diff --git a/paddle/fluid/operators/channel_shuffle_op.cc b/paddle/fluid/operators/channel_shuffle_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..74b2e04e63f70610abcf3a85577ce6f1154ff281 --- /dev/null +++ b/paddle/fluid/operators/channel_shuffle_op.cc @@ -0,0 +1,100 @@ +// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/framework/infershape_utils.h" +#include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/framework/op_version_registry.h" +#include "paddle/phi/core/infermeta_utils.h" +#include "paddle/phi/infermeta/backward.h" +#include "paddle/phi/infermeta/unary.h" + +namespace paddle { +namespace operators { + +class ChannelShuffleOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; +}; + +class ChannelShuffleOpMaker : public framework::OpProtoAndCheckerMaker { + public: + void Make() override { + AddInput("X", + "(Tensor, default Tensor), " + "the input feature data of ChannelShuffleOp, the layout is " + "[N, C, H, W] or [N, H, W, C]."); + AddOutput("Out", + "(Tensor, default Tensor), the output of " + "ChannelShuffleOp. The layout is also [N, C, " + "H, W] or [N, H, W, C]."); + AddAttr("groups", "number of groups to divide channels in."); + AddAttr( + "data_format", + "An optional string from: \"NHWC\", \"NCHW\". " + "Defaults to \"NHWC\", Specify the data format of the input data.") + .SetDefault("NCHW"); + + AddComment(R"DOC( + Channel Shuffle operator + This operator divides channels in a tensor of shape :math:`(*, C, H, W)` + into :math:`g` groups and rearranges them as :math:`(*, C/g, g, H, W)` + while keeping the original tensor shape. + + Please refer to the paper: + `ShuffleNet: An Extremely Efficient Convolutional Neural Network for + Mobile Devices `_ + by Zhang et. al (2017) for more details. + + )DOC"); + } +}; + +class ChannelShuffleGradOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; +}; + +template +class ChannelShuffleGradOpMaker : public framework::SingleGradOpMaker { + public: + using framework::SingleGradOpMaker::SingleGradOpMaker; + + protected: + void Apply(GradOpPtr op) const override { + op->SetType("channel_shuffle_grad"); + op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); + op->SetAttrMap(this->Attrs()); + op->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +DECLARE_INFER_SHAPE_FUNCTOR(channel_shuffle, ChannelShuffleInferShapeFunctor, + PD_INFER_META(phi::ChannelShuffleInferMeta)); + +REGISTER_OPERATOR(channel_shuffle, ops::ChannelShuffleOp, + ops::ChannelShuffleOpMaker, + ops::ChannelShuffleGradOpMaker, + ops::ChannelShuffleGradOpMaker, + ChannelShuffleInferShapeFunctor); + +DECLARE_INFER_SHAPE_FUNCTOR(channel_shuffle_grad, + ChannelShuffleGradInferShapeFunctor, + PD_INFER_META(phi::ChannelShuffleGradInferMeta)); + +REGISTER_OPERATOR(channel_shuffle_grad, ops::ChannelShuffleGradOp, + ChannelShuffleGradInferShapeFunctor); diff --git a/paddle/phi/infermeta/backward.cc b/paddle/phi/infermeta/backward.cc index 567f39a915c02f2a8e7a6b4d33f2bc43fecdc360..4a4585e00eed60db5bbf173fff98c5646da9e36b 100644 --- a/paddle/phi/infermeta/backward.cc +++ b/paddle/phi/infermeta/backward.cc @@ -67,6 +67,22 @@ void BilinearTensorProductGradInferMeta(const MetaTensor& x, } } +void ChannelShuffleGradInferMeta(const MetaTensor& out_grad, + int groups, + const std::string& data_format, + MetaTensor* x_grad) { + auto do_dims = out_grad.dims(); + PADDLE_ENFORCE_EQ(do_dims.size(), + 4, + phi::errors::InvalidArgument( + "Input should be a 4-D tensor of format [N, C, H, W] " + "or [N, H, W, C], but got %u.", + do_dims.size())); + auto dx_dims = do_dims; + x_grad->set_dims(dx_dims); + x_grad->set_dtype(out_grad.dtype()); +} + void ConvTransposeGradInferMeta(const MetaTensor& x, const MetaTensor& filter, const MetaTensor& dout, diff --git a/paddle/phi/infermeta/backward.h b/paddle/phi/infermeta/backward.h index 6807438ebbb75350f9d03a92a62d019d2c4e8733..9db958778d597f6d449bc97f35a2dd41e2469673 100644 --- a/paddle/phi/infermeta/backward.h +++ b/paddle/phi/infermeta/backward.h @@ -37,6 +37,11 @@ void BilinearTensorProductGradInferMeta(const MetaTensor& x, MetaTensor* dweight, MetaTensor* dbias); +void ChannelShuffleGradInferMeta(const MetaTensor& out_grad, + int groups, + const std::string& data_format, + MetaTensor* x_grad); + void ConvTransposeGradInferMeta(const MetaTensor& x, const MetaTensor& filter, const MetaTensor& dout, diff --git a/paddle/phi/infermeta/unary.cc b/paddle/phi/infermeta/unary.cc index e5d83a4013d30e6f7a0dd5af4820a7b724d6024e..5066d0cfd16fa73dd97f2345e72a8906de026f85 100644 --- a/paddle/phi/infermeta/unary.cc +++ b/paddle/phi/infermeta/unary.cc @@ -2999,6 +2999,52 @@ void WhereIndexInferMeta(const MetaTensor& condition, MetaTensor* out) { out->set_dtype(DataType::INT64); } +void ChannelShuffleInferMeta(const MetaTensor& x, + int groups, + const std::string& data_format, + MetaTensor* out) { + auto input_dims = x.dims(); + PADDLE_ENFORCE_EQ(input_dims.size(), + 4, + phi::errors::InvalidArgument( + "Input should be a 4-D tensor of format [N, C, H, W] " + "or [N, H, W, C], but got %u.", + input_dims.size())); + PADDLE_ENFORCE_GE( + groups, + 1, + phi::errors::InvalidArgument("groups should be larger than 0.")); + PADDLE_ENFORCE_EQ(data_format == "NCHW" || data_format == "NHWC", + true, + phi::errors::InvalidArgument( + "data_format must be one of " + "NCHW and NHWC. But recevied data_format: %s", + data_format)); + + const bool channel_last = (data_format == "NHWC"); + + if (!channel_last) { + PADDLE_ENFORCE_EQ(input_dims[1] % groups, + 0, + phi::errors::InvalidArgument( + "The number of groups to divide channels in [%u] " + "should divide the number of channel [%u]", + groups, + input_dims[1])); + } else { + PADDLE_ENFORCE_EQ(input_dims[3] % groups, + 0, + phi::errors::InvalidArgument( + "The number of groups to divide channels in [%u] " + "should divide the number of channel [%u]", + groups, + input_dims[3])); + } + auto output_dims = input_dims; + out->set_dtype(x.dtype()); + out->set_dims(output_dims); +} + } // namespace phi PD_REGISTER_INFER_META_FN(flatten, phi::FlattenInferMeta); diff --git a/paddle/phi/infermeta/unary.h b/paddle/phi/infermeta/unary.h index 70b868eeb5d8d0ec4d3e352c50510e69942d3ea3..c67eb2068d8bf7f64da9c3b9a603547a1b917b6d 100644 --- a/paddle/phi/infermeta/unary.h +++ b/paddle/phi/infermeta/unary.h @@ -435,4 +435,9 @@ void OneHotInferMeta(const MetaTensor& x, const Scalar& depth, MetaTensor* out); void WhereIndexInferMeta(const MetaTensor& condition, MetaTensor* out); +void ChannelShuffleInferMeta(const MetaTensor& x, + int groups, + const std::string& data_format, + MetaTensor* out); + } // namespace phi diff --git a/paddle/phi/kernels/channel_shuffle_grad_kernel.h b/paddle/phi/kernels/channel_shuffle_grad_kernel.h new file mode 100644 index 0000000000000000000000000000000000000000..ac89f3336bc76d97ed400aff71b58ca2c810392a --- /dev/null +++ b/paddle/phi/kernels/channel_shuffle_grad_kernel.h @@ -0,0 +1,29 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include "paddle/phi/core/dense_tensor.h" + +namespace phi { + +template +void ChannelShuffleGradKernel(const Context& dev_ctx, + const DenseTensor& out_grad, + int groups, + const std::string& data_format, + DenseTensor* x_grad); + +} // namespace phi diff --git a/paddle/phi/kernels/channel_shuffle_kernel.h b/paddle/phi/kernels/channel_shuffle_kernel.h new file mode 100644 index 0000000000000000000000000000000000000000..12de25606dd968f9ea503875743f1a4533c8be15 --- /dev/null +++ b/paddle/phi/kernels/channel_shuffle_kernel.h @@ -0,0 +1,29 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include "paddle/phi/core/dense_tensor.h" + +namespace phi { + +template +void ChannelShuffleKernel(const Context& dev_ctx, + const DenseTensor& x, + int groups, + const std::string& data_format, + DenseTensor* out); + +} // namespace phi diff --git a/paddle/phi/kernels/cpu/channel_shuffle_grad_kernel.cc b/paddle/phi/kernels/cpu/channel_shuffle_grad_kernel.cc new file mode 100644 index 0000000000000000000000000000000000000000..fcc91b21916731595bab67421676c71f88e7d855 --- /dev/null +++ b/paddle/phi/kernels/cpu/channel_shuffle_grad_kernel.cc @@ -0,0 +1,26 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/phi/kernels/channel_shuffle_grad_kernel.h" +#include "paddle/phi/kernels/impl/channel_shuffle_grad_kernel_impl.h" + +#include "paddle/phi/backends/cpu/cpu_context.h" +#include "paddle/phi/core/kernel_registry.h" + +PD_REGISTER_KERNEL(channel_shuffle_grad, + CPU, + ALL_LAYOUT, + phi::ChannelShuffleGradKernel, + float, + double) {} diff --git a/paddle/phi/kernels/cpu/channel_shuffle_kernel.cc b/paddle/phi/kernels/cpu/channel_shuffle_kernel.cc new file mode 100644 index 0000000000000000000000000000000000000000..95d19ec6a7746ef704878a327ebc238c063317db --- /dev/null +++ b/paddle/phi/kernels/cpu/channel_shuffle_kernel.cc @@ -0,0 +1,26 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/phi/kernels/channel_shuffle_kernel.h" +#include "paddle/phi/kernels/impl/channel_shuffle_kernel_impl.h" + +#include "paddle/phi/backends/cpu/cpu_context.h" +#include "paddle/phi/core/kernel_registry.h" + +PD_REGISTER_KERNEL(channel_shuffle, + CPU, + ALL_LAYOUT, + phi::ChannelShuffleKernel, + float, + double) {} diff --git a/paddle/phi/kernels/gpu/channel_shuffle_grad_kernel.cu b/paddle/phi/kernels/gpu/channel_shuffle_grad_kernel.cu new file mode 100644 index 0000000000000000000000000000000000000000..63d3d4a554f817e0fda276a6240435f65c06a762 --- /dev/null +++ b/paddle/phi/kernels/gpu/channel_shuffle_grad_kernel.cu @@ -0,0 +1,26 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/phi/kernels/channel_shuffle_grad_kernel.h" +#include "paddle/phi/kernels/impl/channel_shuffle_grad_kernel_impl.h" + +#include "paddle/phi/backends/gpu/gpu_context.h" +#include "paddle/phi/core/kernel_registry.h" + +PD_REGISTER_KERNEL(channel_shuffle_grad, + GPU, + ALL_LAYOUT, + phi::ChannelShuffleGradKernel, + float, + double) {} diff --git a/paddle/phi/kernels/gpu/channel_shuffle_kernel.cu b/paddle/phi/kernels/gpu/channel_shuffle_kernel.cu new file mode 100644 index 0000000000000000000000000000000000000000..f85cb4aafd1dcfc1655dcb74d02dcb5947e3720d --- /dev/null +++ b/paddle/phi/kernels/gpu/channel_shuffle_kernel.cu @@ -0,0 +1,26 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/phi/kernels/channel_shuffle_kernel.h" +#include "paddle/phi/kernels/impl/channel_shuffle_kernel_impl.h" + +#include "paddle/phi/backends/gpu/gpu_context.h" +#include "paddle/phi/core/kernel_registry.h" + +PD_REGISTER_KERNEL(channel_shuffle, + GPU, + ALL_LAYOUT, + phi::ChannelShuffleKernel, + float, + double) {} diff --git a/paddle/phi/kernels/impl/channel_shuffle_grad_kernel_impl.h b/paddle/phi/kernels/impl/channel_shuffle_grad_kernel_impl.h new file mode 100644 index 0000000000000000000000000000000000000000..26bee763eca525a08b5d32342cbeca0520917932 --- /dev/null +++ b/paddle/phi/kernels/impl/channel_shuffle_grad_kernel_impl.h @@ -0,0 +1,58 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include + +#include "paddle/phi/core/dense_tensor.h" +#include "paddle/phi/kernels/funcs/math_function.h" + +namespace phi { + +template +void ChannelShuffleGradKernel(const Context& dev_ctx, + const DenseTensor& out_grad, + int groups, + const std::string& data_format, + DenseTensor* x_grad) { + auto* dout = &out_grad; + auto* dx = x_grad; + dev_ctx.template Alloc(dx); + bool channel_last = (data_format == "NHWC"); + auto do_dims = dout->dims(); + auto dx_dims = dx->dims(); + + DenseTensor t(*dout); + if (!channel_last) { + t.Resize({do_dims[0], do_dims[1] / groups, groups, do_dims[2], do_dims[3]}); + } else { + t.Resize({do_dims[0], do_dims[1], do_dims[2], do_dims[3] / groups, groups}); + } + auto axis = !channel_last ? std::vector{0, 2, 1, 3, 4} + : std::vector{0, 1, 2, 4, 3}; + + DenseTensor o(*dx); + if (!channel_last) { + o.Resize({dx_dims[0], groups, dx_dims[1] / groups, dx_dims[2], dx_dims[3]}); + } else { + o.Resize({dx_dims[0], dx_dims[1], dx_dims[2], groups, dx_dims[3] / groups}); + } + phi::funcs::Transpose trans; + trans(dev_ctx, t, &o, axis); + dx->Resize(dx_dims); +} + +} // namespace phi diff --git a/paddle/phi/kernels/impl/channel_shuffle_kernel_impl.h b/paddle/phi/kernels/impl/channel_shuffle_kernel_impl.h new file mode 100644 index 0000000000000000000000000000000000000000..c723cd3622af98f151fdb7a565297881be38a747 --- /dev/null +++ b/paddle/phi/kernels/impl/channel_shuffle_kernel_impl.h @@ -0,0 +1,57 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include + +#include "paddle/phi/core/dense_tensor.h" +#include "paddle/phi/kernels/funcs/math_function.h" + +namespace phi { + +template +void ChannelShuffleKernel(const Context& dev_ctx, + const DenseTensor& x, + int groups, + const std::string& data_format, + DenseTensor* out) { + auto* in = &x; + dev_ctx.template Alloc(out); + bool channel_last = (data_format == "NHWC"); + auto in_dims = in->dims(); + auto o_dims = out->dims(); + + DenseTensor t(*in); + if (!channel_last) { + t.Resize({in_dims[0], groups, in_dims[1] / groups, in_dims[2], in_dims[3]}); + } else { + t.Resize({in_dims[0], in_dims[1], in_dims[2], groups, in_dims[3] / groups}); + } + auto axis = !channel_last ? std::vector{0, 2, 1, 3, 4} + : std::vector{0, 1, 2, 4, 3}; + + DenseTensor o(*out); + if (!channel_last) { + o.Resize({in_dims[0], in_dims[1] / groups, groups, in_dims[2], in_dims[3]}); + } else { + o.Resize({in_dims[0], in_dims[1], in_dims[2], in_dims[3] / groups, groups}); + } + phi::funcs::Transpose trans; + trans(dev_ctx, t, &o, axis); + out->Resize(o_dims); +} + +} // namespace phi diff --git a/paddle/phi/ops/compat/channel_shuffle_sig.cc b/paddle/phi/ops/compat/channel_shuffle_sig.cc new file mode 100644 index 0000000000000000000000000000000000000000..ae0aa0a80b6f0b9f7137fd8e8c948712a8be7e1f --- /dev/null +++ b/paddle/phi/ops/compat/channel_shuffle_sig.cc @@ -0,0 +1,30 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/phi/core/compat/op_utils.h" + +namespace phi { + +KernelSignature ChannelShuffleGradOpArgumentMapping( + const ArgumentMappingContext& ctx) { + return KernelSignature("channel_shuffle_grad", + {"Out@GRAD"}, + {"groups", "data_format"}, + {"X@GRAD"}); +} + +} // namespace phi + +PD_REGISTER_ARG_MAPPING_FN(channel_shuffle_grad, + phi::ChannelShuffleGradOpArgumentMapping); diff --git a/python/paddle/fluid/tests/unittests/test_channel_shuffle.py b/python/paddle/fluid/tests/unittests/test_channel_shuffle.py new file mode 100644 index 0000000000000000000000000000000000000000..b4a3fc387068cee442a06d3f069b6802fd6b3cc3 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_channel_shuffle.py @@ -0,0 +1,250 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import unittest +import numpy as np + +from op_test import OpTest +import paddle +import paddle.nn.functional as F +import paddle.fluid.core as core +import paddle.fluid as fluid + + +def channel_shuffle_np(x, groups, data_format="NCHW"): + if data_format == "NCHW": + n, c, h, w = x.shape + new_shape = (n, groups, c // groups, h, w) + npresult = np.reshape(x, new_shape) + npresult = npresult.transpose(0, 2, 1, 3, 4) + oshape = [n, c, h, w] + npresult = np.reshape(npresult, oshape) + return npresult + else: + n, h, w, c = x.shape + new_shape = (n, h, w, groups, c // groups) + npresult = np.reshape(x, new_shape) + npresult = npresult.transpose(0, 1, 2, 4, 3) + oshape = [n, h, w, c] + npresult = np.reshape(npresult, oshape) + return npresult + + +class TestChannelShuffleOp(OpTest): + def setUp(self): + self.op_type = "channel_shuffle" + self.init_data_format() + n, c, h, w = 2, 9, 4, 4 + + if self.format == "NCHW": + shape = [n, c, h, w] + if self.format == "NHWC": + shape = [n, h, w, c] + + groups = 3 + + x = np.random.random(shape).astype("float64") + npresult = channel_shuffle_np(x, groups, self.format) + + self.inputs = {'X': x} + self.outputs = {'Out': npresult} + self.attrs = {'groups': groups, "data_format": self.format} + + def init_data_format(self): + self.format = "NCHW" + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['X'], 'Out') + + +class TestChannelLast(TestChannelShuffleOp): + def init_data_format(self): + self.format = "NHWC" + + +class TestChannelShuffleAPI(unittest.TestCase): + def setUp(self): + self.x_1_np = np.random.random([2, 9, 4, 4]).astype("float64") + self.x_2_np = np.random.random([2, 4, 4, 9]).astype("float64") + self.out_1_np = channel_shuffle_np(self.x_1_np, 3) + self.out_2_np = channel_shuffle_np(self.x_2_np, 3, "NHWC") + + def test_static_graph_functional(self): + for use_cuda in ([False, True] + if core.is_compiled_with_cuda() else [False]): + place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace() + + paddle.enable_static() + x_1 = paddle.fluid.data( + name="x", shape=[2, 9, 4, 4], dtype="float64") + x_2 = paddle.fluid.data( + name="x2", shape=[2, 4, 4, 9], dtype="float64") + out_1 = F.channel_shuffle(x_1, 3) + out_2 = F.channel_shuffle(x_2, 3, "NHWC") + + exe = paddle.static.Executor(place=place) + res_1 = exe.run(fluid.default_main_program(), + feed={"x": self.x_1_np}, + fetch_list=out_1, + use_prune=True) + + res_2 = exe.run(fluid.default_main_program(), + feed={"x2": self.x_2_np}, + fetch_list=out_2, + use_prune=True) + + assert np.allclose(res_1, self.out_1_np) + assert np.allclose(res_2, self.out_2_np) + + # same test between layer and functional in this op. + def test_static_graph_layer(self): + for use_cuda in ([False, True] + if core.is_compiled_with_cuda() else [False]): + place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace() + + paddle.enable_static() + x_1 = paddle.fluid.data( + name="x", shape=[2, 9, 4, 4], dtype="float64") + x_2 = paddle.fluid.data( + name="x2", shape=[2, 4, 4, 9], dtype="float64") + # init instance + ps_1 = paddle.nn.ChannelShuffle(3) + ps_2 = paddle.nn.ChannelShuffle(3, "NHWC") + out_1 = ps_1(x_1) + out_2 = ps_2(x_2) + out_1_np = channel_shuffle_np(self.x_1_np, 3) + out_2_np = channel_shuffle_np(self.x_2_np, 3, "NHWC") + + exe = paddle.static.Executor(place=place) + res_1 = exe.run(fluid.default_main_program(), + feed={"x": self.x_1_np}, + fetch_list=out_1, + use_prune=True) + + res_2 = exe.run(fluid.default_main_program(), + feed={"x2": self.x_2_np}, + fetch_list=out_2, + use_prune=True) + + assert np.allclose(res_1, out_1_np) + assert np.allclose(res_2, out_2_np) + + def run_dygraph(self, groups, data_format): + + n, c, h, w = 2, 9, 4, 4 + + if data_format == "NCHW": + shape = [n, c, h, w] + if data_format == "NHWC": + shape = [n, h, w, c] + + x = np.random.random(shape).astype("float64") + + npresult = channel_shuffle_np(x, groups, data_format) + + for use_cuda in ([False, True] + if core.is_compiled_with_cuda() else [False]): + place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace() + + paddle.disable_static(place=place) + + channel_shuffle = paddle.nn.ChannelShuffle( + groups, data_format=data_format) + result = channel_shuffle(paddle.to_tensor(x)) + + self.assertTrue(np.allclose(result.numpy(), npresult)) + + result_functional = F.channel_shuffle( + paddle.to_tensor(x), 3, data_format) + self.assertTrue(np.allclose(result_functional.numpy(), npresult)) + + channel_shuffle_str = 'groups={}'.format(groups) + if data_format != 'NCHW': + channel_shuffle_str += ', data_format={}'.format(data_format) + self.assertEqual(channel_shuffle.extra_repr(), channel_shuffle_str) + + def test_dygraph1(self): + self.run_dygraph(3, "NCHW") + + def test_dygraph2(self): + self.run_dygraph(3, "NHWC") + + +class TestChannelShuffleError(unittest.TestCase): + def test_error_functional(self): + def error_input(): + with paddle.fluid.dygraph.guard(): + x = np.random.random([9, 4, 4]).astype("float64") + channel_shuffle = F.channel_shuffle(paddle.to_tensor(x), 3) + + self.assertRaises(ValueError, error_input) + + def error_groups_1(): + with paddle.fluid.dygraph.guard(): + x = np.random.random([2, 9, 4, 4]).astype("float64") + channel_shuffle = F.channel_shuffle(paddle.to_tensor(x), 3.33) + + self.assertRaises(TypeError, error_groups_1) + + def error_groups_2(): + with paddle.fluid.dygraph.guard(): + x = np.random.random([2, 9, 4, 4]).astype("float64") + channel_shuffle = F.channel_shuffle(paddle.to_tensor(x), -1) + + self.assertRaises(ValueError, error_groups_2) + + def error_data_format(): + with paddle.fluid.dygraph.guard(): + x = np.random.random([2, 9, 4, 4]).astype("float64") + channel_shuffle = F.channel_shuffle( + paddle.to_tensor(x), 3, "WOW") + + self.assertRaises(ValueError, error_data_format) + + def test_error_layer(self): + def error_input_layer(): + with paddle.fluid.dygraph.guard(): + x = np.random.random([9, 4, 4]).astype("float64") + cs = paddle.nn.ChannelShuffle(3) + cs(paddle.to_tensor(x)) + + self.assertRaises(ValueError, error_input_layer) + + def error_groups_layer_1(): + with paddle.fluid.dygraph.guard(): + x = np.random.random([2, 9, 4, 4]).astype("float64") + cs = paddle.nn.ChannelShuffle(3.33) + + self.assertRaises(TypeError, error_groups_layer_1) + + def error_groups_layer_2(): + with paddle.fluid.dygraph.guard(): + x = np.random.random([2, 9, 4, 4]).astype("float64") + cs = paddle.nn.ChannelShuffle(-1) + + self.assertRaises(ValueError, error_groups_layer_2) + + def error_data_format_layer(): + with paddle.fluid.dygraph.guard(): + x = np.random.random([2, 9, 4, 4]).astype("float64") + cs = paddle.nn.ChannelShuffle(3, "MEOW") + + self.assertRaises(ValueError, error_data_format_layer) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/nn/__init__.py b/python/paddle/nn/__init__.py index b4824eff007d6a94fd4ae09b4226ebf4c7221ed2..70e3518a1af4679eed8f7b7953a45a4496dfc031 100644 --- a/python/paddle/nn/__init__.py +++ b/python/paddle/nn/__init__.py @@ -138,6 +138,7 @@ from .layer.transformer import Transformer # noqa: F401 from .layer.distance import PairwiseDistance # noqa: F401 from .layer.vision import PixelShuffle # noqa: F401 +from .layer.vision import ChannelShuffle # noqa: F401 from .layer.container import LayerDict # noqa: F401 from .utils.spectral_norm_hook import spectral_norm @@ -300,6 +301,7 @@ __all__ = [ #noqa 'Swish', 'Mish', 'PixelShuffle', + 'ChannelShuffle', 'ELU', 'ReLU6', 'LayerDict', diff --git a/python/paddle/nn/functional/__init__.py b/python/paddle/nn/functional/__init__.py index a24afc45a59951c6b2b136630d6bee5e84daf721..58251c28904300cf47c998d2aed8401f96822f0e 100644 --- a/python/paddle/nn/functional/__init__.py +++ b/python/paddle/nn/functional/__init__.py @@ -114,6 +114,7 @@ from .pooling import max_unpool3d # noqa: F401 from .vision import affine_grid # noqa: F401 from .vision import grid_sample # noqa: F401 from .vision import pixel_shuffle # noqa: F401 +from .vision import channel_shuffle # noqa: F401 from .input import one_hot # noqa: F401 from .input import embedding # noqa: F401 from ...fluid.layers import gather_tree # noqa: F401 @@ -213,6 +214,7 @@ __all__ = [ #noqa 'grid_sample', 'local_response_norm', 'pixel_shuffle', + 'channel_shuffle', 'embedding', 'gather_tree', 'one_hot', diff --git a/python/paddle/nn/functional/vision.py b/python/paddle/nn/functional/vision.py index 43c7757a8777ba703194cce989b2469d0fc900e0..07e68d71dc1f149020dcce88824ee6869536087e 100644 --- a/python/paddle/nn/functional/vision.py +++ b/python/paddle/nn/functional/vision.py @@ -21,6 +21,7 @@ import numpy as np from paddle import _C_ops from ...device import is_compiled_with_rocm from paddle import in_dynamic_mode +from paddle.framework import _non_static_mode __all__ = [] @@ -344,3 +345,71 @@ def pixel_shuffle(x, upscale_factor, data_format="NCHW", name=None): attrs={"upscale_factor": upscale_factor, "data_format": data_format}) return out + + +def channel_shuffle(x, groups, data_format="NCHW", name=None): + """ + This API implements channel shuffle operation. + See more details in :ref:`api_nn_vision_ChannelShuffle` . + + Parameters: + x (Tensor): 4-D tensor, the data type should be float32 or float64. + groups (int): Number of groups to divide channels in. + data_format (str): The data format of the input and output data. An optional string of NCHW or NHWC. The default is NCHW. When it is NCHW, the data is stored in the order of [batch_size, input_channels, input_height, input_width]. + name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. + + Returns: + Out (Tensor): Rearranged tensor keeping the original tensor shape. + + Examples: + .. code-block:: python + :name: channel_shuffle-example + + import paddle + import paddle.nn.functional as F + x = paddle.arange(0, 0.6, 0.1, 'float32') + x = paddle.reshape(x, [1, 6, 1, 1]) + # [[[[0. ]], + # [[0.10000000]], + # [[0.20000000]], + # [[0.30000001]], + # [[0.40000001]], + # [[0.50000000]]]] + y = F.channel_shuffle(x, 3) + # [[[[0. ]], + # [[0.20000000]], + # [[0.40000001]], + # [[0.10000000]], + # [[0.30000001]], + # [[0.50000000]]]] + """ + if len(x.shape) != 4: + raise ValueError( + "Input x should be 4D tensor, but received x with the shape of {}". + format(x.shape)) + + if not isinstance(groups, int): + raise TypeError("groups must be int type") + + if groups <= 0: + raise ValueError("groups must be positive") + + if data_format not in ["NCHW", "NHWC"]: + raise ValueError("Attr(data_format) should be 'NCHW' or 'NHWC'." + "But recevie Attr(data_format): {} ".format( + data_format)) + + if _non_static_mode(): + return _C_ops.channel_shuffle(x, "groups", groups, "data_format", + data_format) + + helper = LayerHelper("channel_shuffle", **locals()) + check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'channel_shuffle') + out = helper.create_variable_for_type_inference(dtype=x.dtype) + helper.append_op( + type="channel_shuffle", + inputs={"X": x}, + outputs={"Out": out}, + attrs={"groups": groups, + "data_format": data_format}) + return out diff --git a/python/paddle/nn/layer/__init__.py b/python/paddle/nn/layer/__init__.py index 7dd18f1fefd65bb14295184d7bf7902ccdb42825..339feef8f32e6146343b95920c2f809a7c74eaea 100644 --- a/python/paddle/nn/layer/__init__.py +++ b/python/paddle/nn/layer/__init__.py @@ -88,6 +88,7 @@ from .norm import SpectralNorm # noqa: F401 from .norm import LocalResponseNorm # noqa: F401 from .vision import PixelShuffle # noqa: F401 +from .vision import ChannelShuffle # noqa: F401 from .distance import PairwiseDistance # noqa: F401 from .container import LayerDict # noqa: F401 diff --git a/python/paddle/nn/layer/vision.py b/python/paddle/nn/layer/vision.py index 0531afb4eeeeb92c4e888bb2df972e4920b971cd..e775d4fcf6dfb86b4877cbd39e12866ffd8be076 100644 --- a/python/paddle/nn/layer/vision.py +++ b/python/paddle/nn/layer/vision.py @@ -87,3 +87,76 @@ class PixelShuffle(Layer): if self._name is not None: main_str += ', name={}'.format(self._name) return main_str + + +class ChannelShuffle(Layer): + """ + This operator divides channels in a tensor of shape [N, C, H, W] or [N, H, W, C] into g groups, + getting a tensor with the shape of [N, g, C/g, H, W] or [N, H, W, g, C/g], and transposes them + as [N, C/g, g, H, W] or [N, H, W, g, C/g], then rearranges them to original tensor shape. This + operation can improve the interaction between channels, using features efficiently. Please + refer to the paper: `ShuffleNet: An Extremely Efficient + Convolutional Neural Network for Mobile Devices `_ . + by Zhang et. al (2017) for more details. + + Parameters: + groups (int): Number of groups to divide channels in. + data_format (str): The data format of the input and output data. An optional string of NCHW or NHWC. The default is NCHW. When it is NCHW, the data is stored in the order of [batch_size, input_channels, input_height, input_width]. + name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. + + Shape: + - **x**: 4-D tensor with shape of [N, C, H, W] or [N, H, W, C]. + - **out**: 4-D tensor with shape and dtype same as x. + + Examples: + .. code-block:: python + :name: ChannelShuffle-example + + import paddle + import paddle.nn as nn + x = paddle.arange(0, 0.6, 0.1, 'float32') + x = paddle.reshape(x, [1, 6, 1, 1]) + # [[[[0. ]], + # [[0.10000000]], + # [[0.20000000]], + # [[0.30000001]], + # [[0.40000001]], + # [[0.50000000]]]] + channel_shuffle = nn.ChannelShuffle(3) + y = channel_shuffle(x) + # [[[[0. ]], + # [[0.20000000]], + # [[0.40000001]], + # [[0.10000000]], + # [[0.30000001]], + # [[0.50000000]]]] + """ + + def __init__(self, groups, data_format="NCHW", name=None): + super(ChannelShuffle, self).__init__() + + if not isinstance(groups, int): + raise TypeError("groups must be int type") + + if groups <= 0: + raise ValueError("groups must be positive") + + if data_format not in ["NCHW", "NHWC"]: + raise ValueError("Data format should be 'NCHW' or 'NHWC'." + "But recevie data format: {}".format(data_format)) + + self._groups = groups + self._data_format = data_format + self._name = name + + def forward(self, x): + return functional.channel_shuffle(x, self._groups, self._data_format, + self._name) + + def extra_repr(self): + main_str = 'groups={}'.format(self._groups) + if self._data_format != 'NCHW': + main_str += ', data_format={}'.format(self._data_format) + if self._name is not None: + main_str += ', name={}'.format(self._name) + return main_str diff --git a/tools/static_mode_white_list.py b/tools/static_mode_white_list.py index 47b1ba5700e1b8b8df80d8365cd9707ac91374d6..5dcff12c2c87e18717e39afaba5e116717a0a30f 100755 --- a/tools/static_mode_white_list.py +++ b/tools/static_mode_white_list.py @@ -92,6 +92,7 @@ STATIC_MODE_TESTING_LIST = [ 'test_case', 'test_cast_op', 'test_center_loss', + 'test_channel_shuffle', 'test_cholesky_op', 'test_chunk_eval_op', 'test_chunk_op',