提交 c09ad73c 编写于 作者: D Dong Zhihong

"add fit a line test"

上级 bdc832cb
......@@ -32,6 +32,8 @@ class AccuracyOp : public framework::OperatorWithKernel {
"Output (Accuracy) of AccuracyOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Correct"),
"Output (Correct) of AccuracyOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Total"),
"Output (Total) of AccuracyOp should not be null.");
auto inference_dim = ctx->GetInputDim("Out");
auto label_dim = ctx->GetInputDim("Label");
......@@ -46,6 +48,7 @@ class AccuracyOp : public framework::OperatorWithKernel {
ctx->SetOutputDim("Accuracy", {1});
ctx->SetOutputDim("Correct", {1});
ctx->SetOutputDim("Total", {1});
ctx->ShareLoD("Out", /*->*/ "Accuracy");
}
......@@ -69,6 +72,7 @@ class AccuracyOpMaker : public framework::OpProtoAndCheckerMaker {
// TODO(typhoonzero): AddInput("Weight", ...
AddOutput("Accuracy", "The accuracy of current batch");
AddOutput("Correct", "The correct samples count of current batch");
AddOutput("Total", "The samples count of current batch");
AddComment(R"DOC(
Accuracy. It will print accuracy rate for classification.
......
......@@ -43,9 +43,11 @@ class AccuracyKernel : public framework::OpKernel<T> {
auto* label = ctx.Input<Tensor>("Label");
auto* accuracy = ctx.Output<Tensor>("Accuracy");
auto* correct = ctx.Output<Tensor>("Correct");
auto* total = ctx.Output<Tensor>("Total");
float* correct_data = correct->mutable_data<float>(ctx.GetPlace());
int* accuracy_data = accuracy->mutable_data<int>(ctx.GetPlace());
int* total_data = total->mutable_data<int>(ctx.GetPlace());
const int64_t* indices_data = indices->data<int64_t>();
const int64_t* label_data = label->data<int64_t>();
......@@ -71,6 +73,7 @@ class AccuracyKernel : public framework::OpKernel<T> {
}
*correct_data = num_correct;
*total_data = num_samples;
*accuracy_data =
static_cast<float>(num_correct) / static_cast<float>(num_samples);
}
......
from paddle.v2.framework.framework import Program, unique_name
from paddle.v2.framework.framework import Program, g_program, unique_name
from paddle.v2.framework.layer_helper import LayerHelper
import paddle.v2.framework.core as core
......@@ -13,8 +13,12 @@ class Evaluator(object):
"""
def __init__(self, name, **kwargs):
self._states = []
self._states = {}
self._helper = LayerHelper(layer_type=name, **kwargs)
# if kwargs.has_key("program"):
# self._program = kwargs.get("program")
# else:
# self._program = g_program
# def _update(self):
# """
......@@ -22,12 +26,15 @@ class Evaluator(object):
# """
# raise NotImplementedError()
def reset(self):
def reset(self, executor, program=None):
"""
Clear metric states at the begin of each pass/user specified batch
"""
if program == None:
reset_program = Program()
for var in self._states:
else:
reset_program = program
for k, var in self._states.iteritems():
zeros = helper.create_tmp_variable(dtype=var.data_type)
self._helper.append_op(
type="fill_constant",
......@@ -38,7 +45,7 @@ class Evaluator(object):
})
self._helper.append_op(
type="scale", inputs={"X": zeros}, outputs={"Out": var})
return reset_program
executor.run(reset_program)
def eval(self):
"""
......@@ -64,8 +71,8 @@ class Accuracy(Evaluator):
persistable=True,
dtype="int64",
shape=[1])
self._states.append(g_total)
self._states.append(g_correct)
self._states["Total"] = g_total
self._states["Correct"] = g_correct
topk_out = helper.create_tmp_variable(dtype=input.data_type)
topk_indices = helper.create_tmp_variable(dtype="int64")
......@@ -86,18 +93,32 @@ class Accuracy(Evaluator):
},
outputs={
"Accuracy": [acc_out],
"Correct": [tp_out],
"Correct": [correct],
"Total": [total],
})
helper.append_op(
type="sum",
inputs={"X": [g_total, tp_out]},
inputs={"X": [g_total, total]},
outputs={"Out": [g_total]})
helper.append_op(
type="sum",
inputs={"X": [g_correct, correct]},
outputs={"Out": [g_total]})
return acc_out
def eval(self):
def eval(self, executor, program=None):
if program == None:
eval_program = Program()
g_total = self._program
else:
eval_program = program
eval_out = helper.create_tmp_variable(dtype=self._helper.input_dtype())
self._helper.append_op(
type="elementwise_div",
inputs={"X": self._states["Total"],
"Y": self._states["Correct"]},
outputs={"Out": eval_out})
return executor.run(eval_program, fetch_list=[eval_out])
# This is demo for composing low level op to compute metric
......
......@@ -6,6 +6,7 @@ import paddle.v2.framework.optimizer as optimizer
from paddle.v2.framework.framework import Program, g_program
from paddle.v2.framework.io import save_persistables, load_persistables
from paddle.v2.framework.executor import Executor
from paddle.v2.framework.evaluator import Accuracy
import numpy as np
......@@ -31,6 +32,8 @@ y = layers.data(
program=program,
init_program=init_program)
accuracy = evaluator.Accuracy(input=y_predict, label=y)
cost = layers.square_error_cost(
input=y_predict, label=y, program=program, init_program=init_program)
avg_cost = layers.mean(x=cost, program=program, init_program=init_program)
......@@ -54,6 +57,7 @@ PASS_NUM = 100
for pass_id in range(PASS_NUM):
save_persistables(exe, "./fit_a_line.model/", program=program)
load_persistables(exe, "./fit_a_line.model/", program=program)
exe.run(accuracy.eval(), )
for data in train_reader():
x_data = np.array(map(lambda x: x[0], data)).astype("float32")
y_data = np.array(map(lambda x: x[1], data)).astype("float32")
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册