diff --git a/python/paddle/fluid/__init__.py b/python/paddle/fluid/__init__.py index bd325bd2574afa9c652a9613bdb3bf0b6a93b4a3..dcf4e2a8e013f8e4e70ac1335890e7df0a050b5f 100644 --- a/python/paddle/fluid/__init__.py +++ b/python/paddle/fluid/__init__.py @@ -21,14 +21,15 @@ import executor from executor import * import trainer -from trainer import * +from trainer import Trainer +from trainer import BeginEpochEvent +from trainer import EndEpochEvent +from trainer import BeginStepEvent +from trainer import EndStepEvent import inferencer from inferencer import Inferencer -import params -from params import Params - import io import evaluator import initializer @@ -57,7 +58,7 @@ from parallel_executor import ParallelExecutor Tensor = LoDTensor __all__ = framework.__all__ + executor.__all__ + concurrency.__all__ +\ - trainer.__all__ + inferencer.__all__ + params.__all__ + [ + trainer.__all__ + inferencer.__all__ + [ 'io', 'initializer', 'layers', diff --git a/python/paddle/fluid/inferencer.py b/python/paddle/fluid/inferencer.py index 3ea50bf196d00152e6579623c981ecbfb57b8e3b..58e027695a7100245dd424583e2cedeed3d165e6 100644 --- a/python/paddle/fluid/inferencer.py +++ b/python/paddle/fluid/inferencer.py @@ -12,18 +12,22 @@ # See the License for the specific language governing permissions and # limitations under the License. +import core + __all__ = ['Inferencer', ] class Inferencer(object): - def __init__(self, network_func, params, place=None): + def __init__(self, network_func, param_path=None, place=None): # 1. we need to generate a framework.Program by calling # network_func. Reference: fluid.program_guard in test_word2vec.py # 2. move the default_main_program to self.program. # 3. run the default_startup program. - self.params = params + + # 4. load params from param_path into scope + self.scope = core.Scope() self.place = place def infer(self, inputs): diff --git a/python/paddle/fluid/params.py b/python/paddle/fluid/params.py deleted file mode 100644 index a5d257e53a2958acd1b8f6ef29d0f9f531b36678..0000000000000000000000000000000000000000 --- a/python/paddle/fluid/params.py +++ /dev/null @@ -1,39 +0,0 @@ -# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from . import core - -__all__ = ['Params', ] - - -class Params(object): - def __init__(self, path=None): - self.scope = core.Scope() - - if path: - self._load(path) - - def _load(self, path): - # reference: load_persistables in io.py - pass - - def save(self, path): - # reference: save_persistables in io.py - pass - - def add_params(self, scope): - # take the keys from the scope, - # if not already exists in self.scope, - # add the key and value into self.scope. - pass diff --git a/python/paddle/fluid/tests/book/word2vec/no_test_word2vec_new_api.py b/python/paddle/fluid/tests/book/word2vec/no_test_word2vec_new_api.py index 30939cae29ddf7070f3e5d39f33dc88e86c65450..35e163dc9df5a35ee5774b6b157366c4eabcb0f7 100644 --- a/python/paddle/fluid/tests/book/word2vec/no_test_word2vec_new_api.py +++ b/python/paddle/fluid/tests/book/word2vec/no_test_word2vec_new_api.py @@ -39,7 +39,7 @@ word_dict = paddle.dataset.imikolov.build_dict() dict_size = len(word_dict) -def inference_network(is_sparse): +def inference_program(is_sparse): first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64') second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64') third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64') @@ -79,9 +79,9 @@ def inference_network(is_sparse): return predict_word -def train_network(is_sparse): +def train_program(is_sparse): next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64') - predict_word = inference_network(is_sparse) + predict_word = inference_program(is_sparse) cost = fluid.layers.cross_entropy(input=predict_word, label=next_word) avg_cost = fluid.layers.mean(cost) return avg_cost @@ -100,23 +100,25 @@ def train(use_cuda, is_sparse, save_path): word_dict, N)) if avg_cost < 5.0: - trainer.params.save(save_path) + trainer.save_params(save_path) return if math.isnan(avg_cost): sys.exit("got NaN loss, training failed.") trainer = fluid.Trainer( - partial(train_network, is_sparse), + partial(train_program, is_sparse), fluid.optimizer.SGD(learning_rate=0.001), place=place) trainer.train( reader=train_reader, num_epochs=100, event_handler=event_handler) -def infer(use_cuda, save_path): - params = fluid.Params(save_path) +def infer(use_cuda, is_sparse, save_path): place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() - inferencer = fluid.Inferencer(inference_network, params, place=place) + inferencer = fluid.Inferencer( + partial(inference_program, is_sparse), + param_path=save_path, + place=place) lod = [0, 1] first_word = create_random_lodtensor(lod, place, low=0, high=dict_size - 1) @@ -138,7 +140,7 @@ def main(use_cuda, is_sparse): save_path = "word2vec.inference.model" train(use_cuda, is_sparse, save_path) - infer(use_cuda, save_path) + infer(use_cuda, is_sparse, save_path) if __name__ == '__main__': diff --git a/python/paddle/fluid/trainer.py b/python/paddle/fluid/trainer.py index 2362da370a39b6e59f486e2affbb02e21840784f..0aada3deb0f047d21701b64af022ebad372d505b 100644 --- a/python/paddle/fluid/trainer.py +++ b/python/paddle/fluid/trainer.py @@ -56,23 +56,22 @@ class Trainer(object): """ Args: - network_func(callable): A function which will return loss. The loss must be a scaler. + program_func(callable): A function which will return loss. The loss must be a scaler. optimizer(optimizer.Optimizer): The optimizer should be an instance of Optimizer - params: place: The device place of this trainer. """ - def __init__(self, network_func, optimizer, params=None, place=None): + def __init__(self, program_func, optimizer, param_path=None, place=None): # 1. we need to generate a framework.Program by calling - # network_func. Reference: fluid.program_guard in + # program_func. Reference: fluid.program_guard in # test_word2vec.py - self.scope = self._get_scope_from_params(params) + self.scope = core.Scope() self.startup_program = framework.Program() self.train_program = framework.Program() with framework.program_guard(self.train_program, self.startup_program): - loss = network_func() + loss = program_func() if not isinstance(optimizer, opt_module.Optimizer): raise TypeError( "The optimizer should be an instance of Optimizer") @@ -84,14 +83,13 @@ class Trainer(object): # 2. move the default_main_program to self.program and run the # default_startup program on an empty core.Scope() # Run startup program - if params is None: - exe = executor.Executor(place) - exe.run(self.startup_program, scope=self.scope) + exe = executor.Executor(place) + exe.run(self.startup_program, scope=self.scope) - # 3. call self.params.add_vars with the initialized scope, it - # will add the new vars of the initialized scope into - # self.params. - # TODO(yuyang): This depends on parameters implementation. + if param_path: + # load params from param_path into scope + # TODO(yuyang): This depends on parameters implementation. + pass # TODO(helin): support distributed training @@ -124,19 +122,9 @@ class Trainer(object): def test(self, reader): pass - def _get_scope_from_params(self, params): - """ - Get Scope from parameter object. - Args: - params(Parameter|None): The parameter object instance. Could be None. - - Returns: New scope if params is None. Or params.scope() - NOTE: This method is WIP. Not fully implemented. - """ - if params is None: - return core.Scope() # new scope when params is None - else: - raise NotImplementedError("Not implemented right now.") + def save_params(self, param_path): + # reference: save_persistables in io.py + pass @staticmethod def _check_and_get_place(place):