提交 b86d7f21 编写于 作者: T Travis CI

Deploy to GitHub Pages: 95ea54fd

上级 7ffe51a4
......@@ -8,7 +8,7 @@ data_feeder
DataFeeder
----------
.. autoclass:: paddle.v2.fluid.data_feeder.DataFeeder
.. autoclass:: paddle.fluid.data_feeder.DataFeeder
:members:
:noindex:
......@@ -8,14 +8,14 @@ evaluator
Accuracy
--------
.. autoclass:: paddle.v2.fluid.evaluator.Accuracy
.. autoclass:: paddle.fluid.evaluator.Accuracy
:members:
:noindex:
ChunkEvaluator
--------------
.. autoclass:: paddle.v2.fluid.evaluator.ChunkEvaluator
.. autoclass:: paddle.fluid.evaluator.ChunkEvaluator
:members:
:noindex:
......@@ -8,25 +8,25 @@ executor
Executor
--------
.. autoclass:: paddle.v2.fluid.executor.Executor
.. autoclass:: paddle.fluid.executor.Executor
:members:
:noindex:
global_scope
------------
.. autofunction:: paddle.v2.fluid.executor.global_scope
.. autofunction:: paddle.fluid.executor.global_scope
:noindex:
scope_guard
-----------
.. autofunction:: paddle.v2.fluid.executor.scope_guard
.. autofunction:: paddle.fluid.executor.scope_guard
:noindex:
switch_scope
------------
.. autofunction:: paddle.v2.fluid.executor.switch_scope
.. autofunction:: paddle.fluid.executor.switch_scope
:noindex:
......@@ -8,28 +8,28 @@ initializer
Constant
--------
.. autoclass:: paddle.v2.fluid.initializer.Constant
.. autoclass:: paddle.fluid.initializer.Constant
:members:
:noindex:
Uniform
-------
.. autoclass:: paddle.v2.fluid.initializer.Uniform
.. autoclass:: paddle.fluid.initializer.Uniform
:members:
:noindex:
Normal
------
.. autoclass:: paddle.v2.fluid.initializer.Normal
.. autoclass:: paddle.fluid.initializer.Normal
:members:
:noindex:
Xavier
------
.. autoclass:: paddle.v2.fluid.initializer.Xavier
.. autoclass:: paddle.fluid.initializer.Xavier
:members:
:noindex:
......@@ -8,54 +8,54 @@ io
save_vars
---------
.. autofunction:: paddle.v2.fluid.io.save_vars
.. autofunction:: paddle.fluid.io.save_vars
:noindex:
save_params
-----------
.. autofunction:: paddle.v2.fluid.io.save_params
.. autofunction:: paddle.fluid.io.save_params
:noindex:
save_persistables
-----------------
.. autofunction:: paddle.v2.fluid.io.save_persistables
.. autofunction:: paddle.fluid.io.save_persistables
:noindex:
load_vars
---------
.. autofunction:: paddle.v2.fluid.io.load_vars
.. autofunction:: paddle.fluid.io.load_vars
:noindex:
load_params
-----------
.. autofunction:: paddle.v2.fluid.io.load_params
.. autofunction:: paddle.fluid.io.load_params
:noindex:
load_persistables
-----------------
.. autofunction:: paddle.v2.fluid.io.load_persistables
.. autofunction:: paddle.fluid.io.load_persistables
:noindex:
save_inference_model
--------------------
.. autofunction:: paddle.v2.fluid.io.save_inference_model
.. autofunction:: paddle.fluid.io.save_inference_model
:noindex:
load_inference_model
--------------------
.. autofunction:: paddle.v2.fluid.io.load_inference_model
.. autofunction:: paddle.fluid.io.load_inference_model
:noindex:
get_inference_program
---------------------
.. autofunction:: paddle.v2.fluid.io.get_inference_program
.. autofunction:: paddle.fluid.io.get_inference_program
:noindex:
......@@ -11,167 +11,167 @@ control_flow
split_lod_tensor
----------------
.. autofunction:: paddle.v2.fluid.layers.split_lod_tensor
.. autofunction:: paddle.fluid.layers.split_lod_tensor
:noindex:
merge_lod_tensor
----------------
.. autofunction:: paddle.v2.fluid.layers.merge_lod_tensor
.. autofunction:: paddle.fluid.layers.merge_lod_tensor
:noindex:
BlockGuard
----------
.. autoclass:: paddle.v2.fluid.layers.BlockGuard
.. autoclass:: paddle.fluid.layers.BlockGuard
:members:
:noindex:
BlockGuardWithCompletion
------------------------
.. autoclass:: paddle.v2.fluid.layers.BlockGuardWithCompletion
.. autoclass:: paddle.fluid.layers.BlockGuardWithCompletion
:members:
:noindex:
StaticRNNMemoryLink
-------------------
.. autoclass:: paddle.v2.fluid.layers.StaticRNNMemoryLink
.. autoclass:: paddle.fluid.layers.StaticRNNMemoryLink
:members:
:noindex:
WhileGuard
----------
.. autoclass:: paddle.v2.fluid.layers.WhileGuard
.. autoclass:: paddle.fluid.layers.WhileGuard
:members:
:noindex:
While
-----
.. autoclass:: paddle.v2.fluid.layers.While
.. autoclass:: paddle.fluid.layers.While
:members:
:noindex:
lod_rank_table
--------------
.. autofunction:: paddle.v2.fluid.layers.lod_rank_table
.. autofunction:: paddle.fluid.layers.lod_rank_table
:noindex:
max_sequence_len
----------------
.. autofunction:: paddle.v2.fluid.layers.max_sequence_len
.. autofunction:: paddle.fluid.layers.max_sequence_len
:noindex:
topk
----
.. autofunction:: paddle.v2.fluid.layers.topk
.. autofunction:: paddle.fluid.layers.topk
:noindex:
lod_tensor_to_array
-------------------
.. autofunction:: paddle.v2.fluid.layers.lod_tensor_to_array
.. autofunction:: paddle.fluid.layers.lod_tensor_to_array
:noindex:
array_to_lod_tensor
-------------------
.. autofunction:: paddle.v2.fluid.layers.array_to_lod_tensor
.. autofunction:: paddle.fluid.layers.array_to_lod_tensor
:noindex:
increment
---------
.. autofunction:: paddle.v2.fluid.layers.increment
.. autofunction:: paddle.fluid.layers.increment
:noindex:
array_write
-----------
.. autofunction:: paddle.v2.fluid.layers.array_write
.. autofunction:: paddle.fluid.layers.array_write
:noindex:
create_array
------------
.. autofunction:: paddle.v2.fluid.layers.create_array
.. autofunction:: paddle.fluid.layers.create_array
:noindex:
less_than
---------
.. autofunction:: paddle.v2.fluid.layers.less_than
.. autofunction:: paddle.fluid.layers.less_than
:noindex:
array_read
----------
.. autofunction:: paddle.v2.fluid.layers.array_read
.. autofunction:: paddle.fluid.layers.array_read
:noindex:
shrink_memory
-------------
.. autofunction:: paddle.v2.fluid.layers.shrink_memory
.. autofunction:: paddle.fluid.layers.shrink_memory
:noindex:
array_length
------------
.. autofunction:: paddle.v2.fluid.layers.array_length
.. autofunction:: paddle.fluid.layers.array_length
:noindex:
IfElse
------
.. autoclass:: paddle.v2.fluid.layers.IfElse
.. autoclass:: paddle.fluid.layers.IfElse
:members:
:noindex:
DynamicRNN
----------
.. autoclass:: paddle.v2.fluid.layers.DynamicRNN
.. autoclass:: paddle.fluid.layers.DynamicRNN
:members:
:noindex:
ConditionalBlock
----------------
.. autoclass:: paddle.v2.fluid.layers.ConditionalBlock
.. autoclass:: paddle.fluid.layers.ConditionalBlock
:members:
:noindex:
StaticRNN
---------
.. autoclass:: paddle.v2.fluid.layers.StaticRNN
.. autoclass:: paddle.fluid.layers.StaticRNN
:members:
:noindex:
reorder_lod_tensor_by_rank
--------------------------
.. autofunction:: paddle.v2.fluid.layers.reorder_lod_tensor_by_rank
.. autofunction:: paddle.fluid.layers.reorder_lod_tensor_by_rank
:noindex:
ParallelDo
----------
.. autoclass:: paddle.v2.fluid.layers.ParallelDo
.. autoclass:: paddle.fluid.layers.ParallelDo
:members:
:noindex:
Print
-----
.. autofunction:: paddle.v2.fluid.layers.Print
.. autofunction:: paddle.fluid.layers.Print
:noindex:
device
......@@ -180,7 +180,7 @@ device
get_places
----------
.. autofunction:: paddle.v2.fluid.layers.get_places
.. autofunction:: paddle.fluid.layers.get_places
:noindex:
io
......@@ -189,27 +189,27 @@ io
data
----
.. autofunction:: paddle.v2.fluid.layers.data
.. autofunction:: paddle.fluid.layers.data
:noindex:
BlockGuardServ
--------------
.. autoclass:: paddle.v2.fluid.layers.BlockGuardServ
.. autoclass:: paddle.fluid.layers.BlockGuardServ
:members:
:noindex:
ListenAndServ
-------------
.. autoclass:: paddle.v2.fluid.layers.ListenAndServ
.. autoclass:: paddle.fluid.layers.ListenAndServ
:members:
:noindex:
Send
----
.. autofunction:: paddle.v2.fluid.layers.Send
.. autofunction:: paddle.fluid.layers.Send
:noindex:
nn
......@@ -218,259 +218,259 @@ nn
fc
--
.. autofunction:: paddle.v2.fluid.layers.fc
.. autofunction:: paddle.fluid.layers.fc
:noindex:
embedding
---------
.. autofunction:: paddle.v2.fluid.layers.embedding
.. autofunction:: paddle.fluid.layers.embedding
:noindex:
dynamic_lstm
------------
.. autofunction:: paddle.v2.fluid.layers.dynamic_lstm
.. autofunction:: paddle.fluid.layers.dynamic_lstm
:noindex:
dynamic_lstmp
-------------
.. autofunction:: paddle.v2.fluid.layers.dynamic_lstmp
.. autofunction:: paddle.fluid.layers.dynamic_lstmp
:noindex:
dynamic_gru
-----------
.. autofunction:: paddle.v2.fluid.layers.dynamic_gru
.. autofunction:: paddle.fluid.layers.dynamic_gru
:noindex:
gru_unit
--------
.. autofunction:: paddle.v2.fluid.layers.gru_unit
.. autofunction:: paddle.fluid.layers.gru_unit
:noindex:
linear_chain_crf
----------------
.. autofunction:: paddle.v2.fluid.layers.linear_chain_crf
.. autofunction:: paddle.fluid.layers.linear_chain_crf
:noindex:
crf_decoding
------------
.. autofunction:: paddle.v2.fluid.layers.crf_decoding
.. autofunction:: paddle.fluid.layers.crf_decoding
:noindex:
cos_sim
-------
.. autofunction:: paddle.v2.fluid.layers.cos_sim
.. autofunction:: paddle.fluid.layers.cos_sim
:noindex:
cross_entropy
-------------
.. autofunction:: paddle.v2.fluid.layers.cross_entropy
.. autofunction:: paddle.fluid.layers.cross_entropy
:noindex:
square_error_cost
-----------------
.. autofunction:: paddle.v2.fluid.layers.square_error_cost
.. autofunction:: paddle.fluid.layers.square_error_cost
:noindex:
accuracy
--------
.. autofunction:: paddle.v2.fluid.layers.accuracy
.. autofunction:: paddle.fluid.layers.accuracy
:noindex:
chunk_eval
----------
.. autofunction:: paddle.v2.fluid.layers.chunk_eval
.. autofunction:: paddle.fluid.layers.chunk_eval
:noindex:
sequence_conv
-------------
.. autofunction:: paddle.v2.fluid.layers.sequence_conv
.. autofunction:: paddle.fluid.layers.sequence_conv
:noindex:
conv2d
------
.. autofunction:: paddle.v2.fluid.layers.conv2d
.. autofunction:: paddle.fluid.layers.conv2d
:noindex:
sequence_pool
-------------
.. autofunction:: paddle.v2.fluid.layers.sequence_pool
.. autofunction:: paddle.fluid.layers.sequence_pool
:noindex:
pool2d
------
.. autofunction:: paddle.v2.fluid.layers.pool2d
.. autofunction:: paddle.fluid.layers.pool2d
:noindex:
batch_norm
----------
.. autofunction:: paddle.v2.fluid.layers.batch_norm
.. autofunction:: paddle.fluid.layers.batch_norm
:noindex:
layer_norm
----------
.. autofunction:: paddle.v2.fluid.layers.layer_norm
.. autofunction:: paddle.fluid.layers.layer_norm
:noindex:
beam_search_decode
------------------
.. autofunction:: paddle.v2.fluid.layers.beam_search_decode
.. autofunction:: paddle.fluid.layers.beam_search_decode
:noindex:
conv2d_transpose
----------------
.. autofunction:: paddle.v2.fluid.layers.conv2d_transpose
.. autofunction:: paddle.fluid.layers.conv2d_transpose
:noindex:
sequence_expand
---------------
.. autofunction:: paddle.v2.fluid.layers.sequence_expand
.. autofunction:: paddle.fluid.layers.sequence_expand
:noindex:
lstm_unit
---------
.. autofunction:: paddle.v2.fluid.layers.lstm_unit
.. autofunction:: paddle.fluid.layers.lstm_unit
:noindex:
reduce_sum
----------
.. autofunction:: paddle.v2.fluid.layers.reduce_sum
.. autofunction:: paddle.fluid.layers.reduce_sum
:noindex:
reduce_mean
-----------
.. autofunction:: paddle.v2.fluid.layers.reduce_mean
.. autofunction:: paddle.fluid.layers.reduce_mean
:noindex:
reduce_max
----------
.. autofunction:: paddle.v2.fluid.layers.reduce_max
.. autofunction:: paddle.fluid.layers.reduce_max
:noindex:
reduce_min
----------
.. autofunction:: paddle.v2.fluid.layers.reduce_min
.. autofunction:: paddle.fluid.layers.reduce_min
:noindex:
sequence_first_step
-------------------
.. autofunction:: paddle.v2.fluid.layers.sequence_first_step
.. autofunction:: paddle.fluid.layers.sequence_first_step
:noindex:
sequence_last_step
------------------
.. autofunction:: paddle.v2.fluid.layers.sequence_last_step
.. autofunction:: paddle.fluid.layers.sequence_last_step
:noindex:
dropout
-------
.. autofunction:: paddle.v2.fluid.layers.dropout
.. autofunction:: paddle.fluid.layers.dropout
:noindex:
split
-----
.. autofunction:: paddle.v2.fluid.layers.split
.. autofunction:: paddle.fluid.layers.split
:noindex:
ctc_greedy_decoder
------------------
.. autofunction:: paddle.v2.fluid.layers.ctc_greedy_decoder
.. autofunction:: paddle.fluid.layers.ctc_greedy_decoder
:noindex:
edit_distance
-------------
.. autofunction:: paddle.v2.fluid.layers.edit_distance
.. autofunction:: paddle.fluid.layers.edit_distance
:noindex:
l2_normalize
------------
.. autofunction:: paddle.v2.fluid.layers.l2_normalize
.. autofunction:: paddle.fluid.layers.l2_normalize
:noindex:
matmul
------
.. autofunction:: paddle.v2.fluid.layers.matmul
.. autofunction:: paddle.fluid.layers.matmul
:noindex:
warpctc
-------
.. autofunction:: paddle.v2.fluid.layers.warpctc
.. autofunction:: paddle.fluid.layers.warpctc
:noindex:
sequence_reshape
----------------
.. autofunction:: paddle.v2.fluid.layers.sequence_reshape
.. autofunction:: paddle.fluid.layers.sequence_reshape
:noindex:
transpose
---------
.. autofunction:: paddle.v2.fluid.layers.transpose
.. autofunction:: paddle.fluid.layers.transpose
:noindex:
im2sequence
-----------
.. autofunction:: paddle.v2.fluid.layers.im2sequence
.. autofunction:: paddle.fluid.layers.im2sequence
:noindex:
nce
---
.. autofunction:: paddle.v2.fluid.layers.nce
.. autofunction:: paddle.fluid.layers.nce
:noindex:
beam_search
-----------
.. autofunction:: paddle.v2.fluid.layers.beam_search
.. autofunction:: paddle.fluid.layers.beam_search
:noindex:
row_conv
--------
.. autofunction:: paddle.v2.fluid.layers.row_conv
.. autofunction:: paddle.fluid.layers.row_conv
:noindex:
multiplex
---------
.. autofunction:: paddle.v2.fluid.layers.multiplex
.. autofunction:: paddle.fluid.layers.multiplex
:noindex:
ops
......@@ -479,259 +479,259 @@ ops
mean
----
.. autofunction:: paddle.v2.fluid.layers.mean
.. autofunction:: paddle.fluid.layers.mean
:noindex:
mul
---
.. autofunction:: paddle.v2.fluid.layers.mul
.. autofunction:: paddle.fluid.layers.mul
:noindex:
reshape
-------
.. autofunction:: paddle.v2.fluid.layers.reshape
.. autofunction:: paddle.fluid.layers.reshape
:noindex:
scale
-----
.. autofunction:: paddle.v2.fluid.layers.scale
.. autofunction:: paddle.fluid.layers.scale
:noindex:
sigmoid_cross_entropy_with_logits
---------------------------------
.. autofunction:: paddle.v2.fluid.layers.sigmoid_cross_entropy_with_logits
.. autofunction:: paddle.fluid.layers.sigmoid_cross_entropy_with_logits
:noindex:
elementwise_add
---------------
.. autofunction:: paddle.v2.fluid.layers.elementwise_add
.. autofunction:: paddle.fluid.layers.elementwise_add
:noindex:
elementwise_div
---------------
.. autofunction:: paddle.v2.fluid.layers.elementwise_div
.. autofunction:: paddle.fluid.layers.elementwise_div
:noindex:
elementwise_sub
---------------
.. autofunction:: paddle.v2.fluid.layers.elementwise_sub
.. autofunction:: paddle.fluid.layers.elementwise_sub
:noindex:
elementwise_mul
---------------
.. autofunction:: paddle.v2.fluid.layers.elementwise_mul
.. autofunction:: paddle.fluid.layers.elementwise_mul
:noindex:
elementwise_max
---------------
.. autofunction:: paddle.v2.fluid.layers.elementwise_max
.. autofunction:: paddle.fluid.layers.elementwise_max
:noindex:
elementwise_min
---------------
.. autofunction:: paddle.v2.fluid.layers.elementwise_min
.. autofunction:: paddle.fluid.layers.elementwise_min
:noindex:
elementwise_pow
---------------
.. autofunction:: paddle.v2.fluid.layers.elementwise_pow
.. autofunction:: paddle.fluid.layers.elementwise_pow
:noindex:
clip
----
.. autofunction:: paddle.v2.fluid.layers.clip
.. autofunction:: paddle.fluid.layers.clip
:noindex:
clip_by_norm
------------
.. autofunction:: paddle.v2.fluid.layers.clip_by_norm
.. autofunction:: paddle.fluid.layers.clip_by_norm
:noindex:
sequence_softmax
----------------
.. autofunction:: paddle.v2.fluid.layers.sequence_softmax
.. autofunction:: paddle.fluid.layers.sequence_softmax
:noindex:
sigmoid
-------
.. autofunction:: paddle.v2.fluid.layers.sigmoid
.. autofunction:: paddle.fluid.layers.sigmoid
:noindex:
logsigmoid
----------
.. autofunction:: paddle.v2.fluid.layers.logsigmoid
.. autofunction:: paddle.fluid.layers.logsigmoid
:noindex:
exp
---
.. autofunction:: paddle.v2.fluid.layers.exp
.. autofunction:: paddle.fluid.layers.exp
:noindex:
relu
----
.. autofunction:: paddle.v2.fluid.layers.relu
.. autofunction:: paddle.fluid.layers.relu
:noindex:
tanh
----
.. autofunction:: paddle.v2.fluid.layers.tanh
.. autofunction:: paddle.fluid.layers.tanh
:noindex:
tanh_shrink
-----------
.. autofunction:: paddle.v2.fluid.layers.tanh_shrink
.. autofunction:: paddle.fluid.layers.tanh_shrink
:noindex:
softshrink
----------
.. autofunction:: paddle.v2.fluid.layers.softshrink
.. autofunction:: paddle.fluid.layers.softshrink
:noindex:
sqrt
----
.. autofunction:: paddle.v2.fluid.layers.sqrt
.. autofunction:: paddle.fluid.layers.sqrt
:noindex:
abs
---
.. autofunction:: paddle.v2.fluid.layers.abs
.. autofunction:: paddle.fluid.layers.abs
:noindex:
ceil
----
.. autofunction:: paddle.v2.fluid.layers.ceil
.. autofunction:: paddle.fluid.layers.ceil
:noindex:
floor
-----
.. autofunction:: paddle.v2.fluid.layers.floor
.. autofunction:: paddle.fluid.layers.floor
:noindex:
round
-----
.. autofunction:: paddle.v2.fluid.layers.round
.. autofunction:: paddle.fluid.layers.round
:noindex:
reciprocal
----------
.. autofunction:: paddle.v2.fluid.layers.reciprocal
.. autofunction:: paddle.fluid.layers.reciprocal
:noindex:
log
---
.. autofunction:: paddle.v2.fluid.layers.log
.. autofunction:: paddle.fluid.layers.log
:noindex:
square
------
.. autofunction:: paddle.v2.fluid.layers.square
.. autofunction:: paddle.fluid.layers.square
:noindex:
softplus
--------
.. autofunction:: paddle.v2.fluid.layers.softplus
.. autofunction:: paddle.fluid.layers.softplus
:noindex:
softsign
--------
.. autofunction:: paddle.v2.fluid.layers.softsign
.. autofunction:: paddle.fluid.layers.softsign
:noindex:
brelu
-----
.. autofunction:: paddle.v2.fluid.layers.brelu
.. autofunction:: paddle.fluid.layers.brelu
:noindex:
leaky_relu
----------
.. autofunction:: paddle.v2.fluid.layers.leaky_relu
.. autofunction:: paddle.fluid.layers.leaky_relu
:noindex:
soft_relu
---------
.. autofunction:: paddle.v2.fluid.layers.soft_relu
.. autofunction:: paddle.fluid.layers.soft_relu
:noindex:
elu
---
.. autofunction:: paddle.v2.fluid.layers.elu
.. autofunction:: paddle.fluid.layers.elu
:noindex:
relu6
-----
.. autofunction:: paddle.v2.fluid.layers.relu6
.. autofunction:: paddle.fluid.layers.relu6
:noindex:
pow
---
.. autofunction:: paddle.v2.fluid.layers.pow
.. autofunction:: paddle.fluid.layers.pow
:noindex:
stanh
-----
.. autofunction:: paddle.v2.fluid.layers.stanh
.. autofunction:: paddle.fluid.layers.stanh
:noindex:
hard_shrink
-----------
.. autofunction:: paddle.v2.fluid.layers.hard_shrink
.. autofunction:: paddle.fluid.layers.hard_shrink
:noindex:
thresholded_relu
----------------
.. autofunction:: paddle.v2.fluid.layers.thresholded_relu
.. autofunction:: paddle.fluid.layers.thresholded_relu
:noindex:
hard_sigmoid
------------
.. autofunction:: paddle.v2.fluid.layers.hard_sigmoid
.. autofunction:: paddle.fluid.layers.hard_sigmoid
:noindex:
swish
-----
.. autofunction:: paddle.v2.fluid.layers.swish
.. autofunction:: paddle.fluid.layers.swish
:noindex:
tensor
......@@ -740,66 +740,66 @@ tensor
create_tensor
-------------
.. autofunction:: paddle.v2.fluid.layers.create_tensor
.. autofunction:: paddle.fluid.layers.create_tensor
:noindex:
create_parameter
----------------
.. autofunction:: paddle.v2.fluid.layers.create_parameter
.. autofunction:: paddle.fluid.layers.create_parameter
:noindex:
create_global_var
-----------------
.. autofunction:: paddle.v2.fluid.layers.create_global_var
.. autofunction:: paddle.fluid.layers.create_global_var
:noindex:
cast
----
.. autofunction:: paddle.v2.fluid.layers.cast
.. autofunction:: paddle.fluid.layers.cast
:noindex:
concat
------
.. autofunction:: paddle.v2.fluid.layers.concat
.. autofunction:: paddle.fluid.layers.concat
:noindex:
sums
----
.. autofunction:: paddle.v2.fluid.layers.sums
.. autofunction:: paddle.fluid.layers.sums
:noindex:
assign
------
.. autofunction:: paddle.v2.fluid.layers.assign
.. autofunction:: paddle.fluid.layers.assign
:noindex:
fill_constant_batch_size_like
-----------------------------
.. autofunction:: paddle.v2.fluid.layers.fill_constant_batch_size_like
.. autofunction:: paddle.fluid.layers.fill_constant_batch_size_like
:noindex:
fill_constant
-------------
.. autofunction:: paddle.v2.fluid.layers.fill_constant
.. autofunction:: paddle.fluid.layers.fill_constant
:noindex:
ones
----
.. autofunction:: paddle.v2.fluid.layers.ones
.. autofunction:: paddle.fluid.layers.ones
:noindex:
zeros
-----
.. autofunction:: paddle.v2.fluid.layers.zeros
.. autofunction:: paddle.fluid.layers.zeros
:noindex:
......@@ -8,24 +8,24 @@ nets
simple_img_conv_pool
--------------------
.. autofunction:: paddle.v2.fluid.nets.simple_img_conv_pool
.. autofunction:: paddle.fluid.nets.simple_img_conv_pool
:noindex:
sequence_conv_pool
------------------
.. autofunction:: paddle.v2.fluid.nets.sequence_conv_pool
.. autofunction:: paddle.fluid.nets.sequence_conv_pool
:noindex:
glu
---
.. autofunction:: paddle.v2.fluid.nets.glu
.. autofunction:: paddle.fluid.nets.glu
:noindex:
scaled_dot_product_attention
----------------------------
.. autofunction:: paddle.v2.fluid.nets.scaled_dot_product_attention
.. autofunction:: paddle.fluid.nets.scaled_dot_product_attention
:noindex:
......@@ -8,42 +8,42 @@ optimizer
SGD
---
.. autoclass:: paddle.v2.fluid.optimizer.SGD
.. autoclass:: paddle.fluid.optimizer.SGD
:members:
:noindex:
Momentum
--------
.. autoclass:: paddle.v2.fluid.optimizer.Momentum
.. autoclass:: paddle.fluid.optimizer.Momentum
:members:
:noindex:
Adagrad
-------
.. autoclass:: paddle.v2.fluid.optimizer.Adagrad
.. autoclass:: paddle.fluid.optimizer.Adagrad
:members:
:noindex:
Adam
----
.. autoclass:: paddle.v2.fluid.optimizer.Adam
.. autoclass:: paddle.fluid.optimizer.Adam
:members:
:noindex:
Adamax
------
.. autoclass:: paddle.v2.fluid.optimizer.Adamax
.. autoclass:: paddle.fluid.optimizer.Adamax
:members:
:noindex:
DecayedAdagrad
--------------
.. autoclass:: paddle.v2.fluid.optimizer.DecayedAdagrad
.. autoclass:: paddle.fluid.optimizer.DecayedAdagrad
:members:
:noindex:
......@@ -8,14 +8,14 @@ param_attr
ParamAttr
---------
.. autoclass:: paddle.v2.fluid.param_attr.ParamAttr
.. autoclass:: paddle.fluid.param_attr.ParamAttr
:members:
:noindex:
WeightNormParamAttr
-------------------
.. autoclass:: paddle.v2.fluid.param_attr.WeightNormParamAttr
.. autoclass:: paddle.fluid.param_attr.WeightNormParamAttr
:members:
:noindex:
......@@ -8,18 +8,18 @@ profiler
cuda_profiler
-------------
.. autofunction:: paddle.v2.fluid.profiler.cuda_profiler
.. autofunction:: paddle.fluid.profiler.cuda_profiler
:noindex:
reset_profiler
--------------
.. autofunction:: paddle.v2.fluid.profiler.reset_profiler
.. autofunction:: paddle.fluid.profiler.reset_profiler
:noindex:
profiler
--------
.. autofunction:: paddle.v2.fluid.profiler.profiler
.. autofunction:: paddle.fluid.profiler.profiler
:noindex:
......@@ -8,20 +8,20 @@ regularizer
append_regularization_ops
-------------------------
.. autofunction:: paddle.v2.fluid.regularizer.append_regularization_ops
.. autofunction:: paddle.fluid.regularizer.append_regularization_ops
:noindex:
L1Decay
-------
.. autoclass:: paddle.v2.fluid.regularizer.L1Decay
.. autoclass:: paddle.fluid.regularizer.L1Decay
:members:
:noindex:
L2Decay
-------
.. autoclass:: paddle.v2.fluid.regularizer.L2Decay
.. autoclass:: paddle.fluid.regularizer.L2Decay
:members:
:noindex:
......@@ -179,7 +179,7 @@
<h2>DataFeeder<a class="headerlink" href="#datafeeder" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.fluid.data_feeder.</code><code class="descname">DataFeeder</code><span class="sig-paren">(</span><em>feed_list</em>, <em>place</em>, <em>program=None</em><span class="sig-paren">)</span></dt>
<em class="property">class </em><code class="descclassname">paddle.fluid.data_feeder.</code><code class="descname">DataFeeder</code><span class="sig-paren">(</span><em>feed_list</em>, <em>place</em>, <em>program=None</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>
</div>
......
......@@ -179,7 +179,7 @@
<h2>Accuracy<a class="headerlink" href="#accuracy" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.fluid.evaluator.</code><code class="descname">Accuracy</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>k=1</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<em class="property">class </em><code class="descclassname">paddle.fluid.evaluator.</code><code class="descname">Accuracy</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>k=1</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Average Accuracy for multiple mini-batches.</p>
</dd></dl>
......@@ -188,7 +188,7 @@
<h2>ChunkEvaluator<a class="headerlink" href="#chunkevaluator" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.fluid.evaluator.</code><code class="descname">ChunkEvaluator</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>chunk_scheme</em>, <em>num_chunk_types</em>, <em>excluded_chunk_types=None</em><span class="sig-paren">)</span></dt>
<em class="property">class </em><code class="descclassname">paddle.fluid.evaluator.</code><code class="descname">ChunkEvaluator</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>chunk_scheme</em>, <em>num_chunk_types</em>, <em>excluded_chunk_types=None</em><span class="sig-paren">)</span></dt>
<dd><p>Accumulate counter numbers output by chunk_eval from mini-batches and
compute the precision recall and F1-score using the accumulated counter
numbers.</p>
......
......@@ -179,7 +179,7 @@
<h2>Executor<a class="headerlink" href="#id1" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.fluid.executor.</code><code class="descname">Executor</code><span class="sig-paren">(</span><em>places</em><span class="sig-paren">)</span></dt>
<em class="property">class </em><code class="descclassname">paddle.fluid.executor.</code><code class="descname">Executor</code><span class="sig-paren">(</span><em>places</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>
</div>
......@@ -187,7 +187,7 @@
<h2>global_scope<a class="headerlink" href="#global-scope" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.executor.</code><code class="descname">global_scope</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.executor.</code><code class="descname">global_scope</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd></dd></dl>
</div>
......@@ -195,7 +195,7 @@
<h2>scope_guard<a class="headerlink" href="#scope-guard" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.executor.</code><code class="descname">scope_guard</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwds</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.executor.</code><code class="descname">scope_guard</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwds</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>
</div>
......@@ -203,7 +203,7 @@
<h2>switch_scope<a class="headerlink" href="#switch-scope" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.executor.</code><code class="descname">switch_scope</code><span class="sig-paren">(</span><em>scope</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.executor.</code><code class="descname">switch_scope</code><span class="sig-paren">(</span><em>scope</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>
</div>
......
......@@ -179,7 +179,7 @@
<h2>Constant<a class="headerlink" href="#constant" title="Permalink to this headline"></a></h2>
<dl class="attribute">
<dt>
<code class="descclassname">paddle.v2.fluid.initializer.</code><code class="descname">Constant</code></dt>
<code class="descclassname">paddle.fluid.initializer.</code><code class="descname">Constant</code></dt>
<dd><p>alias of <code class="xref py py-class docutils literal"><span class="pre">ConstantInitializer</span></code></p>
</dd></dl>
......@@ -188,7 +188,7 @@
<h2>Uniform<a class="headerlink" href="#uniform" title="Permalink to this headline"></a></h2>
<dl class="attribute">
<dt>
<code class="descclassname">paddle.v2.fluid.initializer.</code><code class="descname">Uniform</code></dt>
<code class="descclassname">paddle.fluid.initializer.</code><code class="descname">Uniform</code></dt>
<dd><p>alias of <code class="xref py py-class docutils literal"><span class="pre">UniformInitializer</span></code></p>
</dd></dl>
......@@ -197,7 +197,7 @@
<h2>Normal<a class="headerlink" href="#normal" title="Permalink to this headline"></a></h2>
<dl class="attribute">
<dt>
<code class="descclassname">paddle.v2.fluid.initializer.</code><code class="descname">Normal</code></dt>
<code class="descclassname">paddle.fluid.initializer.</code><code class="descname">Normal</code></dt>
<dd><p>alias of <code class="xref py py-class docutils literal"><span class="pre">NormalInitializer</span></code></p>
</dd></dl>
......@@ -206,7 +206,7 @@
<h2>Xavier<a class="headerlink" href="#xavier" title="Permalink to this headline"></a></h2>
<dl class="attribute">
<dt>
<code class="descclassname">paddle.v2.fluid.initializer.</code><code class="descname">Xavier</code></dt>
<code class="descclassname">paddle.fluid.initializer.</code><code class="descname">Xavier</code></dt>
<dd><p>alias of <code class="xref py py-class docutils literal"><span class="pre">XavierInitializer</span></code></p>
</dd></dl>
......
......@@ -178,7 +178,7 @@
<h2>save_vars<a class="headerlink" href="#save-vars" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.io.</code><code class="descname">save_vars</code><span class="sig-paren">(</span><em>executor</em>, <em>dirname</em>, <em>main_program=None</em>, <em>vars=None</em>, <em>predicate=None</em>, <em>save_file_name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.io.</code><code class="descname">save_vars</code><span class="sig-paren">(</span><em>executor</em>, <em>dirname</em>, <em>main_program=None</em>, <em>vars=None</em>, <em>predicate=None</em>, <em>save_file_name=None</em><span class="sig-paren">)</span></dt>
<dd><p>Save variables to directory by executor.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
......@@ -215,7 +215,7 @@ If it is None, save variables to separate files.</p>
<h2>save_params<a class="headerlink" href="#save-params" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.io.</code><code class="descname">save_params</code><span class="sig-paren">(</span><em>executor</em>, <em>dirname</em>, <em>main_program=None</em>, <em>save_file_name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.io.</code><code class="descname">save_params</code><span class="sig-paren">(</span><em>executor</em>, <em>dirname</em>, <em>main_program=None</em>, <em>save_file_name=None</em><span class="sig-paren">)</span></dt>
<dd><p>Save all parameters to directory with executor.</p>
</dd></dl>
......@@ -224,7 +224,7 @@ If it is None, save variables to separate files.</p>
<h2>save_persistables<a class="headerlink" href="#save-persistables" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.io.</code><code class="descname">save_persistables</code><span class="sig-paren">(</span><em>executor</em>, <em>dirname</em>, <em>main_program=None</em>, <em>save_file_name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.io.</code><code class="descname">save_persistables</code><span class="sig-paren">(</span><em>executor</em>, <em>dirname</em>, <em>main_program=None</em>, <em>save_file_name=None</em><span class="sig-paren">)</span></dt>
<dd><p>Save all persistables to directory with executor.</p>
</dd></dl>
......@@ -233,7 +233,7 @@ If it is None, save variables to separate files.</p>
<h2>load_vars<a class="headerlink" href="#load-vars" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.io.</code><code class="descname">load_vars</code><span class="sig-paren">(</span><em>executor</em>, <em>dirname</em>, <em>main_program=None</em>, <em>vars=None</em>, <em>predicate=None</em>, <em>load_file_name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.io.</code><code class="descname">load_vars</code><span class="sig-paren">(</span><em>executor</em>, <em>dirname</em>, <em>main_program=None</em>, <em>vars=None</em>, <em>predicate=None</em>, <em>load_file_name=None</em><span class="sig-paren">)</span></dt>
<dd><p>Load variables from directory by executor.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
......@@ -270,7 +270,7 @@ If it is None, load variables from separate files.</p>
<h2>load_params<a class="headerlink" href="#load-params" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.io.</code><code class="descname">load_params</code><span class="sig-paren">(</span><em>executor</em>, <em>dirname</em>, <em>main_program=None</em>, <em>load_file_name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.io.</code><code class="descname">load_params</code><span class="sig-paren">(</span><em>executor</em>, <em>dirname</em>, <em>main_program=None</em>, <em>load_file_name=None</em><span class="sig-paren">)</span></dt>
<dd><p>load all parameters from directory by executor.</p>
</dd></dl>
......@@ -279,7 +279,7 @@ If it is None, load variables from separate files.</p>
<h2>load_persistables<a class="headerlink" href="#load-persistables" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.io.</code><code class="descname">load_persistables</code><span class="sig-paren">(</span><em>executor</em>, <em>dirname</em>, <em>main_program=None</em>, <em>load_file_name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.io.</code><code class="descname">load_persistables</code><span class="sig-paren">(</span><em>executor</em>, <em>dirname</em>, <em>main_program=None</em>, <em>load_file_name=None</em><span class="sig-paren">)</span></dt>
<dd><p>load all persistables from directory by executor.</p>
</dd></dl>
......@@ -288,7 +288,7 @@ If it is None, load variables from separate files.</p>
<h2>save_inference_model<a class="headerlink" href="#save-inference-model" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.io.</code><code class="descname">save_inference_model</code><span class="sig-paren">(</span><em>dirname</em>, <em>feeded_var_names</em>, <em>target_vars</em>, <em>executor</em>, <em>main_program=None</em>, <em>save_file_name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.io.</code><code class="descname">save_inference_model</code><span class="sig-paren">(</span><em>dirname</em>, <em>feeded_var_names</em>, <em>target_vars</em>, <em>executor</em>, <em>main_program=None</em>, <em>save_file_name=None</em><span class="sig-paren">)</span></dt>
<dd><p>Build a model especially for inference,
and save it to directory by the executor.</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -324,7 +324,7 @@ Default default_main_program().</li>
<h2>load_inference_model<a class="headerlink" href="#load-inference-model" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.io.</code><code class="descname">load_inference_model</code><span class="sig-paren">(</span><em>dirname</em>, <em>executor</em>, <em>load_file_name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.io.</code><code class="descname">load_inference_model</code><span class="sig-paren">(</span><em>dirname</em>, <em>executor</em>, <em>load_file_name=None</em><span class="sig-paren">)</span></dt>
<dd><p>Load inference model from a directory</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
......@@ -358,7 +358,7 @@ fetch_targets: Variables from which we can get inference results.</td>
<h2>get_inference_program<a class="headerlink" href="#get-inference-program" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.io.</code><code class="descname">get_inference_program</code><span class="sig-paren">(</span><em>target_vars</em>, <em>main_program=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.io.</code><code class="descname">get_inference_program</code><span class="sig-paren">(</span><em>target_vars</em>, <em>main_program=None</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>
</div>
......
......@@ -181,7 +181,7 @@
<h3>split_lod_tensor<a class="headerlink" href="#split-lod-tensor" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">split_lod_tensor</code><span class="sig-paren">(</span><em>input</em>, <em>mask</em>, <em>level=0</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">split_lod_tensor</code><span class="sig-paren">(</span><em>input</em>, <em>mask</em>, <em>level=0</em><span class="sig-paren">)</span></dt>
<dd><p><strong>split_lod_tensor</strong></p>
<p>This function takes in an input that contains the complete lod information,
and takes in a mask which is used to mask certain parts of the input.
......@@ -226,7 +226,7 @@ Variable: The false branch of tensor as per the mask applied to input.</p>
<h3>merge_lod_tensor<a class="headerlink" href="#merge-lod-tensor" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">merge_lod_tensor</code><span class="sig-paren">(</span><em>in_true</em>, <em>in_false</em>, <em>x</em>, <em>mask</em>, <em>level=0</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">merge_lod_tensor</code><span class="sig-paren">(</span><em>in_true</em>, <em>in_false</em>, <em>x</em>, <em>mask</em>, <em>level=0</em><span class="sig-paren">)</span></dt>
<dd><p><strong>merge_lod_tensor</strong></p>
<p>This function takes in an input <span class="math">\(x\)</span>, the True branch, the False
branch and a binary <span class="math">\(mask\)</span>. Using this information, this function
......@@ -275,7 +275,7 @@ lod information needed to construct the output.</li>
<h3>BlockGuard<a class="headerlink" href="#blockguard" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">BlockGuard</code><span class="sig-paren">(</span><em>main_program</em><span class="sig-paren">)</span></dt>
<em class="property">class </em><code class="descclassname">paddle.fluid.layers.</code><code class="descname">BlockGuard</code><span class="sig-paren">(</span><em>main_program</em><span class="sig-paren">)</span></dt>
<dd><p>BlockGuard class.</p>
<p>BlockGuard class is used to create a sub-block in a program by
using the Python <cite>with</cite> keyword.</p>
......@@ -286,7 +286,7 @@ using the Python <cite>with</cite> keyword.</p>
<h3>BlockGuardWithCompletion<a class="headerlink" href="#blockguardwithcompletion" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">BlockGuardWithCompletion</code><span class="sig-paren">(</span><em>rnn</em><span class="sig-paren">)</span></dt>
<em class="property">class </em><code class="descclassname">paddle.fluid.layers.</code><code class="descname">BlockGuardWithCompletion</code><span class="sig-paren">(</span><em>rnn</em><span class="sig-paren">)</span></dt>
<dd><p>BlockGuardWithCompletion class.</p>
<p>BlockGuardWithCompletion class is used to create an op with a block in a program.</p>
</dd></dl>
......@@ -296,7 +296,7 @@ using the Python <cite>with</cite> keyword.</p>
<h3>StaticRNNMemoryLink<a class="headerlink" href="#staticrnnmemorylink" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">StaticRNNMemoryLink</code><span class="sig-paren">(</span><em>init</em>, <em>pre_mem</em>, <em>mem=None</em><span class="sig-paren">)</span></dt>
<em class="property">class </em><code class="descclassname">paddle.fluid.layers.</code><code class="descname">StaticRNNMemoryLink</code><span class="sig-paren">(</span><em>init</em>, <em>pre_mem</em>, <em>mem=None</em><span class="sig-paren">)</span></dt>
<dd><p>StaticRNNMemoryLink class.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
......@@ -323,7 +323,7 @@ memory cells of a StaticRNN.</p>
<h3>WhileGuard<a class="headerlink" href="#whileguard" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">WhileGuard</code><span class="sig-paren">(</span><em>while_op</em><span class="sig-paren">)</span></dt>
<em class="property">class </em><code class="descclassname">paddle.fluid.layers.</code><code class="descname">WhileGuard</code><span class="sig-paren">(</span><em>while_op</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>
</div>
......@@ -331,7 +331,7 @@ memory cells of a StaticRNN.</p>
<h3>While<a class="headerlink" href="#while" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">While</code><span class="sig-paren">(</span><em>cond</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<em class="property">class </em><code class="descclassname">paddle.fluid.layers.</code><code class="descname">While</code><span class="sig-paren">(</span><em>cond</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>
</div>
......@@ -339,7 +339,7 @@ memory cells of a StaticRNN.</p>
<h3>lod_rank_table<a class="headerlink" href="#lod-rank-table" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">lod_rank_table</code><span class="sig-paren">(</span><em>x</em>, <em>level=0</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">lod_rank_table</code><span class="sig-paren">(</span><em>x</em>, <em>level=0</em><span class="sig-paren">)</span></dt>
<dd><p>LoD Rank Table Operator. Given an input variable <strong>x</strong> and a level number
of LoD, this layer creates a LodRankTable object. A LoDRankTable object
contains a list of bi-element tuples. Each tuple consists of an index and
......@@ -402,7 +402,7 @@ table.</li>
<h3>max_sequence_len<a class="headerlink" href="#max-sequence-len" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">max_sequence_len</code><span class="sig-paren">(</span><em>rank_table</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">max_sequence_len</code><span class="sig-paren">(</span><em>rank_table</em><span class="sig-paren">)</span></dt>
<dd><p>Max Sequence Len Operator. Given a LoDRankTable object, this layer
returns the max length of a batch of sequences. In fact, a LoDRankTable
object contains a list of tuples(&lt;sequence index, sequence length&gt;) and
......@@ -434,7 +434,7 @@ operator just returns the sequence length of the first tuple element.</p>
<h3>topk<a class="headerlink" href="#topk" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">topk</code><span class="sig-paren">(</span><em>input</em>, <em>k</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">topk</code><span class="sig-paren">(</span><em>input</em>, <em>k</em><span class="sig-paren">)</span></dt>
<dd><p><strong>topk</strong></p>
<p>This function performs the operation that selects the k entries in the input
vector and outputs their values and indices as vectors. Thus topk_out[j] is
......@@ -478,7 +478,7 @@ the j-th largest entry in input, and its index is topk_indices[j]</p>
<h3>lod_tensor_to_array<a class="headerlink" href="#lod-tensor-to-array" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">lod_tensor_to_array</code><span class="sig-paren">(</span><em>x</em>, <em>table</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">lod_tensor_to_array</code><span class="sig-paren">(</span><em>x</em>, <em>table</em><span class="sig-paren">)</span></dt>
<dd><p>Convert a LOD_TENSOR to an LOD_TENSOR_ARRAY.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
......@@ -518,7 +518,7 @@ descending order.</li>
<h3>array_to_lod_tensor<a class="headerlink" href="#array-to-lod-tensor" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">array_to_lod_tensor</code><span class="sig-paren">(</span><em>x</em>, <em>table</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">array_to_lod_tensor</code><span class="sig-paren">(</span><em>x</em>, <em>table</em><span class="sig-paren">)</span></dt>
<dd><p>Convert a LoD_Tensor_Aarry to an LoDTensor.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
......@@ -559,7 +559,7 @@ descending order.</li>
<h3>increment<a class="headerlink" href="#increment" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">increment</code><span class="sig-paren">(</span><em>x</em>, <em>value=1.0</em>, <em>in_place=True</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">increment</code><span class="sig-paren">(</span><em>x</em>, <em>value=1.0</em>, <em>in_place=True</em><span class="sig-paren">)</span></dt>
<dd><p>This function performs an operation that increments each value in the
input <span class="math">\(x\)</span> by an amount: <span class="math">\(value\)</span> as mentioned in the input
parameter. This operation is performed in-place by default.</p>
......@@ -599,7 +599,7 @@ parameter. This operation is performed in-place by default.</p>
<h3>array_write<a class="headerlink" href="#array-write" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">array_write</code><span class="sig-paren">(</span><em>x</em>, <em>i</em>, <em>array=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">array_write</code><span class="sig-paren">(</span><em>x</em>, <em>i</em>, <em>array=None</em><span class="sig-paren">)</span></dt>
<dd><p>This function writes the given input variable to the specified position
indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
......@@ -636,7 +636,7 @@ returned.</li>
<h3>create_array<a class="headerlink" href="#create-array" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">create_array</code><span class="sig-paren">(</span><em>dtype</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">create_array</code><span class="sig-paren">(</span><em>dtype</em><span class="sig-paren">)</span></dt>
<dd><p>This function creates an array of type <span class="math">\(LOD_TENSOR_ARRAY\)</span> using the
LayerHelper.</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -662,7 +662,7 @@ LayerHelper.</p>
<h3>less_than<a class="headerlink" href="#less-than" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">less_than</code><span class="sig-paren">(</span><em>x</em>, <em>y</em>, <em>cond=None</em>, <em>**ignored</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">less_than</code><span class="sig-paren">(</span><em>x</em>, <em>y</em>, <em>cond=None</em>, <em>**ignored</em><span class="sig-paren">)</span></dt>
<dd><p><strong>Less than</strong></p>
<p>This layer returns the truth value of <span class="math">\(x &lt; y\)</span> elementwise.</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -695,7 +695,7 @@ LayerHelper.</p>
<h3>array_read<a class="headerlink" href="#array-read" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">array_read</code><span class="sig-paren">(</span><em>array</em>, <em>i</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">array_read</code><span class="sig-paren">(</span><em>array</em>, <em>i</em><span class="sig-paren">)</span></dt>
<dd><p>This function performs the operation to read the data in as an
LOD_TENSOR_ARRAY.
:param array: The input tensor that will be written to an array.
......@@ -721,7 +721,7 @@ LOD_TENSOR_ARRAY.
<h3>shrink_memory<a class="headerlink" href="#shrink-memory" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">shrink_memory</code><span class="sig-paren">(</span><em>x</em>, <em>i</em>, <em>table</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">shrink_memory</code><span class="sig-paren">(</span><em>x</em>, <em>i</em>, <em>table</em><span class="sig-paren">)</span></dt>
<dd><p>This function creates an operator to shrink_rnn_memory using the RankTable
as mentioned in the input parameter.</p>
</dd></dl>
......@@ -731,7 +731,7 @@ as mentioned in the input parameter.</p>
<h3>array_length<a class="headerlink" href="#array-length" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">array_length</code><span class="sig-paren">(</span><em>array</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">array_length</code><span class="sig-paren">(</span><em>array</em><span class="sig-paren">)</span></dt>
<dd><p>This function performs the operation to find the length of the input
LOD_TENSOR_ARRAY.</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -755,7 +755,7 @@ to compute the length.</td>
<h3>IfElse<a class="headerlink" href="#ifelse" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">IfElse</code><span class="sig-paren">(</span><em>cond</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<em class="property">class </em><code class="descclassname">paddle.fluid.layers.</code><code class="descname">IfElse</code><span class="sig-paren">(</span><em>cond</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>
</div>
......@@ -763,7 +763,7 @@ to compute the length.</td>
<h3>DynamicRNN<a class="headerlink" href="#dynamicrnn" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">DynamicRNN</code><span class="sig-paren">(</span><em>name=None</em><span class="sig-paren">)</span></dt>
<em class="property">class </em><code class="descclassname">paddle.fluid.layers.</code><code class="descname">DynamicRNN</code><span class="sig-paren">(</span><em>name=None</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>
</div>
......@@ -771,7 +771,7 @@ to compute the length.</td>
<h3>ConditionalBlock<a class="headerlink" href="#conditionalblock" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">ConditionalBlock</code><span class="sig-paren">(</span><em>inputs</em>, <em>is_scalar_condition=False</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<em class="property">class </em><code class="descclassname">paddle.fluid.layers.</code><code class="descname">ConditionalBlock</code><span class="sig-paren">(</span><em>inputs</em>, <em>is_scalar_condition=False</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>
</div>
......@@ -779,7 +779,7 @@ to compute the length.</td>
<h3>StaticRNN<a class="headerlink" href="#staticrnn" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">StaticRNN</code><span class="sig-paren">(</span><em>name=None</em><span class="sig-paren">)</span></dt>
<em class="property">class </em><code class="descclassname">paddle.fluid.layers.</code><code class="descname">StaticRNN</code><span class="sig-paren">(</span><em>name=None</em><span class="sig-paren">)</span></dt>
<dd><p>StaticRNN class.</p>
<p>StaticRNN class is used to create a StaticRNN. The RNN will have its
own parameters like inputs, outputs, memories, status and length.</p>
......@@ -811,7 +811,7 @@ own parameters like inputs, outputs, memories, status and length.</p>
<h3>reorder_lod_tensor_by_rank<a class="headerlink" href="#reorder-lod-tensor-by-rank" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">reorder_lod_tensor_by_rank</code><span class="sig-paren">(</span><em>x</em>, <em>rank_table</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">reorder_lod_tensor_by_rank</code><span class="sig-paren">(</span><em>x</em>, <em>rank_table</em><span class="sig-paren">)</span></dt>
<dd><p>ReorderLoDTensorByRankTable operator.</p>
<p>Input(X) is a batch of sequences. Input(RankTable) stores new orders of the
input sequence batch. The reorder_lod_tensor_by_rank operator reorders the
......@@ -859,7 +859,7 @@ Duplicable: False Optional: False</li>
<h3>ParallelDo<a class="headerlink" href="#paralleldo" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">ParallelDo</code><span class="sig-paren">(</span><em>places</em>, <em>use_nccl=False</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<em class="property">class </em><code class="descclassname">paddle.fluid.layers.</code><code class="descname">ParallelDo</code><span class="sig-paren">(</span><em>places</em>, <em>use_nccl=False</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd><p>ParallelDo class.</p>
<p>ParallelDo class is used to create a ParallelDo.</p>
</dd></dl>
......@@ -869,7 +869,7 @@ Duplicable: False Optional: False</li>
<h3>Print<a class="headerlink" href="#print" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">Print</code><span class="sig-paren">(</span><em>input</em>, <em>first_n=-1</em>, <em>message=None</em>, <em>summarize=-1</em>, <em>print_tensor_name=True</em>, <em>print_tensor_type=True</em>, <em>print_tensor_shape=True</em>, <em>print_tensor_lod=True</em>, <em>print_phase='both'</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">Print</code><span class="sig-paren">(</span><em>input</em>, <em>first_n=-1</em>, <em>message=None</em>, <em>summarize=-1</em>, <em>print_tensor_name=True</em>, <em>print_tensor_type=True</em>, <em>print_tensor_shape=True</em>, <em>print_tensor_lod=True</em>, <em>print_phase='both'</em><span class="sig-paren">)</span></dt>
<dd><p><strong>Print operator</strong></p>
<p>This creates a print op that will print when a tensor is accessed.</p>
<p>Wraps the tensor passed in so that whenever that a tensor is accessed,
......@@ -921,7 +921,7 @@ Print(value, summarize=10,</p>
<h3>get_places<a class="headerlink" href="#get-places" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">get_places</code><span class="sig-paren">(</span><em>device_count=None</em>, <em>device_type=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">get_places</code><span class="sig-paren">(</span><em>device_count=None</em>, <em>device_type=None</em><span class="sig-paren">)</span></dt>
<dd><p>Returns a list of places based on flags. The list will be used for parallel
execution.</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -949,7 +949,7 @@ execution.</p>
<h3>data<a class="headerlink" href="#data" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">data</code><span class="sig-paren">(</span><em>name</em>, <em>shape</em>, <em>append_batch_size=True</em>, <em>dtype='float32'</em>, <em>lod_level=0</em>, <em>type=VarType.LOD_TENSOR</em>, <em>stop_gradient=True</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">data</code><span class="sig-paren">(</span><em>name</em>, <em>shape</em>, <em>append_batch_size=True</em>, <em>dtype='float32'</em>, <em>lod_level=0</em>, <em>type=VarType.LOD_TENSOR</em>, <em>stop_gradient=True</em><span class="sig-paren">)</span></dt>
<dd><p><strong>Data Layer</strong></p>
<p>This function takes in the input and based on whether data has
to be returned back as a minibatch, it creates the global variable by using
......@@ -993,7 +993,7 @@ to the LayerHelper constructor.</p>
<h3>BlockGuardServ<a class="headerlink" href="#blockguardserv" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">BlockGuardServ</code><span class="sig-paren">(</span><em>server</em><span class="sig-paren">)</span></dt>
<em class="property">class </em><code class="descclassname">paddle.fluid.layers.</code><code class="descname">BlockGuardServ</code><span class="sig-paren">(</span><em>server</em><span class="sig-paren">)</span></dt>
<dd><p>BlockGuardServ class.</p>
<p>BlockGuardServ class is used to create an op with a block in a program.</p>
</dd></dl>
......@@ -1003,7 +1003,7 @@ to the LayerHelper constructor.</p>
<h3>ListenAndServ<a class="headerlink" href="#listenandserv" title="Permalink to this headline"></a></h3>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">ListenAndServ</code><span class="sig-paren">(</span><em>endpoint</em>, <em>fan_in=1</em>, <em>optimizer_mode=True</em><span class="sig-paren">)</span></dt>
<em class="property">class </em><code class="descclassname">paddle.fluid.layers.</code><code class="descname">ListenAndServ</code><span class="sig-paren">(</span><em>endpoint</em>, <em>fan_in=1</em>, <em>optimizer_mode=True</em><span class="sig-paren">)</span></dt>
<dd><p>ListenAndServ class.</p>
<p>ListenAndServ class is used to wrap listen_and_serv op to create a server
which can receive variables from clients and run a block.</p>
......@@ -1014,7 +1014,7 @@ which can receive variables from clients and run a block.</p>
<h3>Send<a class="headerlink" href="#send" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">Send</code><span class="sig-paren">(</span><em>endpoints</em>, <em>send_vars</em>, <em>get_vars</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">Send</code><span class="sig-paren">(</span><em>endpoints</em>, <em>send_vars</em>, <em>get_vars</em><span class="sig-paren">)</span></dt>
<dd><p>Send layer</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
......@@ -1042,7 +1042,7 @@ side when server have finished running server side program.</p>
<h3>fc<a class="headerlink" href="#fc" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">fc</code><span class="sig-paren">(</span><em>input</em>, <em>size</em>, <em>num_flatten_dims=1</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>act=None</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">fc</code><span class="sig-paren">(</span><em>input</em>, <em>size</em>, <em>num_flatten_dims=1</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>act=None</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd><p><strong>Fully Connected Layer</strong></p>
<p>The fully connected layer can take multiple tensors as its inputs. It
creates a variable (one for each input tensor) called weights for each
......@@ -1130,7 +1130,7 @@ layer.</li>
<h3>embedding<a class="headerlink" href="#embedding" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">embedding</code><span class="sig-paren">(</span><em>input</em>, <em>size</em>, <em>is_sparse=False</em>, <em>padding_idx=None</em>, <em>param_attr=None</em>, <em>dtype='float32'</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">embedding</code><span class="sig-paren">(</span><em>input</em>, <em>size</em>, <em>is_sparse=False</em>, <em>padding_idx=None</em>, <em>param_attr=None</em>, <em>dtype='float32'</em><span class="sig-paren">)</span></dt>
<dd><p><strong>Embedding Layer</strong></p>
<p>This layer is used to lookup embeddings of IDs, provided by <code class="xref py py-attr docutils literal"><span class="pre">input</span></code>, in
a lookup table. The result of this lookup is the embedding of each ID in the
......@@ -1178,7 +1178,7 @@ with zeros whenever lookup encounters it in <code class="xref py py-attr docutil
<h3>dynamic_lstm<a class="headerlink" href="#dynamic-lstm" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">dynamic_lstm</code><span class="sig-paren">(</span><em>input</em>, <em>size</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>use_peepholes=True</em>, <em>is_reverse=False</em>, <em>gate_activation='sigmoid'</em>, <em>cell_activation='tanh'</em>, <em>candidate_activation='tanh'</em>, <em>dtype='float32'</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">dynamic_lstm</code><span class="sig-paren">(</span><em>input</em>, <em>size</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>use_peepholes=True</em>, <em>is_reverse=False</em>, <em>gate_activation='sigmoid'</em>, <em>cell_activation='tanh'</em>, <em>candidate_activation='tanh'</em>, <em>dtype='float32'</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd><p><strong>Dynamic LSTM Layer</strong></p>
<p>The defalut implementation is diagonal/peephole connection
(<a class="reference external" href="https://arxiv.org/pdf/1402.1128.pdf">https://arxiv.org/pdf/1402.1128.pdf</a>), the formula is as follows:</p>
......@@ -1285,7 +1285,7 @@ will be named automatically.</li>
<h3>dynamic_lstmp<a class="headerlink" href="#dynamic-lstmp" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">dynamic_lstmp</code><span class="sig-paren">(</span><em>input</em>, <em>size</em>, <em>proj_size</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>use_peepholes=True</em>, <em>is_reverse=False</em>, <em>gate_activation='sigmoid'</em>, <em>cell_activation='tanh'</em>, <em>candidate_activation='tanh'</em>, <em>proj_activation='tanh'</em>, <em>dtype='float32'</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">dynamic_lstmp</code><span class="sig-paren">(</span><em>input</em>, <em>size</em>, <em>proj_size</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>use_peepholes=True</em>, <em>is_reverse=False</em>, <em>gate_activation='sigmoid'</em>, <em>cell_activation='tanh'</em>, <em>candidate_activation='tanh'</em>, <em>proj_activation='tanh'</em>, <em>dtype='float32'</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd><p><strong>Dynamic LSTMP Layer</strong></p>
<p>LSTMP (LSTM with recurrent projection) layer has a separate projection
layer after the LSTM layer, projecting the original hidden state to a
......@@ -1410,7 +1410,7 @@ will be named automatically.</li>
<h3>dynamic_gru<a class="headerlink" href="#dynamic-gru" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">dynamic_gru</code><span class="sig-paren">(</span><em>input</em>, <em>size</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>is_reverse=False</em>, <em>gate_activation='sigmoid'</em>, <em>candidate_activation='tanh'</em>, <em>h_0=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">dynamic_gru</code><span class="sig-paren">(</span><em>input</em>, <em>size</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>is_reverse=False</em>, <em>gate_activation='sigmoid'</em>, <em>candidate_activation='tanh'</em>, <em>h_0=None</em><span class="sig-paren">)</span></dt>
<dd><p><strong>Dynamic GRU Layer</strong></p>
<p>Refer to <a class="reference external" href="https://arxiv.org/abs/1412.3555">Empirical Evaluation of Gated Recurrent Neural Networks on
Sequence Modeling</a></p>
......@@ -1478,7 +1478,7 @@ Choices = [&#8220;sigmoid&#8221;, &#8220;tanh&#8221;, &#8220;relu&#8221;, &#8220
<h3>gru_unit<a class="headerlink" href="#gru-unit" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">gru_unit</code><span class="sig-paren">(</span><em>input</em>, <em>hidden</em>, <em>size</em>, <em>weight=None</em>, <em>bias=None</em>, <em>activation='tanh'</em>, <em>gate_activation='sigmoid'</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">gru_unit</code><span class="sig-paren">(</span><em>input</em>, <em>hidden</em>, <em>size</em>, <em>weight=None</em>, <em>bias=None</em>, <em>activation='tanh'</em>, <em>gate_activation='sigmoid'</em><span class="sig-paren">)</span></dt>
<dd><p>GRU unit layer. The equation of a gru step is:</p>
<blockquote>
<div><div class="math">
......@@ -1533,7 +1533,7 @@ Default: &#8216;sigmoid&#8217;</li>
<h3>linear_chain_crf<a class="headerlink" href="#linear-chain-crf" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">linear_chain_crf</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>param_attr=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">linear_chain_crf</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>param_attr=None</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>
</div>
......@@ -1541,7 +1541,7 @@ Default: &#8216;sigmoid&#8217;</li>
<h3>crf_decoding<a class="headerlink" href="#crf-decoding" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">crf_decoding</code><span class="sig-paren">(</span><em>input</em>, <em>param_attr</em>, <em>label=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">crf_decoding</code><span class="sig-paren">(</span><em>input</em>, <em>param_attr</em>, <em>label=None</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>
</div>
......@@ -1549,7 +1549,7 @@ Default: &#8216;sigmoid&#8217;</li>
<h3>cos_sim<a class="headerlink" href="#cos-sim" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">cos_sim</code><span class="sig-paren">(</span><em>X</em>, <em>Y</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">cos_sim</code><span class="sig-paren">(</span><em>X</em>, <em>Y</em><span class="sig-paren">)</span></dt>
<dd><p>This function performs the cosine similarity between two tensors
X and Y and returns that as the output.</p>
</dd></dl>
......@@ -1559,7 +1559,7 @@ X and Y and returns that as the output.</p>
<h3>cross_entropy<a class="headerlink" href="#cross-entropy" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">cross_entropy</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>soft_label=False</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">cross_entropy</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>soft_label=False</em><span class="sig-paren">)</span></dt>
<dd><p><strong>Cross Entropy Layer</strong></p>
<p>This layer computes the cross entropy between <cite>input</cite> and <cite>label</cite>. It
supports both standard cross-entropy and soft-label cross-entropy loss
......@@ -1642,7 +1642,7 @@ labels, default <cite>False</cite>.</li>
<h3>square_error_cost<a class="headerlink" href="#square-error-cost" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">square_error_cost</code><span class="sig-paren">(</span><em>input</em>, <em>label</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">square_error_cost</code><span class="sig-paren">(</span><em>input</em>, <em>label</em><span class="sig-paren">)</span></dt>
<dd><p><strong>Square error cost layer</strong></p>
<p>This layer accepts input predictions and target label and returns the
squared error cost.</p>
......@@ -1688,7 +1688,7 @@ squared error cost.</p>
<h3>accuracy<a class="headerlink" href="#accuracy" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">accuracy</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>k=1</em>, <em>correct=None</em>, <em>total=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">accuracy</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>k=1</em>, <em>correct=None</em>, <em>total=None</em><span class="sig-paren">)</span></dt>
<dd><p>This function computes the accuracy using the input and label.
The output is the top_k inputs and their indices.</p>
</dd></dl>
......@@ -1698,7 +1698,7 @@ The output is the top_k inputs and their indices.</p>
<h3>chunk_eval<a class="headerlink" href="#chunk-eval" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">chunk_eval</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>chunk_scheme</em>, <em>num_chunk_types</em>, <em>excluded_chunk_types=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">chunk_eval</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>chunk_scheme</em>, <em>num_chunk_types</em>, <em>excluded_chunk_types=None</em><span class="sig-paren">)</span></dt>
<dd><p>This function computes and outputs the precision, recall and
F1-score of chunk detection.</p>
</dd></dl>
......@@ -1708,7 +1708,7 @@ F1-score of chunk detection.</p>
<h3>sequence_conv<a class="headerlink" href="#sequence-conv" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">sequence_conv</code><span class="sig-paren">(</span><em>input</em>, <em>num_filters</em>, <em>filter_size=3</em>, <em>filter_stride=1</em>, <em>padding=None</em>, <em>bias_attr=None</em>, <em>param_attr=None</em>, <em>act=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">sequence_conv</code><span class="sig-paren">(</span><em>input</em>, <em>num_filters</em>, <em>filter_size=3</em>, <em>filter_stride=1</em>, <em>padding=None</em>, <em>bias_attr=None</em>, <em>param_attr=None</em>, <em>act=None</em><span class="sig-paren">)</span></dt>
<dd><p>This function creates the op for sequence_conv, using the inputs and
other convolutional configurations for the filters and stride as given
in the input parameters to the function.</p>
......@@ -1719,7 +1719,7 @@ in the input parameters to the function.</p>
<h3>conv2d<a class="headerlink" href="#conv2d" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">conv2d</code><span class="sig-paren">(</span><em>input</em>, <em>num_filters</em>, <em>filter_size</em>, <em>stride=None</em>, <em>padding=None</em>, <em>groups=None</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>use_cudnn=True</em>, <em>act=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">conv2d</code><span class="sig-paren">(</span><em>input</em>, <em>num_filters</em>, <em>filter_size</em>, <em>stride=None</em>, <em>padding=None</em>, <em>groups=None</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>use_cudnn=True</em>, <em>act=None</em><span class="sig-paren">)</span></dt>
<dd><p><strong>Convlution2D Layer</strong></p>
<p>The convolution2D layer calculates the output based on the input, filter
and strides, paddings, dilations, groups parameters. Input(Input) and
......@@ -1816,7 +1816,7 @@ groups mismatch.</p>
<h3>sequence_pool<a class="headerlink" href="#sequence-pool" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">sequence_pool</code><span class="sig-paren">(</span><em>input</em>, <em>pool_type</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">sequence_pool</code><span class="sig-paren">(</span><em>input</em>, <em>pool_type</em><span class="sig-paren">)</span></dt>
<dd><p>This function add the operator for sequence pooling.
It pools features of all time-steps of each instance, and is applied
on top of the input using pool_type mentioned in the parameters.</p>
......@@ -1876,7 +1876,7 @@ It supports average, sum, sqrt and max.</li>
<h3>pool2d<a class="headerlink" href="#pool2d" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">pool2d</code><span class="sig-paren">(</span><em>input</em>, <em>pool_size</em>, <em>pool_type</em>, <em>pool_stride=None</em>, <em>pool_padding=None</em>, <em>global_pooling=False</em>, <em>use_cudnn=True</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">pool2d</code><span class="sig-paren">(</span><em>input</em>, <em>pool_size</em>, <em>pool_type</em>, <em>pool_stride=None</em>, <em>pool_padding=None</em>, <em>global_pooling=False</em>, <em>use_cudnn=True</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd><p>This function adds the operator for pooling in 2 dimensions, using the
pooling configurations mentioned in input parameters.</p>
</dd></dl>
......@@ -1886,7 +1886,7 @@ pooling configurations mentioned in input parameters.</p>
<h3>batch_norm<a class="headerlink" href="#batch-norm" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">batch_norm</code><span class="sig-paren">(</span><em>input</em>, <em>act=None</em>, <em>is_test=False</em>, <em>momentum=0.9</em>, <em>epsilon=1e-05</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>data_layout='NCHW'</em>, <em>name=None</em>, <em>moving_mean_name=None</em>, <em>moving_variance_name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">batch_norm</code><span class="sig-paren">(</span><em>input</em>, <em>act=None</em>, <em>is_test=False</em>, <em>momentum=0.9</em>, <em>epsilon=1e-05</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>data_layout='NCHW'</em>, <em>name=None</em>, <em>moving_mean_name=None</em>, <em>moving_variance_name=None</em><span class="sig-paren">)</span></dt>
<dd><p>This function helps create an operator to implement
the BatchNorm layer using the configurations from the input parameters.</p>
</dd></dl>
......@@ -1896,7 +1896,7 @@ the BatchNorm layer using the configurations from the input parameters.</p>
<h3>layer_norm<a class="headerlink" href="#layer-norm" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">layer_norm</code><span class="sig-paren">(</span><em>input</em>, <em>scale=True</em>, <em>shift=True</em>, <em>begin_norm_axis=1</em>, <em>epsilon=1e-05</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>act=None</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">layer_norm</code><span class="sig-paren">(</span><em>input</em>, <em>scale=True</em>, <em>shift=True</em>, <em>begin_norm_axis=1</em>, <em>epsilon=1e-05</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>act=None</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd><p><strong>Layer Normalization</strong></p>
<p>Assume feature vectors exist on dimensions
<code class="xref py py-attr docutils literal"><span class="pre">begin_norm_axis</span> <span class="pre">...</span> <span class="pre">rank(input)</span></code> and calculate the moment statistics
......@@ -1951,7 +1951,7 @@ bias <span class="math">\(b\)</span>.</li>
<h3>beam_search_decode<a class="headerlink" href="#beam-search-decode" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">beam_search_decode</code><span class="sig-paren">(</span><em>ids</em>, <em>scores</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">beam_search_decode</code><span class="sig-paren">(</span><em>ids</em>, <em>scores</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>
</div>
......@@ -1959,7 +1959,7 @@ bias <span class="math">\(b\)</span>.</li>
<h3>conv2d_transpose<a class="headerlink" href="#conv2d-transpose" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">conv2d_transpose</code><span class="sig-paren">(</span><em>input</em>, <em>num_filters</em>, <em>output_size=None</em>, <em>filter_size=None</em>, <em>padding=None</em>, <em>stride=None</em>, <em>dilation=None</em>, <em>param_attr=None</em>, <em>use_cudnn=True</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">conv2d_transpose</code><span class="sig-paren">(</span><em>input</em>, <em>num_filters</em>, <em>output_size=None</em>, <em>filter_size=None</em>, <em>padding=None</em>, <em>stride=None</em>, <em>dilation=None</em>, <em>param_attr=None</em>, <em>use_cudnn=True</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd><p><strong>Convlution2D transpose layer</strong></p>
<p>The convolution2D transpose layer calculates the output based on the input,
filter, and dilations, strides, paddings. Input(Input) and output(Output)
......@@ -2056,7 +2056,7 @@ groups mismatch.</p>
<h3>sequence_expand<a class="headerlink" href="#sequence-expand" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">sequence_expand</code><span class="sig-paren">(</span><em>x</em>, <em>y</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">sequence_expand</code><span class="sig-paren">(</span><em>x</em>, <em>y</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd><p>Sequence Expand Layer. This layer will expand the input variable <strong>x</strong>
according to LoD information of <strong>y</strong>. And the following examples will
explain how sequence_expand works:</p>
......@@ -2129,7 +2129,7 @@ will be named automatically.</li>
<h3>lstm_unit<a class="headerlink" href="#lstm-unit" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">lstm_unit</code><span class="sig-paren">(</span><em>x_t</em>, <em>hidden_t_prev</em>, <em>cell_t_prev</em>, <em>forget_bias=0.0</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">lstm_unit</code><span class="sig-paren">(</span><em>x_t</em>, <em>hidden_t_prev</em>, <em>cell_t_prev</em>, <em>forget_bias=0.0</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd><p>Lstm unit layer. The equation of a lstm step is:</p>
<blockquote>
<div><div class="math">
......@@ -2203,7 +2203,7 @@ and <strong>cell_t_prev</strong> not be the same or the 2nd dimensions of
<h3>reduce_sum<a class="headerlink" href="#reduce-sum" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">reduce_sum</code><span class="sig-paren">(</span><em>input</em>, <em>dim=None</em>, <em>keep_dim=False</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">reduce_sum</code><span class="sig-paren">(</span><em>input</em>, <em>dim=None</em>, <em>keep_dim=False</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd><p>Computes the sum of tensor elements over the given dimension.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
......@@ -2250,7 +2250,7 @@ will be named automatically.</li>
<h3>reduce_mean<a class="headerlink" href="#reduce-mean" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">reduce_mean</code><span class="sig-paren">(</span><em>input</em>, <em>dim=None</em>, <em>keep_dim=False</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">reduce_mean</code><span class="sig-paren">(</span><em>input</em>, <em>dim=None</em>, <em>keep_dim=False</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd><p>Computes the mean of tensor elements over the given dimension.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
......@@ -2297,7 +2297,7 @@ will be named automatically.</li>
<h3>reduce_max<a class="headerlink" href="#reduce-max" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">reduce_max</code><span class="sig-paren">(</span><em>input</em>, <em>dim=None</em>, <em>keep_dim=False</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">reduce_max</code><span class="sig-paren">(</span><em>input</em>, <em>dim=None</em>, <em>keep_dim=False</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd><p>Computes the maximum of tensor elements over the given dimension.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
......@@ -2344,7 +2344,7 @@ will be named automatically.</li>
<h3>reduce_min<a class="headerlink" href="#reduce-min" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">reduce_min</code><span class="sig-paren">(</span><em>input</em>, <em>dim=None</em>, <em>keep_dim=False</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">reduce_min</code><span class="sig-paren">(</span><em>input</em>, <em>dim=None</em>, <em>keep_dim=False</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd><p>Computes the minimum of tensor elements over the given dimension.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
......@@ -2391,7 +2391,7 @@ will be named automatically.</li>
<h3>sequence_first_step<a class="headerlink" href="#sequence-first-step" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">sequence_first_step</code><span class="sig-paren">(</span><em>input</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">sequence_first_step</code><span class="sig-paren">(</span><em>input</em><span class="sig-paren">)</span></dt>
<dd><p>This funciton get the first step of sequence.</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>x is a 1-level LoDTensor:
x.lod = [[0, 2, 5, 7]]
......@@ -2427,7 +2427,7 @@ then output is a Tensor:
<h3>sequence_last_step<a class="headerlink" href="#sequence-last-step" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">sequence_last_step</code><span class="sig-paren">(</span><em>input</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">sequence_last_step</code><span class="sig-paren">(</span><em>input</em><span class="sig-paren">)</span></dt>
<dd><p>This funciton get the last step of sequence.</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>x is a 1-level LoDTensor:
x.lod = [[0, 2, 5, 7]]
......@@ -2463,7 +2463,7 @@ then output is a Tensor:
<h3>dropout<a class="headerlink" href="#dropout" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">dropout</code><span class="sig-paren">(</span><em>x</em>, <em>dropout_prob</em>, <em>is_test=False</em>, <em>seed=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">dropout</code><span class="sig-paren">(</span><em>x</em>, <em>dropout_prob</em>, <em>is_test=False</em>, <em>seed=None</em><span class="sig-paren">)</span></dt>
<dd><p>Computes dropout.</p>
<p>Drop or keep each element of <cite>x</cite> independently. Dropout is a regularization
technique for reducing overfitting by preventing neuron co-adaption during
......@@ -2505,7 +2505,7 @@ units will be dropped. DO NOT use a fixed seed in training.</li>
<h3>split<a class="headerlink" href="#split" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">split</code><span class="sig-paren">(</span><em>input</em>, <em>num_or_sections</em>, <em>dim=-1</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">split</code><span class="sig-paren">(</span><em>input</em>, <em>num_or_sections</em>, <em>dim=-1</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd><p>Split the input tensor into multiple sub-tensors.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
......@@ -2553,7 +2553,7 @@ will be named automatically.</li>
<h3>ctc_greedy_decoder<a class="headerlink" href="#ctc-greedy-decoder" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">ctc_greedy_decoder</code><span class="sig-paren">(</span><em>input</em>, <em>blank</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">ctc_greedy_decoder</code><span class="sig-paren">(</span><em>input</em>, <em>blank</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd><p>This op is used to decode sequences by greedy policy by below steps:
1. Get the indexes of max value for each row in input. a.k.a.</p>
<blockquote>
......@@ -2625,7 +2625,7 @@ empty, the result LoDTensor will be [-1] with LoD [[0]] and dims [1, 1].</p>
<h3>edit_distance<a class="headerlink" href="#edit-distance" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">edit_distance</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>normalized=False</em>, <em>ignored_tokens=None</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">edit_distance</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>normalized=False</em>, <em>ignored_tokens=None</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd><p>EditDistance operator computes the edit distances between a batch of
hypothesis strings and their references. Edit distance, also called
Levenshtein distance, measures how dissimilar two strings are by counting
......@@ -2678,7 +2678,7 @@ calculating edit distance.</li>
<h3>l2_normalize<a class="headerlink" href="#l2-normalize" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">l2_normalize</code><span class="sig-paren">(</span><em>x</em>, <em>axis</em>, <em>epsilon=1e-12</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">l2_normalize</code><span class="sig-paren">(</span><em>x</em>, <em>axis</em>, <em>epsilon=1e-12</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd><p><strong>L2 normalize Layer</strong></p>
<p>The l2 normalize layer normalizes <cite>x</cite> along dimension <cite>axis</cite> using an L2
norm. For a 1-D tensor (<cite>dim</cite> is fixed to 0), this layer computes</p>
......@@ -2722,7 +2722,7 @@ will be named automatically.</li>
<h3>matmul<a class="headerlink" href="#matmul" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">matmul</code><span class="sig-paren">(</span><em>x</em>, <em>y</em>, <em>transpose_x=False</em>, <em>transpose_y=False</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">matmul</code><span class="sig-paren">(</span><em>x</em>, <em>y</em>, <em>transpose_x=False</em>, <em>transpose_y=False</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd><p>Applies matrix multiplication to two tensors.</p>
<p>Currently, the input tensors&#8217; rank can be any, but when the rank of any
inputs is bigger than 3, this two inputs&#8217; rank should be equal.</p>
......@@ -2800,7 +2800,7 @@ will be named automatically.</li>
<h3>warpctc<a class="headerlink" href="#warpctc" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">warpctc</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>blank=0</em>, <em>norm_by_times=False</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">warpctc</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>blank=0</em>, <em>norm_by_times=False</em><span class="sig-paren">)</span></dt>
<dd><p>An operator integrating the open source Warp-CTC library
(<a class="reference external" href="https://github.com/baidu-research/warp-ctc">https://github.com/baidu-research/warp-ctc</a>)
to compute Connectionist Temporal Classification (CTC) loss.
......@@ -2849,7 +2849,7 @@ which is a 2-D Tensor of the shape [batch_size, 1].</p>
<h3>sequence_reshape<a class="headerlink" href="#sequence-reshape" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">sequence_reshape</code><span class="sig-paren">(</span><em>input</em>, <em>new_dim</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">sequence_reshape</code><span class="sig-paren">(</span><em>input</em>, <em>new_dim</em><span class="sig-paren">)</span></dt>
<dd><p><strong>Sequence Reshape Layer</strong></p>
<p>This layer will rearrange the input sequences. The new dimension is set by
user. Length of each sequence is computed according to original length,
......@@ -2905,7 +2905,7 @@ with shape being [N, M] where M for dimension.</li>
<h3>transpose<a class="headerlink" href="#transpose" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">transpose</code><span class="sig-paren">(</span><em>x</em>, <em>perm</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">transpose</code><span class="sig-paren">(</span><em>x</em>, <em>perm</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd><p><strong>transpose Layer</strong></p>
<p>Permute the dimensions of <cite>input</cite> according to <cite>perm</cite>.</p>
<p>The <cite>i</cite>-th dimension of the returned tensor will correspond to the
......@@ -2940,7 +2940,7 @@ perm[i]-th dimension of <cite>input</cite>.</p>
<h3>im2sequence<a class="headerlink" href="#im2sequence" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">im2sequence</code><span class="sig-paren">(</span><em>input</em>, <em>filter_size=1</em>, <em>stride=1</em>, <em>padding=0</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">im2sequence</code><span class="sig-paren">(</span><em>input</em>, <em>filter_size=1</em>, <em>stride=1</em>, <em>padding=0</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd><p>Extracts image patches from the input tensor to form a tensor of shape
{input.batch_size * output_height * output_width, filter_size_H *
filter_size_W * input.channels} which is similar with im2col.
......@@ -3045,7 +3045,7 @@ output.lod = [[0, 4, 8]]
<h3>nce<a class="headerlink" href="#nce" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">nce</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>num_total_classes</em>, <em>sample_weight=None</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>num_neg_samples=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">nce</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>num_total_classes</em>, <em>sample_weight=None</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>num_neg_samples=None</em><span class="sig-paren">)</span></dt>
<dd><p>Compute and return the noise-contrastive estimation training loss.
See [Noise-contrastive estimation: A new estimation principle for unnormalized statistical models](<a class="reference external" href="http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf">http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf</a>).
By default this operator uses a uniform distribution for sampling.</p>
......@@ -3082,7 +3082,7 @@ Duplicable: False Optional: True</li>
<h3>beam_search<a class="headerlink" href="#beam-search" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">beam_search</code><span class="sig-paren">(</span><em>pre_ids</em>, <em>ids</em>, <em>scores</em>, <em>beam_size</em>, <em>end_id</em>, <em>level=0</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">beam_search</code><span class="sig-paren">(</span><em>pre_ids</em>, <em>ids</em>, <em>scores</em>, <em>beam_size</em>, <em>end_id</em>, <em>level=0</em><span class="sig-paren">)</span></dt>
<dd><p>This function implements the beam search algorithm.</p>
</dd></dl>
......@@ -3091,7 +3091,7 @@ Duplicable: False Optional: True</li>
<h3>row_conv<a class="headerlink" href="#row-conv" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">row_conv</code><span class="sig-paren">(</span><em>input</em>, <em>future_context_size</em>, <em>param_attr=None</em>, <em>act=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">row_conv</code><span class="sig-paren">(</span><em>input</em>, <em>future_context_size</em>, <em>param_attr=None</em>, <em>act=None</em><span class="sig-paren">)</span></dt>
<dd><p>Row Conv Operator. This layer will apply lookahead convolution to
<strong>input</strong>. The input variable should be a 2D LoDTensor with shape [T, D].
Parameters with shape [future_context_size + 1, D] will be created. The math
......@@ -3142,7 +3142,7 @@ name, initializer etc.</li>
<h3>multiplex<a class="headerlink" href="#multiplex" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">multiplex</code><span class="sig-paren">(</span><em>inputs</em>, <em>index</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">multiplex</code><span class="sig-paren">(</span><em>inputs</em>, <em>index</em><span class="sig-paren">)</span></dt>
<dd><p><strong>Multiplex Layer</strong></p>
<p>Referring to the given index variable, this layer selects rows from the
input variables to construct a multiplex variable. Assuming that there are
......@@ -3196,7 +3196,7 @@ with shape [M, 1] where M is the batch size.</li>
<h3>mean<a class="headerlink" href="#mean" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">mean</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">mean</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Mean Operator.</p>
<p>Out is a scalar which is the mean of all elements in X.</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -3217,7 +3217,7 @@ Duplicable: False Optional: False</td>
<h3>mul<a class="headerlink" href="#mul" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">mul</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">mul</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Mul Operator.</p>
<p>This operator is used to perform matrix multiplication for input $X$ and $Y$.</p>
<p>The equation is:</p>
......@@ -3268,7 +3268,7 @@ flattened. See comments of <cite>x_num_col_dims</cite> for more details.</li>
<h3>reshape<a class="headerlink" href="#reshape" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">reshape</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">reshape</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Reshape Operator.</p>
<p>Reshape Input(X) into the shape specified by Attr(shape).</p>
<p>An example:
......@@ -3301,7 +3301,7 @@ Duplicable: False Optional: False</li>
<h3>scale<a class="headerlink" href="#scale" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">scale</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">scale</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Scale operator</p>
<p>$$Out = scale*X$$</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -3327,7 +3327,7 @@ Duplicable: False Optional: False</li>
<h3>sigmoid_cross_entropy_with_logits<a class="headerlink" href="#sigmoid-cross-entropy-with-logits" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">sigmoid_cross_entropy_with_logits</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">sigmoid_cross_entropy_with_logits</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>SigmoidCrossEntropyWithLogits Operator.</p>
<p>This measures the element-wise probability error in classification tasks
in which each class is independent. This can be thought of as predicting labels
......@@ -3370,7 +3370,7 @@ Duplicable: False Optional: False</li>
<h3>elementwise_add<a class="headerlink" href="#elementwise-add" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">elementwise_add</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">elementwise_add</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Limited Elementwise Add Operator.</p>
<p>The equation is:</p>
<p>$$Out = X + Y$$</p>
......@@ -3420,7 +3420,7 @@ Duplicable: False Optional: False</li>
<h3>elementwise_div<a class="headerlink" href="#elementwise-div" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">elementwise_div</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">elementwise_div</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Limited Elementwise Div Operator.</p>
<p>The equation is:</p>
<p>$$Out = X / Y$$</p>
......@@ -3470,7 +3470,7 @@ Duplicable: False Optional: False</li>
<h3>elementwise_sub<a class="headerlink" href="#elementwise-sub" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">elementwise_sub</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">elementwise_sub</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Limited Elementwise Sub Operator.</p>
<p>The equation is:</p>
<p>$$Out = X - Y$$</p>
......@@ -3520,7 +3520,7 @@ Duplicable: False Optional: False</li>
<h3>elementwise_mul<a class="headerlink" href="#elementwise-mul" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">elementwise_mul</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">elementwise_mul</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Limited Elementwise Mul Operator.</p>
<p>The equation is:</p>
<p>$$Out = X odotY$$</p>
......@@ -3570,7 +3570,7 @@ Duplicable: False Optional: False</li>
<h3>elementwise_max<a class="headerlink" href="#elementwise-max" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">elementwise_max</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">elementwise_max</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Limited Elementwise Max Operator.</p>
<p>The equation is:</p>
<p>$$Out = max(X, Y)$$</p>
......@@ -3620,7 +3620,7 @@ Duplicable: False Optional: False</li>
<h3>elementwise_min<a class="headerlink" href="#elementwise-min" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">elementwise_min</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">elementwise_min</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Limited Elementwise Max Operator.</p>
<p>The equation is:</p>
<p>$$Out = min(X, Y)$$</p>
......@@ -3670,7 +3670,7 @@ Duplicable: False Optional: False</li>
<h3>elementwise_pow<a class="headerlink" href="#elementwise-pow" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">elementwise_pow</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">elementwise_pow</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Limited Elementwise Pow Operator.</p>
<p>The equation is:</p>
<p>$$Out = X ^ Y$$</p>
......@@ -3720,7 +3720,7 @@ Duplicable: False Optional: False</li>
<h3>clip<a class="headerlink" href="#clip" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">clip</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">clip</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Clip Operator.</p>
<p>The clip operator limits the value of given input within an interval. The
interval is specified with arguments &#8216;min&#8217; and &#8216;max&#8217;:</p>
......@@ -3751,7 +3751,7 @@ Duplicable: False Optional: False</li>
<h3>clip_by_norm<a class="headerlink" href="#clip-by-norm" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">clip_by_norm</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">clip_by_norm</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>ClipByNorm Operator.</p>
<p>This operator limits the L2 norm of the input $X$ within $max_norm$.
If the L2 norm of $X$ is less than or equal to $max_norm$, $Out$ will be
......@@ -3785,7 +3785,7 @@ Duplicable: False Optional: False</li>
<h3>sequence_softmax<a class="headerlink" href="#sequence-softmax" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">sequence_softmax</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">sequence_softmax</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Sequence Softmax Operator.</p>
<p>SequenceSoftmaxOp computes the softmax activation among all time-steps for each
sequence. The dimension of each time-step should be 1. Thus, the shape of
......@@ -3819,7 +3819,7 @@ Duplicable: False Optional: False</td>
<h3>sigmoid<a class="headerlink" href="#sigmoid" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">sigmoid</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">sigmoid</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Sigmoid Activation Operator</p>
<p>$$out = frac{1}{1 + e^{-x}}$$</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -3840,7 +3840,7 @@ Duplicable: False Optional: False</td>
<h3>logsigmoid<a class="headerlink" href="#logsigmoid" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">logsigmoid</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">logsigmoid</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Logsigmoid Activation Operator</p>
<p>$$out = log frac{1}{1 + e^{-x}}$$</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -3861,7 +3861,7 @@ Duplicable: False Optional: False</td>
<h3>exp<a class="headerlink" href="#exp" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">exp</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">exp</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Exp Activation Operator.</p>
<p>$out = e^x$</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -3882,7 +3882,7 @@ Duplicable: False Optional: False</td>
<h3>relu<a class="headerlink" href="#relu" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">relu</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">relu</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Relu Activation Operator.</p>
<p>$out = max(x, 0)$</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -3903,7 +3903,7 @@ Duplicable: False Optional: False</td>
<h3>tanh<a class="headerlink" href="#tanh" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">tanh</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">tanh</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Tanh Activation Operator.</p>
<p>$$out = frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -3924,7 +3924,7 @@ Duplicable: False Optional: False</td>
<h3>tanh_shrink<a class="headerlink" href="#tanh-shrink" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">tanh_shrink</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">tanh_shrink</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>TanhShrink Activation Operator.</p>
<p>$$out = x - frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -3945,7 +3945,7 @@ Duplicable: False Optional: False</td>
<h3>softshrink<a class="headerlink" href="#softshrink" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">softshrink</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">softshrink</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Softshrink Activation Operator.</p>
<p>$$
out = begin{cases}</p>
......@@ -3978,7 +3978,7 @@ Duplicable: False Optional: False</li>
<h3>sqrt<a class="headerlink" href="#sqrt" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">sqrt</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">sqrt</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Sqrt Activation Operator.</p>
<p>$out = sqrt{x}$</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -3999,7 +3999,7 @@ Duplicable: False Optional: False</td>
<h3>abs<a class="headerlink" href="#abs" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">abs</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">abs</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Abs Activation Operator.</p>
<p>$out = <a href="#id1"><span class="problematic" id="id2">|</span></a>x|$</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -4020,7 +4020,7 @@ Duplicable: False Optional: False</td>
<h3>ceil<a class="headerlink" href="#ceil" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">ceil</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">ceil</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Ceil Activation Operator.</p>
<p>$out = ceil(x)$</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -4041,7 +4041,7 @@ Duplicable: False Optional: False</td>
<h3>floor<a class="headerlink" href="#floor" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">floor</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">floor</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Floor Activation Operator.</p>
<p>$out = floor(x)$</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -4062,7 +4062,7 @@ Duplicable: False Optional: False</td>
<h3>round<a class="headerlink" href="#round" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">round</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">round</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Round Activation Operator.</p>
<p>$out = [x]$</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -4083,7 +4083,7 @@ Duplicable: False Optional: False</td>
<h3>reciprocal<a class="headerlink" href="#reciprocal" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">reciprocal</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">reciprocal</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Reciprocal Activation Operator.</p>
<p>$$out = frac{1}{x}$$</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -4104,7 +4104,7 @@ Duplicable: False Optional: False</td>
<h3>log<a class="headerlink" href="#log" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">log</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">log</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Log Activation Operator.</p>
<p>$out = ln(x)$</p>
<p>Natural logarithm of x.</p>
......@@ -4126,7 +4126,7 @@ Duplicable: False Optional: False</td>
<h3>square<a class="headerlink" href="#square" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">square</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">square</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Square Activation Operator.</p>
<p>$out = x^2$</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -4147,7 +4147,7 @@ Duplicable: False Optional: False</td>
<h3>softplus<a class="headerlink" href="#softplus" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">softplus</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">softplus</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Softplus Activation Operator.</p>
<p>$out = ln(1 + e^{x})$</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -4168,7 +4168,7 @@ Duplicable: False Optional: False</td>
<h3>softsign<a class="headerlink" href="#softsign" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">softsign</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">softsign</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Softsign Activation Operator.</p>
<p>$$out = frac{x}{1 + <a href="#id5"><span class="problematic" id="id6">|x|</span></a>}$$</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -4189,7 +4189,7 @@ Duplicable: False Optional: False</td>
<h3>brelu<a class="headerlink" href="#brelu" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">brelu</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">brelu</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>BRelu Activation Operator.</p>
<p>$out = max(min(x, t_{min}), t_{max})$</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -4216,7 +4216,7 @@ Duplicable: False Optional: False</li>
<h3>leaky_relu<a class="headerlink" href="#leaky-relu" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">leaky_relu</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">leaky_relu</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>LeakyRelu Activation Operator.</p>
<p>$out = max(x, alpha * x)$</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -4242,7 +4242,7 @@ Duplicable: False Optional: False</li>
<h3>soft_relu<a class="headerlink" href="#soft-relu" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">soft_relu</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">soft_relu</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>SoftRelu Activation Operator.</p>
<p>$out = ln(1 + exp(max(min(x, threshold), threshold))$</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -4268,7 +4268,7 @@ Duplicable: False Optional: False</li>
<h3>elu<a class="headerlink" href="#elu" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">elu</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">elu</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>ELU Activation Operator.</p>
<p>Applies the following element-wise computation on the input according to
<a class="reference external" href="https://arxiv.org/abs/1511.07289">https://arxiv.org/abs/1511.07289</a>.</p>
......@@ -4296,7 +4296,7 @@ Duplicable: False Optional: False</li>
<h3>relu6<a class="headerlink" href="#relu6" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">relu6</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">relu6</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Relu6 Activation Operator.</p>
<p>$out = min(max(0, x), 6)$</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -4322,7 +4322,7 @@ Duplicable: False Optional: False</li>
<h3>pow<a class="headerlink" href="#pow" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">pow</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">pow</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Pow Activation Operator.</p>
<p>$out = x^{factor}$</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -4348,7 +4348,7 @@ Duplicable: False Optional: False</li>
<h3>stanh<a class="headerlink" href="#stanh" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">stanh</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">stanh</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>STanh Activation Operator.</p>
<p>$$out = b * frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -4375,7 +4375,7 @@ Duplicable: False Optional: False</li>
<h3>hard_shrink<a class="headerlink" href="#hard-shrink" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">hard_shrink</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">hard_shrink</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>HardShrink Activation Operator.</p>
<p>$$
out = begin{cases}</p>
......@@ -4408,7 +4408,7 @@ Duplicable: False Optional: False</li>
<h3>thresholded_relu<a class="headerlink" href="#thresholded-relu" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">thresholded_relu</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">thresholded_relu</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>ThresholdedRelu Activation Operator.</p>
<p>$$
out = begin{cases}</p>
......@@ -4440,7 +4440,7 @@ Duplicable: False Optional: False</li>
<h3>hard_sigmoid<a class="headerlink" href="#hard-sigmoid" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">hard_sigmoid</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">hard_sigmoid</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>HardSigmoid Activation Operator.</p>
<p>Segment-wise linear approximation of sigmoid(<a class="reference external" href="https://arxiv.org/abs/1603.00391">https://arxiv.org/abs/1603.00391</a>),
which is much faster than sigmoid.</p>
......@@ -4472,7 +4472,7 @@ Duplicable: False Optional: False</li>
<h3>swish<a class="headerlink" href="#swish" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">swish</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">swish</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Swish Activation Operator.</p>
<p>$$out = frac{x}{1 + e^{- beta x}}$$</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -4501,7 +4501,7 @@ Duplicable: False Optional: False</li>
<h3>create_tensor<a class="headerlink" href="#create-tensor" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">create_tensor</code><span class="sig-paren">(</span><em>dtype</em>, <em>name=None</em>, <em>persistable=False</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">create_tensor</code><span class="sig-paren">(</span><em>dtype</em>, <em>name=None</em>, <em>persistable=False</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>
</div>
......@@ -4509,7 +4509,7 @@ Duplicable: False Optional: False</li>
<h3>create_parameter<a class="headerlink" href="#create-parameter" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">create_parameter</code><span class="sig-paren">(</span><em>shape</em>, <em>dtype</em>, <em>name=None</em>, <em>attr=None</em>, <em>is_bias=False</em>, <em>default_initializer=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">create_parameter</code><span class="sig-paren">(</span><em>shape</em>, <em>dtype</em>, <em>name=None</em>, <em>attr=None</em>, <em>is_bias=False</em>, <em>default_initializer=None</em><span class="sig-paren">)</span></dt>
<dd><p>Create a parameter
:param shape: shape of the parameter
:type shape: list[int]
......@@ -4541,7 +4541,7 @@ Xavier() will be used.</div></blockquote>
<h3>create_global_var<a class="headerlink" href="#create-global-var" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">create_global_var</code><span class="sig-paren">(</span><em>shape</em>, <em>value</em>, <em>dtype</em>, <em>persistable=False</em>, <em>force_cpu=False</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">create_global_var</code><span class="sig-paren">(</span><em>shape</em>, <em>value</em>, <em>dtype</em>, <em>persistable=False</em>, <em>force_cpu=False</em>, <em>name=None</em><span class="sig-paren">)</span></dt>
<dd><p>Create a global variable. such as global_step
:param shape: shape of the variable
:type shape: list[int]
......@@ -4570,7 +4570,7 @@ Xavier() will be used.</div></blockquote>
<h3>cast<a class="headerlink" href="#cast" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">cast</code><span class="sig-paren">(</span><em>x</em>, <em>dtype</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">cast</code><span class="sig-paren">(</span><em>x</em>, <em>dtype</em><span class="sig-paren">)</span></dt>
<dd><p>This function takes in the input with input_dtype
and casts it to the output_dtype as the output.</p>
</dd></dl>
......@@ -4580,7 +4580,7 @@ and casts it to the output_dtype as the output.</p>
<h3>concat<a class="headerlink" href="#concat" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">concat</code><span class="sig-paren">(</span><em>input</em>, <em>axis=0</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">concat</code><span class="sig-paren">(</span><em>input</em>, <em>axis=0</em><span class="sig-paren">)</span></dt>
<dd><p><strong>Concat</strong></p>
<p>This function concatenates the input along the axis mentioned
and returns that as the output.</p>
......@@ -4610,7 +4610,7 @@ and returns that as the output.</p>
<h3>sums<a class="headerlink" href="#sums" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">sums</code><span class="sig-paren">(</span><em>input</em>, <em>out=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">sums</code><span class="sig-paren">(</span><em>input</em>, <em>out=None</em><span class="sig-paren">)</span></dt>
<dd><p>This function performs the sum operation on the input and returns the
result as the output.</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -4638,7 +4638,7 @@ that need to be summed up.</td>
<h3>assign<a class="headerlink" href="#assign" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">assign</code><span class="sig-paren">(</span><em>input</em>, <em>output</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">assign</code><span class="sig-paren">(</span><em>input</em>, <em>output</em><span class="sig-paren">)</span></dt>
<dd><p><strong>Assign</strong></p>
<p>This function copies the <em>input</em> Variable to the <em>output</em> Variable.</p>
<table class="docutils field-list" frame="void" rules="none">
......@@ -4667,7 +4667,7 @@ that need to be summed up.</td>
<h3>fill_constant_batch_size_like<a class="headerlink" href="#fill-constant-batch-size-like" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">fill_constant_batch_size_like</code><span class="sig-paren">(</span><em>input</em>, <em>shape</em>, <em>dtype</em>, <em>value</em>, <em>input_dim_idx=0</em>, <em>output_dim_idx=0</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">fill_constant_batch_size_like</code><span class="sig-paren">(</span><em>input</em>, <em>shape</em>, <em>dtype</em>, <em>value</em>, <em>input_dim_idx=0</em>, <em>output_dim_idx=0</em><span class="sig-paren">)</span></dt>
<dd><p><strong>fill_constant_batch_size_like</strong></p>
<p>This function creates a tensor of specified <em>shape</em>, <em>dtype</em> and batch size,
and initializes this with a constant supplied in <em>value</em>. The batch size is
......@@ -4707,7 +4707,7 @@ obtained from the <cite>input</cite> tensor.</p>
<h3>fill_constant<a class="headerlink" href="#fill-constant" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">fill_constant</code><span class="sig-paren">(</span><em>shape</em>, <em>dtype</em>, <em>value</em>, <em>force_cpu=False</em>, <em>out=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">fill_constant</code><span class="sig-paren">(</span><em>shape</em>, <em>dtype</em>, <em>value</em>, <em>force_cpu=False</em>, <em>out=None</em><span class="sig-paren">)</span></dt>
<dd><p><strong>fill_constant</strong></p>
<p>This function creates a tensor with specified <cite>shape</cite> and <cite>dtype</cite>, and
initializes it with a constant specifed by <cite>value</cite>.</p>
......@@ -4744,7 +4744,7 @@ initializes it with a constant specifed by <cite>value</cite>.</p>
<h3>ones<a class="headerlink" href="#ones" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">ones</code><span class="sig-paren">(</span><em>shape</em>, <em>dtype</em>, <em>force_cpu=False</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">ones</code><span class="sig-paren">(</span><em>shape</em>, <em>dtype</em>, <em>force_cpu=False</em><span class="sig-paren">)</span></dt>
<dd><p><strong>ones</strong></p>
<p>This function creates a tensor of specified <em>shape</em> and
<em>dtype</em>, and initializes this with 1.</p>
......@@ -4778,7 +4778,7 @@ initializes it with a constant specifed by <cite>value</cite>.</p>
<h3>zeros<a class="headerlink" href="#zeros" title="Permalink to this headline"></a></h3>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">zeros</code><span class="sig-paren">(</span><em>shape</em>, <em>dtype</em>, <em>force_cpu=False</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.layers.</code><code class="descname">zeros</code><span class="sig-paren">(</span><em>shape</em>, <em>dtype</em>, <em>force_cpu=False</em><span class="sig-paren">)</span></dt>
<dd><p><strong>zeros</strong></p>
<p>This function creates a tensor of specified <em>shape</em> and
<em>dtype</em>, and initializes this with 0.</p>
......
......@@ -179,7 +179,7 @@
<h2>simple_img_conv_pool<a class="headerlink" href="#simple-img-conv-pool" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.nets.</code><code class="descname">simple_img_conv_pool</code><span class="sig-paren">(</span><em>input</em>, <em>num_filters</em>, <em>filter_size</em>, <em>pool_size</em>, <em>pool_stride</em>, <em>act</em>, <em>param_attr=None</em>, <em>pool_type='max'</em>, <em>use_cudnn=True</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.nets.</code><code class="descname">simple_img_conv_pool</code><span class="sig-paren">(</span><em>input</em>, <em>num_filters</em>, <em>filter_size</em>, <em>pool_size</em>, <em>pool_stride</em>, <em>act</em>, <em>param_attr=None</em>, <em>pool_type='max'</em>, <em>use_cudnn=True</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>
</div>
......@@ -187,7 +187,7 @@
<h2>sequence_conv_pool<a class="headerlink" href="#sequence-conv-pool" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.nets.</code><code class="descname">sequence_conv_pool</code><span class="sig-paren">(</span><em>input</em>, <em>num_filters</em>, <em>filter_size</em>, <em>param_attr=None</em>, <em>act='sigmoid'</em>, <em>pool_type='max'</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.nets.</code><code class="descname">sequence_conv_pool</code><span class="sig-paren">(</span><em>input</em>, <em>num_filters</em>, <em>filter_size</em>, <em>param_attr=None</em>, <em>act='sigmoid'</em>, <em>pool_type='max'</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>
</div>
......@@ -195,7 +195,7 @@
<h2>glu<a class="headerlink" href="#glu" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.nets.</code><code class="descname">glu</code><span class="sig-paren">(</span><em>input</em>, <em>dim=-1</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.nets.</code><code class="descname">glu</code><span class="sig-paren">(</span><em>input</em>, <em>dim=-1</em><span class="sig-paren">)</span></dt>
<dd><p>The gated linear unit composed by split, sigmoid activation and elementwise
multiplication. Specifically, Split the input into two equal sized parts
<span class="math">\(a\)</span> and <span class="math">\(b\)</span> along the given dimension and then compute as
......@@ -236,7 +236,7 @@ dimension to split along is <span class="math">\(rank(input) + dim\)</span>.</li
<h2>scaled_dot_product_attention<a class="headerlink" href="#scaled-dot-product-attention" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.nets.</code><code class="descname">scaled_dot_product_attention</code><span class="sig-paren">(</span><em>queries</em>, <em>keys</em>, <em>values</em>, <em>num_heads=1</em>, <em>dropout_rate=0.0</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.nets.</code><code class="descname">scaled_dot_product_attention</code><span class="sig-paren">(</span><em>queries</em>, <em>keys</em>, <em>values</em>, <em>num_heads=1</em>, <em>dropout_rate=0.0</em><span class="sig-paren">)</span></dt>
<dd><p>The dot-product attention.</p>
<p>Attention mechanism can be seen as mapping a query and a set of key-value
pairs to an output. The output is computed as a weighted sum of the values,
......
......@@ -179,7 +179,7 @@
<h2>SGD<a class="headerlink" href="#sgd" title="Permalink to this headline"></a></h2>
<dl class="attribute">
<dt>
<code class="descclassname">paddle.v2.fluid.optimizer.</code><code class="descname">SGD</code></dt>
<code class="descclassname">paddle.fluid.optimizer.</code><code class="descname">SGD</code></dt>
<dd><p>alias of <code class="xref py py-class docutils literal"><span class="pre">SGDOptimizer</span></code></p>
</dd></dl>
......@@ -188,7 +188,7 @@
<h2>Momentum<a class="headerlink" href="#momentum" title="Permalink to this headline"></a></h2>
<dl class="attribute">
<dt>
<code class="descclassname">paddle.v2.fluid.optimizer.</code><code class="descname">Momentum</code></dt>
<code class="descclassname">paddle.fluid.optimizer.</code><code class="descname">Momentum</code></dt>
<dd><p>alias of <code class="xref py py-class docutils literal"><span class="pre">MomentumOptimizer</span></code></p>
</dd></dl>
......@@ -197,7 +197,7 @@
<h2>Adagrad<a class="headerlink" href="#adagrad" title="Permalink to this headline"></a></h2>
<dl class="attribute">
<dt>
<code class="descclassname">paddle.v2.fluid.optimizer.</code><code class="descname">Adagrad</code></dt>
<code class="descclassname">paddle.fluid.optimizer.</code><code class="descname">Adagrad</code></dt>
<dd><p>alias of <code class="xref py py-class docutils literal"><span class="pre">AdagradOptimizer</span></code></p>
</dd></dl>
......@@ -206,7 +206,7 @@
<h2>Adam<a class="headerlink" href="#adam" title="Permalink to this headline"></a></h2>
<dl class="attribute">
<dt>
<code class="descclassname">paddle.v2.fluid.optimizer.</code><code class="descname">Adam</code></dt>
<code class="descclassname">paddle.fluid.optimizer.</code><code class="descname">Adam</code></dt>
<dd><p>alias of <code class="xref py py-class docutils literal"><span class="pre">AdamOptimizer</span></code></p>
</dd></dl>
......@@ -215,7 +215,7 @@
<h2>Adamax<a class="headerlink" href="#adamax" title="Permalink to this headline"></a></h2>
<dl class="attribute">
<dt>
<code class="descclassname">paddle.v2.fluid.optimizer.</code><code class="descname">Adamax</code></dt>
<code class="descclassname">paddle.fluid.optimizer.</code><code class="descname">Adamax</code></dt>
<dd><p>alias of <code class="xref py py-class docutils literal"><span class="pre">AdamaxOptimizer</span></code></p>
</dd></dl>
......@@ -224,7 +224,7 @@
<h2>DecayedAdagrad<a class="headerlink" href="#decayedadagrad" title="Permalink to this headline"></a></h2>
<dl class="attribute">
<dt>
<code class="descclassname">paddle.v2.fluid.optimizer.</code><code class="descname">DecayedAdagrad</code></dt>
<code class="descclassname">paddle.fluid.optimizer.</code><code class="descname">DecayedAdagrad</code></dt>
<dd><p>alias of <code class="xref py py-class docutils literal"><span class="pre">DecayedAdagradOptimizer</span></code></p>
</dd></dl>
......
......@@ -179,7 +179,7 @@
<h2>ParamAttr<a class="headerlink" href="#paramattr" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.fluid.param_attr.</code><code class="descname">ParamAttr</code><span class="sig-paren">(</span><em>name=None</em>, <em>initializer=None</em>, <em>learning_rate=1.0</em>, <em>regularizer=None</em>, <em>trainable=True</em>, <em>gradient_clip=None</em><span class="sig-paren">)</span></dt>
<em class="property">class </em><code class="descclassname">paddle.fluid.param_attr.</code><code class="descname">ParamAttr</code><span class="sig-paren">(</span><em>name=None</em>, <em>initializer=None</em>, <em>learning_rate=1.0</em>, <em>regularizer=None</em>, <em>trainable=True</em>, <em>gradient_clip=None</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>
</div>
......@@ -187,7 +187,7 @@
<h2>WeightNormParamAttr<a class="headerlink" href="#weightnormparamattr" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.fluid.param_attr.</code><code class="descname">WeightNormParamAttr</code><span class="sig-paren">(</span><em>dim=None</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<em class="property">class </em><code class="descclassname">paddle.fluid.param_attr.</code><code class="descname">WeightNormParamAttr</code><span class="sig-paren">(</span><em>dim=None</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Used for weight normalization. Any field in ParamAttr can also be set here.
Besides, an extra field dim can be set to indicate the dimension except
which to normalize.</p>
......
......@@ -179,7 +179,7 @@
<h2>cuda_profiler<a class="headerlink" href="#cuda-profiler" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.profiler.</code><code class="descname">cuda_profiler</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwds</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.profiler.</code><code class="descname">cuda_profiler</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwds</em><span class="sig-paren">)</span></dt>
<dd><p>The CUDA profiler.
This fuctions is used to profile CUDA program by CUDA runtime application
programming interface. The profiling result will be written into
......@@ -211,7 +211,7 @@ to &#8220;Compute Command Line Profiler User Guide&#8221;.</li>
<h2>reset_profiler<a class="headerlink" href="#reset-profiler" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.profiler.</code><code class="descname">reset_profiler</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.profiler.</code><code class="descname">reset_profiler</code><span class="sig-paren">(</span><span class="sig-paren">)</span></dt>
<dd><p>The profiler clear interface.
reset_profiler will clear the previous time record.</p>
</dd></dl>
......@@ -221,7 +221,7 @@ reset_profiler will clear the previous time record.</p>
<h2>profiler<a class="headerlink" href="#id1" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.profiler.</code><code class="descname">profiler</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwds</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.profiler.</code><code class="descname">profiler</code><span class="sig-paren">(</span><em>*args</em>, <em>**kwds</em><span class="sig-paren">)</span></dt>
<dd><p>The profiler interface.
Different from cuda_profiler, this profiler can be used to profile both CPU
and GPU program. By defalut, it records the CPU and GPU operator kernels,
......
......@@ -179,7 +179,7 @@
<h2>append_regularization_ops<a class="headerlink" href="#append-regularization-ops" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.regularizer.</code><code class="descname">append_regularization_ops</code><span class="sig-paren">(</span><em>parameters_and_grads</em>, <em>regularization=None</em><span class="sig-paren">)</span></dt>
<code class="descclassname">paddle.fluid.regularizer.</code><code class="descname">append_regularization_ops</code><span class="sig-paren">(</span><em>parameters_and_grads</em>, <em>regularization=None</em><span class="sig-paren">)</span></dt>
<dd><p>Create and add backward regularization Operators</p>
<p>Creates and adds backward regularization operators in the BlockDesc.
This will add gradients of the regularizer function to the gradients
......@@ -212,7 +212,7 @@ set. It will be applied with regularizer.</li>
<h2>L1Decay<a class="headerlink" href="#l1decay" title="Permalink to this headline"></a></h2>
<dl class="attribute">
<dt>
<code class="descclassname">paddle.v2.fluid.regularizer.</code><code class="descname">L1Decay</code></dt>
<code class="descclassname">paddle.fluid.regularizer.</code><code class="descname">L1Decay</code></dt>
<dd><p>alias of <code class="xref py py-class docutils literal"><span class="pre">L1DecayRegularizer</span></code></p>
</dd></dl>
......@@ -221,7 +221,7 @@ set. It will be applied with regularizer.</li>
<h2>L2Decay<a class="headerlink" href="#l2decay" title="Permalink to this headline"></a></h2>
<dl class="attribute">
<dt>
<code class="descclassname">paddle.v2.fluid.regularizer.</code><code class="descname">L2Decay</code></dt>
<code class="descclassname">paddle.fluid.regularizer.</code><code class="descname">L2Decay</code></dt>
<dd><p>alias of <code class="xref py py-class docutils literal"><span class="pre">L2DecayRegularizer</span></code></p>
</dd></dl>
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册