Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
c1002300
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c1002300
编写于
1月 03, 2018
作者:
T
Tao Luo
提交者:
GitHub
1月 03, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #6719 from tensor-tang/mkl_packed
enable MKL Packed Recurrent Layer
上级
e57a40b8
89cb3a24
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
563 addition
and
115 deletion
+563
-115
paddle/gserver/CMakeLists.txt
paddle/gserver/CMakeLists.txt
+10
-0
paddle/gserver/layers/MKLPackedRecurrentLayer.cpp
paddle/gserver/layers/MKLPackedRecurrentLayer.cpp
+132
-0
paddle/gserver/layers/MKLPackedRecurrentLayer.h
paddle/gserver/layers/MKLPackedRecurrentLayer.h
+58
-0
paddle/gserver/layers/MKLPackedWeight.h
paddle/gserver/layers/MKLPackedWeight.h
+86
-0
paddle/gserver/layers/RecurrentLayer.cpp
paddle/gserver/layers/RecurrentLayer.cpp
+1
-109
paddle/gserver/layers/RecurrentLayer.h
paddle/gserver/layers/RecurrentLayer.h
+130
-0
paddle/gserver/tests/test_RecurrentLayer.cpp
paddle/gserver/tests/test_RecurrentLayer.cpp
+146
-6
未找到文件。
paddle/gserver/CMakeLists.txt
浏览文件 @
c1002300
...
...
@@ -34,6 +34,16 @@ else()
message
(
STATUS
"Compile with MKLDNNLayers and MKLDNNActivations"
)
endif
()
if
(
NOT WITH_MKLML
)
file
(
GLOB_RECURSE MKL_HEADER RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"MKLPacked*.h"
)
file
(
GLOB_RECURSE MKL_SOURCES RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"MKLPacked*.cpp"
)
list
(
REMOVE_ITEM GSERVER_HEADER
${
MKL_HEADER
}
)
list
(
REMOVE_ITEM GSERVER_SOURCES
${
MKL_SOURCES
}
)
message
(
STATUS
"Skip compiling with MKLPackedLayers"
)
else
()
message
(
STATUS
"Compile with MKLPackedLayers"
)
endif
()
if
(
NOT WITH_GPU
)
list
(
REMOVE_ITEM GSERVER_HEADER
layers/CudnnConvBaseLayer.h
...
...
paddle/gserver/layers/MKLPackedRecurrentLayer.cpp
0 → 100644
浏览文件 @
c1002300
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLPackedRecurrentLayer.h"
namespace
paddle
{
REGISTER_LAYER
(
mkl_packed_recurrent
,
MKLPackedRecurrentLayer
);
bool
MKLPackedRecurrentLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
if
(
!
RecurrentLayer
::
init
(
layerMap
,
parameterMap
))
return
false
;
packed_weight_
.
reset
(
new
MKLPackedWeight
(
weight_
->
getW
()));
packed_weight_
->
pack
();
if
(
needGradient_
)
{
packed_weightT_
.
reset
(
new
MKLPackedWeight
(
weight_
->
getW
(),
true
));
packed_weightT_
->
pack
();
}
return
true
;
}
void
MKLPackedRecurrentLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
RecurrentLayer
::
backward
(
callback
);
packed_weight_
->
pack
();
if
(
needGradient_
)
{
packed_weightT_
->
pack
();
}
}
void
MKLPackedRecurrentLayer
::
forwardBatch
(
int
batchSize
,
size_t
numSequences
,
const
int
*
starts
)
{
if
(
!
batchValue_
)
{
batchValue_
.
reset
(
new
SequenceToBatch
(
useGpu_
));
}
batchValue_
->
resizeOrCreateBatch
(
batchSize
,
numSequences
,
starts
,
reversed_
);
batchValue_
->
copyFromSeq
(
*
output_
.
value
);
{
REGISTER_TIMER_INFO
(
"RecurrentFwBatch"
,
getName
().
c_str
());
/* forward one batch */
for
(
size_t
n
=
0
;
n
<
batchValue_
->
getNumBatch
();
n
++
)
{
MatrixPtr
batchValue
=
batchValue_
->
getBatchValue
(
n
);
if
(
n
!=
0
)
{
MatrixPtr
preBatchValue
=
batchValue_
->
getBatchValue
(
n
-
1
,
batchValue
->
getHeight
());
packed_weight_
->
gemm_compute
(
preBatchValue
,
batchValue
);
}
Argument
arg
;
arg
.
value
=
batchValue
;
activation_
->
forward
(
arg
).
check
();
}
}
batchValue_
->
copyBackSeq
(
*
output_
.
value
);
}
void
MKLPackedRecurrentLayer
::
backwardBatch
(
int
batchSize
,
size_t
numSequences
,
const
int
*
starts
)
{
if
(
!
batchGrad_
)
{
batchGrad_
.
reset
(
new
SequenceToBatch
(
useGpu_
));
}
batchGrad_
->
shareIndexWith
(
*
batchValue_
);
size_t
numBatch
=
batchGrad_
->
getNumBatch
();
bool
backwardByBatch
=
numBatch
<
numSequences
;
batchGrad_
->
copyFromSeq
(
*
output_
.
grad
);
{
REGISTER_TIMER_INFO
(
"RecurrentBwData"
,
getName
().
c_str
());
/* backward one batch */
for
(
int
n
=
(
int
)
numBatch
-
1
;
n
>=
0
;
n
--
)
{
MatrixPtr
batchGrad
=
batchGrad_
->
getBatchValue
(
n
);
MatrixPtr
batchValue
=
batchValue_
->
getBatchValue
(
n
,
batchGrad
->
getHeight
());
Argument
arg
;
arg
.
value
=
batchValue
;
arg
.
grad
=
batchGrad
;
activation_
->
backward
(
arg
).
check
();
if
(
n
!=
0
)
{
batchValue
=
batchGrad_
->
getBatchValue
(
n
-
1
,
batchGrad
->
getHeight
());
packed_weightT_
->
gemm_compute
(
batchGrad
,
batchValue
);
}
if
(
backwardByBatch
&&
weight_
->
getWGrad
())
{
if
(
n
!=
0
)
{
/* backward weight */
batchValue
=
batchValue_
->
getBatchValue
(
n
-
1
,
batchGrad
->
getHeight
());
weight_
->
getWGrad
()
->
mul
(
*
batchValue
->
getTranspose
(),
*
batchGrad
,
1
,
1
);
}
}
}
}
batchGrad_
->
copyBackSeq
(
*
output_
.
grad
);
if
(
!
backwardByBatch
&&
weight_
->
getWGrad
())
{
REGISTER_TIMER_INFO
(
"RecurrentBwWeight"
,
getName
().
c_str
());
for
(
size_t
seq
=
0
;
seq
<
numSequences
;
++
seq
)
{
int
len
=
starts
[
seq
+
1
]
-
starts
[
seq
];
weight_
->
getWGrad
()
->
mul
(
*
output_
.
value
->
subMatrix
(
reversed_
?
starts
[
seq
]
+
1
:
starts
[
seq
],
len
-
1
)
->
getTranspose
(),
*
output_
.
grad
->
subMatrix
(
reversed_
?
starts
[
seq
]
:
starts
[
seq
]
+
1
,
len
-
1
),
1
,
1
);
}
}
}
}
// namespace paddle
paddle/gserver/layers/MKLPackedRecurrentLayer.h
0 → 100644
浏览文件 @
c1002300
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "MKLPackedWeight.h"
#include "RecurrentLayer.h"
DECLARE_bool
(
rnn_use_batch
);
namespace
paddle
{
/**
* @brief MKLPackedRecurrentLayer is almost the same with RecurrentLayer
* but is optimized with MKL cblas packed gemm.
* More details:
* https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/mkl/mkl_packed.md
*/
class
MKLPackedRecurrentLayer
:
public
RecurrentLayer
{
public:
explicit
MKLPackedRecurrentLayer
(
const
LayerConfig
&
config
)
:
RecurrentLayer
(
config
)
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
backward
(
const
UpdateCallback
&
callback
)
override
;
protected:
void
forwardBatch
(
int
batchSize
,
size_t
numSequences
,
const
int
*
starts
)
override
;
void
backwardBatch
(
int
batchSize
,
size_t
numSequences
,
const
int
*
starts
)
override
;
protected:
/// packed_weight_ contains same data with
/// RecurrentLayer::weight_ but is packed
std
::
unique_ptr
<
MKLPackedWeight
>
packed_weight_
;
/// packed_weightT_ is the transposition matrix of packed_weight_
std
::
unique_ptr
<
MKLPackedWeight
>
packed_weightT_
;
};
}
// namespace paddle
paddle/gserver/layers/MKLPackedWeight.h
0 → 100644
浏览文件 @
c1002300
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/math/MathFunctions.h"
#include "paddle/parameter/Parameter.h"
#include "paddle/parameter/Weight.h"
namespace
paddle
{
class
MKLPackedWeight
{
protected:
/// The pointer of weight
real
*
weight_
;
/// The pointer of cblas packed gemm to weight
real
*
packedWeight_
;
size_t
height_
;
size_t
width_
;
bool
transW_
;
public:
explicit
MKLPackedWeight
(
MatrixPtr
weight
,
bool
transW
=
false
)
{
packedWeight_
=
nullptr
;
weight_
=
weight
->
getData
();
height_
=
weight
->
getHeight
();
width_
=
weight
->
getWidth
();
transW_
=
transW
;
}
~
MKLPackedWeight
()
{
free_
();
}
void
pack
()
{
pack_
(
weight_
);
}
void
gemm_compute
(
const
MatrixPtr
src
,
MatrixPtr
dst
)
{
cblas_sgemm_compute
(
CblasRowMajor
,
CblasNoTrans
,
CblasPacked
,
src
->
getHeight
(),
transW_
?
height_
:
width_
,
transW_
?
width_
:
height_
,
src
->
getData
(),
src
->
getWidth
(),
packedWeight_
,
width_
,
1.0
,
dst
->
getData
(),
dst
->
getWidth
());
}
protected:
void
pack_
(
real
*
src
)
{
if
(
!
packedWeight_
)
{
packedWeight_
=
cblas_sgemm_alloc
(
CblasBMatrix
,
1
,
width_
,
height_
);
}
cblas_sgemm_pack
(
CblasRowMajor
,
CblasBMatrix
,
transW_
?
CblasTrans
:
CblasNoTrans
,
1
,
transW_
?
height_
:
width_
,
transW_
?
width_
:
height_
,
1.0
,
src
,
width_
,
packedWeight_
);
}
void
free_
()
{
if
(
packedWeight_
)
{
cblas_sgemm_free
(
packedWeight_
);
}
}
};
}
// namespace paddle
paddle/gserver/layers/RecurrentLayer.cpp
浏览文件 @
c1002300
...
...
@@ -12,119 +12,12 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gflags/gflags.h>
#include "Layer.h"
#include "SequenceToBatch.h"
#include "paddle/utils/Stat.h"
#include "RecurrentLayer.h"
DEFINE_bool
(
rnn_use_batch
,
false
,
"Using the batch method for calculation."
);
namespace
paddle
{
/**
* @brief RecurrentLayer takes 1 input layer. The output size is the same with
* input layer.
* For each sequence [start, end] it performs the following computation:
* \f[
* out_{i} = act(in_{i}) \ \ \text{for} \ i = start \\
* out_{i} = act(in_{i} + out_{i-1} * W) \ \ \text{for} \ start < i <= end
*
* \f]
* If reversed is true, the order is reversed:
* \f[
* out_{i} = act(in_{i}) \ \ \text{for} \ i = end \\
* out_{i} = act(in_{i} + out_{i+1} * W) \ \ \text{for} \ start <= i < end
* \f]
* There are two methods to calculate rnn. One way is to compute rnn one
* sequence by one sequence. The other way is to reorganize the input
* into batches, then compute rnn one batch by one batch. Users can select
* them by rnn_use_batch flag.
*/
class
RecurrentLayer
:
public
Layer
{
public:
explicit
RecurrentLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
forward
(
PassType
passType
)
override
;
void
backward
(
const
UpdateCallback
&
callback
)
override
;
void
resetState
()
override
;
void
setState
(
LayerStatePtr
state
)
override
;
LayerStatePtr
getState
()
override
;
protected:
/**
* @brief If user do not set --rnn_use_batch=true, it will
* compute rnn forward one sequence by one sequence in default.
* @param batchSize Total words number of all samples in this batch.
* @param numSequences The sample number.
* @param starts Each start position of each samples.
*/
void
forwardSequence
(
int
batchSize
,
size_t
numSequences
,
const
int
*
starts
);
/**
* @brief Compute rnn forward by one sequence.
* @param start The start position of this sequence (or sample).
* @param length The length of this sequence (or sample), namely the words
* number of this sequence.
*/
void
forwardOneSequence
(
int
start
,
int
length
);
/**
* @brief Compute rnn backward one sequence by onesequence.
* @param batchSize Total words number of all samples in this batch.
* @param numSequences The sample number.
* @param starts Each start position of each samples.
*/
void
backwardSequence
(
int
batchSize
,
size_t
numSequences
,
const
int
*
starts
);
/**
* @brief Compute rnn backward by one sequence.
* @param start The start position of this sequence (or sample).
* @param length The length of this sequence (or sample), namely the words
* number of this sequence.
*/
void
backwardOneSequence
(
int
start
,
int
length
);
/**
* @brief Reorganize input into batches and compute rnn forward batch
* by batch. It will convert batch shape to sequence after finishing forward.
* The batch info can refer to SequenceToBatch class.
* @param batchSize Total words number of all samples in this batch.
* @param numSequences The sample number.
* @param starts Each start position of each samples.
*/
void
forwardBatch
(
int
batchSize
,
size_t
numSequences
,
const
int
*
starts
);
/**
* @brief Reorganize input into batches and compute rnn forward batch
* by batch.
* @param batchSize Total words number of all samples in this batch.
* @param numSequences The sample number.
* @param starts Each start position of each samples.
*/
void
backwardBatch
(
int
batchSize
,
size_t
numSequences
,
const
int
*
starts
);
protected:
std
::
unique_ptr
<
Weight
>
weight_
;
std
::
unique_ptr
<
Weight
>
bias_
;
/// frameOutput_[i] is used to hold the i-th sample of output_
std
::
vector
<
Argument
>
frameOutput_
;
MatrixPtr
prevOutput_
;
/// Whether compute rnn by reverse.
bool
reversed_
;
/// If compute batch by batch, batchValue_ will be used to save the
/// reorganized input value.
std
::
unique_ptr
<
SequenceToBatch
>
batchValue_
;
/// If compute batch by batch, batchGrad_ will be used to save the
/// gradient with respect to reorganized input value.
std
::
unique_ptr
<
SequenceToBatch
>
batchGrad_
;
};
REGISTER_LAYER
(
recurrent
,
RecurrentLayer
);
bool
RecurrentLayer
::
init
(
const
LayerMap
&
layerMap
,
...
...
@@ -260,7 +153,6 @@ void RecurrentLayer::backward(const UpdateCallback& callback) {
bias_
->
getWGrad
()
->
collectBias
(
*
output_
.
grad
,
1
);
bias_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
weight_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
...
...
paddle/gserver/layers/RecurrentLayer.h
0 → 100644
浏览文件 @
c1002300
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <gflags/gflags.h>
#include "Layer.h"
#include "SequenceToBatch.h"
#include "paddle/utils/Stat.h"
namespace
paddle
{
/**
* @brief RecurrentLayer takes 1 input layer. The output size is the same with
* input layer.
* For each sequence [start, end] it performs the following computation:
* \f[
* out_{i} = act(in_{i}) \ \ \text{for} \ i = start \\
* out_{i} = act(in_{i} + out_{i-1} * W) \ \ \text{for} \ start < i <= end
*
* \f]
* If reversed is true, the order is reversed:
* \f[
* out_{i} = act(in_{i}) \ \ \text{for} \ i = end \\
* out_{i} = act(in_{i} + out_{i+1} * W) \ \ \text{for} \ start <= i < end
* \f]
* There are two methods to calculate rnn. One way is to compute rnn one
* sequence by one sequence. The other way is to reorganize the input
* into batches, then compute rnn one batch by one batch. Users can select
* them by rnn_use_batch flag.
*/
class
RecurrentLayer
:
public
Layer
{
public:
explicit
RecurrentLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
forward
(
PassType
passType
)
override
;
void
backward
(
const
UpdateCallback
&
callback
)
override
;
void
resetState
()
override
;
void
setState
(
LayerStatePtr
state
)
override
;
LayerStatePtr
getState
()
override
;
protected:
/**
* @brief If user do not set --rnn_use_batch=true, it will
* compute rnn forward one sequence by one sequence in default.
* @param batchSize Total words number of all samples in this batch.
* @param numSequences The sample number.
* @param starts Each start position of each samples.
*/
void
forwardSequence
(
int
batchSize
,
size_t
numSequences
,
const
int
*
starts
);
/**
* @brief Compute rnn forward by one sequence.
* @param start The start position of this sequence (or sample).
* @param length The length of this sequence (or sample), namely the words
* number of this sequence.
*/
void
forwardOneSequence
(
int
start
,
int
length
);
/**
* @brief Compute rnn backward one sequence by onesequence.
* @param batchSize Total words number of all samples in this batch.
* @param numSequences The sample number.
* @param starts Each start position of each samples.
*/
void
backwardSequence
(
int
batchSize
,
size_t
numSequences
,
const
int
*
starts
);
/**
* @brief Compute rnn backward by one sequence.
* @param start The start position of this sequence (or sample).
* @param length The length of this sequence (or sample), namely the words
* number of this sequence.
*/
void
backwardOneSequence
(
int
start
,
int
length
);
/**
* @brief Reorganize input into batches and compute rnn forward batch
* by batch. It will convert batch shape to sequence after finishing forward.
* The batch info can refer to SequenceToBatch class.
* @param batchSize Total words number of all samples in this batch.
* @param numSequences The sample number.
* @param starts Each start position of each samples.
*/
virtual
void
forwardBatch
(
int
batchSize
,
size_t
numSequences
,
const
int
*
starts
);
/**
* @brief Reorganize input into batches and compute rnn forward batch
* by batch.
* @param batchSize Total words number of all samples in this batch.
* @param numSequences The sample number.
* @param starts Each start position of each samples.
*/
virtual
void
backwardBatch
(
int
batchSize
,
size_t
numSequences
,
const
int
*
starts
);
protected:
std
::
unique_ptr
<
Weight
>
weight_
;
std
::
unique_ptr
<
Weight
>
bias_
;
/// frameOutput_[i] is used to hold the i-th sample of output_
std
::
vector
<
Argument
>
frameOutput_
;
MatrixPtr
prevOutput_
;
/// Whether compute rnn by reverse.
bool
reversed_
;
/// If compute batch by batch, batchValue_ will be used to save the
/// reorganized input value.
std
::
unique_ptr
<
SequenceToBatch
>
batchValue_
;
/// If compute batch by batch, batchGrad_ will be used to save the
/// gradient with respect to reorganized input value.
std
::
unique_ptr
<
SequenceToBatch
>
batchGrad_
;
};
}
// namespace paddle
paddle/gserver/tests/test_RecurrentLayer.cpp
浏览文件 @
c1002300
...
...
@@ -222,6 +222,7 @@ TEST(Layer, RecurrentLayer) {
#define protected public
#include "paddle/gserver/layers/GatedRecurrentLayer.h"
#include "paddle/gserver/layers/LstmLayer.h"
#include "paddle/gserver/layers/RecurrentLayer.h"
template
<
class
T
>
class
TestRecurrentLayer
{
public:
...
...
@@ -420,12 +421,151 @@ TEST(Layer, LstmLayer) {
}
}
#ifdef PADDLE_WITH_MKLML
#include "paddle/gserver/layers/MKLPackedRecurrentLayer.h"
LayerPtr
initMKLPackedLayer
(
LayerConfig
layerConfig
,
bool
reversed
,
int
layerSize
,
LayerPtr
dataLayer
,
ParameterPtr
para
,
ParameterPtr
bias
=
nullptr
)
{
LayerMap
layerMap
;
ParameterMap
parameterMap
;
layerMap
[
dataLayer
->
getName
()]
=
dataLayer
;
parameterMap
[
para
->
getName
()]
=
para
;
if
(
bias
)
{
parameterMap
[
bias
->
getName
()]
=
bias
;
layerConfig
.
set_bias_parameter_name
(
"bias_0"
);
}
layerConfig
.
set_size
(
layerSize
);
layerConfig
.
set_reversed
(
reversed
);
layerConfig
.
add_inputs
();
LayerInputConfig
&
input
=
*
(
layerConfig
.
mutable_inputs
(
0
));
input
.
set_input_layer_name
(
"layer_0"
);
input
.
set_input_parameter_name
(
"para_0"
);
LayerPtr
testLayer
=
Layer
::
create
(
layerConfig
);
layerMap
[
testLayer
->
getName
()]
=
testLayer
;
testLayer
->
init
(
layerMap
,
parameterMap
);
testLayer
->
setNeedGradient
(
true
);
return
testLayer
;
}
void
checkMKLPackedLayer
(
LayerConfig
layerConfig1
,
LayerConfig
layerConfig2
,
bool
reversed
,
int
layerSize
,
int
batchSize
,
bool
useBatch1
,
bool
useBatch2
)
{
LayerPtr
dataLayer
;
ParameterPtr
para
,
bias
;
if
(
layerConfig1
.
type
()
==
"recurrent"
)
{
dataLayer
=
creatDataLayer
(
"layer_0"
,
batchSize
,
layerSize
,
false
);
para
=
creatParameter
(
"para_0"
,
0
,
layerSize
*
layerSize
,
false
);
bias
=
nullptr
;
}
else
if
(
layerConfig1
.
type
()
==
"gated_recurrent"
)
{
dataLayer
=
creatDataLayer
(
"layer_0"
,
batchSize
,
layerSize
*
3
,
false
);
para
=
creatParameter
(
"para_0"
,
0
,
layerSize
*
layerSize
*
3
,
false
);
bias
=
creatParameterBias
(
"bias_0"
,
1
,
layerSize
*
3
,
false
);
}
LayerPtr
testLayer1
=
initMKLPackedLayer
(
layerConfig1
,
reversed
,
layerSize
,
dataLayer
,
para
,
bias
);
LayerPtr
testLayer2
=
initMKLPackedLayer
(
layerConfig2
,
reversed
,
layerSize
,
dataLayer
,
para
,
bias
);
const
VectorPtr
&
weightGrad
=
(
testLayer1
->
getParameters
()[
0
])
->
getBuf
(
PARAMETER_GRADIENT
);
const
MatrixPtr
&
inputGrad
=
testLayer1
->
getPrev
(
0
)
->
getOutputGrad
();
CpuVector
wgt_grad1
(
weightGrad
->
getSize
());
CpuVector
wgt_grad2
(
weightGrad
->
getSize
());
CpuMatrix
input_grad1
(
inputGrad
->
getHeight
(),
inputGrad
->
getWidth
());
CpuMatrix
input_grad2
(
inputGrad
->
getHeight
(),
inputGrad
->
getWidth
());
for
(
int
i
=
0
;
i
<
2
;
i
++
)
{
FLAGS_rnn_use_batch
=
useBatch1
;
testLayer1
->
forward
(
PASS_GC
);
FLAGS_rnn_use_batch
=
useBatch2
;
testLayer2
->
forward
(
PASS_GC
);
testLayer1
->
getOutputGrad
()
->
randomizeUniform
();
testLayer2
->
getOutputGrad
()
->
copyFrom
(
*
testLayer1
->
getOutputGrad
());
weightGrad
->
zero
();
inputGrad
->
zero
();
FLAGS_rnn_use_batch
=
useBatch1
;
testLayer1
->
backward
(
nullptr
);
wgt_grad1
.
copyFrom
(
*
weightGrad
);
input_grad1
.
copyFrom
(
*
inputGrad
);
weightGrad
->
zero
();
inputGrad
->
zero
();
FLAGS_rnn_use_batch
=
useBatch2
;
testLayer2
->
backward
(
nullptr
);
wgt_grad2
.
copyFrom
(
*
weightGrad
);
input_grad2
.
copyFrom
(
*
inputGrad
);
checkError
(
*
testLayer1
->
getOutputValue
(),
*
testLayer2
->
getOutputValue
());
checkError
(
wgt_grad1
,
wgt_grad2
);
checkError
(
input_grad1
,
input_grad2
);
}
}
TEST
(
MKLPackedLayer
,
RecurrentLayer
)
{
LayerConfig
layerConfig1
;
LayerConfig
layerConfig2
;
layerConfig1
.
set_name
(
"paddle-rnn"
);
layerConfig1
.
set_type
(
"recurrent"
);
layerConfig1
.
set_active_type
(
"relu"
);
layerConfig2
.
set_name
(
"mkl-packed-rnn"
);
layerConfig2
.
set_type
(
"mkl_packed_recurrent"
);
layerConfig2
.
set_active_type
(
"relu"
);
FLAGS_use_gpu
=
false
;
for
(
auto
layerSize
:
{
32
,
64
,
128
,
256
,
512
})
{
for
(
auto
batchSize
:
{
1
,
5
,
100
,
500
})
{
for
(
auto
reversed
:
{
true
,
false
})
{
for
(
auto
paddle_use_batch
:
{
true
,
false
})
{
for
(
auto
MKLPacked_use_batch
:
{
true
,
false
})
{
LOG
(
INFO
)
<<
" layerSize="
<<
layerSize
<<
" batchSize="
<<
batchSize
<<
" reversed="
<<
reversed
<<
" paddle_use_batch="
<<
paddle_use_batch
<<
" MKLPacked_use_batch="
<<
MKLPacked_use_batch
;
checkMKLPackedLayer
(
layerConfig1
,
layerConfig2
,
reversed
,
layerSize
,
batchSize
,
paddle_use_batch
,
MKLPacked_use_batch
);
}
}
}
}
}
}
#endif
int
main
(
int
argc
,
char
**
argv
)
{
if
(
version
::
isWithGpu
())
{
testing
::
InitGoogleTest
(
&
argc
,
argv
);
initMain
(
argc
,
argv
);
return
RUN_ALL_TESTS
();
}
else
{
return
0
;
if
(
!
version
::
isWithGpu
())
{
testing
::
GTEST_FLAG
(
filter
)
=
"-Layer.*"
;
}
return
RUN_ALL_TESTS
();
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录