Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
b7db8457
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b7db8457
编写于
7月 18, 2022
作者:
Z
zhoutianzi666
提交者:
GitHub
7月 18, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Paddle-TRT] reshape fill_constant (#44314)
* reshape fill_constant * commit * commit
上级
fd6dcdfe
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
551 addition
and
83 deletion
+551
-83
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+1
-0
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
+1
-0
paddle/fluid/inference/tensorrt/convert/fill_constant_op.cc
paddle/fluid/inference/tensorrt/convert/fill_constant_op.cc
+71
-0
paddle/fluid/inference/tensorrt/convert/reshape_op.cc
paddle/fluid/inference/tensorrt/convert/reshape_op.cc
+23
-5
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+26
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_fill_constant.py
.../unittests/ir/inference/test_trt_convert_fill_constant.py
+142
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_reshape.py
.../tests/unittests/ir/inference/test_trt_convert_reshape.py
+287
-78
未找到文件。
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
b7db8457
...
...
@@ -2089,6 +2089,7 @@ USE_TRT_CONVERTER(top_k)
USE_TRT_CONVERTER
(
top_k_v2
)
USE_TRT_CONVERTER
(
squeeze2
)
USE_TRT_CONVERTER
(
unsqueeze2
)
USE_TRT_CONVERTER
(
fill_constant
)
USE_TRT_CONVERTER
(
fused_token_prune
)
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
USE_TRT_CONVERTER
(
sparse_fc
)
...
...
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
浏览文件 @
b7db8457
...
...
@@ -69,6 +69,7 @@ list(
top_k_op.cc
squeeze2_op.cc
unsqueeze2_op.cc
fill_constant_op.cc
fused_token_prune_op.cc
)
if
(
CUSPARSELT_FOUND AND
${
TENSORRT_MAJOR_VERSION
}
GREATER_EQUAL 8
)
...
...
paddle/fluid/inference/tensorrt/convert/fill_constant_op.cc
0 → 100644
浏览文件 @
b7db8457
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
class
FillConstantOpConverter
:
public
OpConverter
{
public:
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
VLOG
(
4
)
<<
"convert a fluid fill_constant op to tensorrt fill_constant layer"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
int
dtype
=
BOOST_GET_CONST
(
int
,
op_desc
.
GetAttr
(
"dtype"
));
std
::
string
str_value
=
BOOST_GET_CONST
(
std
::
string
,
op_desc
.
GetAttr
(
"str_value"
));
std
::
vector
<
int64_t
>
shape
=
BOOST_GET_CONST
(
std
::
vector
<
int64_t
>
,
op_desc
.
GetAttr
(
"shape"
));
std
::
unique_ptr
<
framework
::
Tensor
>
out_tensor
(
new
framework
::
Tensor
());
out_tensor
->
Resize
(
phi
::
make_ddim
(
shape
));
nvinfer1
::
DataType
trt_dtype
=
nvinfer1
::
DataType
::
kFLOAT
;
void
*
trt_data
=
nullptr
;
size_t
trt_num
;
if
(
dtype
==
2
||
dtype
==
3
)
{
// int,int64
auto
*
tmp_ptr
=
out_tensor
->
mutable_data
<
int
>
(
platform
::
CPUPlace
());
for
(
int64_t
i
=
0
;
i
<
out_tensor
->
numel
();
i
++
)
tmp_ptr
[
i
]
=
std
::
stoi
(
str_value
);
trt_dtype
=
nvinfer1
::
DataType
::
kINT32
;
trt_data
=
static_cast
<
void
*>
(
tmp_ptr
);
}
else
if
(
dtype
==
5
)
{
// float
auto
*
tmp_ptr
=
out_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
int64_t
i
=
0
;
i
<
out_tensor
->
numel
();
i
++
)
tmp_ptr
[
i
]
=
std
::
stof
(
str_value
);
trt_data
=
static_cast
<
void
*>
(
tmp_ptr
);
}
trt_num
=
static_cast
<
size_t
>
(
out_tensor
->
numel
());
engine_
->
SetWeights
(
"fill_constant_value"
,
std
::
move
(
out_tensor
));
TensorRTEngine
::
Weight
weight
{
trt_dtype
,
trt_data
,
trt_num
};
nvinfer1
::
Dims
trt_in_shape
;
trt_in_shape
.
nbDims
=
shape
.
size
();
for
(
size_t
i
=
0
;
i
<
shape
.
size
();
i
++
)
trt_in_shape
.
d
[
i
]
=
shape
[
i
];
nvinfer1
::
ILayer
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Constant
,
trt_in_shape
,
weight
.
get
());
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
RreplenishLayerAndOutput
(
layer
,
"fill_constant"
,
{
output_name
},
test_mode
);
}
};
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
fill_constant
,
FillConstantOpConverter
);
paddle/fluid/inference/tensorrt/convert/reshape_op.cc
浏览文件 @
b7db8457
...
...
@@ -35,15 +35,30 @@ class ReshapeOpConverter : public OpConverter {
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
// Declare inputs
auto
*
input
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
)[
0
]);
std
::
vector
<
int
>
shape
=
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
op_desc
.
GetAttr
(
"shape"
));
int
nbDims_num
=
shape
.
size
();
nvinfer1
::
Dims
reshape_dim
;
if
(
engine_
->
with_dynamic_shape
())
{
// running the TRT Dynamic Shape mode
nvinfer1
::
ITensor
*
real_shape_tensor
=
nullptr
;
std
::
vector
<
nvinfer1
::
ITensor
*>
concat_inputs
;
bool
one_input
=
false
;
if
(
engine_
->
with_dynamic_shape
())
{
if
(
op_desc
.
Inputs
().
find
(
"ShapeTensor"
)
!=
op_desc
.
Inputs
().
end
()
&&
op_desc
.
Input
(
"ShapeTensor"
).
size
()
>
0
)
{
for
(
auto
name
:
op_desc
.
Input
(
"ShapeTensor"
))
concat_inputs
.
push_back
(
engine_
->
GetITensor
(
name
));
real_shape_tensor
=
Concat
(
concat_inputs
);
}
else
if
(
op_desc
.
Inputs
().
find
(
"Shape"
)
!=
op_desc
.
Inputs
().
end
()
&&
op_desc
.
Input
(
"Shape"
).
size
()
>
0
)
{
real_shape_tensor
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"Shape"
)[
0
]);
}
else
{
reshape_dim
.
nbDims
=
nbDims_num
;
for
(
int
i
=
0
;
i
<
nbDims_num
;
++
i
)
{
reshape_dim
.
d
[
i
]
=
shape
[
i
];
}
one_input
=
true
;
}
}
else
{
// running the TRT Static Shape mode
reshape_dim
.
nbDims
=
nbDims_num
-
1
;
for
(
int
i
=
0
;
i
<
nbDims_num
-
1
;
++
i
)
{
...
...
@@ -51,7 +66,10 @@ class ReshapeOpConverter : public OpConverter {
}
}
auto
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
input
);
if
(
!
engine_
->
with_dynamic_shape
()
||
one_input
)
layer
->
setReshapeDimensions
(
reshape_dim
);
else
layer
->
setInput
(
1
,
*
real_shape_tensor
);
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
RreplenishLayerAndOutput
(
layer
,
"reshape"
,
{
output_name
},
test_mode
);
}
...
...
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
b7db8457
...
...
@@ -169,6 +169,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"transformer_input_convert"
,
"recover_padding"
,
"remove_padding"
,
"fill_constant"
,
"squeeze2"
,
"unsqueeze2"
};
std
::
unordered_set
<
std
::
string
>
teller_set
{
...
...
@@ -274,6 +275,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"transformer_input_convert"
,
"recover_padding"
,
"remove_padding"
,
"fill_constant"
,
"squeeze2"
,
"unsqueeze2"
,
"fused_token_prune"
};
...
...
@@ -1448,6 +1450,27 @@ bool OpTeller::Tell(const framework::ir::Node* node,
}
}
if
(
op_type
==
"fill_constant"
)
{
auto
fill_constant_inputs
=
desc
.
Inputs
();
if
(
fill_constant_inputs
.
find
(
"ValueTensor"
)
!=
fill_constant_inputs
.
end
())
{
if
(
desc
.
Input
(
"ValueTensor"
).
size
())
return
false
;
}
if
(
fill_constant_inputs
.
find
(
"ShapeTensor"
)
!=
fill_constant_inputs
.
end
())
{
if
(
desc
.
Input
(
"ShapeTensor"
).
size
())
return
false
;
}
if
(
fill_constant_inputs
.
find
(
"ShapeTensorList"
)
!=
fill_constant_inputs
.
end
())
{
if
(
desc
.
Input
(
"ShapeTensorList"
).
size
())
return
false
;
}
int
dtype
=
BOOST_GET_CONST
(
int
,
desc
.
GetAttr
(
"dtype"
));
// only support int32, int64, float32
if
(
!
(
dtype
==
2
||
dtype
==
3
||
dtype
==
5
))
{
return
false
;
}
}
if
(
op_type
==
"instance_norm"
)
{
if
(
with_dynamic_shape
)
{
VLOG
(
3
)
<<
"trt instance_norm op does not support dynamic shape "
;
...
...
@@ -1801,6 +1824,9 @@ bool OpTeller::Tell(const framework::ir::Node* node,
}
if
(
op_type
==
"reshape"
||
op_type
==
"reshape2"
)
{
if
(
with_dynamic_shape
)
{
return
true
;
}
if
(
!
desc
.
HasAttr
(
"shape"
))
{
return
false
;
}
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_fill_constant.py
0 → 100644
浏览文件 @
b7db8457
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
,
SkipReasons
from
program_config
import
TensorConfig
,
ProgramConfig
import
unittest
import
numpy
as
np
import
paddle.inference
as
paddle_infer
from
functools
import
partial
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
class
TrtConvertSplitTest
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
def
generate_value_data
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
array
([
1
]).
astype
(
np
.
int32
)
def
generate_shape_data
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
array
([
4
,
23
]).
astype
(
np
.
int32
)
def
generate_shapelist_data
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
array
([
4
]).
astype
(
np
.
int32
)
for
shape
in
[[
2
,
3
,
4
]]:
for
num_input
in
[
0
,
1
,
2
,
3
]:
for
dtype
in
[
5
,
2
,
3
]:
for
str_value
in
[
"2"
,
"23"
,
"-1"
]:
self
.
num_input
=
num_input
dics
=
[{
"str_value"
:
str_value
,
"shape"
:
shape
,
"dtype"
:
dtype
},
{
"axis"
:
-
1
}]
dics_intput
=
[{
"ValueTensor"
:
[
"value_data"
]
},
{
"ShapeTensor"
:
[
"shape_data"
],
},
{
"ShapeTensorList"
:
[
"shapeT1_data"
,
"shapeT2_data"
],
},
{}]
ops_config
=
[
{
"op_type"
:
"fill_constant"
,
"op_inputs"
:
dics_intput
[
num_input
],
"op_outputs"
:
{
"Out"
:
[
"out_data"
],
},
"op_attrs"
:
dics
[
0
]
},
]
def
generate_input
():
return
np
.
random
.
random
([
1
,
1
]).
astype
(
np
.
float32
)
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"value_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_value_data
,
dics
)),
"shape_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_shape_data
,
dics
)),
"shapeT1_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_shapelist_data
,
dics
)),
"shapeT2_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_shapelist_data
,
dics
)),
},
outputs
=
[
"out_data"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
self
.
input_shape
=
[
1
,
1
]
max_shape
=
list
(
self
.
input_shape
)
min_shape
=
list
(
self
.
input_shape
)
opt_shape
=
list
(
self
.
input_shape
)
for
i
in
range
(
len
(
self
.
input_shape
)):
max_shape
[
i
]
=
max_shape
[
i
]
+
1
self
.
dynamic_shape
.
min_input_shape
=
{
"Y_data"
:
min_shape
}
self
.
dynamic_shape
.
max_input_shape
=
{
"Y_data"
:
max_shape
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"Y_data"
:
opt_shape
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
if
(
self
.
num_input
<
3
):
return
0
,
6
return
1
,
5
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# Don't test static shape
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
def
add_skip_trt_case
(
self
):
pass
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_reshape.py
浏览文件 @
b7db8457
...
...
@@ -48,12 +48,16 @@ class TrtConvertReshapeTest(TrtLayerAutoScanTest):
def
generate_input1
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
if
self
.
dims
==
4
:
self
.
input_shape
=
[
1
,
2
,
4
,
6
]
return
np
.
ones
([
1
,
2
,
4
,
6
]).
astype
(
np
.
float32
)
elif
self
.
dims
==
3
:
self
.
input_shape
=
[
1
,
8
,
6
]
return
np
.
ones
([
1
,
8
,
6
]).
astype
(
np
.
float32
)
elif
self
.
dims
==
2
:
self
.
input_shape
=
[
1
,
48
]
return
np
.
ones
([
1
,
48
]).
astype
(
np
.
float32
)
elif
self
.
dims
==
1
:
self
.
input_shape
=
[
48
]
return
np
.
ones
([
48
]).
astype
(
np
.
float32
)
def
generate_weight1
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
...
...
@@ -66,52 +70,20 @@ class TrtConvertReshapeTest(TrtLayerAutoScanTest):
return
np
.
array
([
24
]).
astype
(
np
.
int32
)
for
dims
in
[
4
,
3
,
2
,
1
]:
for
num_input
in
[
0
,
1
,
2
,
3
]:
for
shape
in
[[
1
,
6
,
8
],
[
1
,
2
,
4
,
6
],
[
1
,
1
,
0
,
12
],
[
1
,
0
,
6
],
[
1
,
-
1
,
12
],
[
2
,
-
1
],
[
3
,
16
],
[
3
,
4
,
4
],
[
48
]]:
dics
=
[{
[
1
,
-
1
,
12
],
[
2
,
-
1
],
[
3
,
16
],
[
3
,
4
,
4
],
[
48
],
[
-
1
,
48
]]:
dics
=
[
{
"shape"
:
shape
,
},
{}]
self
.
num_input
=
num_input
},
]
self
.
dims
=
dims
dics_intput
=
[{
"X"
:
[
"reshape_input"
],
"Shape"
:
[
"shape_data"
],
"ShapeTensor"
:
[
"shapeT1_data"
,
"shapeT2_data"
],
},
{
"X"
:
[
"reshape_input"
],
"Shape"
:
[
"shape_data"
],
},
{
"X"
:
[
"reshape_input"
],
"ShapeTensor"
:
[
"shapeT1_data"
,
"shapeT2_data"
],
},
{
"X"
:
[
"reshape_input"
]
}]
dics_weight
=
[{
"shape_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_weight1
,
dics
)),
"shapeT1_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_shapeT1_data
,
dics
)),
"shapeT2_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_shapeT2_data
,
dics
))
},
{
"shape_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_weight1
,
dics
))
},
{
"shapeT1_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_shapeT1_data
,
dics
)),
"shapeT2_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_shapeT2_data
,
dics
))
},
{}]
dics_intput
=
[{
"X"
:
[
"reshape_input"
]}]
ops_config
=
[{
"op_type"
:
"reshape"
,
"op_inputs"
:
dics_intput
[
num_input
],
"op_inputs"
:
dics_intput
[
0
],
"op_outputs"
:
{
"Out"
:
[
"reshape_out"
]
},
...
...
@@ -120,11 +92,10 @@ class TrtConvertReshapeTest(TrtLayerAutoScanTest):
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
dics_weight
[
num_input
]
,
weights
=
{}
,
inputs
=
{
"reshape_input"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
dics
))
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
dics
))
},
outputs
=
[
"reshape_out"
])
...
...
@@ -169,14 +140,23 @@ class TrtConvertReshapeTest(TrtLayerAutoScanTest):
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
# in static shape mode, here is consistent with op_teller.cc
if
(
not
dynamic_shape
):
if
(
attrs
[
0
][
'shape'
][
0
]
==
0
):
return
1
,
2
elif
(
len
(
attrs
[
0
][
'shape'
])
==
1
):
return
0
,
3
elif
(
np
.
prod
(
attrs
[
0
][
'shape'
][
1
:])
==
np
.
prod
(
self
.
input_shape
[
1
:])):
return
1
,
2
else
:
return
0
,
3
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
if
attrs
[
0
][
'shape'
][
0
]
>
1
and
len
(
attrs
[
0
][
'shape'
])
>
1
:
pass
else
:
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
...
...
@@ -196,14 +176,243 @@ class TrtConvertReshapeTest(TrtLayerAutoScanTest):
attrs
,
True
),
1e-5
def
add_skip_trt_case
(
self
):
pass
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
def
teller1
(
program_config
,
predictor_config
):
if
len
(
program_config
.
weights
)
>=
1
:
# reshape having three inputs.
class
TrtConvertReshapeTest2
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
return
False
self
.
add_skip_case
(
teller1
,
SkipReasons
.
TRT_NOT_SUPPORT
,
"INPUT ShapeTensor and Shape NOT SUPPORT"
)
def
sample_program_configs
(
self
):
def
generate_input1
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
if
self
.
dims
==
4
:
return
np
.
random
.
random
([
1
,
2
,
4
,
6
]).
astype
(
np
.
float32
)
elif
self
.
dims
==
3
:
return
np
.
random
.
random
([
1
,
8
,
6
]).
astype
(
np
.
float32
)
elif
self
.
dims
==
2
:
return
np
.
random
.
random
([
1
,
48
]).
astype
(
np
.
float32
)
elif
self
.
dims
==
1
:
return
np
.
random
.
random
([
48
]).
astype
(
np
.
float32
)
for
dims
in
[
4
,
3
,
2
,
1
]:
for
shape
in
[[
-
1
,
48
]]:
dics
=
[{
"shape"
:
shape
,
},
{}]
self
.
dims
=
dims
dics_intput
=
[
{
"X"
:
[
"reshape_input"
],
"ShapeTensor"
:
[
"shapeT1_data"
,
"shapeT2_data"
],
},
]
ops_config
=
[
{
"op_type"
:
"fill_constant"
,
"op_inputs"
:
{},
"op_outputs"
:
{
"Out"
:
[
"shapeT1_data"
]
},
"op_attrs"
:
{
"dtype"
:
2
,
"str_value"
:
"2"
,
"shape"
:
[
1
],
},
},
{
"op_type"
:
"fill_constant"
,
"op_inputs"
:
{},
"op_outputs"
:
{
"Out"
:
[
"shapeT2_data"
]
},
"op_attrs"
:
{
"dtype"
:
2
,
"str_value"
:
"24"
,
"shape"
:
[
1
],
},
},
{
"op_type"
:
"reshape"
,
"op_inputs"
:
dics_intput
[
0
],
"op_outputs"
:
{
"Out"
:
[
"reshape_out"
]
},
"op_attrs"
:
dics
[
0
]
},
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"reshape_input"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
dics
))
},
outputs
=
[
"reshape_out"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
():
if
self
.
dims
==
4
:
self
.
dynamic_shape
.
min_input_shape
=
{
"reshape_input"
:
[
1
,
2
,
4
,
6
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"reshape_input"
:
[
4
,
2
,
4
,
6
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"reshape_input"
:
[
1
,
2
,
4
,
6
]
}
elif
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"reshape_input"
:
[
1
,
8
,
6
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"reshape_input"
:
[
4
,
8
,
6
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"reshape_input"
:
[
1
,
8
,
6
]
}
elif
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"reshape_input"
:
[
1
,
48
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"reshape_input"
:
[
4
,
48
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"reshape_input"
:
[
1
,
48
]}
elif
self
.
dims
==
1
:
self
.
dynamic_shape
.
min_input_shape
=
{
"reshape_input"
:
[
48
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"reshape_input"
:
[
48
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"reshape_input"
:
[
48
]}
# for dynamic_shape
generate_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
2
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
2
),
1e-5
def
add_skip_trt_case
(
self
):
pass
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
# reshape having 2 inputs.
class
TrtConvertReshapeTest3
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
def
generate_input1
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
if
self
.
dims
==
4
:
return
np
.
random
.
random
([
1
,
2
,
12
,
6
]).
astype
(
np
.
float32
)
elif
self
.
dims
==
3
:
return
np
.
random
.
random
([
1
,
8
,
18
]).
astype
(
np
.
float32
)
elif
self
.
dims
==
2
:
return
np
.
random
.
random
([
1
,
144
]).
astype
(
np
.
float32
)
elif
self
.
dims
==
1
:
return
np
.
random
.
random
([
144
]).
astype
(
np
.
float32
)
for
dims
in
[
4
,
3
,
2
,
1
]:
for
shape
in
[[
-
1
,
144
]]:
dics
=
[{
"shape"
:
shape
,
},
{}]
self
.
dims
=
dims
dics_intput
=
[
{
"X"
:
[
"reshape_input"
],
"shape_data"
:
[
"shape_data"
],
},
]
ops_config
=
[
{
"op_type"
:
"fill_constant"
,
"op_inputs"
:
{},
"op_outputs"
:
{
"Out"
:
[
"shape_data"
]
},
"op_attrs"
:
{
"dtype"
:
2
,
"str_value"
:
"12"
,
"shape"
:
[
2
],
},
},
{
"op_type"
:
"reshape"
,
"op_inputs"
:
dics_intput
[
0
],
"op_outputs"
:
{
"Out"
:
[
"reshape_out"
]
},
"op_attrs"
:
dics
[
0
]
},
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"reshape_input"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
dics
))
},
outputs
=
[
"reshape_out"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
():
if
self
.
dims
==
4
:
self
.
dynamic_shape
.
min_input_shape
=
{
"reshape_input"
:
[
1
,
2
,
12
,
6
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"reshape_input"
:
[
4
,
2
,
12
,
6
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"reshape_input"
:
[
1
,
2
,
12
,
6
]
}
elif
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"reshape_input"
:
[
1
,
8
,
18
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"reshape_input"
:
[
4
,
8
,
18
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"reshape_input"
:
[
1
,
8
,
18
]
}
elif
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"reshape_input"
:
[
1
,
144
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"reshape_input"
:
[
4
,
144
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"reshape_input"
:
[
1
,
144
]}
elif
self
.
dims
==
1
:
self
.
dynamic_shape
.
min_input_shape
=
{
"reshape_input"
:
[
144
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"reshape_input"
:
[
144
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"reshape_input"
:
[
144
]}
# for dynamic_shape
generate_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
2
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
2
),
1e-5
def
add_skip_trt_case
(
self
):
pass
def
test
(
self
):
self
.
add_skip_trt_case
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录