Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
b645dfac
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b645dfac
编写于
6月 12, 2018
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into update-api-reference-1
上级
d8242299
88fa9c2e
变更
33
隐藏空白更改
内联
并排
Showing
33 changed file
with
546 addition
and
293 deletion
+546
-293
benchmark/fluid/fluid_benchmark.py
benchmark/fluid/fluid_benchmark.py
+4
-3
benchmark/fluid/models/resnet.py
benchmark/fluid/models/resnet.py
+6
-3
cmake/configure.cmake
cmake/configure.cmake
+4
-0
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+7
-2
paddle/fluid/framework/details/ssa_graph_checker.h
paddle/fluid/framework/details/ssa_graph_checker.h
+1
-1
paddle/fluid/framework/executor.cc
paddle/fluid/framework/executor.cc
+11
-0
paddle/fluid/framework/executor.h
paddle/fluid/framework/executor.h
+7
-0
paddle/fluid/framework/reader.h
paddle/fluid/framework/reader.h
+5
-4
paddle/fluid/operators/detail/grpc_client.cc
paddle/fluid/operators/detail/grpc_client.cc
+19
-0
paddle/fluid/operators/detail/grpc_client.h
paddle/fluid/operators/detail/grpc_client.h
+5
-0
paddle/fluid/operators/detail/grpc_server.cc
paddle/fluid/operators/detail/grpc_server.cc
+9
-7
paddle/fluid/operators/detail/request_handler.h
paddle/fluid/operators/detail/request_handler.h
+14
-8
paddle/fluid/operators/detail/request_handler_impl.cc
paddle/fluid/operators/detail/request_handler_impl.cc
+12
-6
paddle/fluid/operators/detail/request_handler_impl.h
paddle/fluid/operators/detail/request_handler_impl.h
+6
-3
paddle/fluid/operators/detail/rpc_client.h
paddle/fluid/operators/detail/rpc_client.h
+5
-0
paddle/fluid/operators/detail/rpc_server.cc
paddle/fluid/operators/detail/rpc_server.cc
+13
-9
paddle/fluid/operators/detail/rpc_server.h
paddle/fluid/operators/detail/rpc_server.h
+2
-3
paddle/fluid/operators/detail/rpc_server_test.cc
paddle/fluid/operators/detail/rpc_server_test.cc
+8
-2
paddle/fluid/operators/elementwise_op.h
paddle/fluid/operators/elementwise_op.h
+14
-13
paddle/fluid/operators/listen_and_serv_op.cc
paddle/fluid/operators/listen_and_serv_op.cc
+64
-33
paddle/fluid/operators/listen_and_serv_op.h
paddle/fluid/operators/listen_and_serv_op.h
+3
-2
paddle/fluid/operators/reader/create_batch_reader_op.cc
paddle/fluid/operators/reader/create_batch_reader_op.cc
+1
-1
paddle/fluid/operators/reader/create_custom_reader_op.cc
paddle/fluid/operators/reader/create_custom_reader_op.cc
+2
-1
paddle/fluid/operators/reader/create_double_buffer_reader_op.cc
.../fluid/operators/reader/create_double_buffer_reader_op.cc
+2
-1
paddle/fluid/operators/reader/create_multi_pass_reader_op.cc
paddle/fluid/operators/reader/create_multi_pass_reader_op.cc
+1
-1
paddle/fluid/operators/reader/create_shuffle_reader_op.cc
paddle/fluid/operators/reader/create_shuffle_reader_op.cc
+2
-1
paddle/fluid/operators/reader/create_threaded_reader_op.cc
paddle/fluid/operators/reader/create_threaded_reader_op.cc
+2
-1
paddle/fluid/platform/cpu_info.cc
paddle/fluid/platform/cpu_info.cc
+8
-1
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+3
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+215
-122
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+70
-55
tools/codestyle/docstring_checker.py
tools/codestyle/docstring_checker.py
+18
-7
tools/codestyle/pylint_pre_commit.hook
tools/codestyle/pylint_pre_commit.hook
+3
-3
未找到文件。
benchmark/fluid/fluid_benchmark.py
浏览文件 @
b645dfac
...
...
@@ -180,7 +180,7 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
print_train_time
(
start_time
,
time
.
time
(),
num_samples
)
print
(
"Pass: %d, Loss: %f"
%
(
pass_id
,
np
.
mean
(
train_losses
))),
# evaluation
if
not
args
.
no_test
and
batch_acc
:
if
not
args
.
no_test
and
batch_acc
and
not
args
.
use_reader_op
:
pass_test_acc
=
test
(
exe
,
infer_prog
,
test_reader
,
feeder
,
batch_acc
)
print
(
", Test Accuracy: %f"
%
pass_test_acc
)
...
...
@@ -277,11 +277,12 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
batch_id
+=
1
print_train_time
(
start_time
,
time
.
time
(),
num_samples
)
if
not
args
.
no_test
and
batch_acc
:
if
not
args
.
no_test
and
batch_acc
and
not
args
.
use_reader_op
:
# we have not implement record io for test
# skip test when use args.use_reader_op
test_acc
=
test
(
startup_exe
,
infer_prog
,
test_reader
,
feeder
,
batch_acc
)
print
(
"Pass: %d, Test Accuracy: %f
\n
"
%
(
pass_id
,
test_acc
))
exit
(
0
)
def
print_arguments
(
args
):
...
...
benchmark/fluid/models/resnet.py
浏览文件 @
b645dfac
...
...
@@ -199,7 +199,10 @@ def get_model(args):
batched_train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
train_reader
,
buf_size
=
5120
),
batch_size
=
args
.
batch_size
*
args
.
gpus
)
batched_test_reader
=
paddle
.
batch
(
train_reader
,
batch_size
=
args
.
batch_size
)
batch_size
=
args
.
batch_size
*
args
.
gpus
,
drop_last
=
True
)
batched_test_reader
=
paddle
.
batch
(
train_reader
,
batch_size
=
args
.
batch_size
,
drop_last
=
True
)
return
avg_cost
,
inference_program
,
optimizer
,
batched_train_reader
,
batched_test_reader
,
batch_acc
return
avg_cost
,
inference_program
,
optimizer
,
batched_train_reader
,
\
batched_test_reader
,
batch_acc
cmake/configure.cmake
浏览文件 @
b645dfac
...
...
@@ -118,6 +118,10 @@ endif()
set
(
CMAKE_C_FLAGS
"
${
CMAKE_C_FLAGS
}
${
SIMD_FLAG
}
"
)
set
(
CMAKE_CXX_FLAGS
"
${
CMAKE_CXX_FLAGS
}
${
SIMD_FLAG
}
"
)
if
(
WITH_DISTRIBUTE
)
add_definitions
(
-DPADDLE_WITH_DISTRIBUTE
)
endif
()
if
(
WITH_GOLANG
)
# we need to symlink Paddle directory into GOPATH. If we
# don't do it and we have code that depends on Paddle, go
...
...
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
b645dfac
...
...
@@ -83,8 +83,13 @@ cc_library(lod_rank_table SRCS lod_rank_table.cc DEPS lod_tensor)
cc_library
(
feed_fetch_method SRCS feed_fetch_method.cc DEPS lod_tensor scope glog
)
cc_library
(
executor SRCS executor.cc DEPS op_registry device_context scope
framework_proto glog lod_rank_table feed_fetch_method
)
if
(
WITH_DISTRIBUTE
)
cc_library
(
executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr
)
set
(
DISTRIBUTE_COMPILE_FLAGS
"-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor"
)
set_source_files_properties
(
executor.cc PROPERTIES COMPILE_FLAGS
${
DISTRIBUTE_COMPILE_FLAGS
}
)
else
()
cc_library
(
executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method
)
endif
()
cc_library
(
parallel_executor SRCS parallel_executor.cc DEPS ssa_graph_builder_factory threaded_ssa_graph_executor scope_buffered_ssa_graph_executor
)
...
...
paddle/fluid/framework/details/ssa_graph_checker.h
浏览文件 @
b645dfac
...
...
@@ -19,7 +19,7 @@
namespace
paddle
{
namespace
framework
{
namespace
details
{
class
SSAGraph
;
struct
SSAGraph
;
class
SSAGraghBuilderWithChecker
:
public
SSAGraphBuilder
{
public:
...
...
paddle/fluid/framework/executor.cc
浏览文件 @
b645dfac
...
...
@@ -20,6 +20,9 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/operators/detail/grpc_client.h"
#endif
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
...
...
@@ -44,6 +47,14 @@ ExecutorPrepareContext::~ExecutorPrepareContext() {
Executor
::
Executor
(
const
platform
::
Place
&
place
)
:
place_
(
place
)
{}
#ifdef PADDLE_WITH_DISTRIBUTE
void
Executor
::
Complete
()
{
::
paddle
::
operators
::
detail
::
RPCClient
::
GetInstance
<
::
paddle
::
operators
::
detail
::
GRPCClient
>
()
->
SendComplete
();
}
#endif
void
InitializeVariable
(
Variable
*
var
,
proto
::
VarType
::
Type
var_type
)
{
if
(
var_type
==
proto
::
VarType
::
LOD_TENSOR
)
{
var
->
GetMutable
<
LoDTensor
>
();
...
...
paddle/fluid/framework/executor.h
浏览文件 @
b645dfac
...
...
@@ -44,6 +44,13 @@ class Executor {
explicit
Executor
(
const
platform
::
Place
&
place
);
#ifdef PADDLE_WITH_DISTRIBUTE
/*
* Sending signal to pserver to mark current trainer stop.
*/
void
Complete
();
#endif
/* @Brief
* Runtime evaluation of the given ProgramDesc under certain Scope
*
...
...
paddle/fluid/framework/reader.h
浏览文件 @
b645dfac
...
...
@@ -35,14 +35,15 @@ class ReaderBase {
class
DecoratedReader
:
public
ReaderBase
{
public:
explicit
DecoratedReader
(
ReaderBase
*
reader
)
:
ReaderBase
(),
reader_
(
reader
)
{
explicit
DecoratedReader
(
const
std
::
shared_ptr
<
ReaderBase
>&
reader
)
:
ReaderBase
(),
reader_
(
reader
)
{
PADDLE_ENFORCE_NOT_NULL
(
reader_
);
}
void
ReInit
()
override
{
reader_
->
ReInit
();
}
protected:
ReaderBase
*
reader_
;
std
::
shared_ptr
<
ReaderBase
>
reader_
;
};
class
FileReader
:
public
ReaderBase
{
...
...
@@ -64,7 +65,7 @@ class ReaderHolder {
public:
void
Reset
(
ReaderBase
*
reader
)
{
reader_
.
reset
(
reader
);
}
ReaderBase
*
Get
()
const
{
return
reader_
.
get
()
;
}
std
::
shared_ptr
<
ReaderBase
>
Get
()
const
{
return
reader_
;
}
void
ReadNext
(
std
::
vector
<
LoDTensor
>*
out
)
{
PADDLE_ENFORCE_NOT_NULL
(
reader_
);
...
...
@@ -76,7 +77,7 @@ class ReaderHolder {
}
private:
std
::
unique
_ptr
<
ReaderBase
>
reader_
;
std
::
shared
_ptr
<
ReaderBase
>
reader_
;
};
}
// namespace framework
...
...
paddle/fluid/operators/detail/grpc_client.cc
浏览文件 @
b645dfac
...
...
@@ -34,6 +34,12 @@ void GRPCClient::InitEventLoop() {
client_thread_
.
reset
(
new
std
::
thread
(
std
::
bind
(
&
GRPCClient
::
Proceed
,
this
)));
}
void
GRPCClient
::
SendComplete
()
{
for
(
auto
&
it
:
channels_
)
{
this
->
AsyncSendComplete
(
it
.
first
);
}
}
GRPCClient
::~
GRPCClient
()
{
Wait
();
cq_
.
Shutdown
();
...
...
@@ -210,6 +216,19 @@ void GRPCClient::AsyncSendFetchBarrier(const std::string& ep,
req_count_
++
;
}
void
GRPCClient
::
AsyncSendComplete
(
const
std
::
string
&
ep
,
int64_t
time_out
)
{
const
auto
ch
=
GetChannel
(
ep
);
BatchBarrierProcessor
*
s
=
new
BatchBarrierProcessor
(
ch
);
s
->
Prepare
(
time_out
);
sendrecv
::
VariableMessage
req
;
req
.
set_varname
(
COMPLETE_MESSAGE
);
auto
rpc
=
s
->
stub_
->
AsyncSendVariable
(
s
->
context_
.
get
(),
req
,
&
cq_
);
rpc
->
Finish
(
&
s
->
reply_
,
&
s
->
status_
,
reinterpret_cast
<
void
*>
(
s
));
req_count_
++
;
}
void
GRPCClient
::
Wait
()
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
sync_mutex_
);
sync_cond_
.
wait
(
lk
,
[
this
]
{
return
req_count_
==
0
;
});
...
...
paddle/fluid/operators/detail/grpc_client.h
浏览文件 @
b645dfac
...
...
@@ -195,6 +195,8 @@ class GRPCClient : public RPCClient {
void
Wait
()
override
;
void
SendComplete
()
override
;
protected:
void
InitImpl
()
override
;
...
...
@@ -204,6 +206,9 @@ class GRPCClient : public RPCClient {
void
Proceed
();
void
AsyncSendComplete
(
const
std
::
string
&
ep
,
int64_t
time_out
=
RPCClient
::
rpc_time_out
);
std
::
shared_ptr
<
grpc
::
Channel
>
GetChannel
(
const
std
::
string
&
ep
);
private:
...
...
paddle/fluid/operators/detail/grpc_server.cc
浏览文件 @
b645dfac
...
...
@@ -162,16 +162,18 @@ class RequestPrefetch final : public RequestBase {
void
Process
()
override
{
// prefetch process...
std
::
string
varname
=
request_
->
OutVarname
();
VLOG
(
3
)
<<
"RequestPrefetch "
<<
varname
;
std
::
string
in_var_name
=
request_
->
Varname
();
std
::
string
out_var_name
=
request_
->
OutVarname
();
VLOG
(
3
)
<<
"RequestPrefetch, in_var_name: "
<<
in_var_name
<<
" out_var_name: "
<<
out_var_name
;
auto
scope
=
request_
->
GetMutableLocalScope
();
auto
invar
=
scope
->
FindVar
(
var
name
);
framework
::
Variable
*
outvar
=
nullptr
;
auto
invar
=
scope
->
FindVar
(
in_var_
name
);
framework
::
Variable
*
outvar
=
scope
->
FindVar
(
out_var_name
)
;
request_handler_
->
Handle
(
varname
,
scope
,
invar
,
&
outvar
);
request_handler_
->
Handle
(
in_var_name
,
scope
,
invar
,
&
outvar
,
out_var_name
);
SerializeToByteBuffer
(
var
name
,
outvar
,
*
request_handler_
->
dev_ctx
(),
SerializeToByteBuffer
(
out_var_
name
,
outvar
,
*
request_handler_
->
dev_ctx
(),
&
reply_
);
Finish
(
reply_
,
&
responder_
);
}
...
...
@@ -287,7 +289,7 @@ void AsyncGRPCServer::TryToRegisterNewOne(const std::string& rpc_name,
}
else
if
(
rpc_name
==
kRequestPrefetch
)
{
b
=
new
RequestPrefetch
(
&
service_
,
cq
.
get
(),
handler
,
req_id
);
}
else
{
PADDLE_ENFORCE
(
false
,
"not su
r
pported rpc"
);
PADDLE_ENFORCE
(
false
,
"not supported rpc"
);
}
reqs
[
req_id
]
=
b
;
...
...
paddle/fluid/operators/detail/request_handler.h
浏览文件 @
b645dfac
...
...
@@ -40,6 +40,7 @@ constexpr char kRequestPrefetch[] = "RequestPrefetch";
#define LISTEN_TERMINATE_MESSAGE "TERMINATE@RECV"
#define BATCH_BARRIER_MESSAGE "BATCH_BARRIER@RECV"
#define FETCH_BARRIER_MESSAGE "FETCH_BARRIER@RECV"
#define COMPLETE_MESSAGE "COMPLETE@RECV"
class
RPCServer
;
...
...
@@ -60,9 +61,12 @@ class RequestHandler {
void
SetDevCtx
(
const
platform
::
DeviceContext
*
dev_ctx
)
{
dev_ctx_
=
dev_ctx
;
}
void
SetProgram
(
framework
::
ProgramDesc
*
program
)
{
program_
=
program
;
}
void
SetExecutor
(
framework
::
Executor
*
executor
)
{
executor_
=
executor
;
}
// Used for dist lookup table prefetch
void
SetPrefetchPreparedCtx
(
std
::
unique_ptr
<
framework
::
ExecutorPrepareContext
>
prepared
)
{
prefetch_ctx_
.
reset
(
prepared
.
release
());
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
framework
::
ExecutorPrepareContext
>>*
g
)
{
prefetch_var_name_to_prepared_ctx_
=
g
;
}
// Used for async.
...
...
@@ -78,9 +82,6 @@ class RequestHandler {
bool
sync_mode
()
{
return
sync_mode_
;
}
framework
::
Scope
*
scope
()
{
return
scope_
;
}
const
platform
::
DeviceContext
*
dev_ctx
()
{
return
dev_ctx_
;
}
framework
::
ExecutorPrepareContext
*
prefetch_ctx
()
{
return
prefetch_ctx_
.
get
();
}
framework
::
ProgramDesc
*
program
()
{
return
program_
;
}
framework
::
Executor
*
executor
()
{
return
executor_
;
}
...
...
@@ -99,8 +100,8 @@ class RequestHandler {
// *request_handler_->dev_ctx(), &reply_);
// }
virtual
bool
Handle
(
const
std
::
string
&
varname
,
framework
::
Scope
*
scope
,
framework
::
Variable
*
var
,
framework
::
Variable
**
outvar
)
=
0
;
framework
::
Variable
*
var
,
framework
::
Variable
**
outvar
,
const
std
::
string
&
out_var_name
=
""
)
=
0
;
protected:
const
bool
sync_mode_
;
...
...
@@ -109,12 +110,17 @@ class RequestHandler {
framework
::
Executor
*
executor_
;
framework
::
Scope
*
scope_
;
framework
::
ProgramDesc
*
program_
;
std
::
unique_ptr
<
framework
::
ExecutorPrepareContext
>
prefetch_ctx_
;
// used for distribute lookup table prefetch
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
framework
::
ExecutorPrepareContext
>>*
prefetch_var_name_to_prepared_ctx_
;
// Used for async.
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
framework
::
ExecutorPrepareContext
>>*
grad_to_prepared_ctx_
;
RPCServer
*
rpc_server_
;
};
...
...
paddle/fluid/operators/detail/request_handler_impl.cc
浏览文件 @
b645dfac
...
...
@@ -30,7 +30,8 @@ namespace detail {
bool
RequestSendHandler
::
Handle
(
const
std
::
string
&
varname
,
framework
::
Scope
*
scope
,
framework
::
Variable
*
invar
,
framework
::
Variable
**
outvar
)
{
framework
::
Variable
**
outvar
,
const
std
::
string
&
out_var_name
)
{
VLOG
(
4
)
<<
"RequestSendHandler:"
<<
varname
;
// Async
...
...
@@ -49,6 +50,9 @@ bool RequestSendHandler::Handle(const std::string& varname,
if
(
varname
==
BATCH_BARRIER_MESSAGE
)
{
VLOG
(
3
)
<<
"sync: recv batch barrier message"
;
rpc_server_
->
IncreaseBatchBarrier
(
kRequestSend
);
}
else
if
(
varname
==
COMPLETE_MESSAGE
)
{
VLOG
(
3
)
<<
"sync: recv complete message"
;
rpc_server_
->
DecreaseClientNum
();
}
else
{
VLOG
(
3
)
<<
"sync: received var_name: "
<<
varname
;
if
(
sync_mode_
)
{
...
...
@@ -79,7 +83,8 @@ void RequestSendHandler::ResetSparseVarRecorder() {
bool
RequestGetHandler
::
Handle
(
const
std
::
string
&
varname
,
framework
::
Scope
*
scope
,
framework
::
Variable
*
invar
,
framework
::
Variable
**
outvar
)
{
framework
::
Variable
**
outvar
,
const
std
::
string
&
out_var_name
)
{
VLOG
(
4
)
<<
"RequestGetHandler:"
<<
varname
;
if
(
varname
!=
FETCH_BARRIER_MESSAGE
)
{
...
...
@@ -102,13 +107,14 @@ bool RequestGetHandler::Handle(const std::string& varname,
bool
RequestPrefetchHandler
::
Handle
(
const
std
::
string
&
varname
,
framework
::
Scope
*
scope
,
framework
::
Variable
*
invar
,
framework
::
Variable
**
outvar
)
{
framework
::
Variable
**
outvar
,
const
std
::
string
&
out_var_name
)
{
VLOG
(
4
)
<<
"RequestPrefetchHandler "
<<
varname
;
auto
var_desc
=
program_
->
Block
(
0
).
FindVar
(
varname
);
*
outvar
=
scope
->
FindVar
(
varname
);
auto
var_desc
=
program_
->
Block
(
0
).
FindVar
(
out_var_name
);
InitializeVariable
(
*
outvar
,
var_desc
->
GetType
());
executor_
->
RunPreparedContext
(
prefetch_ctx_
.
get
(),
scope
);
executor_
->
RunPreparedContext
(
(
*
prefetch_var_name_to_prepared_ctx_
)[
varname
].
get
(),
scope
);
return
true
;
}
...
...
paddle/fluid/operators/detail/request_handler_impl.h
浏览文件 @
b645dfac
...
...
@@ -39,7 +39,8 @@ class RequestSendHandler final : public RequestHandler {
explicit
RequestSendHandler
(
bool
sync_mode
)
:
RequestHandler
(
sync_mode
)
{}
virtual
~
RequestSendHandler
()
{}
bool
Handle
(
const
std
::
string
&
varname
,
framework
::
Scope
*
scope
,
framework
::
Variable
*
var
,
framework
::
Variable
**
outvar
)
override
;
framework
::
Variable
*
var
,
framework
::
Variable
**
outvar
,
const
std
::
string
&
out_var_name
=
""
)
override
;
void
ResetSparseVarRecorder
();
private:
...
...
@@ -52,7 +53,8 @@ class RequestGetHandler final : public RequestHandler {
explicit
RequestGetHandler
(
bool
sync_mode
)
:
RequestHandler
(
sync_mode
)
{}
virtual
~
RequestGetHandler
()
{}
bool
Handle
(
const
std
::
string
&
varname
,
framework
::
Scope
*
scope
,
framework
::
Variable
*
var
,
framework
::
Variable
**
outvar
)
override
;
framework
::
Variable
*
var
,
framework
::
Variable
**
outvar
,
const
std
::
string
&
out_var_name
=
""
)
override
;
};
class
RequestPrefetchHandler
final
:
public
RequestHandler
{
...
...
@@ -60,7 +62,8 @@ class RequestPrefetchHandler final : public RequestHandler {
explicit
RequestPrefetchHandler
(
bool
sync_mode
)
:
RequestHandler
(
sync_mode
)
{}
virtual
~
RequestPrefetchHandler
()
{}
bool
Handle
(
const
std
::
string
&
varname
,
framework
::
Scope
*
scope
,
framework
::
Variable
*
var
,
framework
::
Variable
**
outvar
)
override
;
framework
::
Variable
*
var
,
framework
::
Variable
**
outvar
,
const
std
::
string
&
out_var_name
=
""
)
override
;
};
}
// namespace detail
...
...
paddle/fluid/operators/detail/rpc_client.h
浏览文件 @
b645dfac
...
...
@@ -53,6 +53,11 @@ class RPCClient {
virtual
void
AsyncSendFetchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
rpc_time_out
)
=
0
;
// SendComplete tells all the server that current trainer have no more data
// to train, so that the pserver can reduce it's barrier count, and continue
// to train with other trainers.
virtual
void
SendComplete
()
=
0
;
virtual
void
Wait
()
=
0
;
static
constexpr
int64_t
rpc_time_out
=
120
*
1000
;
...
...
paddle/fluid/operators/detail/rpc_server.cc
浏览文件 @
b645dfac
...
...
@@ -43,7 +43,7 @@ void RPCServer::SavePort() const {
void
RPCServer
::
WaitBarrier
(
const
std
::
string
&
rpc_name
)
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
this
->
mutex_
);
barrier_cond_
.
wait
(
lock
,
[
=
]
{
barrier_cond_
.
wait
(
lock
,
[
this
,
&
rpc_name
]
{
return
(
barrier_counter_
[
rpc_name
]
>=
client_num_
||
exit_flag_
.
load
());
});
...
...
@@ -53,19 +53,23 @@ void RPCServer::WaitBarrier(const std::string& rpc_name) {
void
RPCServer
::
IncreaseBatchBarrier
(
const
std
::
string
rpc_name
)
{
VLOG
(
3
)
<<
"RPCServer begin IncreaseBatchBarrier "
<<
rpc_name
;
int
b
=
0
;
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
b
=
++
barrier_counter_
[
rpc_name
];
}
VLOG
(
3
)
<<
"RPCServer IncreaseBatchBarrier "
<<
rpc_name
<<
", barrier_count:"
<<
b
<<
", fan_in"
<<
client_num_
;
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
b
=
++
barrier_counter_
[
rpc_name
];
if
(
b
>=
client_num_
)
{
lock
.
unlock
();
barrier_cond_
.
notify_all
();
lock
.
lock
();
}
}
void
RPCServer
::
DecreaseClientNum
()
{
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
client_num_
--
;
}
barrier_cond_
.
notify_all
();
}
void
RPCServer
::
ResetBarrierCounter
()
{
VLOG
(
3
)
<<
"RPCServer ResetBarrierCounter "
;
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
...
...
paddle/fluid/operators/detail/rpc_server.h
浏览文件 @
b645dfac
...
...
@@ -60,7 +60,7 @@ class RPCServer {
void
SetCond
(
const
std
::
string
&
rpc_name
);
void
WaitCond
(
const
std
::
string
&
rpc_name
);
void
IncreaseBatchBarrier
(
const
std
::
string
rpc_name
);
void
DecreaseClientNum
();
void
ResetBarrierCounter
();
protected:
...
...
@@ -79,8 +79,7 @@ class RPCServer {
std
::
string
bind_address_
;
std
::
atomic
<
int
>
exit_flag_
;
int
selected_port_
;
const
int
client_num_
;
int
client_num_
;
std
::
unordered_map
<
std
::
string
,
RequestHandler
*>
rpc_call_map_
;
std
::
unordered_map
<
std
::
string
,
int
>
rpc_thread_num_
;
...
...
paddle/fluid/operators/detail/rpc_server_test.cc
浏览文件 @
b645dfac
...
...
@@ -98,11 +98,17 @@ void StartServer() {
framework
::
Executor
exe
(
place
);
platform
::
CPUDeviceContext
ctx
(
place
);
auto
*
block
=
AppendPrefetchBlcok
(
&
program
);
auto
prepared
=
exe
.
Prepare
(
program
,
block
->
ID
());
std
::
string
in_var_name
(
"ids"
);
std
::
vector
<
int
>
prefetch_block_ids
{
block
->
ID
()};
auto
prepared
=
exe
.
Prepare
(
program
,
prefetch_block_ids
);
InitTensorsOnServer
(
&
scope
,
&
place
,
10
);
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
framework
::
ExecutorPrepareContext
>>
prefetch_var_name_to_prepared
;
prefetch_var_name_to_prepared
[
in_var_name
]
=
prepared
[
0
];
g_req_handler
->
SetProgram
(
&
program
);
g_req_handler
->
SetPrefetchPreparedCtx
(
std
::
move
(
prepared
)
);
g_req_handler
->
SetPrefetchPreparedCtx
(
&
prefetch_var_name_to_prepared
);
g_req_handler
->
SetDevCtx
(
&
ctx
);
g_req_handler
->
SetScope
(
&
scope
);
g_req_handler
->
SetExecutor
(
&
exe
);
...
...
paddle/fluid/operators/elementwise_op.h
浏览文件 @
b645dfac
...
...
@@ -66,40 +66,41 @@ class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
.
SetDefault
(
-
1
)
.
EqualGreaterThan
(
-
1
);
AddComment
(
string
::
Sprintf
(
R"DOC(
Limited Elementwise %s Operator
.
Limited Elementwise %s Operator
The equation is:
$$%s$$
$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be
smaller
than or equal to the dimensions of $X$.
- $X$: a tensor of any dimension.
- $Y$: a tensor whose dimensions must be less
than or equal to the dimensions of $X$.
There are two cases for this operator:
1. The shape of $Y$ is same with $X$;
2. The shape of $Y$ is a congiguous subsequencet of $X$. The trailing dimensions
of size 1 for $Y$ will be ignored for the consideration of subsequence.
1. The shape of $Y$ is the same with $X$.
2. The shape of $Y$ is a continuous subsequence of $X$.
For case 2:
$Y$ will be broadcasted to match the shape of $X$ and axis should be
set to index of the start dimension to broadcast $Y$ onto $X$.
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index
for broadcasting $Y$ onto $X$.
2. If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of
subsequence, such as shape(Y) = (2, 1) => (2).
If axis is -1, it is treated as axis=rank(X)-rank(Y).
For example:
For example
.. code-block:: python
shape(X) = (2, 3, 4, 5), shape(Y) = (,)
shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
, with axis=-1(default) or axis=2
shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details)
information. However, the output only shares the LoD information with
input $X$.
The inputs $X$ and $Y$ can carry the different LoD information.
But the output only shares the LoD information with the
input $X$.
)DOC"
,
GetName
(),
GetEquation
()));
...
...
paddle/fluid/operators/listen_and_serv_op.cc
浏览文件 @
b645dfac
...
...
@@ -96,19 +96,22 @@ static int64_t GetTimestamp() {
return
tp
.
tv_sec
*
1000
+
tp
.
tv_usec
/
1000
;
}
void
ListenAndServOp
::
RunSyncLoop
(
framework
::
Executor
*
executor
,
framework
::
ProgramDesc
*
program
,
framework
::
Scope
*
recv_scope
,
framework
::
BlockDesc
*
prefetch_block
)
const
{
void
ListenAndServOp
::
RunSyncLoop
(
framework
::
Executor
*
executor
,
framework
::
ProgramDesc
*
program
,
framework
::
Scope
*
recv_scope
,
const
std
::
vector
<
int
>
&
prefetch_block_id_list
)
const
{
size_t
num_blocks
=
program
->
Size
();
PADDLE_ENFORCE_GE
(
num_blocks
,
2
,
"server program should have at least 2 blocks"
);
std
::
vector
<
int
>
block_list
;
for
(
size_t
blkid
=
1
;
blkid
<
num_blocks
;
++
blkid
)
{
block_list
.
push_back
(
blkid
);
std
::
vector
<
int
>
optimize_block_id_list
;
for
(
int
blkid
=
1
;
blkid
<
num_blocks
;
++
blkid
)
{
if
(
std
::
find
(
prefetch_block_id_list
.
begin
(),
prefetch_block_id_list
.
end
(),
blkid
)
==
prefetch_block_id_list
.
end
())
{
optimize_block_id_list
.
push_back
(
blkid
);
}
}
auto
optimize_prepared
=
executor
->
Prepare
(
*
program
,
block
_list
);
auto
optimize_prepared
=
executor
->
Prepare
(
*
program
,
optimize_block_id
_list
);
// Insert placeholder for block0 which holds current op itself.
optimize_prepared
.
insert
(
optimize_prepared
.
begin
(),
...
...
@@ -135,16 +138,17 @@ void ListenAndServOp::RunSyncLoop(framework::Executor *executor,
std
::
vector
<
size_t
>
parallel_blkids
;
parallel_blkids
.
push_back
(
1
);
double
ts
=
GetTimestamp
();
for
(
size_t
blkid
=
2
;
blkid
<
num_blocks
;
++
blkid
)
{
if
(
blkid
!=
static_cast
<
size_t
>
(
prefetch_block
->
ID
()))
{
if
(
program
->
Block
(
blkid
).
Parent
()
!=
last_parent_blkid
)
{
ParallelExecuteBlocks
(
parallel_blkids
,
executor
,
optimize_prepared
,
program
,
recv_scope
);
parallel_blkids
.
clear
();
last_parent_blkid
=
program
->
Block
(
blkid
).
Parent
(
);
}
parallel_blkids
.
push_back
(
blkid
);
for
(
size_t
i
=
1
;
i
<
optimize_block_id_list
.
size
();
++
i
)
{
// skip the first optimize block because it is already in the
// parallel_blkids.
int
blkid
=
optimize_block_id_list
[
i
];
if
(
program
->
Block
(
blkid
).
Parent
()
!=
last_parent_blkid
)
{
ParallelExecuteBlocks
(
parallel_blkids
,
executor
,
optimize_prepared
,
program
,
recv_scope
);
parallel_blkids
.
clear
();
last_parent_blkid
=
program
->
Block
(
blkid
).
Parent
(
);
}
parallel_blkids
.
push_back
(
blkid
);
}
ParallelExecuteBlocks
(
parallel_blkids
,
executor
,
optimize_prepared
,
program
,
recv_scope
);
...
...
@@ -210,18 +214,19 @@ void ListenAndServOp::RunAsyncLoop(framework::Executor *executor,
}
// while(true)
}
static
void
FillRequestCtx
(
detail
::
RequestHandler
*
h
,
framework
::
Scope
*
scope
,
platform
::
DeviceContext
*
dev_ctx
,
framework
::
Executor
*
executor
,
framework
::
ProgramDesc
*
program
,
framework
::
ExecutorPrepareContext
*
prefetch_ctx
,
detail
::
RPCServer
*
rpc_server
)
{
static
void
FillRequestCtx
(
detail
::
RequestHandler
*
h
,
framework
::
Scope
*
scope
,
platform
::
DeviceContext
*
dev_ctx
,
framework
::
Executor
*
executor
,
framework
::
ProgramDesc
*
program
,
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
framework
::
ExecutorPrepareContext
>>
*
prefetch_ctx
,
detail
::
RPCServer
*
rpc_server
)
{
h
->
SetScope
(
scope
);
h
->
SetDevCtx
(
dev_ctx
);
h
->
SetExecutor
(
executor
);
h
->
SetProgram
(
program
);
h
->
SetPrefetchPreparedCtx
(
std
::
unique_ptr
<
framework
::
ExecutorPrepareContext
>
(
prefetch_ctx
));
h
->
SetPrefetchPreparedCtx
(
prefetch_ctx
);
h
->
SetRPCServer
(
rpc_server
);
}
...
...
@@ -255,17 +260,42 @@ void ListenAndServOp::RunImpl(const framework::Scope &scope,
request_prefetch_handler_
.
get
());
auto
*
optimize_block
=
Attr
<
framework
::
BlockDesc
*>
(
kOptimizeBlock
);
auto
*
prefetch_block
=
Attr
<
framework
::
BlockDesc
*>
(
kPrefetchBlock
);
auto
*
program
=
optimize_block
->
Program
();
framework
::
Executor
executor
(
dev_place
);
// prepare for prefetch
VLOG
(
3
)
<<
"prefetch block id is "
<<
prefetch_block
->
ID
();
auto
prefetch_prepared
=
executor
.
Prepare
(
*
program
,
prefetch_block
->
ID
());
std
::
vector
<
int
>
prefetch_block_id_list
;
std
::
unordered_map
<
int
,
std
::
string
>
block_id_to_prefetch_var_name
;
auto
prefetch_var_name_to_block_id_str
=
Attr
<
std
::
vector
<
std
::
string
>>
(
kPrefetchVarNameToBlockId
);
for
(
const
auto
&
prefetch_var_name_and_id
:
prefetch_var_name_to_block_id_str
)
{
std
::
vector
<
std
::
string
>
pieces
;
split
(
prefetch_var_name_and_id
,
':'
,
&
pieces
);
VLOG
(
3
)
<<
"after split, prefetch_var = "
<<
pieces
[
0
]
<<
", id="
<<
pieces
[
1
];
PADDLE_ENFORCE_EQ
(
pieces
.
size
(),
2
);
int
block_id
=
std
::
stoi
(
pieces
[
1
]);
prefetch_block_id_list
.
push_back
(
block_id
);
block_id_to_prefetch_var_name
[
block_id
]
=
pieces
[
0
];
}
auto
prefetch_prepared
=
executor
.
Prepare
(
*
program
,
prefetch_block_id_list
);
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
framework
::
ExecutorPrepareContext
>>
prefetch_var_name_to_prepared_ctx
;
for
(
size_t
i
=
0
;
i
<
prefetch_block_id_list
.
size
();
++
i
)
{
auto
block_id
=
prefetch_block_id_list
[
i
];
auto
prefetch_var_name
=
block_id_to_prefetch_var_name
[
block_id
];
prefetch_var_name_to_prepared_ctx
[
prefetch_var_name
]
=
prefetch_prepared
[
i
];
}
auto
f
=
std
::
bind
(
FillRequestCtx
,
std
::
placeholders
::
_1
,
&
recv_scope
,
&
dev_ctx
,
&
executor
,
program
,
prefetch_prepared
.
release
(),
rpc_service_
.
get
());
&
dev_ctx
,
&
executor
,
program
,
&
prefetch_var_name_to_prepared_ctx
,
rpc_service_
.
get
());
f
(
request_send_handler_
.
get
());
f
(
request_get_handler_
.
get
());
...
...
@@ -283,7 +313,7 @@ void ListenAndServOp::RunImpl(const framework::Scope &scope,
// Write to a file of server selected port for python use.
SavePort
();
if
(
sync_mode
)
{
RunSyncLoop
(
&
executor
,
program
,
&
recv_scope
,
prefetch_block
);
RunSyncLoop
(
&
executor
,
program
,
&
recv_scope
,
prefetch_block
_id_list
);
}
else
{
RunAsyncLoop
(
&
executor
,
program
);
}
...
...
@@ -309,8 +339,9 @@ class ListenAndServOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
bool
>
(
"sync_mode"
,
"if works at sync_mode or not"
).
SetDefault
(
true
);
AddAttr
<
framework
::
BlockDesc
*>
(
kOptimizeBlock
,
"BlockID to run on server side."
);
AddAttr
<
framework
::
BlockDesc
*>
(
kPrefetchBlock
,
"prefetch block to run on server side."
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
kPrefetchVarNameToBlockId
,
"prefetch blocks to run on server side."
)
.
SetDefault
({});
AddAttr
<
int
>
(
"Fanin"
,
"How many clients send to this server."
)
.
SetDefault
(
1
);
}
...
...
paddle/fluid/operators/listen_and_serv_op.h
浏览文件 @
b645dfac
...
...
@@ -18,6 +18,7 @@ limitations under the License. */
#include <atomic>
#include <set>
#include <string>
#include <vector>
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor.h"
...
...
@@ -30,7 +31,7 @@ namespace paddle {
namespace
operators
{
constexpr
char
kOptimizeBlock
[]
=
"OptimizeBlock"
;
constexpr
char
kPrefetch
Block
[]
=
"PrefetchBlock
"
;
constexpr
char
kPrefetch
VarNameToBlockId
[]
=
"prefetch_var_name_to_block_id
"
;
void
RunServer
(
std
::
shared_ptr
<
detail
::
RPCServer
>
service
);
...
...
@@ -46,7 +47,7 @@ class ListenAndServOp : public framework::OperatorBase {
void
RunSyncLoop
(
framework
::
Executor
*
executor
,
framework
::
ProgramDesc
*
program
,
framework
::
Scope
*
recv_scope
,
framework
::
BlockDesc
*
prefetch_block
)
const
;
const
std
::
vector
<
int
>&
prefetch_block_id_list
)
const
;
void
RunAsyncLoop
(
framework
::
Executor
*
executor
,
framework
::
ProgramDesc
*
program
)
const
;
...
...
paddle/fluid/operators/reader/create_batch_reader_op.cc
浏览文件 @
b645dfac
...
...
@@ -20,7 +20,7 @@ namespace reader {
class
BatchReader
:
public
framework
::
DecoratedReader
{
public:
BatchReader
(
ReaderBase
*
reader
,
int
batch_size
)
BatchReader
(
const
std
::
shared_ptr
<
ReaderBase
>&
reader
,
int
batch_size
)
:
DecoratedReader
(
reader
),
batch_size_
(
batch_size
)
{
buffer_
.
reserve
(
batch_size_
);
}
...
...
paddle/fluid/operators/reader/create_custom_reader_op.cc
浏览文件 @
b645dfac
...
...
@@ -22,7 +22,8 @@ namespace reader {
class
CustomReader
:
public
framework
::
DecoratedReader
{
public:
CustomReader
(
ReaderBase
*
reader
,
const
framework
::
BlockDesc
&
sub_block
,
CustomReader
(
const
std
::
shared_ptr
<
ReaderBase
>&
reader
,
const
framework
::
BlockDesc
&
sub_block
,
const
std
::
vector
<
std
::
string
>&
source_var_names
,
const
std
::
vector
<
std
::
string
>&
sink_var_names
)
:
DecoratedReader
(
reader
),
...
...
paddle/fluid/operators/reader/create_double_buffer_reader_op.cc
浏览文件 @
b645dfac
...
...
@@ -34,7 +34,8 @@ static constexpr size_t kChannelSize = 1; // kCacheSize - 2
class
DoubleBufferReader
:
public
framework
::
DecoratedReader
{
public:
explicit
DoubleBufferReader
(
ReaderBase
*
reader
,
platform
::
Place
target_place
=
platform
::
CPUPlace
())
const
std
::
shared_ptr
<
ReaderBase
>&
reader
,
platform
::
Place
target_place
=
platform
::
CPUPlace
())
:
DecoratedReader
(
reader
),
place_
(
target_place
)
{
cpu_tensor_cache_
.
resize
(
kCacheSize
);
gpu_tensor_cache_
.
resize
(
kCacheSize
);
...
...
paddle/fluid/operators/reader/create_multi_pass_reader_op.cc
浏览文件 @
b645dfac
...
...
@@ -21,7 +21,7 @@ namespace reader {
class
MultiPassReader
:
public
framework
::
DecoratedReader
{
public:
MultiPassReader
(
ReaderBase
*
reader
,
int
pass_num
)
MultiPassReader
(
const
std
::
shared_ptr
<
ReaderBase
>&
reader
,
int
pass_num
)
:
DecoratedReader
(
reader
),
pass_num_
(
pass_num
),
pass_count_
(
0
)
{}
void
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
{
...
...
paddle/fluid/operators/reader/create_shuffle_reader_op.cc
浏览文件 @
b645dfac
...
...
@@ -23,7 +23,8 @@ namespace reader {
class
ShuffleReader
:
public
framework
::
DecoratedReader
{
public:
ShuffleReader
(
ReaderBase
*
reader
,
size_t
buffer_size
,
size_t
seed
=
0
)
ShuffleReader
(
const
std
::
shared_ptr
<
ReaderBase
>&
reader
,
size_t
buffer_size
,
size_t
seed
=
0
)
:
DecoratedReader
(
reader
),
buffer_size_
(
buffer_size
),
seed_
(
seed
)
{
VLOG
(
10
)
<<
"Create shuffle reader of "
<<
reader_
;
if
(
seed_
==
0
)
{
...
...
paddle/fluid/operators/reader/create_threaded_reader_op.cc
浏览文件 @
b645dfac
...
...
@@ -21,7 +21,8 @@ namespace reader {
class
ThreadedReader
:
public
framework
::
DecoratedReader
{
public:
explicit
ThreadedReader
(
ReaderBase
*
reader
)
:
DecoratedReader
(
reader
)
{}
explicit
ThreadedReader
(
const
std
::
shared_ptr
<
ReaderBase
>&
reader
)
:
DecoratedReader
(
reader
)
{}
void
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
...
...
paddle/fluid/platform/cpu_info.cc
浏览文件 @
b645dfac
...
...
@@ -21,12 +21,17 @@ limitations under the License. */
#include <unistd.h>
#endif
#include <algorithm>
#include "gflags/gflags.h"
DEFINE_double
(
fraction_of_cpu_memory_to_use
,
1
,
"Default use 100% of CPU memory for PaddlePaddle,"
"reserve the rest for page tables, etc"
);
DEFINE_uint64
(
initial_cpu_memory_in_mb
,
500
,
"Default initial 500MB of CPU memory for PaddlePaddle, in MD unit."
);
DEFINE_double
(
fraction_of_cuda_pinned_memory_to_use
,
0.5
,
"Default use 50% of CPU memory as the pinned_memory for PaddlePaddle,"
...
...
@@ -54,7 +59,9 @@ inline size_t CpuTotalPhysicalMemory() {
size_t
CpuMaxAllocSize
()
{
// For distributed systems, it requires configuring and limiting
// the fraction of memory to use.
return
FLAGS_fraction_of_cpu_memory_to_use
*
CpuTotalPhysicalMemory
();
return
std
::
min
(
static_cast
<
size_t
>
(
FLAGS_fraction_of_cpu_memory_to_use
*
CpuTotalPhysicalMemory
()),
FLAGS_initial_cpu_memory_in_mb
*
1
<<
20
);
}
size_t
CpuMinChunkSize
()
{
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
b645dfac
...
...
@@ -413,6 +413,9 @@ All parameter, weight, gradient are variables in Paddle.
py
::
class_
<
framework
::
Executor
>
(
m
,
"Executor"
)
.
def
(
py
::
init
<
const
platform
::
Place
&>
())
#ifdef PADDLE_WITH_DISTRIBUTE
.
def
(
"complete"
,
&
Executor
::
Complete
)
#endif
.
def
(
"run"
,
(
void
(
Executor
::*
)(
const
ProgramDesc
&
,
Scope
*
,
int
,
bool
,
bool
))
&
Executor
::
Run
);
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
b645dfac
...
...
@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the neural network.
All layers just related to the neural network.
"""
from
..layer_helper
import
LayerHelper
...
...
@@ -95,7 +95,6 @@ def fc(input,
num_flatten_dims
=
1
,
param_attr
=
None
,
bias_attr
=
None
,
use_cudnn
=
False
,
use_mkldnn
=
False
,
act
=
None
,
is_test
=
False
,
...
...
@@ -222,6 +221,7 @@ def embedding(input,
have two elements which indicate the size of the dictionary of
embeddings and the size of each embedding vector respectively.
is_sparse(bool): The flag indicating whether to use sparse update.
is_distributed (bool): Whether to run lookup table from remote parameter server.
padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
Otherwise the given :attr:`padding_idx` indicates padding the output
with zeros whenever lookup encounters it in :attr:`input`. If
...
...
@@ -654,8 +654,9 @@ def dynamic_gru(input,
:attr:`False`.
gate_activation(str): The activation for update gate and reset gate.
Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
activation(str): The activation for candidate hidden state.
candidate_
activation(str): The activation for candidate hidden state.
Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
h_0 (Variable): The hidden output of the first time step.
Returns:
Variable: The hidden state of GRU. The shape is :math:`(T
\\
times D)`,
\
...
...
@@ -873,6 +874,13 @@ def cos_sim(X, Y):
"""
This function performs the cosine similarity between two tensors
X and Y and returns that as the output.
Args:
X (Variable): The input X.
Y (Variable): The input Y.
Returns:
Variable: the output of cosine(X, Y).
"""
helper
=
LayerHelper
(
'cos_sim'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
X
.
dtype
)
...
...
@@ -899,15 +907,15 @@ def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
unchanged.
Args:
x(v
ariable): The input tensor.
dropout_prob
(float): Probability of setting units to zero.
is_test
(bool): A flag indicating whether it is in test phrase or not.
seed
(int): A Python integer used to create random seeds. If this
parameter is set to None, a random seed is used.
NOTE: If an integer seed is given, always the same output
units will be dropped. DO NOT use a fixed seed in training.
name
(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
x (V
ariable): The input tensor.
dropout_prob
(float): Probability of setting units to zero.
is_test
(bool): A flag indicating whether it is in test phrase or not.
seed
(int): A Python integer used to create random seeds. If this
parameter is set to None, a random seed is used.
NOTE: If an integer seed is given, always the same output
units will be dropped. DO NOT use a fixed seed in training.
name
(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: A tensor variable.
...
...
@@ -1029,8 +1037,8 @@ def square_error_cost(input, label):
* :math:`Out`: Output value, same shape with :math:`X`.
Args:
input
(Variable): Input tensor, has predictions.
label
(Variable): Label tensor, has target labels.
input
(Variable): Input tensor, has predictions.
label
(Variable): Label tensor, has target labels.
Returns:
Variable: The tensor variable storing the element-wise squared error
\
...
...
@@ -1059,6 +1067,7 @@ def square_error_cost(input, label):
return
square_out
@
templatedoc
()
def
chunk_eval
(
input
,
label
,
chunk_scheme
,
...
...
@@ -1067,6 +1076,18 @@ def chunk_eval(input,
"""
This function computes and outputs the precision, recall and
F1-score of chunk detection.
Args:
input (Variable): prediction output of the network.
label (Variable): label of the test data set.
chunk_scheme (str): ${chunk_scheme_comment}
num_chunk_types (int): ${num_chunk_types_comment}
excluded_chunk_types (list): ${excluded_chunk_types_comment}
Returns:
tuple: tuple containing: (precision, recall, f1_score,
num_infer_chunks, num_label_chunks,
num_correct_chunks)
"""
helper
=
LayerHelper
(
"chunk_eval"
,
**
locals
())
...
...
@@ -1099,6 +1120,7 @@ def chunk_eval(input,
num_correct_chunks
)
@
templatedoc
()
def
sequence_conv
(
input
,
num_filters
,
filter_size
=
3
,
...
...
@@ -1111,6 +1133,19 @@ def sequence_conv(input,
This function creates the op for sequence_conv, using the inputs and
other convolutional configurations for the filters and stride as given
in the input parameters to the function.
Args:
input (Variable): ${x_comment}
num_filters (int): number of filters.
filter_size (int): the filter size (H and W).
filter_stride (int): stride of the filter.
padding (bool): if True, add paddings.
bias_attr (ParamAttr|None): attributes for bias
param_attr (ParamAttr|None): attributes for parameter
act (str): the activation type
Returns:
Variable: output of sequence_conv
"""
# FIXME(dzh) : want to unify the argument of python layer
...
...
@@ -1225,33 +1260,34 @@ def conv2d(input,
W_{out}&=
\\
frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
Args:
input(Variable): The input image with [N, C, H, W] format.
num_filters(int): The number of filter. It is as same as the output
image channel.
filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square.
stride(int|tuple): The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: stride = 1.
padding(int|tuple): The padding size. If padding is a tuple, it must
contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding. Default: padding = 0.
dilation(int|tuple): The dilation size. If dilation is a tuple, it must
contain two integers, (dilation_H, dilation_W). Otherwise, the
dilation_H = dilation_W = dilation. Default: dilation = 1.
groups(int): The groups number of the Conv2d Layer. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only
connected to the second half of the input channels. Default: groups=1
param_attr(ParamAttr): The parameters to the Conv2d Layer. Default: None
bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True
act(str): Activation type. Default: None
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
input (Variable): The input image with [N, C, H, W] format.
num_filters(int): The number of filter. It is as same as the output
image channel.
filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square.
stride (int|tuple): The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: stride = 1.
padding (int|tuple): The padding size. If padding is a tuple, it must
contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding. Default: padding = 0.
dilation (int|tuple): The dilation size. If dilation is a tuple, it must
contain two integers, (dilation_H, dilation_W). Otherwise, the
dilation_H = dilation_W = dilation. Default: dilation = 1.
groups (int): The groups number of the Conv2d Layer. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only
connected to the second half of the input channels. Default: groups=1
param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True
use_mkldnn (bool): Use mkldnn kernels or not.
act (str): Activation type. Default: None
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The tensor variable storing the convolution and
\
...
...
@@ -1409,7 +1445,7 @@ def sequence_pool(input, pool_type):
def
sequence_first_step
(
input
):
"""
This func
iton get
the first step of sequence.
This func
tion gets
the first step of sequence.
.. code-block:: text
...
...
@@ -1442,7 +1478,7 @@ def sequence_first_step(input):
def
sequence_last_step
(
input
):
"""
This func
iton get
the last step of sequence.
This func
tion gets
the last step of sequence.
.. code-block:: text
...
...
@@ -1486,6 +1522,22 @@ def pool2d(input,
"""
This function adds the operator for pooling in 2 dimensions, using the
pooling configurations mentioned in input parameters.
Args:
input (Variable): ${input_comment}
pool_size (int): ${ksize_comment}
pool_type (str): ${pooling_type_comment}
pool_stride (int): stride of the pooling layer.
pool_padding (int): padding size.
global_pooling (bool): ${global_pooling_comment}
use_cudnn (bool): ${use_cudnn_comment}
ceil_mode (bool): ${ceil_mode_comment}
use_mkldnn (bool): ${use_mkldnn_comment}
name (str): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: output of pool2d layer.
"""
if
pool_type
not
in
[
"max"
,
"avg"
]:
raise
ValueError
(
...
...
@@ -1589,7 +1641,6 @@ def batch_norm(input,
hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
hidden2 = fluid.layers.batch_norm(input=hidden1)
"""
helper
=
LayerHelper
(
'batch_norm'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
...
...
@@ -1717,6 +1768,7 @@ def layer_norm(input,
bias_attr(ParamAttr|None): The parameter attribute for the learnable
bias :math:`b`.
act(str): Activation to be applied to the output of layer normalizaiton.
name (str): The name of this layer. It is optional.
Returns:
Variable: A tensor variable with the same shape as the input.
...
...
@@ -1768,6 +1820,17 @@ def layer_norm(input,
def
beam_search_decode
(
ids
,
scores
,
name
=
None
):
"""
${beam_search_decode}
Args:
ids (Variable): ${ids_comment}
scores (Variable): ${scores_comment}
name (str): The name of this layer. It is optional.
Returns:
tuple: a tuple of two output variable: sentence_ids, sentence_scores
"""
helper
=
LayerHelper
(
'beam_search_decode'
,
**
locals
())
sentence_ids
=
helper
.
create_tmp_variable
(
dtype
=
ids
.
dtype
)
sentence_scores
=
helper
.
create_tmp_variable
(
dtype
=
ids
.
dtype
)
...
...
@@ -1843,46 +1906,46 @@ def conv2d_transpose(input,
W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Args:
input(Variable): The input image with [N, C, H, W] format.
num_filters(int): The number of the filter. It is as same as the output
image channel.
output_size(int|tuple|None): The output image size. If output size is a
tuple, it must contain two integers, (image_H, image_W). This
parameter only works when filter_size is None.
filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square. None if use output size to
calculate filter_size.
padding(int|tuple): The padding size. If padding is a tuple, it must
contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding. Default: padding = 0.
stride(int|tuple): The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: stride = 1.
dilation(int|tuple): The dilation size. If dilation is a tuple, it must
contain two integers, (dilation_H, dilation_W). Otherwise, the
dilation_H = dilation_W = dilation. Default: dilation = 1.
groups(int): The groups number of the Conv2d transpose layer. Inspired by
grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
when group=2, the first half of the filters is only connected to the
first half of the input channels, while the second half of the
filters is only connected to the second half of the input channels.
Default: groups=1
param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
Default: None
bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True
act(str): Activation type. Default: None
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
input(Variable): The input image with [N, C, H, W] format.
num_filters(int): The number of the filter. It is as same as the output
image channel.
output_size(int|tuple|None): The output image size. If output size is a
tuple, it must contain two integers, (image_H, image_W). This
parameter only works when filter_size is None.
filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square. None if use output size to
calculate filter_size.
padding(int|tuple): The padding size. If padding is a tuple, it must
contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding. Default: padding = 0.
stride(int|tuple): The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: stride = 1.
dilation(int|tuple): The dilation size. If dilation is a tuple, it must
contain two integers, (dilation_H, dilation_W). Otherwise, the
dilation_H = dilation_W = dilation. Default: dilation = 1.
groups(int): The groups number of the Conv2d transpose layer. Inspired by
grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
when group=2, the first half of the filters is only connected to the
first half of the input channels, while the second half of the
filters is only connected to the second half of the input channels.
Default: groups=1
param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
Default: None
bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True
act(str): Activation type. Default: None
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The tensor variable storing the convolution transpose result.
Variable: The tensor variable storing the convolution transpose result.
Raises:
ValueError: If the shapes of input, filter_size, stride, padding and
groups mismatch.
ValueError: If the shapes of input, filter_size, stride, padding and
groups mismatch.
Examples:
.. code-block:: python
...
...
@@ -2019,6 +2082,17 @@ def sequence_expand(x, y, ref_level=-1, name=None):
def
beam_search
(
pre_ids
,
ids
,
scores
,
beam_size
,
end_id
,
level
=
0
):
'''
This function implements the beam search algorithm.
Args:
pre_ids (Variable): ${pre_ids_comment}
ids (Variable): ${ids_comment}
scores (Variable): ${scores_comment}
beam_size (int): ${beam_size_comment}
end_id (int): ${end_id_comment}
level (int): ${level_comment}
Returns:
tuple: a tuple of beam_search output variables: selected_ids, selected_scores
'''
helper
=
LayerHelper
(
'beam_search'
,
**
locals
())
score_type
=
scores
.
dtype
...
...
@@ -2521,14 +2595,14 @@ def l2_normalize(x, axis, epsilon=1e-12, name=None):
slice along dimension `axis`.
Args:
x(Variable|list): The input tensor to l2_normalize layer.
axis(int): The axis on which to apply normalization. If `axis < 0`,
the dimension to normalization is rank(X) + axis. -1 is the
last dimension.
epsilon(float): The epsilon value is used to avoid division by zero,
the defalut value is 1e-10.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
x(Variable|list): The input tensor to l2_normalize layer.
axis(int): The axis on which to apply normalization. If `axis < 0`,
the dimension to normalization is rank(X) + axis. -1 is the
last dimension.
epsilon(float): The epsilon value is used to avoid division by zero,
the defalut value is 1e-10.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
...
...
@@ -2741,16 +2815,13 @@ def edit_distance(input, label, normalized=True, ignored_tokens=None,
the edit distance will be divided by the length of reference string.
Args:
input(Variable): The indices for hypothesis strings.
label(Variable): The indices for reference strings.
normalized(bool): Indicated whether to normalize the edit distance by
the length of reference string.
ignored_tokens(list of int): Tokens that should be removed before
calculating edit distance.
name (str): The name of this layer. It is optional.
Returns:
Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
...
...
@@ -2840,10 +2911,10 @@ def ctc_greedy_decoder(input, blank, name=None):
where Lp is the sum of all input sequences' length and
num_classes is the true number of classes. (not
including the blank label).
blank(int): the blank label index of Connectionist Temporal
Classification (CTC) loss, which is in thehalf-opened
interval [0, num_classes + 1).
name (str): The name of this layer. It is optional.
Returns:
Variable: CTC greedy decode result. If all the sequences in result were
...
...
@@ -2880,23 +2951,23 @@ def warpctc(input, label, blank=0, norm_by_times=False):
input tensor.
Args:
input(Variable): (LodTensor, default: LoDTensor<float>),
the unscaled probabilities of variable-length sequences,
which is a 2-D Tensor with LoD information.
It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
sequences' length and num_classes is the true number of classes.
(not including the blank label).
label(Variable): (LodTensor, default: LoDTensor<int>), the ground truth
of variable-length sequence, which is a 2-D Tensor with LoD
information. It is of the shape [Lg, 1], where Lg is th sum of
all labels' length.
blank: (int, default: 0)
, the blank label index of Connectionist
Temporal Classification (CTC) loss, which is in the
half-opened interval [0, num_classes + 1).
norm_by_times: (bool, default: false)
, whether to normalize
the gradients by the number of time-step, which is also the
sequence's length. There is no need to normalize the gradients
if warpctc layer was follewed by a mean_op.
input(Variable): (LodTensor, default: LoDTensor<float>),
the unscaled probabilities of variable-length sequences,
which is a 2-D Tensor with LoD information.
It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
sequences' length and num_classes is the true number of classes.
(not including the blank label).
label(Variable): (LodTensor, default: LoDTensor<int>), the ground truth
of variable-length sequence, which is a 2-D Tensor with LoD
information. It is of the shape [Lg, 1], where Lg is th sum of
all labels' length.
blank (int): default 0
, the blank label index of Connectionist
Temporal Classification (CTC) loss, which is in the
half-opened interval [0, num_classes + 1).
norm_by_times (bool): default false
, whether to normalize
the gradients by the number of time-step, which is also the
sequence's length. There is no need to normalize the gradients
if warpctc layer was follewed by a mean_op.
Returns:
Variable: The Connectionist Temporal Classification (CTC) loss,
...
...
@@ -2955,9 +3026,9 @@ def sequence_reshape(input, new_dim):
no remainder for each sequence.
Args:
input (Variable): (LodTensor, default: LoDTensor<float>), a 2-D LoDTensor
with shape being [N, M] where M for dimension.
new_dim (int): New dimension which the input LoDTensor is reshaped to.
input (Variable): (LodTensor, default: LoDTensor<float>), a 2-D LoDTensor
with shape being [N, M] where M for dimension.
new_dim (int): New dimension which the input LoDTensor is reshaped to.
Returns:
Variable: Reshaped LoDTensor according to new dimension.
...
...
@@ -2979,7 +3050,10 @@ def sequence_reshape(input, new_dim):
return
out
@
autodoc
()
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@
templatedoc
(
op_type
=
"nce"
)
def
nce
(
input
,
label
,
num_total_classes
,
...
...
@@ -2987,6 +3061,21 @@ def nce(input,
param_attr
=
None
,
bias_attr
=
None
,
num_neg_samples
=
None
):
"""
${comment}
Args:
input (Variable): input variable.
label (Variable): label.
num_total_classes (int):${num_total_classes_comment}
sample_weight (int): ${sample_weight_comment}
param_attr (ParamAttr|None): attributes for parameter
bias_attr (ParamAttr|None): attributes for bias
num_neg_samples (int): ${num_neg_samples_comment}
Returns:
Variable: output of nce layer.
"""
helper
=
LayerHelper
(
'nce'
,
**
locals
())
assert
isinstance
(
input
,
Variable
)
dim
=
input
.
shape
[
1
]
...
...
@@ -3044,8 +3133,9 @@ def transpose(x, perm, name=None):
perm[i]-th dimension of `input`.
Args:
input (Variable): (Tensor), A Tensor.
perm (list): A permutation of the dimensions of `input`.
x (Variable): The input Tensor.
perm (list): A permutation of the dimensions of `input`.
name (str): The name of this layer. It is optional.
Returns:
Variable: A transposed Tensor.
...
...
@@ -3278,9 +3368,9 @@ def multiplex(inputs, index):
row of the matrix, then `O[i]` is equal to :math:`I_{ID[i]}[i]`.
Args:
inputs (list): A list of variables to gather from. All variables have the
inputs (list): A list of variables to gather from. All variables have the
same shape and the rank is at least 2.
index (Variable): Tensor<int32>, index variable which is a 2-D tensor
index (Variable): Tensor<int32>, index variable which is a 2-D tensor
with shape [M, 1] where M is the batch size.
Returns:
...
...
@@ -3479,7 +3569,8 @@ def autoincreased_step_counter(counter_name=None, begin=1, step=1):
begin(int): The first value of this counter.
step(int): The increment step between each execution.
Returns(Variable): The global run counter.
Returns:
Variable: The global run counter.
"""
helper
=
LayerHelper
(
'global_step_counter'
)
if
counter_name
is
None
:
...
...
@@ -3540,7 +3631,7 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
the corresponding dimension of x.
Args:
input
(variable): The input tensor.
x
(variable): The input tensor.
shape(list): The new shape. At most one dimension of the new shape can
be -1.
actual_shape(variable): An optional input. If provided, reshape
...
...
@@ -3552,8 +3643,10 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
inplace(bool): If this flag is set true, a new output tensor is created
whose data is copied from input x, otherwise the output
shares data with input without copying.
name (str): The name of this layer. It is optional.
Returns(variable): The output tensor.
Returns:
Variable: The output tensor.
Examples:
.. code-block:: python
...
...
@@ -4074,7 +4167,6 @@ def resize_bilinear(input, out_shape=None, scale=None, name=None):
name(str|None): The output variable name.
Returns:
${out_comment}.
"""
...
...
@@ -4093,6 +4185,7 @@ def image_resize_short(input, out_short_len, resample='BILINEAR'):
This is a 4-D tensor of the shape
(num_batches, channels, in_h, in_w).
out_short_len(int): The length of output images' short edge.
resample (str): resample method, default: BILINEAR.
Returns:
out (Variable): The output is a 4-D tensor of the shape
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
b645dfac
...
...
@@ -515,35 +515,38 @@ class DistributeTranspiler:
grad_to_block_id
,
None
)
# process distributed lookup_table
prefetch_
block
=
None
prefetch_
var_name_to_block_id
=
[]
if
self
.
has_distributed_lookup_table
:
pserver_index
=
self
.
pserver_endpoints
.
index
(
endpoint
)
table_opt_block
=
self
.
_create_table_optimize_block
(
pserver_index
,
pserver_program
,
pre_block_idx
,
grad_to_block_id
)
prefetch_
block
=
self
.
_create_prefetch_block
(
prefetch_
var_name_to_block_id
=
self
.
_create_prefetch_block
(
pserver_index
,
pserver_program
,
table_opt_block
)
# NOTE: if has_distributed_lookup_table is False, then prefetch_block will
# not be executed, so it's safe to use optimize_block to hold the place
if
self
.
has_distributed_lookup_table
:
assert
prefetch_block
is
not
None
assert
len
(
prefetch_var_name_to_block_id
)
>
0
else
:
assert
prefetch_block
is
None
prefetch_block
=
pserver_program
.
global_block
()
assert
len
(
prefetch_var_name_to_block_id
)
==
0
attrs
=
{
"OptimizeBlock"
:
pserver_program
.
block
(
1
),
"endpoint"
:
endpoint
,
"Fanin"
:
self
.
trainer_num
,
"sync_mode"
:
self
.
sync_mode
,
"grad_to_block_id"
:
grad_to_block_id
}
if
len
(
prefetch_var_name_to_block_id
)
>
0
:
attrs
[
'prefetch_var_name_to_block_id'
]
\
=
prefetch_var_name_to_block_id
# step5 append the listen_and_serv op
pserver_program
.
global_block
().
append_op
(
type
=
"listen_and_serv"
,
inputs
=
{
'X'
:
recv_inputs
},
outputs
=
{},
attrs
=
{
"OptimizeBlock"
:
pserver_program
.
block
(
1
),
"endpoint"
:
endpoint
,
"Fanin"
:
self
.
trainer_num
,
"PrefetchBlock"
:
prefetch_block
,
"sync_mode"
:
self
.
sync_mode
,
"grad_to_block_id"
:
grad_to_block_id
})
attrs
=
attrs
)
pserver_program
.
sync_with_cpp
()
return
pserver_program
...
...
@@ -608,8 +611,15 @@ class DistributeTranspiler:
def
_replace_lookup_table_op_with_prefetch
(
self
,
program
,
pserver_endpoints
):
# 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
self
.
prefetch_input_vars
=
None
self
.
prefetch_output_vars
=
None
# self.all_prefetch_input_vars =
# [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
# [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
self
.
all_prefetch_input_vars
=
[]
# self.all_prefetch_input_vars =
# [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
# [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
self
.
all_prefetch_output_vars
=
[]
continue_search_lookup_table_op
=
True
while
continue_search_lookup_table_op
:
...
...
@@ -623,18 +633,19 @@ class DistributeTranspiler:
ids_name
=
op
.
input
(
"Ids"
)
out_name
=
op
.
output
(
"Out"
)
if
self
.
prefetch_input_vars
is
None
:
ids_var
=
program
.
global_block
().
vars
[
ids_name
[
0
]]
self
.
prefetch_input_vars
=
self
.
create_splited_vars
(
source_var
=
ids_var
,
block
=
program
.
global_block
(),
tag
=
"_prefetch_in_"
)
if
self
.
prefetch_output_vars
is
None
:
out_var
=
program
.
global_block
().
vars
[
out_name
[
0
]]
self
.
prefetch_output_vars
=
self
.
create_splited_vars
(
source_var
=
out_var
,
block
=
program
.
global_block
(),
tag
=
"_prefetch_out_"
)
ids_var
=
program
.
global_block
().
vars
[
ids_name
[
0
]]
prefetch_input_vars
=
self
.
create_splited_vars
(
source_var
=
ids_var
,
block
=
program
.
global_block
(),
tag
=
"_prefetch_in_"
)
self
.
all_prefetch_input_vars
.
append
(
prefetch_input_vars
)
out_var
=
program
.
global_block
().
vars
[
out_name
[
0
]]
prefetch_output_vars
=
self
.
create_splited_vars
(
source_var
=
out_var
,
block
=
program
.
global_block
(),
tag
=
"_prefetch_out_"
)
self
.
all_prefetch_output_vars
.
append
(
prefetch_output_vars
)
# insert split_ids_op
program
.
global_block
().
insert_op
(
...
...
@@ -646,14 +657,14 @@ class DistributeTranspiler:
for
varname
in
ids_name
]
},
outputs
=
{
"Out"
:
self
.
prefetch_input_vars
})
outputs
=
{
"Out"
:
prefetch_input_vars
})
# insert prefetch_op
program
.
global_block
().
insert_op
(
index
=
op_index
+
1
,
type
=
"prefetch"
,
inputs
=
{
'X'
:
self
.
prefetch_input_vars
},
outputs
=
{
"Out"
:
self
.
prefetch_output_vars
},
inputs
=
{
'X'
:
prefetch_input_vars
},
outputs
=
{
"Out"
:
prefetch_output_vars
},
attrs
=
{
"epmap"
:
pserver_endpoints
,
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
...
...
@@ -663,7 +674,7 @@ class DistributeTranspiler:
program
.
global_block
().
insert_op
(
index
=
op_index
+
2
,
type
=
"concat"
,
inputs
=
{
'X'
:
self
.
prefetch_output_vars
},
inputs
=
{
'X'
:
prefetch_output_vars
},
outputs
=
{
"Out"
:
[
program
.
global_block
().
vars
[
varname
]
...
...
@@ -709,30 +720,34 @@ class DistributeTranspiler:
optimize_block
):
# STEP: create prefetch block
table_var
=
pserver_program
.
global_block
().
vars
[
self
.
table_name
]
prefetch_block
=
pserver_program
.
create_block
(
optimize_block
.
idx
)
trainer_ids
=
self
.
prefetch_input_vars
[
pserver_index
]
pserver_ids
=
pserver_program
.
global_block
().
create_var
(
name
=
trainer_ids
.
name
,
type
=
trainer_ids
.
type
,
shape
=
trainer_ids
.
shape
,
dtype
=
trainer_ids
.
dtype
)
trainer_out
=
self
.
prefetch_output_vars
[
pserver_index
]
pserver_out
=
pserver_program
.
global_block
().
create_var
(
name
=
trainer_out
.
name
,
type
=
trainer_out
.
type
,
shape
=
trainer_out
.
shape
,
dtype
=
trainer_out
.
dtype
)
prefetch_block
.
append_op
(
type
=
"lookup_sparse_table"
,
inputs
=
{
'Ids'
:
pserver_ids
,
"W"
:
table_var
},
outputs
=
{
"Out"
:
pserver_out
},
attrs
=
{
"is_sparse"
:
True
,
# has no effect on lookup_table op
"is_distributed"
:
True
,
"padding_idx"
:
-
1
})
return
prefetch_block
prefetch_var_name_to_block_id
=
[]
for
index
in
range
(
len
(
self
.
all_prefetch_input_vars
)):
prefetch_block
=
pserver_program
.
create_block
(
optimize_block
.
idx
)
trainer_ids
=
self
.
all_prefetch_input_vars
[
index
][
pserver_index
]
pserver_ids
=
pserver_program
.
global_block
().
create_var
(
name
=
trainer_ids
.
name
,
type
=
trainer_ids
.
type
,
shape
=
trainer_ids
.
shape
,
dtype
=
trainer_ids
.
dtype
)
trainer_out
=
self
.
all_prefetch_output_vars
[
index
][
pserver_index
]
pserver_out
=
pserver_program
.
global_block
().
create_var
(
name
=
trainer_out
.
name
,
type
=
trainer_out
.
type
,
shape
=
trainer_out
.
shape
,
dtype
=
trainer_out
.
dtype
)
prefetch_block
.
append_op
(
type
=
"lookup_sparse_table"
,
inputs
=
{
'Ids'
:
pserver_ids
,
"W"
:
table_var
},
outputs
=
{
"Out"
:
pserver_out
},
attrs
=
{
"is_sparse"
:
True
,
# has no effect on lookup_table op
"is_distributed"
:
True
,
"padding_idx"
:
-
1
})
prefetch_var_name_to_block_id
.
append
(
trainer_ids
.
name
+
":"
+
str
(
prefetch_block
.
idx
))
return
prefetch_var_name_to_block_id
def
_create_table_optimize_block
(
self
,
pserver_index
,
pserver_program
,
pre_block_idx
,
grad_to_block_id
):
...
...
tools/codestyle/docstring_checker.py
浏览文件 @
b645dfac
...
...
@@ -126,9 +126,10 @@ class DocstringChecker(BaseChecker):
'W9002'
:
(
'Doc string does not end with "." period'
,
symbol
+
"-end-with"
,
'Used when a doc string does not end with a period'
),
'W9003'
:
(
'All args with their types must be mentioned in doc string'
,
symbol
+
"-with-all-args"
,
'Used when not all arguments are in the doc string '
),
'W9003'
:
(
'All args with their types must be mentioned in doc string %s'
,
symbol
+
"-with-all-args"
,
'Used when not all arguments are in the doc string '
),
'W9005'
:
(
'Missing docstring or docstring is too short'
,
symbol
+
"-missing"
,
'Add docstring longer >=10'
),
'W9006'
:
(
'Docstring indent error, use 4 space for indent'
,
...
...
@@ -178,6 +179,8 @@ class DocstringChecker(BaseChecker):
self
.
indent_style
(
node
)
def
missing_doc_string
(
self
,
node
):
if
node
.
name
.
startswith
(
"__"
)
or
node
.
name
.
startswith
(
"_"
):
return
True
if
node
.
tolineno
-
node
.
fromlineno
<=
10
:
return
True
...
...
@@ -199,12 +202,16 @@ class DocstringChecker(BaseChecker):
doc
=
node
.
doc
lines
=
doc
.
splitlines
()
line_num
=
0
for
l
in
lines
:
if
line_num
==
0
:
continue
cur_indent
=
len
(
l
)
-
len
(
l
.
lstrip
())
if
cur_indent
%
indent
!=
0
:
self
.
add_message
(
'W9006'
,
node
=
node
,
line
=
node
.
fromlineno
)
return
False
line_num
+=
1
return
True
...
...
@@ -320,15 +327,19 @@ class DocstringChecker(BaseChecker):
return
True
parsed_args
=
doc
.
args
args_not_documented
=
set
(
args
)
-
set
(
parsed_args
)
if
len
(
args
)
>
0
and
len
(
parsed_args
)
<=
0
:
print
"debug:parsed args: "
,
parsed_args
self
.
add_message
(
'W9003'
,
node
=
node
,
line
=
node
.
fromlineno
)
self
.
add_message
(
'W9003'
,
node
=
node
,
line
=
node
.
fromlineno
,
args
=
list
(
args_not_documented
))
return
False
for
t
in
args
:
if
t
not
in
parsed_args
:
print
t
,
" with (type) not in "
,
parsed_args
self
.
add_message
(
'W9003'
,
node
=
node
,
line
=
node
.
fromlineno
)
self
.
add_message
(
'W9003'
,
node
=
node
,
line
=
node
.
fromlineno
,
args
=
[
t
,
]
)
return
False
return
True
tools/codestyle/pylint_pre_commit.hook
浏览文件 @
b645dfac
...
...
@@ -7,13 +7,13 @@ DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"
export
PYTHONPATH
=
$DIR
:
$PYTHONPATH
# The trick to remove deleted files: https://stackoverflow.com/a/2413151
for
file
in
$(
git diff
--
cached
--
name-status
|
awk
'$1 != "D" {print $2}'
)
;
do
for
file
in
$(
git diff
--name-status
|
awk
'$1 != "D" {print $2}'
)
;
do
pylint
--disable
=
all
--load-plugins
=
docstring_checker
\
--enable
=
doc-string-one-line,doc-string-end-with,doc-string-with-all-args,doc-string-triple-quotes,doc-string-missing,doc-string-indent-error,doc-string-with-returns,doc-string-with-raises
$file
;
TOTAL_ERRORS
=
$(
expr
$TOTAL_ERRORS
+
$?
)
;
done
#
exit $TOTAL_ERRORS
exit
$TOTAL_ERRORS
#For now, just warning:
exit
0
#
exit 0
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录