From bfab8d964c4d99e40e272c51f23ba9a3aa7aed45 Mon Sep 17 00:00:00 2001 From: LiuChiaChi <709153940@qq.com> Date: Fri, 18 Sep 2020 02:44:20 +0000 Subject: [PATCH] fix example code for Model, test=document_fix, notest --- python/paddle/hapi/model.py | 21 +++++++++++++++------ 1 file changed, 15 insertions(+), 6 deletions(-) diff --git a/python/paddle/hapi/model.py b/python/paddle/hapi/model.py index d41852c9d7f..3bcc62e423b 100644 --- a/python/paddle/hapi/model.py +++ b/python/paddle/hapi/model.py @@ -822,7 +822,6 @@ class Model(object): nn.Tanh(), nn.Linear(200, 10)) - # inputs and labels are not required for dynamic graph. input = InputSpec([None, 784], 'float32', 'x') label = InputSpec([None, 1], 'int64', 'label') @@ -980,7 +979,9 @@ class Model(object): nn.Linear(200, 10), nn.Softmax()) - model = paddle.Model(net) + input = InputSpec([None, 784], 'float32', 'x') + label = InputSpec([None, 1], 'int64', 'label') + model = paddle.Model(net, input, label) model.prepare() data = np.random.random(size=(4,784)).astype(np.float32) out = model.test_batch([data]) @@ -1096,11 +1097,15 @@ class Model(object): device = paddle.set_device('cpu') paddle.disable_static(device) + input = InputSpec([None, 784], 'float32', 'x') + label = InputSpec([None, 1], 'int64', 'label') model = paddle.Model(nn.Sequential( nn.Linear(784, 200), nn.Tanh(), nn.Linear(200, 10), - nn.Softmax())) + nn.Softmax()), + input, + label) model.save('checkpoint/test') model.load('checkpoint/test') """ @@ -1168,10 +1173,14 @@ class Model(object): paddle.disable_static() + input = InputSpec([None, 784], 'float32', 'x') + label = InputSpec([None, 1], 'int64', 'label') model = paddle.Model(nn.Sequential( nn.Linear(784, 200), nn.Tanh(), - nn.Linear(200, 10))) + nn.Linear(200, 10)), + input, + label) params = model.parameters() """ return self._adapter.parameters() @@ -1483,7 +1492,7 @@ class Model(object): # imperative mode paddle.disable_static() - model = paddle.Model(paddle.vision.models.LeNet()) + model = paddle.Model(paddle.vision.models.LeNet(), input, label) model.prepare(metrics=paddle.metric.Accuracy()) result = model.evaluate(val_dataset, batch_size=64) print(result) @@ -1591,7 +1600,7 @@ class Model(object): # imperative mode device = paddle.set_device('cpu') paddle.disable_static(device) - model = paddle.Model(paddle.vision.models.LeNet()) + model = paddle.Model(paddle.vision.models.LeNet(), input) model.prepare() result = model.predict(test_dataset, batch_size=64) print(len(result[0]), result[0][0].shape) -- GitLab