From bda0e60981cd2485fb09b9f8a7c294ebe3433f05 Mon Sep 17 00:00:00 2001 From: wangna11BD <79366697+wangna11BD@users.noreply.github.com> Date: Wed, 28 Apr 2021 16:57:03 +0800 Subject: [PATCH] modify spectralnorm (#32633) --- .../unittests/test_dygraph_spectral_norm.py | 139 ++++++++++++ python/paddle/nn/__init__.py | 2 + python/paddle/nn/utils/__init__.py | 3 +- python/paddle/nn/utils/spectral_norm_hook.py | 210 ++++++++++++++++++ 4 files changed, 353 insertions(+), 1 deletion(-) create mode 100644 python/paddle/fluid/tests/unittests/test_dygraph_spectral_norm.py create mode 100644 python/paddle/nn/utils/spectral_norm_hook.py diff --git a/python/paddle/fluid/tests/unittests/test_dygraph_spectral_norm.py b/python/paddle/fluid/tests/unittests/test_dygraph_spectral_norm.py new file mode 100644 index 00000000000..ef220ba1016 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_dygraph_spectral_norm.py @@ -0,0 +1,139 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import unittest +import numpy as np +import collections +import paddle +import paddle.nn as nn +from paddle.nn.utils import spectral_norm + + +class TestDygraphSpectralNorm(unittest.TestCase): + def setUp(self): + self.init_test_case() + self.set_data() + + def init_test_case(self): + self.batch_size = 3 + self.data_desc = (['x', [2, 12, 12]], ) + self.n_power_iterations = 1 + self.eps = 1e-12 + self.dim = None + + def set_data(self): + self.data = collections.OrderedDict() + for desc in self.data_desc: + data_name = desc[0] + data_shape = desc[1] + data_value = np.random.random( + size=[self.batch_size] + data_shape).astype('float32') + self.data[data_name] = data_value + + def spectral_normalize(self, weight, u, v, dim, power_iters, eps): + shape = weight.shape + weight_mat = weight.copy() + h = shape[dim] + w = np.prod(shape) // h + if dim != 0: + perm = [dim] + [d for d in range(len(shape)) if d != dim] + weight_mat = weight_mat.transpose(perm) + weight_mat = weight_mat.reshape((h, w)) + + u = u.reshape((h, 1)) + v = v.reshape((w, 1)) + for i in range(power_iters): + v = np.matmul(weight_mat.T, u) + v_norm = np.sqrt((v * v).sum()) + v = v / (v_norm + eps) + u = np.matmul(weight_mat, v) + u_norm = np.sqrt((u * u).sum()) + u = u / (u_norm + eps) + sigma = (u * np.matmul(weight_mat, v)).sum() + return weight / sigma + + def test_check_output(self): + linear = paddle.nn.Conv2D(2, 1, 3) + before_weight = linear.weight.numpy().copy() + if self.dim == None: + if isinstance(linear, (nn.Conv1DTranspose, nn.Conv2DTranspose, + nn.Conv3DTranspose, nn.Linear)): + self.dim = 1 + else: + self.dim = 0 + else: + self.dim = (self.dim + len(before_weight)) % len(before_weight) + + sn = spectral_norm( + linear, + n_power_iterations=self.n_power_iterations, + eps=self.eps, + dim=self.dim) + u = sn.weight_u.numpy().copy() + v = sn.weight_v.numpy().copy() + outputs = [] + for name, data in self.data.items(): + output = linear(paddle.to_tensor(data)) + outputs.append(output.numpy()) + self.actual_outputs = linear.weight.numpy() + + expect_output = self.spectral_normalize( + before_weight, u, v, self.dim, self.n_power_iterations, self.eps) + + for expect, actual in zip(expect_output, self.actual_outputs): + self.assertTrue( + np.allclose( + np.array(actual), np.array(expect), atol=0.001)) + + +class TestDygraphWeightNormCase(TestDygraphSpectralNorm): + def init_test_case(self): + self.batch_size = 3 + self.data_desc = (['x', [2, 3, 3]], ) + self.n_power_iterations = 1 + self.eps = 1e-12 + self.dim = None + + +class TestDygraphWeightNormWithIterations(TestDygraphSpectralNorm): + def init_test_case(self): + self.batch_size = 3 + self.data_desc = (['x', [2, 3, 3]], ) + self.n_power_iterations = 2 + self.eps = 1e-12 + self.dim = None + + +class TestDygraphWeightNormWithDim(TestDygraphSpectralNorm): + def init_test_case(self): + self.batch_size = 3 + self.data_desc = (['x', [2, 3, 3]], ) + self.n_power_iterations = 1 + self.eps = 1e-12 + self.dim = 1 + + +class TestDygraphWeightNormWithEps(TestDygraphSpectralNorm): + def init_test_case(self): + self.batch_size = 3 + self.data_desc = (['x', [2, 3, 3]], ) + self.n_power_iterations = 1 + self.eps = 1e-10 + self.dim = None + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/nn/__init__.py b/python/paddle/nn/__init__.py index d2f0063af0d..817fd501181 100644 --- a/python/paddle/nn/__init__.py +++ b/python/paddle/nn/__init__.py @@ -126,6 +126,8 @@ from .layer.distance import PairwiseDistance # noqa: F401 from .layer.vision import PixelShuffle # noqa: F401 from .layer.container import LayerDict # noqa: F401 +from .utils.spectral_norm_hook import spectral_norm + # TODO: remove loss, keep it for too many used in unitests from .layer import loss # noqa: F401 from ..fluid.dygraph.layers import Layer # noqa: F401 diff --git a/python/paddle/nn/utils/__init__.py b/python/paddle/nn/utils/__init__.py index bf2573d2cbc..b6801cfe320 100644 --- a/python/paddle/nn/utils/__init__.py +++ b/python/paddle/nn/utils/__init__.py @@ -12,8 +12,9 @@ # See the License for the specific language governing permissions and # limitations under the License. +from .spectral_norm_hook import spectral_norm from .weight_norm_hook import weight_norm, remove_weight_norm # noqa: F401 __all__ = [ #noqa - 'weight_norm', 'remove_weight_norm' + 'weight_norm', 'remove_weight_norm', 'spectral_norm' ] diff --git a/python/paddle/nn/utils/spectral_norm_hook.py b/python/paddle/nn/utils/spectral_norm_hook.py new file mode 100644 index 00000000000..5ce9e0937d3 --- /dev/null +++ b/python/paddle/nn/utils/spectral_norm_hook.py @@ -0,0 +1,210 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +import numpy as np + +import paddle +from ..layer.conv import Conv1DTranspose, Conv2DTranspose, Conv3DTranspose +from ..layer.common import Linear +from .. import functional as F + +__all__ = ['spectral_norm'] + + +def normal_(x, mean=0., std=1.): + temp_value = paddle.normal(mean, std, shape=x.shape) + x.set_value(temp_value) + return x + + +class SpectralNorm(object): + def __init__(self, name='weight', n_power_iterations=1, dim=0, eps=1e-12): + self.name = name + self.dim = dim + if n_power_iterations <= 0: + raise ValueError('Expected n_power_iterations to be positive, but ' + 'got n_power_iterations={}'.format( + n_power_iterations)) + self.n_power_iterations = n_power_iterations + self.eps = eps + + def reshape_weight_to_matrix(self, weight): + weight_mat = weight + if self.dim != 0: + # transpose dim to front + weight_mat = weight_mat.transpose([self.dim] + [ + d for d in range(weight_mat.dim()) if d != self.dim + ]) + + height = weight_mat.shape[0] + + return weight_mat.reshape([height, -1]) + + def compute_weight(self, layer, do_power_iteration): + weight = getattr(layer, self.name + '_orig') + u = getattr(layer, self.name + '_u') + v = getattr(layer, self.name + '_v') + weight_mat = self.reshape_weight_to_matrix(weight) + + if do_power_iteration: + with paddle.no_grad(): + for _ in range(self.n_power_iterations): + v.set_value( + F.normalize( + paddle.matmul( + weight_mat, + u, + transpose_x=True, + transpose_y=False), + axis=0, + epsilon=self.eps, )) + + u.set_value( + F.normalize( + paddle.matmul(weight_mat, v), + axis=0, + epsilon=self.eps, )) + if self.n_power_iterations > 0: + u = u.clone() + v = v.clone() + + sigma = paddle.dot(u, paddle.mv(weight_mat, v)) + weight = weight / sigma + return weight + + def __call__(self, layer, inputs): + setattr( + layer, + self.name, + self.compute_weight( + layer, do_power_iteration=layer.training)) + + @staticmethod + def apply(layer, name, n_power_iterations, dim, eps): + for k, hook in layer._forward_pre_hooks.items(): + if isinstance(hook, SpectralNorm) and hook.name == name: + raise RuntimeError("Cannot register two spectral_norm hooks on " + "the same parameter {}".format(name)) + + fn = SpectralNorm(name, n_power_iterations, dim, eps) + weight = layer._parameters[name] + + with paddle.no_grad(): + weight_mat = fn.reshape_weight_to_matrix(weight) + h, w = weight_mat.shape + + # randomly initialize u and v + u = layer.create_parameter([h]) + u = normal_(u, 0., 1.) + v = layer.create_parameter([w]) + v = normal_(v, 0., 1.) + u = F.normalize(u, axis=0, epsilon=fn.eps) + v = F.normalize(v, axis=0, epsilon=fn.eps) + + # delete fn.name form parameters, otherwise you can not set attribute + del layer._parameters[fn.name] + layer.add_parameter(fn.name + "_orig", weight) + # still need to assign weight back as fn.name because all sorts of + # things may assume that it exists, e.g., when initializing weights. + # However, we can't directly assign as it could be an Parameter and + # gets added as a parameter. Instead, we register weight * 1.0 as a plain + # attribute. + setattr(layer, fn.name, weight * 1.0) + layer.register_buffer(fn.name + "_u", u) + layer.register_buffer(fn.name + "_v", v) + layer.register_forward_pre_hook(fn) + return fn + + +def spectral_norm(layer, + name='weight', + n_power_iterations=1, + eps=1e-12, + dim=None): + r""" + This spectral_norm layer applies spectral normalization to a parameter according to the + following Calculation: + + Step 1: + Generate vector U in shape of [H], and V in shape of [W]. + While H is the :attr:`dim` th dimension of the input weights, + and W is the product result of remaining dimensions. + + Step 2: + :attr:`power_iters` should be a positive integer, do following + calculations with U and V for :attr:`power_iters` rounds. + + .. math:: + + \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2} + + \mathbf{u} := \\frac{\mathbf{W} \mathbf{v}}{\|\mathbf{W} \mathbf{v}\|_2} + + Step 3: + Calculate :math:`\sigma(\mathbf{W})` and normalize weight values. + + .. math:: + + \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v} + + \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})} + + + Refer to `Spectral Normalization `_ . + + Parameters: + layer(Layer): Layer of paddle, which has weight. + name(str, optional): Name of the weight parameter. Default: 'weight'. + n_power_iterations(int, optional): The number of power iterations to calculate spectral norm. Default: 1. + eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12. + dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: None. + + Returns: + The original layer with the spectral norm hook + + Examples: + .. code-block:: python + + from paddle.nn import Conv2D + from paddle.nn.utils import Spectralnorm + + conv = Conv2D(3, 1, 3) + sn_conv = spectral_norm(conv) + print(sn_conv) + # Conv2D(3, 1, kernel_size=[3, 3], data_format=NCHW) + print(sn_conv.weight) + # Tensor(shape=[1, 3, 3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False, + # [[[[-0.21090528, 0.18563725, -0.14127982], + # [-0.02310637, 0.03197737, 0.34353802], + # [-0.17117859, 0.33152047, -0.28408015]], + # + # [[-0.13336606, -0.01862637, 0.06959272], + # [-0.02236020, -0.27091628, -0.24532901], + # [ 0.27254242, 0.15516677, 0.09036587]], + # + # [[ 0.30169338, -0.28146112, -0.11768346], + # [-0.45765871, -0.12504843, -0.17482486], + # [-0.36866254, -0.19969313, 0.08783543]]]]) + + """ + + if dim is None: + if isinstance(layer, (Conv1DTranspose, Conv2DTranspose, Conv3DTranspose, + Linear)): + dim = 1 + else: + dim = 0 + SpectralNorm.apply(layer, name, n_power_iterations, dim, eps) + return layer -- GitLab