Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
bbb9b28a
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
bbb9b28a
编写于
11月 25, 2021
作者:
zhouweiwei2014
提交者:
GitHub
11月 25, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add new API paddle.nn.initializer.Dirac (#37389)
* add new API paddle.nn.initializer.Dirac * fix doc
上级
e64829e2
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
346 addition
and
6 deletion
+346
-6
python/paddle/fluid/initializer.py
python/paddle/fluid/initializer.py
+7
-6
python/paddle/fluid/tests/unittests/test_initializer.py
python/paddle/fluid/tests/unittests/test_initializer.py
+113
-0
python/paddle/nn/initializer/__init__.py
python/paddle/nn/initializer/__init__.py
+3
-0
python/paddle/nn/initializer/dirac.py
python/paddle/nn/initializer/dirac.py
+223
-0
未找到文件。
python/paddle/fluid/initializer.py
浏览文件 @
bbb9b28a
...
...
@@ -1039,9 +1039,10 @@ def calculate_gain(nonlinearity, param=None):
Get the recommended gain value of some nonlinearity function.
Args:
nonlinearity(str): nonlinearity function.
param(bool|int|float, optional): optional parameter for somme nonlinearity function. Now, it only applies to 'leaky_relu'. Default: None,
it will be calculated as 0.01 in the formula.
nonlinearity(str): name of nonlinearity activation function. If it is a linear function, which is one of
"linear/conv1d/conv2d/conv3d/conv1d_transpose/conv2d_transpose/conv3d_transpose" , will return 1.0
param(bool|int|float, optional): optional parameter for somme nonlinearity function. Now, it only applies to
'leaky_relu'. Default: None, it will be calculated as 0.01 in the formula.
Returns:
The recommended gain value for nonlinearity function.
...
...
@@ -1065,9 +1066,9 @@ def calculate_gain(nonlinearity, param=None):
'conv1d'
:
1
,
'conv2d'
:
1
,
'conv3d'
:
1
,
'conv
_transpose1d
'
:
1
,
'conv
_transpose2d
'
:
1
,
'conv
_transpose3d
'
:
1
,
'conv
1d_transpose
'
:
1
,
'conv
2d_transpose
'
:
1
,
'conv
3d_transpose
'
:
1
,
'tanh'
:
5.0
/
3
,
'relu'
:
math
.
sqrt
(
2.0
),
'leaky_relu'
:
math
.
sqrt
(
2.0
/
(
1
+
param
**
2
)),
...
...
python/paddle/fluid/tests/unittests/test_initializer.py
浏览文件 @
bbb9b28a
...
...
@@ -915,5 +915,118 @@ class TestOrthogonalInitializer6(TestOrthogonalInitializer4):
self
.
assertTrue
(
np
.
allclose
(
np
.
matmul
(
a
,
a
.
T
),
np
.
eye
(
36
),
atol
=
1.e-6
))
# initialize Conv1D weight
class
TestDiracInitializer1
(
unittest
.
TestCase
):
def
config
(
self
):
self
.
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
paddle
.
nn
.
initializer
.
Dirac
())
self
.
dtype
=
"float64"
self
.
in_channels
=
3
self
.
out_channels
=
2
self
.
kernel_size
=
3
self
.
input_shape
=
[
8
,
self
.
in_channels
,
10
]
self
.
conv_layer
=
paddle
.
nn
.
Conv1D
self
.
num_ops
=
8
#fill_constant*2, reshape*2, assign_value*2, scatter, cast
def
check_result
(
self
,
w_dygraph
,
w_static
,
conv_in
,
conv_out
):
self
.
assertTrue
(
np
.
array_equal
(
w_dygraph
,
w_static
))
self
.
assertTrue
(
np
.
array_equal
(
conv_out
,
conv_in
[:,
0
:
2
,
1
:
9
]))
def
test_dirac
(
self
):
self
.
config
()
paddle
.
set_default_dtype
(
self
.
dtype
)
paddle
.
disable_static
()
conv
=
self
.
conv_layer
(
self
.
in_channels
,
self
.
out_channels
,
self
.
kernel_size
,
weight_attr
=
self
.
weight_attr
)
weight_dygraph
=
conv
.
weight
.
numpy
()
paddle
.
enable_static
()
start_prog
=
paddle
.
static
.
Program
()
main_prog
=
paddle
.
static
.
Program
()
with
paddle
.
static
.
program_guard
(
main_prog
,
start_prog
):
inp
=
paddle
.
rand
(
self
.
input_shape
)
conv
=
self
.
conv_layer
(
self
.
in_channels
,
self
.
out_channels
,
self
.
kernel_size
,
weight_attr
=
self
.
weight_attr
)
output
=
conv
(
inp
)
block
=
start_prog
.
global_block
()
self
.
assertEqual
(
len
(
block
.
ops
),
self
.
num_ops
)
self
.
assertEqual
(
block
.
ops
[
0
].
type
,
'fill_constant'
)
self
.
assertEqual
(
block
.
ops
[
1
].
type
,
'reshape'
)
self
.
assertEqual
(
block
.
ops
[
2
].
type
,
'assign_value'
)
self
.
assertEqual
(
block
.
ops
[
3
].
type
,
'assign_value'
)
self
.
assertEqual
(
block
.
ops
[
4
].
type
,
'scatter'
)
self
.
assertEqual
(
block
.
ops
[
5
].
type
,
'reshape'
)
exe
=
paddle
.
static
.
Executor
()
exe
.
run
(
start_prog
)
fetch
=
exe
.
run
(
main_prog
,
fetch_list
=
[
inp
,
output
,
conv
.
weight
])
conv_input
=
fetch
[
0
]
conv_output
=
fetch
[
1
]
weight_static
=
fetch
[
2
]
self
.
check_result
(
weight_dygraph
,
weight_static
,
conv_input
,
conv_output
)
# initialize Conv2D weight
class
TestDiracInitializer2
(
TestDiracInitializer1
):
def
config
(
self
):
self
.
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
paddle
.
nn
.
initializer
.
Dirac
(
groups
=
1
))
self
.
dtype
=
"float64"
self
.
in_channels
=
4
self
.
out_channels
=
8
self
.
kernel_size
=
(
3
,
3
)
self
.
input_shape
=
[
8
,
self
.
in_channels
,
10
,
10
]
self
.
conv_layer
=
paddle
.
nn
.
Conv2D
self
.
num_ops
=
8
def
check_result
(
self
,
w_dygraph
,
w_static
,
conv_in
,
conv_out
):
self
.
assertTrue
(
np
.
array_equal
(
w_dygraph
,
w_static
))
self
.
assertTrue
(
np
.
array_equal
(
conv_out
[:,
0
:
4
,
:,
:],
conv_in
[:,
:,
1
:
9
,
1
:
9
]))
self
.
assertTrue
(
np
.
array_equal
(
conv_out
[:,
4
:
8
,
:,
:],
np
.
zeros
([
8
,
4
,
8
,
8
])))
# initialize Conv3D weight
class
TestDiracInitializer3
(
TestDiracInitializer1
):
def
config
(
self
):
self
.
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
paddle
.
nn
.
initializer
.
Dirac
(
groups
=
2
))
self
.
dtype
=
"float32"
self
.
in_channels
=
5
self
.
out_channels
=
10
self
.
kernel_size
=
(
3
,
3
,
3
)
self
.
input_shape
=
[
8
,
self
.
in_channels
,
10
,
10
,
10
]
self
.
conv_layer
=
paddle
.
nn
.
Conv3D
self
.
num_ops
=
7
def
check_result
(
self
,
w_dygraph
,
w_static
,
conv_in
,
conv_out
):
self
.
assertTrue
(
np
.
array_equal
(
w_dygraph
,
w_static
))
self
.
assertTrue
(
np
.
array_equal
(
conv_out
[:,
0
:
5
,
:,
:,
:],
conv_in
[:,
:,
1
:
9
,
1
:
9
,
1
:
9
]))
self
.
assertTrue
(
np
.
array_equal
(
conv_out
[:,
5
:
10
,
:,
:,
:],
conv_in
[:,
:,
1
:
9
,
1
:
9
,
1
:
9
]))
def
test_error
(
self
):
self
.
config
()
with
self
.
assertRaises
(
AssertionError
):
paddle
.
nn
.
Linear
(
10
,
10
,
weight_attr
=
self
.
weight_attr
)
with
self
.
assertRaises
(
AssertionError
):
paddle
.
nn
.
Conv2D
(
5
,
9
,
(
3
,
3
),
weight_attr
=
self
.
weight_attr
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/nn/initializer/__init__.py
浏览文件 @
bbb9b28a
...
...
@@ -34,6 +34,8 @@ from .uniform import Uniform # noqa: F401
from
.orthogonal
import
Orthogonal
# noqa: F401
from
.dirac
import
Dirac
# noqa: F401
__all__
=
[
#noqa
'Bilinear'
,
'Constant'
,
...
...
@@ -46,6 +48,7 @@ __all__ = [ #noqa
'TruncatedNormal'
,
'Uniform'
,
'Orthogonal'
,
'Dirac'
,
'set_global_initializer'
,
'calculate_gain'
]
python/paddle/nn/initializer/dirac.py
0 → 100644
浏览文件 @
bbb9b28a
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
...fluid.initializer
import
Initializer
from
...fluid.data_feeder
import
check_variable_and_dtype
from
...fluid.core
import
VarDesc
from
...fluid
import
unique_name
,
framework
__all__
=
[]
class
Dirac
(
Initializer
):
"""Initialize the 3D/4D/5D Tensor with Dirac delta function.
It can reserve the feature of convolution layer input, which means that
as many channels are reserved as possible.
In this initialize method, elements in the middle of convolution kernels will
be set to 1 . The formula can be described as:
$ Assuming: N=min(in\_channels, out\_channels)$
$ X[d, d, shape[2]//2, shape[3]//2, ...]=1, \ d=0,1...N$
Args:
groups(int): 0-dimension of the Tensor will be divided by groups, each group has the same value.
name(str, optional): The default value is None. Normally there is no need for user to set this
property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Dirac initializer instance objects.
Examples:
.. code-block:: python
import paddle
#1.For kernel_size is uneven number:
attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Dirac())
conv = paddle.nn.Conv1D(3, 2, 3, weight_attr=attr)
conv.weight
# Tensor(shape=[2, 3, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
# [[[0., 1., 0.],
# [0., 0., 0.],
# [0., 0., 0.]],
#
# [[0., 0., 0.],
# [0., 1., 0.],
# [0., 0., 0.]]])
input = paddle.rand([8, 3, 10])
output = conv(input)
output == input[:, 0:2, 1:9]
# output.shape is [8, 2, 8], It means output is almost the same with input, 2 channels are reserved
#2. For kernel_size is even number:
attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Dirac())
conv = paddle.nn.Conv1D(3, 2, 4, weight_attr=attr)
conv.weight
# Tensor(shape=[2, 3, 4], dtype=float32, place=CPUPlace, stop_gradient=False,
# [[[0., 0., 1., 0.],
# [0., 0., 0., 0.],
# [0., 0., 0., 0.]],
#
# [[0., 0., 0., 0.],
# [0., 0., 1., 0.],
# [0., 0., 0., 0.]]])
"""
def
__init__
(
self
,
groups
=
1
,
name
=
None
):
assert
groups
>
0
and
isinstance
(
groups
,
int
),
" 'groups' must be a positive integer. "
super
(
Dirac
,
self
).
__init__
()
self
.
_groups
=
groups
def
__call__
(
self
,
var
,
block
=
None
):
"""Initialize the input tensor with dirac initializer.
Args:
var(Tensor): Tensor that needs to be initialized.
block(Block, optional): The block in which initialization ops
should be added. Used in static graph only, default None.
Returns:
The most critical OP(scatter) in this initializer, which contains 7~8 ops in total.
"""
block
=
self
.
_check_block
(
block
)
assert
isinstance
(
var
,
framework
.
Parameter
)
assert
isinstance
(
block
,
framework
.
Block
)
check_variable_and_dtype
(
var
,
"Out"
,
[
'float16'
,
'bfloat16'
,
'float32'
,
'float64'
],
'Dirac'
)
assert
len
(
var
.
shape
)
in
[
3
,
4
,
5
],
"Only Tensor with 3/4/5 dimensions can be initialized by Dirac"
assert
(
var
.
shape
[
0
]
%
self
.
_groups
)
==
0
,
"Tensor 0-dimension must be divisible by groups"
if
var
.
dtype
!=
VarDesc
.
VarType
.
FP32
:
out_var
=
block
.
create_var
(
name
=
unique_name
.
generate
(
"."
.
join
([
'dirac'
,
var
.
name
,
'tmp'
])),
shape
=
var
.
shape
,
dtype
=
VarDesc
.
VarType
.
FP32
,
type
=
VarDesc
.
VarType
.
LOD_TENSOR
,
persistable
=
False
)
else
:
out_var
=
var
block
.
append_op
(
type
=
'fill_constant'
,
inputs
=
{},
outputs
=
{
'Out'
:
out_var
},
attrs
=
{
'value'
:
float
(
0
),
'dtype'
:
out_var
.
dtype
,
'shape'
:
out_var
.
shape
,
},
stop_gradient
=
True
)
origin_shape
=
var
.
shape
num_per_group
=
origin_shape
[
0
]
//
self
.
_groups
min_shape
=
min
(
num_per_group
,
origin_shape
[
1
])
idx_list
=
[]
value_list
=
[]
strides
=
[]
prod
=
1
for
dim
in
reversed
(
origin_shape
):
strides
.
insert
(
0
,
prod
)
prod
*=
dim
for
i
in
range
(
self
.
_groups
):
for
j
in
range
(
min_shape
):
value_list
.
append
(
1.0
)
offset
=
0
for
(
k
,
stride
)
in
enumerate
(
strides
):
if
(
k
==
0
):
offset
+=
(
j
+
i
*
num_per_group
)
*
stride
elif
(
k
==
1
):
offset
+=
j
*
stride
else
:
offset
+=
origin_shape
[
k
]
//
2
*
stride
idx_list
.
append
(
offset
)
block
.
append_op
(
type
=
"reshape"
,
inputs
=
{
"X"
:
out_var
},
attrs
=
{
'shape'
:
[
-
1
]},
outputs
=
{
"Out"
:
out_var
},
stop_gradient
=
True
)
index_tensor
=
block
.
create_var
(
name
=
unique_name
.
generate
(
'scatter_index'
),
persistable
=
False
,
stop_gradient
=
True
)
block
.
append_op
(
type
=
'assign_value'
,
outputs
=
{
'Out'
:
index_tensor
},
attrs
=
{
'dtype'
:
VarDesc
.
VarType
.
INT64
,
'shape'
:
[
len
(
idx_list
)],
'int64_values'
:
idx_list
},
stop_gradient
=
True
)
value_tensor
=
block
.
create_var
(
name
=
unique_name
.
generate
(
'scatter_value'
),
persistable
=
False
,
stop_gradient
=
True
)
block
.
append_op
(
type
=
'assign_value'
,
outputs
=
{
'Out'
:
value_tensor
},
attrs
=
{
'dtype'
:
VarDesc
.
VarType
.
FP32
,
'shape'
:
[
len
(
value_list
)],
'fp32_values'
:
value_list
},
stop_gradient
=
True
)
op
=
block
.
append_op
(
type
=
"scatter"
,
inputs
=
{
"X"
:
out_var
,
"Ids"
:
index_tensor
,
"Updates"
:
value_tensor
},
attrs
=
{
'overwrite'
:
True
},
outputs
=
{
"Out"
:
out_var
},
stop_gradient
=
True
)
block
.
append_op
(
type
=
"reshape"
,
inputs
=
{
"X"
:
out_var
},
attrs
=
{
'shape'
:
origin_shape
},
outputs
=
{
"Out"
:
out_var
},
stop_gradient
=
True
)
if
var
.
dtype
!=
VarDesc
.
VarType
.
FP32
:
block
.
append_op
(
type
=
"cast"
,
inputs
=
{
"X"
:
out_var
},
outputs
=
{
"Out"
:
var
},
attrs
=
{
"in_dtype"
:
out_var
.
dtype
,
"out_dtype"
:
var
.
dtype
},
stop_gradient
=
True
)
if
not
framework
.
in_dygraph_mode
():
var
.
op
=
op
return
op
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录