Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
b56dbe08
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b56dbe08
编写于
7月 29, 2021
作者:
Y
Yuang Liu
提交者:
GitHub
7月 29, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix the allreduce fused bug, test=develop (#34446)
上级
76f94f88
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
66 addition
and
193 deletion
+66
-193
paddle/fluid/framework/distributed_strategy.proto
paddle/fluid/framework/distributed_strategy.proto
+1
-1
python/paddle/distributed/fleet/meta_optimizers/raw_program_optimizer.py
...istributed/fleet/meta_optimizers/raw_program_optimizer.py
+65
-192
未找到文件。
paddle/fluid/framework/distributed_strategy.proto
浏览文件 @
b56dbe08
...
@@ -188,7 +188,7 @@ message DistributedStrategy {
...
@@ -188,7 +188,7 @@ message DistributedStrategy {
optional
bool
find_unused_parameters
=
28
[
default
=
false
];
optional
bool
find_unused_parameters
=
28
[
default
=
false
];
optional
bool
tensor_parallel
=
29
[
default
=
false
];
optional
bool
tensor_parallel
=
29
[
default
=
false
];
optional
bool
without_graph_optimization
=
30
[
default
=
false
];
optional
bool
without_graph_optimization
=
30
[
default
=
false
];
optional
int32
fuse_grad_size_in_num
=
31
[
default
=
1
];
optional
int32
fuse_grad_size_in_num
=
31
[
default
=
8
];
optional
bool
calc_comm_same_stream
=
32
[
default
=
false
];
optional
bool
calc_comm_same_stream
=
32
[
default
=
false
];
optional
bool
asp
=
33
[
default
=
false
];
optional
bool
asp
=
33
[
default
=
false
];
...
...
python/paddle/distributed/fleet/meta_optimizers/raw_program_optimizer.py
浏览文件 @
b56dbe08
...
@@ -131,7 +131,7 @@ class RawProgramOptimizer(MetaOptimizerBase):
...
@@ -131,7 +131,7 @@ class RawProgramOptimizer(MetaOptimizerBase):
def
_transpile_main_program
(
self
,
loss
):
def
_transpile_main_program
(
self
,
loss
):
self
.
_insert_loss_grad_ops
(
loss
)
self
.
_insert_loss_grad_ops
(
loss
)
if
self
.
fuse_all_reduce_ops
:
if
self
.
fuse_all_reduce_ops
and
self
.
fuse_grad_size_in_num
>
1
:
self
.
_allreduce_fusion_program
()
self
.
_allreduce_fusion_program
()
else
:
else
:
self
.
_insert_allreduce_ops
()
self
.
_insert_allreduce_ops
()
...
@@ -216,11 +216,10 @@ class RawProgramOptimizer(MetaOptimizerBase):
...
@@ -216,11 +216,10 @@ class RawProgramOptimizer(MetaOptimizerBase):
def
_allreduce_fusion_program
(
self
):
def
_allreduce_fusion_program
(
self
):
block
=
self
.
main_program
.
global_block
()
block
=
self
.
main_program
.
global_block
()
ring_id
=
self
.
global_ring_id
ring_id
=
self
.
global_ring_id
record_idx
,
allreduce_input_vars
,
allreduce_output_vars
=
[],
[],
[]
param_grads
=
[]
ops
=
list
(
enumerate
(
block
.
ops
))
for
idx
,
op
in
reversed
(
ops
):
# find all grad params
# we travers the ops reversely
for
op
in
reversed
(
block
.
ops
):
if
is_backward_op
(
op
)
and
\
if
is_backward_op
(
op
)
and
\
OP_ROLE_VAR_KEY
in
op
.
attr_names
:
OP_ROLE_VAR_KEY
in
op
.
attr_names
:
op_role_var
=
op
.
attr
(
OP_ROLE_VAR_KEY
)
op_role_var
=
op
.
attr
(
OP_ROLE_VAR_KEY
)
...
@@ -229,214 +228,88 @@ class RawProgramOptimizer(MetaOptimizerBase):
...
@@ -229,214 +228,88 @@ class RawProgramOptimizer(MetaOptimizerBase):
assert
len
(
op_role_var
)
%
2
==
0
,
"vars need to be one param var followed by one grad var, "
\
assert
len
(
op_role_var
)
%
2
==
0
,
"vars need to be one param var followed by one grad var, "
\
"but got odd number of vars"
"but got odd number of vars"
for
i
in
range
(
0
,
len
(
op_role_var
),
2
):
for
i
in
range
(
0
,
len
(
op_role_var
),
2
):
# handle vars in each op, each time handle a param and a grad
param_name
=
op_role_var
[
i
]
param_name
=
op_role_var
[
i
]
param
=
block
.
var
(
param_name
)
param
=
block
.
var
(
param_name
)
grad_name
=
op_role_var
[
i
+
1
]
grad_name
=
op_role_var
[
i
+
1
]
grad
=
block
.
var
(
grad_name
)
grad
=
block
.
var
(
grad_name
)
if
param
.
is_distributed
:
if
param
.
is_distributed
:
continue
continue
if
".cast_fp16@GRAD"
in
grad_name
:
param_grads
.
append
(
grad
)
# when amp=True get the fp16 param
param_name
=
param_name
+
".cast_fp16"
segments
=
[]
if
not
block
.
has_var
(
param_name
):
last_dtype
=
None
raise
ValueError
(
"op cast name error {}"
.
format
(
# split the grad based on dtype and fused size
op
.
type
))
for
var
in
param_grads
:
else
:
if
len
(
segments
)
==
0
\
param
=
block
.
var
(
param_name
)
or
len
(
segments
[
-
1
])
==
self
.
fuse_grad_size_in_num
\
or
var
.
dtype
!=
last_dtype
:
if
len
(
allreduce_output_vars
)
==
0
or
\
segments
.
append
([
var
])
len
(
allreduce_output_vars
[
-
1
])
==
\
last_dtype
=
var
.
dtype
self
.
fuse_grad_size_in_num
:
# start of the fusion or last group meets the config size
allreduce_output_vars
.
append
([
grad
])
allreduce_input_vars
.
append
([
param
])
# add the start and end idx to the record idx
record_idx
.
append
([
idx
,
idx
])
else
:
else
:
# Current group's size is below the config size
segments
[
-
1
].
append
(
var
)
# append grad and param to the last group (current group)
# update the start idx to current op's idx
# Since we travers the ops reversely, the idx is descending
# we update the first entry of each entry for record_idx
allreduce_output_vars
[
-
1
].
append
(
grad
)
allreduce_input_vars
[
-
1
].
append
(
param
)
record_idx
[
-
1
][
0
]
=
idx
assert
len
(
allreduce_output_vars
)
==
len
(
record_idx
),
"It has different lens between the allreduce_output_vars and record_idx."
if
not
allreduce_output_vars
or
not
allreduce_input_vars
:
# nothing needs to be allreduced
return
self
.
vars
=
collections
.
OrderedDict
()
fused_vars
=
[]
index
,
pos
,
offset
=
0
,
0
,
0
for
idx
,
op
in
enumerate
(
block
.
ops
):
start
,
end
=
record_idx
[
index
]
if
is_optimizer_op
(
op
):
for
idx
,
op
in
reversed
(
ops
):
for
segment
in
segments
:
if
idx
==
start
:
# insert coalesce tensor
pos
=
0
done_output_vars
,
done_input_vars
=
self
.
_split_fuction
(
allreduce_output_vars
[
index
],
# grad
allreduce_input_vars
[
index
]
# param
)
for
id_
,
done_output_var
in
enumerate
(
done_output_vars
):
tmp_var
=
block
.
create_var
(
tmp_var
=
block
.
create_var
(
name
=
unique_name
.
generate
(
'FusedOutput_{}'
.
format
(
name
=
unique_name
.
generate
(
'FusedOutput_{}'
.
format
(
done_output_var
[
0
].
name
)),
segment
[
0
].
name
)),
dtype
=
done_output_var
[
0
].
dtype
,
dtype
=
segment
[
0
].
dtype
,
persistable
=
Fals
e
,
persistable
=
Tru
e
,
stop_gradient
=
True
)
stop_gradient
=
True
)
self
.
vars
[
'FusedOutput_{}'
.
format
(
done_output_var
[
0
]
fused_vars
.
append
(
tmp_var
)
.
name
)]
=
tmp_var
block
.
_insert_op_without_sync
(
idx
,
block
.
_insert_op
(
idx
+
id_
,
type
=
"coalesce_tensor"
,
type
=
"coalesce_tensor"
,
inputs
=
{
"Input"
:
done_input_vars
[
id_
]},
inputs
=
{
"Input"
:
segment
},
outputs
=
{
outputs
=
{
"Output"
:
segment
,
"Output"
:
done_output_var
,
"FusedOutput"
:
tmp_var
},
"FusedOutput"
:
tmp_var
},
attrs
=
{
attrs
=
{
"copy_data"
:
Fals
e
,
"copy_data"
:
Tru
e
,
"use_align"
:
True
,
"use_align"
:
True
,
"dtype"
:
done_output_var
[
0
].
dtype
,
"dtype"
:
segment
[
0
].
dtype
,
OP_ROLE_KEY
:
OpRole
.
Backward
OP_ROLE_KEY
:
OpRole
.
Backward
})
})
pos
+=
1
break
for
id_
in
range
(
len
(
done_output_vars
)):
x
=
self
.
vars
[
'FusedOutput_{}'
.
format
(
done_output_vars
[
id_
][
0
].
name
)]
out
=
x
# NOTE: there still some optimize space if use EVENT instead of sync
if
not
self
.
calc_comm_same_stream
:
# need sync if the calc and comm stream are not the same
block
.
_insert_op
(
end
+
id_
+
pos
+
1
,
type
=
'c_sync_calc_stream'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
OP_ROLE_KEY
:
OpRole
.
Backward
})
block
.
_insert_op
(
# insert the allreduce_sum op
end
+
id_
+
pos
+
1
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
self
.
calc_comm_same_stream
else
end
+
id_
+
pos
+
2
,
if
is_optimizer_op
(
op
):
for
fused_var
in
fused_vars
:
block
.
_insert_op_without_sync
(
idx
,
type
=
'c_allreduce_sum'
,
type
=
'c_allreduce_sum'
,
inputs
=
{
'X'
:
x
},
inputs
=
{
'X'
:
fused_var
},
outputs
=
{
'Out'
:
out
},
outputs
=
{
'Out'
:
fused_var
},
attrs
=
{
attrs
=
{
'ring_id'
:
ring_id
,
'ring_id'
:
ring_id
,
'use_calc_stream'
:
self
.
calc_comm_same_stream
,
'use_calc_stream'
:
self
.
calc_comm_same_stream
,
OP_ROLE_KEY
:
OpRole
.
Backward
OP_ROLE_KEY
:
OpRole
.
Backward
})
})
if
not
self
.
calc_comm_same_stream
:
index
+=
1
block
.
_insert_op_without_sync
(
if
len
(
record_idx
)
==
index
:
idx
,
type
=
'c_sync_calc_stream'
,
inputs
=
{
'X'
:
fused_var
},
outputs
=
{
'Out'
:
fused_var
},
attrs
=
{
OP_ROLE_KEY
:
OpRole
.
Backward
})
break
break
start
,
end
=
record_idx
[
index
]
if
not
self
.
calc_comm_same_stream
:
if
len
(
fused_vars
)
==
0
:
# need sync if the calc and comm stream are not the same
block
.
_sync_with_cpp
()
return
# insert the sync comm op
for
idx
,
op
in
enumerate
(
block
.
ops
):
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
is_optimizer_op
(
op
):
if
is_optimizer_op
(
op
):
block
.
_insert_op
(
block
.
_insert_op_without_sync
(
idx
,
idx
,
type
=
'c_sync_comm_stream'
,
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
block
.
create_var
()},
inputs
=
{
'X'
:
fused_vars
[
0
]},
outputs
=
{
'Out'
:
block
.
create_var
()},
outputs
=
{
'Out'
:
fused_vars
[
0
]},
attrs
=
{
attrs
=
{
'ring_id'
:
ring_id
,
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
OP_ROLE_KEY
:
OpRole
.
Backward
})
break
break
block
.
_sync_with_cpp
()
# Integrate grads of the same type to form a combination.
# If combination is selected, will return grads of the same type in a groups.
# For example:[(fp16, fp16), (fp32), (fp16)] -> [(fp16, fp16, fp16), (fp32)]
def
_split_fuction
(
self
,
allreduce_output_vars
,
allreduce_input_vars
,
combination
=
True
):
input_vars
,
final_input_vars
,
output_vars
,
final_output_vars
=
[],
[],
[],
[]
if
len
(
allreduce_output_vars
)
==
1
:
# only have one var to handle
final_output_vars
.
append
(
allreduce_output_vars
)
final_input_vars
.
append
(
allreduce_input_vars
)
return
final_output_vars
,
final_input_vars
for
idx
in
range
(
len
(
allreduce_input_vars
)
-
1
):
# the last var needs to be handled differently
if
allreduce_input_vars
[
idx
].
dtype
==
allreduce_input_vars
[
idx
+
1
].
dtype
:
# if current var and next var are in same type
# append current var to input_vars
input_vars
.
append
(
allreduce_input_vars
[
idx
])
if
idx
==
len
(
allreduce_input_vars
)
-
2
:
# if current var is the second last var
# append the last var to input_vars
# and update the final_input_vars
input_vars
.
append
(
allreduce_input_vars
[
idx
+
1
])
final_input_vars
.
append
(
input_vars
)
else
:
# the current var and next var are in different types
# append current var to input_vars
# update the final_input_vars
# reset input_vars to receive a new type
input_vars
.
append
(
allreduce_input_vars
[
idx
])
final_input_vars
.
append
(
input_vars
)
input_vars
=
[]
if
idx
==
len
(
allreduce_input_vars
)
-
2
:
# if current var is the second last var
# append the last var to a reset input_vars since they are in different types
# and update the final_input_vars
input_vars
.
append
(
allreduce_input_vars
[
idx
+
1
])
final_input_vars
.
append
(
input_vars
)
for
idx
in
range
(
len
(
allreduce_output_vars
)
-
1
):
# the procedure for the output vars is the same with that for the input vars
if
allreduce_output_vars
[
idx
].
dtype
==
allreduce_output_vars
[
idx
+
1
].
dtype
:
output_vars
.
append
(
allreduce_output_vars
[
idx
])
if
idx
==
len
(
allreduce_output_vars
)
-
2
:
output_vars
.
append
(
allreduce_output_vars
[
idx
+
1
])
final_output_vars
.
append
(
output_vars
)
else
:
output_vars
.
append
(
allreduce_output_vars
[
idx
])
final_output_vars
.
append
(
output_vars
)
output_vars
=
[]
if
idx
==
len
(
allreduce_output_vars
)
-
2
:
output_vars
.
append
(
allreduce_output_vars
[
idx
+
1
])
final_output_vars
.
append
(
output_vars
)
# at this time, all vars in each group in final_input_vars and final_output_vars are in the same type
if
combination
:
input_fp16_vars
,
input_fp32_vars
,
output_fp16_vars
,
output_fp32_vars
=
[],
[],
[],
[]
for
final_input_var
in
final_input_vars
:
if
final_input_var
[
0
].
dtype
==
core
.
VarDesc
.
VarType
.
FP16
:
# extend the group
input_fp16_vars
.
extend
(
final_input_var
)
else
:
input_fp32_vars
.
extend
(
final_input_var
)
for
final_output_var
in
final_output_vars
:
if
final_output_var
[
0
].
dtype
==
core
.
VarDesc
.
VarType
.
FP16
:
output_fp16_vars
.
extend
(
final_output_var
)
else
:
output_fp32_vars
.
extend
(
final_output_var
)
final_output_vars
,
final_input_vars
=
[],
[]
if
output_fp16_vars
:
final_output_vars
.
append
(
output_fp16_vars
)
if
output_fp32_vars
:
final_output_vars
.
append
(
output_fp32_vars
)
if
input_fp16_vars
:
final_input_vars
.
append
(
input_fp16_vars
)
if
input_fp32_vars
:
final_input_vars
.
append
(
input_fp32_vars
)
return
final_output_vars
,
final_input_vars
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录