad\u7ec3\u4e14\u9000\u51fa\u7684pod\u6570\u76ee\u4e3a3\u65f6":42,"\u6211\u4eec\u4e0d\u80fd\u901a\u8fc7\u5e38\u89c4\u7684\u68af\u5ea6\u68c0\u67e5\u7684\u65b9\u5f0f\u6765\u8ba1\u7b97\u68af\u5ea6":30,"\u6211\u4eec\u4e3a\u7528\u6237\u5b9a\u4ee5python\u63a5\u53e3\u6765\u914d\u7f6e\u7f51\u7edc":39,"\u6211\u4eec\u4e3b\u8981\u4f1a\u4ecb\u7ecdnvprof\u548cnvvp":33,"\u6211\u4eec\u4ec5\u4ec5\u662f\u5c06\u6bcf\u4e2a\u7279\u5f81\u79cd\u7c7b\u6620\u5c04\u5230\u4e00\u4e2a\u7279\u5f81\u5411\u91cf\u4e2d":52,"\u6211\u4eec\u4ec5\u6709\u4e00\u4e2a\u8f93\u5165":30,"\u6211\u4eec\u4ec5\u7528":52,"\u6211\u4eec\u4ecb\u7ecd\u5982\u4f55\u5728":41,"\u6211\u4eec\u4ecb\u7ecd\u5982\u4f55\u5728kubernetes\u96c6\u7fa4\u4e0a\u8fdb\u884c\u5206\u5e03\u5f0fpaddlepaddle\u8bad\u7ec3\u4f5c\u4e1a":42,"\u6211\u4eec\u4ece\u63d0\u524d\u7ed9\u5b9a\u7684\u7c7b\u522b\u96c6\u5408\u4e2d\u9009\u62e9\u5176\u6240\u5c5e\u7c7b\u522b":50,"\u6211\u4eec\u4ee5mnist\u624b\u5199\u8bc6\u522b\u4e3a\u4f8b":3,"\u6211\u4eec\u4f1a\u53d1\u73b0\u6570\u636e\u96c6":55,"\u6211\u4eec\u4f1a\u7ee7\u7eed\u4f7f\u7528\u73b0\u6709\u7684\u5185\u5b58\u5757":30,"\u6211\u4eec\u4f1a\u91cd\u65b0\u5206\u914d\u5185\u5b58":30,"\u6211\u4eec\u4f7f\u7528":[30,34,54],"\u6211\u4eec\u4f7f\u7528\u4e86":25,"\u6211\u4eec\u4f7f\u7528\u4e86\u4e00\u4e2a\u7f16\u89e3\u7801\u6a21\u578b\u7684\u6269\u5c55":55,"\u6211\u4eec\u4f7f\u7528\u4e86\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":54,"\u6211\u4eec\u4f7f\u7528\u5176\u4e2d\u7684":55,"\u6211\u4eec\u4f7f\u7528\u6700\u5927\u6982\u7387\u7684\u6807\u7b7e\u4f5c\u4e3a\u7ed3\u679c":53,"\u6211\u4eec\u4f7f\u7528\u96c6\u675f\u641c\u7d22":55,"\u6211\u4eec\u4f7f\u7528paddlepaddle\u5728ilsvrc\u7684\u9a8c\u8bc1\u96c6\u517150":48,"\u6211\u4eec\u5047\u8bbe\u4e00\u53f0\u673a\u5668\u4e0a\u67094\u4e2agpu":38,"\u6211\u4eec\u5047\u8bbe\u623f\u4ea7\u7684\u4ef7\u683c":18,"\u6211\u4eec\u5148\u4ece\u4e00\u6761\u968f\u673a\u7684\u76f4\u7ebf":18,"\u6211\u4eec\u51c6\u5907\u4e86\u4e00\u4e2a\u811a\u672c":47,"\u6211\u4eec\u53ea\u4f7f\u7528\u5df2\u7ecf\u6807\u6ce8\u8fc7\u7684\u8bad\u7ec3\u96c6\u548c\u6d4b\u8bd5\u96c6":54,"\u6211\u4eec\u53ea\u6240\u4ee5\u4f7f\u7528lstm\u6765\u6267\u884c\u8fd9\u4e2a\u4efb\u52a1\u662f\u56e0\u4e3a\u5176\u6539\u8fdb\u7684\u8bbe\u8ba1\u5e76\u4e14\u5177\u6709\u95e8\u673a\u5236":54,"\u6211\u4eec\u53ea\u6f14\u793a\u4e00\u4e2a\u5355\u673a\u4f5c\u4e1a":41,"\u6211\u4eec\u53ea\u9700\u8981\u4f7f\u7528lstm":25,"\u6211\u4eec\u53ea\u9700\u8981\u8fd0\u884c":50,"\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528":47,"\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u5b83\u6765\u751f\u6210\u5e8f\u5217":28,"\u6211\u4eec\u53ef\u4ee5\u5c06":34,"\u6211\u4eec\u53ef\u4ee5\u6309\u7167\u5982\u4e0b\u5c42\u6b21\u5b9a\u4e49\u975e\u5e8f\u5217":24,"\u6211\u4eec\u53ef\u4ee5\u751f\u6210":52,"\u6211\u4eec\u53ef\u4ee5\u76f4\u63a5\u89c2\u5bdf\u6a21\u578b\u7684\u53c2\u6570\u662f\u5426\u7b26\u5408\u9884\u671f\u6765\u8fdb\u884c\u68c0\u9a8c":18,"\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u5728\u76ee\u5f55":54,"\u6211\u4eec\u53ef\u4ee5\u8bbe\u8ba1\u642d\u5efa\u4e00\u4e2a\u7075\u6d3b\u7684":27,"\u6211\u4eec\u53ef\u4ee5\u8fd0\u884c\u4ee5\u4e0b\u547d\u4ee4\u6765\u505ableu\u8bc4\u4f30":55,"\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u4ee5\u4e0b\u547d\u4ee4\u6765\u8bad\u7ec3\u6a21\u578b":55,"\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u4ee5\u4e0b\u547d\u4ee4\u6765\u8fdb\u884c\u4ece\u6cd5\u8bed\u5230\u82f1\u8bed\u7684\u6587\u672c\u7ffb\u8bd1":55,"\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u5982\u4e0b\u547d\u4ee4\u8fdb\u884c\u9884\u5904\u7406\u5de5\u4f5c":47,"\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u65e5\u5fd7\u67e5\u770b\u5bb9\u5668\u8bad\u7ec3\u7684\u60c5\u51b5":42,"\u6211\u4eec\u57285\u5929\u91cc\u8bad\u7ec3\u4e8616\u4e2apass":55,"\u6211\u4eec\u5728\u51fd\u6570\u7684\u7ed3\u5c3e\u8fd4\u56de":28,"\u6211\u4eec\u5728\u62e5\u670950\u4e2a\u8282\u70b9\u7684\u96c6\u7fa4\u4e2d\u8bad\u7ec3\u6a21\u578b":55,"\u6211\u4eec\u5728\u8bad\u7ec3\u4e4b\u524d\u9700\u8981\u5e38\u89c1\u4e00\u4e2a\u6a21\u578b\u914d\u7f6e\u6587\u4ef6":55,"\u6211\u4eec\u5728initialzier\u51fd\u6570\u91cc\u521d\u59cb\u5316\u8bcd\u8868":50,"\u6211\u4eec\u5bf9\u6a21\u578b\u8fdb\u884c\u4e86\u4ee5\u4e0b\u66f4\u6539":28,"\u6211\u4eec\u5c06":[42,52],"\u6211\u4eec\u5c06\u4e00\u6bb5\u8bdd\u770b\u6210\u53e5\u5b50\u7684\u6570\u7ec4":25,"\u6211\u4eec\u5c06\u4ecb\u7ecd\u5982\u4f55\u542f\u52a8\u5206\u5e03\u5f0f\u8bad\u7ec3\u4f5c\u4e1a":41,"\u6211\u4eec\u5c06\u4ee5":[34,50],"\u6211\u4eec\u5c06\u4ee5\u6700\u57fa\u672c\u7684\u903b\u8f91\u56de\u5f52\u7f51\u7edc\u4f5c\u4e3a\u8d77\u70b9":50,"\u6211\u4eec\u5c06\u4f7f\u7528":28,"\u6211\u4eec\u5c06\u4f7f\u7528\u7b80\u5355\u7684":28,"\u6211\u4eec\u5c06\u4f7f\u7528cifar":47,"\u6211\u4eec\u5c06\u539f\u59cb\u6570\u636e\u7684\u6bcf\u4e00\u7ec4":25,"\u6211\u4eec\u5c06\u5728\u540e\u9762\u4ecb\u7ecd\u8bad\u7ec3\u548c\u9884\u6d4b\u6d41\u7a0b\u7684\u811a\u672c":50,"\u6211\u4eec\u5c06\u5b83\u4eec\u5212\u5206\u4e3a\u4e0d\u540c\u7684\u7c7b\u522b":35,"\u6211\u4eec\u5c06\u5bf9\u8fd9\u4e24\u4e2a\u6b65\u9aa4\u7ed9\u51fa\u4e86\u8be6\u7ec6\u7684\u89e3\u91ca":50,"\u6211\u4eec\u5c06\u653e\u7f6e\u4f9d\u8d56\u5e93":34,"\u6211\u4eec\u5c06\u8bad\u7ec3\u6587\u4ef6\u4e0e\u6570\u636e\u653e\u5728\u4e00\u4e2ajob":42,"\u6211\u4eec\u5c06\u8bc4\u5206\u5206\u6210\u4e24\u90e8\u5206":52,"\u6211\u4eec\u5c06\u9610\u91ca\u5982\u4f55\u5728\u96c6\u7fa4\u4e0a\u8fd0\u884c\u5206\u5e03\u5f0f":34,"\u6211\u4eec\u5c31\u53ef\u4ee5\u7740\u624b\u5bf9\u5206\u7c7b\u6a21\u578b\u8fdb\u884c\u8bad\u7ec3\u4e86":47,"\u6211\u4eec\u5c31\u53ef\u4ee5\u8bad\u7ec3\u6a21\u578b\u4e86":50,"\u6211\u4eec\u5c31\u53ef\u4ee5\u8fdb\u884c\u9884\u6d4b\u4e86":50,"\u6211\u4eec\u5c55\u793a\u5982\u4f55\u7528paddlepaddle\u89e3\u51b3":18,"\u6211\u4eec\u5df2\u7ecf\u5b9e\u73b0\u4e86\u5927\u591a\u6570\u5e38\u7528\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u67b6\u6784":28,"\u6211\u4eec\u5e0c\u671b\u80fd\u5728\u8fd9\u4e2a\u57fa\u7840\u4e0a\u4e0d\u65ad\u7684\u6539\u8fdb":0,"\u6211\u4eec\u5e0c\u671b\u80fd\u591f\u68c0\u9a8c\u6a21\u578b\u7684\u597d\u574f":18,"\u6211\u4eec\u5e94\u5f53\u4f1a\u5f97\u5230\u4e00\u4e2a\u540d\u4e3acifar":47,"\u6211\u4eec\u5efa\u8bae\u4f60\u4e3a\u4f60\u7684python\u5c01\u88c5\u5b9e\u73b0\u4e00\u4e2a":30,"\u6211\u4eec\u5efa\u8bae\u4f60\u5728\u5199\u65b0\u7f51\u7edc\u5c42\u65f6\u628a\u6d4b\u8bd5\u4ee3\u7801\u653e\u5165\u65b0\u7684\u6587\u4ef6\u4e2d":30,"\u6211\u4eec\u603b\u7ed3\u4e86\u5404\u4e2a\u7f51\u7edc\u7684\u590d\u6742\u5ea6\u548c\u6548\u679c":50,"\u6211\u4eec\u611f\u8c22":55,"\u6211\u4eec\u63a8\u8350\u4f7f\u7528\u6700\u65b0\u7248\u672c\u7684cudnn":19,"\u6211\u4eec\u63a8\u8350\u4f7f\u7528docker\u955c\u50cf\u6765\u90e8\u7f72\u73af\u5883":21,"\u6211\u4eec\u63d0\u4f9b\u4e24\u4e2a\u7f51\u7edc":54,"\u6211\u4eec\u63d0\u4f9b\u4e8612\u4e2a":20,"\u6211\u4eec\u63d0\u4f9b\u4e86\u4e00\u4e2a\u6570\u636e\u9884\u5904\u7406\u811a\u672c":54,"\u6211\u4eec\u63d0\u4f9b\u4e86\u4e00\u4e2a\u793a\u4f8b\u811a\u672c":48,"\u6211\u4eec\u63d0\u4f9b\u4e86\u811a\u672c\u6765\u6784\u5efa\u5b57\u5178\u548c\u9884\u5904\u7406\u6570\u6910":54,"\u6211\u4eec\u63d0\u4f9b\u4e86c":48,"\u6211\u4eec\u63d0\u4f9b\u4e86python\u5904\u7406\u6570\u636e\u7684\u63a5\u53e3":39,"\u6211\u4eec\u662f\u5bf9\u6bcf\u4e00\u4e2a\u5b50\u5e8f\u5217\u53d6\u6700\u540e\u4e00\u4e2a\u5143\u7d20":25,"\u6211\u4eec\u6709\u4e00\u4e2a\u5e8f\u5217\u4f5c\u4e3a\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u72b6\u6001":28,"\u6211\u4eec\u7528":51,"\u6211\u4eec\u7528\u4ee5\u4e0b\u7684\u4e00\u4e9b":52,"\u6211\u4eec\u7528\u7f16\u53f7\u4f5c\u4e3akei":52,"\u6211\u4eec\u7528paddlepaddle\u89e3\u51b3\u4e86\u5355\u53d8\u91cf\u7ebf\u6027\u56de\u5f52\u95ee\u9898":18,"\u6211\u4eec\u7684\u5b57\u5178\u4f7f\u7528\u5185\u90e8\u7684\u5206\u8bcd\u5de5\u5177\u5bf9\u767e\u5ea6\u77e5\u9053\u548c\u767e\u5ea6\u767e\u79d1\u7684\u8bed\u6599\u8fdb\u884c\u5206\u8bcd\u540e\u4ea7\u751f":46,"\u6211\u4eec\u7684\u8bad\u7ec3\u66f2\u7ebf\u5982\u4e0b":53,"\u6211\u4eec\u770b\u4e00\u4e0b\u5355\u5c42rnn\u7684\u914d\u7f6e":25,"\u6211\u4eec\u770b\u4e00\u4e0b\u8bed\u4e49\u76f8\u540c\u7684\u53cc\u5c42rnn\u7684\u7f51\u7edc\u914d\u7f6e":25,"\u6211\u4eec\u771f\u8bda\u5730\u611f\u8c22\u60a8\u7684\u5173\u6ce8":54,"\u6211\u4eec\u771f\u8bda\u5730\u611f\u8c22\u60a8\u7684\u8d21\u732e":29,"\u6211\u4eec\u79f0\u4e4b\u4e3a\u4e00\u4e2a0\u5c42\u7684\u5e8f\u5217":24,"\u6211\u4eec\u8fd8\u53ef\u4ee5\u767b\u5f55\u5230\u5bbf\u4e3b\u673a\u4e0a\u67e5\u770b\u8bad\u7ec3\u7ed3\u679c":41,"\u6211\u4eec\u8fd8\u5c06\u7f16\u7801\u5411\u91cf\u6295\u5c04\u5230":28,"\u6211\u4eec\u9009\u53d6\u5355\u53cc\u5c42\u5e8f\u5217\u914d\u7f6e\u4e2d\u7684\u4e0d\u540c\u90e8\u5206":25,"\u6211\u4eec\u901a\u5e38\u5728\u6240\u6709\u8282\u70b9\u4e0a\u521b\u5efa\u4e00\u4e2a":34,"\u6211\u4eec\u901a\u5e38\u5c06\u4e00\u53e5\u8bdd\u7406\u89e3\u6210\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":25,"\u6211\u4eec\u901a\u8fc7\u8bfb\u53d6":42,"\u6211\u4eec\u9075\u5faa":55,"\u6211\u4eec\u91c7\u7528\u4e0a\u9762\u7684\u7279\u5f81\u6a21\u677f":53,"\u6211\u4eec\u91c7\u7528\u5355\u5c42lstm\u6a21\u578b":50,"\u6211\u4eec\u9700\u8981\u5148\u521b\u5efa\u4e00\u4e2a\u6a21\u578b\u914d\u7f6e\u6587\u4ef6":47,"\u6211\u4eec\u9700\u8981\u521b\u5efa\u6a21\u578b\u914d\u7f6e\u6587\u4ef6":55,"\u6211\u4eec\u9700\u8981\u5236\u4f5c\u4e00\u4e2a\u5305\u542b\u8bad\u7ec3\u6570\u636e\u7684paddle\u955c\u50cf":41,"\u6211\u4eec\u9700\u8981\u5728\u96c6\u7fa4\u7684\u6240\u6709\u8282\u70b9\u4e0a\u5b89\u88c5":34,"\u6211\u4eec\u9700\u8981\u8ba1\u7b97":30,"\u6211\u4eec\u9700\u8981\u8bbe\u7f6e":52,"\u6211\u4eec\u9700\u8981\u9884\u5904\u7406\u6570\u6910\u5e76\u6784\u5efa\u4e00\u4e2a\u5b57\u5178":54,"\u6211\u4eec\u975e\u5e38\u6b22\u8fce\u60a8\u7528paddlepaddle\u6784\u5efa\u66f4\u597d\u7684\u793a\u4f8b":52,"\u6211\u4eec\u9884\u8bad\u7ec3\u5f97\u52304\u79cd\u4e0d\u540c\u7ef4\u5ea6\u7684\u8bcd\u5411\u91cf":46,"\u6211\u4eec\u9996\u5148\u5904\u7406\u7535\u5f71\u6216\u7528\u6237\u7684\u7279\u5f81\u6587\u4ef6":52,"\u6211\u4eec\u9ed8\u8ba4\u4f7f\u7528imdb\u7684\u6d4b\u8bd5\u6570\u636e\u96c6\u4f5c\u4e3a\u9a8c\u8bc1":54,"\u6216":[3,33,39,47,53],"\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":24,"\u6216\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":24,"\u6216\u4e00\u4e2a\u5411\u91cf":27,"\u6216\u4e0d\u786e\u5b9a":51,"\u6216\u5355\u5c42\u5e8f\u5217\u7ecf\u8fc7\u8fd0\u7b97\u53d8\u6210\u4e00\u4e2a0\u5c42\u5e8f\u5217":24,"\u6216\u53ea\u662f\u76f4\u63a5\u5728\u547d\u4ee4\u884c\u8f93\u5165":29,"\u6216\u662f\u624b\u52a8\u7f16\u8f91\u751f\u6210":52,"\u6216\u6700\u5927\u503c":24,"\u6216\u6d4b\u8bd5\u6587\u4ef6\u5217\u8868":2,"\u6216\u79f0pserver":39,"\u6216\u7b2c\u4e00\u4e2a":24,"\u6216\u7b2c\u4e00\u4e2a\u5143\u7d20":24,"\u6216\u8005":[17,20,22,24,25,33,39],"\u6216\u8005\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":27,"\u6216\u8005\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":[24,27],"\u6216\u8005\u4ece\u5de5\u5177\u7684\u754c\u9762\u91cc\u8fd0\u884c\u60a8\u7684\u5e94\u7528":33,"\u6216\u8005\u53cd\u5411\u5730\u4ece":28,"\u6216\u8005\u5728cpu\u6a21\u5f0f\u4e0b\u4f7f\u75284\u4e2a\u7ebf\u7a0b":36,"\u6216\u8005\u5df2\u7ecf\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u81ea\u52a8\u8bbe\u7f6e":35,"\u6216\u8005\u6570\u636e\u5e93\u8fde\u63a5\u8def\u5f84\u7b49":2,"\u6216\u8005\u6570\u7ec4\u7684\u6570\u7ec4\u8fd9\u4e2a\u6982\u5ff5":25,"\u6216\u8005\u662f\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":24,"\u6216\u8005\u662f\u4e00\u4e2a\u5c0f\u7684\u6587\u672c\u7247\u6bb5":54,"\u6216\u8005\u662f\u51fd\u6570\u8c03\u7528\u7684\u9891\u7387\u548c\u8017\u65f6\u7b49":33,"\u6216\u8005\u66f4\u65e9":17,"\u6216\u8005\u6bcf\u4e00\u4e2a\u7cfb\u5217\u91cc\u7684\u7279\u5f81\u6570\u636e":25,"\u6216\u8005\u76f4\u63a5\u4f7f\u7528\u4e0b\u9762\u7684shell\u547d\u4ee4":48,"\u6216\u8005\u76f4\u63a5\u6254\u6389\u975e\u5e38\u957f\u7684\u5e8f\u5217":17,"\u6216\u8005\u91c7\u7528\u5e76\u884c\u8ba1\u7b97\u6765\u52a0\u901f\u67d0\u4e9b\u5c42\u7684\u66f4\u65b0":38,"\u6216\u8005\u9700\u8981\u66f4\u9ad8\u7684\u6548\u7387":2,"\u6216\u8005\u9ad8\u6027\u80fd\u7684":20,"\u6216\u8bbe\u7f6e\u4e3anone":2,"\u6216gpu":36,"\u6216gpu\u4e2a\u6570":54,"\u6218\u4e89\u7247":51,"\u623f":25,"\u623f\u95f4":25,"\u6240\u4ee5":[3,17,39],"\u6240\u4ee5\u4e00\u822c\u9700\u8981\u5bf9\u8bad\u7ec3\u7528\u7684\u6a21\u578b\u914d\u7f6e\u6587\u4ef6\u7a0d\u4f5c\u76f8\u5e94\u4fee\u6539\u624d\u80fd\u5728\u9884\u6d4b\u65f6\u4f7f\u7528":5,"\u6240\u4ee5\u4f60\u53ea\u7528\u6309\u4e0b\u9762\u7684\u7ed3\u6784\u6765\u7ec4\u7ec7\u6570\u6910\u5c31\u884c\u4e86":54,"\u6240\u4ee5\u505a\u6cd5\u53ef\u4ee5\u6709\u4e24\u79cd":17,"\u6240\u4ee5\u53ef\u4ee5\u5229\u7528\u5982\u4e0b\u65b9\u6cd5\u8bfb\u53d6\u6a21\u578b\u7684\u53c2\u6570":18,"\u6240\u4ee5\u53ef\u4ee5\u7b80\u5316\u5bf9\u73af\u5883\u7684\u8981\u6c42":41,"\u6240\u4ee5\u5728cpu\u7684\u8fd0\u7b97\u6027\u80fd\u4e0a\u5e76\u4e0d\u4f1a\u6709\u4e25\u91cd\u7684\u5f71\u54cd":20,"\u6240\u4ee5\u5916\u5c42\u8f93\u51fa\u7684\u5e8f\u5217\u5f62\u72b6":25,"\u6240\u4ee5\u5982\u679c\u60f3\u8981\u5728\u540e\u53f0\u542f\u7528ssh":20,"\u6240\u4ee5\u5b83\u4eec\u4f7f\u7528\u540c\u4e00\u4e2aip\u5730\u5740":40,"\u6240\u4ee5\u5bf9":25,"\u6240\u4ee5\u5f88\u591a\u65f6\u5019\u4f60\u9700\u8981\u505a\u7684\u53ea\u662f\u5b9a\u4e49\u6b63\u786e\u7684\u7f51\u7edc\u5c42\u5e76\u628a\u5b83\u4eec\u8fde\u63a5\u8d77\u6765":18,"\u6240\u4ee5\u6027\u80fd\u4e5f\u5c31\u9010\u6b65\u53d8\u6210\u4e86\u6df1\u5ea6\u5b66\u4e60\u9886\u57df\u6700\u91cd\u8981\u7684\u6307\u6807":33,"\u6240\u4ee5\u6211\u4eec\u4f7f\u7528\u8fd9\u4e2a\u955c\u50cf\u6765\u4e0b\u8f7d\u8bad\u7ec3\u6570\u636e\u5230docker":41,"\u6240\u4ee5\u6211\u4eec\u53ef\u4ee5\u5728\u8fd9\u4e2a\u57fa\u7840\u4e0a":42,"\u6240\u4ee5\u6211\u4eec\u63a8\u8350\u4f7f\u7528\u57fa\u4e8edocker\u6765\u6784\u5efapaddlepaddle\u7684\u6587\u6863":31,"\u6240\u4ee5\u6211\u4eec\u9700\u8981\u5c06\u8f93\u5165\u6570\u636e\u6807\u8bb0\u6210":25,"\u6240\u4ee5\u63a8\u8350\u4f7f\u7528\u663e\u5f0f\u6307\u5b9a\u7684\u65b9\u5f0f\u6765\u8bbe\u7f6einput_typ":3,"\u6240\u4ee5\u653e\u4e00\u4e2a\u7a7a\u5217\u8868":18,"\u6240\u4ee5\u8bad\u7ec3":34,"\u6240\u4ee5\u8f93\u51fa\u7684value\u5305\u542b\u4e24\u4e2a\u5411\u91cf":5,"\u6240\u4ee5\u8fd9\u4e00\u6b65\u662f\u5fc5\u8981\u7684":30,"\u6240\u4ee5gpu\u5728\u8fd0\u7b97\u6027\u80fd\u4e0a\u4e5f\u4e0d\u4f1a\u6709\u4e25\u91cd\u7684\u5f71\u54cd":20,"\u6240\u5bf9\u5e94\u7684\u8bcd\u8868index\u6570\u7ec4":25,"\u6240\u6709\u4ee3\u7801\u5fc5\u987b\u5177\u6709\u5355\u5143\u6d4b\u8bd5":29,"\u6240\u6709\u53c2\u6570\u7f6e\u4e3a\u96f6":36,"\u6240\u6709\u540c\u76ee\u5f55\u4e0b\u7684\u6587\u672c\u5b9e\u4f8b\u6587\u4ef6\u90fd\u662f\u540c\u7ea7\u522b\u7684":54,"\u6240\u6709\u547d\u4ee4\u884c\u9009\u9879\u53ef\u4ee5\u8bbe\u7f6e\u4e3a":34,"\u6240\u6709\u6587\u4ef6\u5217\u8868":3,"\u6240\u6709\u672c\u5730\u8bad\u7ec3":34,"\u6240\u6709\u6807\u8bb0\u7684\u6d4b\u8bd5\u96c6\u548c\u8bad\u7ec3\u96c6":54,"\u6240\u6709\u7684":30,"\u6240\u6709\u7684\u4eba\u53e3\u7edf\u8ba1\u5b66\u4fe1\u606f\u7531\u7528\u6237\u81ea\u613f\u63d0\u4f9b":51,"\u6240\u6709\u7684\u5355\u6d4b\u90fd\u4f1a\u88ab\u6267\u884c\u4e00\u6b21":30,"\u6240\u6709\u7684\u64cd\u4f5c\u90fd\u662f\u9488\u5bf9\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u6765\u8fdb\u884c\u7684":25,"\u6240\u6709\u7684\u7528\u6237\u4fe1\u606f\u90fd\u5305\u542b\u5728":51,"\u6240\u6709\u7684\u7535\u5f71\u4fe1\u606f\u90fd\u5305\u542b\u5728":51,"\u6240\u6709\u7684\u8bc4\u5206\u6570\u636e\u90fd\u5305\u542b\u5728":51,"\u6240\u6709\u7684python\u5c01\u88c5\u90fd\u4f7f\u7528":30,"\u6240\u6709\u7684python\u5c01\u88c5\u90fd\u5728":30,"\u6240\u6709\u7f51\u7edc\u5c42\u7684\u68af\u5ea6\u68c0\u67e5\u5355\u6d4b\u90fd\u4f4d\u4e8e":30,"\u6240\u6709\u8282\u70b9\u8fd0\u884c\u96c6\u7fa4\u4f5c\u4e1a\u7684\u4e3b\u673a\u540d\u6216":34,"\u6240\u6709\u8d21\u732e\u8005":0,"\u6240\u6709\u8f93\u5165\u5e8f\u5217\u5e94\u8be5\u6709\u76f8\u540c\u7684\u957f\u5ea6":28,"\u6240\u6709\u914d\u7f6e\u90fd\u80fd\u5728":50,"\u6240\u6784\u5efa\u7f51\u7edc\u7ed3\u6784\u7684\u7684\u6df1\u5ea6\u6bd4\u4e4b\u524d\u4f7f\u7528\u7684\u7f51\u7edc\u6709\u5927\u5e45\u5ea6\u7684\u63d0\u9ad8":48,"\u6240\u793a":53,"\u6240\u8c13\u65f6\u95f4\u6b65\u4fe1\u606f":3,"\u624b\u5de5\u827a\u8005":51,"\u624d\u4f1a\u91ca\u653e\u8be5\u6bb5\u5185\u5b58":3,"\u624d\u4f1astop":3,"\u624d\u80fd\u4fdd\u8bc1\u548c\u5355\u5c42\u5e8f\u5217\u7684\u914d\u7f6e\u4e2d":25,"\u624d\u80fd\u53d1\u6325\u5176\u5168\u90e8\u80fd\u529b":33,"\u6253\u5370\u5728\u5c4f\u5e55\u4e0a":52,"\u6253\u5370\u7684\u65e5\u5fd7\u53d8\u591a":19,"\u6253\u5f00":33,"\u6253\u5f00\u6587\u672c\u6587\u4ef6":3,"\u6253\u5f00\u6d4f\u89c8\u5668\u8bbf\u95ee\u5bf9\u5e94\u76ee\u5f55\u4e0b\u7684index":31,"\u6267\u884c":[22,53,54],"\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4\u5c31\u53ef\u4ee5\u9884\u5904\u7406\u6570\u6910":54,"\u6267\u884c\u4ee5\u4e0b\u64cd\u4f5c":28,"\u6267\u884c\u5982\u4e0b\u547d\u4ee4\u5373\u53ef\u4ee5\u5173\u95ed\u8fd9\u4e2acontain":20,"\u6267\u884c\u60a8\u7684\u4ee3\u7801":33,"\u6267\u884c\u65b9\u6cd5\u5982\u4e0b":20,"\u6267\u884c\u7684\u547d\u4ee4\u5982\u4e0b":48,"\u6269\u5c55\u548c\u5ef6\u4f38":0,"\u6269\u5c55\u673a\u5236\u7b49\u529f\u80fd":40,"\u6279\u6b21\u540e\u6253\u5370\u65e5\u5fd7":52,"\u6279\u6b21\u5bf9\u5e73\u5747\u53c2\u6570\u8fdb\u884c\u6d4b\u8bd5":53,"\u6279\u6b21\u7684\u6570\u636e":52,"\u627e\u5230":28,"\u627e\u5230\u8fd0\u884c\u6162\u7684\u539f\u56e0":33,"\u627e\u5230\u8fd0\u884c\u6162\u7684\u90e8\u5206":33,"\u6280\u672f\u5458":51,"\u628a":30,"\u628a\u7528\u6237\u5728\u8d2d\u7269\u7f51\u7ad9":54,"\u628a\u8bad\u7ec3\u6570\u636e\u76f4\u63a5\u653e\u5728":41,"\u6293\u53d6\u4ea7\u54c1\u7684\u7528\u6237\u8bc4\u8bba\u5e76\u5206\u6790\u4ed6\u4eec\u7684\u60c5\u611f":54,"\u6295\u5c04\u53cd\u5411rnn\u7684\u7b2c\u4e00\u4e2a\u5b9e\u4f8b\u5230":28,"\u6295\u5c04\u7f16\u7801\u5411\u91cf\u5230":28,"\u62a5\u9519":22,"\u62bd\u53d6\u51fa\u7684\u65b0\u8bcd\u8868\u7684\u4fdd\u5b58\u8def\u5f84":46,"\u62bd\u53d6\u5bf9\u5e94\u7684\u8bcd\u5411\u91cf\u6784\u6210\u65b0\u7684\u8bcd\u8868":46,"\u62c6\u5206\u5230\u4e0d\u540c\u6587\u4ef6\u5939":55,"\u62c6\u89e3":27,"\u62c6\u89e3\u6210\u7684\u6bcf\u4e00\u53e5\u8bdd\u518d\u901a\u8fc7\u4e00\u4e2alstm\u7f51\u7edc":25,"\u62f7\u8d1d\u8bad\u7ec3\u6587\u4ef6\u5230\u5bb9\u5668\u5185":42,"\u62fc\u63a5\u6210\u4e00\u4e2a\u65b0\u7684\u5411\u91cf":50,"\u6307\u4ee4\u96c6":20,"\u6307\u5411\u4e00\u4e2alayer":27,"\u6307\u5b9a":[17,27,28,39],"\u6307\u5b9a\u4e00\u53f0\u673a\u5668\u4e0a\u4f7f\u7528\u7684\u7ebf\u7a0b\u6570":36,"\u6307\u5b9a\u4e86dataprovider\u7684\u6587\u4ef6\u540d\u548c\u8fd4\u56de\u6570\u636e\u7684\u51fd\u6570\u540d":39,"\u6307\u5b9a\u4ee5\u592a\u7f51\u7c7b\u578b\u4e3atcp\u7f51\u7edc":39,"\u6307\u5b9a\u4f7f\u75282":17,"\u6307\u5b9a\u521d\u59cb\u5316\u6a21\u578b\u8def\u5f84":50,"\u6307\u5b9a\u52a0\u8f7d\u7684\u65b9\u5f0f":36,"\u6307\u5b9a\u5de5\u4f5c\u6a21\u578b\u8fdb\u884c\u9884\u6d4b":48,"\u6307\u5b9a\u5de5\u4f5c\u6a21\u5f0f\u6765\u63d0\u53d6\u7279\u5f81":48,"\u6307\u5b9a\u63d0\u53d6\u7279\u5f81\u7684\u5c42":48,"\u6307\u5b9a\u662f\u5426\u4f7f\u7528gpu":48,"\u6307\u5b9a\u751f\u6210\u6570\u636e\u7684\u51fd\u6570":50,"\u6307\u5b9a\u7684\u5b57\u5178\u5355\u8bcd\u6570":55,"\u6307\u5b9a\u7684\u6570\u636e\u5c06\u4f1a\u88ab\u6d4b\u8bd5":50,"\u6307\u5b9a\u7684\u8f93\u5165\u4e0d\u4f1a\u88ab":27,"\u6307\u5b9a\u7f51\u7edc\u63a5\u53e3\u540d\u5b57\u4e3aeth0":39,"\u6307\u5b9a\u8bad\u7ec3\u6570\u636e\u548c\u6d4b\u8bd5\u6570\u636e":50,"\u6307\u5b9abatch":55,"\u6307\u5b9acudnn\u7684\u6700\u5927\u5de5\u4f5c\u7a7a\u95f4\u5bb9\u9650":36,"\u6307\u5bf9\u4e8e\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217\u8f93\u5165\u6570\u636e":25,"\u6307\u793a\u4f7f\u7528\u54ea\u4e2agpu\u6838":36,"\u6307\u793a\u5728\u7b80\u5355\u7684recurrentlayer\u5c42\u7684\u8ba1\u7b97\u4e2d\u662f\u5426\u4f7f\u7528\u6279\u5904\u7406\u65b9\u6cd5":36,"\u6307\u793a\u5f53\u6307\u5b9a\u8f6e\u7684\u6d4b\u8bd5\u6a21\u578b\u4e0d\u5b58\u5728\u65f6":36,"\u6307\u793a\u662f\u5426\u4f7f\u7528\u5916\u90e8\u673a\u5668\u8fdb\u884c\u5ea6\u91cf\u5b66\u4e60":36,"\u6307\u793a\u662f\u5426\u4f7f\u7528\u591a\u7ebf\u7a0b\u6765\u8ba1\u7b97\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc":36,"\u6307\u793a\u662f\u5426\u5f00\u542f\u53c2\u6570\u670d\u52a1\u5668":36,"\u6307\u793a\u662f\u5426\u663e\u793a\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u7684\u7a00\u758f\u53c2\u6570\u5206\u5e03\u7684\u65e5\u5fd7\u7ec6\u8282":36,"\u6307\u793a\u662f\u5426\u68c0\u67e5\u6240\u6709\u53c2\u6570\u670d\u52a1\u5668\u4e0a\u7684\u7a00\u758f\u53c2\u6570\u7684\u5206\u5e03\u662f\u5747\u5300\u7684":36,"\u6307\u793a\u6d4b\u8bd5\u4efb\u52a1":53,"\u6307\u793a\u6d4b\u8bd5\u4efb\u52a1\u7684\u6807\u8bb0":53,"\u6309\u542f\u53d1\u5f0f\u635f\u5931\u7684\u5927\u5c0f\u9012\u589e\u6392\u5e8f":36,"\u6309\u7167\u4e0b\u9762\u6b65\u9aa4\u5373\u53ef":42,"\u6309\u94ae":29,"\u633a":25,"\u633a\u597d":25,"\u6355\u83b7":50,"\u635f\u5931\u51fd\u6570":39,"\u635f\u5931\u51fd\u6570\u5373\u4e3a\u7f51\u7edc\u7684\u4f18\u5316\u76ee\u6807":39,"\u635f\u5931\u51fd\u6570\u548c\u8bc4\u4f30\u5668":39,"\u6362":25,"\u6392\u6210\u4e00\u5217\u7684\u591a\u4e2a\u5143\u7d20":24,"\u63a5\u4e0b\u6765":[50,54],"\u63a5\u4e0b\u6765\u53ef\u4ee5\u8003\u8651\u4e0b\u65f6\u95f4\u7ebf\u7684\u5206\u6790":33,"\u63a5\u4e0b\u6765\u5c31\u53ef\u4ee5\u4f7f\u7528":33,"\u63a5\u4e0b\u6765\u6211\u4eec\u5c06\u5c55\u793a\u5982\u4f55\u7528paddlepaddle\u8bad\u7ec3\u4e00\u4e2a\u6587\u672c\u5206\u7c7b\u6a21\u578b":50,"\u63a5\u53d7":53,"\u63a5\u53d7\u7684\u4e1c\u897f":53,"\u63a5\u53d7\u8005":53,"\u63a5\u53e3\u540d\u79f0":34,"\u63a5\u53e3\u63d0\u53d6\u7684\u7ed3\u679c\u662f\u4e00\u81f4\u7684":48,"\u63a5\u53e3\u6709\u4e00\u4e2a":17,"\u63a5\u53e3\u6765\u52a0\u8f7d\u6570\u636e":50,"\u63a5\u53e3\u6765\u52a0\u8f7d\u8be5\u6587\u4ef6":48,"\u63a5\u53e3\u6765\u6253\u5f00\u8be5\u6587\u4ef6":48,"\u63a5\u53e3\u8bbe\u7f6e\u795e\u7ecf\u7f51\u7edc\u6240\u4f7f\u7528\u7684\u8bad\u7ec3\u53c2\u6570\u548c":39,"\u63a7\u5236":36,"\u63a7\u5236\u5982\u4f55\u6539\u53d8\u6a21\u578b\u53c2\u6570":18,"\u63a8\u5bfc\u8be5\u5c42\u524d\u5411\u548c\u540e\u5411\u4f20\u9012\u7684\u65b9\u7a0b":30,"\u63a8\u8350":25,"\u63a8\u8350\u4f7f\u7528":3,"\u63a8\u8350\u4f7f\u7528\u5c06\u672c\u5730\u7f51\u5361":20,"\u63a8\u8350\u6e05\u7406\u6574\u4e2a\u7f16\u8bd1\u76ee\u5f55":19,"\u63a8\u8350\u76f4\u63a5\u5b58\u653e\u5230\u8bad\u7ec3\u76ee\u5f55":2,"\u63a8\u8350\u7cfb\u7edf":34,"\u63a8\u9500\u5458":51,"\u63cf\u8ff0":19,"\u63cf\u8ff0\u7f51\u7edc\u7ed3\u6784\u548c\u4f18\u5316\u7b97\u6cd5":50,"\u63cf\u8ff0kubernetes\u4e0a\u8fd0\u884c\u7684\u4f5c\u4e1a":40,"\u63d0\u4ea4\u4f60\u7684\u4ee3\u7801":29,"\u63d0\u4ea4\u4f60\u7684\u4ee3\u7801\u65f6":29,"\u63d0\u4ea4\u4fe1\u606f\u7684\u7b2c\u4e00\u884c\u662f\u6807\u9898":29,"\u63d0\u4f9b":34,"\u63d0\u4f9b\u4e86\u4e00\u4e2a\u542f\u52a8\u811a\u672c":42,"\u63d0\u4f9b\u4e86\u547d\u4ee4\u6837\u4f8b\u6765\u8fd0\u884c":34,"\u63d0\u4f9b\u4e86\u81ea\u52a8\u5316\u811a\u672c\u6765\u542f\u52a8\u4e0d\u540c\u8282\u70b9\u4e2d\u7684\u6240\u6709":34,"\u63d0\u4f9b\u51e0\u4e4e\u6240\u6709\u8bad\u7ec3\u7684\u5185\u90e8\u8f93\u51fa\u65e5\u5fd7":34,"\u63d0\u4f9b\u6269\u5c55\u7684\u957f\u5ea6\u4fe1\u606f":24,"\u63d0\u4f9b\u8bad\u7ec3\u8fc7\u7a0b\u7684":34,"\u63d0\u51fa\u7684\u4ee3\u7801\u9700\u6c42":46,"\u63d0\u793a":17,"\u64cd\u4f5c":[25,39],"\u64cd\u6301\u5bb6\u52a1\u8005":51,"\u652f\u6301\u4e3b\u6d41x86\u5904\u7406\u5668\u5e73\u53f0":22,"\u652f\u6301\u5355\u673a\u6a21\u5f0f\u548c\u591a\u673a\u6a21\u5f0f":39,"\u652f\u6301\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165\u7684layer":[26,27],"\u652f\u6301nvidia":22,"\u652f\u6301rbd":40,"\u653e\u5728\u8fd9\u4e2a\u76ee\u5f55\u91cc\u7684\u6587\u4ef6\u5176\u5b9e\u662f\u4fdd\u5b58\u5230\u4e86mfs\u4e0a":42,"\u653e\u5fc3":25,"\u6545\u800c\u662f\u4e00\u4e2a\u5355\u5c42\u65f6\u95f4\u5e8f\u5217":25,"\u6548\u679c\u603b\u7ed3":50,"\u6559\u7a0b\u6587\u6863\u5230":34,"\u6559\u80b2\u5de5\u4f5c\u8005":51,"\u6570":[27,53],"\u6570\u5fc5\u987b\u4e25\u683c\u76f8\u7b49":27,"\u6570\u636e":55,"\u6570\u636e\u4e0b\u8f7d\u4e4b\u540e":47,"\u6570\u636e\u4e2d0":17,"\u6570\u636e\u5217\u8868":48,"\u6570\u636e\u5c06\u4fdd\u5b58\u5728":46,"\u6570\u636e\u5c42":[18,52],"\u6570\u636e\u5e94\u8be5\u5728\u542f\u52a8\u96c6\u7fa4\u4f5c\u4e1a\u4e4b\u524d\u51c6\u5907\u597d":34,"\u6570\u636e\u63d0\u4f9b\u5668":35,"\u6570\u636e\u63d0\u4f9b\u811a\u672c\u4ec5\u4ec5\u662f\u8bfb\u53d6meta":52,"\u6570\u636e\u63d0\u4f9b\u811a\u672c\u7684\u7ec6\u8282\u6587\u6863\u53ef\u4ee5\u53c2\u8003":52,"\u6570\u636e\u670d\u52a1\u5668":36,"\u6570\u636e\u7684\u6574\u6570id":28,"\u6570\u636e\u76ee\u5f55\u4e2d\u7684\u6240\u6709\u6587\u4ef6\u88ab":34,"\u6570\u636e\u7c7b\u578b":5,"\u6570\u636e\u7f13\u5b58\u7684\u7b56\u7565":3,"\u6570\u636e\u8bfb\u53d6\u7a0b\u5e8f\u5f80\u5f80\u5b9a\u4e49\u5728\u4e00\u4e2a\u5355\u72ecpython\u811a\u672c\u6587\u4ef6\u91cc":39,"\u6570\u636e\u8f93\u5165":27,"\u6570\u636e\u8f93\u5165\u683c\u5f0f":3,"\u6570\u636e\u96c6":51,"\u6570\u636e\u96c6\u63cf\u8ff0":52,"\u6570\u636e\u96c6\u6587\u4ef6\u5939\u540d\u79f0":55,"\u6570\u636e\u9884\u5904\u7406\u5b8c\u6210\u4e4b\u540e":50,"\u6570\u636e\u9884\u6d4b":53,"\u6570\u6910\u5b9a\u4e49":54,"\u6570\u6910\u8bf4\u660e\u6587\u6863":54,"\u6570\u6910\u96c6\u548c":54,"\u6570\u76ee":38,"\u6574\u4f53":25,"\u6574\u4f53\u6570\u636e\u548c\u539f\u59cb\u6570\u636e\u5b8c\u5168\u4e00\u6837":25,"\u6574\u4f53\u7684\u7ed3\u6784\u56fe\u5982\u4e0b":42,"\u6574\u6570":30,"\u6574\u6570\u6807\u7b7e":3,"\u6574\u6d01":25,"\u6587\u4e66\u5de5\u4f5c":51,"\u6587\u4ef6":[41,53],"\u6587\u4ef6\u4e2d":[42,48,51,53],"\u6587\u4ef6\u4e2d\u6307\u5b9a\u6a21\u578b\u8def\u5f84\u548c\u8f93\u51fa\u7684\u76ee\u5f55":48,"\u6587\u4ef6\u4e2d\u6307\u5b9a\u8981\u63d0\u53d6\u7279\u5f81\u7684\u7f51\u7edc\u5c42\u7684\u540d\u5b57":48,"\u6587\u4ef6\u4e2d\u7684":48,"\u6587\u4ef6\u4e2d\u7684\u6bcf\u884c\u90fd\u5fc5\u987b\u662f\u4e00\u4e2a\u53e5\u5b50":55,"\u6587\u4ef6\u4e3a":[17,55],"\u6587\u4ef6\u4e5f\u53ef\u4ee5\u7528\u4e8e\u5bf9\u6837\u672c\u8fdb\u884c\u9884\u6d4b":48,"\u6587\u4ef6\u5206\u5272\u4e3a\u8bad\u7ec3\u548c\u6d4b\u8bd5\u6587\u4ef6":52,"\u6587\u4ef6\u540d\u79f0\u4e3a":52,"\u6587\u4ef6\u59390":42,"\u6587\u4ef6\u5939\u4e2d\u7684\u6bcf\u4e2a\u6587\u4ef6\u7684\u6bcf\u4e00\u884c\u5305\u542b\u4e24\u90e8\u5206":55,"\u6587\u4ef6\u5f00\u5934":39,"\u6587\u4ef6\u7684\u5206\u9694\u7b26\u4e3a":52,"\u6587\u4ef6\u7684\u683c\u5f0f\u53ef\u4ee5":52,"\u6587\u4ef6\u7a0d\u6709\u5dee\u522b":47,"\u6587\u4ef6\u7d22\u5f15":34,"\u6587\u4ef6\u7ed9\u51fa\u4e86\u5b8c\u6574\u4f8b\u5b50":50,"\u6587\u4ef6model":38,"\u6587\u672c\u4e2d\u7684\u5355\u8bcd\u7528\u7a7a\u683c\u5206\u9694":50,"\u6587\u672c\u4fe1\u606f\u5c31\u662f\u4e00\u4e2a\u5e8f\u5217\u6570\u636e":3,"\u6587\u672c\u5206\u7c7b\u95ee\u9898":50,"\u6587\u672c\u5377\u79ef\u5206\u53ef\u4e3a\u4e09\u4e2a\u6b65\u9aa4":50,"\u6587\u672c\u5377\u79ef\u91c7\u6837\u5c42":52,"\u6587\u672c\u6295\u5f71\u5c42":52,"\u6587\u672c\u683c\u5f0f\u7684\u5b9e\u4f8b\u6587\u4ef6":54,"\u6587\u6863":[17,39],"\u6587\u6863\u81ea\u52a8\u5206\u7c7b\u548c\u95ee\u7b54":53,"\u6587\u6863\u90fd\u662f\u901a\u8fc7":31,"\u6587\u7ae0":42,"\u65b0":25,"\u65b0\u5efa\u4e00\u4e2a\u6743\u91cd":30,"\u65b0\u624b\u5165\u95e8":45,"\u65b9\u4fbf":25,"\u65b9\u4fbf\u4eca\u540e\u7684\u5d4c\u5165\u5f0f\u79fb\u690d\u5de5\u4f5c":19,"\u65b9\u5f0f1":17,"\u65b9\u5f0f2":17,"\u65b9\u6848\u6765\u6807\u8bb0\u6bcf\u4e2a\u53c2\u6570":53,"\u65b9\u6cd5\u4e00":38,"\u65b9\u6cd5\u4e09":38,"\u65b9\u6cd5\u4e8c":38,"\u65c1\u8fb9":25,"\u65c5\u6e38\u7f51\u7ad9":54,"\u65e0":25,"\u65e0\u4e1a\u4eba\u58eb":51,"\u65e0\u5ef6\u8fdf":36,"\u65e5\u5fd7\u5c06\u4fdd\u5b58\u5728":54,"\u65e8\u5728\u5efa\u7acb\u4e00\u4e2a\u53ef\u4ee5\u88ab\u534f\u540c\u8c03\u81f3\u6700\u4f18\u7ffb\u8bd1\u6548\u679c\u7684\u5355\u795e\u7ecf\u5143\u7f51\u7edc":55,"\u65e9\u9910":25,"\u65f6":[17,24,28,30,36,42],"\u65f6\u5019":25,"\u65f6\u52a0\u4e0a":54,"\u65f6\u5e8f\u6a21\u578b\u5747\u4f7f\u7528\u8be5\u811a\u672c":50,"\u65f6\u5e8f\u6a21\u578b\u662f\u6307\u6570\u636e\u7684\u67d0\u4e00\u7ef4\u5ea6\u662f\u4e00\u4e2a\u5e8f\u5217\u5f62\u5f0f":3,"\u65f6\u76ee\u6807\u8bed\u8a00\u7684\u6587\u4ef6":55,"\u65f6\u88ab\u8bad\u7ec3\u7684":30,"\u65f6\u8bbe\u5907id\u53f7\u7684\u5206\u914d":38,"\u65f6\u95f4":25,"\u65f6\u95f4\u6233":51,"\u65f6\u95f4\u6233\u8868\u793a\u4e3a\u4ece1970":51,"\u65f6\u95f4\u6b65\u7684\u6982\u5ff5":25,"\u6620\u5c04\u5230\u4e00\u4e2a\u7ef4\u5ea6\u4e3a":30,"\u662f":[19,25,39],"\u662f\u4e00\u4e2a\u51681\u7684\u5411\u91cf":30,"\u662f\u4e00\u4e2a\u5185\u7f6e\u7684\u5b9a\u65f6\u5668\u5c01\u88c5":33,"\u662f\u4e00\u4e2a\u52a8\u6001\u7a0b\u5e8f\u5206\u6790\u7684\u672f\u8bed":33,"\u662f\u4e00\u4e2a\u5305\u88c5\u6570\u636e\u7684":53,"\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":24,"\u662f\u4e00\u4e2a\u53cc\u5c42\u7684\u5e8f\u5217":24,"\u662f\u4e00\u4e2a\u5c01\u88c5\u5bf9\u8c61":33,"\u662f\u4e00\u4e2a\u5f88\u6709\u7528\u7684\u53c2\u6570":38,"\u662f\u4e00\u4e2a\u7b26\u5408\u9ad8\u65af\u5206\u5e03\u7684\u968f\u673a\u53d8\u91cf":18,"\u662f\u4e00\u4e2a\u7ec4\u5408\u5c42":39,"\u662f\u4e00\u4e2a\u7edf\u8ba1\u5b66\u7684\u673a\u5668\u7ffb\u8bd1\u7cfb\u7edf":55,"\u662f\u4e00\u4e2a\u914d\u7f6e\u6587\u4ef6\u7684\u4f8b\u5b50":54,"\u662f\u4e00\u4e2a\u975e\u7ebf\u6027\u7684":30,"\u662f\u4e00\u4e2apython\u7684":3,"\u662f\u4e00\u4e2aswig\u5c01\u88c5\u7684paddlepaddle\u5305":20,"\u662f\u4e00\u4e2aunbound":27,"\u662f\u4e00\u6761\u65f6\u95f4\u5e8f\u5217":3,"\u662f\u4e00\u79cd\u4efb\u610f\u590d\u6742\u7684rnn\u5355\u5143":27,"\u662f\u4e00\u7ec4":40,"\u662f\u4e0d\u5305\u62ec\u6e90\u7801\u7684":41,"\u662f\u4e0d\u662f\u5f88\u7b80\u5355\u5462":3,"\u662f\u4e0d\u662f\u8981\u5bf9\u6570\u636e\u505ashuffl":3,"\u662f\u4e3b\u5206\u652f":29,"\u662f\u4e3b\u8981\u7684\u53ef\u6267\u884cpython\u811a\u672c":53,"\u662f\u4ec0\u4e48\u4e5f\u6ca1\u5173\u7cfb":3,"\u662f\u4f17\u591a\u8bef\u5dee\u4ee3\u4ef7\u51fd\u6570\u5c42\u7684\u4e00\u79cd":18,"\u662f\u4f7f\u5f97\u8981\u5171\u4eab\u7684\u53c2\u6570\u4f7f\u7528\u540c\u6837\u7684":17,"\u662f\u504f\u5dee":28,"\u662f\u5176\u5927\u5c0f":18,"\u662f\u51e0\u4e4e\u4e0d\u5360\u5185\u5b58\u7684":3,"\u662f\u539f\u59cb\u6cd5\u8bed\u6587\u4ef6":55,"\u662f\u5411\u91cf":30,"\u662f\u5426\u4ee5\u9006\u5e8f\u5904\u7406\u8f93\u5165\u5e8f\u5217":27,"\u662f\u5426\u4f7f\u7528\u53cc\u7cbe\u5ea6\u6d6e\u70b9\u6570":19,"\u662f\u5426\u4f7f\u7528\u65e7\u7684remoteparameterupdat":36,"\u662f\u5426\u4f7f\u7528\u6743\u91cd":30,"\u662f\u5426\u4f7f\u7528gpu":52,"\u662f\u5426\u4f7f\u7528gpu\u8bad\u7ec3":55,"\u662f\u5426\u5141\u8bb8\u6682\u5b58\u7565\u5fae\u591a\u4f59pool_size\u7684\u6570\u636e":3,"\u662f\u5426\u5185\u5d4cpython\u89e3\u91ca\u5668":19,"\u662f\u5426\u5c06\u5168\u5c40\u79cd\u5b50\u5e94\u7528\u4e8e\u672c\u5730\u7ebf\u7a0b\u7684\u968f\u673a\u6570":36,"\u662f\u5426\u5f00\u542f\u5355\u5143\u6d4b\u8bd5":19,"\u662f\u5426\u5f00\u542f\u8ba1\u65f6\u529f\u80fd":19,"\u662f\u5426\u5f00\u542frdma":19,"\u662f\u5426\u6253\u5370\u7248\u672c\u4fe1\u606f":36,"\u662f\u5426\u652f\u6301gpu":19,"\u662f\u5426\u663e\u793a":36,"\u662f\u5426\u7a00\u758f":30,"\u662f\u5426\u7f16\u8bd1\u4e2d\u82f1\u6587\u6587\u6863":19,"\u662f\u5426\u7f16\u8bd1\u542b\u6709avx\u6307\u4ee4\u96c6\u7684paddlepaddle\u4e8c\u8fdb\u5236\u6587\u4ef6":19,"\u662f\u5426\u7f16\u8bd1\u65f6\u8fdb\u884c\u4ee3\u7801\u98ce\u683c\u68c0\u67e5":19,"\u662f\u5426\u7f16\u8bd1python\u7684swig\u63a5\u53e3":19,"\u662f\u5426\u8fd0\u884c\u65f6\u52a8\u6001\u52a0\u8f7dcuda\u52a8\u6001\u5e93":19,"\u662f\u5426\u9700\u8981\u7b49\u5f85\u8be5\u8f6e\u6a21\u578b\u53c2\u6570":36,"\u662f\u56e0\u4e3apaddle\u7684\u7f51\u7edc\u901a\u4fe1\u4e2d":39,"\u662f\u56e0\u4e3apaddlepaddle\u914d\u7f6e\u6587\u4ef6\u4e0ec":39,"\u662f\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u52a0\u8f7d\u5b57\u5178\u5e76\u5b9a\u4e49\u6570\u636e\u63d0\u4f9b\u7a0b\u5e8f\u6a21\u5757\u548c\u7f51\u7edc\u67b6\u6784\u7684\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6":53,"\u662f\u5728paddlepaddle\u4e2d\u6784\u9020\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u65f6\u6700\u91cd\u8981\u7684\u6982\u5ff5":28,"\u662f\u57fa\u7840\u7684\u8ba1\u7b97\u5355\u5143":18,"\u662f\u5b58\u6709\u4e00\u7cfb\u5217\u53d8\u6362\u77e9\u9635\u7684\u6743\u91cd":30,"\u662f\u5b58\u6709\u504f\u7f6e\u5411\u91cf\u7684\u6743\u91cd":30,"\u662f\u5e8f\u5217":52,"\u662f\u5f85\u6269\u5c55\u7684\u6570\u636e":24,"\u662f\u6307\u4e00\u4e2a\u6570\u636e\u5217\u8868\u6587\u4ef6":39,"\u662f\u6307\u4e00\u7cfb\u5217\u7684\u7279\u5f81\u6570\u636e":25,"\u662f\u6307recurrent_group\u7684\u591a\u4e2a\u8f93\u5165\u5e8f\u5217":25,"\u662f\u6570\u636e\u8f93\u5165":28,"\u662f\u6574\u4e2a\u7684\u8bcd\u5d4c\u5165":52,"\u662f\u6700\u65b0\u7684\u4e86":29,"\u662f\u6709\u610f\u4e49\u7684":25,"\u662f\u6784\u5efa\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u6700\u91cd\u8981\u7684\u5de5\u5177":28,"\u662f\u6a21\u578b\u53c2\u6570\u4f18\u5316\u7684\u76ee\u6807\u51fd\u6570":18,"\u662f\u6d45\u5c42\u8bed\u4e49\u89e3\u6790\u7684\u4e00\u79cd\u5f62\u5f0f":53,"\u662f\u6e90\u8bed\u8a00\u7684\u6587\u4ef6":55,"\u662f\u76ee\u6807\u82f1\u8bed\u6587\u4ef6":55,"\u662f\u77e9\u9635":30,"\u662f\u795e\u7ecf\u7f51\u7edc\u7684\u5165\u53e3":18,"\u662f\u7f51\u7edc\u548c\u6570\u636e\u914d\u7f6e\u6587\u4ef6":47,"\u662f\u7f51\u7edc\u5c42\u5b9e\u4f8b\u7684\u540d\u5b57\u6807\u8bc6\u7b26":30,"\u662f\u7f51\u7edc\u5c42\u7684\u6807\u8bc6\u7b26":30,"\u662f\u7f51\u7edc\u5c42\u7684\u7c7b\u578b":30,"\u662f\u7f51\u7edc\u5c42\u8f93\u51fa\u7684\u5927\u5c0f":30,"\u662f\u8be5\u5c42\u7684\u6807\u8bc6\u7b26":30,"\u662f\u8be5\u5c42\u7684\u7c7b\u540d":30,"\u662f\u8be5\u7f51\u7edc\u5c42\u7684":30,"\u662f\u8f93\u5165":28,"\u662f\u901a\u7528\u7269\u4f53\u5206\u7c7b\u9886\u57df\u4e00\u4e2a\u4f17\u6240\u5468\u77e5\u7684\u6570\u636e\u5e93":48,"\u662f\u9700\u8981\u4e86\u89e3\u54ea\u4e9b\u6b65\u9aa4\u62d6\u6162\u4e86\u6574\u4f53":33,"\u662fdecoder\u7684\u6570\u636e\u8f93\u5165":27,"\u662fgoogle\u5f00\u6e90\u7684\u5bb9\u5668\u96c6\u7fa4\u7ba1\u7406\u7cfb\u7edf":40,"\u662fnvidia\u6027\u80fd\u5206\u6790\u5de5\u5177":33,"\u662fpaddlepaddle\u652f\u6301\u7684\u4e00\u79cd\u4efb\u610f\u590d\u6742\u7684rnn\u5355\u5143":27,"\u662fpaddlepaddle\u8d1f\u8d23\u63d0\u4f9b\u6570\u636e\u7684\u6a21\u5757":50,"\u662fpod\u5185\u7684\u5bb9\u5668\u90fd\u53ef\u4ee5\u8bbf\u95ee\u7684\u5171\u4eab\u76ee\u5f55":40,"\u662fpython\u5c01\u88c5\u7684\u7c7b\u540d":30,"\u662frnn\u72b6\u6001":28,"\u663e":50,"\u663e\u5f0f\u6307\u5b9a\u8fd4\u56de\u7684\u662f\u4e00\u4e2a28":3,"\u663e\u793a\u5de5\u4f5c\u6811\u72b6\u6001":29,"\u665a":25,"\u666e\u901a\u7528\u6237\u8bf7\u8d70\u5b89\u88c5\u6d41\u7a0b":21,"\u6682\u4e0d\u8003\u8651\u5728\u5185":17,"\u66f4\u591a\u5173\u4e8edocker\u7684\u5b89\u88c5\u4e0e\u4f7f\u7528":17,"\u66f4\u591a\u5185\u5bb9\u53ef\u67e5\u770b\u53c2\u8003\u6587\u732e":54,"\u66f4\u591a\u7684\u7ec6\u8282\u53ef\u4ee5\u5728\u6587\u732e\u4e2d\u627e\u5230":54,"\u66f4\u597d\u5730\u5b8c\u6210\u4e00\u4e9b\u590d\u6742\u7684\u8bed\u8a00\u7406\u89e3\u4efb\u52a1":27,"\u66f4\u5feb":28,"\u66f4\u65b0":[17,29],"\u66f4\u65b0\u4f60\u7684":29,"\u66f4\u65b0\u5206\u652f":29,"\u66f4\u65b0\u6a21\u5f0f":17,"\u66f4\u65b9\u4fbf\u7684\u8bbe\u7f6e\u65b9\u5f0f":17,"\u66f4\u8be6\u7ec6\u6570\u636e\u683c\u5f0f\u548c\u7528\u4f8b\u8bf7\u53c2\u8003":50,"\u66f4\u8be6\u7ec6\u7684\u4f7f\u7528":39,"\u66f4\u8be6\u7ec6\u7684\u7f51\u7edc\u914d\u7f6e\u8fde\u63a5\u8bf7\u53c2\u8003":50,"\u66f4\u8be6\u7ec6\u7684\u8bf4\u660e":50,"\u66f4\u8fdb\u4e00\u6b65":27,"\u66f4\u9ad8":28,"\u66ff\u6211\u4eec\u5b8c\u6210\u4e86\u539f\u59cb\u8f93\u5165\u6570\u636e\u7684\u62c6\u5206":27,"\u6700":25,"\u6700\u4e0d\u540c\u7684\u7279\u8272\u662f\u5b83\u5e76\u6ca1\u6709\u5c06\u8f93\u5165\u8bed\u53e5\u7f16\u7801\u4e3a\u4e00\u4e2a\u5355\u72ec\u7684\u5b9a\u957f\u5411\u91cf":55,"\u6700\u4e3b\u8981\u7684\u5de5\u4f5c\u5c31\u662f\u89e3\u6790\u51fa":42,"\u6700\u4f73\u63a8\u8350":3,"\u6700\u540e":[3,30,34,50,54],"\u6700\u540e\u4e00\u4e2a":24,"\u6700\u540e\u4e00\u90e8\u5206\u662f\u795e\u7ecf\u7f51\u7edc\u7684\u914d\u7f6e":18,"\u6700\u540e\u6211\u4eec\u4f7f\u7528\u94fe\u5f0f\u6cd5\u5219\u8ba1\u7b97":30,"\u6700\u597d\u7684\u6a21\u578b\u662f":54,"\u6700\u5c11\u663e\u793a\u591a\u5c11\u4e2a\u8282\u70b9":36,"\u6700\u65b0log":54,"\u6700\u7ec8":30,"\u6700\u7ec8\u5b9e\u73b0\u4e00\u4e2a\u5c42\u6b21\u5316\u7684\u590d\u6742rnn":27,"\u6700\u7ec8\u7684\u8f93\u51fa\u7ed3\u679c":27,"\u6700\u7ec8\u8d8b\u4e8e\u63a5\u8fd1":18,"\u6708\u6e56":25,"\u6709":25,"\u6709\u4e00\u4e2a\u57fa\u672c\u7684\u8ba4\u8bc6":40,"\u6709\u4e24\u4e2a\u7279\u6b8a\u6807\u8bc6":55,"\u6709\u4e86meta\u914d\u7f6e\u6587\u4ef6\u4e4b\u540e":52,"\u6709\u4e9b\u5c42\u53ef\u80fd\u9700\u8981\u9ad8\u7cbe\u5ea6\u6765\u4fdd\u8bc1\u68af\u5ea6\u68c0\u67e5\u5355\u6d4b\u6b63\u786e\u6267\u884c":30,"\u6709\u4e9b\u5c42\u6216\u8005\u6fc0\u6d3b\u9700\u8981\u505a\u5f52\u4e00\u5316\u4ee5\u4fdd\u8bc1\u5b83\u4eec\u7684\u8f93\u51fa\u7684\u548c\u662f\u4e00\u4e2a\u5e38\u6570":30,"\u6709\u4e9b\u7535\u5f71id\u53ef\u80fd\u4e0e\u5b9e\u9645\u7535\u5f71\u4e0d\u76f8\u7b26\u5408":51,"\u6709\u5173":25,"\u6709\u5173\u5982\u4f55\u7f16\u5199\u6570\u636e\u63d0\u4f9b\u7a0b\u5e8f\u7684\u66f4\u591a\u7ec6\u8282\u63cf\u8ff0":28,"\u6709\u5173kubernetes\u76f8\u5173\u6982\u5ff5\u4ee5\u53ca\u5982\u4f55\u642d\u5efa\u548c\u914d\u7f6ekubernetes\u96c6\u7fa4":42,"\u6709\u52a9\u4e8e\u7406\u89e3\u7528\u6237\u5bf9\u4e0d\u540c\u516c\u53f8":54,"\u6709\u52a9\u4e8e\u8bca\u65ad\u5206\u5e03\u5f0f\u9519\u8bef":34,"\u6709\u56db\u4e2a\u8bad\u7ec3\u8fdb\u7a0b":39,"\u6709\u65f6\u79f0\u4e3a":54,"\u6709\u7684\u65f6\u5019\u7b80\u7b80\u5355\u5355\u7684\u6539\u53d8\u5c31\u80fd\u5728\u6027\u80fd\u4e0a\u4ea7\u751f\u660e\u663e\u7684\u4f18\u5316\u6548\u679c":33,"\u670d\u52a1":25,"\u670d\u52a1\u5458":25,"\u671f\u95f4":29,"\u672a\u5305\u542b\u5728\u5b57\u5178\u4e2d\u7684\u5355\u8bcd":55,"\u672a\u6807\u8bb0\u7684\u8bc4\u4ef7\u6837\u672c":54,"\u672a\u77e5\u8bcd":46,"\u672c\u4f8b\u4e2d\u4e3a0":46,"\u672c\u4f8b\u4e2d\u4e3a32":46,"\u672c\u4f8b\u4e2d\u4e3a4":46,"\u672c\u4f8b\u4e2d\u4f7f\u7528for\u5faa\u73af\u8fdb\u884c\u591a\u6b21\u8c03\u7528":3,"\u672c\u4f8b\u4e2d\u7684\u539f\u59cb\u6570\u636e\u4e00\u5171\u670910\u4e2a\u6837\u672c":25,"\u672c\u4f8b\u4e2d\u7684\u8f93\u5165\u7279\u5f81\u662f\u8bcdid\u7684\u5e8f\u5217":3,"\u672c\u4f8b\u6839\u636e\u7f51\u7edc\u914d\u7f6e\u4e2d":3,"\u672c\u4f8b\u6bcf\u884c\u4fdd\u5b58\u4e00\u6761\u6837\u672c":50,"\u672c\u4f8b\u7531\u6613\u5230\u96be\u5c55\u793a4\u79cd\u4e0d\u540c\u7684\u6587\u672c\u5206\u7c7b\u7f51\u7edc\u914d\u7f6e":50,"\u672c\u4f8b\u7684":3,"\u672c\u4f8b\u7684\u6240\u6709\u5b57\u7b26\u90fd\u5c06\u8f6c\u6362\u4e3a\u8fde\u7eed\u6574\u6570\u8868\u793a\u7684id\u4f20\u7ed9\u6a21\u578b":50,"\u672c\u4f8b\u91c7\u7528\u82f1\u6587\u60c5\u611f\u5206\u7c7b\u7684\u6570\u636e":3,"\u672c\u4f8b\u91c7\u7528adam\u4f18\u5316\u65b9\u6cd5":50,"\u672c\u5730\u6d4b\u8bd5":35,"\u672c\u5730\u8bad\u7ec3":35,"\u672c\u5730\u8bad\u7ec3\u7684\u5b9e\u9a8c":38,"\u672c\u5b9e\u4f8b\u4e2d":46,"\u672c\u5c0f\u8282\u6211\u4eec\u5c06\u4ecb\u7ecd\u6a21\u578b\u7f51\u7edc\u7ed3\u6784":50,"\u672c\u5c42\u5c3a\u5bf8":48,"\u672c\u5c42\u6709\u56db\u4e2a\u53c2\u6570":48,"\u672c\u6559\u7a0b\u4e2d\u6211\u4eec\u7ed9\u51fa\u4e86\u4e09\u4e2aresnet\u6a21\u578b":48,"\u672c\u6559\u7a0b\u5c06\u4ecb\u7ecd\u4f7f\u7528\u6df1\u5ea6\u53cc\u5411\u957f\u77ed\u671f\u8bb0\u5fc6":53,"\u672c\u6559\u7a0b\u5c06\u6307\u5bfc\u4f60\u5982\u4f55\u5728":28,"\u672c\u6559\u7a0b\u5c06\u6307\u5bfc\u60a8\u5b8c\u6210\u957f\u671f\u77ed\u671f\u8bb0\u5fc6":54,"\u672c\u6559\u7a0b\u63d0\u4f9b\u4e86\u4e00\u4e2a\u7528\u4e8eimagenet\u4e0a\u7684\u5377\u79ef\u5206\u7c7b\u7f51\u7edc\u6a21\u578b":48,"\u672c\u6587\u4e2d\u6240\u6709\u7684\u4f8b\u5b50":25,"\u672c\u6587\u4e2d\u7531\u4e8e\u8f93\u5165\u6570\u636e\u662f\u968f\u673a\u751f\u6210\u7684\u4e0d\u9700\u8981\u8bfb\u8f93\u5165\u6587\u4ef6":18,"\u672c\u6587\u4e2d\u793a\u4f8b\u6240\u4f7f\u7528\u7684\u5355\u5143\u6d4b\u8bd5\u6587\u4ef6\u662f":25,"\u672c\u6587\u4ee5paddlepaddle\u7684\u53cc\u5c42rnn\u5355\u5143\u6d4b\u8bd5\u4e3a\u793a\u4f8b":25,"\u672c\u6587\u4f7f\u7528paddlepaddle\u5b98\u65b9\u7684":42,"\u672c\u6587\u53ea\u4f7f\u7528\u4e86\u9ed8\u8ba4\u547d\u540d\u7a7a\u95f4":40,"\u672c\u6587\u5c06\u4ecb\u7ecd\u5728kubernetes\u5bb9\u5668\u7ba1\u7406\u5e73\u53f0\u4e0a\u5feb\u901f\u6784\u5efapaddlepaddle\u5bb9\u5668\u96c6\u7fa4":42,"\u672c\u6587\u6863\u4ecb\u7ecd\u5982\u4f55\u5728paddlepaddle\u5e73\u53f0\u4e0a":46,"\u672c\u6587\u6863\u5185\u4e0d\u91cd\u590d\u4ecb\u7ecd":40,"\u672c\u6587\u9996\u5148\u4ecb\u7ecdtrainer\u8fdb\u7a0b\u4e2d\u7684\u4e00\u4e9b\u4f7f\u7528\u6982\u5ff5":39,"\u672c\u6765":25,"\u672c\u6b21\u8bad\u7ec3\u7684yaml\u6587\u4ef6\u53ef\u4ee5\u5199\u6210":42,"\u672c\u6b21\u8bad\u7ec3\u8981\u6c42\u67093\u4e2apaddlepaddle\u8282\u70b9":42,"\u672c\u6b21\u8bd5\u9a8c":50,"\u672c\u793a\u4f8b\u4e2d\u4f7f\u7528\u7684\u539f\u59cb\u6570\u636e\u5982\u4e0b":25,"\u672c\u793a\u4f8b\u610f\u56fe\u4f7f\u7528\u5355\u5c42rnn\u548c\u53cc\u5c42rnn\u5b9e\u73b0\u4e24\u4e2a\u5b8c\u5168\u7b49\u4ef7\u7684\u5168\u8fde\u63a5rnn":25,"\u672c\u793a\u4f8b\u7684\u9884\u6d4b\u7ed3\u679c":54,"\u672c\u7bc7\u6559\u7a0b\u5728paddlepaddle\u4e2d\u91cd\u73b0\u4e86\u8fd9\u4e00\u826f\u597d\u7684\u8bad\u7ec3\u7ed3\u679c":55,"\u672c\u7bc7\u6559\u7a0b\u5c06\u4f1a\u6307\u5bfc\u4f60\u901a\u8fc7\u8bad\u7ec3\u4e00\u4e2a":55,"\u672c\u8d28\u4e0a\u4e0e\u8bad\u7ec3\u6a21\u578b\u4e00\u6837":55,"\u673a\u5668\u7684\u8bbe\u5907":38,"\u673a\u5668\u7ffb\u8bd1":49,"\u6743\u91cd\u66f4\u65b0\u7684\u68af\u5ea6":36,"\u6761\u4ef6\u4e0b":40,"\u6765":25,"\u6765\u505a\u68af\u5ea6\u68c0\u67e5":30,"\u6765\u505ableu\u8bc4\u4f30":55,"\u6765\u505c\u6b62\u8bad\u7ec3":52,"\u6765\u5206\u6790\u6267\u884c\u6587\u4ef6":33,"\u6765\u5206\u79bb\u8bad\u7ec3\u548c\u6d4b\u8bd5\u6587\u4ef6":52,"\u6765\u5206\u9694\u6bcf\u4e00\u884c":52,"\u6765\u521d\u59cb\u5316\u53c2\u6570":17,"\u6765\u5b89\u88c5":34,"\u6765\u5b9a\u4e49\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":28,"\u6765\u5bf9\u6bd4\u5206\u6790\u4e24\u8005\u8bed\u4e49\u76f8\u540c\u7684\u539f\u56e0":25,"\u6765\u5e2e\u52a9\u4f60\u7406\u89e3paddlepaddle\u7684\u5185\u90e8\u8fd0\u884c\u673a\u5236":50,"\u6765\u5f00\u542f\u672c\u5730\u7684\u8bad\u7ec3":54,"\u6765\u5f15\u7528\u8fd9\u4e2aimag":20,"\u6765\u5f97\u5230\u67d0\u4e2a\u7279\u5b9a\u53c2\u6570\u7684\u68af\u5ea6\u77e9\u9635":30,"\u6765\u6307\u5b9a\u7f51\u7edc\u5c42\u7684\u6570\u76ee":48,"\u6765\u63a5\u53d7\u4e0d\u4f7f\u7528\u7684\u51fd\u6570\u4ee5\u4fdd\u8bc1\u517c\u5bb9\u6027":3,"\u6765\u63d0\u4ea4\u66f4\u6539":29,"\u6765\u6ce8\u518c\u8be5\u5c42":30,"\u6765\u6df7\u5408\u4f7f\u7528gpu\u548ccpu\u8ba1\u7b97\u7f51\u7edc\u5c42\u7684\u53c2\u6570":38,"\u6765\u751f\u6210\u5e8f\u5217":55,"\u6765\u7684\u79d2\u6570":51,"\u6765\u786e\u5b9a\u5bf9\u5e94\u5173\u7cfb":3,"\u6765\u81ea\u5b9a\u4e49\u4f20\u6570\u636e\u7684\u8fc7\u7a0b":2,"\u6765\u83b7\u5f97\u8f93\u51fa\u7684\u68af\u5ea6":30,"\u6765\u8868\u793a":28,"\u6765\u8868\u793a\u53c2\u6570\u4f4d\u7f6e":53,"\u6765\u8868\u793a\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":28,"\u6765\u8ba1\u7b97\u68af\u5ea6":30,"\u6765\u8bb2\u89e3\u5982\u4f55\u4f7f\u7528\u53cc\u5c42rnn":25,"\u6765\u8bbe\u7f6e":17,"\u6765\u8bf4\u660epydataprovider2\u7684\u7b80\u5355\u4f7f\u7528\u573a\u666f":3,"\u6765\u8c03\u6574c":29,"\u6765\u8fd0\u884c":34,"\u6765\u8fd0\u884c\u6027\u80fd\u5206\u6790\u548c\u8c03\u4f18":33,"\u6765\u8fdb\u884c\u8bad\u7ec3":20,"\u6765\u9884\u6d4b\u8fd9\u4e2a\u4e2d\u95f4\u7684\u8bcd":17,"\u676f\u5b50":25,"\u6784\u5efapaddlepaddle\u6587\u6863\u9700\u8981\u51c6\u5907\u7684\u73af\u5883\u76f8\u5bf9\u8f83\u590d\u6742":31,"\u6784\u6210\u4e86\u8f93\u51fa\u53cc\u5c42\u5e8f\u5217\u7684\u7b2ci\u4e2a":24,"\u6784\u9020":42,"\u6784\u9020paddl":5,"\u67b6\u6784\u5bf9\u591a\u4e2a\u8282\u70b9\u7684":39,"\u67b6\u6784\u6765\u8bad\u7ec3\u60c5\u611f\u5206\u6790\u6a21\u578b":54,"\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u7684\u4e00\u4e2a\u8f93\u5165\u4e3a\u4e0a\u4e00\u4e2a\u65f6\u95f4\u6b65\u7f51\u7edc\u4e2d\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u7684\u8f93\u51fa":25,"\u67d0\u4e9b\u53c2\u6570\u53ea\u53ef\u7528\u4e8e\u7279\u5b9a\u7684\u5c42\u4e2d":35,"\u67e5\u770b":50,"\u67e5\u770b\u5b89\u88c5\u540e\u7684paddl":22,"\u67e5\u770bjob\u7684\u8be6\u7ec6\u60c5\u51b5":41,"\u6807\u51c6\u5dee\u4e3a":17,"\u6807\u51c6lstm\u4ee5\u6b63\u5411\u5904\u7406\u8be5\u5e8f\u5217":53,"\u6807\u793a\u56fe\u7247\u662f\u5f69\u8272\u56fe\u6216\u7070\u5ea6\u56fe":47,"\u6807\u793a\u662f\u5426\u4e3a\u5f69\u8272\u56fe\u7247":47,"\u6807\u7b7e0\u8868\u793a\u8d1f\u9762\u7684\u8bc4\u8bba":54,"\u6807\u7b7e1\u8868\u793a\u6b63\u9762\u7684\u8bc4\u8bba":54,"\u6807\u7b7e\u6587\u4ef6":53,"\u6807\u7b7e\u65b9\u6848\u6765\u81ea":53,"\u6807\u8bb0":39,"\u6807\u8bb0\u7f51\u7edc\u8f93\u51fa\u7684\u51fd\u6570\u4e3a":39,"\u6807\u8bc6\u662f\u5426\u4e3a\u8fde\u7eed\u7684batch\u8ba1\u7b97":36,"\u6839\u636e\u4f60\u7684\u4efb\u52a1":38,"\u6839\u636e\u524d\u6587\u7684\u63cf\u8ff0":42,"\u6839\u636e\u5728\u6a21\u578b\u914d\u7f6e\u6587\u4ef6\u4e2d\u4f7f\u7528\u7684\u540d\u4e3a":34,"\u6839\u636e\u6570\u636e\u91cf\u89c4\u6a21":51,"\u6839\u636e\u7528\u6237\u6307\u5b9a\u7684\u5b57\u5178":46,"\u6839\u636e\u7d22\u5f15\u77e9\u9635\u548c\u5b57\u5178\u6253\u5370\u6587\u672c":28,"\u6839\u636e\u7f51\u7edc\u914d\u7f6e\u4e2d\u7684":36,"\u6839\u636e\u8fd9\u4e9b\u53c2\u6570\u7684\u4f7f\u7528\u573a\u5408":35,"\u6839\u636e\u9ed8\u8ba4\u503c\u9012\u589e":36,"\u6839\u636e\u9ed8\u8ba4\u7aef\u53e3\u53f7\u9012\u589e":36,"\u6839\u636ejob\u5bf9\u5e94\u7684pod\u4fe1\u606f":41,"\u683c\u5f0f":36,"\u683c\u5f0f\u5982\u4e0b":50,"\u683c\u5f0f\u8bf4\u660e":46,"\u68af\u5ea6\u4f1a\u5c31\u5730":30,"\u68af\u5ea6\u53c2\u6570\u7684\u5206\u5757\u6570\u76ee":36,"\u68af\u5ea6\u5c31\u53ef\u4ee5\u901a\u8fc7\u8fd9\u4e2a\u65b9\u7a0b\u8ba1\u7b97\u5f97\u5230":30,"\u68af\u5ea6\u670d\u52a1\u5668\u7684\u6570\u91cf":36,"\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5\u901a\u8fc7\u6709\u9650\u5dee\u5206\u6cd5\u6765\u9a8c\u8bc1\u4e00\u4e2a\u5c42\u7684\u68af\u5ea6":30,"\u68af\u5ea6\u68c0\u67e5\u7684\u8f93\u5165\u6570\u636e\u7684\u6279\u6b21\u5927\u5c0f":30,"\u68d2":50,"\u697c\u5c42":25,"\u6a21\u5757":47,"\u6a21\u5757\u4e2d\u7684":3,"\u6a21\u5757\u63a5\u7ba1\u4e86shuffl":39,"\u6a21\u5757\u901a\u4fe1\u7684\u6700\u57fa\u7840\u534f\u8bae\u662fprotobuf":39,"\u6a21\u578b":53,"\u6a21\u578b\u4fdd\u5b58\u5728\u76ee\u5f55":54,"\u6a21\u578b\u5171\u5305\u542b1":46,"\u6a21\u578b\u5217\u8868\u6587\u4ef6":53,"\u6a21\u578b\u53ca\u53c2\u6570\u4f1a\u88ab\u4fdd\u5b58\u5728\u8def\u5f84":47,"\u6a21\u578b\u5b58\u50a8\u8def\u5f84":50,"\u6a21\u578b\u5c06\u4fdd\u5b58\u5728\u76ee\u5f55":53,"\u6a21\u578b\u5c31\u8bad\u7ec3\u6210\u529f\u4e86":55,"\u6a21\u578b\u6587\u4ef6\u5c06\u88ab\u5199\u5165\u8282\u70b9":34,"\u6a21\u578b\u6765\u5c06\u6cd5\u8bed\u7ffb\u8bd1\u6210\u82f1\u8bed":55,"\u6a21\u578b\u6765\u6307\u5bfc\u4f60\u5b8c\u6210\u8fd9\u4e9b\u6b65\u9aa4":28,"\u6a21\u578b\u68c0\u9a8c":23,"\u6a21\u578b\u6f14\u793a\u5982\u4f55\u914d\u7f6e\u590d\u6742\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u6a21\u578b":28,"\u6a21\u578b\u7684\u4ee3\u7801\u53ef\u4ee5\u5728":28,"\u6a21\u578b\u7684\u7ed3\u6784\u548c\u8bad\u7ec3\u8fc7\u7a0b":46,"\u6a21\u578b\u7684\u7f16\u7801\u5668\u90e8\u5206\u5982\u4e0b\u6240\u793a":28,"\u6a21\u578b\u88ab\u4fdd\u5b58\u5728":52,"\u6a21\u578b\u8bad\u7ec3\u4f1a\u770b\u5230\u7c7b\u4f3c\u4e0a\u9762\u8fd9\u6837\u7684\u65e5\u5fd7\u4fe1\u606f":50,"\u6a21\u578b\u8bad\u7ec3\u548c\u6700\u540e\u7684\u7ed3\u679c\u9a8c\u8bc1":18,"\u6a21\u578b\u8def\u5f84":[48,53],"\u6a21\u578b\u8f93\u51fa\u8def\u5f84":53,"\u6a21\u578b\u914d\u7f6e":39,"\u6a21\u578b\u91c7\u7528":46,"\u6a21\u578b\u9884\u6d4b":5,"\u6a2a\u5411\u5305\u62ec\u4e09\u4e2a\u7248\u672c":20,"\u6b21":25,"\u6b22\u8fce\u901a\u8fc7":29,"\u6b63\u5219\u65b9\u6cd5\u7b49":39,"\u6b63\u5e38\u7684docker":20,"\u6b63\u6837\u672c":50,"\u6b63\u786e\u7684\u89e3\u51b3\u65b9\u6cd5\u662f":17,"\u6b63\u8d1f\u5bf9\u9a8c\u8bc1":35,"\u6b63\u9762\u7684\u8bc4\u8bba\u7684\u5f97\u5927\u4e8e\u7b49\u4e8e7":54,"\u6b63\u9762\u8bc4\u4ef7\u6837\u672c":54,"\u6b64\u5904":46,"\u6b64\u5904\u90fd\u4e3a2":25,"\u6b64\u6559\u7a0b\u5c06\u5411\u60a8\u5206\u6b65\u4ecb\u7ecd\u5982\u4f55\u4f7f\u7528\u5185\u7f6e\u7684\u5b9a\u65f6\u5de5\u5177":33,"\u6b64\u6570\u636e\u96c6\u5305\u542b\u7535\u5f71\u8bc4\u8bba\u53ca\u5176\u76f8\u5173\u8054\u7684\u7c7b\u522b\u6807\u7b7e":54,"\u6bb5\u843d\u53ef\u4ee5\u770b\u4f5c\u662f\u4e00\u4e2a\u5d4c\u5957\u7684\u53cc\u5c42\u7684\u5e8f\u5217":27,"\u6bcf100\u4e2abatch\u6253\u5370\u4e00\u6b21\u7edf\u8ba1\u4fe1\u606f":54,"\u6bcf100\u4e2abatch\u663e\u793a\u53c2\u6570\u7edf\u8ba1":53,"\u6bcf20\u4e2abatch\u6253\u5370\u4e00\u6b21\u65e5\u5fd7":54,"\u6bcf20\u4e2abatch\u8f93\u51fa\u65e5\u5fd7":53,"\u6bcf\u4e00\u4e2a\u4efb\u52a1\u6d41\u7a0b\u90fd\u53ef\u4ee5\u88ab\u5212\u5206\u4e3a\u5982\u4e0b\u4e94\u4e2a\u6b65\u9aa4":50,"\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65":25,"\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u4e4b\u95f4\u7684\u795e\u7ecf\u7f51\u7edc\u5177\u6709\u4e00\u5b9a\u7684\u76f8\u5173\u6027":25,"\u6bcf\u4e00\u4e2a\u6d4b\u8bd5\u5468\u671f\u6d4b\u8bd5\u4e00\u6b21\u6240\u6709\u6570\u636e":52,"\u6bcf\u4e00\u4e2a\u8282\u70b9\u90fd\u6709\u76f8\u540c\u7684\u65e5\u5fd7\u7ed3\u6784":34,"\u6bcf\u4e00\u4e2akey\u7531":52,"\u6bcf\u4e00\u7ec4\u5185\u7684\u6240\u6709\u53e5\u5b50\u548clabel":25,"\u6bcf\u4e00\u884c\u8868\u793a\u4e00\u4e2a\u5b9e\u4f8b":54,"\u6bcf\u4e2a":[28,34,53],"\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":24,"\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":24,"\u6bcf\u4e2a\u5355\u5c42rnn":27,"\u6bcf\u4e2a\u5355\u8bcd\u7684\u9884\u6d4b\u9519\u8bef\u7387":55,"\u6bcf\u4e2a\u53e5\u5b50\u53c8\u662f\u5355\u8bcd\u7684\u6570\u7ec4":25,"\u6bcf\u4e2a\u53e5\u5b50\u90fd\u4ee5\u5f00\u59cb\u6807\u8bb0\u5f00\u5934":28,"\u6bcf\u4e2a\u53e5\u5b50\u90fd\u4ee5\u7ed3\u675f\u6807\u8bb0\u7ed3\u5c3e":28,"\u6bcf\u4e2a\u5b50\u5e8f\u5217\u957f\u5ea6\u53ef\u4ee5\u4e0d\u4e00\u81f4":25,"\u6bcf\u4e2a\u5b50\u6587\u4ef6\u5939\u4e0b\u5b58\u50a8\u76f8\u5e94\u5206\u7c7b\u7684\u56fe\u7247":47,"\u6bcf\u4e2a\u5b57\u5178\u5305\u542b\u603b\u517130000\u4e2a\u5355\u8bcd":55,"\u6bcf\u4e2a\u5b57\u5178\u90fd\u6709dictsize\u4e2a\u5355\u8bcd":55,"\u6bcf\u4e2a\u5c42\u5728\u5176":30,"\u6bcf\u4e2a\u5c42\u90fd\u6709\u4e00\u4e2a\u6216\u591a\u4e2ainput":50,"\u6bcf\u4e2a\u6279\u6b21\u6570\u636e":36,"\u6bcf\u4e2a\u6574\u6570\u5217\u8868\u88ab\u89c6\u4e3a\u4e00\u4e2a\u6574\u6570\u5e8f\u5217":28,"\u6bcf\u4e2a\u6587\u4ef6\u53ea\u6709\u4e00\u4e2a":29,"\u6bcf\u4e2a\u6587\u4ef6\u5939\u90fd\u5305\u542b\u6cd5\u8bed\u5230\u82f1\u8bed\u7684\u5e73\u884c\u8bed\u6599\u5e93":55,"\u6bcf\u4e2a\u6587\u4ef6\u662f\u4e00\u4e2a\u7535\u5f71\u8bc4\u8bba":54,"\u6bcf\u4e2a\u6587\u672c\u6587\u4ef6\u5305\u542b\u4e00\u4e2a\u6216\u8005\u591a\u4e2a\u5b9e\u4f8b":54,"\u6bcf\u4e2a\u65f6\u95f4\u6b65\u4e4b\u5185\u7684\u8fd0\u7b97\u662f\u72ec\u7acb\u7684":27,"\u6bcf\u4e2a\u65f6\u95f4\u6b65\u90fd\u7528\u4e86\u4e0a\u4e00\u4e2a\u65f6\u95f4\u6b65\u7684\u8f93\u51fa\u7ed3\u679c":25,"\u6bcf\u4e2a\u6743\u91cd\u5bf9\u5e94\u4e00\u4e2a\u8f93\u5165":30,"\u6bcf\u4e2a\u6837\u672c\u7531\u4e24\u90e8\u5206\u7ec4\u6210":25,"\u6bcf\u4e2a\u6837\u672c\u95f4\u7528\u7a7a\u884c\u5206\u5f00":25,"\u6bcf\u4e2a\u6d4b\u8bd5\u5468\u671f\u6d4b\u8bd5":52,"\u6bcf\u4e2a\u7279\u5f81\u7684meta\u914d\u7f6e":52,"\u6bcf\u4e2a\u72b6\u6001":27,"\u6bcf\u4e2a\u7c7b\u522b\u4e2d\u968f\u673a\u62bd\u53d6\u4e8610\u5f20\u56fe\u7247":47,"\u6bcf\u4e2a\u7c7b\u5305\u542b6000\u5f20":47,"\u6bcf\u4e2a\u7ebf\u7a0b":36,"\u6bcf\u4e2a\u7ebf\u7a0b\u5206\u914d\u5230128\u4e2a\u6837\u672c\u7528\u4e8e\u8bad\u7ec3":36,"\u6bcf\u4e2a\u8282\u70b9\u6709\u4e24\u4e2a6\u6838cpu":55,"\u6bcf\u4e2a\u8bad\u7ec3\u8282\u70b9\u5fc5\u987b\u6307\u5b9a\u4e00\u4e2a\u552f\u4e00\u7684id\u53f7":36,"\u6bcf\u4e2a\u8bb0\u5fc6\u5355\u5143\u5305\u542b\u56db\u4e2a\u4e3b\u8981\u7684\u5143\u7d20":54,"\u6bcf\u4e2a\u8bc4\u8bba\u7684\u7f51\u5740":54,"\u6bcf\u4e2a\u8f93\u5165\u90fd\u662f\u4e00\u4e2a":30,"\u6bcf\u4e2a\u8f93\u51fa\u8282\u70b9\u90fd\u8fde\u63a5\u5230\u6240\u6709\u7684\u8f93\u5165\u8282\u70b9\u4e0a":30,"\u6bcf\u4e2a\u91cc\u9762\u90fd\u5305\u542b202mb\u7684\u5168\u90e8\u7684\u6a21\u578b\u53c2\u6570":55,"\u6bcf\u4e2alayer\u8fd4\u56de\u7684\u90fd\u662f\u4e00\u4e2a":39,"\u6bcf\u4e2apass\u7684\u7b2c0\u4e2abatch\u5230\u5f53\u524dbatch\u6240\u6709\u6837\u672c\u7684\u5e73\u5747\u5206\u7c7b\u9519\u8bef\u7387":50,"\u6bcf\u4e2apass\u7684\u7b2c0\u4e2abatch\u5230\u5f53\u524dbatch\u6240\u6709\u6837\u672c\u7684\u5e73\u5747cost":50,"\u6bcf\u4e2apod\u5305\u542b\u4e00\u4e2apaddlepaddle\u5bb9\u5668":42,"\u6bcf\u4f4d\u7528\u6237\u81f3\u5c11\u670920\u6761\u8bc4\u5206":51,"\u6bcf\u5c42\u4e0a\u53ea\u80fd\u4fdd\u5b58\u56fa\u5b9a\u6570\u76ee\u4e2a\u6700\u597d\u7684\u72b6\u6001":36,"\u6bcf\u5c42\u4f7f\u7528\u7684gpu\u53f7\u4f9d\u8d56\u4e8e\u53c2\u6570train":38,"\u6bcf\u5f53\u6a21\u578b\u5728\u7ffb\u8bd1\u8fc7\u7a0b\u4e2d\u751f\u6210\u4e86\u4e00\u4e2a\u5355\u8bcd":55,"\u6bcf\u5f53\u7cfb\u7edf\u9700\u8981\u65b0\u7684\u6570\u636e\u8bad\u7ec3\u65f6":39,"\u6bcf\u6279\u6b21":36,"\u6bcf\u6b21\u6d4b\u8bd5\u90fd\u6d4b\u8bd5\u6240\u6709\u6570\u636e":54,"\u6bcf\u6b21\u751f\u62101\u4e2a\u5e8f\u5217":55,"\u6bcf\u6b21\u8bfb\u53d6\u4e00\u6761\u6570\u636e\u540e":50,"\u6bcf\u6b21\u90fd\u4f1a\u4ecepython\u7aef\u8bfb\u53d6\u6570\u636e":3,"\u6bcf\u884c\u5b58\u50a8\u4e00\u4e2a\u8bcd":46,"\u6bcf\u884c\u5b58\u50a8\u7684\u662f\u4e00\u4e2a\u6837\u672c\u7684\u7279\u5f81":48,"\u6bcf\u884c\u6253\u537032\u4e2a\u53c2\u6570\u4ee5":46,"\u6bcf\u884c\u8868\u793a\u4e00\u4e2a\u6279\u6b21\u4e2d\u7684\u5355\u4e2a\u8f93\u5165":30,"\u6bcf\u884c\u90fd\u662f\u4e00\u4e2a\u6cd5\u8bed\u6216\u8005\u82f1\u8bed\u7684\u53e5\u5b50":55,"\u6bcf\u8f6e\u4f1a\u5c06\u6570\u636e\u96c6\u4e2d\u7684\u6240\u6709\u8bad\u7ec3\u6837\u672c\u4f7f\u7528\u4e00\u6b21":36,"\u6bcf\u8f6e\u7ed3\u675f\u65f6\u5bf9\u6240\u6709\u6d4b\u8bd5\u6570\u636e\u8fdb\u884c\u6d4b\u8bd5":36,"\u6bcf\u8f6e\u90fd\u4f1a\u4fdd\u5b58\u9884\u6d4b\u7ed3\u679c":36,"\u6bcf\u8fd0\u884c\u591a\u5c11\u4e2a\u6279\u6b21\u6267\u884c\u4e00\u6b21\u7a00\u758f\u53c2\u6570\u5206\u5e03\u7684\u68c0\u67e5":36,"\u6bcf\u9694\u591a\u5c11batch\u6253\u5370\u4e00\u6b21\u65e5\u5fd7":50,"\u6bcfdot":36,"\u6bcflog":36,"\u6bcfsave":36,"\u6bcftest":36,"\u6bd4\u5982":[17,50],"\u6bd4\u5982\u4e00\u53e5\u8bdd\u4e2d\u7684\u6bcf\u4e00\u4e2a\u5355\u8bcd":25,"\u6bd4\u5982\u8bbe\u7f6e\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42\u7684\u53c2\u6570\u521d\u59cb\u5316\u65b9\u5f0f\u548cbias\u521d\u59cb\u5316\u65b9\u5f0f":17,"\u6bd4\u5982\u901a\u8fc78080\u7aef\u53e3":40,"\u6bd4\u8f83\u5bb9\u6613\u5728\u5927\u6a21\u578b\u4e0b\u6ea2\u51fa":39,"\u6c34\u6e29":25,"\u6c49\u5ead":25,"\u6c60\u5316\u5c42":47,"\u6ca1":25,"\u6ca1\u6709\u4f5c\u7528":3,"\u6ca1\u6709\u4f7f\u7528avx\u6307\u4ee4\u96c6":22,"\u6ca1\u6709\u6d4b\u8bd5\u6570\u636e":3,"\u6ca1\u6709\u8fdb\u884c\u6b63\u786e\u6027\u7684\u68c0\u67e5":51,"\u6ca1\u6709\u8fdb\u884c\u7ed3\u6784\u7684\u5fae\u8c03":52,"\u6cd5\u8bed":55,"\u6ce8\u610f":[3,19,28,30,42,47],"\u6ce8\u610f\u4e0a\u8ff0\u547d\u4ee4\u4e2d":42,"\u6ce8\u610f\u5230\u6211\u4eec\u5df2\u7ecf\u5047\u8bbe\u673a\u5668\u4e0a\u67094\u4e2agpu":38,"\u6ce8\u610f\u5e94\u8be5\u786e\u4fdd\u9ed8\u8ba4\u6a21\u578b\u8def\u5f84":54,"\u6ce8\u610f\u9884\u6d4b\u6570\u636e\u901a\u5e38\u4e0d\u5305\u542blabel":5,"\u6ce8\u610fnode":42,"\u6ce8\u91ca\u6389":54,"\u6cf3\u6c60":25,"\u6d41":25,"\u6d41\u7a0b\u6765\u63d0\u4ea4\u4ee3\u7801":29,"\u6d44":25,"\u6d4b\u8bd5":29,"\u6d4b\u8bd5\u6570\u636e":34,"\u6d4b\u8bd5\u6570\u636e\u4e5f\u5305\u542b":34,"\u6d4b\u8bd5\u6570\u636e\u548c\u6a21\u578b\u914d\u7f6e\u6587\u4ef6":34,"\u6d4b\u8bd5\u6570\u636e\u548c\u751f\u6210\u6570\u636e":55,"\u6d4b\u8bd5\u6570\u636e\u653e\u7f6e\u5728\u5de5\u4f5c\u7a7a\u95f4\u4e2d\u4e0d\u540c\u76ee\u5f55\u7684\u8981\u6c42":34,"\u6d4b\u8bd5\u6570\u636e\u7684\u6240\u6709\u76f8\u5bf9\u6216\u7edd\u5bf9\u6587\u4ef6\u8def\u5f84":34,"\u6d4b\u8bd5\u6570\u6910\u96c6":54,"\u6d4b\u8bd5\u65f6\u6307\u5b9a\u7684\u5b58\u50a8\u6a21\u578b\u5217\u8868\u7684\u6587\u4ef6":36,"\u6d4b\u8bd5\u65f6\u9ed8\u8ba4\u4e0dshuffl":3,"\u6d4b\u8bd5\u662f":29,"\u6d4b\u8bd5\u6837\u672c":34,"\u6d4b\u8bd5\u6a21\u578b\u662f\u6307\u4f7f\u7528\u8bad\u7ec3\u51fa\u7684\u6a21\u578b\u8bc4\u4f30\u5df2\u6807\u8bb0\u7684\u9a8c\u8bc1\u96c6":54,"\u6d4b\u8bd5\u7684\u6a21\u578b\u5305\u62ec\u4ece\u7b2cm\u8f6e\u5230\u7b2cn":38,"\u6d4b\u8bd5\u811a\u672c\u662f":53,"\u6d4b\u8bd5\u96c6\u548c\u8bad\u7ec3\u96c6\u76ee\u5f55\u5305\u542b\u4e0b\u9762\u7684\u6587\u4ef6":54,"\u6d4b\u8bd5model_list":35,"\u6d4b\u8bd5save_dir":35,"\u6d6a\u6f2b\u7247":51,"\u6d6e\u70b9\u6570\u5360\u7528\u7684\u5b57\u8282\u6570":46,"\u6d6e\u70b9\u7a00\u758f\u6570\u636e":30,"\u6dd8\u5b9d\u7b49":54,"\u6df1\u5ea6\u53cc\u5411lstm\u5c42\u63d0\u53d6softmax\u5c42\u7684\u7279\u5f81":53,"\u6df7\u5408":53,"\u6df7\u5408\u5f53\u524d\u8bcd\u5411\u91cf\u548cattention\u52a0\u6743\u7f16\u7801\u5411\u91cf":28,"\u6dfb\u52a0":29,"\u6dfb\u52a0\u4e0a\u6e38":29,"\u6dfb\u52a0\u4fee\u6539\u65e5\u5fd7":29,"\u6dfb\u52a0\u4fee\u6539\u8fc7\u7684\u6587\u4ef6":29,"\u6dfb\u52a0\u542f\u52a8\u811a\u672c":42,"\u6e05\u7406\u6389\u8001\u65e7\u7684paddlepaddle\u5b89\u88c5\u5305":17,"\u6e29\u99a8":25,"\u6e90":55,"\u6e90\u4ee3\u7801":50,"\u6e90\u4ee3\u7801\u683c\u5f0f":29,"\u6e90\u5b57\u5178":55,"\u6e90\u5e8f\u5217":28,"\u6e90\u7801\u4e0edemo":41,"\u6e90\u8bed\u8a00\u5230\u76ee\u6807\u8bed\u8a00\u7684\u5e73\u884c\u8bed\u6599\u5e93\u6587\u4ef6":55,"\u6e90\u8bed\u8a00\u548c\u76ee\u6807\u8bed\u8a00\u5171\u4eab\u76f8\u540c\u7684\u7f16\u7801\u5b57\u5178":46,"\u6e90\u8bed\u8a00\u548c\u76ee\u6807\u8bed\u8a00\u90fd\u662f\u76f8\u540c\u7684\u8bed\u8a00":46,"\u6e90\u8bed\u8a00\u77ed\u8bed\u548c\u76ee\u6807\u8bed\u8a00\u77ed\u8bed\u7684\u5b57\u5178\u5c06\u88ab\u5408\u5e76":46,"\u6ee4\u6ce2\u5668\u6838\u5728\u5782\u76f4\u65b9\u5411\u4e0a\u7684\u5c3a\u5bf8":48,"\u6ee4\u6ce2\u5668\u6838\u5728\u6c34\u5e73\u65b9\u5411\u4e0a\u7684\u5c3a\u5bf8":48,"\u6f14\u793a\u4e2d\u4f7f\u7528\u7684":53,"\u6f14\u793a\u91c7\u7528":53,"\u6fc0\u6d3b":30,"\u6fc0\u6d3b\u51fd\u6570":39,"\u6fc0\u6d3b\u51fd\u6570\u4e3asoftmax":39,"\u6fc0\u6d3b\u51fd\u6570\u7c7b\u578b":50,"\u6fc0\u6d3b\u65b9\u7a0b":30,"\u6fc0\u6d3b\u7684\u7c7b\u578b":30,"\u6fc0\u6d3b\u7c7b\u578b\u7b49":39,"\u7075\u6d3b\u6027\u548c\u53ef\u6269\u5c55\u6027":0,"\u70ed\u60c5":25,"\u7136\u540e":[33,34,46,52],"\u7136\u540e\u4ea4\u7ed9\u7528\u6237\u81ea\u5b9a\u4e49\u7684\u51fd\u6570":18,"\u7136\u540e\u4ea4\u7ed9step\u51fd\u6570":27,"\u7136\u540e\u4ecb\u7ecdpserver\u8fdb\u7a0b\u4e2d\u6982\u5ff5":39,"\u7136\u540e\u4f60\u53ea\u9700\u8981\u8fd0\u884c\u4ee5\u4e0b\u547d\u4ee4":55,"\u7136\u540e\u4f60\u53ef\u4ee5\u901a\u8fc7\u505a\u4e00\u4e2a\u672c\u5730\u5f00\u53d1\u5206\u652f\u5f00\u59cb\u5f00\u53d1":29,"\u7136\u540e\u4f7f\u7528\u4e0b\u9762\u7684\u811a\u672c":54,"\u7136\u540e\u518d\u505a\u4e00\u6b21\u6587\u672c\u5377\u79ef\u7f51\u7edc\u64cd\u4f5c":52,"\u7136\u540e\u5229\u7528\u89c2\u6d4b\u6570\u636e\u8c03\u6574":18,"\u7136\u540e\u52a0":39,"\u7136\u540e\u5355\u51fb":29,"\u7136\u540e\u53ea\u9700\u5728":29,"\u7136\u540e\u53ef\u4ee5\u4f7f\u7528\u547d\u4ee4\u884c\u5de5\u5177\u521b\u5efajob":42,"\u7136\u540e\u53ef\u4ee5\u8f6c\u6362\u4e3a\u56fe\u7247":48,"\u7136\u540e\u5728":55,"\u7136\u540e\u5728\u4e0b\u4e00\u4e2a\u65f6\u95f4\u6b65\u8f93\u5165\u7ed9\u53e6\u4e00\u4e2a\u795e\u7ecf\u5143":25,"\u7136\u540e\u5728\u89e3\u7801\u88ab\u7ffb\u8bd1\u7684\u8bed\u53e5\u65f6":55,"\u7136\u540e\u5728dataprovider\u91cc\u9762\u6839\u636e\u8be5\u5730\u5740\u52a0\u8f7d\u5b57\u5178":17,"\u7136\u540e\u5b9a\u4e49":28,"\u7136\u540e\u5c06\u6784\u5efa\u6210\u529f\u7684\u955c\u50cf\u4e0a\u4f20\u5230\u955c\u50cf\u4ed3\u5e93":42,"\u7136\u540e\u5f97\u5230\u5e73\u5747\u91c7\u6837\u7684\u7ed3\u679c":52,"\u7136\u540e\u6211\u4eec\u5229\u7528\u591a\u8f93\u5165\u7684":52,"\u7136\u540e\u6211\u4eec\u53d1\u73b0pass":55,"\u7136\u540e\u6211\u4eec\u5806\u53e0\u4e00\u5bf9\u5bf9\u7684":53,"\u7136\u540e\u6211\u4eec\u6c42\u8fd9\u4e24\u4e2a\u7279\u5f81\u7684\u4f59\u5f26\u76f8\u4f3c\u5ea6":52,"\u7136\u540e\u6267\u884c\u4e0b\u9762\u7684\u547d\u4ee4":48,"\u7136\u540e\u628a\u8fd9\u4e2a\u5305\u542b\u4e86\u8bad\u7ec3\u6570\u636e\u7684container\u4fdd\u5b58\u4e3a\u4e00\u4e2a\u65b0\u7684\u955c\u50cf":41,"\u7136\u540e\u62f7\u8d1d\u6570\u636e":42,"\u7136\u540e\u63d0\u53d6\u9690\u85cflstm\u5c42\u7684\u6240\u6709\u65f6\u95f4\u6b65\u957f\u7684\u6700\u5927\u8bcd\u5411\u91cf\u4f5c\u4e3a\u6574\u4e2a\u5e8f\u5217\u7684\u8868\u793a":54,"\u7136\u540e\u662f\u5bf9\u5e94\u7684\u82f1\u8bed\u5e8f\u5217":55,"\u7136\u540e\u6dfb\u52a0\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42":52,"\u7136\u540e\u7528pickle\u547d\u4ee4\u5c06\u7279\u5f81":52,"\u7136\u540e\u7533\u660e\u4e00\u4e2a\u5b58\u50a8\u5377":42,"\u7136\u540e\u89c2\u5bdf\u5230\u8f93\u51fa\u7684\u53d8\u5316\u4e3a":30,"\u7136\u540e\u89e3\u538b":55,"\u7136\u540e\u89e3\u7801\u5668\u901a\u8fc7\u8fd9\u4e2a\u5411\u91cf\u751f\u6210\u4e00\u4e2a\u76ee\u6807\u8bed\u53e5":55,"\u7136\u540e\u8f93\u51fa\u9884\u6d4b\u5206\u6570":52,"\u7136\u540e\u8fd0\u884c\u8fd9\u4e2acontainer\u5373\u53ef":20,"\u7136\u540e\u8fd4\u56de\u7ed9paddlepaddle\u8fdb\u7a0b":3,"\u7136\u540e\u8fdb\u884c\u968f\u673a\u6253\u4e71":52,"\u7136\u540e\u901a\u8fc7\u51fd\u6570":42,"\u7136\u540e\u901a\u8fc7\u81ea\u8eab\u7684ip\u5730\u5740\u5728":42,"\u7136\u800c":[28,36],"\u7136\u800c\u6709\u4e9b\u8bc4\u8bba\u4e0a\u4e0b\u6587\u975e\u5e38\u957f":54,"\u7248\u672c":22,"\u7248\u672c\u57283":29,"\u7279\u522b\u611f\u8c22paddlepaddle\u7684":0,"\u7279\u522b\u662f\u5728lstm\u7b49rnn\u4e2d":17,"\u7279\u522b\u662f\u5f53\u76f8\u540c\u7684\u8bcd\u5728\u53e5\u5b50\u4e2d\u51fa\u73b0\u591a\u4e8e\u4e00\u6b21\u65f6":53,"\u7279\u5f81":52,"\u7279\u5f81\u56fe\u5747\u503c":48,"\u7279\u5f81\u56fe\u65b9\u5dee":48,"\u7279\u5f81\u5c06\u4f1a\u5b58\u5230":48,"\u7279\u5f81\u6587\u4ef6":53,"\u7279\u5f81\u7684\u7c7b\u578b\u548c\u7ef4\u5ea6":52,"\u72af\u7f6a\u7247":51,"\u73af\u5883\u53d8\u91cf\u6765\u6307\u5b9a\u7279\u5b9a\u7684gpu":17,"\u73b0\u5728":29,"\u73b0\u5728\u4f60\u7684":29,"\u73b0\u5728\u6211\u4eec\u53ef\u4ee5\u5f00\u59cbpaddle\u8bad\u7ec3\u4e86":52,"\u751a\u81f3\u4e0d\u540c\u7ade\u4e89\u5bf9\u624b\u4ea7\u54c1\u7684\u504f\u597d":54,"\u751a\u81f3\u53ef\u4ee5\u76f4\u63a5\u914d\u7f6e\u4e00\u4e2a\u5b8c\u6574\u7684lstm":39,"\u751a\u81f3\u80fd\u89e3\u91ca\u4e3a\u4ec0\u4e48\u67d0\u4e2a\u64cd\u4f5c\u82b1\u4e86\u5f88\u957f\u65f6\u95f4":33,"\u751f\u6210":42,"\u751f\u6210\u540e\u7684\u6587\u6863\u5206\u522b\u5b58\u50a8\u5728\u7f16\u8bd1\u76ee\u5f55\u7684":31,"\u751f\u6210\u5e8f\u5217\u7684\u6700\u5927\u957f\u5ea6":28,"\u751f\u6210\u5f53\u524d\u5c42\u7684\u6240\u6709\u540e\u7ee7\u72b6\u6001":55,"\u751f\u6210\u6570\u636e\u51fd\u6570\u63a5\u53e3":39,"\u751f\u6210\u6570\u636e\u7684\u76ee\u5f55":55,"\u751f\u6210\u7684\u6570\u636e\u7f13\u5b58\u5728\u5185\u5b58\u91cc":17,"\u751f\u6210\u7684\u7ed3\u679c\u6587\u4ef6":55,"\u751f\u6210\u7684meta\u914d\u7f6e\u6587\u4ef6\u5982\u4e0b\u6240\u793a":52,"\u751f\u6210\u7ed3\u679c\u6587\u4ef6\u7684\u8def\u5f84":28,"\u751f\u6210\u7f51\u7edc\u5c42\u914d\u7f6e":30,"\u751f\u6210\u8bad\u7ec3\u9700\u8981\u7684\u6837\u672c":52,"\u7528":[51,52,53],"\u75280\u548c1\u8868\u793a":3,"\u7528\u4e86\u4e24\u4e2a\u6708\u4e4b\u540e\u8fd9\u4e2a\u663e\u793a\u5668\u5c4f\u5e55\u788e\u4e86":50,"\u7528\u4e8e":34,"\u7528\u4e8e\u5207\u5206\u5355\u5355\u8bcd\u548c\u6807\u70b9\u7b26\u53f7":54,"\u7528\u4e8e\u521d\u59cb\u5316\u53c2\u6570\u548c\u8bbe\u7f6e":30,"\u7528\u4e8e\u5c06\u4e0b\u4e00\u884c\u7684\u6570\u636e\u8f93\u5165\u51fd\u6570\u6807\u8bb0\u6210\u4e00\u4e2apydataprovider2":3,"\u7528\u4e8e\u5c06\u53c2\u6570\u4f20\u9012\u7ed9\u7f51\u7edc\u914d\u7f6e":38,"\u7528\u4e8e\u5c06\u8bcdid\u8f6c\u6362\u4e3a\u8bcd\u7684\u5b57\u5178\u6587\u4ef6":28,"\u7528\u4e8e\u6307\u5b9a\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6":36,"\u7528\u4e8e\u653e\u7f6e":34,"\u7528\u4e8e\u6784\u6210\u65b0\u7684\u8bcd\u8868":46,"\u7528\u4e8e\u6807\u8bc6\u751f\u6210\u7684\u6587\u4ef6\u4e2d\u7684\u76f8\u5e94\u8f93\u51fa":28,"\u7528\u4e8e\u7a00\u758f\u8bad\u7ec3\u4e2d":36,"\u7528\u4e8e\u7edf\u8ba1\u8bcd\u9891\u7684bow\u6a21\u578b\u7279\u5f81":54,"\u7528\u4e8e\u81ea\u5b9a\u4e49\u6bcf\u6761\u6570\u636e\u7684batch":3,"\u7528\u4e8e\u8ba1\u7b97\u7f16\u7801\u5411\u91cf\u7684\u52a0\u6743\u548c":28,"\u7528\u4e8e\u8bbe\u7f6e\u8bad\u7ec3\u7b97\u6cd5":47,"\u7528\u4e8e\u8bfb\u53d6\u8bad\u7ec3":34,"\u7528\u4e8e\u96c6\u7fa4\u901a\u4fe1\u901a\u9053\u7684\u7aef\u53e3\u6570":34,"\u7528\u53cc\u5411\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7f16\u7801":28,"\u7528\u547d\u4ee4":39,"\u7528\u591a\u5bf9\u6548\u679c\u5b8c\u5168\u76f8\u540c\u7684":25,"\u7528\u6237":34,"\u7528\u62371\u7684\u7279\u5f81":52,"\u7528\u6237\u4e5f\u53ef\u4ee5\u5728c":2,"\u7528\u6237\u53ea\u9700\u5b9a\u4e49rnn\u5728\u4e00\u4e2a\u65f6\u95f4\u6b65\u5185\u5b8c\u6210\u7684\u8ba1\u7b97":27,"\u7528\u6237\u53ea\u9700\u6267\u884c":53,"\u7528\u6237\u53ea\u9700\u6267\u884c\u4ee5\u4e0b\u547d\u4ee4\u5c31\u53ef\u4ee5\u4e0b\u8f7d\u5e76\u5904\u7406\u539f\u59cb\u6570\u636e":53,"\u7528\u6237\u53ef\u4ee5\u53c2\u8003":39,"\u7528\u6237\u53ef\u4ee5\u5728\u8f93\u51fa\u7684\u6587\u672c\u6a21\u578b\u4e2d\u770b\u5230":46,"\u7528\u6237\u53ef\u4ee5\u6839\u636e\u8bad\u7ec3\u65e5\u5fd7":50,"\u7528\u6237\u53ef\u4ee5\u81ea\u5b9a\u4e49beam":36,"\u7528\u6237\u53ef\u4ee5\u8bbe\u7f6e":38,"\u7528\u6237\u53ef\u4ee5\u9009\u62e9\u5bf9\u5e94\u7248\u672c\u7684docker":20,"\u7528\u6237\u53ef\u4ee5\u901a\u8fc7\u7b80\u5355\u4f7f\u7528python\u63a5\u53e3":2,"\u7528\u6237\u53ef\u5728\u8c03\u7528cmake\u7684\u65f6\u5019\u8bbe\u7f6e\u5b83\u4eec":19,"\u7528\u6237\u53ef\u5728cmake\u7684\u547d\u4ee4\u884c\u4e2d":19,"\u7528\u6237\u540d\u4e3a":20,"\u7528\u6237\u5728\u4f7f\u7528paddlepaddl":17,"\u7528\u6237\u5b9a\u4e49\u7684\u53c2\u6570":3,"\u7528\u6237\u5c06\u914d\u7f6e\u4e0e\u8bad\u7ec3\u6570\u636e\u5207\u5206\u597d\u653e\u5728\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf\u9884\u5148\u5206\u914d\u597d\u7684\u76ee\u5f55\u4e2d":42,"\u7528\u6237\u5e94\u8be5\u63d0\u4f9b\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6":53,"\u7528\u6237\u5f3a\u5236\u6307\u5b9a\u7279\u5b9a\u7684python\u7248\u672c":17,"\u7528\u6237\u6307\u5b9a\u65b0\u7684\u5b57\u5178\u7684\u8def\u5f84":46,"\u7528\u6237\u6587\u4ef6\u4e2d\u6709\u56db\u79cd\u7c7b\u578b\u7684\u5b57\u6bb5":52,"\u7528\u6237\u7279\u5f81":52,"\u7528\u6237\u8fd8\u53ef\u4ee5\u6839\u636e\u6982\u7387\u5206\u5e03\u77e9\u9635\u5b9e\u73b0\u67f1\u641c\u7d22\u6216\u7ef4\u7279\u6bd4\u89e3\u7801":53,"\u7528\u6237\u9700\u8981\u5728\u7f51\u7edc\u914d\u7f6e\u4e2d\u6307\u5b9a":38,"\u7528\u6237\u9700\u8981\u6307\u5b9a\u672c\u673a\u4e0apython\u7684\u8def\u5f84":17,"\u7528\u6237\u9884\u6d4b\u7684\u547d\u4ee4\u884c\u754c\u9762\u5982\u4e0b":52,"\u7528\u6237id":51,"\u7528\u6237id\u8303\u56f4\u4ece1\u52306040":51,"\u7528\u6700\u65b0\u7684":29,"\u7528\u6765\u4ece\u53c2\u6570\u670d\u52a1\u5668\u9884\u53d6\u53c2\u6570\u77e9\u9635\u76f8\u5e94\u7684\u884c":30,"\u7528\u6765\u4f30\u8ba1\u7ebf\u6027\u51fd\u6570\u7684\u53c2\u6570w":18,"\u7528\u6765\u505a\u9884\u6d4b\u548c\u7b80\u5355\u7684\u5b9a\u5236\u5316":20,"\u7528\u6765\u5177\u4f53\u63cf\u8ff0":52,"\u7528\u6765\u5177\u4f53\u8bf4\u660e\u6570\u636e\u96c6\u7684\u5b57\u6bb5\u548c\u6587\u4ef6\u683c\u5f0f":52,"\u7528\u6765\u8ba1\u7b97\u6a21\u578b\u7684\u8bef\u5dee":18,"\u7528\u8fd9\u4e2a\u955c\u50cf\u521b\u5efa\u7684\u5bb9\u5668\u9700\u8981\u6709\u4ee5\u4e0b\u4e24\u4e2a\u529f\u80fd":42,"\u7531":27,"\u7531\u4e8e":29,"\u7531\u4e8e\u5b83\u5185\u90e8\u5305\u542b\u4e86\u6bcf\u7ec4\u6570\u636e\u4e2d\u7684\u6240\u6709\u53e5\u5b50":25,"\u7531\u4e8e\u5bb9\u5668\u4e4b\u95f4\u5171\u4eabnet":40,"\u7531\u4e8e\u5df2\u7ecf\u77e5\u9053\u4e86\u771f\u5b9e\u7b54\u6848":18,"\u7531\u4e8e\u610f\u5916\u7684\u526f\u672c\u8bb0\u5f55\u548c\u6d4b\u8bd5\u8bb0\u5f55":51,"\u7531\u4e8e\u6211\u4eec\u60f3\u8981\u7684\u53d8\u6362\u662f\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217":25,"\u7531\u4e8e\u6211\u4eec\u652f\u6301\u8bad\u7ec3\u6570\u636e\u6709\u4e0d\u540c\u7684\u6279\u6b21\u5927\u5c0f":30,"\u7531\u4e8e\u6570\u636e\u8bb8\u53ef\u7684\u539f\u56e0":53,"\u7531\u4e8e\u6807\u51c6\u7684\u7ffb\u8bd1\u7ed3\u679c\u5df2\u7ecf\u4e0b\u8f7d\u5230\u8fd9\u91cc":55,"\u7531\u4e8e\u6bcf\u4e2a\u5377\u79ef\u5c42\u540e\u9762\u8fde\u63a5\u7684\u662fbatch":48,"\u7531\u4e8e\u8fd9\u4e2a\u5730\u5740\u4f1a\u88abdataprovider\u4f7f\u7528":2,"\u7531\u4e8e\u8fd9\u6837\u505a\u53ef\u4ee5\u907f\u514d\u5f88\u591a\u6b7b\u9501\u95ee\u9898":3,"\u7531\u4e8e\u987a\u5e8f\u8c03\u7528\u8fd9\u4e9bgenerator\u4e0d\u4f1a\u51fa\u73b0\u4e0a\u8ff0\u95ee\u9898":3,"\u7531\u4e8edocker\u662f\u57fa\u4e8e\u5bb9\u5668\u7684\u8f7b\u91cf\u5316\u865a\u62df\u65b9\u6848":20,"\u7531\u4e8epaddlepaddle\u5df2\u7ecf\u5b9e\u73b0\u4e86\u4e30\u5bcc\u7684\u7f51\u7edc\u5c42":18,"\u7531\u4e8epaddlepaddle\u7684docker\u955c\u50cf\u5e76\u4e0d\u5305\u542b\u4efb\u4f55\u9884\u5b9a\u4e49\u7684\u8fd0\u884c\u547d\u4ee4":20,"\u7531\u4e8estep":27,"\u7531\u4e8etest_data\u5305\u542b\u4e24\u6761\u9884\u6d4b\u6570\u636e":5,"\u7531\u8bcd\u8bed\u6784\u6210\u7684\u53e5\u5b50":24,"\u7531grouplen":51,"\u7535\u5f711\u7684\u7279\u5f81":52,"\u7535\u5f71\u4fe1\u606f\u4ee5\u53ca\u7535\u5f71\u8bc4\u5206":51,"\u7535\u5f71\u540d\u5b57\u6bb5":52,"\u7535\u5f71\u540d\u79f0":51,"\u7535\u5f71\u548c\u7528\u6237":52,"\u7535\u5f71\u548c\u7528\u6237\u6709\u8bb8\u591a\u7684\u7279\u5f81":52,"\u7535\u5f71\u5927\u90e8\u5206\u662f\u624b\u5de5\u8f93\u5165\u6570\u636e":51,"\u7535\u5f71\u7279\u5f81":52,"\u7535\u5f71\u7c7b\u578b":51,"\u7535\u5f71\u7c7b\u578b\u5982\u7b26\u5408\u591a\u79cd\u7528\u7ba1\u9053\u7b26\u53f7":51,"\u7535\u5f71id":51,"\u7535\u5f71id\u8303\u56f4\u4ece1\u52303952":51,"\u7535\u8111":25,"\u767e\u4e07\u6570\u636e\u96c6":51,"\u7684":[25,29,34,41,42,50,54],"\u768410\u7ef4\u6574\u6570\u6807\u7b7e":3,"\u7684\u4e00\u4e2a\u7b80\u5355\u8c03\u7528\u5982\u4e0b":27,"\u7684\u4e00\u4e2a\u7ebf\u6027\u51fd\u6570":18,"\u7684\u4e00\u79cd":55,"\u7684\u4e3a0":36,"\u7684\u4e3b\u8981\u90e8\u5206":53,"\u7684\u4efb\u4e00\u4e00\u79cd":17,"\u7684\u4efb\u52a1":55,"\u7684\u4f5c\u7528":39,"\u7684\u4f7f\u7528\u793a\u4f8b\u5982\u4e0b":24,"\u7684\u504f\u7f6e\u5411\u91cf":30,"\u7684\u5185\u5b58":17,"\u7684\u5185\u5bb9\u5982\u4e0b\u6240\u793a":55,"\u7684\u5185\u6838block\u4f7f\u7528\u60c5\u51b5":33,"\u7684\u51fd\u6570":39,"\u7684\u5206\u7c7b\u4efb\u52a1\u4e2d\u8d62\u5f97\u4e86\u7b2c\u4e00\u540d":48,"\u7684\u522b\u540d":[6,7,13,14],"\u7684\u5355\u8bcd\u7ea7\u522b\u7684\u5377\u79ef\u795e\u7ecf\u7f51\u7edc":52,"\u7684\u53cd\u5411\u4f20\u64ad\u5c06\u4f1a\u6253\u5370\u65e5\u5fd7\u4fe1\u606f":36,"\u7684\u53d8\u6362\u77e9\u9635":30,"\u7684\u53e5\u5b50\u7684\u60c5\u611f":54,"\u7684\u540d\u5b57":3,"\u7684\u540d\u79f0\u76f8\u540c":28,"\u7684\u540e\u7f00":51,"\u7684\u5411\u91cf":30,"\u7684\u542f\u52a8\u53c2\u6570":42,"\u7684\u542f\u52a8\u53c2\u6570\u5e76\u6267\u884c\u8fdb\u7a0b":42,"\u7684\u5730\u5740":40,"\u7684\u5747\u5300\u5206\u5e03":17,"\u7684\u5b89\u88c5\u6587\u6863":20,"\u7684\u5dee\u8ddd\u4e0d\u65ad\u51cf\u5c0f":18,"\u7684\u5e73\u5747\u503c":24,"\u7684\u5e8f\u5217\u5f62\u72b6\u4e00\u81f4":25,"\u7684\u603b":34,"\u7684\u6570\u636e":39,"\u7684\u6570\u636e\u8bfb\u53d6\u811a\u672c\u548c\u7c7b\u4f3c\u4e8e":50,"\u7684\u6570\u76ee\u4e00\u81f4":24,"\u7684\u65b9\u6cd5\u5df2\u88ab\u8bc1\u660e\u662f\u4e00\u79cd\u5f3a\u5927\u7684\u6a21\u578b":55,"\u7684\u65b9\u7a0b":30,"\u7684\u65f6\u5019\u5982\u679c\u62a5\u4e00\u4e9b\u4f9d\u8d56\u672a\u627e\u5230\u7684\u9519\u8bef\u662f\u6b63\u5e38\u7684":22,"\u7684\u65f6\u95f4\u6b65\u4fe1\u606f\u6210\u6b63\u6bd4":17,"\u7684\u66f4\u8be6\u7ec6\u51c6\u786e\u7684\u5b9a\u4e49":25,"\u7684\u6700\u5c0f\u503c":36,"\u7684\u67b6\u6784\u7684\u793a\u4f8b":28,"\u7684\u6837\u5f0f":29,"\u7684\u6838\u5fc3\u662f\u8bbe\u8ba1step\u51fd\u6570\u7684\u8ba1\u7b97\u903b\u8f91":27,"\u7684\u6bb5\u843d\u5b9a\u4e49\u4e3a\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":27,"\u7684\u6d4b\u8bd5\u6570\u636e\u96c6":53,"\u7684\u7248\u672c\u53f7":46,"\u7684\u7279\u5f81":48,"\u7684\u72b6\u6001":27,"\u7684\u7528\u6237\u53c2\u8003":34,"\u7684\u76d1\u542c\u7aef\u53e3":36,"\u7684\u76ee\u5f55\u7ed3\u6784\u4e3a":52,"\u7684\u76f8\u5173\u6587\u6863\u8fdb\u884c\u914d\u7f6e":39,"\u7684\u771f\u5b9e\u5173\u7cfb\u4e3a":18,"\u7684\u77e9\u9635":30,"\u7684\u795e\u7ecf\u7f51\u7edc\u673a\u5668\u7ffb\u8bd1":55,"\u7684\u7a20\u5bc6\u5411\u91cf\u4f5c\u4e3a\u8f93\u5165":30,"\u7684\u7aef\u5230\u7aef\u7cfb\u7edf\u6765\u89e3\u51b3srl\u4efb\u52a1":53,"\u7684\u7b2ci\u4e2a\u503c":30,"\u7684\u7b2cj\u4e2a\u503c":30,"\u7684\u7d22\u5f15\u6587\u4ef6\u5f15\u7528\u8bad\u7ec3":34,"\u7684\u7ed3\u6784\u5982\u4e0b":52,"\u7684\u7ef4\u5ea6":46,"\u7684\u7f51\u6865\u6765\u8fdb\u884c\u7f51\u7edc\u901a\u4fe1":20,"\u7684\u884c\u6570\u5e94\u8be5\u4e00\u81f4":55,"\u7684\u8bad\u7ec3\u6a21\u578b\u811a\u672c":50,"\u7684\u8bdd":17,"\u7684\u8def\u5f84\u4e2d":54,"\u7684\u8f93\u5165":27,"\u7684\u8f93\u51fa":33,"\u7684\u8f93\u51fa\u4fe1\u606f\u5165\u624b\u662f\u4e2a\u4e0d\u9519\u7684\u9009\u62e9":33,"\u7684\u8f93\u51fa\u51fd\u6570\u8fd4\u56de\u7684\u662f\u4e0b\u4e00\u4e2a\u65f6\u523b\u8f93\u51fa\u8bcd\u7684":28,"\u7684\u8f93\u51fa\u683c\u5f0f":25,"\u7684\u8f93\u51fa\u88ab\u7528\u4f5c":28,"\u7684\u8fd4\u56de\u503c\u4e00\u81f4":51,"\u7684\u90e8\u5206":34,"\u7684\u914d\u7f6e":[39,46],"\u7684\u9875\u9762":29,"\u7684python\u5305\u662fpaddlepaddle\u7684\u8bad\u7ec3\u4e3b\u8981\u7a0b\u5e8f":20,"\u7684python\u5305\u6765\u505a\u914d\u7f6e\u6587\u4ef6\u89e3\u6790\u7b49\u5de5\u4f5c":20,"\u76ee\u524d":[27,29,53],"\u76ee\u524d\u4f7f\u7528":29,"\u76ee\u524d\u5df2\u88ab\u767e\u5ea6\u5185\u90e8\u591a\u4e2a\u4ea7\u54c1\u7ebf\u5e7f\u6cdb\u4f7f\u7528":0,"\u76ee\u524d\u652f\u6301\u4e24\u79cd":24,"\u76ee\u524d\u652f\u6301fail":36,"\u76ee\u524d\u8be5\u53c2\u6570\u4ec5\u7528\u4e8eaucvalidationlayer\u548cpnpairvalidationlayer\u5c42":36,"\u76ee\u524d\u8fd8\u672a\u652f\u6301":27,"\u76ee\u5f55":[34,41,42,54],"\u76ee\u5f55\u4e0b":[30,50,55],"\u76ee\u5f55\u4e0b\u627e\u5230":50,"\u76ee\u5f55\u4e0b\u7684demo\u8bad\u7ec3\u51fa\u6765":5,"\u76ee\u5f55\u4e0b\u7684python\u5305":17,"\u76ee\u5f55\u4e2d":[34,52],"\u76ee\u5f55\u4e2d\u7684":[33,34],"\u76ee\u5f55\u4e2d\u8fd0\u884c":29,"\u76ee\u5f55\u4e2dpaddl":42,"\u76ee\u5f55\u4f1a\u51fa\u73b0\u5982\u4e0b\u51e0\u4e2a\u65b0\u7684\u6587\u4ef6":53,"\u76ee\u5f55\u5c31\u6210\u4e3a\u4e86\u5171\u4eab\u5b58\u50a8":42,"\u76ee\u5f55\u7ed3\u6784\u5982\u4e0b":55,"\u76ee\u5f55\u91cc\u63d0\u4f9b\u4e86\u8be5\u6570\u636e\u7684\u4e0b\u8f7d\u811a\u672c\u548c\u9884\u5904\u7406\u811a\u672c":50,"\u76ee\u6807":55,"\u76ee\u6807\u51fd\u6570\u662f\u6807\u7b7e\u7684\u4ea4\u53c9\u71b5":53,"\u76ee\u6807\u5411\u91cf":28,"\u76ee\u6807\u5b57\u5178":55,"\u76f4\u5230\u8bad\u7ec3\u6536\u655b\u4e3a\u6b62":17,"\u76f4\u5230\u903c\u8fd1\u771f\u5b9e\u89e3":18,"\u76f4\u63a5\u8fd4\u56de\u8ba1\u7b97\u7ed3\u679c":5,"\u76f4\u63a5\u8fdb\u5165\u8bad\u7ec3\u6a21\u578b\u7ae0\u8282":50,"\u76f8\u5173\u547d\u4ee4\u4e3a":20,"\u76f8\u5173\u6982\u5ff5\u662f":3,"\u76f8\u5173\u7684\u9e1f\u7c7b\u6570\u636e\u96c6\u53ef\u4ee5\u4ece\u5982\u4e0b\u5730\u5740\u4e0b\u8f7d":47,"\u76f8\u5173\u8bba\u6587":53,"\u76f8\u53cd":55,"\u76f8\u540c\u540d\u5b57\u7684\u53c2\u6570":17,"\u76f8\u5bf9":25,"\u76f8\u5bf9\u4e8epaddlepaddle\u7a0b\u5e8f\u8fd0\u884c\u65f6\u7684\u8def\u5f84":2,"\u76f8\u5bf9mnist\u800c\u8a00":3,"\u76f8\u5e94\u7684\u6570\u636e\u8bfb\u53d6\u811a\u672c\u548c\u8bad\u7ec3\u6a21\u578b\u811a\u672c":50,"\u76f8\u5e94\u7684\u6570\u636e\u8fed\u4ee3\u5668\u5982\u4e0b":53,"\u76f8\u5e94\u7684\u6807\u8bb0\u53e5\u5b50\u662f":53,"\u76f8\u5f53":25,"\u77e9\u9635":35,"\u7814\u7a76\u4eba\u5458\u5206\u6790\u4e86\u51e0\u4e2a\u5173\u4e8e\u6d88\u8d39\u8005\u4fe1\u5fc3\u548c\u653f\u6cbb\u89c2\u70b9\u7684\u8c03\u67e5":54,"\u7814\u7a76\u751f":51,"\u786e\u4fdd\u7f16\u8bd1\u5668\u9009\u9879":29,"\u793a":50,"\u793a\u4f8b":[17,48],"\u793a\u4f8b3\u5bf9\u4e8e\u5355\u5c42rnn\u548c\u53cc\u5c42rnn\u6570\u636e\u5b8c\u5168\u76f8\u540c":25,"\u793a\u4f8b3\u7684\u914d\u7f6e\u4f7f\u7528\u4e86\u5355\u5c42rnn\u548c\u53cc\u5c42rnn":25,"\u793a\u4f8b3\u7684\u914d\u7f6e\u5206\u522b\u4e3a":25,"\u795e\u7ecf\u7f51\u7edc\u5728\u8bad\u7ec3\u7684\u65f6\u5019":17,"\u795e\u7ecf\u7f51\u7edc\u673a\u5668\u7ffb\u8bd1":55,"\u795e\u7ecf\u7f51\u7edc\u7684\u67d0\u4e00\u5c42":39,"\u795e\u7ecf\u7f51\u7edc\u7684\u7f51\u7edc\u7ed3\u6784\u4e2d\u5177\u6709\u6709\u5411\u73af\u7ed3\u6784":25,"\u795e\u7ecf\u7f51\u7edc\u7684\u8bad\u7ec3\u672c\u8eab\u662f\u4e00\u4e2a\u975e\u5e38\u6d88\u8017\u5185\u5b58\u548c\u663e\u5b58\u7684\u5de5\u4f5c":17,"\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e":18,"\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e\u4e3b\u8981\u5305\u62ec\u7f51\u7edc\u8fde\u63a5":39,"\u79bb":25,"\u79d1\u5b66\u5bb6":51,"\u79d1\u5e7b\u7247":51,"\u79f0\u4e3a":[28,39],"\u79f0\u4e3a\u8bad\u7ec3\u914d\u7f6e\u6587\u4ef6":39,"\u79f0\u4e4b\u4e3a\u53cc\u5c42\u5e8f\u5217\u7684\u4e00\u4e2a\u5b50\u5e8f\u5217":24,"\u79f0\u4e4b\u4e3a\u96c6\u675f\u5927\u5c0f":36,"\u7a00\u758f\u6570\u636e\u7684\u683c\u5f0f":30,"\u7a00\u758f\u768401\u5411\u91cf":3,"\u7a00\u758f\u7684\u5411\u91cf":3,"\u7a00\u758f\u77e9\u9635\u7684\u4e58\u79ef\u5e94\u7528\u4e8e\u524d\u5411\u4f20\u64ad\u8fc7\u7a0b":38,"\u7a0b\u5e8f\u4ece\u6b64\u76ee\u5f55\u62f7\u8d1d\u6587\u4ef6\u5230\u5bb9\u5668\u5185\u8fdb\u884c\u8bad\u7ec3":42,"\u7a0b\u5e8f\u505c\u6b62":36,"\u7a0b\u5e8f\u5458":51,"\u7a0b\u5e8f\u6216\u8005\u81ea\u5b9a\u4e49\u4e00\u4e2a\u542b\u6709\u542f\u52a8\u811a\u672c\u7684imag":20,"\u7a0b\u5e8f\u76f4\u63a5\u9000\u51fa":36,"\u7a0d\u505a\u8be6\u7ec6\u8bf4\u660e":39,"\u7a20\u5bc6\u5411\u91cf":30,"\u7a20\u5bc6\u7684\u6d6e\u70b9\u6570\u5411\u91cf":3,"\u7a97\u6237":25,"\u7aef\u53e3":34,"\u7aef\u53e3\u6570":34,"\u7aef\u53e3\u9644\u52a0\u5230\u4e3b\u673a\u540d\u4e0a":34,"\u7aef\u81ea\u5b9a\u4e49\u4e00\u4e2a":2,"\u7aef\u8bfb\u53d6\u6570\u636e":17,"\u7b2c":25,"\u7b2c\u4e00\u4e2a\u53c2\u6570\u662fsettings\u5bf9\u8c61":3,"\u7b2c\u4e00\u4e2a\u6837\u672c\u540c\u65f6encode\u4e24\u6761\u6570\u636e\u6210\u4e24\u4e2a\u5411\u91cf":25,"\u7b2c\u4e00\u4e2apass\u4f1a\u4ecepython\u7aef\u8bfb\u53d6\u6570\u636e":3,"\u7b2c\u4e00\u5929":25,"\u7b2c\u4e00\u884c\u4ece":54,"\u7b2c\u4e00\u884c\u5b58\u7684\u662f\u56fe\u50cf":48,"\u7b2c\u4e00\u884c\u662f":46,"\u7b2c\u4e00\u884c\u7684":55,"\u7b2c\u4e00\u90e8\u5206\u5b9a\u4e49\u4e86\u6570\u636e\u8f93\u5165":18,"\u7b2c\u4e00\u90e8\u5206\u662f\u56fe\u7247\u7684\u6807\u7b7e":3,"\u7b2c\u4e09":54,"\u7b2c\u4e09\u5217\u662f\u751f\u6210\u7684\u82f1\u8bed\u5e8f\u5217":55,"\u7b2c\u4e09\u6b65":48,"\u7b2c\u4e8c":54,"\u7b2c\u4e8c\u5217\u662f\u96c6\u675f\u641c\u7d22\u7684\u5f97\u5206":55,"\u7b2c\u4e8c\u6b65":[46,48],"\u7b2c\u4e8c\u884c\u5b58\u7684\u662f\u56fe\u50cf":48,"\u7b2c\u4e8c\u90e8\u5206\u4e3b\u8981\u662f\u9009\u62e9\u5b66\u4e60\u7b97\u6cd5":18,"\u7b2c\u4e8c\u90e8\u5206\u662f28":3,"\u7b2ci\u884c\u7b2cj\u5217\u7684\u6570\u503c":30,"\u7b49\u5176\u4ed6":55,"\u7b49\u53c2\u6570":42,"\u7b49\u591a\u79cd\u516c\u6709\u4e91\u73af\u5883":40,"\u7b49\u5f85\u8fd9\u4e2a\u7a0b\u5e8f\u6267\u884c\u6210\u529f\u5e76\u8fd4\u56de0\u5219\u6210\u529f\u9000\u51fa":40,"\u7b49\u7b49":[29,50,55],"\u7b49\u90fd\u5c5e\u4e8e\u4e00\u4e2a\u547d\u540d\u7a7a\u95f4":40,"\u7b80\u4ecb":32,"\u7b80\u5355\u6765\u8bf4":33,"\u7b80\u5355\u7684\u5168\u8fde\u63a5\u7f51\u7edc":17,"\u7b80\u5355\u7684\u542b\u6709ssh\u7684dockerfile\u5982\u4e0b":20,"\u7b80\u5355\u7684\u57fa\u4e8e\u5b57\u6bcd\u7684\u8bcd\u5d4c\u5165":52,"\u7b80\u5355\u7684\u6027\u80fd\u5206\u6790":33,"\u7b80\u5355\u7684\u6574\u4e2a\u8bcd\u5d4c\u5165":52,"\u7b80\u5355\u7684pydataprovider2\u6837\u4f8b\u5c31\u8bf4\u660e\u5b8c\u6bd5\u4e86":3,"\u7b80\u5355\u7684yaml\u6587\u4ef6\u5982\u4e0b":41,"\u7b80\u76f4":25,"\u7b97\u6cd5":[17,18,28,54],"\u7b97\u6cd5\u4e2d\u7684beam\u5927\u5c0f":28,"\u7b97\u6cd5\u914d\u7f6e":54,"\u7ba1\u7406\u4eba\u5458":51,"\u7ba1\u7406\u5458":51,"\u7c7b\u4f3c":24,"\u7c7b\u4f3c\u5730":53,"\u7c7b\u4f5c\u4e3a\u53c2\u6570\u7684\u62bd\u8c61":30,"\u7c7b\u522b\u4e2a\u6570":47,"\u7c7b\u522b\u4e2d\u7684\u53c2\u6570\u53ef\u7528\u4e8e\u6240\u6709\u573a\u5408":35,"\u7c7b\u522bid":50,"\u7c7b\u522bid\u548c\u6587\u672c\u4fe1\u606f\u7528":50,"\u7c7b\u578b":[36,52],"\u7c7b\u578b\u53ef\u4ee5\u662fpaddlepaddle\u652f\u6301\u7684\u4efb\u610f\u8f93\u5165\u6570\u636e\u7c7b\u578b":24,"\u7c7b\u578b\u662fsparse_binary_vector":3,"\u7c7b\u578b\u662fsparse_float_vector":3,"\u7c7b\u578b\u6765\u8bbe\u7f6e":3,"\u7c7b\u578b\u7684":25,"\u7c7b\u7684\u6784\u9020\u51fd\u6570\u548c\u6790\u6784\u51fd\u6570":30,"\u7c7b\u9700\u8981\u5b9e\u73b0\u521d\u59cb\u5316":30,"\u7cfb\u7edf\u7f16\u8bd1wheel\u5305\u7684\u65f6\u5019":17,"\u7cfb\u7edfc":39,"\u7d2f\u52a0\u6c42\u548c":39,"\u7ea2\u697c\u68a6":46,"\u7eaa\u5f55\u7247":51,"\u7eb5\u5411\u5305\u62ec\u56db\u4e2a\u7248\u672c":20,"\u7ebf\u6027\u56de\u5f52\u7684\u8f93\u5165\u662f\u4e00\u6279\u70b9":18,"\u7ebf\u6027\u56de\u5f52\u7684\u8f93\u51fa\u662f\u4ece\u8fd9\u6279\u70b9\u4f30\u8ba1\u51fa\u6765\u7684\u53c2\u6570":18,"\u7ebf\u6027\u8ba1\u7b97\u7f51\u7edc\u5c42":18,"\u7ebf\u7a0bid\u53f7":38,"\u7ec4\u6210":39,"\u7ec6\u8282\u63cf\u8ff0":37,"\u7ecf\u5178\u7684\u7ebf\u6027\u56de\u5f52\u4efb\u52a1":23,"\u7ecf\u5e38\u4f1a\u6d88\u8017\u657010gb\u7684\u5185\u5b58\u548c\u6570gb\u7684\u663e\u5b58":17,"\u7ed3\u5408":40,"\u7ed3\u675f\u6807\u8bb0":28,"\u7ed3\u6784\u5982\u4e0b":54,"\u7ed3\u6784\u5982\u4e0b\u56fe":46,"\u7ed3\u679c\u4fdd\u5b58\u5728":53,"\u7ed3\u679c\u53d1\u73b0\u5b83\u4eec\u4e0e\u540c\u65f6\u671f\u7684twitter\u6d88\u606f\u4e2d\u7684\u60c5\u7eea\u8bcd\u9891\u7387\u76f8\u5173":54,"\u7ed9":25,"\u7ed9\u51fa\u56fe\u7247\u5c3a\u5bf8":47,"\u7ed9\u51fa\u8f93\u5165\u6570\u636e\u6240\u5728\u8def\u5f84":47,"\u7ed9\u5b9a\u52a8\u8bcd":53,"\u7ed9\u5b9a\u7684\u6587\u672c\u53ef\u4ee5\u662f\u4e00\u4e2a\u6587\u6863":54,"\u7ed9\u5b9aencoder\u8f93\u51fa\u548c\u5f53\u524d\u8bcd":27,"\u7edd\u5927\u591a\u6570\u60c5\u51b5\u4e0b\u4e0d\u5e94\u8be5":29,"\u7ee7\u7eed\u6df1\u5165\u4e86\u89e3":39,"\u7ee7\u7eed\u8bad\u7ec3\u6216\u9884\u6d4b":3,"\u7ef4\u57fa\u767e\u79d1\u4e2d\u6587\u9875\u9762":25,"\u7ef4\u57fa\u767e\u79d1\u9875\u9762":25,"\u7ef4\u5ea6\u4e3aword_dim":50,"\u7ef4\u5ea6\u662f\u7c7b\u522b\u4e2a\u6570":50,"\u7ef4\u5ea6\u662f\u8bcd\u5178\u5927\u5c0f":50,"\u7ef4\u62a4":40,"\u7ef4\u7a7a\u95f4":28,"\u7ef4\u7a7a\u95f4\u5b8c\u6210":28,"\u7f13\u5b58\u6c60\u7684\u51cf\u5c0f":17,"\u7f13\u5b58\u8bad\u7ec3\u6570\u636e\u5230\u5185\u5b58":3,"\u7f16\u5199\u597d\u6570\u636e\u63d0\u4f9b\u811a\u672c\u540e":52,"\u7f16\u5199\u5b8cyaml\u6587\u4ef6\u540e":42,"\u7f16\u5199\u672c\u6b21\u8bad\u7ec3\u7684yaml\u6587\u4ef6":42,"\u7f16\u53f7":52,"\u7f16\u53f7\u4ece0\u5f00\u59cb":17,"\u7f16\u53f7\u5b57\u6bb5":52,"\u7f16\u7801\u5411\u91cf":28,"\u7f16\u7801\u5668\u8f93\u51fa":28,"\u7f16\u7801\u6e90\u5e8f\u5217":28,"\u7f16\u89e3\u7801\u6a21\u578b\u5c06\u4e00\u4e2a\u6e90\u8bed\u53e5\u7f16\u7801\u4e3a\u4e00\u4e2a\u5b9a\u957f\u7684\u5411\u91cf":55,"\u7f16\u8bd1\u5b8c\u6210\u540e":31,"\u7f16\u8bd1\u6210\u52a8\u6001\u5e93":36,"\u7f16\u8bd1\u6d41\u7a0b":23,"\u7f16\u8bd1\u6d41\u7a0b\u4e3b\u8981\u63a8\u8350\u9ad8\u7ea7\u7528\u6237\u67e5\u770b":21,"\u7f16\u8bd1\u73af\u5883\u548c\u6e90\u4ee3\u7801":20,"\u7f16\u8bd1\u751f\u6210":31,"\u7f16\u8bd1\u9009\u9879":19,"\u7f16\u8f91":40,"\u7f29\u653e\u53c2\u6570":48,"\u7f51\u7edc":[53,54],"\u7f51\u7edc\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf":40,"\u7f51\u7edc\u540d\u79f0":50,"\u7f51\u7edc\u5c42\u53ef\u4ee5\u6709\u591a\u4e2a\u8f93\u5165":30,"\u7f51\u7edc\u5c42\u7684\u6807\u8bc6\u7b26\u4e3a":30,"\u7f51\u7edc\u5c42\u7684\u7c7b\u578b":30,"\u7f51\u7edc\u5c42\u7684\u7ec6\u8282\u53ef\u4ee5\u901a\u8fc7\u4e0b\u9762\u8fd9\u4e9b\u4ee3\u7801\u7247\u6bb5\u6765\u6307\u5b9a":30,"\u7f51\u7edc\u5c42\u7684\u8f93\u51fa\u662f\u7ecf\u8fc7\u6fc0\u6d3b\u51fd\u6570\u4e4b\u540e\u7684\u503c":36,"\u7f51\u7edc\u5c42\u914d\u7f6e\u5305\u542b\u4ee5\u4e0b\u51e0\u9879":30,"\u7f51\u7edc\u63a5\u53e3\u5361":34,"\u7f51\u7edc\u6a21\u5757":48,"\u7f51\u7edc\u6a21\u578b\u5c06\u8f93\u51fa\u6807\u7b7e\u7684\u6982\u7387\u5206\u5e03":53,"\u7f51\u7edc\u7684\u8bad\u7ec3\u8fc7\u7a0b":54,"\u7f51\u7edc\u7684\u8f93\u51fa\u4e3a\u795e\u7ecf\u7f51\u7edc\u7684\u4f18\u5316\u76ee\u6807":39,"\u7f51\u7edc\u7684\u8f93\u51fa\u4e5f\u53ef\u901a\u8fc7":39,"\u7f51\u7edc\u7ed3\u6784\u5982\u4e0b\u56fe\u6240\u793a":52,"\u7f51\u7edc\u7ed3\u6784\u914d\u7f6e\u4e09\u90e8\u5206":39,"\u7f51\u7edc\u7ed3\u6784\u914d\u7f6e\u8fd9\u4e09\u90e8\u5206\u8be5\u6982\u5ff5":39,"\u7f51\u7edc\u8fde\u63a5":39,"\u7f51\u7edc\u901a\u4fe1":30,"\u7f51\u7edc\u914d\u7f6e":[34,50,54],"\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6":[48,53],"\u800c":[18,20,28,41,52],"\u800c\u4e0d\u4f7f\u7528docker":20,"\u800c\u4e0d\u4f7f\u7528imdb\u6570\u6910\u96c6\u4e2d\u7684imdb":54,"\u800c\u4e0d\u662f":29,"\u800c\u4e0d\u662f\u4f7f\u7528\u540c\u6b65":34,"\u800c\u4e0d\u662f\u65b0\u6570\u636e\u9a71\u52a8\u7cfb\u7edf":39,"\u800c\u4e0d\u662f\u6e90\u7801\u76ee\u5f55\u91cc":17,"\u800c\u4e0d\u662f\u7279\u5f81\u7684\u96c6\u5408":25,"\u800c\u4e0d\u662f\u7ec4\u5408\u4e0a\u4e0b\u6587\u7ea7\u522b\u4fe1\u606f":54,"\u800c\u4e0d\u7528\u5173\u5fc3\u6570\u636e\u5982\u4f55\u4f20\u8f93":3,"\u800c\u4e14":55,"\u800c\u4e4b\u524d\u7684\u53c2\u6570\u5c06\u4f1a\u88ab\u5220\u9664":36,"\u800c\u4ece\u5e94\u7528\u7684\u89d2\u5ea6":33,"\u800c\u4f18\u5316\u6027\u80fd\u7684\u9996\u8981\u4efb\u52a1":33,"\u800c\u5176\u4ed6\u5c42\u4f7f\u7528cpu\u8ba1\u7b97":38,"\u800c\u53cc\u5c42rnn\u662f\u53ef\u4ee5\u5904\u7406\u8fd9\u79cd\u8f93\u5165\u6570\u636e\u7684\u7f51\u7edc\u7ed3\u6784":25,"\u800c\u53f3\u56fe\u7684\u74f6\u9888\u8fde\u63a5\u6a21\u5757\u7528\u4e8e50\u5c42":48,"\u800c\u5927\u591a\u6570\u65b9\u6cd5\u53ea\u662f\u5229\u7528n":54,"\u800c\u5bf9\u4e8e\u53cc\u5c42\u5e8f\u5217":25,"\u800c\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u5185\u5c42\u7279\u5f81\u6570\u636e\u800c\u8a00":25,"\u800c\u5c06\u8fd9\u4e2a\u6bb5\u843d\u7684\u6bcf\u4e00\u53e5\u8bdd\u7528lstm\u7f16\u7801\u6210\u4e00\u4e2a\u5411\u91cf":25,"\u800c\u5f53\u524d\u5df2\u7ecf\u67095":33,"\u800c\u662f\u76f4\u63a5\u4ece\u5185\u5b58\u7684\u7f13\u5b58\u91cc\u8bfb\u53d6\u6570\u636e":17,"\u800c\u66f4\u6df1\u5165\u7684\u5206\u6790":33,"\u800c\u6709\u4e9b\u53c2\u6570\u9700\u8981\u5728\u96c6\u7fa4\u591a\u673a\u8bad\u7ec3\u4e2d\u4f7f\u7528\u7b49":35,"\u800c\u6ca1\u6709\u77ed\u65f6\u8bb0\u5fc6\u7684\u635f\u5931":54,"\u800c\u6e90\u5e8f\u5217\u7684\u7f16\u7801\u5411\u91cf\u53ef\u4ee5\u88ab\u65e0\u8fb9\u754c\u7684memory\u8bbf\u95ee":28,"\u800c\u7a00\u758f\u66f4\u65b0\u5728\u53cd\u5411\u4f20\u64ad\u4e4b\u540e\u7684\u6743\u91cd\u66f4\u65b0\u65f6\u8fdb\u884c":38,"\u800c\u7cfb\u7edf\u4e2d\u7684":17,"\u800c\u8fd9\u4e00\u53e5\u8bdd\u5c31\u53ef\u4ee5\u8868\u793a\u6210\u8fd9\u4e9b\u4f4d\u7f6e\u7684\u6570\u7ec4":25,"\u800c\u8fd9\u4e2acontext\u53ef\u80fd\u4f1a\u975e\u5e38\u5927":3,"\u800c\u8fd9\u6bcf\u4e00\u4e2a\u6570\u7ec4\u5143\u7d20":25,"\u800c\u975e\u9759\u6001\u52a0\u8f7dcuda\u52a8\u6001\u5e93":19,"\u800cgpu\u7684\u9a71\u52a8\u548c\u8bbe\u5907\u5168\u90e8\u6620\u5c04\u5230\u4e86\u5bb9\u5668\u5185":20,"\u800cpaddlepaddle\u5219\u4f1a\u5e2e\u7528\u6237\u505a\u4ee5\u4e0b\u5de5\u4f5c":3,"\u800crnn\u662f\u6700\u6d41\u884c\u7684\u9009\u62e9":27,"\u800cweight":47,"\u804c\u4e1a":51,"\u804c\u4e1a\u4ece\u4e0b\u9762\u6240\u5217\u4e2d\u9009\u62e9":51,"\u80fd\u591f\u5904\u7406\u53cc\u5c42\u5e8f\u5217":27,"\u80fd\u591f\u5bf9\u53cc\u5411\u5e8f\u5217\u8fdb\u884c\u5904\u7406\u7684\u6709":27,"\u80fd\u591f\u627e\u5230\u8fd9\u91cc\u4f7f\u7528\u7684\u6240\u6709\u6570\u636e":50,"\u80fd\u591f\u8bb0\u5f55\u4e0a\u4e00\u4e2asubseq":27,"\u80fd\u83b7\u53d6":34,"\u811a\u672c":[20,34,47,52],"\u811a\u672c\u4fdd\u5b58\u5728":47,"\u811a\u672c\u53ef\u4ee5\u542f\u52a8paddlepaddle\u7684\u8bad\u7ec3\u8fdb\u7a0b\u548cpserv":20,"\u811a\u672c\u548c":20,"\u811a\u672c\u5f00\u59cb\u65f6":42,"\u811a\u672c\u63d0\u4f9b\u4e86\u4e00\u4e2a\u9884\u6d4b\u63a5\u53e3":54,"\u811a\u672c\u65f6\u9700\u8981\u52a0\u4e0a":54,"\u811a\u672c\u7c7b\u4f3c\u4e8e":20,"\u811a\u672c\u8fd0\u884c\u5b8c\u6210\u540e":47,"\u81ea\u52a8\u5730\u5c06\u8fd9\u4e9b\u9009\u9879\u5e94\u7528\u5230":34,"\u81ea\u52a8\u5b8c\u6210\u8fd9\u4e00\u8fc7\u7a0b":27,"\u81ea\u52a8\u83b7\u53d6\u4e0a\u4e00\u4e2a\u751f\u6210\u7684\u8bcd":28,"\u81ea\u5e95\u5411\u4e0a\u6cd5":50,"\u81ea\u7136\u8bed\u8a00\u5904\u7406\u7b49":38,"\u81ea\u7531\u804c\u4e1a\u8005":51,"\u81f3\u5c11\u5177\u67093":20,"\u81f3\u6b64":[3,20,25],"\u8212\u9002":25,"\u827a\u672f\u5bb6":51,"\u8282\u70b9\u4e2d\u7684":34,"\u82e5":30,"\u82e5\u5e72\u4e2a\u53e5\u5b50\u6784\u6210\u4e00\u4e2a\u6bb5\u843d":24,"\u82e5\u6709\u4e0d\u4e00\u81f4\u4e4b\u5904":33,"\u82e5\u6709\u5fc5\u8981":30,"\u82e5\u8f93\u51fa\u662f\u5355\u5c42\u5e8f\u5217":24,"\u82e5\u8f93\u51fa\u662f\u53cc\u5c42\u5e8f\u5217":24,"\u82f1\u6587\u6587\u6863\u76ee\u5f55":31,"\u82f1\u8bed":55,"\u8303\u56f4":38,"\u83b7\u53d6\u5229\u7528":50,"\u83b7\u53d6\u5b57\u5178\u7ef4\u5ea6":54,"\u83b7\u53d6\u8be5\u6761\u6837\u672c\u7c7b\u522bid":50,"\u83b7\u53d6\u901a\u8fc7":54,"\u83b7\u53d6trainer":42,"\u83b7\u5f97\u53c2\u6570\u5c3a\u5bf8":30,"\u867d\u7136":18,"\u867d\u7136\u6bcf\u4e2agenerator\u5728\u6ca1\u6709\u8c03\u7528\u7684\u65f6\u5019":3,"\u867d\u7136\u8fd9\u4e9b\u6587\u4ef6\u5e76\u975e\u90fd\u9700\u8981\u96c6\u7fa4\u8bad\u7ec3":34,"\u867d\u7136paddle\u770b\u8d77\u6765\u5305\u542b\u4e86\u4f17\u591a\u53c2\u6570":35,"\u884c":46,"\u884c\u4f18\u5148\u6b21\u5e8f\u5b58\u50a8":48,"\u884c\u5185\u4f7f\u7528":3,"\u884c\u653f\u5de5\u4f5c":51,"\u8868\u660e\u4e86\u8fd9\u4e9b\u884c\u7684\u6807\u53f7":30,"\u8868\u660e\u8fd9\u4e2a\u5c42\u7684\u4e00\u4e2a\u5b9e\u4f8b\u662f\u5426\u9700\u8981\u504f\u7f6e":30,"\u8868\u793a":42,"\u8868\u793a\u4e00\u4e2akubernetes\u96c6\u7fa4\u4e2d\u7684\u4e00\u4e2a\u5de5\u4f5c\u8282\u70b9":40,"\u8868\u793a\u4e3adeviceid":38,"\u8868\u793a\u5171\u4eab\u5b58\u50a8\u6302\u8f7d\u7684\u8def\u5f84":42,"\u8868\u793a\u5728\u96c6\u7fa4\u4f5c\u4e1a":34,"\u8868\u793a\u5973\u6027":51,"\u8868\u793a\u5c06\u5916\u5c42\u7684outer_mem\u4f5c\u4e3a\u5185\u5c42memory\u7684\u521d\u59cb\u72b6\u6001":25,"\u8868\u793a\u5f53\u524d\u96c6\u7fa4\u4f5c\u4e1a\u7684\u8282\u70b9":34,"\u8868\u793a\u672c\u6b21\u8bad\u7ec3\u6587\u4ef6\u6240\u5728\u76ee\u5f55":42,"\u8868\u793a\u6a21\u578b\u914d\u7f6e\u6587\u4ef6":34,"\u8868\u793a\u751f\u6210\u6570\u636e\u7684\u5e8f\u5217id":55,"\u8868\u793a\u7528\u4e8e\u8bad\u7ec3\u6216\u9884\u6d4b":3,"\u8868\u793a\u7537\u6027":51,"\u8868\u793a\u7684\u6bcf\u4e2a\u5355\u8bcd":50,"\u8868\u793a\u7a00\u758f\u66f4\u65b0\u7684\u7aef\u53e3\u6570\u91cf":42,"\u8868\u793a\u7b2c0\u4e2abatch\u5230\u5f53\u524dbatch\u7684\u5206\u7c7b\u9519\u8bef":54,"\u8868\u793a\u8bad\u7ec3\u4e86xx\u4e2a\u6837\u672c":54,"\u8868\u793a\u8bad\u7ec3\u4e86xx\u4e2abatch":54,"\u8868\u793a\u8bad\u7ec3\u8282\u70b9\u6570\u91cf":42,"\u8868\u793a\u8bfb\u8005\u6240\u4f7f\u7528\u7684docker\u955c\u50cf\u4ed3\u5e93\u5730\u5740":42,"\u8868\u793a\u8fc7\u4e8620\u4e2abatch":50,"\u8868\u793a\u8fc7\u4e862560\u4e2a\u6837\u672c":50,"\u8868\u793a\u8fd9\u4e2ajob\u7684\u540d\u5b57":42,"\u8868\u793ajob\u540d\u5b57":42,"\u88ab\u6269\u5c55\u4e3a\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":24,"\u88ab\u653e\u5728":30,"\u88ab\u79f0\u4e3a":28,"\u88ab\u79f0\u4e3a\u6570\u636e\u63d0\u4f9b\u5668":39,"\u897f\u90e8\u7247":51,"\u8981\u4e0b\u8f7d\u548c\u89e3\u538b\u6570\u636e\u96c6":52,"\u8981\u4e0b\u8f7d\u89e3\u538b\u8fd9\u4e2a\u6a21\u578b":55,"\u8981\u4f7f\u7528\u547d\u4ee4\u884c\u5206\u6790\u5de5\u5177":33,"\u8981\u5728\u5df2\u6709\u7684kubernetes\u96c6\u7fa4\u4e0a\u8fdb\u884cpaddlepaddle\u7684\u5206\u5e03\u5f0f\u8bad\u7ec3":42,"\u8981\u5728\u6240\u6709\u8282\u70b9\u4e0a\u5b58\u5728":34,"\u8981\u5bf9\u4e00\u4e2a\u56fe\u7247\u7684\u8fdb\u884c\u5206\u7c7b\u9884\u6d4b":47,"\u8981\u5c06\u5b57\u6bb5\u914d\u7f6e\u6587\u4ef6\u8f6c\u5316\u4e3ameta\u914d\u7f6e\u6587\u4ef6":52,"\u8981\u6c42\u5355\u5c42\u5e8f\u5217\u542b\u6709\u5143\u7d20\u7684\u6570\u76ee":24,"\u8981\u751f\u6210\u7684\u76ee\u6807\u5e8f\u5217":27,"\u8981\u8c03\u7528":30,"\u89c2\u5bdf\u5f53\u524d\u8fdc\u7a0b\u4ed3\u5e93\u914d\u7f6e":29,"\u89e3\u51b3\u529e\u6cd5\u662f":17,"\u89e3\u51b3\u65b9\u6848\u662f":17,"\u89e3\u538b":55,"\u89e3\u6790\u5668\u80fd\u901a\u8fc7\u6587\u4ef6\u7684\u6269\u5c55\u540d\u81ea\u52a8\u8bc6\u522b\u6587\u4ef6\u7684\u683c\u5f0f":52,"\u89e3\u6790\u6570\u636e\u96c6\u4e2d\u7684\u6bcf\u4e00\u4e2a\u5b57\u6bb5":52,"\u89e3\u6790\u6a21\u578b\u914d\u7f6e\u6587\u4ef6":5,"\u89e3\u6790\u73af\u5883\u53d8\u91cf\u5f97\u5230":42,"\u89e3\u6790\u8bad\u7ec3\u6a21\u578b\u65f6\u7528\u7684\u914d\u7f6e\u6587\u4ef6":5,"\u89e3\u7801\u5668\u4f7f\u7528":28,"\u89e3\u7801\u5668\u57fa\u4e8e\u7f16\u7801\u6e90\u5e8f\u5217\u548c\u6700\u540e\u751f\u6210\u7684\u76ee\u6807\u8bcd\u9884\u6d4b\u4e0b\u4e00\u76ee\u6807\u8bcd":28,"\u89e3\u7801\u5668\u662f\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":28,"\u89e3\u7801\u5668\u6839\u636e\u4e0a\u4e0b\u6587\u5411\u91cf\u9884\u6d4b\u51fa\u4e00\u4e2a\u76ee\u6807\u5355\u8bcd":55,"\u89e3\u91ca":50,"\u8ba1\u7b97":28,"\u8ba1\u7b97\u504f\u7f6e\u7684\u68af\u5ea6":30,"\u8ba1\u7b97\u5355\u5143\u662f\u795e\u7ecf\u7f51\u7edc\u7684\u6838\u5fc3":18,"\u8ba1\u7b97\u53cd\u5411rnn\u7684\u7b2c\u4e00\u4e2a\u5b9e\u4f8b":28,"\u8ba1\u7b97\u53d8\u6362\u77e9\u9635\u7684\u5927\u5c0f\u548c\u683c\u5f0f":30,"\u8ba1\u7b97\u5f53\u524d\u5c42\u6743\u91cd\u7684\u68af\u5ea6":30,"\u8ba1\u7b97\u6bcf\u4e2a\u8bcd\u7684\u8bcd\u5411\u91cf":28,"\u8ba1\u7b97\u6fc0\u6d3b\u51fd\u6570\u7684\u68af\u5ea6":30,"\u8ba1\u7b97\u7684\u7ec6\u8282\u5c06\u5728\u4e0b\u9762\u7684\u5c0f\u8282\u7ed9\u51fa":30,"\u8ba1\u7b97\u8bef\u5dee\u51fd\u6570":18,"\u8ba1\u7b97\u8f6c\u6362\u77e9\u9635\u548c\u8f93\u5165\u7684\u68af\u5ea6":30,"\u8ba1\u7b97\u8f93\u5165\u548c\u53c2\u6570\u7684\u68af\u5ea6":30,"\u8ba1\u7b97\u8f93\u5165\u5c42\u7684\u504f\u5dee":30,"\u8ba1\u7b97\u8f93\u51fa":30,"\u8ba9\u6a21\u578b\u80fd\u591f\u5f97\u5230\u8bad\u7ec3\u66f4\u65b0":50,"\u8ba9\u795e\u7ecf\u7f51\u7edc\u53ef\u4ee5\u8fdb\u884c\u8bad\u7ec3\u6216\u9884\u6d4b":2,"\u8ba9\u8fd9\u4e2a\u793a\u4f8b\u53d8\u5f97\u66f4\u597d":52,"\u8bad\u7ec3":[20,35,54],"\u8bad\u7ec3\u4f5c\u4e1a":34,"\u8bad\u7ec3\u53ca\u6d4b\u8bd5\u8bef\u5dee\u66f2\u7ebf\u56fe\u4f1a\u88ab":47,"\u8bad\u7ec3\u53ef\u4ee5\u8bbe\u7f6e\u4e3atrue":53,"\u8bad\u7ec3\u540e":53,"\u8bad\u7ec3\u5931\u8d25\u65f6\u53ef\u4ee5\u68c0\u67e5\u9519\u8bef\u65e5\u5fd7":34,"\u8bad\u7ec3\u597d\u4e00\u4e2a\u6df1\u5c42\u795e\u7ecf\u7f51\u7edc\u901a\u5e38\u8981\u8017\u8d39\u975e\u5e38\u957f\u7684\u65f6\u95f4":33,"\u8bad\u7ec3\u5b8c\u6210\u540e":18,"\u8bad\u7ec3\u6570\u636e\u548c\u6d4b\u8bd5\u6570\u636e\u7684\u76ee\u5f55":55,"\u8bad\u7ec3\u6570\u636e\u662f":3,"\u8bad\u7ec3\u6570\u636e\u7684\u683c\u5f0f\u5f80\u5f80\u5404\u4e0d\u76f8\u540c":39,"\u8bad\u7ec3\u6570\u6910\u96c6":54,"\u8bad\u7ec3\u65f6":42,"\u8bad\u7ec3\u65f6\u6240\u9700\u8bbe\u7f6e\u7684\u4e3b\u8981\u53c2\u6570\u5982\u4e0b":50,"\u8bad\u7ec3\u65f6\u9ed8\u8ba4shuffl":3,"\u8bad\u7ec3\u6a21\u578b":23,"\u8bad\u7ec3\u6a21\u578b\u4e4b\u524d":54,"\u8bad\u7ec3\u6a21\u578b\u540e":28,"\u8bad\u7ec3\u7684\u635f\u5931\u51fd\u6570\u9ed8\u8ba4\u6bcf\u969410\u4e2abatch\u6253\u5370\u4e00\u6b21":55,"\u8bad\u7ec3\u7684\u811a\u672c\u662f":53,"\u8bad\u7ec3\u7b97\u6cd5":39,"\u8bad\u7ec3\u7b97\u6cd5\u901a\u5e38\u5b9a\u4e49\u5728\u53e6\u4e00\u5355\u72ecpython\u6587\u4ef6\u4e2d":39,"\u8bad\u7ec3\u7ed3\u675f\u540e\u67e5\u770b\u8f93\u51fa\u7ed3\u679c":42,"\u8bad\u7ec3\u811a\u672c":50,"\u8bad\u7ec3\u811a\u672c\u7b49\u7b49":50,"\u8bad\u7ec3\u81f3\u591a":52,"\u8bad\u7ec3\u8bed\u8a00\u6a21\u578b\u8ddd\u79bb":17,"\u8bad\u7ec3\u8f6e\u6b21":50,"\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u6d4b\u8bd5test_period":35,"\u8bad\u7ec3\u8fc7\u7a0b\u662f\u5426\u4e3a\u672c\u5730\u6a21\u5f0f":36,"\u8bad\u7ec3\u8fc7\u7a0b\u662f\u5426\u4f7f\u7528gpu":36,"\u8bad\u7ec3\u8fdb\u7a0b":39,"\u8bad\u7ec3\u914d\u7f6e\u4e2d\u7684\u8bbe\u5907\u5c5e\u6027\u5c06\u4f1a\u65e0\u6548":36,"\u8bad\u7ec3\u914d\u7f6e\u6587\u4ef6\u4e3b\u8981\u5305\u62ec\u6570\u636e\u6e90":39,"\u8bad\u7ec3\u914d\u7f6e\u6587\u4ef6\u7684\u6570\u636e\u6e90\u914d\u7f6e\u4e2d\u6307\u5b9adataprovider\u6587\u4ef6\u540d\u5b57":39,"\u8bad\u7ec3\u9636\u6bb5":39,"\u8bad\u7ec3\u96c6\u548c\u6d4b\u8bd5\u96c6\u6587\u4ef6\u5217\u8868":54,"\u8bad\u7ec3\u96c6\u5df2\u7ecf\u505a\u4e86\u968f\u673a\u6253\u4e71\u6392\u5e8f\u800c\u6d4b\u8bd5\u96c6\u6ca1\u6709":54,"\u8bad\u7ec3\u96c6\u5df2\u7ecf\u968f\u673a\u6253\u4e71":54,"\u8bad\u7ec3\u96c6\u5e73\u5747\u503c":47,"\u8bad\u7ec3dot_period":35,"\u8bb0\u5fc6\u6a21\u5757":28,"\u8bba\u6587":48,"\u8bbe\u4e3a\u5df2\u90e8\u7f72\u7684\u5de5\u4f5c\u7a7a\u95f4\u76ee\u5f55":34,"\u8bbe\u4e3a\u672c\u5730":34,"\u8bbe\u7f6e\u4e3a":30,"\u8bbe\u7f6e\u4e3atrue\u4f7f\u7528\u672c\u5730\u8bad\u7ec3\u6216\u8005\u4f7f\u7528\u96c6\u7fa4\u4e0a\u7684\u4e00\u4e2a\u8282\u70b9":36,"\u8bbe\u7f6e\u4e3atrue\u4f7f\u7528gpu\u6a21\u5f0f":36,"\u8bbe\u7f6e\u4efb\u52a1\u7684\u6a21\u5f0f\u4e3a\u6d4b\u8bd5":55,"\u8bbe\u7f6e\u4fdd\u5b58\u6a21\u578b\u7684\u8f93\u51fa\u8def\u5f84":55,"\u8bbe\u7f6e\u5168\u5c40\u5b66\u4e60\u7387":54,"\u8bbe\u7f6e\u5185\u5b58\u4e2d\u6682\u5b58\u7684\u6570\u636e\u6761\u6570":3,"\u8bbe\u7f6e\u5185\u5b58\u4e2d\u6700\u5c0f\u6682\u5b58\u7684\u6570\u636e\u6761\u6570":3,"\u8bbe\u7f6e\u53c2\u6570\u7684\u540d\u5b57":17,"\u8bbe\u7f6e\u547d\u4ee4\u884c\u53c2\u6570":[17,32,52],"\u8bbe\u7f6e\u5b57\u5178\u6587\u4ef6":54,"\u8bbe\u7f6e\u5de5\u4f5c\u6a21\u5f0f\u4e3a\u8bad\u7ec3":54,"\u8bbe\u7f6e\u5e73\u5747sgd\u7a97\u53e3":54,"\u8bbe\u7f6e\u6210":17,"\u8bbe\u7f6e\u6210\u4e00\u4e2a\u5c0f\u4e00\u4e9b\u7684\u503c":17,"\u8bbe\u7f6e\u6570\u636e\u904d\u5386\u6b21\u6570":53,"\u8bbe\u7f6e\u6807\u7b7e\u7c7b\u522b\u5b57\u5178":54,"\u8bbe\u7f6e\u6a21\u578b\u8def\u5f84":54,"\u8bbe\u7f6e\u7684\u547d\u4ee4\u884c\u53c2\u6570":54,"\u8bbe\u7f6e\u795e\u7ecf\u7f51\u7edc\u7684\u914d\u7f6e\u6587\u4ef6":55,"\u8bbe\u7f6e\u7c7b\u522b\u6570":54,"\u8bbe\u7f6e\u7ebf\u7a0b\u6570":[53,54],"\u8bbe\u7f6e\u7f51\u7edc\u914d\u7f6e":54,"\u8bbe\u7f6e\u8f93\u51fa\u7684\u5c3a\u5bf8":30,"\u8bbe\u7f6e\u8f93\u51fa\u8def\u5f84\u4ee5\u4fdd\u5b58\u8bad\u7ec3\u5b8c\u6210\u7684\u6a21\u578b":54,"\u8bbe\u7f6e\u8fd9\u4e2apydataprovider2\u8fd4\u56de\u4ec0\u4e48\u6837\u7684\u6570\u636e":3,"\u8bbe\u7f6e\u9ed8\u8ba4\u8bbe\u5907\u53f7\u4e3a0":38,"\u8bbe\u7f6ebatch":54,"\u8bbe\u7f6ecpu\u7ebf\u7a0b\u6570\u6216\u8005gpu\u8bbe\u5907\u6570":55,"\u8bbe\u7f6egpu":36,"\u8bbe\u7f6epass":54,"\u8bbe\u7f6epasses\u7684\u6570\u91cf":55,"\u8bbf\u95eekubernetes\u7684\u63a5\u53e3\u6765\u67e5\u8be2\u6b64job\u5bf9\u5e94\u7684\u6240\u6709pod\u4fe1\u606f":42,"\u8bc4\u4ef7\u9884\u6d4b\u7684\u6548\u679c":18,"\u8bc4\u4f30\u5668":39,"\u8bc4\u4f30\u5668\u53ef\u4ee5\u8bc4\u4ef7\u6a21\u578b\u7ed3\u679c":39,"\u8bc4\u4f30\u8be5\u4ea7\u54c1\u7684\u8d28\u91cf":50,"\u8bc4\u5206":[51,52],"\u8bc4\u5206\u6587\u4ef6\u7684\u6bcf\u4e00\u884c\u4ec5\u4ec5\u63d0\u4f9b\u7535\u5f71\u6216\u7528\u6237\u7684\u7f16\u53f7\u6765\u4ee3\u8868\u76f8\u5e94\u7684\u7535\u5f71\u6216\u7528\u6237":52,"\u8bc4\u5206\u88ab\u8c03\u6574\u4e3a5\u661f\u7684\u89c4\u6a21":51,"\u8bcd\u5411\u91cf":46,"\u8bcd\u5411\u91cf\u6a21\u578b":49,"\u8bcd\u5411\u91cf\u6a21\u578b\u540d\u79f0":46,"\u8bcd\u672c\u8eab\u548c\u8bcd\u9891":46,"\u8bcd\u9891\u6700\u9ad8\u7684":55,"\u8bd5\u7740\u8ba9\u8f93\u51fa\u7684\u5206\u6790\u6570\u636e\u548c\u7406\u8bba\u503c\u5bf9\u5e94":33,"\u8be5":[34,53],"\u8be5\u51fd\u6570\u5177\u6709\u4e24\u4e2a\u53c2\u6570":3,"\u8be5\u51fd\u6570\u5728\u521d\u59cb\u5316\u7684\u65f6\u5019\u4f1a\u88ab\u8c03\u7528":3,"\u8be5\u51fd\u6570\u7684\u529f\u80fd\u662f":3,"\u8be5\u53c2\u6570\u5728\u7f51\u7edc\u914d\u7f6e\u7684output":36,"\u8be5\u53c2\u6570\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u81ea\u52a8\u8bbe\u7f6e":36,"\u8be5\u53c2\u6570\u5df2\u7ecf\u5728\u96c6\u7fa4\u63d0\u4ea4\u73af\u5883\u4e2d\u5b8c\u6210\u8bbe\u7f6e":36,"\u8be5\u53c2\u6570\u5fc5\u987b\u80fd\u88abflag":36,"\u8be5\u53c2\u6570\u6307\u793a\u662f\u5426\u6253\u5370\u65e5\u5fd7\u622a\u65ad\u4fe1\u606f":36,"\u8be5\u53c2\u6570\u6307\u793a\u662f\u5426\u6253\u5370\u9519\u8bef\u622a\u65ad\u65e5\u5fd7":36,"\u8be5\u53c2\u6570\u7528\u4e8e\u6307\u5b9a\u52a8\u6001\u5e93\u8def\u5f84":36,"\u8be5\u53c2\u6570\u7684\u610f\u601d\u662f\u8bad\u7ec3num":36,"\u8be5\u53c2\u6570\u9ed8\u8ba4\u4e3anull":36,"\u8be5\u5bf9\u8c61\u5177\u6709\u4ee5\u4e0b\u4e24\u4e2a\u5c5e\u6027":3,"\u8be5\u5c42\u4ec5\u9700\u8981\u8fd9\u4e9b\u975e\u96f6\u6837\u672c\u4f4d\u7f6e\u6240\u5bf9\u5e94\u7684\u53d8\u6362\u77e9\u9635\u7684\u90a3\u4e9b\u884c":30,"\u8be5\u5c42\u795e\u7ecf\u5143\u4e2a\u6570":50,"\u8be5\u622a\u65ad\u4f1a\u5f71\u54cd":36,"\u8be5\u6279\u6b21\u7684\u8f93\u5165\u4e2d\u4ec5\u6709\u4e00\u4e2a\u5b50\u96c6\u662f\u975e\u96f6\u7684":30,"\u8be5\u63a5\u53e3\u4f7f\u7528\u591a\u7ebf\u7a0b\u8bfb\u53d6\u6570\u636e":3,"\u8be5\u63a5\u53e3\u53ef\u7528\u4e8e\u9884\u6d4b\u548c\u5b9a\u5236\u5316\u8bad\u7ec3":19,"\u8be5\u6570\u636e\u53ca\u6709\u5f88\u591a\u4e0d\u540c\u7684\u7248\u672c":51,"\u8be5\u6570\u636e\u96c6":46,"\u8be5\u6570\u636e\u96c6\u4e8e2003\u5e742\u6708\u53d1\u5e03":51,"\u8be5\u6570\u636e\u96c6\u5305\u542b\u4e00\u4e9b\u7528\u6237\u4fe1\u606f":51,"\u8be5\u6570\u76ee\u662f\u63d0\u524d\u5b9a\u4e49\u597d\u7684":36,"\u8be5\u6587\u4ef6\u53ef\u4ee5\u4ece\u5b57\u6bb5\u914d\u7f6e\u6587\u4ef6\u751f\u6210":52,"\u8be5\u6587\u4ef6\u662f\u7531cpickle\u4ea7\u751f\u7684":48,"\u8be5\u6587\u4ef6\u662fpython\u7684pickle\u5bf9\u8c61":52,"\u8be5\u6587\u4ef6\u8d1f\u8d23\u4ea7\u751f\u56fe\u7247\u6570\u636e\u5e76\u4f20\u9012\u7ed9paddle\u7cfb\u7edf":47,"\u8be5\u6a21\u578b\u4f9d\u7136\u4f7f\u7528\u903b\u8f91\u56de\u5f52\u5206\u7c7b\u7f51\u7edc\u7684\u6846\u67b6":50,"\u8be5\u6a21\u578b\u5728\u957f\u8bed\u53e5\u7ffb\u8bd1\u7684\u573a\u666f\u4e0b\u6548\u679c\u63d0\u5347\u66f4\u52a0\u660e\u663e":55,"\u8be5\u6a21\u578b\u7684\u7f51\u7edc\u914d\u7f6e\u5982\u4e0b":18,"\u8be5\u6a21\u578b\u7684\u8bf4\u660e\u5982\u4e0b\u56fe\u6240\u793a":28,"\u8be5\u6a21\u578b\u7f51\u7edc\u53ea\u662f\u7528\u4e8e\u8fdb\u884cdemo\u5c55\u793apaddle\u5982\u4f55\u5de5\u4f5c":52,"\u8be5\u76ee\u5f55\u4e0b\u4f1a\u751f\u6210\u5982\u4e0b\u4e24\u4e2a\u5b50\u76ee\u5f55":31,"\u8be5\u793a\u4f8b\u5c06\u5c55\u793apaddle\u5982\u4f55\u8fdb\u884c\u8bcd\u5411\u91cf\u5d4c\u5165":52,"\u8be5\u793a\u4f8b\u7684\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e\u6587\u4ef6":52,"\u8be5\u7b97\u6cd5\u6bcf\u6279\u91cf":18,"\u8be5\u7c7b\u7684\u5b9e\u73b0\u7ec6\u8282\u5728":30,"\u8be5\u811a\u672c\u4ec5\u4ec5\u662f\u5f00\u59cb\u4e00\u4e2apaddle\u8bad\u7ec3\u8fc7\u7a0b":52,"\u8be5\u811a\u672c\u4f1a\u751f\u6210\u4e00\u4e2adot\u6587\u4ef6":48,"\u8be5\u811a\u672c\u5c06\u8f93\u51fa\u9884\u6d4b\u5206\u7c7b\u7684\u6807\u7b7e":47,"\u8be5\u8bed\u53e5\u4f1a\u4e3a\u6bcf\u4e2a\u5c42\u521d\u59cb\u5316\u5176\u6240\u9700\u8981\u7684\u53d8\u91cf\u548c\u8fde\u63a5":30,"\u8be5layer\u5c06\u591a\u4e2a\u8f93\u5165":39,"\u8be5python\u4ee3\u7801\u53ef\u4ee5\u751f\u6210protobuf\u5305":39,"\u8be6\u7ec6\u4ecb\u7ecd\u53ef\u4ee5\u53c2\u8003":25,"\u8be6\u7ec6\u4fe1\u606f\u8bf7\u68c0\u67e5":34,"\u8be6\u7ec6\u5185\u5bb9\u8bf7\u53c2\u89c1":50,"\u8be6\u7ec6\u53ef\u4ee5\u53c2\u8003":39,"\u8be6\u7ec6\u5730\u5c55\u793a\u4e86\u6574\u4e2a\u7279\u5f81\u63d0\u53d6\u7684\u8fc7\u7a0b":48,"\u8be6\u7ec6\u6587\u6863\u53c2\u8003":17,"\u8be6\u7ec6\u7684\u53c2\u6570\u89e3\u91ca":50,"\u8be6\u7ec6\u7684cmake\u4f7f\u7528\u65b9\u6cd5\u53ef\u4ee5\u53c2\u8003":19,"\u8be6\u7ec6\u89c1":24,"\u8bed\u4e49\u89d2\u8272\u6807\u6ce8":[49,53],"\u8bed\u8a00\u6a21\u578b":46,"\u8bf4\u660e":19,"\u8bf4\u660e\u6bcf\u4e2a\u7279\u5f81\u6587\u4ef6\u5177\u4f53\u5b57\u6bb5\u662f":52,"\u8bf4\u660e\u8fd9\u4e2a\u5c42\u7684\u8f93\u5165":30,"\u8bf7\u4e0d\u8981\u6df7\u6dc6":39,"\u8bf7\u4f7f\u7528":29,"\u8bf7\u53c2\u7167\u7f51\u7edc\u914d\u7f6e\u7684\u6587\u6863\u4e86\u89e3\u66f4\u8be6\u7ec6\u7684\u4fe1\u606f":38,"\u8bf7\u53c2\u8003":[3,17,20,25,28,30,39,50],"\u8bf7\u53c2\u8003\u5982\u4e0b\u8868\u683c":50,"\u8bf7\u53c2\u8003\u9875\u9762":52,"\u8bf7\u53c2\u8003layer\u6587\u6863":47,"\u8bf7\u53c2\u9605":28,"\u8bf7\u53c2\u9605\u60c5\u611f\u5206\u6790\u7684\u6f14\u793a\u4ee5\u4e86\u89e3\u6709\u5173\u957f\u671f\u77ed\u671f\u8bb0\u5fc6\u5355\u5143\u7684\u66f4\u591a\u4fe1\u606f":53,"\u8bf7\u5b89\u88c5cuda":22,"\u8bf7\u6307\u5b9a\u8be5\u76ee\u5f55":36,"\u8bf7\u67e5\u770b":46,"\u8bf7\u6c42\u53ef\u80fd\u4f1a\u5931\u6548":29,"\u8bf7\u6c42\u65f6":29,"\u8bf7\u6ce8\u610f":[28,41,46],"\u8bf7\u770b\u4e0b\u9762\u7684\u4f8b\u5b50":38,"\u8bf7\u786e\u4fdd":29,"\u8bf7\u8bb0\u4f4f":34,"\u8bf7\u9009\u62e9\u6b63\u786e\u7684\u7248\u672c":17,"\u8bf8\u5982\u56fe\u50cf\u5206\u7c7b":38,"\u8bfb\u53d612\u4e2a\u91c7\u6837\u6570\u636e\u8fdb\u884c\u968f\u673a\u68af\u5ea6\u8ba1\u7b97\u6765\u66f4\u65b0\u66f4\u65b0":18,"\u8bfb\u53d6\u6570\u636e":3,"\u8bfb\u53d6\u6bcf\u4e00\u884c":3,"\u8bfb\u53d6volume\u4e2d\u7684\u6570\u636e\u8fdb\u884c\u8fd9\u6b21\u5206\u5e03\u5f0f\u8bad\u7ec3":42,"\u8bfb\u8005\u53ef\u4ee5\u67e5\u770b":42,"\u8bfb\u8005\u9700\u8981\u66ff\u6362\u6210\u81ea\u5df1\u4f7f\u7528\u7684\u4ed3\u5e93\u5730\u5740":42,"\u8c03\u7528":[30,47],"\u8c03\u7528\u4e00\u6b21":3,"\u8c03\u7528\u4e0a\u9762\u7684process\u51fd\u6570\u83b7\u5f97\u89c2\u6d4b\u6570\u636e":18,"\u8c03\u7528\u7684pydataprovider2\u662f":3,"\u8c03\u7528\u7b2c\u4e8c\u6b21\u7684\u65f6\u5019":3,"\u8c03\u7528\u8be5\u51fd\u6570\u540e":30,"\u8c03\u7528\u8fd9\u4e2apydataprovider2\u7684\u65b9\u6cd5":3,"\u8c13\u8bcd\u4e0a\u4e0b\u6587":53,"\u8d1f\u6837\u672c":50,"\u8d1f\u9762\u7684\u8bc4\u8bba\u7684\u5f97\u5206\u5c0f\u4e8e\u7b49\u4e8e4":54,"\u8d1f\u9762\u8bc4\u4ef7\u6837\u672c":54,"\u8d44\u6e90\u5bf9\u8c61\u7684\u540d\u5b57\u662f\u552f\u4e00\u7684":40,"\u8d77":25,"\u8def\u5f84\u4e0b":[18,48],"\u8df3\u8f6c\u5230":29,"\u8f6c\u4e3ajpeg\u6587\u4ef6\u5e76\u5b58\u5165\u7279\u5b9a\u7684\u76ee\u5f55":47,"\u8f6c\u5230":29,"\u8f6c\u6362\u8fc7\u6765\u7684":48,"\u8f6e":52,"\u8f83":25,"\u8f93\u5165":[24,28],"\u8f93\u5165\u5168\u662f\u5176\u4ed6layer\u7684\u8f93\u51fa":39,"\u8f93\u5165\u548c\u8f93\u51fa\u90fd\u662f\u5355\u5c42\u5e8f\u5217":27,"\u8f93\u5165\u548c\u8f93\u51fa\u90fd\u662f\u53cc\u5c42\u5e8f\u5217":27,"\u8f93\u5165\u56fe\u7247\u7684\u9ad8\u5ea6\u53ca\u5bbd\u5ea6":47,"\u8f93\u5165\u5c42\u5c3a\u5bf8":48,"\u8f93\u5165\u6570\u636e\u4e3a\u4e00\u4e2a\u5b8c\u6574\u7684\u65f6\u95f4\u5e8f\u5217":25,"\u8f93\u5165\u6570\u636e\u4e3a\u5728\u5355\u5c42rnn\u6570\u636e\u91cc\u9762":25,"\u8f93\u5165\u6570\u636e\u6574\u4f53\u4e0a\u662f\u4e00\u4e2a\u65f6\u95f4\u5e8f\u5217":25,"\u8f93\u5165\u6570\u636e\u7684\u5b57\u5178\u7ef4\u6570\u662f1\u767e\u4e07":38,"\u8f93\u5165\u6570\u6910\u6240\u5728\u76ee\u5f55":54,"\u8f93\u5165\u6587\u672c":46,"\u8f93\u5165\u6587\u672c\u4e2d\u6ca1\u6709\u5934\u90e8":46,"\u8f93\u5165\u662f\u5426\u662f\u8f6c\u7f6e\u7684":30,"\u8f93\u5165\u662f\u7531\u4e00\u4e2alist\u4e2d\u7684\u7f51\u7edc\u5c42\u5b9e\u4f8b\u7684\u540d\u5b57\u7ec4\u6210\u7684":30,"\u8f93\u5165\u7279\u5f81\u56fe\u7684\u901a\u9053\u6570\u76ee":48,"\u8f93\u5165\u7684":46,"\u8f93\u5165\u7684\u539f\u59cb\u6570\u636e\u96c6\u8def\u5f84":55,"\u8f93\u5165\u7684\u540d\u5b57":30,"\u8f93\u5165\u7684\u5927\u5c0f":30,"\u8f93\u5165\u7684\u6587\u672c\u683c\u5f0f\u5982\u4e0b":46,"\u8f93\u5165\u7684\u6587\u672c\u8bcd\u5411\u91cf\u6a21\u578b\u540d\u79f0":46,"\u8f93\u5165\u7684\u7c7b\u578b":30,"\u8f93\u5165\u95e8":54,"\u8f93\u5165\u9884\u6d4b\u6837\u672c":54,"\u8f93\u5165n\u4e2a\u5355\u8bcd":50,"\u8f93\u51fa":[24,28],"\u8f93\u51fa\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":27,"\u8f93\u51fa\u4e00\u4e2a\u53cc\u5c42\u5e8f\u5217":27,"\u8f93\u51fa\u4e3an\u4e2aword_dim\u7ef4\u5ea6\u5411\u91cf":50,"\u8f93\u51fa\u51fd\u6570":28,"\u8f93\u51fa\u5e8f\u5217\u7684\u7c7b\u578b":24,"\u8f93\u51fa\u5e8f\u5217\u7684\u8bcd\u8bed\u6570\u548c\u8f93\u5165\u5e8f\u5217\u4e00\u81f4":27,"\u8f93\u51fa\u5e94\u8be5\u7c7b\u4f3c\u5982\u4e0b":52,"\u8f93\u51fa\u6587\u4ef6\u7684\u683c\u5f0f\u8bf4\u660e":46,"\u8f93\u51fa\u65e5\u5fd7\u4fdd\u5b58\u5728\u8def\u5f84":54,"\u8f93\u51fa\u65e5\u5fd7\u8bf4\u660e\u5982\u4e0b":54,"\u8f93\u51fa\u67092\u5217":46,"\u8f93\u51fa\u7279\u5f81\u56fe\u7684\u901a\u9053\u6570\u76ee":48,"\u8f93\u51fa\u7684\u4e8c\u8fdb\u5236\u8bcd\u5411\u91cf\u6a21\u578b\u540d\u79f0":46,"\u8f93\u51fa\u7684\u6587\u672c\u6a21\u578b\u540d\u79f0":46,"\u8f93\u51fa\u7684\u68af\u5ea6":36,"\u8f93\u51fa\u76ee\u5f55":48,"\u8f93\u51fa\u7ed3\u679c\u53ef\u80fd\u4f1a\u968f\u7740\u5bb9\u5668\u7684\u6d88\u8017\u800c\u88ab\u5220\u9664":41,"\u8fc7\u4e86\u4e00\u4e2a\u5f88\u7b80\u5355\u7684recurrent_group":25,"\u8fc7\u5b8c\u6240\u6709\u8bad\u7ec3\u6570\u636e\u5373\u4e3a\u4e00\u4e2apass":17,"\u8fd0\u884c":[20,22],"\u8fd0\u884c\u4e0b\u9762\u547d\u4ee4\u5373\u53ef":52,"\u8fd0\u884c\u4ee5\u4e0b\u547d\u4ee4\u6765\u4e0b\u8f7d\u8fd9\u4e2a\u811a\u672c":55,"\u8fd0\u884c\u4ee5\u4e0b\u7684\u547d\u4ee4\u4e0b\u8f7d\u548c\u83b7\u53d6\u6211\u4eec\u7684\u5b57\u5178\u548c\u9884\u8bad\u7ec3\u6a21\u578b":46,"\u8fd0\u884c\u4ee5\u4e0b\u7684\u547d\u4ee4\u4e0b\u8f7d\u6570\u636e\u96c6":46,"\u8fd0\u884c\u4ee5\u4e0b\u8bad\u7ec3\u547d\u4ee4":18,"\u8fd0\u884c\u5206\u5e03\u5f0f\u4f5c\u4e1a":34,"\u8fd0\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3":[17,32,50],"\u8fd0\u884c\u5931\u8d25":38,"\u8fd0\u884c\u5b8c\u4ee5\u4e0a\u547d\u4ee4":46,"\u8fd0\u884c\u5b8c\u6210\u540e":34,"\u8fd0\u884c\u5b8c\u811a\u672c":54,"\u8fd0\u884c\u6210\u529f\u4ee5\u540e":46,"\u8fd0\u884c\u6210\u529f\u540e\u76ee\u5f55":54,"\u8fd0\u884c\u65e5\u5fd7":34,"\u8fd0\u884c\u7684\u4e00\u4e9b\u53c2\u6570\u901a\u8fc7\u8fd9\u79cd\u65b9\u5f0f\u4f20\u9012\u5230\u5bb9\u5668\u5185":42,"\u8fd0\u884c\u8fd9\u4e2acontain":20,"\u8fd1":25,"\u8fd1\u671f\u63d0\u51fa\u7684nmt\u6a21\u578b\u901a\u5e38\u90fd\u5c5e\u4e8e\u7f16\u89e3\u7801\u6a21\u578b":55,"\u8fd4\u56de":[8,9,10,11,14],"\u8fd4\u56de0":3,"\u8fd4\u56de8\u4e2a\u7279\u5f81list\u548c1\u4e2a\u6807\u7b7elist":53,"\u8fd4\u56de\u4e00\u6761\u5b8c\u6574\u7684\u6837\u672c":3,"\u8fd4\u56de\u6570\u636e\u7684\u6bcf\u4e00\u6761\u6837\u672c\u7ed9":52,"\u8fd4\u56de\u65f6":3,"\u8fd4\u56de\u7684\u662f":3,"\u8fd4\u56de\u7684\u987a\u5e8f\u9700\u8981\u548cinput_types\u4e2d\u5b9a\u4e49\u7684\u987a\u5e8f\u4e00\u81f4":3,"\u8fd4\u56de\u7b2ci\u4e2a\u8f93\u5165\u77e9\u9635":30,"\u8fd4\u56de\u7c7b\u578b":[8,9,10,11,14],"\u8fd8\u4f1a":25,"\u8fd8\u662f":25,"\u8fd8\u6709":25,"\u8fd8\u80fd\u5904\u7406\u5176\u4ed6\u7528\u6237\u81ea\u5b9a\u4e49\u7684\u6570\u636e":54,"\u8fd8\u91c7\u7528\u4e86\u4e24\u4e2a\u5176\u4ed6\u7279\u5f81":53,"\u8fd8\u9700\u8981\u8bbe\u7f6e\u4e0b\u9762\u4e24\u4e2a\u53c2\u6570":39,"\u8fd8\u9700\u8981\u8fdb\u884c\u9884\u5904\u7406":47,"\u8fd9":[17,25,50],"\u8fd9\u4e00\u5757\u7684\u8017\u65f6\u6bd4\u4f8b\u771f\u7684\u592a\u9ad8":33,"\u8fd9\u4e00\u8fc7\u7a0b\u5bf9\u7528\u6237\u662f\u5b8c\u5168\u900f\u660e\u7684":27,"\u8fd9\u4e09\u4e2a\u53d8\u91cf\u7ec4\u5408\u5c31\u53ef\u4ee5\u627e\u5230\u672c\u6b21\u8bad\u7ec3\u9700\u8981\u7684\u6587\u4ef6\u8def\u5f84":42,"\u8fd9\u4e09\u4e2a\u6b65\u9aa4\u53ef\u914d\u7f6e\u4e3a":50,"\u8fd9\u4e0e\u672c\u5730\u8bad\u7ec3\u76f8\u540c":34,"\u8fd9\u4e24\u4e2a\u6587\u4ef6\u5939\u4e0b\u5404\u81ea\u670910\u4e2a\u5b50\u6587\u4ef6\u5939":47,"\u8fd9\u4e24\u4e2a\u6807\u51c6":53,"\u8fd9\u4e24\u4e2a\u9700\u8981\u4e0e":39,"\u8fd9\u4e2a":[25,40],"\u8fd9\u4e2a\u4efb\u52a1\u7684\u914d\u7f6e\u4e3a":17,"\u8fd9\u4e2a\u4efb\u52a1\u7684dataprovider\u4e3a":17,"\u8fd9\u4e2a\u51fd\u6570\u7684":28,"\u8fd9\u4e2a\u51fd\u6570\u8fdb\u884c\u53d8\u6362":25,"\u8fd9\u4e2a\u51fd\u6570\u9700\u8981\u8bbe\u7f6e":28,"\u8fd9\u4e2a\u5305\u91cc\u9762\u5305\u542b\u4e86\u6a21\u578b\u914d\u7f6e\u9700\u8981\u7684\u5404\u4e2a\u6a21\u5757":39,"\u8fd9\u4e2a\u5411\u91cf\u4e0e\u6e90\u4e2d\u641c\u7d22\u51fa\u7684\u4f4d\u7f6e\u548c\u6240\u6709\u4e4b\u524d\u751f\u6210\u7684\u76ee\u6807\u5355\u8bcd\u6709\u5173":55,"\u8fd9\u4e2a\u5730\u5740\u5219\u4e3a\u5b83\u7684\u7edd\u5bf9\u8def\u5f84\u6216\u76f8\u5bf9\u8def\u5f84":2,"\u8fd9\u4e2a\u5730\u5740\u6765\u8868\u793a\u6b64\u6b65\u9aa4\u6240\u6784\u5efa\u51fa\u7684\u955c\u50cf":42,"\u8fd9\u4e2a\u57fa\u7c7b":30,"\u8fd9\u4e2a\u5b57\u5178\u662f\u6574\u6570\u6807\u7b7e\u548c\u5b57\u7b26\u4e32\u6807\u7b7e\u7684\u4e00\u4e2a\u5bf9\u5e94":54,"\u8fd9\u4e2a\u5e8f\u5217\u7684\u6bcf\u4e2a\u5143\u7d20\u53c8\u662f\u4e00\u4e2a\u5e8f\u5217":27,"\u8fd9\u4e2a\u6570\u636e\u4e5f\u88ab\u5355\u5c42rnn\u7f51\u7edc\u76f4\u63a5\u4f7f\u7528":25,"\u8fd9\u4e2a\u6570\u636e\u5217\u8868\u6587\u4ef6\u4e2d\u5305\u542b\u7684\u662f\u6bcf\u4e00\u4e2a\u8bad\u7ec3\u6216\u8005\u6d4b\u8bd5\u6587\u4ef6\u7684\u8def\u5f84":39,"\u8fd9\u4e2a\u6570\u91cf\u79f0\u4e3abeam":55,"\u8fd9\u4e2a\u663e\u793a\u5668\u5f88\u68d2":50,"\u8fd9\u4e2a\u6a21\u578b\u5bf9\u4e8e\u7f16\u89e3\u7801\u6a21\u578b\u6765\u8bf4":55,"\u8fd9\u4e2a\u795e\u7ecf\u7f51\u7edc\u5355\u5143\u5c31\u53ebmemori":25,"\u8fd9\u4e2a\u7c7b\u7684\u53c2\u6570\u5305\u62ec":30,"\u8fd9\u4e2a\u7c7b\u9700\u8981\u7ee7\u627f":30,"\u8fd9\u4e2a\u7cfb\u7edf\u5c06srl\u4efb\u52a1\u89c6\u4e3a\u5e8f\u5217\u6807\u6ce8\u95ee\u9898":53,"\u8fd9\u4e2a\u8282\u70b9\u53ef\u4ee5\u662f\u7269\u7406\u673a\u6216\u8005\u865a\u62df\u673a":40,"\u8fd9\u4e2a\u8868\u683c":40,"\u8fd9\u4e2a\u8fc7\u7a0b\u5bf9\u7528\u6237\u4e5f\u662f\u900f\u660e\u7684":27,"\u8fd9\u4e2a\u8fc7\u7a0b\u5c31\u662f\u6a21\u578b\u7684\u8bad\u7ec3\u8fc7\u7a0b":18,"\u8fd9\u4e2a\u914d\u7f6e\u4e0e":46,"\u8fd9\u4e2a\u914d\u7f6e\u6587\u4ef6":40,"\u8fd9\u4e2a\u914d\u7f6e\u6587\u4ef6\u7f51\u7edc\u7531":39,"\u8fd9\u4e2a\u914d\u7f6e\u662f\u5426\u7528\u6765\u751f\u6210":55,"\u8fd9\u4e2a\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u751f\u6210\u4e00\u7cfb\u5217\u6743\u91cd":28,"\u8fd9\u4e2a\u95ee\u9898\u662fpydataprovider\u8bfb\u6570\u636e\u65f6\u5019\u7684\u903b\u8f91\u95ee\u9898":3,"\u8fd9\u4e2adataprovider\u8f83\u590d\u6742":3,"\u8fd9\u4e2ajob\u624d\u7b97\u6210\u529f\u7ed3\u675f":42,"\u8fd9\u4e2alayer\u7684\u8f93\u51fa\u4f1a\u4f5c\u4e3a\u6574\u4e2a":27,"\u8fd9\u4e5f\u4f1a\u6781\u5927\u51cf\u5c11\u6570\u636e\u8bfb\u5165\u7684\u8017\u65f6":17,"\u8fd9\u4e9b":34,"\u8fd9\u4e9b\u53c2\u6570\u7684\u5177\u4f53\u63cf\u8ff0":42,"\u8fd9\u4e9b\u53c2\u6570\u7684\u7b80\u77ed\u4ecb\u7ecd\u5982\u4e0b":52,"\u8fd9\u4e9b\u540d\u5b57\u5fc5\u987b\u8981\u5199\u5bf9":30,"\u8fd9\u4e9b\u6570\u636e\u4f1a\u88ab\u7528\u6765\u66f4\u65b0\u53c2\u6570":17,"\u8fd9\u4e9b\u6570\u636e\u4f7f\u7528\u7684\u5185\u5b58\u4e3b\u8981\u548c\u4e24\u4e2a\u53c2\u6570\u6709\u5173\u7cfb":17,"\u8fd9\u4e9b\u6587\u4ef6\u5c06\u4f1a\u88ab\u4fdd\u5b58\u5728":48,"\u8fd9\u4e9b\u6a21\u578b\u90fd\u662f\u7531\u539f\u4f5c\u8005\u63d0\u4f9b\u7684\u6a21\u578b":48,"\u8fd9\u4e9b\u7279\u5f81\u503c\u4e0e\u4e0a\u8ff0\u4f7f\u7528c":48,"\u8fd9\u4e9b\u7279\u5f81\u548c\u6807\u7b7e\u5b58\u50a8\u5728":53,"\u8fd9\u4e9b\u7279\u5f81\u6570\u636e\u4e4b\u95f4\u7684\u987a\u5e8f\u662f\u6709\u610f\u4e49\u7684":25,"\u8fd9\u4efd\u6559\u7a0b\u5c55\u793a\u4e86\u5982\u4f55\u5728paddlepaddle\u4e2d\u5b9e\u73b0\u4e00\u4e2a\u81ea\u5b9a\u4e49\u7684\u7f51\u7edc\u5c42":30,"\u8fd9\u4efd\u7b80\u77ed\u7684\u4ecb\u7ecd\u5c06\u5411\u4f60\u5c55\u793a\u5982\u4f55\u5229\u7528paddlepaddle\u6765\u89e3\u51b3\u4e00\u4e2a\u7ecf\u5178\u7684\u7ebf\u6027\u56de\u5f52\u95ee\u9898":18,"\u8fd9\u4f1a\u81ea\u52a8\u8fdb\u884c\u7f51\u7edc\u914d\u7f6e\u4e2d\u58f0\u660e\u7684\u6fc0\u6d3b\u64cd\u4f5c":30,"\u8fd9\u4f7f\u5f97nmt\u6a21\u578b\u5f97\u4ee5\u89e3\u653e\u51fa\u6765":55,"\u8fd9\u4fbf\u662f\u4e00\u79cd\u53cc\u5c42rnn\u7684\u8f93\u5165\u6570\u636e":25,"\u8fd9\u51e0\u4e2a\u7f16\u8bd1\u9009\u9879\u7684\u8bbe\u7f6e":19,"\u8fd9\u548c\u5355\u5c42rnn\u7684\u914d\u7f6e\u662f\u7b49\u4ef7\u7684":25,"\u8fd9\u56db\u4e2a\u7b80\u5355\u7684\u7279\u5f81\u662f\u6211\u4eec\u7684srl\u7cfb\u7edf\u6240\u9700\u8981\u7684":53,"\u8fd9\u56db\u6761\u6570\u636e\u540c\u65f6\u5904\u7406\u7684\u53e5\u5b50\u6570\u91cf\u4e3a":25,"\u8fd9\u5728\u5f88\u5927\u7a0b\u5ea6\u4e0a\u4f18\u4e8e\u5148\u524d\u7684\u6700\u5148\u8fdb\u7684\u7cfb\u7edf":53,"\u8fd9\u5728\u6784\u9020\u975e\u5e38\u590d\u6742\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u65f6\u662f\u6709\u7528\u7684":28,"\u8fd9\u5c06\u82b1\u8d39\u6570\u5206\u949f\u7684\u65f6\u95f4":55,"\u8fd9\u5c31\u662f":39,"\u8fd9\u5df2\u7ecf\u5728":54,"\u8fd9\u610f\u5473\u7740":28,"\u8fd9\u610f\u5473\u7740\u6a21\u578b\u5728\u8bad\u7ec3\u6570\u636e\u4e0a\u4e0d\u65ad\u7684\u6539\u8fdb":18,"\u8fd9\u610f\u5473\u7740\u9664\u4e86\u6307\u5b9adevic":38,"\u8fd9\u662f\u4e00\u4e2a\u57fa\u4e8e\u7edf\u8ba1\u7684\u673a\u5668\u7ffb\u8bd1\u7cfb\u7edf":54,"\u8fd9\u662f\u4e00\u79cd\u975e\u5e38\u7075\u6d3b\u7684\u6570\u636e\u7ec4\u7ec7\u65b9\u5f0f":24,"\u8fd9\u662f\u56e0\u4e3a\u5b83\u53d1\u6398\u51fa\u4e86\u56fe\u7247\u7684\u4e24\u7c7b\u91cd\u8981\u4fe1\u606f":47,"\u8fd9\u662f\u666e\u901a\u7684\u5355\u5c42\u65f6\u95f4\u5e8f\u5217\u7684dataprovider\u4ee3\u7801":25,"\u8fd9\u662f\u76ee\u524dcmake\u5bfb\u627epython\u7684\u903b\u8f91\u5b58\u5728\u7f3a\u9677":17,"\u8fd9\u662f\u96c6\u675f\u641c\u7d22\u7684\u7ed3\u679c":55,"\u8fd9\u6765\u81ea\u4e8epaddlepaddle\u7684\u5185\u5b58\u4e2d":55,"\u8fd9\u6837":[18,34],"\u8fd9\u6837\u505a\u53ef\u4ee5\u6781\u5927\u7684\u51cf\u5c11\u5185\u5b58\u5360\u7528":17,"\u8fd9\u6837\u5355\u4e2a\u5b50\u7ebf\u7a0b\u7684\u957f\u5ea6\u5c31\u4e0d\u4f1a\u6ea2\u51fa\u4e86":39,"\u8fd9\u6837\u53ef\u4ee5\u51cf\u5c0fgpu\u5185\u5b58":38,"\u8fd9\u6837\u5bb9\u5668\u7684":42,"\u8fd9\u6837\u5c31\u4f1a\u751f\u6210\u4e24\u4e2a\u6587\u4ef6":52,"\u8fd9\u6837\u7684\u88c5\u9970\u5668":30,"\u8fd9\u6837\u7684\u8bdd":41,"\u8fd9\u6837\u7684\u8bdd\u6bcf\u4f4d\u7528\u6237\u5728\u6d4b\u8bd5\u6587\u4ef6\u4e2d\u5c06\u4e0e\u8bad\u7ec3\u6587\u4ef6\u542b\u6709\u540c\u6837\u7684\u4fe1\u606f":52,"\u8fd9\u6b63\u662f\u5b83\u4eec\u901f\u5ea6\u5feb\u7684\u539f\u56e0":33,"\u8fd9\u6bb5\u7b80\u77ed\u7684\u914d\u7f6e\u5c55\u793a\u4e86paddlepaddle\u7684\u57fa\u672c\u7528\u6cd5":18,"\u8fd9\u7528\u4e8e\u5728\u591a\u7ebf\u7a0b\u548c\u591a\u673a\u4e0a\u66f4\u65b0\u53c2\u6570":30,"\u8fd9\u79cd\u521d\u59cb\u5316\u65b9\u5f0f\u5728\u4e00\u822c\u60c5\u51b5\u4e0b\u4e0d\u4f1a\u4ea7\u751f\u5f88\u5dee\u7684\u7ed3\u679c":17,"\u8fd9\u79cd\u60c5\u51b5\u4e0b\u4e0d\u9700\u8981\u91cd\u5199\u8be5\u51fd\u6570":30,"\u8fd9\u79cd\u65b9\u5f0f\u5fc5\u987b\u4f7f\u7528paddle\u5b58\u50a8\u7684\u6a21\u578b\u8def\u5f84\u683c\u5f0f":38,"\u8fd9\u79cd\u751f\u6210\u6280\u672f\u53ea\u7528\u4e8e\u7c7b\u4f3c\u89e3\u7801\u5668\u7684\u751f\u6210\u8fc7\u7a0b":28,"\u8fd9\u79cd\u7c7b\u578b\u7684\u8f93\u5165\u5fc5\u987b\u901a\u8fc7":27,"\u8fd9\u79cd\u96c6\u7fa4\u8282\u70b9\u7ba1\u7406\u65b9\u5f0f\u4f1a\u5728\u5c06\u6765\u4f7f\u7528":42,"\u8fd9\u7bc7\u6587\u7ae0":55,"\u8fd9\u7ec4\u8bed\u4e49\u76f8\u540c\u7684\u793a\u4f8b\u914d\u7f6e\u5982\u4e0b":25,"\u8fd9\u901a\u8fc7\u83b7\u5f97\u53cd\u5411\u5faa\u73af\u7f51\u7edc\u7684\u7b2c\u4e00\u4e2a\u5b9e\u4f8b":28,"\u8fd9\u91cc":[17,28,39,40,42,48,53],"\u8fd9\u91cc\u4e5f\u53ef\u53eb\u5206\u7c7b\u5c42":39,"\u8fd9\u91cc\u4ee5":50,"\u8fd9\u91cc\u4f7f\u7528\u4e00\u4e2a\u57fa\u4e8emomentum\u7684\u968f\u673a\u68af\u5ea6\u4e0b\u964d":18,"\u8fd9\u91cc\u4f7f\u7528\u4e86\u4e09\u79cd\u7f51\u7edc\u5355\u5143":18,"\u8fd9\u91cc\u4f7f\u7528\u4e86paddlepaddle\u7684python\u63a5\u53e3\u6765\u52a0\u8f7d\u6570\u6910":54,"\u8fd9\u91cc\u4f7f\u7528\u4e86paddlepaddle\u9884\u5b9a\u4e49\u597d\u7684rnn\u5904\u7406\u51fd\u6570":25,"\u8fd9\u91cc\u4f7f\u7528\u7b80\u5355\u7684":17,"\u8fd9\u91cc\u5229\u7528\u5b83\u5efa\u6a21\u53d8\u91cf\u4e4b\u95f4\u7684\u7ebf\u6027\u5173\u7cfb":18,"\u8fd9\u91cc\u53ea\u52a0\u8f7d":55,"\u8fd9\u91cc\u53ea\u7b80\u5355\u4ecb\u7ecd\u4e86\u5355\u673a\u8bad\u7ec3":50,"\u8fd9\u91cc\u5bf9":39,"\u8fd9\u91cc\u5c55\u793a\u5982\u4f55\u4f7f\u7528\u89c2\u6d4b\u6570\u636e\u6765\u62df\u5408\u8fd9\u4e00\u7ebf\u6027\u5173\u7cfb":18,"\u8fd9\u91cc\u6211\u4eec\u4f7f\u7528":52,"\u8fd9\u91cc\u6211\u4eec\u4f7f\u7528\u7684\u662f\u4e00\u4e2a\u5c0f\u7684vgg\u7f51\u7edc":47,"\u8fd9\u91cc\u6211\u4eec\u4f7f\u7528\u7684\u662fgpu\u6a21\u5f0f\u8fdb\u884c\u8bad\u7ec3":47,"\u8fd9\u91cc\u6211\u4eec\u5728movielens\u6570\u636e\u96c6\u63cf\u8ff0\u4e00\u79cd":52,"\u8fd9\u91cc\u6211\u4eec\u5c55\u793a\u4e00\u4efd\u7b80\u5316\u8fc7\u7684\u4ee3\u7801":30,"\u8fd9\u91cc\u6307\u5b9a\u8bcd\u5178":50,"\u8fd9\u91cc\u6570\u636e\u5c42\u6709\u4e24\u4e2a":18,"\u8fd9\u91cc\u662f\u4e00\u4e2a\u4f8b\u5b50":55,"\u8fd9\u91cc\u6709\u4e00\u4e9b\u4e0d\u540c\u7684\u53c2\u6570\u9700\u8981\u6307\u5b9a":55,"\u8fd9\u91cc\u68c0\u9a8c\u8fd0\u884c\u65f6\u95f4\u6a21\u578b\u7684\u6536\u655b":34,"\u8fd9\u91cc\u6bcf\u4e2a5\u4e2abatch\u6253\u5370\u4e00\u4e2a\u70b9":55,"\u8fd9\u91cc\u6bcf\u9694100\u4e2abatch\u663e\u793a\u4e00\u6b21\u53c2\u6570\u7edf\u8ba1\u4fe1\u606f":55,"\u8fd9\u91cc\u6bcf\u969410\u4e2abatch\u6253\u5370\u4e00\u6b21\u65e5\u5fd7":55,"\u8fd9\u91cc\u7684\u5217\u51fa\u7684\u548c":47,"\u8fd9\u91cc\u76f4\u63a5\u901a\u8fc7\u9884\u6d4b\u811a\u672c":50,"\u8fd9\u91cc\u7b80\u5355\u4ecb\u7ecdlayer":39,"\u8fd9\u91cc\u7ed9\u51fa\u96c6\u4e2d\u5e38\u89c1\u7684\u90e8\u7f72\u65b9\u6cd5":40,"\u8fd9\u91cc\u8bbe\u7f6e\u4e3a\u4f7f\u7528cpu":55,"\u8fd9\u91cc\u8bbe\u7f6e\u4e3afals":55,"\u8fd9\u91cc\u8bbe\u7f6e\u4e3atrue":55,"\u8fd9\u91cc\u91c7\u7528adam\u4f18\u5316\u65b9\u6cd5":50,"\u8fdb\u5165":54,"\u8fdb\u5165\u5bb9\u5668":41,"\u8fdb\u5165docker":20,"\u8fdb\u7a0b":39,"\u8fdb\u7a0b\u4e2d\u53ef\u4ee5\u542f\u52a8\u591a\u4e2a\u5b50\u7ebf\u7a0b\u53bb\u63a5\u53d7":39,"\u8fdb\u7a0b\u4e4b\u540e":39,"\u8fdb\u7a0b\u5171\u7ed1\u5b9a\u591a\u5c11\u4e2a\u7aef\u53e3\u7528\u6765\u505a\u7a20\u5bc6\u66f4\u65b0":39,"\u8fdb\u7a0b\u542f\u52a8\u7684\u5fc5\u8981\u53c2\u6570":42,"\u8fdb\u7a0b\u7684":34,"\u8fdb\u7a0b\u7684\u542f\u52a8\u53c2\u6570":42,"\u8fdb\u7a0b\u7684\u8fd0\u884c\u73af\u5883":42,"\u8fdb\u7a0b\u7aef\u53e3\u662f":39,"\u8fdb\u7a0b\u9700\u8981\u7684":42,"\u8fdb\u884c\u4e86":25,"\u8fdb\u884c\u4f7f\u7528":47,"\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3\u7684\u65b9\u6848":42,"\u8fdb\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3\u7684\u65b9\u6cd5":42,"\u8fdb\u884c\u540c\u6b65":39,"\u8fdb\u884c\u5f00\u53d1":29,"\u8fdb\u884c\u62c6\u89e3":25,"\u8fdb\u884c\u6fc0\u6d3b\u64cd\u4f5c":30,"\u8fdb\u884c\u8bfb\u5165\u548c\u9884\u5904\u7406\u4ece\u800c\u5f97\u5230\u771f\u5b9e\u8f93\u5165":18,"\u8fdb\u884c\u9884\u6d4b":50,"\u8fdb\u9636\u6307\u5357":45,"\u8fdc\u7a0b\u8bbf\u95ee":20,"\u8fde\u63a5":27,"\u8fde\u63a5\u4e09\u4e2alstm\u9690\u85cf\u5c42":54,"\u9000\u4f11\u4eba\u5458":51,"\u9000\u51fa\u5bb9\u5668":41,"\u9002\u4e2d":25,"\u9009":25,"\u9009\u62e9":25,"\u9009\u62e9\u4f60\u7684\u5f00\u53d1\u5206\u652f\u5e76\u5355\u51fb":29,"\u9009\u62e9\u5b58\u50a8\u65b9\u6848":32,"\u9009\u62e9\u666e\u901acpu\u7248\u672c\u7684devel\u7248\u672c\u7684imag":20,"\u9009\u62e9\u6d4b\u8bd5\u7ed3\u679c\u6700\u597d\u7684\u6a21\u578b\u6765\u9884\u6d4b":50,"\u9009\u62e9\u8def\u5f84\u6765\u52a8\u6001\u52a0\u8f7dnvidia":36,"\u9009\u62e9\u8fc7\u540e\u7684":55,"\u9009\u62e9\u9002\u5408\u60a8\u7684\u573a\u666f\u7684\u5408\u9002\u65b9\u6848":40,"\u9009\u81ea\u4e0b\u5217\u7c7b\u578b":51,"\u9009\u9879":[19,46],"\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":35,"\u901a\u5e38":[34,54],"\u901a\u5e38\u4f1a\u4f7f\u7528\u73af\u5883\u53d8\u91cf\u914d\u7f6ejob\u7684\u914d\u7f6e\u4fe1\u606f":42,"\u901a\u5e38\u4f7f\u7528\u7a00\u758f\u8bad\u7ec3\u6765\u52a0\u901f\u8ba1\u7b97\u8fc7\u7a0b":38,"\u901a\u5e38\u505a\u6cd5\u662f\u4ece\u4e00\u4e2a\u6bd4\u8f83\u5927\u7684learning_rate\u5f00\u59cb\u8bd5":17,"\u901a\u5e38\u5728\u9ad8\u7ea7\u60c5\u51b5\u4e0b":39,"\u901a\u5e38\u60c5\u51b5\u4e0b":33,"\u901a\u5e38\u6211\u4eec\u4f1a\u5b89\u88c5ceph\u7b49\u5206\u5e03\u5f0f\u6587\u4ef6\u7cfb\u7edf\u6765\u5b58\u50a8\u8bad\u7ec3\u6570\u636e":41,"\u901a\u5e38\u662f\u4e00\u4e2apython\u51fd\u6570":39,"\u901a\u5e38\u6bcf\u4e2a\u914d\u7f6e\u6587\u4ef6\u90fd\u4f1a\u5305\u62ec":39,"\u901a\u5e38\u6bcf\u4e2ajob\u5305\u62ec\u4e00\u4e2a\u6216\u8005\u591a\u4e2apod":40,"\u901a\u5e38\u7684\u505a\u6cd5\u662f\u4f7f\u7528":28,"\u901a\u5e38\u7684\u505a\u6cd5\u662f\u5c06\u914d\u7f6e\u5b58\u4e8e":30,"\u901a\u5e38\u8981\u6c42\u65f6\u95f4\u6b65\u4e4b\u95f4\u5177\u6709\u4e00\u4e9b\u4f9d\u8d56\u6027":25,"\u901a\u5e38\u90fd\u4f1a\u4f7f\u7528\u4e0b\u9762\u8fd9\u4e9b\u547d\u4ee4\u884c\u53c2\u6570":38,"\u901a\u7528":35,"\u901a\u77e5":25,"\u901a\u77e5\u7cfb\u7edf\u4e00\u8f6e\u6570\u636e\u8bfb\u53d6\u7ed3\u675f":39,"\u901a\u8fc7":[17,25,30,34,39,50],"\u901a\u8fc7\u4e24\u4e2a\u5d4c\u5957\u7684":27,"\u901a\u8fc7\u4ea4\u66ff\u4f7f\u7528\u5377\u79ef\u548c\u6c60\u5316\u5904\u7406":47,"\u901a\u8fc7\u4f7f\u7528":19,"\u901a\u8fc7\u51fd\u6570":42,"\u901a\u8fc7\u5377\u79ef\u64cd\u4f5c\u4ece\u56fe\u7247\u6216\u7279\u5f81\u56fe\u4e2d\u63d0\u53d6\u7279\u5f81":47,"\u901a\u8fc7\u547d\u4ee4\u884c\u53c2\u6570":17,"\u901a\u8fc7\u5f15\u7528memory\u5f97\u5230\u8fd9\u4e2alayer\u4e0a\u4e00\u4e2a\u65f6\u523b\u7684\u8f93\u51fa":27,"\u901a\u8fc7\u5f15\u7528memory\u5f97\u5230\u8fd9\u4e2alayer\u4e0a\u4e00\u4e2a\u65f6\u523b\u8f93\u51fa":27,"\u901a\u8fc7\u6240\u6709\u5355\u5143\u6d4b\u8bd5":29,"\u901a\u8fc7\u6240\u6709\u8bad\u7ec3\u96c6\u4e00\u6b21\u79f0\u4e3a\u4e00\u904d":54,"\u901a\u8fc7\u67e5\u770b\u4e70\u5bb6\u5bf9\u67d0\u4e2a\u4ea7\u54c1\u7684\u8bc4\u4ef7\u53cd\u9988":50,"\u901a\u8fc7\u7f16\u8bd1\u4f1a\u751f\u6210py_paddle\u8f6f\u4ef6\u5305":5,"\u901a\u8fc7\u7f51\u7edc\u5c42\u7684\u6807\u8bc6\u7b26\u6765\u6307\u5b9a":30,"\u901a\u8fc7\u8c03\u7528":5,"\u901a\u8fc7\u914d\u7f6e\u7c7b\u4f3c\u4e8e":50,"\u901a\u8fc7data":27,"\u901a\u8fc7volum":40,"\u903b\u8f91\u56de\u5f52":50,"\u9053\u6b49":25,"\u9069":25,"\u9075\u5faa\u5982\u4e0b\u7684\u683c\u5f0f":51,"\u9075\u5faa\u6587\u7ae0":46,"\u90a3\u4e48":[27,30],"\u90a3\u4e480\u5c42\u5e8f\u5217\u5373\u4e3a\u4e00\u4e2a\u8bcd\u8bed":27,"\u90a3\u4e48\u53ef\u4ee5\u8ba4\u4e3a\u8bad\u7ec3\u4e0d\u6536\u655b":17,"\u90a3\u4e48\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u4e0d\u4f1a\u6267\u884c\u6d4b\u8bd5\u64cd\u4f5c":2,"\u90a3\u4e48\u5982\u4f55\u5224\u65ad\u8bad\u7ec3\u4e0d\u6536\u655b\u5462":17,"\u90a3\u4e48\u5e38\u6570\u8f93\u51fa\u6240\u80fd\u8fbe\u5230\u7684\u6700\u5c0fcost\u662f":17,"\u90a3\u4e48\u5f53check\u51fa\u6570\u636e\u4e0d\u5408\u6cd5\u65f6":3,"\u90a3\u4e48\u6211\u4eec\u53ef\u4ee5\u5224\u65ad\u4e3a\u8bad\u7ec3\u4e0d\u6536\u655b":17,"\u90a3\u4e48\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u6536\u96c6\u5e02\u573a\u4e0a\u623f\u5b50\u7684\u5927\u5c0f\u548c\u4ef7\u683c":18,"\u90a3\u4e48\u63a8\u8350\u4f7f\u7528":28,"\u90a3\u4e48\u63a8\u8350\u4f7f\u7528\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u65b9\u6cd5":28,"\u90a3\u4e48\u6536\u655b\u53ef\u80fd\u5f88\u6162":17,"\u90a3\u4e48\u6700\u597d\u5c06\u6570\u636e\u6587\u4ef6\u5728\u6bcf\u6b21\u8bfb\u53d6\u4e4b\u524d\u505a\u4e00\u6b21shuffl":17,"\u90a3\u4e48\u8bad\u7ec3\u6709\u53ef\u80fd\u4e0d\u6536\u655b":17,"\u90a3\u4e48\u8be5\u4f18\u5316\u7b97\u6cd5\u81f3\u5c11\u9700\u8981":17,"\u90a3\u4e48fc1\u548cfc2\u5c42\u5c06\u4f1a\u4f7f\u7528\u7b2c1\u4e2agpu\u6765\u8ba1\u7b97":38,"\u90a3\u4e48paddlepaddle\u4f1a\u6839\u636elayer\u7684\u58f0\u660e\u987a\u5e8f":3,"\u90a3\u4e5f\u5c31\u4e0d\u9700\u8981\u6025\u7740\u4f18\u5316\u6027\u80fd\u5566":33,"\u90a3\u4f30\u8ba1\u8fd9\u91cc\u7684\u6f5c\u529b\u5c31\u6ca1\u5565\u597d\u6316\u7684\u4e86":33,"\u90a3\u51cf\u5c11\u5b66\u4e60\u738710\u500d\u7ee7\u7eed\u8bd5\u9a8c":17,"\u90a3\u6211\u4f1a\u671f\u671b\u5206\u6790\u5de5\u5177\u7edf\u8ba1\u5230\u901f\u5ea6\u662f100gb":33,"\u90a3\u7a0b\u5e8f\u5206\u6790\u5de5\u5177\u662f\u5fc5\u4e0d\u53ef\u5c11\u7684\u5229\u5668":33,"\u90ae\u7f16":51,"\u90e8\u7f72\u548c\u914d\u7f6e\u6bd4\u8f83\u7b80\u5355":40,"\u90e8\u7f72kubernetes\u96c6\u7fa4":32,"\u90fd":25,"\u90fd\u4f1a\u4ea7\u751f\u5f53\u524d\u5c42\u72b6\u6001\u7684\u6240\u6709\u7ee7\u627f\u7ed3\u679c":36,"\u90fd\u4f7f\u7528\u968f\u673a\u503c\u521d\u59cb\u5316":18,"\u90fd\u53ea\u662f\u4ecb\u7ecd\u53cc\u5c42rnn\u7684api\u63a5\u53e3":25,"\u90fd\u662f\u5bf9layer1\u5143\u7d20\u7684\u62f7\u8d1d":24,"\u90fd\u662f\u5c06\u6bcf\u4e00\u53e5\u5206\u597d\u8bcd\u540e\u7684\u53e5\u5b50":25,"\u90fd\u9700\u8981\u8c03\u7528\u4e00\u6b21":30,"\u914d\u5408\u4f7f\u7528":39,"\u914d\u7f6e":54,"\u914d\u7f6e\u4e86\u7f51\u7edc":52,"\u914d\u7f6e\u51fa\u975e\u5e38\u590d\u6742\u7684\u7f51\u7edc":39,"\u914d\u7f6e\u521b\u5efa\u5b8c\u6bd5\u540e":47,"\u914d\u7f6e\u5982\u4e0b":46,"\u914d\u7f6e\u6253\u5f00":33,"\u914d\u7f6e\u6570\u636e\u6e90":39,"\u914d\u7f6e\u6587\u4ef6":50,"\u914d\u7f6e\u6587\u4ef6\u63a5\u53e3\u662ffc_layer":30,"\u914d\u7f6e\u6a21\u578b\u6587\u4ef6":46,"\u914d\u7f6e\u7b49\u6587\u4ef6\u7684\u76ee\u5f55\u89c6\u4e3a":34,"\u914d\u7f6e\u7b80\u5355\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u4f8b\u5b50":28,"\u914d\u7f6e\u7f51\u7edc\u5c42\u7684\u8f93\u5165":30,"\u914d\u7f6eapi":24,"\u914d\u7f6ekubectl":32,"\u9152\u5e97":25,"\u91c7\u6837\u5c42":52,"\u91c7\u7528":53,"\u91c7\u7528\u53e6\u4e00\u79cd\u65b9\u6cd5\u6765\u5806\u53e0lstm\u5c42":53,"\u91c7\u7528\u5747\u5300\u5206\u5e03\u6216\u8005\u9ad8\u65af\u5206\u5e03\u521d\u59cb\u5316":36,"\u91c7\u7528multi":17,"\u91cc\u4ecb\u7ecd\u4e86\u7528paddle\u6e90\u7801\u4e2d\u7684\u811a\u672c\u4e0b\u8f7d\u8bad\u7ec3\u6570\u636e\u7684\u8fc7\u7a0b":41,"\u91cc\u4f1a\u7ee7\u7eed\u5b89\u88c5":22,"\u91cc\u6307\u5b9a\u56fe\u50cf\u6570\u636e\u5217\u8868":48,"\u91cc\u7684\u65e5\u5fd7":34,"\u91cc\u901a\u8fc7train_list\u548ctest_list\u6307\u5b9a\u662f\u8bad\u7ec3\u6587\u4ef6\u5217\u8868\u548c\u6d4b\u8bd5\u6587\u4ef6\u5217\u8868":39,"\u91cd\u65b0\u7f16\u8bd1paddlepaddl":33,"\u9488\u5bf9\u4efb\u52a1\u8fd0\u884c\u5b8c\u6210\u540e\u5bb9\u5668\u81ea\u52a8\u9000\u51fa\u7684\u573a\u666f":41,"\u9488\u5bf9\u5185\u5b58\u548c\u663e\u5b58":17,"\u9488\u5bf9\u6587\u672c":52,"\u94a9\u5b50\u4f1a\u68c0\u67e5\u672c\u5730\u4ee3\u7801\u662f\u5426\u5b58\u5728":29,"\u94fe\u63a5\u4f55\u79cdblas\u5e93\u7b49":19,"\u94fe\u63a5\u5f85\u8865\u5145":50,"\u9500\u552e":51,"\u9519\u8bef\u7387":50,"\u9519\u8bef\u7684define_py_data_sources2\u7c7b\u4f3c":17,"\u955c\u50cf":20,"\u955c\u50cf\u91cc\u6709":41,"\u957f\u5ea6":17,"\u95e8\u63a7\u5faa\u73af\u5355\u5143\u5355\u6b65\u51fd\u6570\u548c\u8f93\u51fa\u51fd\u6570":28,"\u95e8\u63a7\u5faa\u73af\u5355\u5143\u7684\u8f93\u51fa\u88ab\u7528\u4f5c\u8f93\u51famemori":28,"\u95ee\u9898":18,"\u95f4\u9694":50,"\u9650\u5236\u5957\u63a5\u5b57\u53d1\u9001\u7f13\u51b2\u533a\u7684\u5927\u5c0f":36,"\u9650\u5236\u5957\u63a5\u5b57\u63a5\u6536\u7f13\u51b2\u533a\u7684\u5927\u5c0f":36,"\u9664\u4e86":3,"\u9664\u4e86boot_lay":25,"\u9664\u53bbdata\u5c42":50,"\u9664\u8bcd\u5411\u91cf\u6a21\u578b\u5916\u7684\u53c2\u6570\u5c06\u4f7f\u7528\u6b63\u6001\u5206\u5e03\u968f\u673a\u521d\u59cb\u5316":46,"\u968f\u673a\u521d\u59cb\u4e0d\u5b58\u5728\u7684\u53c2\u6570":53,"\u968f\u673a\u6570\u7684\u79cd\u5b50":36,"\u968f\u673a\u6570seed":35,"\u968f\u7740\u8f6e\u6570\u589e\u52a0\u8bef\u5dee\u4ee3\u4ef7\u51fd\u6570\u7684\u8f93\u51fa\u5728\u4e0d\u65ad\u7684\u51cf\u5c0f":18,"\u9694\u5f00":48,"\u96c6":51,"\u96c6\u675f\u641c\u7d22\u4e2d\u7684\u6269\u5c55\u5e7f\u5ea6":55,"\u96c6\u675f\u641c\u7d22\u4f7f\u7528\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u6765\u6784\u5efa\u641c\u7d22\u6811":55,"\u96c6\u675f\u641c\u7d22\u4f7f\u7528\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u7684\u65b9\u5f0f\u6784\u5efa\u67e5\u627e\u6811":36,"\u96c6\u7fa4\u4e0a\u542f\u52a8\u4e00\u4e2a\u5355\u673a\u4f7f\u7528cpu\u7684paddle\u8bad\u7ec3\u4f5c\u4e1a":41,"\u96c6\u7fa4\u4f5c\u4e1a\u4e2d\u6240\u6709\u8fdb\u7a0b\u7684\u73af\u5883\u8bbe\u7f6e":34,"\u96c6\u7fa4\u4f5c\u4e1a\u5c06\u4f1a\u5728\u51e0\u79d2\u540e\u542f\u52a8":34,"\u96c6\u7fa4\u5de5\u4f5c":34,"\u96c6\u7fa4\u6d4b\u8bd5":35,"\u96c6\u7fa4\u8bad\u7ec3":35,"\u96c6\u7fa4\u8fdb\u7a0b":34,"\u96c6\u7fa4\u901a\u4fe1\u4fe1\u9053\u7684\u7aef\u53e3\u6570":34,"\u96c6\u7fa4\u901a\u4fe1\u901a\u9053\u7684":34,"\u96c6\u7fa4\u901a\u4fe1\u901a\u9053\u7684\u7aef\u53e3\u53f7":34,"\u9700\u5728nvvp\u754c\u9762\u4e2d\u9009\u4e0a\u624d\u80fd\u5f00\u542f":33,"\u9700\u8981\u4e0e":39,"\u9700\u8981\u4f7f\u7528\u5176\u5236\u5b9a\u7684\u65b9\u5f0f\u6302\u8f7d\u540e\u5e76\u5bfc\u5165\u6570\u636e":42,"\u9700\u8981\u5148\u6302\u8f7d\u5230\u670d\u52a1\u5668node\u4e0a\u518d\u901a\u8fc7kubernet":40,"\u9700\u8981\u53c2\u8003":20,"\u9700\u8981\u542f\u52a8":39,"\u9700\u8981\u542f\u52a8\u7684\u8282\u70b9\u4e2a\u6570\u4ee5\u53ca":42,"\u9700\u8981\u5728":34,"\u9700\u8981\u5728\u521b\u5efa\u5bb9\u5668\u524d\u6302\u8f7d\u5377\u4ee5\u4fbf\u6211\u4eec\u4fdd\u5b58\u8bad\u7ec3\u7ed3\u679c":41,"\u9700\u8981\u5728\u7cfb\u7edf\u91cc\u5148\u5b89\u88c5\u597ddocker\u5de5\u5177\u5305":31,"\u9700\u8981\u5b89\u88c5graphviz\u6765\u8f6c\u6362dot\u6587\u4ef6\u4e3a\u56fe\u7247":48,"\u9700\u8981\u5bf9":40,"\u9700\u8981\u5c06\u5176parameter\u8bbe\u7f6e\u6210":17,"\u9700\u8981\u5c06\u6807\u8bb0\u7684\u8bad\u7ec3\u548c\u6d4b\u8bd5\u6837\u672c\u79fb\u52a8\u5230\u53e6\u4e00\u4e2a\u8def\u5f84":54,"\u9700\u8981\u6307\u5b9a\u4e0e\u67d0\u4e00\u4e2a\u8f93\u5165\u7684\u5e8f\u5217\u4fe1\u606f\u662f\u4e00\u81f4\u7684":25,"\u9700\u8981\u652f\u6301avx\u6307\u4ee4\u96c6\u7684cpu":20,"\u9700\u8981\u660e\u786e\u6307\u5b9a":36,"\u9700\u8981\u6709\u4e00\u4e2a\u5916\u90e8\u7684\u5b58\u50a8\u670d\u52a1\u6765\u4fdd\u5b58\u8bad\u7ec3\u6240\u9700\u6570\u636e\u548c\u8bad\u7ec3\u8f93\u51fa":40,"\u9700\u8981\u6ce8\u610f\u7684\u662f":[36,39,52],"\u9700\u8981\u6ce8\u610f\u7684\u662f\u68af\u5ea6\u68c0\u67e5\u4ec5\u4ec5\u9a8c\u8bc1\u4e86\u68af\u5ea6\u7684\u8ba1\u7b97":30,"\u9700\u8981\u6ce8\u610f\u7684\u662fpaddlepaddle\u76ee\u524d\u53ea\u652f\u6301\u5b50\u5e8f\u5217\u6570\u76ee\u4e00\u6837\u7684\u591a\u8f93\u5165\u53cc\u5c42rnn":25,"\u9700\u8981\u8981\u5148\u6302\u8f7d\u8fd9\u4e2a\u76ee\u5f55":42,"\u9700\u8981\u9075\u5faa\u4ee5\u4e0b\u7ea6\u5b9a":27,"\u9700\u8981import\u8fd9\u4e9b\u51fd\u6570":39,"\u9700\u8981python\u63a5\u53e3\u91cc\u5904\u7406shuffl":39,"\u975e\u5e38\u6570":30,"\u975e\u96f6\u6570\u5b57\u7684\u4e2a\u6570":30,"\u97f3\u4e50\u5267":51,"\u9875\u9762\u4e2d\u7684":29,"\u987a\u5e8f":25,"\u9884\u5904\u7406\u6570\u636e\u4e00\u822c\u7684\u547d\u4ee4\u4e3a":52,"\u9884\u5904\u7406\u811a\u672c":54,"\u9884\u5b9a\u4e49\u7f51\u7edc":54,"\u9884\u5b9a\u4e49\u7f51\u7edc\u5982\u56fe3\u6240\u793a":54,"\u9884\u6d4b\u540e":53,"\u9884\u6d4b\u63a5\u53e3\u811a\u672c":54,"\u9884\u6d4b\u6982\u7387\u53d6\u5e73\u5747":48,"\u9884\u6d4b\u7a0b\u5e8f\u5c06\u8bfb\u53d6\u7528\u6237\u7684\u8f93\u5165":52,"\u9884\u6d4b\u7ed3\u679c\u4ee5\u6587\u672c\u7684\u5f62\u5f0f\u4fdd\u5b58\u5728":50,"\u9884\u6d4b\u811a\u672c\u662f":53,"\u9884\u6d4b\u9636\u6bb5":39,"\u9884\u6d4bid":50,"\u9884\u6d4bimdb\u7684\u672a\u6807\u8bb0\u8bc4\u8bba\u7684\u4e00\u4e2a\u5b9e\u4f8b\u5982\u4e0b":54,"\u9884\u8bad\u7ec3\u6a21\u578b\u4f7f\u7528\u7684\u5b57\u5178\u7684\u8def\u5f84":46,"\u9884\u8bad\u7ec3\u8bcd\u5411\u91cf\u5b57\u5178\u6a21\u578b\u7684\u8def\u5f84":46,"\u989c\u8272\u901a\u9053\u987a\u5e8f\u4e3a":48,"\u989d\u5916\u7684\u53c2\u6570":50,"\u9996\u5148":[3,18,25,28,30,46,48,50,53,54],"\u9996\u5148\u4e0b\u8f7dcifar":47,"\u9996\u5148\u5728\u7cfb\u7edf\u8def\u5f84":19,"\u9996\u5148\u5b89\u88c5paddlepaddl":54,"\u9996\u5148\u5bf9\u8f93\u5165\u505a\u4e00\u4e2a\u5c0f\u7684\u6270\u52a8":30,"\u9996\u5148\u6211\u4eec\u9700\u8981\u63a8\u5bfc\u8be5\u7f51\u7edc\u5c42\u7684":30,"\u9996\u5148\u662f\u6cd5\u8bed\u5e8f\u5217":55,"\u9a71\u52a8":31,"\u9a8c\u8bc1\u65b0\u7684":29,"\u9ad8\u4e2d\u6bd5\u4e1a\u751f":51,"\u9ad8\u4eae\u90e8\u5206":25,"\u9ad8\u53ef\u7528":40,"\u9ad8\u5ea6\u652f\u6301\u7075\u6d3b\u548c\u9ad8\u6548\u7684\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e":28,"\u9ad8\u6548\u6027":0,"\u9ad8\u65af\u5206\u5e03":17,"\u9ed1\u8272\u7535\u5f71":51,"\u9ed8\u8ba4":[3,36,55],"\u9ed8\u8ba4\u4e00\u4e2apass\u4fdd\u5b58\u4e00\u6b21\u6a21\u578b":50,"\u9ed8\u8ba4\u4e0d\u663e\u793a":36,"\u9ed8\u8ba4\u4e0d\u8bbe\u7f6e":27,"\u9ed8\u8ba4\u4e3a0":[36,38],"\u9ed8\u8ba4\u4e3a1":[3,38],"\u9ed8\u8ba4\u4e3a100":38,"\u9ed8\u8ba4\u4e3a4096mb":36,"\u9ed8\u8ba4\u4e3a\u4e0d\u4f7f\u7528":52,"\u9ed8\u8ba4\u4e3a\u7b2c\u4e00\u4e2a\u8f93\u5165":27,"\u9ed8\u8ba4\u4e3anull":36,"\u9ed8\u8ba4\u4f7f\u7528\u591a\u7c7b\u4ea4\u53c9\u71b5\u635f\u5931\u51fd\u6570\u548c\u5206\u7c7b\u9519\u8bef\u7387\u7edf\u8ba1\u8bc4\u4f30\u5668":39,"\u9ed8\u8ba4\u4f7f\u7528concurrentremoteparameterupdat":36,"\u9ed8\u8ba4\u503c":[19,24,38],"\u9ed8\u8ba4\u521d\u59cb\u72b6\u4e3a0":27,"\u9ed8\u8ba4\u60c5\u51b5\u4e0b":[17,34,54],"\u9ed8\u8ba4\u60c5\u51b5\u4e0b\u4f7f\u7528\u6b64\u7f51\u7edc":54,"\u9ed8\u8ba4\u6307\u5b9a\u7b2c\u4e00\u4e2a\u8f93\u5165":25,"\u9ed8\u8ba4\u662f0":39,"\u9ed8\u8ba4\u662f1":39,"\u9ed8\u8ba4\u7528\u6765\u5207\u5206\u5355\u8bb0\u548c\u6807\u70b9\u7b26\u53f7":54,"\u9ed8\u8ba4\u7684":41,"\u9ed8\u8ba4\u8bbe\u7f6e\u4e3a\u771f":38,"\u9ed8\u8ba4\u914d\u7f6e\u5982\u4e0b":34,"adamax\u7b49":50,"amazon\u7535\u5b50\u4ea7\u54c1\u8bc4\u8bba\u6570\u636e":50,"api\u5bf9\u6bd4\u4ecb\u7ecd":26,"api\u63a5\u53e3":40,"async_sgd\u8fdb\u884c\u8bad\u7ec3\u65f6":17,"atlas\u7684\u8def\u5f84":19,"awselasticblockstore\u7b49":40,"batch\u4e2d\u5305\u542b":17,"batches\u4e2a\u6279\u6b21\u4fdd\u5b58\u4e00\u6b21\u53c2\u6570":36,"batches\u6b21":36,"bin\u548c\u8bc4\u5206\u6587\u4ef6":52,"blas\u7684\u8def\u5f84":19,"bool\u578b\u53c2\u6570":3,"byte":17,"caoying\u7684pul":55,"case":[10,14,16,33],"cd\u5230\u542b\u6709dockerfile\u7684\u8def\u5f84\u4e2d":20,"class":[7,10,12,14,15,17,30,54],"cmake\u4e2d\u5c06":33,"cmake\u627e\u5230\u7684python\u5e93\u548cpython\u89e3\u91ca\u5668\u7248\u672c\u53ef\u80fd\u6709\u4e0d\u4e00\u81f4\u73b0\u8c61":17,"cmake\u7f16\u8bd1\u65f6":19,"cmake\u914d\u7f6e\u4e2d\u5c06":33,"conf\u4f5c\u4e3a\u914d\u7f6e":55,"const":30,"container\u4e2d":41,"container\u540e":20,"cost\u8fd8\u5927\u4e8e\u8fd9\u4e2a\u6570":17,"count\u4e2agpu\u4e0a\u4f7f\u7528\u6570\u636e\u5e76\u884c\u6765\u8ba1\u7b97\u67d0\u4e00\u5c42":38,"count\u548cgpu":38,"cpu\u7248\u672c":[20,22],"cuda\u5e73\u53f0":22,"cuda\u5e93":36,"cuda\u76f8\u5173\u7684driver\u548c\u8bbe\u5907\u6620\u5c04\u8fdbcontainer\u4e2d":20,"cudnn\u5e93":[19,36],"dat\u4e2d":52,"data\u76ee\u5f55\u4e2d\u5b58\u653e\u5207\u5206\u597d\u7684\u6570\u636e":42,"dataprovider\u5171\u8fd4\u56de\u4e24\u4e2a\u6570\u636e":25,"dataprovider\u5171\u8fd4\u56de\u4e24\u7ec4\u6570\u636e":25,"dataprovider\u662f\u88ab\u7cfb\u7edf\u8c03\u7528":39,"dataprovider\u662fpaddlepaddle\u7cfb\u7edf\u7684\u6570\u636e\u63d0\u4f9b\u5668":39,"dataprovider\u662fpaddlepaddle\u8d1f\u8d23\u63d0\u4f9b\u6570\u636e\u7684\u6a21\u5757":2,"dataprovider\u7684\u4ecb\u7ecd":[4,50],"dataprovider\u7f13\u51b2\u6c60\u5185\u5b58":17,"dataprovider\u8fd4\u56de\u7a7a\u6570\u636e":39,"dataprovider\u91cc\u5b9a\u4e49\u6570\u636e\u8bfb\u53d6\u51fd\u6570":39,"deb\u5b89\u88c5\u5305":22,"decay\u5219\u4e3a0":47,"decoder\u5faa\u73af\u5c55\u5f00\u7684\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u4f1a\u5f15\u7528\u5168\u90e8\u7ed3\u679c":27,"decoder\u63a5\u53d7\u4e24\u4e2a\u8f93\u5165":27,"decoder\u6bcf\u6b21\u9884\u6d4b\u4ea7\u751f\u4e0b\u4e00\u4e2a\u6700\u53ef\u80fd\u7684\u8bcd\u8bed":27,"decoer\u67b6\u6784":27,"default":[7,9,10,11,12,14,15,38,41,42,54],"demo\u9884\u6d4b\u8f93\u51fa\u5982\u4e0b":5,"devel\u548cdemo":20,"dictionary\u662f\u4ece\u7f51\u7edc\u914d\u7f6e\u4e2d\u4f20\u5165\u7684dict\u5bf9\u8c61":3,"dictionary\u7531\u89e3\u6790\u81ea\u52a8\u751f\u6210":52,"dir\u4e2d\u670916\u4e2a\u5b50\u76ee\u5f55":55,"docker\u5b89\u88c5\u8bf7\u53c2\u8003":31,"docker\u7684\u5b98\u65b9\u6587\u6863":20,"docker\u7684\u5b98\u7f51":31,"docker\u955c\u50cf\u662f\u6211\u4eec\u76ee\u524d\u552f\u4e00\u5b98\u65b9\u652f\u6301\u7684\u90e8\u7f72\u548c\u8fd0\u884c\u65b9\u5f0f":20,"dockerfile\u7684\u6587\u6863":20,"dockerfile\u7684\u6700\u4f73\u5b9e\u8df5":20,"dropout\u7684\u6bd4\u4f8b":30,"elec\u6d4b\u8bd5\u96c6":50,"embedding\u6a21\u578b\u9700\u8981\u7a0d\u5fae\u6539\u53d8\u63d0\u4f9b\u6570\u636e\u7684python\u811a\u672c":50,"encode\u6210\u7684\u6700\u540e\u4e00\u4e2a\u5411\u91cf":25,"encoder\u548cdecoder\u53ef\u4ee5\u662f\u80fd\u591f\u5904\u7406\u5e8f\u5217\u7684\u4efb\u610f\u795e\u7ecf\u7f51\u7edc\u5355\u5143":27,"encoder\u8f93\u51fa":27,"entropy\u4f5c\u4e3acost":17,"evaluator\u7684\u503c\u4f4e\u4e8e0":55,"export":[17,20,22,47],"f\u4ee3\u8868\u4e00\u4e2a\u6d6e\u70b9\u6570":3,"false\u7684\u60c5\u51b5":3,"fc1\u548cfc2\u5c42\u5728gpu\u4e0a\u8ba1\u7b97":38,"fc3\u5c42\u4f7f\u7528cpu\u8ba1\u7b97":38,"final":[11,14,52],"float":[3,7,9,10,12,14,18,33,48,52],"float\u7b49":38,"function":[8,10,11,12,14,15,16,28,54],"gen\u6587\u4ef6\u5939\u4e2d\u7684\u6587\u4ef6\u5217\u8868":55,"generator\u4fbf\u4f1a\u5b58\u4e0b\u5f53\u524d\u7684\u4e0a\u4e0b\u6587":3,"generator\u81f3\u5c11\u9700\u8981\u8c03\u7528\u4e24\u6b21\u624d\u4f1a\u77e5\u9053\u662f\u5426\u505c\u6b62":3,"git\u6d41\u5206\u652f\u6a21\u578b":29,"github\u4e0a":29,"github\u5141\u8bb8\u81ea\u52a8\u66f4\u65b0":29,"github\u9996\u9875":29,"gpu\u4e8c\u8fdb\u5236\u6587\u4ef6":19,"gpu\u5219\u8fd8\u9700\u8981\u9ad8\u5e76\u884c\u6027":33,"gpu\u53cc\u7f13\u5b58":3,"gpu\u548ccpu\u901a\u4fe1":39,"gpu\u6027\u80fd\u5206\u6790\u4e0e\u8c03\u4f18":32,"gpu\u6838\u5728\u8bad\u7ec3\u914d\u7f6e\u4e2d\u6307\u5b9a":36,"gpu\u7248\u672c":[20,22],"gpu\u7248\u672c\u5e76\u60f3\u4f7f\u7528":53,"gpu\u7684docker\u955c\u50cf\u7684\u65f6\u5019":17,"gram\u7ea7\u522b\u7684\u77e5\u8bc6":54,"group\u6559\u7a0b":26,"gru\u6216lstm":28,"gru\u6a21\u578b":50,"gru\u6a21\u578b\u914d\u7f6e":50,"hot\u7a20\u5bc6\u5411\u91cf":52,"html\u5373\u53ef\u8bbf\u95ee\u672c\u5730\u6587\u6863":31,"i\u4ee3\u8868\u4e00\u4e2a\u6574\u6570":3,"id\u4e3a0\u7684\u6982\u7387":50,"id\u4e3a1\u7684\u6982\u7387":50,"id\u6307\u5b9a\u4f7f\u7528\u54ea\u4e2agpu\u6838":36,"id\u6307\u5b9a\u7684gpu":38,"id\u65e0\u6548":36,"image\u91cc":41,"imdb\u6570\u636e\u96c6\u5305\u542b25":54,"imdb\u6709\u4e24\u4e2a\u6807\u7b7e":54,"imdb\u7684\u6570\u6910\u96c6":54,"import":[3,5,9,10,14,15,17,18,39,46,47,48,52,54,55],"include\u4e0b\u9700\u8981\u5305\u542bcbla":19,"include\u4e0b\u9700\u8981\u5305\u542bmkl":19,"init_hook\u53ef\u4ee5\u4f20\u5165\u4e00\u4e2a\u51fd\u6570":3,"int":[3,7,9,10,11,12,14,16,25,30,38,50,52,53],"job\u542f\u52a8\u540e\u4f1a\u521b\u5efa\u8fd9\u4e9bpod\u5e76\u5f00\u59cb\u6267\u884c\u4e00\u4e2a\u7a0b\u5e8f":40,"job\u6216\u8005\u5e94\u7528\u7a0b\u5e8f\u5728\u5bb9\u5668\u4e2d\u8fd0\u884c\u65f6\u751f\u6210\u7684\u6570\u636e\u4f1a\u5728\u5bb9\u5668\u9500\u6bc1\u65f6\u6d88\u5931":40,"job\u662f\u672c\u6b21\u8bad\u7ec3\u5bf9\u5e94\u7684job":42,"kubernetes\u4e3a\u8fd9\u6b21\u8bad\u7ec3\u521b\u5efa\u4e863\u4e2apod\u5e76\u4e14\u8c03\u5ea6\u5230\u4e863\u4e2anode\u4e0a\u8fd0\u884c":42,"kubernetes\u5206\u5e03\u5f0f\u8bad\u7ec3":32,"kubernetes\u5355\u673a\u8bad\u7ec3":32,"kubernetes\u53ef\u4ee5\u5728\u7269\u7406\u673a\u6216\u865a\u62df\u673a\u4e0a\u8fd0\u884c":40,"kubernetes\u53ef\u4ee5\u901a\u8fc7yaml\u6587\u4ef6\u6765\u521b\u5efa\u76f8\u5173\u5bf9\u8c61":42,"kubernetes\u5c31\u4f1a\u521b\u5efa3\u4e2apod\u4f5c\u4e3apaddlepaddle\u8282\u70b9\u7136\u540e\u62c9\u53d6\u955c\u50cf":42,"kubernetes\u63d0\u4f9b\u4e86\u591a\u79cd\u96c6\u7fa4\u90e8\u7f72\u7684\u65b9\u6848":40,"kubernetes\u652f\u6301\u591a\u79cdvolum":40,"kubernetes\u6709job\u7c7b\u578b\u7684\u8d44\u6e90\u6765\u652f\u6301":41,"kubernetes\u96c6\u7fa4\u5c31\u662f\u7531node\u8282\u70b9\u4e0emaster\u8282\u70b9\u7ec4\u6210\u7684":40,"label\u662f\u539f\u59cb\u6570\u636e\u4e2d\u5bf9\u4e8e\u6bcf\u4e00\u53e5\u8bdd\u7684\u5206\u7c7b\u6807\u7b7e":25,"labels\u662f\u6bcf\u7ec4\u5185\u6bcf\u4e2a\u53e5\u5b50\u7684\u6807\u7b7e":25,"layer1\u5fc5\u987b\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":24,"layer1\u5fc5\u987b\u662f\u4e00\u4e2a\u5355\u5c42\u5e8f\u5217":24,"layer\u62ff\u5230\u7684\u7528\u6237\u8f93\u5165":27,"layer\u7c7b\u53ef\u4ee5\u81ea\u52a8\u8ba1\u7b97\u4e0a\u9762\u7684\u5bfc\u6570":30,"layer\u91cc\u9762\u53ef\u4ee5\u5b9a\u4e49\u53c2\u6570\u5c5e\u6027":39,"lib\u4e0b\u9700\u8981\u5305\u542bcblas\u548catlas\u4e24\u4e2a\u5e93":19,"lib\u4e0b\u9700\u8981\u5305\u542bcblas\u5e93":19,"lib\u4e0b\u9700\u8981\u5305\u542bopenblas\u5e93":19,"lib\u76ee\u5f55\u4e0b\u9700\u8981\u5305\u542bmkl_cor":19,"list\u4e2d\u7684\u6bcf\u4e00\u884c\u90fd\u4f20\u9012\u7ed9process\u51fd\u6570":3,"list\u5199\u5165\u90a3\u4e2a\u6587\u672c\u6587\u4ef6\u7684\u5730\u5740":3,"list\u548ctest":2,"list\u5982\u4e0b\u6240\u793a":38,"list\u5b58\u653e\u5728\u672c\u5730":2,"list\u6216\u8005test":39,"list\u6307\u5b9a\u6d4b\u8bd5\u7684\u6a21\u578b\u5217\u8868":38,"long":[10,11,14],"lstm\u67b6\u6784\u7684\u6700\u5927\u4f18\u70b9\u662f\u5b83\u53ef\u4ee5\u5728\u957f\u65f6\u95f4\u95f4\u9694\u5185\u8bb0\u5fc6\u4fe1\u606f":54,"lstm\u6a21\u578b":50,"lstm\u6a21\u578b\u914d\u7f6e":50,"lstm\u7f51\u7edc\u7c7b\u4f3c\u4e8e\u5177\u6709\u9690\u85cf\u5c42\u7684\u6807\u51c6\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":54,"memory\u4e0d\u80fd\u72ec\u7acb\u5b58\u5728":27,"memory\u4e5f\u53ef\u4ee5\u5177\u6709":28,"memory\u4e5f\u53ef\u4ee5\u662f\u5e8f\u5217":28,"memory\u53ea\u80fd\u5728":27,"memory\u53ef\u4ee5\u7f13\u5b58\u4e0a\u4e00\u4e2a\u65f6\u523b\u67d0\u4e00\u4e2a\u795e\u7ecf\u5143\u7684\u8f93\u51fa":25,"memory\u6307\u5411\u4e00\u4e2alay":27,"memory\u662f\u5728\u5355\u6b65\u51fd\u6570\u4e2d\u5faa\u73af\u4f7f\u7528\u7684\u72b6\u6001":28,"memory\u662fpaddlepaddle\u5b9e\u73b0rnn\u65f6\u5019\u4f7f\u7528\u7684\u4e00\u4e2a\u6982\u5ff5":25,"memory\u7684":28,"memory\u7684\u521d\u59cb\u72b6\u6001":27,"memory\u7684\u65f6\u95f4\u5e8f\u5217\u957f\u5ea6\u4e00\u81f4\u7684\u60c5\u51b5":25,"memory\u7684\u66f4\u591a\u8ba8\u8bba\u8bf7\u53c2\u8003\u8bba\u6587":27,"memory\u7684\u8f93\u51fa\u5b9a\u4e49\u5728":28,"memory\u7684i":27,"memory\u9ed8\u8ba4\u521d\u59cb\u5316\u4e3a0":27,"mkl\u7684\u8def\u5f84":19,"mkl_sequential\u548cmkl_intel_lp64\u4e09\u4e2a\u5e93":19,"mnist\u662f\u4e00\u4e2a\u5305\u542b\u670970":3,"mode\u548cattent":55,"mode\u7684python\u51fd\u6570":55,"model\u53ef\u4ee5\u901a\u8fc7":5,"model\u6765\u5b9e\u73b0\u624b\u5199\u8bc6\u522b\u7684\u9884\u6d4b\u4ee3\u7801":5,"movielens\u6570\u636e\u96c6":52,"name\u547d\u540d\u7684\u76ee\u5f55\u4e2d":42,"name\u662f\u4f53\u88c1":52,"name\u662f\u5e74\u9f84":52,"name\u662f\u6027\u522b":52,"name\u662f\u7535\u5f71\u540d":52,"name\u662f\u804c\u4e1a":52,"name\u90fd\u662f":20,"new":[10,14,16,30],"nfs\u7684\u90e8\u7f72\u65b9\u6cd5\u53ef\u4ee5\u53c2\u8003":40,"nmt\u6a21\u578b\u53d7\u5236\u4e8e\u6e90\u8bed\u53e5\u7684\u7f16\u7801":55,"noavx\u7248\u672c":22,"normalization\u5c42":48,"normalization\u5c42\u7684\u53c2\u6570":48,"null":[10,14,30,36,52],"openblas\u7684\u8def\u5f84":19,"operator\u7684\u6982\u5ff5":39,"osx\u6216\u8005\u662fwindows\u673a\u5668":20,"osx\u7684\u5b89\u88c5\u6587\u6863":20,"out\u4e0b\u5305\u542b":47,"out\u7684\u6587\u4ef6\u5939":47,"outer_mem\u662f\u4e00\u4e2a\u5b50\u53e5\u7684\u6700\u540e\u4e00\u4e2a\u5411\u91cf":25,"output\u6587\u4ef6\u5939\u5b58\u653e\u8bad\u7ec3\u7ed3\u679c\u4e0e\u65e5\u5fd7":42,"packages\u91cc\u9762":17,"packages\u91cc\u9762\u7684python\u5305":17,"paddepaddle\u901a\u8fc7\u7f16\u8bd1\u65f6\u6307\u5b9a\u8def\u5f84\u6765\u5b9e\u73b0\u5f15\u7528\u5404\u79cdbla":19,"paddle\u4e2d\u7684\u4e00\u6761pass\u8868\u793a\u8bad\u7ec3\u6570\u636e\u96c6\u4e2d\u6240\u6709\u7684\u6837\u672c\u4e00\u6b21":55,"paddle\u4e2d\u7ecf\u5e38\u4f1a\u5c06\u65f6\u95f4\u5e8f\u5217\u6210\u4e3a":25,"paddle\u7684\u5404\u7248\u672c\u955c\u50cf\u53ef\u4ee5\u53c2\u8003":41,"paddle\u7684dock":41,"paddle\u955c\u50cf":41,"paddlepaddle\u4e2d":[24,27],"paddlepaddle\u4e2d\u7684\u4e00\u4e2apass\u610f\u5473\u7740\u5bf9\u6570\u636e\u96c6\u4e2d\u7684\u6240\u6709\u6837\u672c\u8fdb\u884c\u4e00\u6b21\u8bad\u7ec3":54,"paddlepaddle\u4e2d\u7684\u8bb8\u591alayer\u5e76\u4e0d\u5728\u610f\u8f93\u5165\u662f\u5426\u662f\u65f6\u95f4\u5e8f\u5217":25,"paddlepaddle\u4f1a\u5728\u8c03\u7528\u8bfb\u53d6\u6570\u636e\u7684python\u811a\u672c\u4e4b\u524d":50,"paddlepaddle\u4f7f\u7528\u5747\u503c0":17,"paddlepaddle\u4f7f\u7528avx":17,"paddlepaddle\u4f7f\u7528swig\u5bf9\u5e38\u7528\u7684\u9884\u6d4b\u63a5\u53e3\u8fdb\u884c\u4e86\u5c01\u88c5":5,"paddlepaddle\u4fdd\u7559\u6dfb\u52a0\u53c2\u6570\u7684\u6743\u529b":3,"paddlepaddle\u5148\u4ece\u4e00\u4e2a\u6587\u4ef6\u5217\u8868\u91cc\u83b7\u5f97\u6570\u636e\u6587\u4ef6\u5730\u5740":18,"paddlepaddle\u5305\u62ec\u5f88\u591a\u635f\u5931\u51fd\u6570\u548c\u8bc4\u4f30\u8d77":39,"paddlepaddle\u53ef\u4ee5\u4f7f\u7528cudnn":19,"paddlepaddle\u53ef\u4ee5\u6267\u884c\u7528\u6237\u7684python\u811a\u672c\u7a0b\u5e8f\u6765\u8bfb\u53d6\u5404\u79cd\u683c\u5f0f\u7684\u6570\u636e\u6587\u4ef6":50,"paddlepaddle\u53ef\u4ee5\u6bd4\u8f83\u7b80\u5355\u7684\u5224\u65ad\u54ea\u4e9b\u8f93\u51fa\u662f\u5e94\u8be5\u8de8\u8d8a\u65f6\u95f4\u6b65\u7684":25,"paddlepaddle\u53ef\u4ee5\u901a\u8fc7\u8be5\u673a\u5236\u5224\u65ad\u662f\u5426\u5df2\u7ecf\u6536\u96c6\u9f50\u6240\u6709\u7684\u68af\u5ea6":30,"paddlepaddle\u5728\u5b9e\u73b0rnn\u7684\u65f6\u5019":25,"paddlepaddle\u591a\u673a\u91c7\u7528\u7ecf\u5178\u7684":39,"paddlepaddle\u5b58\u7684\u662f\u6709\u503c\u4f4d\u7f6e\u7684\u7d22\u5f15":3,"paddlepaddle\u5b9a\u4e49\u7684\u53c2\u6570":3,"paddlepaddle\u5c06\u4ee5\u8bbe\u7f6e\u53c2\u6570\u7684\u65b9\u5f0f\u6765\u8bbe\u7f6e":50,"paddlepaddle\u5c06\u5728\u89c2\u6d4b\u6570\u636e\u96c6\u4e0a\u8fed\u4ee3\u8bad\u7ec330\u8f6e":18,"paddlepaddle\u5c06\u6bcf\u4e2a\u6a21\u578b\u53c2\u6570\u4f5c\u4e3a\u4e00\u4e2anumpy\u6570\u7ec4\u5355\u72ec\u5b58\u4e3a\u4e00\u4e2a\u6587\u4ef6":18,"paddlepaddle\u5c06train":3,"paddlepaddle\u63d0\u4f9b\u4e86\u57fa\u4e8e":39,"paddlepaddle\u63d0\u4f9b\u4e86\u5f88\u591a\u4f18\u79c0\u7684\u5b66\u4e60\u7b97\u6cd5":18,"paddlepaddle\u63d0\u4f9b\u4e86ubuntu":22,"paddlepaddle\u63d0\u4f9b\u6570\u4e2a\u9884\u7f16\u8bd1\u7684\u4e8c\u8fdb\u5236\u6765\u8fdb\u884c\u5b89\u88c5":21,"paddlepaddle\u63d0\u4f9b\u7684\u955c\u50cf\u5e76\u4e0d\u5305\u542b\u4efb\u4f55\u547d\u4ee4\u8fd0\u884c":20,"paddlepaddle\u652f\u6301\u4ee5\u4e0b\u4efb\u610f\u4e00\u79cdblas\u5e93":19,"paddlepaddle\u652f\u6301\u5927\u91cf\u7684\u8ba1\u7b97\u5355\u5143\u548c\u4efb\u610f\u6df1\u5ea6\u7684\u7f51\u7edc\u8fde\u63a5":18,"paddlepaddle\u652f\u6301\u975e\u5e38\u591a\u7684\u4f18\u5316\u7b97\u6cd5":17,"paddlepaddle\u652f\u6301sparse\u7684\u8bad\u7ec3":17,"paddlepaddle\u662f\u4e00\u4e2a\u6700\u65e9\u7531\u767e\u5ea6\u79d1\u5b66\u5bb6\u548c\u5de5\u7a0b\u5e08\u5171\u540c\u7814\u53d1\u7684\u5e76\u884c\u5206\u5e03\u5f0f\u6df1\u5ea6\u5b66\u4e60\u5e73\u53f0":0,"paddlepaddle\u662f\u4e00\u4e2a\u6df1\u5ea6\u5b66\u4e60\u6846\u67b6":39,"paddlepaddle\u662f\u6e90\u4e8e\u767e\u5ea6\u7684\u4e00\u4e2a\u6df1\u5ea6\u5b66\u4e60\u5e73\u53f0":18,"paddlepaddle\u7684\u5185\u5b58\u5360\u7528\u4e3b\u8981\u5206\u4e3a\u5982\u4e0b\u51e0\u4e2a\u65b9\u9762":17,"paddlepaddle\u7684\u53c2\u6570\u4f7f\u7528\u540d\u5b57":17,"paddlepaddle\u7684\u6570\u636e\u5305\u62ec\u56db\u79cd\u4e3b\u8981\u7c7b\u578b":3,"paddlepaddle\u7684\u6587\u6863\u5305\u62ec\u82f1\u6587\u6587\u6863":31,"paddlepaddle\u7684\u6587\u6863\u6784\u5efa\u6709\u76f4\u63a5\u6784\u5efa\u548c\u57fa\u4e8edocker\u6784\u5efa\u4e24\u79cd\u65b9\u5f0f":31,"paddlepaddle\u7684\u7f16\u8bd1\u9009\u9879":21,"paddlepaddle\u7684bas":30,"paddlepaddle\u7684trainer\u8fdb\u7a0b\u91cc\u5185\u5d4c\u4e86python\u89e3\u91ca\u5668":39,"paddlepaddle\u76ee\u524d\u53ea\u652f\u6301\u5728\u6bcf\u4e2a\u65f6\u95f4\u6b65\u4e2d":25,"paddlepaddle\u76ee\u524d\u5df2\u7ecf\u5f00\u653e\u6e90\u7801":0,"paddlepaddle\u76ee\u524d\u63d0\u4f9b\u4e24\u79cd\u53c2\u6570\u521d\u59cb\u5316\u7684\u65b9\u5f0f":17,"paddlepaddle\u8c03\u7528process\u51fd\u6570\u6765\u8bfb\u53d6\u6570\u636e":50,"paddlepaddle\u8d1f\u8d23\u5b8c\u6210\u4fe1\u606f\u548c\u68af\u5ea6\u5728\u65f6\u95f4\u5e8f\u5217\u4e0a\u7684\u4f20\u64ad":27,"paddlepaddle\u8d1f\u8d23\u5b8c\u6210\u4fe1\u606f\u548c\u8bef\u5dee\u5728\u65f6\u95f4\u5e8f\u5217\u4e0a\u7684\u4f20\u64ad":27,"paddlepaddle\u955c\u50cf\u9700\u8981\u63d0\u4f9b":42,"paddlepaddle\u9700\u8981\u7528\u6237\u5728\u7f51\u7edc\u914d\u7f6e":2,"paddlepaddle\u9879\u76ee\u63d0\u4f9b\u5b98\u65b9":20,"pass\u4e2a\u6a21\u578b\u5230\u7b2c":36,"pass\u5230":55,"pass\u5c06\u4e0d\u8d77\u4f5c\u7528":36,"pass\u8f6e\u5f00\u59cb\u8bad\u7ec3":36,"pass\u8f6e\u7684\u6a21\u578b\u7528\u4e8e\u6d4b\u8bd5":36,"passes\u8f6e":36,"path\u6307\u5b9a\u6d4b\u8bd5\u7684\u6a21\u578b":38,"period\u4e2a\u6279\u6b21\u5bf9\u6240\u6709\u6d4b\u8bd5\u6570\u636e\u8fdb\u884c\u6d4b\u8bd5":36,"period\u4e2a\u6279\u6b21\u6253\u5370\u65e5\u5fd7\u8fdb\u5ea6":36,"period\u4e2a\u6279\u6b21\u8f93\u51fa\u53c2\u6570\u7edf\u8ba1":36,"period\u4e2a\u6279\u6b21\u8f93\u51fa\u7b26\u53f7":36,"period\u4e2abatch\u5904\u7406\u7684\u5f53\u524d\u635f\u5931":54,"period\u4e2abatch\u7684\u5206\u7c7b\u9519\u8bef":54,"period\u6574\u9664":36,"period\u8f6e\u4fdd\u5b58\u8bad\u7ec3\u53c2\u6570":36,"pod\u4e2d\u7684\u5bb9\u5668\u5171\u4eabnet":40,"pod\u662fkubernetes\u7684\u6700\u5c0f\u8c03\u5ea6\u5355\u5143":40,"pooling\u5bf9\u7279\u5f81\u56fe\u4e0b\u91c7\u6837":47,"process\u51fd\u6570\u4f1a\u7528yield\u8bed\u53e5\u8f93\u51fa\u8fd9\u6761\u6570\u636e":50,"pserver\u8fdb\u7a0b\u7528\u4e8e\u534f\u8c03\u591a\u4e2atrainer\u8fdb\u7a0b\u4e4b\u95f4\u7684\u901a\u4fe1":39,"public":[30,41,54],"py_paddle\u91cc\u9762\u63d0\u4f9b\u4e86\u4e00\u4e2a\u5de5\u5177\u7c7b":5,"pydataprovider2\u4f1a\u5c3d\u53ef\u80fd\u591a\u7684\u4f7f\u7528\u5185\u5b58":3,"pydataprovider2\u63d0\u4f9b\u4e86\u4e24\u79cd\u7b80\u5355\u7684cache\u7b56\u7565":3,"pydataprovider2\u662fpaddlepaddle\u4f7f\u7528python\u63d0\u4f9b\u6570\u636e\u7684\u63a8\u8350\u63a5\u53e3":3,"pydataprovider2\u7684\u4f7f\u7528":[2,4,17,28,39,50,52],"pydataprovider\u4f7f\u7528\u7684\u662f\u5f02\u6b65\u52a0\u8f7d":17,"python\u4ee3\u7801\u5c06\u968f\u673a\u4ea7\u751f2000\u4e2a\u89c2\u6d4b\u70b9":18,"python\u5305":20,"python\u53ef\u4ee5\u89e3\u9664\u6389\u5185\u90e8\u53d8\u91cf\u7684\u5f15\u7528":3,"python\u5c01\u88c5\u7684\u5b9e\u73b0\u4f7f\u5f97\u6211\u4eec\u53ef\u4ee5\u5728\u914d\u7f6e\u6587\u4ef6\u4e2d\u4f7f\u7528\u65b0\u5b9e\u73b0\u7684\u7f51\u7edc\u5c42":30,"python\u7684":20,"python\u811a\u672c\u91cc\u5b9a\u4e49\u4e86\u6a21\u578b\u914d\u7f6e":39,"query\u6539\u5199":55,"rate\u4e3a0":55,"rate\u4e3a5":55,"rate\u88ab\u8bbe\u7f6e\u4e3a0":47,"recommendation\u6587\u4ef6\u5939\u5185\u5b58\u653e\u8bad\u7ec3\u6587\u4ef6":42,"research\u5b9e\u9a8c\u5ba4\u641c\u96c6\u6574\u7406":51,"resnet\u6a21\u578b":49,"return":[3,10,11,14,15,18,25,28,30,42,48,50,52],"rnn\u5373\u65f6\u95f4\u9012\u5f52\u795e\u7ecf\u7f51\u7edc":25,"rnn\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u65f6\u95f4\u6b65\u901a\u8fc7\u4e86\u4e00\u4e2alstm\u7f51\u7edc":25,"rnn\u603b\u662f\u5f15\u7528\u4e0a\u4e00\u65f6\u523b\u9884\u6d4b\u51fa\u7684\u8bcd\u7684\u8bcd\u5411\u91cf":27,"rnn\u6a21\u578b":50,"rnn\u76f8\u5173\u6a21\u578b":32,"rnn\u914d\u7f6e":26,"search\u7684\u65b9\u6cd5":36,"sentences\u662f\u53cc\u5c42\u65f6\u95f4\u5e8f\u5217\u7684\u6570\u636e":25,"seq\u53c2\u6570\u5fc5\u987b\u4e3afals":27,"server\u4e2a\u6279\u6b21\u6253\u5370\u65e5\u5fd7\u8fdb\u5ea6":36,"sh\u6765\u8bad\u7ec3\u6a21\u578b":47,"sh\u8c03\u7528\u4e86":48,"short":[10,11,14],"simd\u6307\u4ee4\u63d0\u9ad8cpu\u6267\u884c\u6548\u7387":17,"size\u4e3a1":55,"size\u4e3a50":55,"size\u4e3a512":36,"size\u53ef\u80fd\u4f1a\u5bf9\u8bad\u7ec3\u7ed3\u679c\u4ea7\u751f\u5f71\u54cd":17,"size\u5927\u5c0f\u4e3a128":54,"size\u662f3":55,"size\u672c\u8eab\u662f\u795e\u7ecf\u7f51\u7edc\u7684\u8d85\u53c2\u6570":17,"size\u7684\u503c":3,"softmax\u5c42":46,"softmax\u6fc0\u6d3b\u7684\u8f93\u51fa\u7684\u548c\u603b\u662f1":30,"sparse\u8bad\u7ec3\u9700\u8981\u8bad\u7ec3\u7279\u5f81\u662f":17,"srl\u4f5c\u4e3a\u5f88\u591a\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4efb\u52a1\u4e2d\u7684\u4e2d\u95f4\u6b65\u9aa4\u662f\u5f88\u6709\u7528\u7684":53,"static":10,"step\u51fd\u6570\u4e2d\u7684memori":27,"step\u51fd\u6570\u5185\u90e8\u53ef\u4ee5\u81ea\u7531\u7ec4\u5408paddlepaddle\u652f\u6301\u7684\u5404\u79cdlay":27,"subseq\u7684\u6bcf\u4e2a\u5143\u7d20\u662f\u4e00\u4e2a0\u5c42\u5e8f\u5217":24,"super":30,"swig_paddle\u4e2d\u7684\u9884\u6d4b\u63a5\u53e3\u7684\u53c2\u6570\u662f\u81ea\u5b9a\u4e49\u7684c":5,"tag\u5206\u522b\u4e3a":20,"test\u548cgen\u8fd9\u4e09\u4e2a\u6587\u4ef6\u5939\u662f\u56fa\u5b9a\u7684":55,"tflops\u4e86":33,"trainer\u8fdb\u7a0b\u4f1a\u8c03\u7528dataprovider\u51fd\u6570\u8fd4\u56de\u6570\u636e":39,"trainer\u8fdb\u7a0b\u53ef\u4ee5\u5229\u7528\u8fd9\u4e2a\u89e3\u91ca\u5668\u6267\u884cpython\u811a\u672c":39,"true":[7,9,10,11,12,14,15,16,17,25,28,30,38,48,52,53,54,55],"true\u8868\u793a\u53cd\u5411\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":28,"try":[12,16,17,52],"type\u662fon":52,"ubuntu\u7684deb\u5b89\u88c5\u5305\u7b49":21,"ubuntu\u90e8\u7f72paddlepaddl":21,"update\u53c2\u6570\u65f6\u624d\u6709\u6548":36,"utf8\u7f16\u7801":46,"uts\u7b49linux":40,"v2\u4e4b\u540e\u7684\u4efb\u4f55\u4e00\u4e2a\u7248\u672c\u6765\u7f16\u8bd1\u8fd0\u884c":19,"var":20,"vocab\u4e2d\u6bcf\u4e2a\u5207\u5206\u5355\u8bcd\u7684\u9884\u671f\u8bc4\u7ea7":54,"vocab\u505a\u4e3a\u5b57\u5178":54,"void":30,"volume\u6302\u8f7d\u5230\u5bb9\u5668\u4e2d":40,"w0\u548c":48,"wbias\u662f\u9700\u8981\u5b66\u4e60\u7684\u53c2\u6570":48,"while":[7,9,14,16,42,55],"words\u5373\u4e3a\u8fd9\u4e2a\u6570\u636e\u4e2d\u7684\u5355\u5c42\u65f6\u95f4\u5e8f\u5217":25,"words\u662f\u539f\u59cb\u6570\u636e\u4e2d\u7684\u6bcf\u4e00\u53e5\u8bdd":25,"yaml\u6587\u4ef6\u4e2d\u5404\u4e2a\u5b57\u6bb5\u7684\u5177\u4f53\u542b\u4e49":42,"yaml\u6587\u4ef6\u63cf\u8ff0\u4e86\u8fd9\u6b21\u8bad\u7ec3\u4f7f\u7528\u7684docker\u955c\u50cf":42,"zero\u4e09\u79cd\u64cd\u4f5c":36,AGE:41,AWS:[40,43,44],Abs:[6,14],And:[9,10,12,14,16],But:[10,11,14,17],EOS:[10,14],For:[5,8,9,10,12,14,15,16,22,33],NFS:40,Not:[15,20],One:[9,10,11,14],QoS:41,TLS:15,That:[10,14,16],The:[3,7,8,9,10,11,12,14,15,16,30,42,50,52,53,55],Their:[10,14],Then:[10,52],There:[9,10,14,15],Use:[15,16],Used:[11,14],Using:54,WITH:29,With:[10,11,14],___embedding_0__:42,___embedding_1__:42,__init__:30,__list_to_map__:52,__main__:[5,48],__meta__:52,__name__:[5,48],__regression_cost_0__:42,__rnn_step__:28,_link:[11,14],_proj:[10,14],_recurrent_group:28,_res2_1_branch1_bn:48,_source_language_embed:[28,46],_target_language_embed:[28,46],abc:[10,14],abl:[10,14,15],about:[10,11,14,53,55],abov:[3,10,14,15,33],abs:[11,14],accept:[15,16,53],access:[10,11,14,15],accord:[9,10,14],accrod:[11,14],accuraci:9,acl:54,aclimdb:54,across:[10,14],act:[10,11,14,17,18,25,28,39],act_typ:50,activ:[4,10,11,39,50],activi:[11,14],actual:[10,14],adadelta:[12,17,50],adagrad:[12,50],adam:[12,15,50,54],adamax:12,adamoptim:[39,46,50,54,55],adapt:[9,12],add:[10,11,14,29,52],add_input:30,add_test:30,add_to:[10,14],add_unittest_without_exec:30,addbia:30,added:9,addit:[10,11,14],addrow:30,addto:[10,14],addtolay:[10,14],adversari:16,affect:[10,14],afi:3,after:[10,14],again:15,age:[42,52],agg_level:[10,14,24,25],aggreg:14,aggregatelevel:[10,14,24,25],aircraft:55,airplan:47,aistat:[10,14],alex:[10,14,54],alexnet_pass1:38,alexnet_pass2:38,algo_hrnn_demo:25,algorithm:[10,12,14,46,54,55],align:[10,11,14,55],all:[3,7,9,10,12,14,15,27,42,52,53,54],alloc:[7,14],allow:[15,50],allow_only_one_model_on_one_gpu:[35,36,38],almost:[11,14],alreadi:[17,22],also:[9,10,11,14,15,16,33,50],alwai:[10,11,14,16],amazon:41,ambigu:16,amd64:40,amend:29,analysi:[53,54],ani:[10,11,14,15,16],annot:53,annual:53,anoth:[10,14,15],anyth:[16,53],api:[14,15,33,39,42,45,54],api_pydataprovider2_sequential_model:8,api_trainer_config:52,apiserv:40,apivers:[40,41,42],apo:55,append:[3,16,25,28,42,52],appleyard:33,appli:[10,11,14],applic:[33,41],approach:[10,14,50],apt:[20,22,47],arbitrari:10,architectur:55,arg:[3,8,9,10,11,12,14,17,18,42,47,48,50,52,53,54],arg_nam:[10,14],argpars:42,args_ext:42,argument:[3,8,10,14,42,50,52,53],argumentpars:42,argv:48,around:[3,10,14],arrai:[5,10,14,16,48],arxiv:[10,11,14,54],aspect:14,aspect_ratio:14,assert:5,assign:10,associ:53,assum:[10,14],astyp:16,async:[12,35],async_count:[35,36],async_lagged_grad_discard_ratio:36,async_lagged_ratio_default:[35,36],async_lagged_ratio_min:[35,36],atla:19,atlas_root:19,attenion:[11,14],attent:[10,11,14,55],attr:[7,11,14],attribut:[4,10,11],auc:[9,35],author:40,authorized_kei:34,auto:[30,33],automat:[10,14,15,55],automaticli:[10,14],automobil:47,averag:[9,10,12,14,53],average_test_period:[35,36,53],averagepool:[10,14],avg:[13,14,33,50],avgcost:[9,50,52,54,55],avgpool:[10,14,24,50],avoid:33,avx:20,await:41,awar:15,azur:40,b2t:46,b363:41,b8561f5c79193550d64fa47418a9e67ebdd71546186e840f88de5026b8097465:41,backward:[10,11,14,30],backward_first:28,backwardactiv:30,bag:50,baidu:[10,14,20,29,41],balasubramanyan:54,bank:53,bardward:[11,14],bare:[40,41],barrierstatset:33,base:[6,12,14,15],baseactiv:[10,11,14],basematrix:30,basenam:9,basepool:[13,14],basepoolingtyp:[10,11,14],baseregular:12,basestr:[7,8,9,10,11,14,52],bash:[31,41,42],basic:10,batch:[9,10,11,12,14,15,18,34,41,42,47,48,50,52,54,55],batch_0:48,batch_norm:[10,14],batch_norm_lay:11,batch_norm_typ:[10,14],batch_read:16,batch_siz:[12,17,18,34,39,46,47,50,52,54,55],batchsiz:[10,14,30],bcd:[10,14],beam:[10,28,55],beam_gen:[10,28],beam_search:[27,28],beam_siz:[10,28,35,36,38],beamsiz:55,becaus:[10,14,15,16,25],been:53,befor:[10,11,14,16,17,52],begin:[9,10],beginiter:15,beginn:28,beginpass:15,begintrain:15,being:16,belong:[10,14],below:[10,14,16],benefit:[11,14],bengio:[10,14],bertolami:54,besid:[10,14],best:[8,10,14,52],best_model_path:53,besteffort:41,beta1:12,beta2:12,beta:48,better:[10,11,14],between:[10,12,14,55],bgr:48,bi_gru:14,bi_lstm:[11,14],bia:[10,11,12,14,30,39,48],bias:[10,14],bias_attr:[10,11,14,17,18,25,28],bias_param:17,bias_param_attr:[11,14],biases_:30,biasparameter_:30,biassiz:30,bidi:41,bidirect:[11,14,53,54],bidirectional_gru:14,bidirectional_lstm:14,bidirectional_lstm_net:54,bilinear:[10,14],bilinear_interp:14,bilinear_interpol:[10,14],bilinearfwdbwd:33,bin:[22,34,40,41,42,52],binari:[9,10,14,50],bird:47,bitext:55,blank:[10,14],bleu:55,block:[10,14],block_expand:[10,14],block_i:[10,14],block_x:[10,14],bn_attr:14,bn_bias_attr:[11,14],bn_layer_attr:11,bn_param_attr:[11,14],bollen:54,bool:[7,9,10,11,12,14,30,36,38,50,52,54],boot:[10,27,28],boot_bia:10,boot_bias_active_typ:10,boot_lay:[10,25,28],boot_with_const_id:10,bos_id:[10,28],both:[7,10,11,14,15],bottom:50,bound:14,bow:50,box:14,branch:[10,14,15,29],brelu:[6,14],brendan:54,bryan:54,buffer:16,buffered_read:16,build:[20,42,43,44,55],build_doc:31,built:33,bunk:54,cach:[17,50,52,53],cache_pass_in_mem:[3,17,50,52,53],cachetyp:[3,17,50,52,53],calc_batch_s:[3,53],calcul:[9,10,11,12,14],call:[10,11,14,15,33,42,50],callabl:10,callback:30,calrnn:25,caltech:47,can:[7,8,9,10,11,14,15,16,33,50],can_over_batch_s:[3,53],candid:[10,14],caption:55,card:34,care:[11,14,16],cat:[20,42,47,48,54],categori:[10,14,50],categoryfil:41,ccb2_pc30:55,cde:[10,14],ceil:[10,14],ceil_mod:[10,14],cell:[10,11,14],ceph:40,certif:[15,40],cfg:41,chanc:15,chang:[10,16,54],channel:[10,14,33],char_bas:52,check:[3,14,17,22,29,30,36],check_eq:30,check_fail_continu:3,check_l:30,check_sparse_distribution_batch:[35,36],check_sparse_distribution_in_pserv:[35,36],check_sparse_distribution_ratio:[35,36],check_sparse_distribution_unbalance_degre:[35,36],checkgrad:36,checkgrad_ep:36,checkout:29,chpasswd:20,chunk:9,chunk_schem:9,chunktyp:9,cifar:47,cifar_vgg_model:47,clang:29,class1:54,class2:54,class_dim:54,classic:[10,14],classif:[10,14,50,54,55],classifi:[9,48],classification_cost:[14,17,25,39,47,50],classification_error_evalu:[50,54,55],classification_threshold:9,clean:17,client:40,clip:[7,12,14,36,50],clock:[10,14],close:[3,16],cluster:[15,34,40,42],cluster_train:34,cmake:[17,19,31,33],cmakelist:30,cmd:20,cna:[10,14],cnn:[41,50],code:[3,5,14,15,16,29,30,41,52],coded_stream:17,codedinputstream:17,coeff:[10,14],coeffici:[10,14],collect:[10,14],collectbia:30,color:[47,48],column:[9,10,14,16],com:[10,11,14,20,22,29,40,41,48],combin:[10,11,14,52],command:[30,38,41,42,43,44],commandlin:[33,42],comment:[11,14,25,42,50],commit:41,common_util:[34,52],compil:22,complet:[10,11,14,41,42],complex:[11,14,16],complic:[10,14],compos:15,comput:[10,11,14,15,53,54],conat:14,conat_lay:10,concat:[10,14,55],concat_lay:28,concaten:[11,14],concept:15,concern:15,condit:[10,14,41],conf:[5,10,14,17,25,34,46,48,55],conf_paddle_gradient_num:42,conf_paddle_n:42,conf_paddle_port:42,conf_paddle_ports_num:42,conf_paddle_ports_num_spars:42,config:[7,10,11,14,18,30,34,35,36,38,39,40,41,42,47,50,52,53,54,55],config_:36,config_arg:[35,36,38,48,50,53,54],config_bas:14,config_fil:53,config_gener:[34,52],config_lay:30,config_pars:[5,30],configprotostr:17,configur:[8,10,14,30,46,48,55],confront:55,conll05st:53,conll:53,connect:[11,14,41,50],connectionist:[10,14,54],connor:54,consequ:[10,11,14],consid:[9,10,12,14],consider:[11,14],consist:[10,14,16],construct:[15,52],construct_featur:52,contain:[3,8,9,10,11,14,15,41,42,50],context:[3,10,11,14,28,40],context_attr:[11,14],context_len:[10,11,14,50,52],context_proj_layer_nam:11,context_proj_nam:14,context_proj_param_attr:[11,14],context_project:[11,14,52],context_start:[10,11,14,50],contrast:[10,14],control:[7,14,41,55],conv:[11,14],conv_act:[11,14],conv_attr:14,conv_batchnorm_drop_r:[11,14],conv_bias_attr:[11,14],conv_filter_s:[11,14],conv_layer_attr:11,conv_num_filt:[11,14],conv_op:[10,14],conv_oper:14,conv_pad:[11,14],conv_param_attr:[11,14],conv_project:14,conv_shift:[10,14],conv_strid:[11,14],conv_with_batchnorm:[11,14],conveni:15,convert:[3,5,16,50,52],convex_comb:14,convlay:[10,14],convolut:[10,11,14,39],convoper:[10,14],convtranslay:[10,14],copi:[15,52],core:[7,14],corpora:55,corpu:53,correct:[9,10,14],correctli:9,correspoind:15,correspond:15,corss_entropi:15,cos:[10,14],cos_sim:[14,52],cosin:[10,14],cost:[12,14,15,18,39,52,54,55],cost_id:10,could:[9,10,14,15,16],couldn:22,count:[16,33,36,38,41,52,53,54,55],cpickl:52,cpp:[17,25,29,30,33,42,50,52,55],cpu:[3,7,10,14,20,22,33,38,41,42,53],cpuinfo:20,crash:33,creat:[7,10,14,15,30,41,42],create_bias_paramet:30,create_input_paramet:30,createfromconfigproto:5,crf:[10,14,53],crf_decod:[10,14],critic:54,crop:48,crop_siz:48,cross:[10,14,17,50],cross_entropi:[14,15],cross_entropy_cost:14,cross_entropy_with_selfnorm:14,cross_entropy_with_selfnorm_cost:14,crt:40,csc:30,cslm:55,csr:30,ctc:[10,14],ctc_layer:9,ctrl:[34,52],ctx:53,ctx_0:53,ctx_0_slot:53,ctx_n1:53,ctx_n1_slot:53,ctx_n2:53,ctx_n2_slot:53,ctx_p1:53,ctx_p1_slot:53,ctx_p2:53,ctx_p2_slot:53,cub:47,cuda:[22,33,34,36],cuda_dir:[35,36],cuda_so:[17,20],cuda_visible_devic:17,cudaconfigurecal:33,cudadevicegetattribut:33,cudaeventcr:33,cudaeventcreatewithflag:33,cudafre:33,cudagetdevic:33,cudagetdevicecount:33,cudagetdeviceproperti:33,cudagetlasterror:33,cudahostalloc:33,cudalaunch:33,cudamalloc:33,cudamemcpi:33,cudaprofilerstart:33,cudaprofilerstop:33,cudaprofilestop:33,cudaruntimegetvers:33,cudasetdevic:33,cudasetupargu:33,cudastreamcr:33,cudastreamcreatewithflag:33,cudastreamsynchron:33,cudeviceget:33,cudevicegetattribut:33,cudevicegetcount:33,cudevicegetnam:33,cudevicetotalmem:33,cudnn:[10,14],cudnn_batch_norm:[10,14],cudnn_conv:[10,14],cudnn_conv_workspace_limit_in_mb:[35,36],cudnn_dir:[35,36],cudnnavg:14,cudnnmax:14,cudnnv5:19,cudrivergetvers:33,cuinit:33,cumul:[10,14],curl:40,current:[3,10,12,14,40,50],current_word:28,currentcost:[9,50,52,54,55],currentev:[9,50,52,54,55],curv:15,custom:15,custom_batch_read:16,cyclic:[10,14],dalla:3,dan:53,darwin:40,dat:[34,52],data:[3,8,11,12,14,15,17,22,25,34,35,36,39,41,42,43,46,47,48,50,52,53,54,55],data_config:5,data_dir:[46,47,54,55],data_fil:18,data_initialz:50,data_lay:[3,9,17,18,25,28,39,47,50,52,53],data_provid:8,data_read:16,data_reader_creator_random_imag:16,data_server_port:[35,36],data_sourc:8,data_typ:14,datadim:[10,14],datalay:[10,14],dataprovid:[2,8,17,18,28,34,39,42,50,52,53],dataprovider_:50,dataprovider_bow:50,dataprovider_emb:50,dataproviderconvert:5,datasci:[10,14],dataset:[16,48,50,51,54,55],datasourc:[4,52],date:53,db_lstm:53,dcudnn_root:19,deb:22,debug:14,decai:12,decid:[15,16],declar:[10,11,14],decod:[10,11,14,27,28,55],decoder_boot:28,decoder_group_nam:28,decoder_input:28,decoder_mem:28,decoder_prev:[11,14],decoder_s:28,decoder_st:[11,14,28],deconv:[10,14],deconvolut:[10,14],decor:3,deep:[10,14,33,47,48],deer:47,def:[3,5,10,14,15,16,17,18,25,28,30,42,48,50,52,53],defalut:[10,14],default_decor:42,default_devic:38,default_valu:38,defin:[3,8,9,10,11,14,15,16,17,50,52],define_py_data_sources2:[3,8,17,18,39,47,48,50,52],defini:55,definit:46,degre:[10,14],del:52,delar:50,delimit:[9,52],demo:[5,10,20,28,34,41,42,43,46,47,48,50,52,54,55],dens:[10,14,52],dense_vector:[3,5,14,18,52],deriv:[14,15],descent:[10,12,14],describ:[15,41,50],descript:42,design:[10,14],desir:41,detail:[7,10,11,12,14],detect:9,determin:[10,14],dev:[17,20,47,52,55],devel:20,develop:[29,55],deviat:[7,14],devic:[7,14,17,20,38],deviceid:38,devid:[10,14],dez:54,dfs:11,dict:[3,8,17,25,42,50,52,54,55],dict_dim:[17,25,54],dict_fil:[9,25,28,50,53],dict_nam:8,dictionai:50,dictionari:[3,8,9,10,15,17,50,55],dictrionari:50,dictsiz:55,differ:[8,9,10,14],digit:[10,14],dim:[30,46,54],dimens:[10,14,17,50],dimes:[10,14],din:52,dir:[34,48,52,53,54,55],direct:[10,11,14],directli:[11,14],directori:[33,41],disabl:17,discard:36,discount:[10,14],discuss:15,disput:55,dist_train:15,distanc:9,distribut:[10,14,36,43,44],distribute_test:[35,36],disucss:15,divid:12,diy_beam_search_prob_so:[35,36],dmkl_root:19,do_forward_backward:16,doc:[5,11,14,31,42],doc_cn:31,docker:[17,20,41,42,43,44],docker_build:15,docker_push:15,dockerfil:42,document:[11,14],documentari:3,doe:[11,14,16],doesn:[7,10,14,15,16],dog:[47,48],don:[11,14,15,16],done:[10,11,14,33,42],dot:55,dot_period:[36,38,42,47,52,54,55],dotmul_oper:14,dotmul_project:14,dotmuloper:[10,14],dotmulproject:[10,14],doubl:36,down:33,download:41,download_cifar:47,doxygen:29,dpkg:22,dpython_execut:17,dpython_include_dir:17,dpython_librari:17,drop_rat:[7,14,39],dropout:[7,10,14],dropout_lay:[10,14],dropout_r:[11,14],drwxr:41,dso_handl:22,dtoh:33,dtype:[5,18,48],dubai:55,due:52,dure:[3,10,14,50,55],dwith_gpu:19,dwith_profil:33,dwith_tim:33,dynam:[3,16],dynamic_cast:30,each:[3,9,10,14,16,50,52],each_feature_vector:14,each_meta:52,each_pixel_str:3,each_sequ:[10,14,24,25],each_time_step_output:14,each_timestep:[10,14,24],each_word:3,eaqual:[10,14],eas:16,easi:16,easier:[15,16],easili:[15,16],ec2:40,echo:[17,20,52,54],edit:9,editor:29,edu:[41,47],efg:[10,14],either:[10,14,15,50],electron:41,elem_dim:[10,14],element:[9,10,11,14,16],elif:[15,52],els:[10,15,20,25,30,48,50,52],emac:29,emb1:25,emb2:25,emb:[17,25,41,50],emb_group:25,emb_sum:17,embed:[10,14,15,46,52,54],embedding_lay:[17,25,28,50,52],embedding_nam:28,embedding_s:28,empir:[10,14],emplace_back:30,empti:[9,18],enabl:[7,14,33],enable_grad_shar:[35,36],enable_parallel_vector:36,enc_proj:[11,14,28],enc_seq:[11,14],enc_vec:28,encod:[11,14,25,55],encoded_proj:[11,14,28],encoded_sequ:[11,14,28],encoded_vector:28,encoder1:25,encoder1_expand:25,encoder1_rep:25,encoder2:25,encoder2_rep:25,encoder_last:10,encoder_proj:28,encoder_s:28,end:[9,10,14,16,28,53,54],end_pass:15,enditer:15,endpass:15,endtrain:15,english:[10,14,55],ensembl:[11,14],entir:[10,11,14],entropi:[10,14,50],enumer:[10,14,17,50,52],env:[17,29,42],environ:[15,17,33,41],eol:29,eos:[10,14],eos_id:[10,14,28],epsilon:12,equal:[10,11,12,14,25],equat:[10,11,12,14],equival:[10,14,15],error:[7,9,10,12,14,15,17,36,50,52,54,55],error_clipping_threshold:[7,14,25],errorr:9,especi:[11,14],essenc:15,essenti:[10,15],estim:[10,14,15],eta:41,etc:[12,16,20,55],eth0:[34,39,42],eval:[9,50,52,54,55],eval_bleu:55,evalu:[4,10,14,33,34,39,52,54,55],evaluate_pass:54,evaluator_bas:9,even:[15,16],event:41,event_handl:15,everi:[9,10,11,14,15],exactli:[9,10,11,14],exampl:[8,9,10,11,12,14,16,48,50],exc_path:17,exceed:10,except:52,excluded_chunk_typ:9,exconv:[10,14],exconvt:[10,14],exe:40,exist:[15,16,54],exit:41,exp:[6,14],expand:[10,14,24],expand_a:[10,14,24,25],expand_lay:25,expand_level:[10,14,24],expandconvlay:[10,14],expandlevel:[10,14,24],expect:[10,14],explain:9,explan:[10,14],explicit:30,explicitli:15,explor:10,exponenti:14,expos:20,express:15,extend:52,extens:12,extern:[35,36],extra:[10,11,14],extraattr:[7,14,38,39],extraattribut:14,extraattributenon:14,extract:[10,14,46,48,53],extract_fea_c:48,extract_fea_pi:48,extralayerattribut:[7,10,11,14,25],extralayeroutput:11,extrapaddl:14,extrem:10,f1205:17,f120da72:41,fa0wx:41,fabric:34,facotr:[10,14],factor:[7,10,12,14],fail:[17,22,36,41],fake_imag:16,fals:[7,9,10,11,12,14,16,17,18,25,28,30,38,41,46,50,52,53,54,55],false_label:16,false_read:16,faq:45,fast:[10,14,33],faster:[10,11,14],fbd1f2bb71f4:41,fc1:[30,38],fc2:38,fc3:38,fc4:38,fc_act:[11,14],fc_attr:[11,14],fc_bias_attr:[11,14],fc_layer:[17,18,25,38,39,50,52],fc_layer_nam:11,fc_name:14,fc_param:17,fc_param_attr:[11,14],fclayer:30,fdata:[25,53],fea:48,fea_output:48,feat:54,featur:[3,10,14,29,48,50,52,53],feature_a:17,feature_b:17,feature_map:52,feed:[11,14,15],fernan:54,festiv:3,few:16,fewer:10,fg0:[10,14],field:[10,14,52],figur:[15,46,55],file1:55,file2:55,file:[3,9,10,14,15,16,48,50,51,52,54,55],file_list:3,file_nam:[18,25,48,50,53],filenam:[3,17,52],filer:[10,14],fill:[10,14,50],filter:[10,14],filter_s:[10,11,14,39],filter_size_i:[10,14],find:[10,12,14,22],fine:[7,14],finish:41,first:[10,14,15,50,52],first_seq:[14,28],firstseen:41,fix:[7,14],flexiabl:16,flexibl:[10,11,14,15],flight:55,float32:[5,16,18,48],floor:[10,14],fly:50,folder:55,follow:[9,10,11,12,14,15,16,43,44,52],forbid:15,forget:[12,15],form:[11,12,14],format:[9,29,30],former:15,formula:[10,11,14],formular:[10,14],forward:[11,14,30],forwardactiv:30,forwardtest:5,found:[10,14],frame:9,framework:[15,50],french:55,frequent:16,frog:47,from:[3,5,10,11,14,16,17,18,20,27,33,39,41,46,47,50,52,53,54,55],from_sequ:24,from_timestep:[10,14,24],fromfil:[16,18,48],fulfil:33,full:[10,14],full_matrix_project:[11,14,25,28,39],fulli:[14,50],fullmatrixproject:[10,14],fully_matrix_project:[11,14],fullyconnectedlay:30,func:3,further:10,fusion:52,gain:[10,14],gamma:48,gan:15,gate:[10,11,14],gate_act:[10,11,14,25],gate_recurr:[10,14],gather:[10,52],gauss:[7,14],gce:40,gcepersistentdisk:40,gdebi:22,gen:[10,55],gen_conf:55,gen_data:55,gen_result:55,gen_trans_fil:28,gender:[42,52],gener:[3,9,10,11,14,15,16,33,38,42,46,50,55],generatedinput:[27,28],genr:[42,52],gereat:9,get:[3,10,11,14,20,22,30,41,47,50,52,53,54],get_batch_s:53,get_best_pass:54,get_config_arg:[38,50,52,54],get_data:[41,50,53],get_imdb:54,get_input_lay:30,get_model:48,get_output:14,get_output_attr:14,get_output_layer_attr:11,get_sample_from_lin:17,getbatchs:30,getenv:[15,42],gethostbynam:42,gethostnam:42,getidmap:42,getinput:30,getinputgrad:30,getinputvalu:30,getoutputgrad:30,getoutputvalu:30,getparameterptr:30,getpodlist:42,getsiz:30,gettranspos:30,getw:30,getweight:30,getwgrad:30,gildea:53,gist:[11,14],git:29,github:[10,11,14,22,48],give:3,given:[16,50],global:[7,12,14,15,33,52],global_learning_r:[7,14],globalstat:33,globalstatinfo:33,globe:3,glusterf:40,goe:[10,11,14],good:[10,14,16],goodfellow13:[10,14],googl:[15,17],googleapi:40,gpu:[7,10,12,14,17,20,22,33,38,48,53,54,55],gpu_id:[17,36,38],gpugpu_id:35,grad:36,grad_share_block_num:[35,36],gradient:[7,9,10,12,14,36,50],gradient_clipping_threshold:[7,12,14,50,54],gradient_serv:39,gradientmachin:[5,42,52,55],gradientserv:39,gram:46,graph:10,grave:54,greater:[10,14],grep:[20,54],groudtruth:28,ground:[9,10,14,55],group:[11,14],group_id:52,group_input:[25,28],grouplen:51,gru:[10,14,50],gru_attr:14,gru_bias_attr:[11,14],gru_decod:28,gru_decoder_with_attent:28,gru_encoder_decod:[46,55],gru_group:14,gru_layer_attr:11,gru_memori:[11,14],gru_siz:50,gru_step:[14,28],gru_step_lay:[11,28],gru_unit:14,grumemori:[11,14,28],gserver:[10,30],gsizex:33,guid:41,gur_group:[11,14],gzip:41,hadoop:15,handl:[15,16],handwrit:54,harvest:50,has:[10,11,12,14,15,33,50,53],hassubseq:25,have:[9,10,11,14,15,16],head:54,header:[18,48,52],height:[10,14,16,30],hello:15,help:5,helper:[8,10,11,14],here:[7,10,11,14,15,16],heurist:[10,55],hidden1:39,hidden2:39,hidden:[10,11,14,17,52],hidden_a:17,hidden_b:17,hidden_dim:25,hidden_s:[11,14,52],hierach:27,hierarch:[10,14,25],high:[7,14],him:15,hint:5,hl_dso_load:22,hl_get_sync_flag:30,hold:15,home:[34,41,42],hook2:25,hook:[25,52,53],horizont:[10,14],hors:47,horst:54,host:[20,34,41],hostpath:[40,41,42],hot:50,hous:3,how:[7,10,14,15],howardjohnson:25,howev:[11,14,16],howto:42,hppl:14,hsigmoid:14,html:[31,47],htod:33,http:[10,11,14,22,29,40,41,47,48,51,55],huber:[10,14],huber_cost:14,huge:[10,14],huina:54,hyper:[10,14],i0601:52,i0706:55,i0719:55,i1116:42,i1117:33,ib0:34,icwsm:54,id_input:[9,28],idea:[10,14,16],ident:14,identity_project:14,identityoffsetproject:[10,14],identityproject:[10,14],idmap:42,ids:[9,10,14,17,50,52],idx:30,ieee:54,ignor:[3,9],ijcnlp:54,ilsvrc:48,imag:[14,15,16,20,41,42,43,44,47,48,55],image_a:16,image_b:16,image_classif:47,image_fil:16,image_lay:16,image_list_provid:48,image_nam:15,image_path:16,image_provid:47,image_reader_cr:16,image_s:48,imageri:[10,14],images_reader_cr:16,imdber:54,img:[3,10,14,39,47],img_cmrnorm:14,img_conv:14,img_conv_bn_pool:14,img_conv_group:14,img_conv_lay:11,img_norm_typ:10,img_pool:14,img_pool_lay:11,img_siz:47,imgsiz:33,imgsizei:33,imgsizex:33,immutable_paramet:15,implement:[10,11,12,14],importerror:52,inarg:5,inc_path:17,includ:[10,11,14,15,33],incorrect:[10,14],increas:17,incupd:30,inde:16,independ:[10,14],index:[9,10,14,25,31,52],indexslot:10,indic:[9,10,14],infer:15,infiniband:34,info:[9,10,14,25,30,34,42],inform:9,inherit:14,ininst:15,init:[7,14,30,42,52,53],init_hook:[25,50,52,53],init_hook_wrapp:8,init_model_path:[35,36,38,46,50,53],initi:[3,7,10,14,36,50],initial_max:[7,14,17],initial_mean:[7,10,14,17],initial_min:[7,14,17],initial_std:[7,10,14,17],initpaddl:5,inlcud:[11,14],inner:[17,25],inner_:25,inner_mem:25,inner_param_attr:[11,14],inner_rnn_output:25,inner_rnn_st:25,inner_rnn_state_:25,inner_step:25,inner_step_impl:25,input1:[10,11,14],input2:[10,14],input:[3,9,10,11,14,16,17,18,24,25,27,28,30,38,39,42,46,47,50,52,53,55],input_data:30,input_data_target:30,input_featur:14,input_fil:[18,53],input_hassub_sequence_data:30,input_id:[10,14],input_imag:[11,14,47],input_index:30,input_label:30,input_lay:[10,30],input_nam:15,input_sequence_data:30,input_sequence_label:30,input_sparse_float_value_data:30,input_sparse_non_value_data:30,input_t:30,input_typ:[17,18,25,28,50,52],inputdef:30,inputlayers_:30,insid:[9,10,14,16],instal:[17,20,22,29,34,41,47,52],instanc:[10,12,14],instead:[10,14,16],int32:[36,39],integ:[3,9,10,14,50],integer_sequ:17,integer_valu:[3,17,25,50],integer_value_sequ:[3,25,28,50,53],integer_value_sub_sequ:25,integr:53,inter:[10,14],intercept:[10,14],interfac:[7,10,11,14,34],intergr:[10,14],intern:[10,11,14],interpol:[10,14],interpret:9,invalid:16,invok:[3,10,14,33,52],iob:9,ioe:9,ip_str:42,ipc:40,ips:42,ipt:[10,14,17,25,28],ipython:15,is_async:12,is_gener:[10,46,55],is_kei:52,is_layer_typ:10,is_predict:[50,52,54],is_seq:[10,28,52],is_sequ:52,is_stat:[7,14],is_test:[48,53,54],is_train:3,isinst:5,ispodallrun:42,isspars:30,item:[10,14,16,42],iter:[3,10,11,12,14,15,16],its:[3,9,10,11,14,15,22,33],itself:[11,14],jeremi:33,jie:[53,54],jmlr:[10,14],job:[9,34,35,36,38,40,42,48,50,53,54,55],job_dispatch_packag:34,job_mod:46,job_nam:42,job_namespac:42,job_path:42,job_path_output:42,job_workspac:34,jobnam:42,jobpath:42,jobselector:42,johan:54,join:25,joint:55,jointli:[11,14,55],journal:[53,54],jpg:48,json:[34,41,52],jth:[11,14],just:[9,10,11,14],jypyt:15,k8s:42,k8s_job:15,k8s_token:15,k8s_train:42,k8s_user:15,kaim:[10,14],kaimingh:48,kebilinearinterpbw:33,kebilinearinterpfw:33,keep:[10,14],kei:[3,33,40,42,52],kernel:[10,14,20],key1:36,key2:36,keyword:42,kind:[15,40,41,42],kingsburi:53,know:[11,14,15],kriz:47,ksimonyan:[11,14],kube:40,kube_cluster_tl:15,kube_ctrl_start_job:15,kube_list_containers_in_job_and_return_current_containers_rank:15,kubeadm:40,kubectl:[40,41,42],kubernet:[15,32,34,42,43,44],kubernetes_service_host:15,kwarg:[3,9,10,11,12,14,25,50,52,53],l1_rate:[7,14],l2_rate:[7,14],l2regular:[39,47,50,54],label:[3,9,10,12,14,16,17,18,25,39,41,47,48,50,52,53,54],label_dict:53,label_dim:[10,14,25,50],label_fil:[16,53],label_lay:[10,16],label_list:53,label_path:16,label_slot:53,labeledbow:54,labelselector:42,lag:36,lake:3,lambda_cost:14,lambdacost:[10,14],lambdarank:[10,14],languag:[10,14,46],larg:[14,55],larger:[7,9,10,12,14],last:[9,10,11,14,24,25],last_seq:[14,25],last_time_step_output:10,lastseen:41,later:50,latest:[10,14,17,20,41,42],launcher:15,layer1:[10,11,14,24],layer2:[10,14,24],layer3:[10,14],layer:[4,5,7,9,11,16,24,27,28,30,39,48,50,52,53],layer_0:30,layer_attr:[10,14,28,38,39],layer_num:[38,48],layer_s:[10,14],layer_typ:[10,14],layerbas:30,layerconfig:30,layergradutil:30,layermap:30,layeroutput:[9,11,39,52],layers_test:17,lbl:[9,47],ld_library_path:[22,34],learn:[7,9,10,11,12,14,15,16,33,35,47,48,53,54,55],learnabl:[10,14],learning_method:[12,18,39,46,47,50,52,54,55],learning_r:[7,12,14,17,18,39,46,47,50,52,54,55],least:[9,10,14],left:[10,14],leman:55,len:[3,10,14,25,28,30,42,50,52,53],length:[10,11,14,41],less:[10,14,15],less_than:15,let02:41,let:[10,14,15],level:[7,10,14,27],lib64:[17,20,22,34,36],lib:[19,22],lib_path:17,libcuda:[17,20],libjpeg:47,libnvidia:[17,20],libprotobuf:17,librari:[10,14,22,34,36],like:[9,10,14,16,48],limit:[10,17,33],line:[3,9,17,25,38,50,52,53],line_count:17,linear:[6,10,14],linear_comb:[10,14],linearactiv:[10,18],linguist:53,link:[10,11,14,27,54],linux:40,lipeng:46,lipton:54,list:[2,3,8,9,10,11,14,15,18,34,38,39,47,48,50,52,53,54,55],lium:55,liwicki:54,load:[10,14,15,18,42,48,52,53,54,55],load_data_arg:5,load_featur:48,load_feature_c:48,load_feature_pi:48,load_missing_parameter_strategi:[35,36,38,46,53],loadparamet:5,loadsave_parameters_in_pserv:[35,36],local:[7,14,19,22,34,35,36,42],localhost:40,localip:42,log:[6,14,17,30,34,36,41,42,47,52,53,54,55],log_barrier_abstract:[35,36],log_barrier_lowest_nod:[35,36],log_barrier_show_log:[35,36],log_clip:[35,36],log_error_clip:[35,36],log_period:[36,38,41,42,47,50,52,53,54,55],log_period_serv:[35,36],logarithm:14,logger:[3,25],logist:50,look:[3,9,50],loop:16,loss:[10,14,50],low:[10,14],lst:52,lstm:[10,14,25,28,41,50],lstm_attr:14,lstm_bias_attr:[11,14],lstm_cell_attr:[11,14],lstm_group:[11,14,25],lstm_group_input:25,lstm_input:25,lstm_last:25,lstm_layer_attr:[11,25],lstm_nest_group:25,lstm_output:25,lstm_size:50,lstm_step:[11,14],lstmemori:[11,14,25,28],lstmemory_group:[10,14,25],lstmemory_unit:14,ltr:[10,14],mac:20,machan:[11,14],machin:[10,11,12,14,27,54,55],mai:[8,9,10,14,16],main:5,maintain:[10,20],major:55,make:[3,10,14,15,16,22,30,33,54],mandarin:[10,14],mani:[10,11,14],manufactur:55,mao:54,map:[10,14,15,52],mapreduc:15,marcu:54,mark:[14,53],mark_slot:53,market:54,martha:53,mask:[7,10,14],master:[15,40,54],mat_param_attr:[11,14],math:[11,14,30,33],matirx:[10,14],matplotlib:47,matrix:[9,10,11,14,30],matrixptr:30,max:[7,10,13,14,33,38,52],max_id:14,max_length:[10,28],max_siz:14,max_sort_s:[10,14],maxid:[9,10,14],maxid_lay:9,maxim:[10,14],maximum:9,maxinum:14,maxout:[10,14],maxpool:[10,14,24],mayb:[10,11,14],mean:[7,9,10,11,12,14,16,17,36,48,50,52],mean_img_s:47,mean_meta:48,mean_meta_224:48,mean_valu:48,mechan:[10,11,14],meet:53,mem:25,member:15,memcpi:33,memori:[11,14,28,33,41,50],memory_threshold_on_load_data:[35,36],mere:[11,14],mergedict:[46,55],messag:41,meta:[34,47,48,52],meta_config:[34,52],meta_fil:52,meta_gener:[34,52],meta_path:47,meta_to_head:52,metadata:[41,42],metal:40,metaplotlib:15,method:[3,8,10,11,12,14,52,55],metric:35,mfs:42,might:[10,14],min:[7,14,33,38,52],min_pool_s:[3,17,39],min_siz:14,mini:[10,14],mini_batch:16,minibatch:[10,14],minikub:40,minim:12,minimum:[10,14],miss:53,mix:[11,14,39],mixed_attr:14,mixed_bias_attr:[11,14],mixed_lay:[11,25,28,39,53],mixed_layer_attr:11,mixedlayertyp:10,mkdir:20,mkl:19,mkl_root:19,ml_data:[34,52],mnist:[3,5,16],mnist_model:5,mnist_provid:3,mnist_random_image_batch_read:16,mnist_train:[3,16],mnist_train_batch_read:16,mod:53,mode:[10,14,42,54],model:[10,11,12,14,38,39,46,47,50,52,53,54,55],model_averag:12,model_config:5,model_list:[36,38,53,54],model_output:54,model_path:38,model_zoo:[46,48],modelaverag:12,modelconfig:14,modul:[3,8,11,14,17,18,39,47,48,50,52],modulo:[10,14],momentum:[7,12,14,17,50],momentumoptim:[18,47],mon:41,mono:[10,14],month:55,mood:54,moosef:40,more:[9,10,11,14,15,16,17,33],morin:[10,14],mose:[54,55],moses_bleu:55,mosesdecod:54,most:[10,15,16],mountpath:[41,42],move:[10,14],movi:[3,52],movie_featur:52,movie_head:52,movie_id:[42,52],movie_meta:52,movie_nam:52,movielen:51,moving_average_fract:[10,14],mpi:34,mse:10,much:[10,14,16],mul:30,multi:[10,14,48,55],multi_binary_label_cross_entropi:14,multi_binary_label_cross_entropy_cost:14,multi_crop:48,multinomi:[10,14],multipl:[9,10,11,14,15],multipli:[9,10,14],must:[9,10,11,14,16,22,30],my_cool_stuff_branch:29,mypaddl:[41,42],name:[3,7,8,9,10,11,14,15,17,18,20,25,28,30,33,38,39,40,41,42,43,44,47,50,52,55],namespac:[30,40,41,42],nano:29,nativ:[10,14],nce:14,nchw:[10,14],ndcg:[10,14],ndcg_num:[10,14],necessari:[10,14,50],need:[10,11,14,15,17,33,42,50],neg:[3,9,10,14,50,53,54],neg_distribut:[10,14],net:[10,11,14,20,54],net_conf:54,net_diagram:48,network:[4,5,7,9,10,12,15,16,25,34,38,42,46,47,48,52,53,54,55],network_config:38,neural:[10,11,12,14,15,25,27,46,52,53,54,55],neuralnetwork:[10,14],never:[14,16,41,42],next:[3,10],nic:[34,35,36,39,42],nlp:10,nmt:55,nnz:30,no_cach:3,no_sequ:[3,52],noah:54,noavx:20,node0:42,node:[10,14,40,41,42],node_0:42,node_1:42,node_2:42,nodefil:34,nois:[10,14],non:[10,14],none:[3,5,7,8,9,10,11,12,14,15,18,28,48,50],norm:14,norm_by_tim:[10,14],normal:[10,11,14,20,41,42,48],notat:[10,14],note:[7,10,11,12,14,15,16,22,54],noth:14,novel:54,now:[10,14,27],ntst1213:55,ntst14:55,nullptr:[22,30],num:[10,14,34,36,53,54,55],num_channel:[10,11,14,39,47],num_chunk_typ:9,num_class:[10,11,14,47],num_filt:[10,11,14,39],num_gradient_serv:[35,36,39,42],num_group:[10,14],num_neg_sampl:[10,14],num_parameter_serv:15,num_pass:[18,35,36,38,41,42,50,52,53,54,55],num_repeat:[10,14],num_result:9,num_results_per_sampl:10,number:[9,10,14,16,55],numchunktyp:9,numdevices_:38,numlogicaldevices_:38,numofallsampl:9,numofwrongpredict:9,numpi:[16,18,48],numsampl:33,numtagtyp:9,nvidia:[17,20],obj:[3,8,17,18,39,47,48,50,52],object:[3,7,8,9,10,11,12,14,15,33,50,52],observ:12,occup:[42,52],oct:41,odd:[10,14],off:[19,22],offset:[10,14,52],often:[9,14],ograd:30,omit:[17,50],on_init:3,onc:10,one:[3,8,9,10,11,12,14,15,16,50,53,54],one_host_dens:52,one_hot_dens:52,onli:[9,10,11,14,15,25,27],onlin:[12,16],open:[3,10,14,15,16,17,18,25,31,48,50,52,53],openbla:19,openblas_root:19,openssh:20,oper:[10,11,12,14,39],opinion:54,opt:[15,19,42],optim:[4,7,14,17,39],option:[9,10,14,15],order:[10,11,14,16,42],org:[10,11,14,51],organ:[10,14],origin:[10,14,29],other:[9,10,11,12,14,50,52],otherchunktyp:9,otherwis:[8,10,14,15,16],our:15,out:[10,14,15,25,27,28,39,47],out_left:[10,14],out_mem:28,out_prod:14,out_right:[10,14],out_size_i:[10,14],out_size_x:[10,14],outer:[14,25],outer_mem:25,outer_rnn_st:25,outer_rnn_state_:25,outer_step:25,output:[7,9,10,14,15,16,17,18,25,28,34,38,39,41,42,46,47,48,50,52,53,54],output_:[10,14],output_dir:48,output_fil:53,output_id:[10,14],output_lay:48,output_max_index:14,output_mem:[10,14,28],outputh:[10,14],outputw:[10,14],outsid:[3,10,11,14],outv:30,over:[10,11,14,15],packag:[14,17],pad:[10,14],pad_c:[10,14],pad_h:[10,14],pad_w:[10,14],padding_attr:[10,14],padding_i:[10,14],padding_x:[10,14],paddl:[3,5,6,7,8,9,10,11,12,13,14,15,17,18,20,22,29,30,31,33,34,38,39,41,42,46,47,50,52,53,54,55],paddle_n:[34,42],paddle_output:41,paddle_port:[34,42],paddle_ports_num:[34,42],paddle_ports_num_for_spars:34,paddle_ports_num_spars:42,paddle_process_by_paddl:42,paddle_pserver2:34,paddle_root:46,paddle_server_num:42,paddle_source_root:46,paddle_ssh:20,paddle_ssh_machin:20,paddle_train:[34,42],paddledev:[17,20,41,42],paddlepaddl:[10,11,12,14,16,17,20,22,28,29,33,34,39,43,44,46,53],pair:9,palmer:53,paper:[10,14,55],para:46,paraconvert:46,parallel:[33,38,41,42,55],parallel_nn:[7,14,35,36],param:[7,10,14,52],param_attr:[10,11,14,17,18,28],paramattr:[7,10,14,17,18,28],paramet:[4,9,10,11,12,14,16,36,39,42,52,53,54,55],parameter_attribut:[10,14],parameter_block_s:[35,36],parameter_block_size_for_spars:[35,36],parameter_learning_r:[7,14],parameter_nam:15,parameter_serv:15,parameterattribut:[7,10,11,14],parameterclient2:42,parametermap:30,parameters_:30,parameterset:15,parametris:12,paramutil:52,paraphras:[46,55],paraphrase_data:46,paraphrase_model:46,paraphrase_modeldata:46,paraspars:30,parent:10,pars:[14,52],parse_config:5,parse_known_arg:42,parse_network:14,parsefromstr:17,parser:42,part:[14,52,54],partial:[10,14],pass:[3,8,10,14,16,17,18,33,36,38,41,42,47,50,52,53,54,55],pass_idx:16,passtyp:30,past:15,path:[9,16,22,34,36,40,41,42,53,54],pattern:[52,54],paul:53,pave:55,pdf:[10,11,14],pem:15,penn:53,per:[10,16],perform:[10,11,14,33,35],period:[36,53,54,55],perl:[54,55],permitrootlogin:20,peroid:[10,14],persistentvolum:40,persistentvolumeclaim:40,person:15,pickl:52,picklabl:8,pid:40,piec:[10,11,14],pillow:47,pip:[17,29,34,47,52],pixel:[3,10,14,39],pixels_float:3,pixels_str:3,place:3,plain:[9,10,14],pleas:[7,10,11,12,14,15,16,17,22,42],plot:[15,47],plotcurv:47,png:47,pnpairvalid:35,pod:[40,41,42],podip:42,podlist:42,point:33,poll:54,pool3:30,pool:[4,11,39,52],pool_attr:[11,14],pool_bias_attr:[11,14],pool_layer_attr:11,pool_pad:[11,14],pool_siz:[3,10,11,14,39],pool_size_i:[10,14],pool_strid:[11,14],pool_typ:[10,11,14],pooling_lay:[11,17,50,52],pooling_typ:[10,14,17,24,50],poolingtyp:14,port:[34,35,36,39,41,42],port_num:35,ports_num:[36,39,42],ports_num_for_spars:[35,36,38,39,42],pos:[52,54],posit:[3,9,10,14,50],positive_label:9,posix:40,possibl:15,potenti:33,power:[10,14],practic:[8,10,14],pre:[10,11,14,15,46,54,55],pre_dictandmodel:46,precis:9,pred:[50,53],predetermin:10,predic:53,predicate_dict:53,predicate_dict_fil:53,predicate_slot:53,predict:[3,5,9,12,14,17,34,39,46,47,48,50,52,53,54],predict_fil:[35,36],predict_output_dir:[35,36,50],predict_sampl:5,predin:47,prefer:40,prefetch:30,pregrad:30,premodel:46,prepar:43,preprocess:[34,46,47,50,52,54,55],present:15,prev_batch_st:[35,36],prevent:[12,15],previou:[10,11,14],primari:14,principl:15,print:[5,7,14,15,18],printallstatu:33,printer:9,printstatu:33,priorbox:14,prite:9,prob:9,probabilist:[10,14,46],probabl:[9,10,14],problem:[10,12,14,15],proc:20,proce:16,proceed:[10,14,53],process2:25,process:[3,7,8,10,11,12,14,15,17,18,25,28,39,42,50,52,53],process_predict:50,process_test:8,process_train:8,processdata:[47,48],processor:33,produc:[11,14,16],product:14,productgraph:41,profil:33,proflier:33,prog:42,program:[15,16,33,42],proj:[10,14],project:[10,11,14,39],promis:[10,11,14],prone:15,prop:53,propag:12,properli:50,proposit:53,protect:30,proto:14,protobuf:17,provid:[8,10,14,15,17,18,25,35,39,50,52,53],prune:10,pserver:[34,35,36,39,42],pserver_num_thread:[35,36],pseudo:15,psize:30,pull:20,purpos:33,push:42,push_back:30,put:50,py_paddl:[5,20],pydataprovid:[17,39],pydataprovider2:[3,5,18,39,42,52],pydataproviderwrapp:8,pyramid:[10,14],pyramid_height:[10,14],python:[8,14,15,17,29,30,34,46,47,48,52,53,54,55],pythonpath:[17,47],pzo:54,queri:[10,14,55],question:[10,14,15],quick:41,quick_start:[41,43,50],quick_start_data:41,quickstart:41,ramnath:54,ran:33,rand:[33,36,38,53],random:[7,10,14,16,18],rang:[10,14,16,42,50],rank:[10,14,15,48,50],rank_cost:14,rare:3,rate:[7,9,12,14,34,42,52],ratio:[14,36],raw:[10,14],raw_meta:52,rdma_tcp:[35,36],read:[3,15,16,18,48,50,52],read_from_realistic_imag:15,read_from_rng:15,read_mnist_imag:15,read_next_from_fil:17,read_ranking_model_data:15,reader_creator_bool:16,reader_creator_random_imag:16,reader_creator_random_imageand_label:16,readi:41,readm:[52,54],real:16,real_process:3,realist:15,reason:[10,11,14,15,41],rebas:29,recal:9,receiv:8,recognit:[10,14,48,54],recommend:[11,14,15,34,42,52],record:[52,53],recordio:15,rectangular:[10,14],recurr:[14,25,26,53,54],recurrent_group:[11,14,25,27,28],recurrent_lay:11,recurrentgroup:9,reduc:12,ref:52,refer:[7,8,10,11,12,14,19],referenc:10,reference_cblas_root:19,refine_unknown_arg:42,regex:52,register_gpu_profil:33,register_lay:30,register_timer_info:33,registri:41,regress:[9,14],regression_cost:[14,18,52],regular:[7,12,14,39,47,50,54],rel:[11,14],relat:[8,52],releas:[22,40,53],relu:[6,10,14],reluactiv:10,remot:[7,14,29,34,36,38],reorgan:[10,14],repeat:[10,14],repo:29,repres:[10,12,14,50],represent:50,request:[41,55],requir:[9,10,14,15,34,52],res5_3_branch2c_bn:48,res5_3_branch2c_conv:48,res:53,research:[10,14,47],reserveoutput:30,reset:[10,14],reshap:[14,16],reshape_s:[10,14],residu:48,resnet_101:48,resnet_152:48,resnet_50:48,resolv:41,respons:[10,14,41],rest:[10,14],restart:41,restartpolici:[41,42],resu:16,result:[3,9,10,14,33,50,55],result_fil:[9,28],ret_val:52,return_seq:[11,14],reus:16,reveal:15,revers:[10,11,14,27,28],review:[29,41,54],reviews_electronics_5:41,rewrit:55,rgb:[10,14],rgen:54,rho:12,right:[10,14],rmsprop:[12,50],rmspropoptim:52,rnn:[10,11,14,27,28,35,54],rnn_bias_attr:28,rnn_layer_attr:28,rnn_out:28,rnn_state:25,rnn_state_:25,rnn_step:10,rnn_use_batch:[35,36],robot:47,roce:20,role:[15,53,54],roman:54,root:[12,14,20,34,41,42,46],root_dir:34,rot:[10,14],rotat:[10,14],routin:52,routledg:54,row:[9,10,14],row_id:[10,14],rstrip:42,rtype:52,run:[15,17,20,33,34,41,42,43,44,52],runinitfunct:[33,42],runtim:[3,17],s_fusion:52,s_id:52,same:[3,8,9,10,11,14,15,25,50],samping_id:[10,14],sampl:[3,9,14,50,52,54,55],sample_id:9,sample_num:9,sampling_id:14,santiago:54,save:[3,10,14,41,52,53,54,55],save_dir:[18,36,38,41,42,47,50,52,53,54,55],save_only_on:[35,36],saving_period:[35,36,42],saving_period_by_batch:[35,36,38],saw:3,sbin:20,scalar:[10,14],scale:[10,14,52],scaling_project:14,scalingproject:[10,14],scatter:10,scheduler_factor:[7,14],scheme:[9,12],schmidhub:54,schwenk:55,scienc:54,score:[9,10,14,52],script:31,seaplane_s_000978:47,search:[10,28,55],seat:55,second:[10,14,15,16,50,52],sed:[20,54],see:[10,11,14,15,17,50],seed:[33,36],segment:9,sel_fc:[10,14],select:[10,14],selectiv:[10,14],selective_fc:14,selector:41,self:30,selfnorm:[10,14],semant:[15,53,54],semantic_role_label:28,semat:15,sen_len:53,sens:10,sent:[15,41],sent_id:28,sentanc:17,sentenc:[3,10,25,28,53],sentence_last_state1:25,sentence_last_state2:25,sentiment:[3,53,54],sentiment_data:54,sentiment_net:54,sentimental_provid:3,sentimental_train:3,separ:[9,50,52],seq:[10,14,25,52],seq_concat:14,seq_pool:[10,14,24],seq_reshap:14,seq_text_print:9,seq_to_seq_data:[46,55],seq_typ:52,seqlastin:25,seqtext_printer_evalu:28,seqtoseq:[10,17,28,46,55],seqtoseq_net:[10,28,46,55],sequel:3,sequenc:[3,9,10,11,14,17,25,27,50,52,54,55],sequence_conv_pool:[14,50],sequence_layer_group:[10,25],sequence_nest_layer_group:[10,25],sequencegen:25,sequencesoftmax:[6,14],sequencestartposit:[10,14],sequencetextprint:9,sequencetyp:3,sequenti:[10,14,53],seri:[11,14,25,54],server:[15,20,34,36,39,40,42],set:[3,7,9,10,11,14,15,17,18,25,28,33,34,39,41,46,47,48,50,52,53,54,55],set_active_typ:30,set_default_parameter_nam:[7,14],set_drop_r:30,set_siz:30,set_typ:30,settotalbyteslimit:17,setup:[30,50],sever:[10,14],sgd:[12,15,18,34,35,54],shape:[10,14],share:[10,14,53],shared_bia:[11,14],shared_bias:[10,14],ship:47,shold:54,should:[9,10,12,14,15,16,27],should_be_fals:15,should_be_tru:15,should_shuffl:[3,25,53],show:[12,14,53,54,55],show_check_sparse_distribution_log:[35,36],show_layer_stat:[35,36],show_parameter_stats_period:[35,36,38,41,53,54,55],shown:[9,10,14,15],shuf:[17,52],shuffl:17,side:[10,14],sigint:34,sigmoid:[6,10,14],sigmoidactiv:[10,11,25],similar:[10,14,16,52],similarli:[10,14],simpl:[9,10,11,14,42],simple_attent:[14,28],simple_gru2:14,simple_gru:[14,50],simple_img_conv_pool:[14,39],simple_lstm:[10,14,50],simple_rnn:[10,28],simpli:[10,14,15],simplifi:15,sinc:[10,14,16],singl:[9,11,12,14],size:[3,9,10,11,12,14,16,17,18,25,28,30,39,47,48,50,52,54,55],size_a:[10,14],size_b:[10,14],size_t:30,skip:[16,18,48],sleep:42,slide:12,slope:[10,14],slope_intercept:14,slot:[52,53],slot_dim:52,slot_nam:52,slottyp:52,small_messag:[35,36],small_vgg:47,smaller:[10,14],smith:54,snap:41,sock_recv_buf_s:[35,36],sock_send_buf_s:[35,36],socket:42,softmax:[6,10,11,14,15,17,28,30,50],softmax_param:17,softmax_param_attr:[11,14],softmax_selfnorm_alpha:[10,14],softmaxactiv:[17,25,28,39,50],softrelu:[6,14],solv:15,some:[7,10,12,14,15],someth:[10,14],sometim:[12,16],sort:[10,14,42,52,54],sourc:[8,10,14,16,55],source_dict_dim:28,source_language_word:28,space:9,space_seperated_tokens_from_dictionary_according_to_seq:9,space_seperated_tokens_from_dictionary_according_to_sub_seq:9,spars:[7,10,12,14,17,30,34,36,38,50],sparse_binary_vector:[3,17,50],sparse_float_vector:3,sparse_upd:[7,14,17],sparse_vector:17,sparseparam:30,sparseprefetchrowcpumatrix:30,spatial:[10,14],spec:[41,42],special:10,specifi:[9,10,14,15,22,50],speech:[10,14],speed:[11,14],sphinx:31,split:[3,10,14,25,34,50,52,53],spp:[10,14],squar:[6,10,12,14],squarerootn:[13,14],squarerootnpool:[10,14],srand:36,src:[42,55],src_backward:28,src_dict:[17,28],src_dict_path:17,src_embed:28,src_forward:28,src_id:28,src_root:5,src_word_id:28,srl:53,ssd:14,ssh:[20,34],sshd:20,sshd_config:20,sstabl:15,stabl:40,stacked_lstm_net:54,stacked_num:54,stackexchang:[10,14],stake:55,standard:[7,14],stanford:41,stanh:[6,14],start:[10,14,17,36,41,42],start_paddl:42,start_pass:[35,36],start_pserv:[35,36],startpaddl:42,stat:[33,36,53,54,55],state:[10,11,14,27,41],state_act:[10,11,14,25],statfulset:42,staticinput:[10,27,28],statist:[10,14],statset:33,statu:[9,29,33,41,42],status:41,std:[30,36],stderr:34,stdout:34,step:[10,11,12,14,25,27,28],stepout:25,stochast:12,stock:54,stop:[10,20],storag:40,store:[9,10,14,50,52],str:[38,42],strategi:[14,36,53],street:[10,14,53],strict:16,stride:[10,14],stride_i:[10,14],stride_x:[10,14],string:[3,8,9,10,14,30,36,39],strip:[17,25,50,52,53],structur:50,stub:[10,14],stun:3,style:[10,14,29],sub:[9,10,14,15],sub_sequ:3,subgradi:12,subnet:15,subobjectpath:41,subseq:[24,27],subsequenceinput:[10,25],succeed:41,success:41,successfulcr:41,sudo:[22,47],suffic:16,suggest:[10,14],sum:[9,10,12,13,14],sum_cost:14,sum_to_one_norm:[10,14],sumpool:[10,14,17],support:[7,9,10,12,14,16,20,25],support_hppl:14,sure:[22,54],swap_channel:48,swig_paddl:5,symbol:10,syncflag:30,synchron:12,syntax:16,sys:48,system:[17,54],t2b:46,tab:50,tabl:[10,14],table_project:14,tableproject:[10,14],tag:9,tagtyp:9,tainer_id:42,take:[3,9,10,11,14,15],tanh:[6,10,11,14,30],tanhactiv:[10,11,25,28,39],target:[10,14,55],target_dict_dim:28,target_language_word:28,targetinlink:[10,25],task:[9,10,14,53],tbd:[25,31],tconf:54,tcp:[36,39],tcp_rdma:39,team:20,tear:33,tee:[41,47,52,53,54,55],tellig:54,templat:[41,42],tempor:[10,14],tensor:[10,14],term:[10,11,14],termin:41,tesh:53,test:[2,3,8,9,10,14,15,16,30,33,34,36,38,39,47,48,50,52,53,54,55],test_all_data_in_one_period:[41,47,52,53,54],test_compar:17,test_comparespars:17,test_comparetwonet:17,test_comparetwoopt:17,test_config_pars:17,test_data:[5,55],test_fcgrad:30,test_gpuprofil:33,test_layergrad:30,test_list:[3,8,17,18,39,47,50],test_networkcompar:17,test_part_000:54,test_pass:[35,36,38,55],test_period:[35,36,38],test_predict:17,test_pydataprovid:17,test_pydataprovider2:17,test_pydataproviderwrapp:17,test_ratio:52,test_recurrent_machine_gener:17,test_recurrentgradientmachin:[17,25],test_swig_api:17,test_train:17,test_traineronepass:17,test_wait:[35,36],testa:15,testb:15,testbilinearfwdbwd:33,testconfig:30,tester:[52,55],testfcgrad:30,testfclay:30,testlayergrad:30,testq:15,testutil:30,text:[3,9,11,14,15,46,50,54,55],text_conv:50,text_conv_pool:[14,52],text_fil:54,tflop:33,than:[7,9,10,11,12,14,17],thei:[15,33],them:[11,14,15,16,33,50,52],therein:[10,14],thi:[3,7,8,9,10,11,12,14,15,16,33,50,52,54],thing:3,think:15,third:[10,14],those:53,thread:33,thread_local_rand_use_global_se:[35,36],threadid:38,threadloc:33,three:[9,10,12,14,16,48],threshold:[7,9,12,14,36],through:[10,14],throughput:33,thu:[10,14],tier:41,time:[10,11,14,15,16,25,33,36,41,42,54],timelin:[10,14],timer:33,timestamp:[10,14],timestep:[10,14],titl:[42,52],tmp:3,to_your_paddle_clone_path:31,todo:[9,11,14],toend:[10,14],togeth:[10,11,14],token:[9,10,15,28,54],tool:[31,42],top:[9,14,48],top_k:[9,14],topolog:[14,15],toronto:47,total:[9,16,33,41,55],total_pass:16,touch:54,tourist:55,track:10,tractabl:10,tradit:[10,14],train:[2,3,7,8,9,10,12,14,17,18,22,34,36,38,39,41,42,43,44,46,47,48,50,52,53,54,55],train_arg:42,train_args_dict:42,train_args_list:42,train_conf:[46,55],train_config_dir:42,train_data:55,train_list:[3,8,17,18,39,47,48,50],train_part_000:54,trainabl:[10,14],trainer:[3,5,15,18,30,36,38,39,42,52,53,54,55],trainer_config:[2,3,5,18,34,41,42,50,52,54],trainer_config_help:[3,6,7,8,9,10,11,12,13,17,18,30,39,47,52],trainer_count:[17,35,36,38,41,42,52,53,54,55],trainer_id:[36,42],trainerconfighelp:17,trainerid:42,trainerintern:[50,52,55],tran:[10,14,30],trans_full_matrix_project:14,transact:54,transform:[10,14],transform_param_attr:[11,14],translat:[10,11,14,46,55],transpos:[10,14],transposedfullmatrixproject:[10,14],travel:[3,11],travi:29,treat:[10,14],tree:[10,14,42],trg:55,trg_dict:28,trg_dict_path:28,trg_embed:28,trg_id:28,trg_ids_next:28,trn:50,truck:47,true_imag:16,true_label:16,true_read:16,truth:[9,10,14,55],tst:50,tune:[7,14,35],tupl:[8,10,11,14,16],ture:[10,14],turn:[10,16,27],tutori:[41,43,44,46,55],tweet:54,twitter:54,two:[10,11,14,15,16,33,50],txt:[3,30,34,40,50,52,54],type:[3,9,10,11,12,14,15,16,18,25,30,38,41,48,50,52,53],type_nam:[10,52],typic:9,ubyt:16,ufldl:[10,14],uid:41,unconstrain:54,undeterminist:33,uniform:[7,10,14,16],uninstal:17,uniqu:15,unique_ptr:30,unit:[10,11,14],unittest:17,univ:55,unix:34,unk:[46,55],unk_idx:[50,53],unknown:[10,14],unseg:[10,14],unsup:54,unsupbow:54,until:42,unus:52,updat:[7,10,12,14,20,29,34,38],updatecallback:30,upgrad:17,upstream:29,url:54,urls_neg:54,urls_po:54,urls_unsup:54,usag:[9,10,11,14,42,52],use:[7,8,9,10,11,12,14,15,33,42,48,50,52,53,54,55],use_global_stat:[10,14],use_gpu:[5,17,35,36,38,41,42,47,48,50,52,53,54,55],use_jpeg:47,use_old_updat:[35,36],use_seq:[18,52],use_seq_or_not:52,used:[3,9,10,11,12,14,15,16,33,50,52,54],useful:[10,11,14],usegpu:30,usepam:20,user:[7,9,10,11,14,15,16,40,50,52],user_featur:52,user_head:52,user_id:[42,52],user_meta:52,user_nam:52,usernam:29,using:[7,8,10,14,15,16,22,53],usr:[17,19,20,22,34,36,42],usrdict:46,usrmodel:46,usual:[10,14,33],utc:51,util:[33,42,47,52],v28:[10,14],valid:16,valu:[3,5,7,9,10,12,14,30,38,42,48,50,53],value1:36,value2:36,vanilla:28,variabl:[10,14,15,41],varianc:[10,14],vec1:14,vec2:14,vector:[10,11,14,15,50,52],veri:[10,14,47],version:[10,11,14,20,22,33,35,36],versu:15,vertic:[10,14],vgg:[11,14,47],vgg_16_cifar:47,vgg_16_network:14,via:[16,22],view:[10,14],vim:29,vision:47,visipedia:47,visual:[10,14],vocab:54,volum:[40,41,42],volumemount:[41,42],wai:[10,11,14,15,55],wait:[12,42],wall:53,want:[3,10,11,14,15,16],warn:[10,14,17,42],warp:[10,14],warp_ctc:14,wbia:48,wei:[53,54],weight:[9,10,11,12,14,30,48],weight_act:[11,14],weightlist:30,weights_:30,weights_t:30,wether:[10,14],what:[7,10,11,12,14,50],when:[3,7,9,10,12,14,33],where:[10,11,12,14,15],whether:[9,10,11,14,16,54],which:[9,10,11,12,14,15,16,50,52],whole:[3,9],whole_cont:52,why:[11,14,33],widht:16,width:[9,10,14,16,30,55],wiki:[10,14],wikipedia:[10,14],wilder:3,window:[10,14,20,40],wise:[10,14],with_avx:[19,22],with_doc:19,with_doubl:[19,22,30],with_dso:19,with_gpu:[19,22],with_metric_learn:22,with_predict_sdk:22,with_profil:33,with_python:[19,22],with_rdma:[19,22],with_style_check:19,with_swig_pi:19,with_test:19,with_tim:[19,22,33],within:10,without:[9,10,14,16,20],wmt14:55,wmt14_data:55,wmt14_model:55,won:25,wonder:3,word2vec:17,word:[3,9,10,17,25,27,50,53],word_dict:[25,50,53],word_dim:[25,50],word_id:[3,17],word_slot:53,word_vector:50,word_vector_dim:[28,46],work:[15,16,25,41,42],workspac:34,would:[16,53],wrapper:[11,14,33],write:[15,16,53],writelin:18,writer:15,wrong:16,wsj:53,wuyi:40,www:[10,14,47,55],xarg:[17,20,30],xgbe0:36,xgbe1:36,xiaojun:54,xrang:[16,18,30],xxbow:54,xxx:[15,48,55],yaml:[41,42],yes:20,yield:[3,15,16,17,18,25,28,50,52,53],you:[3,7,10,11,12,14,22,48,54],your:[10,14,15,17],your_host_machin:20,your_param_nam:17,your_repo:42,yuyang18:[11,14],zachari:54,zeng:54,zero:[7,10,12,14,36],zhou:[53,54],zip:[42,51],zoo:46},titles:["\u5173\u4e8ePaddlePaddle","API","DataProvider\u7684\u4ecb\u7ecd","PyDataProvider2\u7684\u4f7f\u7528","API\u4e2d\u6587\u624b\u518c","\u57fa\u4e8ePython\u7684\u9884\u6d4b","Activations","Parameter Attributes","DataSources","Evaluators","Layers","Networks","Optimizers","Poolings","Layers","PaddlePaddle Design Doc","Python Data Reader Design Doc","FAQ","\u7ecf\u5178\u7684\u7ebf\u6027\u56de\u5f52\u4efb\u52a1","PaddlePaddle\u7684\u7f16\u8bd1\u9009\u9879","\u5b89\u88c5PaddlePaddle\u7684Docker\u955c\u50cf","\u5b89\u88c5\u4e0e\u7f16\u8bd1","Ubuntu\u90e8\u7f72PaddlePaddle","\u65b0\u624b\u5165\u95e8","\u652f\u6301\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165\u7684Layer","\u5355\u53cc\u5c42RNN API\u5bf9\u6bd4\u4ecb\u7ecd","RNN\u76f8\u5173\u6a21\u578b","Recurrent Group\u6559\u7a0b","RNN\u914d\u7f6e","\u5982\u4f55\u8d21\u732e\u4ee3\u7801","\u5b9e\u73b0\u65b0\u7684\u7f51\u7edc\u5c42","\u5982\u4f55\u8d21\u732e/\u4fee\u6539\u6587\u6863","\u8fdb\u9636\u6307\u5357","GPU\u6027\u80fd\u5206\u6790\u4e0e\u8c03\u4f18","\u8fd0\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3","\u53c2\u6570\u6982\u8ff0","\u7ec6\u8282\u63cf\u8ff0","\u8bbe\u7f6e\u547d\u4ee4\u884c\u53c2\u6570","\u4f7f\u7528\u6848\u4f8b","\u57fa\u672c\u4f7f\u7528\u6982\u5ff5","Kubernetes \u7b80\u4ecb","Kubernetes\u5355\u673a\u8bad\u7ec3","Kubernetes\u5206\u5e03\u5f0f\u8bad\u7ec3","<no title>","<no title>","PaddlePaddle \u6587\u6863","\u4e2d\u6587\u8bcd\u5411\u91cf\u6a21\u578b\u7684\u4f7f\u7528","\u56fe\u50cf\u5206\u7c7b\u6559\u7a0b","Model Zoo - ImageNet","\u5b8c\u6574\u6559\u7a0b","\u5feb\u901f\u5165\u95e8\u6559\u7a0b","MovieLens\u6570\u636e\u96c6","MovieLens\u6570\u636e\u96c6\u8bc4\u5206\u56de\u5f52\u6a21\u578b","\u8bed\u4e49\u89d2\u8272\u6807\u6ce8\u6559\u7a0b","\u60c5\u611f\u5206\u6790\u6559\u7a0b","\u6587\u672c\u751f\u6210\u6559\u7a0b"],titleterms:{"\u4e00\u4e9b\u7ec6\u8282\u7684\u8865\u5145":42,"\u4e0a\u4f20\u8bad\u7ec3\u6587\u4ef6":42,"\u4e0b\u8f7d\u4e0e\u89e3\u538b\u7f29":55,"\u4e0b\u8f7d\u548c\u6570\u636e\u62bd\u53d6":46,"\u4e0b\u8f7d\u548c\u8fd0\u884cdocker\u955c\u50cf":20,"\u4e0b\u8f7d\u5e76\u89e3\u538b\u6570\u636e\u96c6":52,"\u4e0b\u8f7d\u6570\u636e":41,"\u4e2d\u6587\u5b57\u5178":46,"\u4e2d\u6587\u77ed\u8bed\u6539\u5199\u7684\u4f8b\u5b50":46,"\u4e2d\u6587\u8bcd\u5411\u91cf\u6a21\u578b\u7684\u4f7f\u7528":46,"\u4e2d\u6587\u8bcd\u5411\u91cf\u7684\u9884\u8bad\u7ec3\u6a21\u578b":46,"\u4e3a\u4ec0\u4e48\u9700\u8981\u6027\u80fd\u5206\u6790":33,"\u4ec0\u4e48\u662f\u6027\u80fd\u5206\u6790":33,"\u4ecb\u7ecd":[46,48],"\u4ee3\u7801\u8981\u6c42":29,"\u4efb\u52a1\u7b80\u4ecb":18,"\u4f18\u5316\u7b97\u6cd5":50,"\u4f18\u5316\u7b97\u6cd5\u914d\u7f6e":39,"\u4f7f\u7528":[29,41],"\u4f7f\u7528\u6700\u65b0\u7248\u672c\u66f4\u65b0\u4f60\u7684":29,"\u4f7f\u7528\u6848\u4f8b":38,"\u4f7f\u7528\u6982\u8ff0":50,"\u4f7f\u7528\u6a21\u578b\u521d\u59cb\u5316\u7f51\u7edc":38,"\u4f7f\u7528\u73af\u5883\u53d8\u91cf":42,"\u4f7f\u7528\u7528\u6237\u6307\u5b9a\u7684\u8bcd\u5411\u91cf\u5b57\u5178":46,"\u4f7f\u7528\u8bf4\u660e":32,"\u4f7f\u7528docker\u6784\u5efapaddlepaddle\u7684\u6587\u6863":31,"\u4f7f\u7528paddlepaddle\u751f\u6210\u6a21\u578b":55,"\u4f7f\u7528paddlepaddle\u8bad\u7ec3\u6a21\u578b":55,"\u4fdd\u6301":29,"\u4fee\u6539\u4f60\u7684":29,"\u4fee\u6539\u542f\u52a8\u811a\u672c":41,"\u4fee\u6539\u6587\u6863":31,"\u514b\u9686":29,"\u5173\u4e8epaddlepaddl":0,"\u5185\u5b58\u4e0d\u591f\u7528\u7684\u60c5\u51b5":3,"\u5185\u7f6e\u5b9a\u65f6\u5668":33,"\u5199\u68af\u5ea6\u68c0\u67e5\u5355\u5143\u6d4b\u8bd5":30,"\u51c6\u5907\u5de5\u4f5c\u7a7a\u95f4":34,"\u51c6\u5907\u5e8f\u5217\u6570\u636e":28,"\u51c6\u5907\u6570\u636e":[18,52],"\u51c6\u5907\u96c6\u7fa4\u4f5c\u4e1a\u914d\u7f6e":34,"\u51cf\u5c11\u6570\u636e\u8f7d\u5165\u7684\u8017\u65f6":17,"\u51cf\u5c11dataprovider\u7f13\u51b2\u6c60\u5185\u5b58":17,"\u5206\u5272\u8bad\u7ec3":52,"\u5206\u5e03\u5f0f\u8bad\u7ec3":39,"\u521b\u5efajob":42,"\u521b\u5efapaddl":41,"\u5229\u7528\u66f4\u591a\u7684\u8ba1\u7b97\u8d44\u6e90":17,"\u5230":29,"\u5236\u4f5c\u955c\u50cf":42,"\u5236\u4f5cdocker\u955c\u50cf":41,"\u524d\u63d0\u6761\u4ef6":34,"\u52a0\u901f\u8bad\u7ec3\u901f\u5ea6":17,"\u5355\u5143\u6d4b\u8bd5":36,"\u5355\u53cc\u5c42rnn":25,"\u5377\u79ef\u6a21\u578b":50,"\u5377\u79ef\u795e\u7ecf\u7f51\u7edc":47,"\u53c2\u6570\u4fe1\u606f":48,"\u53c2\u6570\u5185\u5b58":17,"\u53c2\u6570\u670d\u52a1\u5668\u548c\u5206\u5e03\u5f0f\u901a\u4fe1":36,"\u53c2\u6570\u6982\u8ff0":35,"\u53c2\u6570\u8bfb\u53d6":48,"\u53c2\u8003":3,"\u53c2\u8003\u6587\u6863":54,"\u53c2\u8003\u8d44\u6599":33,"\u53cc\u5411lstm":54,"\u53cc\u5c42rnn":25,"\u53cc\u5c42rnn\u4ecb\u7ecd":27,"\u53cc\u5c42rnn\u7684\u4f7f\u7528":27,"\u53ef\u80fd\u7684\u5185\u5b58\u6cc4\u9732\u95ee\u9898":3,"\u53ef\u80fd\u9047\u5230\u7684\u95ee\u9898":22,"\u53ef\u9009\u529f\u80fd":46,"\u5411\u7cfb\u7edf\u4f20\u9001\u6570\u636e":50,"\u5411\u91cf":36,"\u542f\u52a8\u4efb\u52a1":42,"\u542f\u52a8\u96c6\u7fa4\u4f5c\u4e1a":34,"\u547d\u4ee4\u884c\u53c2\u6570":50,"\u548c":24,"\u56fe\u50cf\u5206\u7c7b\u6559\u7a0b":47,"\u5728\u4e0d\u540c\u8bbe\u5907\u4e0a\u6307\u5b9a\u5c42":38,"\u5728paddlepaddle\u5e73\u53f0\u8bad\u7ec3\u6a21\u578b":46,"\u57fa\u4e8epython\u7684\u9884\u6d4b":5,"\u57fa\u672c\u4f7f\u7528\u6982\u5ff5":39,"\u57fa\u672c\u539f\u7406":27,"\u5982\u4f55\u4e66\u5199paddlepaddle\u7684\u6587\u6863":31,"\u5982\u4f55\u5171\u4eab\u53c2\u6570":17,"\u5982\u4f55\u51cf\u5c11\u5185\u5b58\u5360\u7528":17,"\u5982\u4f55\u521d\u59cb\u5316\u53c2\u6570":17,"\u5982\u4f55\u52a0\u901fpaddlepaddle\u7684\u8bad\u7ec3\u901f\u5ea6":17,"\u5982\u4f55\u6307\u5b9agpu\u8bbe\u5907":17,"\u5982\u4f55\u66f4\u65b0www":31,"\u5982\u4f55\u6784\u5efapaddlepaddle\u7684\u6587\u6863":31,"\u5982\u4f55\u8d21\u732e":31,"\u5982\u4f55\u8d21\u732e\u4ee3\u7801":29,"\u5982\u4f55\u8fdb\u884c\u6027\u80fd\u5206\u6790":33,"\u5982\u4f55\u9009\u62e9sgd\u7b97\u6cd5\u7684\u5b66\u4e60\u7387":17,"\u5b50\u5e8f\u5217\u95f4\u65e0memori":25,"\u5b50\u5e8f\u5217\u95f4\u6709memori":25,"\u5b57\u6bb5\u914d\u7f6e\u6587\u4ef6":52,"\u5b89\u88c5":[22,50],"\u5b89\u88c5\u4e0e\u7f16\u8bd1":21,"\u5b89\u88c5\u6d41\u7a0b":21,"\u5b89\u88c5kubectl":40,"\u5b89\u88c5paddlepaddle\u7684docker\u955c\u50cf":20,"\u5b8c\u6574\u6559\u7a0b":49,"\u5b9e\u73b0\u65b0\u7684\u7f51\u7edc\u5c42":30,"\u5b9e\u73b0c":30,"\u5b9e\u73b0python\u5c01\u88c5":30,"\u5c06\u547d\u4ee4\u53c2\u6570\u4f20\u7ed9\u7f51\u7edc\u914d\u7f6e":38,"\u5c0f\u7ed3":3,"\u5de5\u5177":33,"\u5e38\u7528\u6a21\u578b":49,"\u5ea6\u91cf\u5b66\u4e60":36,"\u5f00\u53d1\u6807\u51c6":32,"\u5f02\u6b65\u968f\u673a\u68af\u5ea6\u4e0b\u964d":36,"\u5f15\u7528":53,"\u5feb\u901f\u5165\u95e8\u6559\u7a0b":50,"\u6027\u80fd\u4f18\u5316":32,"\u6027\u80fd\u5206\u6790\u5c0f\u6280\u5de7":33,"\u6027\u80fd\u5206\u6790\u5de5\u5177\u4ecb\u7ecd":33,"\u6027\u80fd\u8c03\u4f18":36,"\u6027\u80fd\u95ee\u9898":20,"\u603b\u4f53\u6548\u679c\u603b\u7ed3":50,"\u60c5\u611f\u5206\u6790\u6559\u7a0b":54,"\u6216\u8005\u662f":17,"\u627e\u5230\u7684pythonlibs\u548cpythoninterp\u7248\u672c\u4e0d\u4e00\u81f4":17,"\u62c9\u53d6\u8bf7\u6c42":29,"\u63a5\u53e3":48,"\u63a8\u5bfc\u65b9\u7a0b":30,"\u63a8\u9001":29,"\u63d0\u4ea4":29,"\u63d0\u4ea4\u955c\u50cf":41,"\u63d0\u53d6\u7535\u5f71\u6216\u7528\u6237\u7684\u7279\u5f81\u5e76\u751f\u6210python\u5bf9\u8c61":52,"\u652f\u6301\u53cc\u5c42\u5e8f\u5217\u4f5c\u4e3a\u8f93\u5165\u7684layer":24,"\u6570\u636e\u51c6\u5907":[47,52,55],"\u6570\u636e\u63cf\u8ff0":53,"\u6570\u636e\u63d0\u4f9b":53,"\u6570\u636e\u63d0\u4f9b\u5668":39,"\u6570\u636e\u63d0\u4f9b\u811a\u672c":52,"\u6570\u636e\u652f\u6301":36,"\u6570\u636e\u683c\u5f0f\u51c6\u5907":50,"\u6570\u636e\u6e90\u914d\u7f6e":39,"\u6570\u636e\u7684\u51c6\u5907\u548c\u9884\u5904\u7406":46,"\u6570\u636e\u96c6\u7279\u5f81":51,"\u6570\u636e\u9884\u5904\u7406":55,"\u6570\u6910\u4ecb\u7ecd":54,"\u6570\u6910\u51c6\u5907":54,"\u6574\u4f53\u65b9\u6848":42,"\u6587\u672c\u751f\u6210":55,"\u6587\u672c\u751f\u6210\u6559\u7a0b":55,"\u6587\u6863":45,"\u65b0\u624b\u5165\u95e8":23,"\u65f6\u5e8f\u6a21\u578b":50,"\u65f6\u5e8f\u6a21\u578b\u7684\u4f7f\u7528\u573a\u666f":3,"\u65f6\u95f4\u5e8f\u5217":25,"\u65f6\u95f4\u6b65":25,"\u672c\u5730\u6d4b\u8bd5":38,"\u672c\u5730\u8bad\u7ec3":38,"\u67e5\u770b\u8bad\u7ec3\u7ed3\u679c":41,"\u67e5\u770b\u8f93\u51fa":42,"\u6837\u4f8b\u6570\u636e":3,"\u6848\u4f8b\u4e00":38,"\u6848\u4f8b\u4e8c":38,"\u68c0\u67e5\u6a21\u578b\u8f93\u51fa":34,"\u68c0\u67e5\u96c6\u7fa4\u8bad\u7ec3\u7ed3\u679c":34,"\u6982\u8ff0":[24,27],"\u6a21\u578b":48,"\u6a21\u578b\u4e0b\u8f7d":48,"\u6a21\u578b\u68c0\u9a8c":18,"\u6a21\u578b\u7f51\u7edc\u7ed3\u6784":50,"\u6a21\u578b\u8bad\u7ec3":[47,55],"\u6a21\u578b\u8bc4\u4f30\u548c\u9884\u6d4b":52,"\u6a21\u578b\u914d\u7f6e":[25,32],"\u6a21\u578b\u914d\u7f6e\u7684\u6a21\u578b\u914d\u7f6e":25,"\u6ce8\u610f\u4e8b\u9879":[3,20],"\u6d4b\u8bd5":[36,53],"\u6d4b\u8bd5\u6587\u4ef6":52,"\u6d4b\u8bd5\u6a21\u578b":54,"\u7279\u5f81":53,"\u7279\u5f81\u63d0\u53d6":48,"\u72b6\u6001\u6700\u65b0":29,"\u751f\u6210\u5e8f\u5217":28,"\u751f\u6210\u6a21\u578b\u7684\u547d\u4ee4\u4e0e\u7ed3\u679c":55,"\u751f\u6210\u6d41\u7a0b\u7684\u4f7f\u7528\u65b9\u6cd5":27,"\u7528\u6237\u6587\u4ef6\u63cf\u8ff0":51,"\u7528\u6237\u81ea\u5b9a\u4e49\u6570\u636e\u96c6":55,"\u7528\u6237\u81ea\u5b9a\u4e49\u6570\u6910\u9884\u5904\u7406":54,"\u7535\u5f71\u6587\u4ef6\u63cf\u8ff0":51,"\u76f4\u63a5\u6784\u5efapaddlepaddle\u7684\u6587\u6863":31,"\u76f8\u5173\u6982\u5ff5":27,"\u77e9\u9635":36,"\u793a\u4f8b1":25,"\u793a\u4f8b2":25,"\u793a\u4f8b3":25,"\u793a\u4f8b4":25,"\u795e\u7ecf\u5143\u6fc0\u6d3b\u5185\u5b58":17,"\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\u914d\u7f6e":52,"\u795e\u7ecf\u7f51\u7edc\u914d\u7f6e":53,"\u7a00\u758f\u8bad\u7ec3":38,"\u7b80\u4ecb":[40,55],"\u7b80\u5355\u95e8\u63a7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc":28,"\u7c7b":30,"\u7cfb\u7edf\u6846\u56fe":39,"\u7ec3\u4e60":47,"\u7ec6\u8282\u63a2\u7a76":47,"\u7ec6\u8282\u63cf\u8ff0":36,"\u7ec8\u6b62\u96c6\u7fa4\u4f5c\u4e1a":34,"\u7ecf\u5178\u7684\u7ebf\u6027\u56de\u5f52\u4efb\u52a1":18,"\u7f16\u5199yaml\u6587\u4ef6":41,"\u7f16\u8bd1\u6d41\u7a0b":21,"\u7f16\u8bd1\u9009\u9879\u7684\u8bbe\u7f6e":19,"\u7f51\u7edc\u53ef\u89c6\u5316":48,"\u7f51\u7edc\u7ed3\u6784\u914d\u7f6e":39,"\u7f51\u7edc\u914d\u7f6e\u4e2d\u7684\u8c03\u7528":3,"\u81ea\u7136\u8bed\u8a00\u5904\u7406":36,"\u81f4\u8c22":0,"\u89c2\u6d4b\u8bcd\u5411\u91cf":46,"\u8bad\u7ec3":[36,52,53],"\u8bad\u7ec3\u5668\u914d\u7f6e\u6587\u4ef6":52,"\u8bad\u7ec3\u6a21\u578b":[18,50,54],"\u8bad\u7ec3\u6a21\u578b\u7684\u547d\u4ee4\u4e0e\u7ed3\u679c":55,"\u8bad\u7ec3\u6d41\u7a0b\u7684\u4f7f\u7528\u65b9\u6cd5":27,"\u8bad\u7ec3\u914d\u7f6e\u6587\u4ef6":39,"\u8bbe\u7f6e\u547d\u4ee4\u884c\u53c2\u6570":37,"\u8bc4\u5206\u6587\u4ef6\u63cf\u8ff0":51,"\u8bcd\u5411\u91cf\u6a21\u578b":50,"\u8bcd\u5411\u91cf\u6a21\u578b\u7684\u4fee\u6b63":46,"\u8bcd\u6c47\u8868":25,"\u8be6\u7ec6\u6559\u7a0b":33,"\u8bed\u4e49\u89d2\u8272\u6807\u6ce8\u6559\u7a0b":53,"\u8bf7\u6c42":29,"\u8bfb\u53d6\u53cc\u5c42\u5e8f\u5217\u6570\u636e":25,"\u8f93\u5165":27,"\u8f93\u5165\u4e0d\u7b49\u957f":25,"\u8f93\u5165\u793a\u4f8b":27,"\u8f93\u51fa":27,"\u8f93\u51fa\u65e5\u5fd7":50,"\u8fd0\u884c\u5206\u5e03\u5f0f\u8bad\u7ec3":34,"\u8fd0\u884c\u5bb9\u5668":41,"\u8fd0\u884cdocker":17,"\u8fdb\u884c\u8bad\u7ec3":41,"\u8fdb\u9636\u6307\u5357":32,"\u8fdc\u7a0b\u8bbf\u95ee\u95ee\u9898\u548c\u4e8c\u6b21\u5f00\u53d1":20,"\u9009\u62e9\u5b58\u50a8\u65b9\u6848":40,"\u901a\u7528":36,"\u903b\u8f91\u56de\u5f52\u6a21\u578b":50,"\u9047\u5230":17,"\u90e8\u7f72kubernetes\u96c6\u7fa4":40,"\u914d\u7f6e\u4e2d\u7684\u6570\u636e\u52a0\u8f7d\u5b9a\u4e49":50,"\u914d\u7f6e\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u67b6\u6784":28,"\u914d\u7f6ekubectl":40,"\u914d\u7f6ekubectl\u8bbf\u95ee\u4f60\u7684kubernetes\u96c6\u7fa4":40,"\u94a9\u5b50":29,"\u9644\u5f55":50,"\u968f\u673a\u6570":36,"\u96c6\u7fa4\u8bad\u7ec3":38,"\u975e\u6cd5\u6307\u4ee4":17,"\u9884\u5904\u7406":47,"\u9884\u5904\u7406\u547d\u4ee4\u548c\u7ed3\u679c":55,"\u9884\u5904\u7406\u5de5\u4f5c\u6d41\u7a0b":55,"\u9884\u6d4b":[47,48,50,53,54],"\u9884\u6d4b\u6d41\u7a0b":5,"\u9884\u6d4bdemo":5,"\u9884\u8bad\u7ec3\u7684\u6a21\u578b":55,"api\u4e2d\u6587\u624b\u518c":4,"api\u5bf9\u6bd4\u4ecb\u7ecd":25,"beam_search\u7684\u751f\u6210":25,"blas\u8def\u5f84\u76f8\u5173\u7684\u7f16\u8bd1\u9009\u9879":19,"bleu\u8bc4\u4f30":55,"bool\u578b\u7684\u7f16\u8bd1\u9009\u9879":19,"cmake\u6e90\u7801\u7f16\u8bd1":17,"cudnn\u7684\u7f16\u8bd1\u9009\u9879":19,"dataprovider\u7684\u4ecb\u7ecd":2,"dataprovider\u7684\u4f7f\u7528":3,"gpu\u548ccpu\u6df7\u5408\u4f7f\u7528":38,"gpu\u6027\u80fd\u5206\u6790\u4e0e\u8c03\u4f18":33,"gpu\u955c\u50cf\u51fa\u73b0":17,"group\u6559\u7a0b":27,"kubernetes\u5206\u5e03\u5f0f\u8bad\u7ec3":42,"kubernetes\u5355\u673a\u8bad\u7ec3":41,"meta\u6587\u4ef6":52,"meta\u914d\u7f6e\u6587\u4ef6":52,"mnist\u7684\u4f7f\u7528\u573a\u666f":3,"movielens\u6570\u636e\u96c6":51,"movielens\u6570\u636e\u96c6\u8bc4\u5206\u56de\u5f52\u6a21\u578b":52,"org\u6587\u6863":31,"paddlepaddle\u63d0\u4f9b\u7684docker\u955c\u50cf\u7248\u672c":20,"paddlepaddle\u7684\u7f16\u8bd1\u9009\u9879":19,"pod\u95f4\u901a\u4fe1":42,"pydataprovider2\u7684\u4f7f\u7528":3,"python\u63a5\u53e3":48,"python\u76f8\u5173\u7684\u5355\u5143\u6d4b\u8bd5\u90fd\u8fc7\u4e0d\u4e86":17,"python\u811a\u672c\u8bfb\u53d6\u6570\u636e":50,"return":16,"rnn\u76f8\u5173\u6a21\u578b":26,"rnn\u914d\u7f6e":28,"so\u627e\u4e0d\u5230":22,"ubuntu\u90e8\u7f72paddlepaddl":22,absactiv:6,activ:[6,14],adadeltaoptim:12,adagradoptim:12,adamaxoptim:12,adamoptim:12,addto_lay:10,aggreg:10,api:[1,4],applic:4,argument:16,async:36,attent:28,attribut:[7,14],auc_evalu:9,avgpool:13,base:[9,10],baseactiv:6,basepoolingtyp:13,basesgdoptim:12,batch:16,batch_norm_lay:10,batch_siz:16,beam_search:10,becaus:17,between:15,bidirectional_lstm:11,big:17,bilinear_interp_lay:10,bla:19,block_expand_lay:10,breluactiv:6,cach:3,check:10,chunk_evalu:9,classif:9,classification_error_evalu:9,classification_error_printer_evalu:9,clone:29,column_sum_evalu:9,commit:29,compos:16,concat_lay:10,config:4,connect:10,content:[3,17,24,33,39],context_project:10,conv:10,conv_oper:10,conv_project:10,conv_shift_lay:10,cos_sim:10,cost:10,cp27mu:17,creat:16,creator:16,crf_decoding_lay:10,crf_layer:10,cross_entropi:10,cross_entropy_with_selfnorm:10,ctc_error_evalu:9,ctc_layer:10,cuda:[17,19],cudnn:19,custom:16,dat:51,data:[10,16],data_lay:10,dataprovid:[4,36],datasourc:8,decayedadagradoptim:12,decor:16,design:[15,16],dictionari:16,distribut:15,doc:[15,16],dotmul_oper:10,dotmul_project:10,driver:17,dropout_lay:11,embedding_lay:10,entri:16,eos_lay:10,evalu:9,event:15,exampl:15,expactiv:6,expand_lay:[10,24],faq:17,fc_layer:10,first_seq:[10,24],fork:29,from:15,full_matrix_project:10,fulli:10,gate:28,get_output_lay:10,github:29,gpu:36,gradient_printer_evalu:9,group:10,gru:[11,36],gru_group:11,gru_step_lay:10,gru_unit:11,grumemori:10,handler:15,how:16,hsigmoid:10,huber_cost:10,identity_project:10,identityactiv:6,illeg:17,imag:[10,11],imagenet:48,imdb:54,img_cmrnorm_lay:10,img_conv_bn_pool:11,img_conv_group:11,img_conv_lay:10,img_pool_lay:10,implement:16,ingredi:15,init_hook:3,input_typ:3,instruct:17,insuffici:17,interfac:16,interpolation_lay:10,isn:16,job:41,join:10,kubernet:[40,41],lambda_cost:10,last_seq:[10,24],layer:[10,14,15],layeroutput:10,layertyp:10,learn:36,libcudart:22,libcudnn:22,linear_comb_lay:10,linearactiv:6,linux_x86_64:17,list:16,logactiv:6,lstm:[11,36,53,54],lstm_step_lay:10,lstmemori:10,lstmemory_group:11,lstmemory_unit:11,map:16,math:10,maxframe_printer_evalu:9,maxid_lay:10,maxid_printer_evalu:9,maxout_lay:10,maxpool:13,memori:[10,25,27],messag:17,metric:36,mini:16,misc:11,mix:10,mixed_lay:10,model:[4,15,28,48],momentumoptim:12,movi:51,multi_binary_label_cross_entropi:10,multipl:16,nce_lay:10,need:16,network:[11,14,28],neural:28,nlp:[11,36],norm:10,nvprof:33,nvvp:33,onli:16,optim:12,output:11,pad_lay:10,paddl:16,paddlepaddl:[15,31,45],parallel_nn:38,paramet:[7,15],perform:36,platform:17,pnpair_evalu:9,pool:[10,13,14],pooling_lay:[10,24],power_lay:10,pre:29,precision_recall_evalu:9,prefetch:16,print:9,protocol:17,provid:[3,16],pull:29,push:29,python:16,rank:9,rank_cost:10,rate:51,reader:[15,16],recurr:[10,11,27,28],recurrent_group:10,recurrent_lay:10,refer:3,reject:17,reluactiv:6,repeat_lay:10,request:29,reshap:10,resnet:48,rmspropoptim:12,rnn:[25,36],rotate_lay:10,sampl:10,sampling_id_lay:10,scaling_lay:10,scaling_project:10,selective_fc_lay:10,seq_concat_lay:10,seq_reshape_lay:10,seqtext_printer_evalu:9,sequenc:28,sequence_conv_pool:11,sequencesoftmaxactiv:6,set:12,sgd:36,share:15,shuffl:16,sigmoidactiv:6,simple_attent:11,simple_gru:11,simple_img_conv_pool:11,simple_lstm:11,singl:16,slice:10,slope_intercept_lay:10,softmaxactiv:6,softreluactiv:6,spp_layer:10,squareactiv:6,squarerootnpool:13,stack:54,stanhactiv:6,start:15,suffici:16,sum_cost:10,sum_evalu:9,sum_to_one_norm_lay:10,summar:15,sumpool:13,support:17,table_project:10,take:16,tanhactiv:6,tensor_lay:10,text_conv_pool:11,thi:17,too:17,train:[15,16],trans_full_matrix_project:10,trans_lay:10,tune:36,updat:15,usag:16,use:16,user:51,util:9,value_printer_evalu:9,version:17,vgg_16_network:11,warp_ctc_lay:10,wheel:17,whl:17,why:16,zoo:48}}) \ No newline at end of file