diff --git a/CMakeLists.txt b/CMakeLists.txt index 06dd5a1332cb9dda8f942a342693ec74fb6184d9..ad559672ad2f83a3d62cdf332b47c6cf1e730f70 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -55,6 +55,7 @@ option(WITH_C_API "Compile PaddlePaddle with C-API(Prediction)" OFF) option(WITH_GOLANG "Compile PaddlePaddle with GOLANG" OFF) option(GLIDE_INSTALL "Download and install go dependencies " ON) option(USE_NNPACK "Compile PaddlePaddle with NNPACK library" OFF) +option(USE_EIGEN_FOR_BLAS "Use matrix multiplication in Eigen" OFF) # CMAKE_BUILD_TYPE if(NOT CMAKE_BUILD_TYPE) diff --git a/cmake/configure.cmake b/cmake/configure.cmake index 209f9078a637ac581d90212a48216eb388c477ed..51c3b918cc4ef4cf6c8052ccc14028a872309fcf 100644 --- a/cmake/configure.cmake +++ b/cmake/configure.cmake @@ -28,6 +28,10 @@ if(NOT WITH_TIMER) add_definitions(-DPADDLE_DISABLE_TIMER) endif(NOT WITH_TIMER) +if(USE_EIGEN_FOR_BLAS) + add_definitions(-DPADDLE_USE_EIGEN_FOR_BLAS) +endif(USE_EIGEN_FOR_BLAS) + if(NOT WITH_PROFILER) add_definitions(-DPADDLE_DISABLE_PROFILER) endif(NOT WITH_PROFILER) diff --git a/doc/api/v2/config/layer.rst b/doc/api/v2/config/layer.rst index cb330ea5e1b914587a725c9b90a33053f3fbbc3d..a4a843c610feb2b378c22c4b4097cd238ccd61ab 100644 --- a/doc/api/v2/config/layer.rst +++ b/doc/api/v2/config/layer.rst @@ -362,6 +362,11 @@ trans .. autoclass:: paddle.v2.layer.trans :noindex: +scale_shift +----------- +.. autoclass:: paddle.v2.layer.scale_shift + :noindex: + Sampling Layers =============== diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index 5df14ae78d432084ae1dc68a44c9b42c50da7d11..ad219887d6d35c46cee53da1f04014c9bd23fb04 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -18,8 +18,8 @@ cc_test(scope_test SRCS scope_test.cc DEPS scope) proto_library(framework_proto SRCS framework.proto) cc_library(attribute SRCS attribute.cc DEPS framework_proto) - -cc_library(operator SRCS operator.cc DEPS framework_proto device_context tensor scope attribute) +cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto) +cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope) cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry) cc_library(grad_op_builder SRCS grad_op_builder.cc DEPS operator) @@ -45,6 +45,7 @@ cc_library(paddle_pybind SHARED SRCS pybind.cc DEPS pybind python backward sgd_op + gather_op add_op mul_op rowwise_add_op diff --git a/paddle/framework/backward.cc b/paddle/framework/backward.cc index 9d30887224fe0020ff5665f362e7403bf5c724ee..bfda18724cc8ed23a40e0626ff07a290d26aa9d2 100644 --- a/paddle/framework/backward.cc +++ b/paddle/framework/backward.cc @@ -110,7 +110,7 @@ static std::unique_ptr BackwardRecursive( dup_output_ops[out].emplace_back(local_op_id); return false; }); - net->AddOp(std::move(bwd)); + net->AppendOp(std::move(bwd)); } // Get unique ID for this method. auto uid = uniq_id++; @@ -163,8 +163,9 @@ static std::unique_ptr BackwardRecursive( // If part of input gradient of that operator is not calculated, fill // zero variables to that input gradient. - net->AddOp(OpRegistry::CreateOp("fill_zeros_like", {{"Src", {prefix}}}, - {{"Dst", {grad_input}}}, {})); + net->AppendOp(OpRegistry::CreateOp("fill_zeros_like", + {{"Src", {prefix}}}, + {{"Dst", {grad_input}}}, {})); } return false; }); @@ -195,7 +196,7 @@ static std::unique_ptr BackwardRecursive( if (net->ops_.empty()) { // Current no aux op is added to network return grad_op; } - net->AddOp(std::move(grad_op)); + net->AppendOp(std::move(grad_op)); } net->SetType("@GENERATED_BACKWARD@"); net->CompleteAddOp(); diff --git a/paddle/framework/backward_test.cc b/paddle/framework/backward_test.cc index 2c5ec76dfeb8b8485951e4d94896b6758e0cb930..f100c4d05489ac3bd4ceb5f11ae871985f0e5d83 100644 --- a/paddle/framework/backward_test.cc +++ b/paddle/framework/backward_test.cc @@ -72,16 +72,16 @@ class NoGradOpMaker : public OpProtoAndCheckerMaker { class FcOp : public operators::NetOp { public: - FcOp(const std::string &type, const VarNameMap &inputs, - const VarNameMap &outputs, const AttributeMap &attrs) + FcOp(const std::string &type, const VariableNameMap &inputs, + const VariableNameMap &outputs, const AttributeMap &attrs) : NetOp(type, inputs, outputs, attrs) { - AddOp(OpRegistry::CreateOp("mul", - {{"X", {Input("X")}}, {"Y", {Input("W")}}}, - {{"Out", {Output("mul_result")}}}, {})); + AppendOp(OpRegistry::CreateOp("mul", + {{"X", {Input("X")}}, {"Y", {Input("W")}}}, + {{"Out", {Output("mul_result")}}}, {})); auto input_b = Inputs("b"); std::string before_act = "mul_result"; if (input_b.size() != 0) { - AddOp(OpRegistry::CreateOp( + AppendOp(OpRegistry::CreateOp( "rowwise_add", {{"X", {Output("mul_result")}}, {"b", {input_b[0]}}}, {{"Out", {Output("add_result")}}}, {})); before_act = "add_result"; @@ -92,8 +92,8 @@ class FcOp : public operators::NetOp { } } - AddOp(OpRegistry::CreateOp("sigmoid", {{"X", {Output(before_act)}}}, - {{"Out", {Output("Out")}}}, {})); + AppendOp(OpRegistry::CreateOp("sigmoid", {{"X", {Output(before_act)}}}, + {{"Out", {Output("Out")}}}, {})); CompleteAddOp(false); } }; @@ -234,13 +234,13 @@ TEST(Backward, net_fc_backward_not_have_b) { TEST(Backward, net_input_of_network_not_need_grad) { ops::NetOp net; - net.AddOp(f::OpRegistry::CreateOp( + net.AppendOp(f::OpRegistry::CreateOp( "fc", {{"X", {"x"}}, {"W", {"W1"}}, {"b", {"b1"}}}, {{"mul_result", {"mul_tmp_0"}}, {"add_result", {"add_tmp_0"}}, {"Out", {"hidden0"}}}, {})); - net.AddOp(f::OpRegistry::CreateOp( + net.AppendOp(f::OpRegistry::CreateOp( "fc", {{"X", {"hidden0"}}, {"W", {"W2"}}, {"b", {"b2"}}}, {{"mul_result", {"mul_tmp_1"}}, {"add_result", {"add_tmp_1"}}, @@ -273,10 +273,10 @@ TEST(Backward, net_input_of_network_not_need_grad) { TEST(Backward, net_shared_weight) { ops::NetOp net; - net.AddOp(f::OpRegistry::CreateOp("mul", {{"X", {"x"}}, {"Y", {"w"}}}, - {{"Out", {"out"}}}, {})); - net.AddOp(f::OpRegistry::CreateOp("mul", {{"X", {"out"}}, {"Y", {"w"}}}, - {{"Out", {"FinalOut"}}}, {})); + net.AppendOp(f::OpRegistry::CreateOp("mul", {{"X", {"x"}}, {"Y", {"w"}}}, + {{"Out", {"out"}}}, {})); + net.AppendOp(f::OpRegistry::CreateOp("mul", {{"X", {"out"}}, {"Y", {"w"}}}, + {{"Out", {"FinalOut"}}}, {})); net.CompleteAddOp(); auto bwd = f::Backward(net, {}); @@ -357,19 +357,19 @@ TEST(Backward, op_part_of_input_are_not_need) { TEST(Backward, linear_net_intermediate_variable_has_no_grad) { ops::NetOp net; - net.AddOp(f::OpRegistry::CreateOp( + net.AppendOp(f::OpRegistry::CreateOp( "fc", {{"X", {"x1"}}, {"W", {"w1"}}, {"b", {"b1"}}}, {{"mul_result", {"mul_out1"}}, {"add_result", {"add_out1"}}, {"Out", {"out1"}}}, {})); - net.AddOp(f::OpRegistry::CreateOp( + net.AppendOp(f::OpRegistry::CreateOp( "fc", {{"X", {"out1"}}, {"W", {"w2"}}, {"b", {"b2"}}}, {{"mul_result", {"mul_out2"}}, {"add_result", {"tmp_out2"}}, {"Out", {"out2"}}}, {})); - net.AddOp(f::OpRegistry::CreateOp( + net.AppendOp(f::OpRegistry::CreateOp( "fc", {{"X", {"out2"}}, {"W", {"w3"}}, {"b", {"b3"}}}, {{"mul_result", {"mul_out3"}}, {"add_result", {"tmp_out3"}}, diff --git a/paddle/framework/grad_op_builder.cc b/paddle/framework/grad_op_builder.cc index 0a2a41f6b62658ac8633a6e384d099f8d6641f33..b02a599a800668b22e7fe39a10fa6dc132e305bd 100644 --- a/paddle/framework/grad_op_builder.cc +++ b/paddle/framework/grad_op_builder.cc @@ -20,13 +20,13 @@ namespace framework { enum class OpArgType { IN, OUT }; static void TransOpArg(const OperatorBase* src_op, const OpArgType& src_type, - bool is_grad, OperatorBase::VarNameMap* vars) { + bool is_grad, VariableNameMap* vars) { const auto& src_inout = src_type == OpArgType::IN ? src_op->Inputs() : src_op->Outputs(); auto& dst_inout = *vars; - const OpProto* proto = OpRegistry::op_info_map().at(src_op->Type()).proto_; + auto& proto = OpInfoMap::Instance().Get(src_op->Type()).Proto(); const auto& src_arg_list = - src_type == OpArgType::IN ? proto->inputs() : proto->outputs(); + src_type == OpArgType::IN ? proto.inputs() : proto.outputs(); for (const auto& arg : src_arg_list) { if (arg.not_in_gradient() && !is_grad) continue; const std::string src_name = arg.name(); @@ -40,26 +40,18 @@ static void TransOpArg(const OperatorBase* src_op, const OpArgType& src_type, } OperatorBase* BuildGradOp(const OperatorBase* op) { - auto it = OpRegistry::op_info_map().find(op->Type()); - PADDLE_ENFORCE(it != OpRegistry::op_info_map().end(), - "'%s' has not been registered.", op->Type()); - PADDLE_ENFORCE(it->second.proto_ != nullptr, "'%s' has no OpProto.", - op->Type()); - std::string grad_op_type = it->second.grad_op_type_; - PADDLE_ENFORCE(!grad_op_type.empty(), "'%s' has no gradient operator.", - op->Type()); + auto& info = OpInfoMap::Instance().Get(op->Type()); + PADDLE_ENFORCE(info.HasGradientOp()); - OperatorBase::VarNameMap inputs; - OperatorBase::VarNameMap outputs; + VariableNameMap inputs; + VariableNameMap outputs; TransOpArg(op, OpArgType::IN, false, &inputs); // I TransOpArg(op, OpArgType::OUT, false, &inputs); // O TransOpArg(op, OpArgType::OUT, true, &inputs); // OG TransOpArg(op, OpArgType::IN, true, &outputs); // IG - it = OpRegistry::op_info_map().find(grad_op_type); - PADDLE_ENFORCE(it != OpRegistry::op_info_map().end(), - "'%s' has not been registered.", grad_op_type); - return it->second.creator_(grad_op_type, inputs, outputs, op->Attrs()); + auto& grad_info = OpInfoMap::Instance().Get(info.grad_op_type_); + return grad_info.Creator()(info.grad_op_type_, inputs, outputs, op->Attrs()); } } // namespace framework diff --git a/paddle/framework/op_info.cc b/paddle/framework/op_info.cc new file mode 100644 index 0000000000000000000000000000000000000000..81ba29797c5f478e5d6a91236f3e8de1e6b43e49 --- /dev/null +++ b/paddle/framework/op_info.cc @@ -0,0 +1,29 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/framework/op_info.h" + +namespace paddle { +namespace framework { + +static OpInfoMap* g_op_info_map = nullptr; + +OpInfoMap& OpInfoMap::Instance() { + if (g_op_info_map == nullptr) { + g_op_info_map = new OpInfoMap(); + } + return *g_op_info_map; +} +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/op_info.h b/paddle/framework/op_info.h new file mode 100644 index 0000000000000000000000000000000000000000..94245c6c44aca962b0db890947a9dc5550ac0799 --- /dev/null +++ b/paddle/framework/op_info.h @@ -0,0 +1,101 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include +#include +#include +#include + +#include "paddle/framework/attribute.h" + +namespace paddle { +namespace framework { +class OperatorBase; +using VariableNameMap = std::map>; + +using OpCreator = std::function; + +struct OpInfo { + OpCreator creator_; + std::string grad_op_type_; + OpProto* proto_; + OpAttrChecker* checker_; + + bool HasOpProtoAndChecker() const { + return proto_ != nullptr && checker_ != nullptr; + } + + const OpProto& Proto() const { + PADDLE_ENFORCE_NOT_NULL(proto_, "Operator Proto has not been registered"); + PADDLE_ENFORCE(proto_->IsInitialized(), + "Operator Proto must be initialized in op info"); + return *proto_; + } + + const OpAttrChecker& Checker() const { + PADDLE_ENFORCE_NOT_NULL(checker_, + "Operator Checker has not been registered"); + return *checker_; + } + + const OpCreator& Creator() const { + PADDLE_ENFORCE_NOT_NULL(creator_, + "Operator Creator has not been registered"); + return creator_; + } + + bool HasGradientOp() const { return !grad_op_type_.empty(); } +}; + +class OpInfoMap { + public: + static OpInfoMap& Instance(); + + OpInfoMap(const OpInfoMap& o) = delete; + OpInfoMap(OpInfoMap&& o) = delete; + OpInfoMap& operator=(const OpInfoMap& o) = delete; + OpInfoMap& operator=(OpInfoMap&& o) = delete; + + bool Has(const std::string& op_type) const { + return map_.find(op_type) != map_.end(); + } + + void Insert(const std::string& type, const OpInfo& info) { + PADDLE_ENFORCE(!Has(type), "Operator %s has been registered", type); + map_.insert({type, info}); + } + + const OpInfo& Get(const std::string& type) const { + auto it = map_.find(type); + PADDLE_ENFORCE(it != map_.end(), "Operator %s are not found", type); + return it->second; + } + + template + void IterAllInfo(Callback callback) { + for (auto& it : map_) { + callback(it.first, it.second); + } + } + + private: + OpInfoMap() = default; + std::unordered_map map_; +}; + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/op_registry.cc b/paddle/framework/op_registry.cc index 8eae86e9605da74cdc37caeb9569e7500aac2a63..b0e85dd49f97da4a7f889fde0b5f060954947be8 100644 --- a/paddle/framework/op_registry.cc +++ b/paddle/framework/op_registry.cc @@ -19,32 +19,18 @@ limitations under the License. */ namespace paddle { namespace framework { -std::unique_ptr OpRegistry::CreateOp(const std::string& type, - const VarNameMap& inputs, - const VarNameMap& outputs, - AttributeMap attrs) { - auto it = op_info_map().find(type); - PADDLE_ENFORCE(it != op_info_map().end(), - "Operator '%s' has not been registered.", type); - it->second.checker_->Check(attrs); - auto op = it->second.creator_(type, inputs, outputs, attrs); +std::unique_ptr OpRegistry::CreateOp( + const std::string& type, const VariableNameMap& inputs, + const VariableNameMap& outputs, AttributeMap attrs) { + auto& info = OpInfoMap::Instance().Get(type); + info.Checker().Check(attrs); + auto op = info.Creator()(type, inputs, outputs, attrs); return std::unique_ptr(op); } -std::unique_ptr OpRegistry::CreateOp(const OpDesc& op_desc) { - VarNameMap inputs = ConvertOpDescVarsToVarNameMap(op_desc.inputs()); - VarNameMap outputs = ConvertOpDescVarsToVarNameMap(op_desc.outputs()); - AttributeMap attrs; - for (auto& attr : op_desc.attrs()) { - attrs[attr.name()] = GetAttrValue(attr); - } - - return CreateOp(op_desc.type(), inputs, outputs, attrs); -} - -OperatorBase::VarNameMap OpRegistry::ConvertOpDescVarsToVarNameMap( +static VariableNameMap ConvertOpDescVarsToVarNameMap( const google::protobuf::RepeatedPtrField& op_desc_vars) { - VarNameMap ret_val; + VariableNameMap ret_val; for (auto& var : op_desc_vars) { auto& var_names = ret_val[var.parameter()]; auto& var_names_in_proto = var.arguments(); @@ -55,6 +41,17 @@ OperatorBase::VarNameMap OpRegistry::ConvertOpDescVarsToVarNameMap( return ret_val; } +std::unique_ptr OpRegistry::CreateOp(const OpDesc& op_desc) { + VariableNameMap inputs = ConvertOpDescVarsToVarNameMap(op_desc.inputs()); + VariableNameMap outputs = ConvertOpDescVarsToVarNameMap(op_desc.outputs()); + AttributeMap attrs; + for (auto& attr : op_desc.attrs()) { + attrs[attr.name()] = GetAttrValue(attr); + } + + return CreateOp(op_desc.type(), inputs, outputs, attrs); +} + std::unique_ptr OpRegistry::CreateGradOp(const OperatorBase& op) { PADDLE_ENFORCE(!op.IsNetOp(), "Use framework::Backward to get backward ops"); return std::unique_ptr(BuildGradOp(&op)); diff --git a/paddle/framework/op_registry.h b/paddle/framework/op_registry.h index 4c2d13d639005d2d2710c19f63988333d89bce13..2d09cde41e3f5086279f9441e0fdc52549bed5ab 100644 --- a/paddle/framework/op_registry.h +++ b/paddle/framework/op_registry.h @@ -23,6 +23,7 @@ limitations under the License. */ #include "paddle/framework/attribute.h" #include "paddle/framework/framework.pb.h" #include "paddle/framework/grad_op_builder.h" +#include "paddle/framework/op_info.h" #include "paddle/framework/operator.h" #include "paddle/framework/scope.h" @@ -30,28 +31,16 @@ namespace paddle { namespace framework { class OpRegistry { - using VarNameMap = OperatorBase::VarNameMap; - using OpCreator = std::function; - public: - struct OpInfo { - OpCreator creator_; - std::string grad_op_type_; - OpProto* proto_; - OpAttrChecker* checker_; - }; - template static void RegisterOp(const std::string& op_type, const std::string& grad_op_type) { - PADDLE_ENFORCE(op_info_map().count(op_type) == 0, + PADDLE_ENFORCE(!OpInfoMap::Instance().Has(op_type), "'%s' is registered more than once.", op_type); OpInfo op_info; - op_info.creator_ = [](const std::string& type, const VarNameMap& inputs, - const VarNameMap& outputs, - const AttributeMap& attrs) { + op_info.creator_ = []( + const std::string& type, const VariableNameMap& inputs, + const VariableNameMap& outputs, const AttributeMap& attrs) { return new OpType(type, inputs, outputs, attrs); }; op_info.grad_op_type_ = grad_op_type; @@ -70,7 +59,7 @@ class OpRegistry { op_info.proto_ = nullptr; op_info.checker_ = nullptr; } - op_info_map().insert(std::make_pair(op_type, op_info)); + OpInfoMap::Instance().Insert(op_type, op_info); // register gradient op if (!grad_op_type.empty()) { RegisterOp(grad_op_type, ""); @@ -78,21 +67,13 @@ class OpRegistry { } static std::unique_ptr CreateOp(const std::string& type, - const VarNameMap& inputs, - const VarNameMap& outputs, + const VariableNameMap& inputs, + const VariableNameMap& outputs, AttributeMap attrs); static std::unique_ptr CreateOp(const OpDesc& op_desc); - static VarNameMap ConvertOpDescVarsToVarNameMap( - const google::protobuf::RepeatedPtrField& op_desc_vars); - static std::unique_ptr CreateGradOp(const OperatorBase& op); - - static std::unordered_map& op_info_map() { - static std::unordered_map op_info_map_; - return op_info_map_; - } }; class Registrar { diff --git a/paddle/framework/operator.cc b/paddle/framework/operator.cc index eadd8f3316ff1ebffb94a56b2e62d661e4e0b38f..7abbde610f1e9c530393b9a9cabe40b826712212 100644 --- a/paddle/framework/operator.cc +++ b/paddle/framework/operator.cc @@ -115,8 +115,8 @@ void OperatorBase::Rename(const std::string& old_name, } OperatorBase::OperatorBase(const std::string& type, - const OperatorBase::VarNameMap& inputs, - const OperatorBase::VarNameMap& outputs, + const VariableNameMap& inputs, + const VariableNameMap& outputs, const AttributeMap& attrs) : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) { static std::atomic gUniqId(0UL); @@ -141,18 +141,10 @@ std::vector OperatorBase::OutputVars(bool has_intermediate) const { } return ret_val; } - auto it = OpRegistry::op_info_map().find(type_); - PADDLE_ENFORCE( - it != OpRegistry::op_info_map().end(), - "Operator %s not registered, cannot figure out intermediate outputs", - type_); - PADDLE_ENFORCE( - it->second.proto_ != nullptr, - "Operator %s has no OpProto, cannot figure out intermediate outputs", - type_); + auto& info = OpInfoMap::Instance().Get(Type()); // get all OpProto::Var for outputs - for (auto& o : it->second.proto_->outputs()) { + for (auto& o : info.Proto().outputs()) { // ignore all intermediate output if (o.intermediate()) continue; auto out = outputs_.find(o.name()); diff --git a/paddle/framework/operator.h b/paddle/framework/operator.h index 807298088981b969622174be753ea0da72067243..8397570d26f06f0238e9c5afc85d721df7679257 100644 --- a/paddle/framework/operator.h +++ b/paddle/framework/operator.h @@ -19,6 +19,7 @@ limitations under the License. */ #include #include +#include "op_info.h" #include "paddle/framework/attribute.h" #include "paddle/framework/framework.pb.h" #include "paddle/framework/scope.h" @@ -62,10 +63,8 @@ class ExecutionContext; */ class OperatorBase { public: - using VarNameMap = std::map>; - - OperatorBase(const std::string& type, const VarNameMap& inputs, - const VarNameMap& outputs, const AttributeMap& attrs); + OperatorBase(const std::string& type, const VariableNameMap& inputs, + const VariableNameMap& outputs, const AttributeMap& attrs); virtual ~OperatorBase() {} @@ -93,8 +92,8 @@ class OperatorBase { /// rename inputs outputs name void Rename(const std::string& old_name, const std::string& new_name); - const VarNameMap& Inputs() const { return inputs_; } - const VarNameMap& Outputs() const { return outputs_; } + const VariableNameMap& Inputs() const { return inputs_; } + const VariableNameMap& Outputs() const { return outputs_; } //! Get a input with argument's name described in `op_proto` const std::string& Input(const std::string& name) const; //! Get a input which has multiple variables. @@ -122,30 +121,32 @@ class OperatorBase { // I (Inputs)opear // O (Outputs) // OG (Output Gradients) - VarNameMap inputs_; + VariableNameMap inputs_; // NOTE: in case of OpGrad, outputs_ contains // IG (Inputs Gradients) - VarNameMap outputs_; + VariableNameMap outputs_; AttributeMap attrs_; }; // Macro for define a clone method. // If you are writing an kernel operator, `Clone` will be defined when you // register it. i.e. `Clone` method is not needed to define by yourself. -#define DEFINE_OP_CLONE_METHOD(CLS) \ +#define DEFINE_OP_CLONE_METHOD(cls) \ std::unique_ptr Clone() const final { \ - return std::unique_ptr(new CLS(*this)); \ + return std::unique_ptr(new cls(*this)); \ } // Macro for define a default constructor for Operator. // You can also use // using PARENT_CLASS::PARENT_CLASS; // to use parent's constructor. -#define DEFINE_OP_CONSTRUCTOR(CLS, PARENT_CLS) \ - CLS(const std::string& type, const VarNameMap& inputs, \ - const VarNameMap& outputs, const paddle::framework::AttributeMap& attrs) \ - : PARENT_CLS(type, inputs, outputs, attrs) {} +#define DEFINE_OP_CONSTRUCTOR(cls, parent_cls) \ + cls(const std::string& type, \ + const ::paddle::framework::VariableNameMap& inputs, \ + const ::paddle::framework::VariableNameMap& outputs, \ + const paddle::framework::AttributeMap& attrs) \ + : parent_cls(type, inputs, outputs, attrs) {} class NOP : public OperatorBase { public: @@ -389,8 +390,8 @@ class OperatorWithKernel : public OperatorBase { using OpKernelMap = std::unordered_map, OpKernelHash>; - OperatorWithKernel(const std::string& type, const VarNameMap& inputs, - const VarNameMap& outputs, const AttributeMap& attrs) + OperatorWithKernel(const std::string& type, const VariableNameMap& inputs, + const VariableNameMap& outputs, const AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs) {} void InferShape(const Scope& scope) const override { diff --git a/paddle/framework/operator_test.cc b/paddle/framework/operator_test.cc index 2425b87779f6af01b0e8a91b5f574a28385f0efd..1d7efb7b9403f7c1c6bdbb27a0258f79ae032f43 100644 --- a/paddle/framework/operator_test.cc +++ b/paddle/framework/operator_test.cc @@ -23,8 +23,8 @@ static int op_run_num = 0; class OpWithoutKernelTest : public OperatorBase { public: - OpWithoutKernelTest(const std::string& type, const VarNameMap& inputs, - const VarNameMap& outputs, const AttributeMap& attrs) + OpWithoutKernelTest(const std::string& type, const VariableNameMap& inputs, + const VariableNameMap& outputs, const AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs), x(1) {} void InferShape(const Scope& scope) const override {} void Run(const Scope& scope, @@ -249,8 +249,9 @@ TEST(OpKernel, multi_inputs) { class OperatorClone : public paddle::framework::OperatorBase { public: DEFINE_OP_CLONE_METHOD(OperatorClone); - OperatorClone(const std::string& type, const VarNameMap& inputs, - const VarNameMap& outputs, + OperatorClone(const std::string& type, + const paddle::framework::VariableNameMap& inputs, + const paddle::framework::VariableNameMap& outputs, const paddle::framework::AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs) {} void InferShape(const paddle::framework::Scope& scope) const override {} diff --git a/paddle/framework/pybind.cc b/paddle/framework/pybind.cc index 3aaf0de1506c03cd3f85745e1a918481b2b9509f..b5ae81ebca1201cc84aba897ba86d6413405e036 100644 --- a/paddle/framework/pybind.cc +++ b/paddle/framework/pybind.cc @@ -31,7 +31,7 @@ limitations under the License. */ namespace py = pybind11; USE_OP(add_two); -USE_CPU_ONLY_OP(onehot_cross_entropy); +USE_OP(onehot_cross_entropy); USE_OP(sgd); USE_OP(mul); USE_OP(mean); @@ -44,6 +44,7 @@ USE_OP(gaussian_random); USE_OP(uniform_random); USE_OP(scale); USE_OP_ITSELF(identity); +USE_CPU_ONLY_OP(gather); namespace paddle { namespace framework { @@ -140,19 +141,16 @@ All parameter, weight, gradient are variables in Paddle. //! @note: Be careful! PyBind will return std::string as an unicode, not //! Python str. If you want a str object, you should cast them in Python. m.def("get_all_op_protos", []() -> std::vector { - auto &op_info_map = OpRegistry::op_info_map(); std::vector ret_values; - for (auto it = op_info_map.begin(); it != op_info_map.end(); ++it) { - const OpProto *proto = it->second.proto_; - if (proto == nullptr) { - continue; - } - PADDLE_ENFORCE(proto->IsInitialized(), "OpProto must all be initialized"); + + OpInfoMap::Instance().IterAllInfo([&ret_values](const std::string &type, + const OpInfo &info) { + if (!info.HasOpProtoAndChecker()) return; std::string str; - PADDLE_ENFORCE(proto->SerializeToString(&str), + PADDLE_ENFORCE(info.Proto().SerializeToString(&str), "Serialize OpProto Error. This could be a bug of Paddle."); - ret_values.push_back(py::bytes(str)); - } + ret_values.emplace_back(str); + }); return ret_values; }); m.def_submodule( @@ -224,8 +222,8 @@ All parameter, weight, gradient are variables in Paddle. retv->SetType("plain_net"); return retv; }) - .def("add_op", [](operators::NetOp &self, - const OperatorBase &op) { self.AddOp(op); }) + .def("append_op", [](operators::NetOp &self, + const OperatorBase &op) { self.AppendOp(op); }) .def("complete_add_op", &operators::NetOp::CompleteAddOp) .def("complete_add_op", [](std::shared_ptr &self) { self->CompleteAddOp(); diff --git a/paddle/function/CMakeLists.txt b/paddle/function/CMakeLists.txt index 7dfb6f61c50959f7269725a00dbc4f9c27474bdf..c572a9d433bc16e6733b8fc9367970bef28e699a 100644 --- a/paddle/function/CMakeLists.txt +++ b/paddle/function/CMakeLists.txt @@ -4,6 +4,10 @@ file(GLOB cpp_files . *Op.cpp) list(APPEND h_files Function.h) list(APPEND cpp_files Function.cpp) list(APPEND cpp_files BufferArg.cpp) +list(APPEND cpp_files GemmFunctor.cpp) +if(USE_EIGEN_FOR_BLAS) + list(APPEND cpp_files EigenGemm.cpp) +endif(USE_EIGEN_FOR_BLAS) if(WITH_GPU) file(GLOB cu_files . *OpGpu.cu) diff --git a/paddle/function/DepthwiseConvOp.cpp b/paddle/function/DepthwiseConvOp.cpp index 490e8d546cbd460217abe95f6291b13fa207faa9..2f3112fe657cd381891dc53c7179e7520911e8c9 100644 --- a/paddle/function/DepthwiseConvOp.cpp +++ b/paddle/function/DepthwiseConvOp.cpp @@ -14,7 +14,6 @@ limitations under the License. */ #include "DepthwiseConvOp.h" #include "ConvOp.h" -#include "GemmFunctor.h" namespace paddle { diff --git a/paddle/function/DepthwiseConvOpGpu.cu b/paddle/function/DepthwiseConvOpGpu.cu index 33463805cbd4746c05548028e0bc4a0e2a90453e..2d722dfcfca0f328edeecf185ea37b8512b91907 100644 --- a/paddle/function/DepthwiseConvOpGpu.cu +++ b/paddle/function/DepthwiseConvOpGpu.cu @@ -13,7 +13,6 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "DepthwiseConvOp.h" -#include "GemmFunctor.h" #include "paddle/math/BaseMatrix.h" namespace paddle { diff --git a/paddle/function/EigenGemm.cpp b/paddle/function/EigenGemm.cpp new file mode 100644 index 0000000000000000000000000000000000000000..674141ed39b7f5573948348e3ba3bb526ae43c66 --- /dev/null +++ b/paddle/function/EigenGemm.cpp @@ -0,0 +1,91 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include +#include "unsupported/Eigen/CXX11/Tensor" + +namespace paddle { + +template +struct EigenBlasGemm { + typedef Eigen::TensorMap, + Eigen::Aligned> + Matrix; + + static void compute(const bool transA, + const bool transB, + const int M, + const int N, + const int K, + const T alpha, + const T* A, + const int lda, + const T* B, + const int ldb, + const T beta, + T* C, + const int ldc) { + Eigen::array sizeA; + if (transA) { + sizeA[0] = K; + sizeA[1] = M; + CHECK_EQ(M, lda); + } else { + sizeA[0] = M; + sizeA[1] = K; + CHECK_EQ(K, lda); + } + Eigen::array sizeB; + if (transB) { + sizeB[0] = N; + sizeB[1] = K; + CHECK_EQ(K, ldb); + } else { + sizeB[0] = K; + sizeB[1] = N; + CHECK_EQ(N, ldb); + } + Eigen::array sizeC; + sizeC[0] = M; + sizeC[1] = N; + CHECK_EQ(N, ldc); + + const Matrix a(const_cast(A), sizeA); + const Matrix b(const_cast(B), sizeB); + Matrix c(C, sizeC); + + typedef typename Eigen::Tensor::DimensionPair DimPair; + Eigen::array dims; + dims[0] = DimPair(1, 0); + dims[0].first = transA ? 0 : 1; + dims[0].second = transB ? 1 : 0; + + Eigen::DefaultDevice device; + if (alpha == T(1) && beta == T(0)) { + c.device(device) = a.contract(b, dims); + } else if (alpha == T(1) && beta == T(1)) { + c.device(device) += a.contract(b, dims); + } else { + c.device(device) = alpha * a.contract(b, dims) + beta * c; + } + } +}; + +#ifdef PADDLE_TYPE_DOUBLE +template class EigenBlasGemm; +#else +template class EigenBlasGemm; +#endif + +} // namespace paddle diff --git a/paddle/function/GemmConvOp.cpp b/paddle/function/GemmConvOp.cpp index 0ada4d70a0c7d13f9b5fb1a42eac07fc4c775a87..f8cf4ebea8d724f0291b981647622b63e3d84495 100644 --- a/paddle/function/GemmConvOp.cpp +++ b/paddle/function/GemmConvOp.cpp @@ -85,7 +85,6 @@ public: } Im2ColFunctor im2col; - GemmFunctor gemm; size_t inputOffset = imShape.getElements(); size_t outputOffset = (outputChannels / groups_) * outputHeight * outputWidth; @@ -108,19 +107,19 @@ public: int M = outputChannels / groups_; int N = outputHeight * outputWidth; int K = inputChannels / groups_ * filterHeight * filterWidth; - gemm(CblasNoTrans, - CblasNoTrans, - M, - N, - K, - 1.0f, - filterData + g * filterOffset, - K, - colData, - N, - beta, - outputData + g * outputOffset, - N); + BlasGemm::compute(false, + false, + M, + N, + K, + 1.0f, + filterData + g * filterOffset, + K, + colData, + N, + beta, + outputData + g * outputOffset, + N); } inputData += inputChannels * inputHeight * inputWidth; outputData += outputChannels * outputHeight * outputWidth; @@ -188,8 +187,6 @@ public: } Col2ImFunctor col2im; - GemmFunctor gemm; - size_t inputOffset = imShape.getElements(); size_t outputOffset = (outputChannels / groups_) * outputHeight * outputWidth; @@ -205,19 +202,19 @@ public: colData = inputGrad + g * inputOffset; scale = 1.0f; } - gemm(CblasTrans, - CblasNoTrans, - M, - N, - K, - 1.0f, - filterData + g * filterOffset, - M, - outputGrad + g * outputOffset, - N, - scale, - colData, - N); + BlasGemm::compute(true, + false, + M, + N, + K, + 1.0f, + filterData + g * filterOffset, + M, + outputGrad + g * outputOffset, + N, + scale, + colData, + N); if (needIm2col) { col2im(inputGrad + g * inputOffset, imShape, @@ -299,7 +296,6 @@ public: } Im2ColFunctor im2col; - GemmFunctor gemm; size_t inputOffset = imShape.getElements(); size_t outputOffset = (outputChannels / groups_) * outputHeight * outputWidth; @@ -321,19 +317,19 @@ public: int M = outputChannels / groups_; int K = outputHeight * outputWidth; int N = inputChannels / groups_ * filterHeight * filterWidth; - gemm(CblasNoTrans, - CblasTrans, - M, - N, - K, - 1.0f, - outputGrad + g * outputOffset, - K, - colData, - K, - i == 0 ? beta : 1.0f, - filterGrad + g * filterOffset, - N); + BlasGemm::compute(false, + true, + M, + N, + K, + 1.0f, + outputGrad + g * outputOffset, + K, + colData, + K, + i == 0 ? beta : 1.0f, + filterGrad + g * filterOffset, + N); } inputData += inputChannels * inputHeight * inputWidth; outputGrad += outputChannels * outputHeight * outputWidth; diff --git a/paddle/function/GemmFunctor.cpp b/paddle/function/GemmFunctor.cpp new file mode 100644 index 0000000000000000000000000000000000000000..9e25ee58a12490a1454436b3fe4a89176478d5c0 --- /dev/null +++ b/paddle/function/GemmFunctor.cpp @@ -0,0 +1,90 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "GemmFunctor.h" +#include "paddle/math/MathFunctions.h" + +namespace paddle { + +template +struct BlasGemm { + static void compute(const bool transA, + const bool transB, + const int M, + const int N, + const int K, + const T alpha, + const T* A, + const int lda, + const T* B, + const int ldb, + const T beta, + T* C, + const int ldc) { +#ifdef PADDLE_USE_EIGEN_FOR_BLAS + EigenBlasGemm::compute( + transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); +#else + gemm(transA == false ? CblasNoTrans : CblasTrans, + transB == false ? CblasNoTrans : CblasTrans, + M, + N, + K, + alpha, + A, + lda, + B, + ldb, + beta, + C, + ldc); +#endif + } +}; + +template +struct BlasGemm { + static void compute(const bool transA, + const bool transB, + const int M, + const int N, + const int K, + const T alpha, + const T* A, + const int lda, + const T* B, + const int ldb, + const T beta, + T* C, + const int ldc) { + hl_matrix_mul((T*)A, + transA == false ? HPPL_OP_N : HPPL_OP_T, + (T*)B, + transB == false ? HPPL_OP_N : HPPL_OP_T, + C, + M, + N, + K, + alpha, + beta, + lda, + ldb, + ldc); + } +}; + +template struct BlasGemm; +template struct BlasGemm; + +} // namespace paddle diff --git a/paddle/function/GemmFunctor.h b/paddle/function/GemmFunctor.h index d5db5cf5e7a855d89b262fe8cf42aa2c55f419f1..0809953b4eb17c25eadcce7f474a3dab0469bba1 100644 --- a/paddle/function/GemmFunctor.h +++ b/paddle/function/GemmFunctor.h @@ -14,7 +14,7 @@ limitations under the License. */ #pragma once -#include "paddle/math/MathFunctions.h" +#include "TensorType.h" namespace paddle { @@ -24,73 +24,42 @@ namespace paddle { // of MatMulFunction, we need to consider the reconstruction of hl_matrix_mul // interface. template -class GemmFunctor { -public: - void operator()(const CBLAS_TRANSPOSE transA, - const CBLAS_TRANSPOSE TransB, - const int M, - const int N, - const int K, - const T alpha, - const T* A, - const int lda, - const T* B, - const int ldb, - const T beta, - T* C, - const int ldc); +struct BlasGemm { + static void compute(const bool transA, + const bool transB, + const int M, + const int N, + const int K, + const T alpha, + const T* A, + const int lda, + const T* B, + const int ldb, + const T beta, + T* C, + const int ldc); }; +// TODO(hedaoyuan): Since the definition of the real type in the Paddle +// conflicts with the Eigen library, so compile the Eigen code can not +// include the Paddle header file. And need an EigenBlasGemm template class +// that does not contain the DeviceType parameter. +// I will fix this problem and merge BlasGemm and EigenBlasGemm into one. template -class GemmFunctor { -public: - void operator()(const CBLAS_TRANSPOSE transA, - const CBLAS_TRANSPOSE TransB, - const int M, - const int N, - const int K, - const T alpha, - const T* A, - const int lda, - const T* B, - const int ldb, - const T beta, - T* C, - const int ldc) { - gemm(transA, TransB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); - } -}; - -template -class GemmFunctor { -public: - void operator()(const CBLAS_TRANSPOSE transA, - const CBLAS_TRANSPOSE TransB, - const int M, - const int N, - const int K, - const T alpha, - const T* A, - const int lda, - const T* B, - const int ldb, - const T beta, - T* C, - const int ldc) { - hl_matrix_mul((T*)A, - transA == CblasNoTrans ? HPPL_OP_N : HPPL_OP_T, - (T*)B, - TransB == CblasNoTrans ? HPPL_OP_N : HPPL_OP_T, - C, - M, - N, - K, - alpha, - beta, - lda, - ldb, - ldc); - } +struct EigenBlasGemm { + static void compute(const bool transA, + const bool transB, + const int M, + const int N, + const int K, + const T alpha, + const T* A, + const int lda, + const T* B, + const int ldb, + const T beta, + T* C, + const int ldc); }; } // namespace paddle diff --git a/paddle/gserver/gradientmachines/NeuralNetwork.cpp b/paddle/gserver/gradientmachines/NeuralNetwork.cpp index cfa80a89365af5111746eec9599d16e37532a9f7..26cff3e67710b2f38d93572c5d58849aa94a5135 100644 --- a/paddle/gserver/gradientmachines/NeuralNetwork.cpp +++ b/paddle/gserver/gradientmachines/NeuralNetwork.cpp @@ -202,7 +202,7 @@ void NeuralNetwork::prefetch(const std::vector& inArgs) { auto mat = dynamic_cast( para->getMat(PARAMETER_VALUE).get()); para->clearGradient(); - mat->clearIndices(); + if (mat) mat->clearIndices(); } } } diff --git a/paddle/gserver/gradientmachines/RecurrentGradientMachine.cpp b/paddle/gserver/gradientmachines/RecurrentGradientMachine.cpp index f98bf95064fa539b990309dfe0bff10c1e99d096..1829f72a87054d9e4ead97962ca1f6738e585787 100644 --- a/paddle/gserver/gradientmachines/RecurrentGradientMachine.cpp +++ b/paddle/gserver/gradientmachines/RecurrentGradientMachine.cpp @@ -184,7 +184,7 @@ public: } void backward(const UpdateCallback& callback) override { - if (biases_) { + if (biases_ && biases_->getWGrad()) { backwardActivation(); biases_->getWGrad()->collectBias(*getOutputGrad(), 1); biases_->getParameterPtr()->incUpdate(callback); @@ -1012,11 +1012,6 @@ void RecurrentGradientMachine::generateSequence() { /* width */ resultNum, false, /* useGpu */ false); - Matrix::resizeOrCreate(generator_.outArg.value, - /* height */ maxGenWordCount, - /* width */ 1, - false, - /* useGpu */ false); } ICpuGpuVector::resizeOrCreate(generator_.outArg.sequenceStartPositions, numSequences + 1, @@ -1026,7 +1021,7 @@ void RecurrentGradientMachine::generateSequence() { } else { oneWaySearch(numSequences); } - if (dataArgsSize_) createDataOutlink(batchMachineIdVec_); + if (dataArgsSize_) createDataOutlink(); size_t size = generator_.ids.size(); generator_.outArg.ids->resize(size); @@ -1106,6 +1101,7 @@ void RecurrentGradientMachine::oneWaySearch(size_t batchSize) { } batchMachineIdVec_.clear(); + batchMachineStartPos_.clear(); int* starts = generator_.outArg.sequenceStartPositions->getMutableData(false); starts[0] = 0; generator_.ids.clear(); @@ -1312,13 +1308,20 @@ void RecurrentGradientMachine::fillGenOutputs() { finalPaths_[i].resize(minFinalPathsSize); } - batchMachineIdVec_.clear(); generator_.ids.clear(); int* starts = generator_.outArg.sequenceStartPositions->getMutableData(false); starts[0] = 0; if (numResults > 1) { - real* probs = generator_.outArg.in->getData(); + int idsProbSaveSize = 0; + for (auto inSeq : finalPaths_) { + for (auto path : inSeq) idsProbSaveSize += path.ids.size(); + idsProbSaveSize += inSeq.size(); + } + Matrix::resizeOrCreate( + generator_.outArg.value, idsProbSaveSize, 1, false, false); real* idsProb = generator_.outArg.value->getData(); + + real* probs = generator_.outArg.in->getData(); size_t curPos = 0; for (size_t i = 0; i < finalPaths_.size(); ++i) { for (size_t j = 0; j < finalPaths_[i].size(); ++j) { @@ -1333,24 +1336,16 @@ void RecurrentGradientMachine::fillGenOutputs() { curPos += genLen; idsProb[curPos++] = -1.0; probs[i * numResults + j] = path.logProb; - - if (!j && dataArgsSize_) { - // in beam search, here only reserved the top 1 generated result - // for out_links that are not the generated word indices. - batchMachineIdVec_.insert(batchMachineIdVec_.end(), - path.machineIdVec.begin(), - path.machineIdVec.end()); - } } starts[i + 1] = generator_.ids.size(); } } else { for (size_t i = 0; i < finalPaths_.size(); ++i) { CHECK(!finalPaths_[i].empty()); - generator_.ids.insert(generator_.ids.begin(), - finalPaths_[i][0].ids.begin(), - finalPaths_[i][0].ids.end()); - starts[i + 1] = starts[i] + finalPaths_[i][0].ids.size(); + Path& path = finalPaths_[i][0]; + generator_.ids.insert( + generator_.ids.begin(), path.ids.begin(), path.ids.end()); + starts[i + 1] = starts[i] + path.ids.size(); } } } @@ -1364,25 +1359,76 @@ void RecurrentGradientMachine::copyDataOutlinkFrame(size_t machineCur) { } } -void RecurrentGradientMachine::createDataOutlink( - std::vector& machineIdVec) { - size_t seqNum = - getBeamSize() > 1UL ? finalPaths_.size() : finalPaths_[0].size(); - std::vector starts(seqNum + 1, 0); - for (size_t i = 0; i < seqNum; ++i) { - size_t seqLen = getBeamSize() > 1UL ? finalPaths_[i][0].ids.size() - : finalPaths_[0][i].ids.size(); - starts[i + 1] = starts[i] + seqLen; +void RecurrentGradientMachine::createDataOutlinkSelRowsInfo( + bool isSeq, std::vector& outArgs) { + batchMachineIdVec_.clear(); + + size_t seqIdx = 0; + for (size_t i = 0; i < finalPaths_.size(); ++i) { + for (size_t j = 0; j < finalPaths_[i].size(); ++j) { + std::vector& machineIdVec = finalPaths_[i][j].machineIdVec; + if (isSeq) { + for (size_t i = 0; i < machineIdVec.size(); ++i) { + size_t rowId = machineIdVec[i]; + int* seqPos = + outArgs[i].sequenceStartPositions->getMutableData(false); + batchMachineIdVec_.push_back(seqPos[rowId]); + } + } else { + batchMachineIdVec_.insert( + batchMachineIdVec_.end(), machineIdVec.begin(), machineIdVec.end()); + } + seqIdx++; + } } +} +void RecurrentGradientMachine::createDataOutlinkCopySizeInfo( + bool isSeq, std::vector& outArgs, std::vector& copySize) { + size_t totalSeqNum = std::accumulate( + finalPaths_.begin(), + finalPaths_.end(), + 0UL, + [](size_t a, const std::vector& b) { return a + b.size(); }); + copySize.resize(totalSeqNum, 1); + + batchMachineStartPos_.resize(totalSeqNum + 1, 0); + if (isSeq) { + ICpuGpuVectorPtr inputSeqStartPos = outArgs[0].sequenceStartPositions; + CHECK_EQ(static_cast(inputSeqStartPos->getSize() - 1), + getBeamSize() > 1 ? finalPaths_.size() : finalPaths_[0].size()); + int* starts = inputSeqStartPos->getMutableData(false); + int seqId = 0; + for (int i = 0; i < finalPaths_.size(); ++i) { + for (int j = 0; j < finalPaths_[i].size(); ++j) { + copySize[seqId] = getBeamSize() > 1 ? starts[i + 1] - starts[i] + : starts[j + 1] - starts[j]; + batchMachineStartPos_[seqId + 1] = + batchMachineStartPos_[seqId] + finalPaths_[i][j].ids.size(); + seqId++; + } + } + } else { + for (size_t i = 0; i < finalPaths_[0].size(); ++i) + batchMachineStartPos_[i + 1] = + batchMachineStartPos_[i] + finalPaths_[0][i].ids.size(); + } +} + +void RecurrentGradientMachine::createDataOutlink() { for (size_t i = 0; i < dataArgsSize_; i++) { + bool isSeq = dataArgsFrame_[i][0].hasSeq(); + std::vector copySize; + createDataOutlinkCopySizeInfo(isSeq, dataArgsFrame_[i], copySize); + createDataOutlinkSelRowsInfo(isSeq, dataArgsFrame_[i]); + dataArgs_[i].concat(dataArgsFrame_[i], - machineIdVec, - starts, + batchMachineIdVec_, + batchMachineStartPos_, + copySize, useGpu_, HPPL_STREAM_1, PASS_TEST); - auto dataAgent = dynamic_cast(outFrameLines_[i + 1].agentLayer.get()); CHECK_NOTNULL(dataAgent); diff --git a/paddle/gserver/gradientmachines/RecurrentGradientMachine.h b/paddle/gserver/gradientmachines/RecurrentGradientMachine.h index fb3fc5877ac96323e891f800db80af83b6809831..c16fae6d1770e616fdcfabd440624c9be9753c91 100644 --- a/paddle/gserver/gradientmachines/RecurrentGradientMachine.h +++ b/paddle/gserver/gradientmachines/RecurrentGradientMachine.h @@ -190,7 +190,7 @@ public: std::vector ids; /** - * @brief idsProb, log probability of each generated words. + * @brief idsProb, log probability of each generated word. */ std::vector idsProb; @@ -472,15 +472,43 @@ private: void copyDataOutlinkFrame(size_t machineCur); /* - * @brief In generation, if the layer group has more than 1 outlink, outlinks - * except the first one are data outlinks. This function creates the data - * outlinks. - * @note In beam search, only one generated sequence with the hightest log - * probabilites are retained. - * @param machineIdVec : select a row of output matrix in each frame - * that the generation process expanded. + * @brief In generation, if the layer group has more than 1 outlink, outlink + * except the first one is a data outlink. In RecurrentLayerGroup, each time + * step is a separate Network, outputs of a layer inside the + * RecurrentLayerGroup are stored in separate Arguments. If one layer is + * specified as an outlink of RecurrentLayerGroup. This function will + * collect outputs in each time step of each generated sequence which are + * dispersed in separate Arguments to form a new single Argument as output of + * RecurrentLayerGroup. */ - void createDataOutlink(std::vector& machineIdVec); + void createDataOutlink(); + + /* + * @brief decide to select how many rows from the Matrix stored the forward + * pass results from a start position. + * + * @param isSeq: a flag indicating whetehr the layer to be output of the + * RecurrentGradientMachine is a sequence or not + * @param outArgs: all of the the returned Arguments of the forward pass + * during the generation process. + * @param copySize: the returned result, number of rows to select from the + * Matrix stored the forward pass results from a start position. + */ + void createDataOutlinkCopySizeInfo(bool isSeq, + std::vector& outArgs, + std::vector& copySize); + + /* + * @brief decide index of the start row for each time step of a generated + * sequence in Matrix stored the entire beam search batch's forward pass + * results. + * + * @param isSeq: a flag indicating whether the layer to be output of the + * RecurrentGradientMachine is a sequence or not + * @param outArgs: all of the returned Arguments of the forward pass + * during the generation process. + */ + void createDataOutlinkSelRowsInfo(bool isSeq, std::vector& outArgs); /* * @brief used in beam search, connect previous frame to form recurrent link @@ -543,6 +571,7 @@ private: std::vector topIds_; std::vector seqIds_; std::vector batchMachineIdVec_; + std::vector batchMachineStartPos_; std::vector> finalPaths_; std::vector minFinalPathLogProb_; BeamSearchControlCallbacks* beamSearchCtrlCallbacks_; diff --git a/paddle/gserver/layers/ScaleShiftLayer.cpp b/paddle/gserver/layers/ScaleShiftLayer.cpp new file mode 100644 index 0000000000000000000000000000000000000000..35fd038ab43a8a8b08bc328b3d1b08a7bbedd0a1 --- /dev/null +++ b/paddle/gserver/layers/ScaleShiftLayer.cpp @@ -0,0 +1,107 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "Layer.h" + +namespace paddle { + +/** + * A layer applies a linear transformation to each element in each row of + * the input matrix. For each element, the layer first re-scale it and then + * adds a bias to it. + * + * \f[ + * y = wx + b + * \f] + * + * Here, w is the scale and b is the bias. Both w and b are trainable scalars. + * + */ + +class ScaleShiftLayer : public Layer { +protected: + std::unique_ptr scale_; + std::unique_ptr offset_; + +public: + explicit ScaleShiftLayer(const LayerConfig& config) : Layer(config) {} + + bool init(const LayerMap& layerMap, + const ParameterMap& parameterMap) override; + + void forward(PassType passType) override; + void backward(const UpdateCallback& callback = nullptr) override; +}; + +REGISTER_LAYER(scale_shift, ScaleShiftLayer); + +bool ScaleShiftLayer::init(const LayerMap& layerMap, + const ParameterMap& parameterMap) { + Layer::init(layerMap, parameterMap); + CHECK_EQ(inputLayers_.size(), 1U); + scale_.reset(new Weight(1, 1, parameters_[0])); + if (biasParameter_.get() != NULL) { + offset_ = std::unique_ptr(new Weight(1, 1, biasParameter_)); + } + return true; +} + +void ScaleShiftLayer::forward(PassType passType) { + Layer::forward(passType); + + MatrixPtr inV = getInputValue(0); + resetOutput(inV->getHeight(), inV->getWidth()); + MatrixPtr outV = getOutputValue(); + real scaleValue = scale_->getW()->getElement(0, 0); + outV->mulScalar(*inV, scaleValue); + if (offset_) { + real offsetValue = offset_->getW()->getElement(0, 0); + outV->add(offsetValue); + } +} + +void ScaleShiftLayer::backward(const UpdateCallback& callback) { + MatrixPtr inV = getInputValue(0); + MatrixPtr inG = getInputGrad(0); + MatrixPtr outV = getOutputValue(); + MatrixPtr outG = getOutputGrad(); + + /* Calculate the parameter gradient for the current layer */ + if (scale_->getWGrad()) { + MatrixPtr rowSumMtx; + Matrix::resizeOrCreate(rowSumMtx, outG->getHeight(), 1, false, useGpu_); + // this_i = scaleDest * this_i + scaleSum * \sum_j b_{ij} * c_{ij} + rowSumMtx->sumOfProducts( + /* b= */ *inV, /* c= */ *outG, /* scaleSum= */ 1, /* scaleDest= */ 0.); + // this_i = scaleDest * this_i + scaleSum * \sum_j b_{ji} + scale_->getWGrad()->sumCols( + /* b= */ *rowSumMtx, /* scaleSum= */ 1., /* scaleDest= */ 1.); + scale_->getParameterPtr()->incUpdate(callback); + } + if (offset_ && offset_->getWGrad()) { + MatrixPtr rowSumMtx; + Matrix::resizeOrCreate(rowSumMtx, outG->getHeight(), 1, false, useGpu_); + rowSumMtx->sumRows(*outG, 1., 0.); + offset_->getWGrad()->sumCols(*rowSumMtx, 1., 1.); + offset_->getParameterPtr()->incUpdate(callback); + } + + /* Calculate the input layers error */ + if (inG) { + real scaleValue = scale_->getW()->getElement(0, 0); + inG->add(*outG, scaleValue); + } +} + +} // namespace paddle diff --git a/paddle/gserver/tests/test_LayerGrad.cpp b/paddle/gserver/tests/test_LayerGrad.cpp index 0f312b6ca50bc1e6317251ba785f1c61a224b54e..dd2c955e6a4660a1811f205ec5c5861798291912 100644 --- a/paddle/gserver/tests/test_LayerGrad.cpp +++ b/paddle/gserver/tests/test_LayerGrad.cpp @@ -2007,6 +2007,21 @@ TEST(Layer, RowL2NormLayer) { } } +TEST(Layer, ScaleShiftLayer) { + const size_t batchSize = 16; + const size_t size = 32; + TestConfig config; + config.layerConfig.set_type("scale_shift"); + config.layerConfig.set_size(size); + config.biasSize = 1; + config.inputDefs.push_back( + {INPUT_DATA, "input", /* dim= */ size, /* paraSize= */ 1}); + config.layerConfig.add_inputs(); + for (auto useGpu : {false, true}) { + testLayerGrad(config, "scale_shift", batchSize, false, useGpu, false); + } +} + int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); initMain(argc, argv); diff --git a/paddle/gserver/tests/test_NetworkCompare.cpp b/paddle/gserver/tests/test_NetworkCompare.cpp index f930c72fde3f5e0a6a45cb6bfd3507a4f48028fc..d36f72360f8ebd2033fb3e8c0e1b30911abba362 100644 --- a/paddle/gserver/tests/test_NetworkCompare.cpp +++ b/paddle/gserver/tests/test_NetworkCompare.cpp @@ -269,7 +269,8 @@ TEST(Compare, img_conv2) { bool useGpu = FLAGS_use_gpu; double eps = FLAGS_checkgrad_eps; FLAGS_use_gpu = true; - FLAGS_checkgrad_eps = 1e-2; + // Sometimes, this unit test will fail with 1e-2 + FLAGS_checkgrad_eps = 4e-2; compareNetwork(config_file_a, config_file_b); FLAGS_use_gpu = useGpu; FLAGS_checkgrad_eps = eps; diff --git a/paddle/operators/CMakeLists.txt b/paddle/operators/CMakeLists.txt index 0ba598823b9d090108d9ada719393c4ed417dd62..58e9d594c40b130f7fd37ecc1a48b6ba0152669e 100644 --- a/paddle/operators/CMakeLists.txt +++ b/paddle/operators/CMakeLists.txt @@ -43,6 +43,7 @@ endfunction() add_subdirectory(math) cc_test(gather_test SRCS gather_test.cc DEPS tensor) +op_library(gather_op SRCS gather_op.cc gather_op.cu) cc_test(scatter_test SRCS scatter_test.cc DEPS tensor) diff --git a/paddle/operators/cross_entropy_op.cc b/paddle/operators/cross_entropy_op.cc index a623c551e1088365ade6f73bc6149977b6ef017e..ab1e1c101a10e09a81f7785d2f1514822e3bdf15 100644 --- a/paddle/operators/cross_entropy_op.cc +++ b/paddle/operators/cross_entropy_op.cc @@ -39,11 +39,10 @@ class OnehotCrossEntropyGradientOp : public framework::OperatorWithKernel { protected: void InferShape(const framework::InferShapeContext &ctx) const override { - auto X_grad = ctx.Output(framework::GradVarName("X")); + auto dX = ctx.Output(framework::GradVarName("X")); auto X = ctx.Input("X"); - // TODO(superjom) add enforce here after helper functions ready - X_grad->Resize(X->dims()); + dX->Resize(X->dims()); } }; @@ -70,9 +69,7 @@ namespace ops = paddle::operators; REGISTER_OP(onehot_cross_entropy, ops::OnehotCrossEntropyOp, ops::OnehotCrossEntropyOpMaker, onehot_cross_entropy_grad, ops::OnehotCrossEntropyGradientOp); -REGISTER_OP_CPU_KERNEL( - onehot_cross_entropy, - ops::OnehotCrossEntropyOpKernel); -REGISTER_OP_CPU_KERNEL( - onehot_cross_entropy_grad, - ops::OnehotCrossEntropyGradientOpKernel); +REGISTER_OP_CPU_KERNEL(onehot_cross_entropy, + ops::OnehotCrossEntropyOpKernel); +REGISTER_OP_CPU_KERNEL(onehot_cross_entropy_grad, + ops::OnehotCrossEntropyGradientOpKernel); diff --git a/paddle/operators/cross_entropy_op.cu b/paddle/operators/cross_entropy_op.cu index 4bbc8f093a794d46737a16488684a6a0cc25e285..d999bfce58c8a6db5c811aad677c07094b881841 100644 --- a/paddle/operators/cross_entropy_op.cu +++ b/paddle/operators/cross_entropy_op.cu @@ -12,10 +12,122 @@ See the License for the specific language governing permissions and limitations under the License. */ -#define EIGEN_USE_GPU -#include "paddle/operators/cross_entropy_op.h" +#include "paddle/framework/op_registry.h" +#include "paddle/platform/assert.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +template +__host__ __device__ T clipping_log(const T x) { + PADDLE_ASSERT(std::is_floating_point::value); + const T kApproInf = 1e20; + T v = log(x); + if (v == INFINITY) { + return kApproInf; + } + if (v == -INFINITY) { + return -kApproInf; + } + return v; +} + +template +__global__ void CrossEntropyKernel(T* Y, const T* X, const int* label, + const int N, const int D) { + // TOOD(qingqing) define CUDA_1D_KERNEL_LOOP macro in a common file. + // CUDA_1D_KERNEL_LOOP(i, N) { + for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N; + i += blockDim.x * gridDim.x) { + PADDLE_ASSERT(label[i] >= 0 && label[i] < D); + Y[i] = -clipping_log(X[i * D + label[i]]); + } +} + +// TODO(qingqing): make zero setting an common function. +template +__global__ void zero(T* X, const int N) { + for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N; + i += blockDim.x * gridDim.x) { + X[i] = 0.0; + } +} + +template +__global__ void CrossEntropyGradientKernel(T* dX, const T* dY, const T* X, + const int* label, const int N, + const int D) { + // TOOD(qingqing) define CUDA_1D_KERNEL_LOOP macro in a common file. + // CUDA_1D_KERNEL_LOOP(i, N) { + for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N; + i += blockDim.x * gridDim.x) { + int idx = i * D + label[i]; + dX[idx] = -dY[i] / X[idx]; + } +} + +template +class OnehotCrossEntropyOpCUDAKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), + "It must use GPUPlace."); + + auto X = ctx.Input("X"); + const T* Xdata = X->data(); + const int* label_data = ctx.Input("label")->data(); + auto Y = ctx.Output("Y"); + Y->mutable_data(ctx.GetPlace()); + T* Ydata = Y->data(); + + int N = X->dims()[0]; + int D = X->dims()[1]; + int block = 512; + int grid = (N + block - 1) / block; + // TODO(qingqing) launch kernel on specified stream + // base on ExecutionContext. + CrossEntropyKernel<<>>(Ydata, Xdata, label_data, N, D); + } +}; + +template +class OnehotCrossEntropyGradientOpCUDAKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), + "It must use GPUPlace."); + + auto X = ctx.Input("X"); + auto dX = ctx.Output(framework::GradVarName("X")); + auto dY = ctx.Input(framework::GradVarName("Y")); + auto label = ctx.Input("label"); + + auto* dXdata = dX->template mutable_data(ctx.GetPlace()); + auto* dYdata = dY->template data(); + auto* Xdata = X->template data(); + auto* label_data = label->data(); + + int N = X->dims()[0]; + int D = X->dims()[1]; + int block = 512; + int grid = (N * D + block - 1) / block; + zero<<>>(dXdata, N * D); + + grid = (N + block - 1) / block; + // TODO(qingqing): launch kernel on specified stream + // base on ExecutionContext. + CrossEntropyGradientKernel<<>>(dXdata, dYdata, Xdata, + label_data, N, D); + } +}; + +} // namespace operators +} // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( - onehot_cross_entropy, - ops::OnehotCrossEntropyOpKernel); +REGISTER_OP_GPU_KERNEL(onehot_cross_entropy, + ops::OnehotCrossEntropyOpCUDAKernel); +REGISTER_OP_GPU_KERNEL(onehot_cross_entropy_grad, + ops::OnehotCrossEntropyGradientOpCUDAKernel); diff --git a/paddle/operators/cross_entropy_op.h b/paddle/operators/cross_entropy_op.h index b7df92c9a98ebf12b72a8d3d8e8e4e1a950f06c9..eb4d1348de1d940e2648c83c8ba94b289f10c5b2 100644 --- a/paddle/operators/cross_entropy_op.h +++ b/paddle/operators/cross_entropy_op.h @@ -21,7 +21,7 @@ namespace operators { using Tensor = framework::Tensor; template -T tolerable_value(T x) { +inline T tolerable_value(const T x) { static_assert(std::is_floating_point::value, "tolerable_value works only on float, " "double and double double."); @@ -39,10 +39,13 @@ T tolerable_value(T x) { return x; } -template +template class OnehotCrossEntropyOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { + PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()), + "It must use CPUPlace."); + auto X = ctx.Input("X"); const T* Xdata = X->data(); const int* label_data = ctx.Input("label")->data(); @@ -62,10 +65,13 @@ class OnehotCrossEntropyOpKernel : public framework::OpKernel { } }; -template +template class OnehotCrossEntropyGradientOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { + PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()), + "It must use CPUPlace."); + auto X = ctx.Input("X"); auto dX = ctx.Output(framework::GradVarName("X")); auto dY = ctx.Input(framework::GradVarName("Y")); @@ -79,6 +85,8 @@ class OnehotCrossEntropyGradientOpKernel : public framework::OpKernel { const int batch_size = X->dims()[0]; const int class_num = X->dims()[1]; + // TODO(qingqing): make zero setting an common function. + memset(dXdata, 0, sizeof(T) * batch_size * class_num); for (int i = 0; i < batch_size; ++i) { int index = i * class_num + label_data[i]; dXdata[index] = -tolerable_value(dYdata[i] / Xdata[index]); diff --git a/paddle/operators/gather.h b/paddle/operators/gather.h index d6e6990394e46ba06c4bacfe33ca522f3ff1413a..92fb51ec17709bc6f8abb2f516a9240fb5dc3a77 100644 --- a/paddle/operators/gather.h +++ b/paddle/operators/gather.h @@ -17,6 +17,7 @@ limitations under the License. */ #include #include "paddle/framework/ddim.h" +#include "paddle/framework/eigen.h" #include "paddle/framework/tensor.h" #include "paddle/platform/place.h" @@ -25,13 +26,13 @@ namespace operators { // Implementation of CPU copy template -void CPUGather(const T* params, const int* indices, const int slice_size, +void CPUGather(const T* src, const int* indices, const int slice_size, const int index_size, T* output) { const size_t slice_bytes = slice_size * sizeof(T); for (int i = 0; i < index_size; ++i) { int index_ = indices[i]; - memcpy(output + i * slice_size, params + index_ * slice_size, slice_bytes); + memcpy(output + i * slice_size, src + index_ * slice_size, slice_bytes); } } @@ -55,7 +56,7 @@ void Gather(const platform::Place& place, const paddle::framework::Tensor* src, int index_size = index->dims()[0]; auto src_dims = src->dims(); - paddle::framework::DDim output_dims(src_dims); + framework::DDim output_dims(src_dims); output_dims[0] = index_size; // slice size diff --git a/paddle/operators/gather_op.cc b/paddle/operators/gather_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..123bed296c462c30bddd3bfbd530098fdbfe4856 --- /dev/null +++ b/paddle/operators/gather_op.cc @@ -0,0 +1,72 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/gather_op.h" +#include "paddle/framework/ddim.h" + +namespace paddle { +namespace operators { + +class GatherOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(const framework::InferShapeContext &ctx) const override { + int batch_size = ctx.Input("Index")->dims()[0]; + PADDLE_ENFORCE_GE(batch_size, 0, "Batch size must be >0"); + framework::DDim output_dims(ctx.Input("X")->dims()); + output_dims[0] = batch_size; + ctx.Output("Out")->Resize(output_dims); + } +}; + +class GatherGradOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(const framework::InferShapeContext &ctx) const override { + auto X_grad = ctx.Output(framework::GradVarName("X")); + auto X = ctx.Input("X"); + + X_grad->Resize(X->dims()); + } +}; + +class GatherOpMaker : public framework::OpProtoAndCheckerMaker { + public: + GatherOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "The source input of gather op"); + AddInput("Index", "The index input of gather op"); + AddOutput("Out", "The output of add op"); + AddComment(R"DOC( +Gather Operator by selecting from the first axis, + +Out = X[Index] +)DOC"); + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(gather, ops::GatherOp, ops::GatherOpMaker, gather_grad, + ops::GatherGradOp); +REGISTER_OP_CPU_KERNEL(gather, + ops::GatherOpKernel); +REGISTER_OP_CPU_KERNEL( + gather_grad, + ops::GatherGradientOpKernel); diff --git a/paddle/operators/gather_op.cu b/paddle/operators/gather_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..3f04a7b3f8142106917975cd1e0413fa1633a298 --- /dev/null +++ b/paddle/operators/gather_op.cu @@ -0,0 +1,20 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/gather_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL(gather, + ops::GatherOpKernel); diff --git a/paddle/operators/gather_op.h b/paddle/operators/gather_op.h new file mode 100644 index 0000000000000000000000000000000000000000..381854f301870beadb72d9e9b4eb17ff199960fb --- /dev/null +++ b/paddle/operators/gather_op.h @@ -0,0 +1,53 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "gather.h" +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" +#include "scatter.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +template +class GatherOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &ctx) const override { + auto *X = ctx.Input("X"); + auto *Index = ctx.Input("Index"); + auto *Y = ctx.Output("Out"); + + Y->mutable_data(ctx.GetPlace()); + Gather(ctx.GetPlace(), X, Index, Y); + } +}; + +template +class GatherGradientOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &ctx) const override { + auto *Index = ctx.Input("Index"); + auto *dX = ctx.Output(framework::GradVarName("X")); + auto *dO = ctx.Input(framework::GradVarName("Out")); + + dX->mutable_data(ctx.GetPlace()); + ScatterUpdate(ctx.GetPlace(), dO, Index, dX); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/gaussian_random_op.cc b/paddle/operators/gaussian_random_op.cc index f30bbce9586d61063b4b61d98695bb568ef73c8d..a85363ad81d2a23e7267026c067f74f8c94c4786 100644 --- a/paddle/operators/gaussian_random_op.cc +++ b/paddle/operators/gaussian_random_op.cc @@ -1,11 +1,8 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. @@ -19,25 +16,25 @@ namespace paddle { namespace operators { template -class GaussianRandomKernel : public framework::OpKernel { +class CPUGaussianRandomKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { float mean = context.op_.GetAttr("mean"); float std = context.op_.GetAttr("std"); - auto* tensor = context.Output(0); + auto* tensor = context.Output("Out"); T* data = tensor->mutable_data(context.GetPlace()); - // TODO(dzh): attribute does not support unsigned int. - // And we need a global random seed configuration. - int seed = context.op_.GetAttr("seed"); + unsigned int seed = + static_cast(context.op_.GetAttr("seed")); + std::minstd_rand engine; if (seed == 0) { seed = std::random_device()(); } - std::mt19937 g(seed); - std::normal_distribution distribution(mean, std); + engine.seed(seed); + std::normal_distribution dist(mean, std); ssize_t size = framework::product(tensor->dims()); - for (int i = 0; i < size; ++i) { - data[i] = distribution(g); + for (ssize_t i = 0; i < size; ++i) { + data[i] = dist(engine); } } }; @@ -48,7 +45,7 @@ class GaussianRandomOp : public framework::OperatorWithKernel { protected: void InferShape(const framework::InferShapeContext& context) const override { - auto* tensor = context.Output(0); + auto* tensor = context.Output("Out"); auto dims = GetAttr>("dims"); PADDLE_ENFORCE(dims.size() > 0UL, "dims can be one int or array. dims must be set."); @@ -68,8 +65,8 @@ Use to initialize tensor with gaussian random generator. )DOC"); AddAttr>("dims", "The dimension of random tensor."); - AddAttr("mean", "mean value of random.").SetDefault(.0f); - AddAttr("std", "minimum value of random value.").SetDefault(1.0f); + AddAttr("mean", "mean of random tensor.").SetDefault(.0f); + AddAttr("std", "std of random tensor.").SetDefault(1.0f); AddAttr("seed", "Random seed of generator." "0 means use system wide seed") @@ -83,4 +80,4 @@ Use to initialize tensor with gaussian random generator. namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(gaussian_random, ops::GaussianRandomOp, ops::GaussianRandomOpMaker); -REGISTER_OP_CPU_KERNEL(gaussian_random, ops::GaussianRandomKernel); +REGISTER_OP_CPU_KERNEL(gaussian_random, ops::CPUGaussianRandomKernel); diff --git a/paddle/operators/gaussian_random_op.cu b/paddle/operators/gaussian_random_op.cu index 1340b1e1e9f19fd96ced9e57fab75fe9d33bc84e..018a4bfcb26b9008c054000c91edf01e371fd82b 100644 --- a/paddle/operators/gaussian_random_op.cu +++ b/paddle/operators/gaussian_random_op.cu @@ -1,53 +1,65 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#include -#include -#include "paddle/platform/dynload/curand.h" -#include "paddle/platform/gpu_info.h" - +#include +#include +#include +#include #include "paddle/framework/op_registry.h" +#include "paddle/framework/operator.h" namespace paddle { namespace operators { template -class GaussianRandomKernel : public framework::OpKernel { +struct GaussianGenerator { + T mean_, std_; + unsigned int seed_; + + __host__ __device__ GaussianGenerator(T mean, T std, int seed) + : mean_(mean), std_(std), seed_(seed) {} + + __host__ __device__ T operator()(const unsigned int n) const { + thrust::minstd_rand rng; + rng.seed(seed_); + thrust::normal_distribution dist(mean_, std_); + rng.discard(n); + return dist(rng); + } +}; + +template +class GPUGaussianRandomKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - float mean = context.op_.GetAttr("mean"); - float std = context.op_.GetAttr("std"); - auto* tensor = context.Output(0); + auto* tensor = context.Output("Out"); T* data = tensor->mutable_data(context.GetPlace()); - - int seed = context.op_.GetAttr("seed"); + unsigned int seed = + static_cast(context.op_.GetAttr("seed")); if (seed == 0) { std::random_device rd; seed = rd(); } - curandGenerator_t g; - PADDLE_ENFORCE(platform::dynload::curandCreateGenerator( - &g, CURAND_RNG_PSEUDO_DEFAULT)); - PADDLE_ENFORCE( - platform::dynload::curandSetPseudoRandomGeneratorSeed(g, seed)); - platform::dynload::curandGenerateNormal( - g, data, framework::product(tensor->dims()), mean, std); + T mean = static_cast(context.op_.GetAttr("mean")); + T std = static_cast(context.op_.GetAttr("std")); + thrust::counting_iterator index_sequence_begin(0); + ssize_t N = framework::product(tensor->dims()); + thrust::transform(index_sequence_begin, index_sequence_begin + N, + thrust::device_ptr(data), + GaussianGenerator(mean, std, seed)); } }; } // namespace operators } // namespace paddle -namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(gaussian_random, ops::GaussianRandomKernel); +REGISTER_OP_GPU_KERNEL(gaussian_random, + paddle::operators::GPUGaussianRandomKernel); diff --git a/paddle/operators/mul_op.cc b/paddle/operators/mul_op.cc index 460e458ca4f7f40746f0dbf7e258a165faa88e1a..173cc3850ca9d97200e272ec59d1bd3fe09b5053 100644 --- a/paddle/operators/mul_op.cc +++ b/paddle/operators/mul_op.cc @@ -13,7 +13,6 @@ limitations under the License. */ #include "paddle/operators/mul_op.h" -#include "paddle/operators/math/math_function.h" namespace paddle { namespace operators { diff --git a/paddle/operators/net_op.cc b/paddle/operators/net_op.cc index 7e3779ed2e97f477dcde7be5f07254ca61b3a0e4..44d925f0b0cc5ff20d52e548816f118c2027343a 100644 --- a/paddle/operators/net_op.cc +++ b/paddle/operators/net_op.cc @@ -86,9 +86,8 @@ std::vector NetOp::OutputVars(bool has_intermediate) const { return ret_val; } -NetOp::NetOp(const std::string& type, - const framework::OperatorBase::VarNameMap& inputs, - const framework::OperatorBase::VarNameMap& outputs, +NetOp::NetOp(const std::string& type, const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, const framework::AttributeMap& attrs) : framework::OperatorBase(type, inputs, outputs, attrs) {} diff --git a/paddle/operators/net_op.h b/paddle/operators/net_op.h index 885ac6eeca65998dea62c1db40b9261cceb97805..fcd8134b2c19cae6a4d006a4cd6fe32d2d627c34 100644 --- a/paddle/operators/net_op.h +++ b/paddle/operators/net_op.h @@ -38,8 +38,10 @@ class NetOp : public framework::OperatorBase { public: static const char kAll[]; NetOp() : framework::OperatorBase("plain_net", {}, {}, {}) {} - NetOp(const std::string& type, const VarNameMap& inputs, - const VarNameMap& outputs, const framework::AttributeMap& attrs); + + NetOp(const std::string& type, const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, + const framework::AttributeMap& attrs); NetOp(const NetOp& o) : framework::OperatorBase(o.type_, {}, {}, o.attrs_) { this->ops_.reserve(o.ops_.size()); @@ -84,13 +86,14 @@ class NetOp : public framework::OperatorBase { return true; } - void AddOp(const framework::OperatorBase& op) { AddOp(op.Clone()); } + void AppendOp(const framework::OperatorBase& op) { AppendOp(op.Clone()); } /** * @brief Add an operator by ptr */ - void AddOp(std::unique_ptr op) { - PADDLE_ENFORCE(!add_op_done_, "Cannot AddOp when this network is sealed"); + void AppendOp(std::unique_ptr op) { + PADDLE_ENFORCE(!add_op_done_, + "Cannot AppendOp when this network is sealed"); PADDLE_ENFORCE_NOT_NULL(op, "Cannot Insert Null op"); ops_.push_back(std::move(op)); } diff --git a/paddle/operators/net_op_test.cc b/paddle/operators/net_op_test.cc index e9598610c0a74e08a613a397109ad65994821498..99019754a965e5e7aeb74c6bfc10c9646289651b 100644 --- a/paddle/operators/net_op_test.cc +++ b/paddle/operators/net_op_test.cc @@ -38,10 +38,10 @@ TEST(OpKernel, all) { auto net = std::make_shared(); ASSERT_NE(net, nullptr); - net->AddOp(std::unique_ptr( + net->AppendOp(std::unique_ptr( new TestOp("test", {{"X", {"x"}}, {"W", {"w1"}}, {"b", {"b1"}}}, {{"Out", {"y"}}}, {}))); - net->AddOp(std::unique_ptr( + net->AppendOp(std::unique_ptr( new TestOp("test", {{"X", {"y"}}, {"W", {"w2"}}, {"b", {"b2"}}}, {{"Out", {"z"}}}, {}))); @@ -61,7 +61,7 @@ TEST(NetOp, insert_op) { auto op1 = std::unique_ptr( new framework::NOP("empty", {{"X", {"x"}}, {"W", {"w1"}}, {"b", {"b1"}}}, {{"Out", {"y"}}}, {})); - net.AddOp(*op1); + net.AppendOp(*op1); net.InsertOp(0, *op1); ASSERT_EQ(2UL, net.ops_.size()); net.InsertOp(2, std::move(op1)); @@ -70,9 +70,9 @@ TEST(NetOp, insert_op) { TEST(NetOp, Clone) { NetOp net; - net.AddOp( + net.AppendOp( std::unique_ptr(new framework::NOP{"empty", {}, {}, {}})); - net.AddOp(std::unique_ptr( + net.AppendOp(std::unique_ptr( new framework::NOP{"empty2", {}, {}, {}})); net.CompleteAddOp(true); auto new_net_op = net.Clone(); diff --git a/paddle/operators/recurrent_op.cc b/paddle/operators/recurrent_op.cc index 78ce0ba3c0fa4fe380e49a848c2434fe593cd00b..16bd249cb3d989c695ec9378f09d48833d70be58 100644 --- a/paddle/operators/recurrent_op.cc +++ b/paddle/operators/recurrent_op.cc @@ -131,8 +131,8 @@ const rnn::ArgumentName RecurrentGradientOp::kArgName{ "memories", "pre_memories", "boot_memories@grad"}; RecurrentOp::RecurrentOp(const std::string& type, - const framework::OperatorBase::VarNameMap& inputs, - const framework::OperatorBase::VarNameMap& outputs, + const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, const framework::AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs) { rnn::InitArgument(kArgName, &arg_, *this); @@ -223,8 +223,8 @@ void RecurrentGradientAlgorithm::InferShape(const Scope& scope) const { } RecurrentGradientOp::RecurrentGradientOp( - const std::string& type, const framework::OperatorBase::VarNameMap& inputs, - const framework::OperatorBase::VarNameMap& outputs, + const std::string& type, const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, const framework::AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs) { rnn::InitArgument(kArgName, &arg_, *this); diff --git a/paddle/operators/recurrent_op.h b/paddle/operators/recurrent_op.h index bcfa817de8242153b164fa091309f19a6ad8a246..1033d657a3a8f96c8b3dae8dd93d3f1f6840b59b 100644 --- a/paddle/operators/recurrent_op.h +++ b/paddle/operators/recurrent_op.h @@ -114,8 +114,9 @@ class RecurrentGradientAlgorithm { class RecurrentOp : public framework::OperatorBase { public: - RecurrentOp(const std::string& type, const VarNameMap& inputs, - const VarNameMap& outputs, const framework::AttributeMap& attrs); + RecurrentOp(const std::string& type, const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, + const framework::AttributeMap& attrs); RecurrentOp(const RecurrentOp& o) : framework::OperatorBase( @@ -150,8 +151,9 @@ class RecurrentOp : public framework::OperatorBase { class RecurrentGradientOp : public framework::OperatorBase { public: - RecurrentGradientOp(const std::string& type, const VarNameMap& inputs, - const VarNameMap& outputs, + RecurrentGradientOp(const std::string& type, + const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, const framework::AttributeMap& attrs); RecurrentGradientOp(const RecurrentGradientOp& o) diff --git a/paddle/operators/rowwise_add_op.h b/paddle/operators/rowwise_add_op.h index 232135c38de68d4002e044972b282b43a1374c72..1cbd8bb31ad90a32d8a4e3bb59617d0b5384e470 100644 --- a/paddle/operators/rowwise_add_op.h +++ b/paddle/operators/rowwise_add_op.h @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" @@ -63,7 +63,7 @@ class RowwiseAddGradKernel : public framework::OpKernel { // https://eigen.tuxfamily.org/dox/unsupported/TensorBase_8h_source.html // colwise add - Eigen::array dims{{1}}; /* dimension to reduce */ + Eigen::array dims{{0}}; /* dimension to reduce */ EigenVector::Flatten(*db).device(place) = OutGrad.sum(dims); } }; diff --git a/paddle/operators/scale_op.cc b/paddle/operators/scale_op.cc index 3b18ff078e721ffaf9046e271368dd32807154f5..8e96a74c94ab7ff4d8c3266695e5157aff67905b 100644 --- a/paddle/operators/scale_op.cc +++ b/paddle/operators/scale_op.cc @@ -20,8 +20,9 @@ namespace operators { class ScaleOp : public framework::OperatorWithKernel { public: - ScaleOp(const std::string &type, const VarNameMap &inputs, - const VarNameMap &outputs, const framework::AttributeMap &attrs) + ScaleOp(const std::string &type, const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) : OperatorWithKernel(type, inputs, outputs, attrs) {} protected: @@ -52,10 +53,11 @@ The equation is: Out = scale*X template class ScaleGradOp : public NetOp { public: - ScaleGradOp(const std::string &type, const VarNameMap &inputs, - const VarNameMap &outputs, const framework::AttributeMap &attrs) + ScaleGradOp(const std::string &type, const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) : NetOp(type, inputs, outputs, attrs) { - AddOp(framework::OpRegistry::CreateOp( + AppendOp(framework::OpRegistry::CreateOp( "scale", {{"X", {Input(framework::GradVarName("Out"))}}}, {{"Out", {Output(framework::GradVarName("X"))}}}, {{"scale", GetAttr("scale")}})); @@ -80,10 +82,11 @@ class IdentityOpMaker : public framework::OpProtoAndCheckerMaker { template class IdentityOp : public NetOp { public: - IdentityOp(const std::string &type, const VarNameMap &inputs, - const VarNameMap &outputs, const framework::AttributeMap &attrs) + IdentityOp(const std::string &type, const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) : NetOp(type, inputs, outputs, attrs) { - AddOp(framework::OpRegistry::CreateOp( + AppendOp(framework::OpRegistry::CreateOp( "scale", {{"X", {Input("X")}}}, {{"Out", {Output("Out")}}}, {{"scale", static_cast(1)}})); } diff --git a/paddle/operators/uniform_random_op.cc b/paddle/operators/uniform_random_op.cc index a0a0d4d914b37fca4250e5218a953f573611a086..29491137e6d8b4bfa2d0d07d48ffed1212a6131f 100644 --- a/paddle/operators/uniform_random_op.cc +++ b/paddle/operators/uniform_random_op.cc @@ -1,11 +1,8 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. @@ -39,7 +36,8 @@ class CPUUniformRandomKernel : public framework::OpKernel { std::uniform_real_distribution dist( static_cast(context.op_.GetAttr("min")), static_cast(context.op_.GetAttr("max"))); - for (ssize_t i = 0; i < framework::product(tensor->dims()); ++i) { + ssize_t size = framework::product(tensor->dims()); + for (ssize_t i = 0; i < size; ++i) { data[i] = dist(engine); } } @@ -66,7 +64,6 @@ class UniformRandomOpMaker : public framework::OpProtoAndCheckerMaker { : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddOutput("Out", "The output tensor of uniform random op"); AddComment(R"DOC(Uniform random operator. - Used to initialize tensor with uniform random generator. )DOC"); AddAttr>("dims", "the dimension of random tensor"); diff --git a/paddle/operators/uniform_random_op.cu b/paddle/operators/uniform_random_op.cu index 7a243555b6385af690e9632dfa81bf96d70f925d..1d6709934cbbcf50265eabef87c857654f783ed8 100644 --- a/paddle/operators/uniform_random_op.cu +++ b/paddle/operators/uniform_random_op.cu @@ -1,11 +1,8 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. diff --git a/paddle/parameter/Argument.cpp b/paddle/parameter/Argument.cpp index 0547ac93cd183afbcede41d280c6b4b16ed7dab1..79d2158334269be2c644c74b202724fabc21a07b 100644 --- a/paddle/parameter/Argument.cpp +++ b/paddle/parameter/Argument.cpp @@ -276,17 +276,21 @@ int32_t Argument::resizeAndCopyFrom(const Argument& src, void Argument::concat(const std::vector& args, const std::vector& selectRows, const std::vector& seqStartPos, + const std::vector& copySize, bool useGpu, hl_stream_t stream, PassType passType) { CHECK(!subSequenceStartPositions) << "undefined behavior for subsequence positions"; - size_t batchSize = selectRows.size(); + size_t batchSize = 0; + for (size_t i = 0; i < copySize.size(); ++i) + batchSize += copySize[i] * (seqStartPos[i + 1] - seqStartPos[i]); + auto copyArg = [batchSize, stream](MatrixPtr& dst, MatrixPtr src, - int startRow, - int pos, + int desStartRow, + int srcStartRow, int size, bool useGpu) { if (!src) { @@ -300,14 +304,14 @@ void Argument::concat(const std::vector& args, dst->resize(batchSize, width); } - MatrixPtr tmpMatrix = dst->subMatrix(startRow, size); - tmpMatrix->copyFrom(*src->subMatrix(pos, size), stream); + MatrixPtr tmpMatrix = dst->subMatrix(desStartRow, size); + tmpMatrix->copyFrom(*src->subMatrix(srcStartRow, size), stream); }; auto copyIds = [batchSize, stream](IVectorPtr& dst, const IVectorPtr& src, - int startRow, - int pos, + int desStartRow, + int srcStartRow, int size, bool useGpu) { if (!src) { @@ -315,13 +319,14 @@ void Argument::concat(const std::vector& args, return; } IVector::resizeOrCreate(dst, batchSize, useGpu); - dst->subVec(startRow, size)->copyFrom(*src->subVec(pos, size), stream); + dst->subVec(desStartRow, size) + ->copyFrom(*src->subVec(srcStartRow, size), stream); }; auto copyStrs = [batchSize, stream](SVectorPtr& dst, const SVectorPtr& src, - int startRow, - int pos, + int desStartRow, + int srcStartRow, int size, bool useGpu) { if (!src) { @@ -333,30 +338,31 @@ void Argument::concat(const std::vector& args, } else { dst->resize(batchSize); } - std::copy( - src->begin() + pos, src->begin() + pos + size, dst->begin() + startRow); + std::copy(src->begin() + srcStartRow, + src->begin() + srcStartRow + size, + dst->begin() + desStartRow); }; dataId = args[0].dataId; CHECK_NE(seqStartPos.size(), 0UL); - size_t sampleNum = seqStartPos.size() - 1; - for (size_t i = 0; i < sampleNum; ++i) { + int desStartRow = 0; + for (size_t i = 0; i < copySize.size(); ++i) { int startPos = seqStartPos[i]; int endPos = seqStartPos[i + 1]; CHECK_GE(args.size(), static_cast(endPos - startPos)); for (int j = startPos; j < endPos; ++j) { const Argument& arg = args[j - startPos]; - CHECK_EQ(arg.dataId, dataId) << "Arguments in concat should have" - << " same dataId"; - const int copySize = 1; - const int rowIdx = selectRows[j]; - copyArg(in, arg.in, j, rowIdx, copySize, useGpu); - copyArg(value, arg.value, j, rowIdx, copySize, useGpu); + CHECK_EQ(arg.dataId, dataId) << "Arguments to concatenate should have " + << "the same dataId."; + const int srcStartRow = selectRows[j]; + copyArg(in, arg.in, desStartRow, srcStartRow, copySize[i], useGpu); + copyArg(value, arg.value, desStartRow, srcStartRow, copySize[i], useGpu); if (passType != PASS_TEST) { - copyArg(grad, arg.grad, j, rowIdx, copySize, useGpu); + copyArg(grad, arg.grad, desStartRow, srcStartRow, copySize[i], useGpu); } - copyIds(ids, arg.ids, j, rowIdx, copySize, useGpu); - copyStrs(strs, arg.strs, j, rowIdx, copySize, useGpu); + copyIds(ids, arg.ids, desStartRow, srcStartRow, copySize[i], useGpu); + copyStrs(strs, arg.strs, desStartRow, srcStartRow, copySize[i], useGpu); + desStartRow += copySize[i]; } } ICpuGpuVector::resizeOrCreate( diff --git a/paddle/parameter/Argument.h b/paddle/parameter/Argument.h index d8d7a4398f99a2794c5d25528a7d582f5ed629ba..38797a76f55c311070192bd307103143d67cabca 100644 --- a/paddle/parameter/Argument.h +++ b/paddle/parameter/Argument.h @@ -240,6 +240,7 @@ struct Argument { void concat(const std::vector& args, const std::vector& selectRows, const std::vector& seqStartPos, + const std::vector& copySize, bool useGpu, hl_stream_t stream, PassType passType); diff --git a/paddle/parameter/Parameter.h b/paddle/parameter/Parameter.h index e31cbc3dee6c57851c241e117dbbd9b701db9d2c..321f4275d8e68d7d3fbbc19acf0afacf689474e5 100644 --- a/paddle/parameter/Parameter.h +++ b/paddle/parameter/Parameter.h @@ -65,7 +65,10 @@ public: size_t getSize() const { return config_.size(); } bool isFullSize() const { - return this->getSize() == bufs_[PARAMETER_VALUE]->getSize(); + if (bufs_[PARAMETER_VALUE]) { + return this->getSize() == bufs_[PARAMETER_VALUE]->getSize(); + } + return false; } inline bool useGpu() const { return useGpu_; } diff --git a/paddle/platform/device_context.cc b/paddle/platform/device_context.cc index f92c15ae450e94de44d27e77763e791e6bae4426..ad212c5b2c47312743362db4926c80bf056e100d 100644 --- a/paddle/platform/device_context.cc +++ b/paddle/platform/device_context.cc @@ -114,9 +114,6 @@ CUDADeviceContext::~CUDADeviceContext() { PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_)); } - if (curand_generator_) { - PADDLE_ENFORCE(dynload::curandDestroyGenerator(curand_generator_)); - } eigen_stream_.reset(); eigen_device_.reset(); PADDLE_ENFORCE(cudaStreamDestroy(stream_)); @@ -152,19 +149,6 @@ cudnnHandle_t CUDADeviceContext::cudnn_handle() { cudaStream_t CUDADeviceContext::stream() { return stream_; } -curandGenerator_t CUDADeviceContext::curand_generator() { - if (!curand_generator_) { - SetDeviceId(place_.device); - PADDLE_ENFORCE(dynload::curandCreateGenerator(&curand_generator_, - CURAND_RNG_PSEUDO_DEFAULT)); - PADDLE_ENFORCE( - dynload::curandSetPseudoRandomGeneratorSeed(curand_generator_, seed_)); - - PADDLE_ENFORCE(dynload::curandSetStream(curand_generator_, stream_)); - } - return curand_generator_; -} - #endif // PADDLE_ONLY_CPU } // namespace platform diff --git a/paddle/platform/device_context.h b/paddle/platform/device_context.h index c5042ae33e47e04521e59e0d91ddd8d4efffe50a..11528e1194e4516891034fa8febdac3ba6eed204 100644 --- a/paddle/platform/device_context.h +++ b/paddle/platform/device_context.h @@ -17,7 +17,6 @@ limitations under the License. */ #ifndef PADDLE_ONLY_CPU #include "paddle/platform/dynload/cublas.h" #include "paddle/platform/dynload/cudnn.h" -#include "paddle/platform/dynload/curand.h" #include "paddle/platform/gpu_info.h" #define EIGEN_USE_GPU #endif @@ -40,7 +39,7 @@ class DeviceContext { class CPUDeviceContext : public DeviceContext { public: CPUDeviceContext(); - explicit CPUDeviceContext(CPUPlace); + explicit CPUDeviceContext(CPUPlace place); virtual ~CPUDeviceContext() {} Eigen::DefaultDevice* eigen_device() const; @@ -56,7 +55,7 @@ class EigenCudaStreamDevice; class CUDADeviceContext : public DeviceContext { public: - explicit CUDADeviceContext(GPUPlace); + explicit CUDADeviceContext(GPUPlace place); virtual ~CUDADeviceContext(); /*! \brief Wait for all operations completion in the stream. */ @@ -75,9 +74,6 @@ class CUDADeviceContext : public DeviceContext { /*! \brief Return cudnn handle in the device context. */ cudnnHandle_t cudnn_handle(); - /*! \brief Return curand handle in the device context. */ - curandGenerator_t curand_generator(); - /*! \brief Return cuda stream in the device context. */ cudaStream_t stream(); // clang-format on @@ -85,18 +81,13 @@ class CUDADeviceContext : public DeviceContext { private: GPUPlace place_; - private: std::unique_ptr eigen_device_; std::unique_ptr eigen_stream_; - private: - uint64_t seed_; - // clang-format off cudaStream_t stream_{nullptr}; cudnnHandle_t cudnn_handle_{nullptr}; cublasHandle_t cublas_handle_{nullptr}; - curandGenerator_t curand_generator_{nullptr}; // clang-format on }; diff --git a/paddle/platform/device_context_test.cc b/paddle/platform/device_context_test.cc index 8b764bdcd9d92e6b2203e45160acee35ec110538..5883a55272f0f24c94d48bc43c62ddb7bef15465 100644 --- a/paddle/platform/device_context_test.cc +++ b/paddle/platform/device_context_test.cc @@ -43,8 +43,6 @@ TEST(Device, CUDADeviceContext) { ASSERT_NE(nullptr, cudnn_handle); cublasHandle_t cublas_handle = device_context->cublas_handle(); ASSERT_NE(nullptr, cublas_handle); - curandGenerator_t curand_handle = device_context->curand_generator(); - ASSERT_NE(nullptr, curand_handle); ASSERT_NE(nullptr, device_context->stream()); delete device_context; } diff --git a/paddle/pserver/ParameterClient2.cpp b/paddle/pserver/ParameterClient2.cpp index f7e391f76324a09c203dfbbb449feb050caa8fb4..54063a809a4f9e558f8d364f5c437f2b6d98925b 100644 --- a/paddle/pserver/ParameterClient2.cpp +++ b/paddle/pserver/ParameterClient2.cpp @@ -65,7 +65,6 @@ void ParameterClient2::initThreads() { LOG(INFO) << "parallel_thread_num dosent need to set"; } syncThreadPool_.reset(new SyncThreadPool(threadNum_)); - startThreads(); } @@ -224,6 +223,14 @@ void ParameterClient2::prepareSendData( request.set_cost(cost); request.set_batch_status(batchStatus); CHECK_EQ(request.blocks_size(), 0); + VLOG(10) << "request: trainer_id: " << request.trainer_id() + << " update_mode" << request.update_mode() + << " send_back_parameter: " << request.send_back_parameter() + << " send_back_parameter_type: " + << request.send_back_parameter_type() + << " num_samples: " << request.num_samples() + << " cost: " << request.cost() + << " batch_status: " << request.batch_status(); } for (const auto& segments : parameterSegments) { const auto it = parameterMap_.find(segments.id); @@ -251,11 +258,17 @@ void ParameterClient2::prepareSendData( CHECK(sendMat != nullptr) << "sendMat is nullptr"; syncThreadPool_->exec([&](int tid, size_t numThreads) { + std::lock_guard guard(sparseAutoGrowthMutex_); const auto& localIndices = prefetchMat->getLocalIndices(); /// num of sparse rows size_t nLocalBlocks = localIndices.size(); uint64_t beginDim = 0; uint64_t endDim = 0; + + // FIXME(typhoonzero): let it resize first + prefetchMat->getLocalRow(nLocalBlocks + 1); + sendMat->getLocalRow(nLocalBlocks + 1); + for (size_t row = 0; row < nLocalBlocks; ++row) { int64_t blockId = localIndices[row]; // local row -> sparse row int serverId = std::abs((blockId + nameHash) % serviceNum_); @@ -275,7 +288,6 @@ void ParameterClient2::prepareSendData( block->set_begin_pos(row * blockSize); /// block len block->set_block_size(endDim - beginDim); - if (sendingPara) { sendJob->parallelInputIovs[serverId].push_back( {sendMat->getLocalRow(row), sizeof(real) * (size_t)blockSize}); diff --git a/paddle/pserver/ParameterClient2.h b/paddle/pserver/ParameterClient2.h index 89b3ddd502151e537b81bdbb09f171dd6e13ba26..29b9eeacddf2945dd22b7b17fc87c7c74b868896 100644 --- a/paddle/pserver/ParameterClient2.h +++ b/paddle/pserver/ParameterClient2.h @@ -583,6 +583,7 @@ protected: #ifndef PADDLE_DISABLE_TIMER uint64_t forwardbackwordTime_; #endif + std::mutex sparseAutoGrowthMutex_; /// map id to parameter used for decoding protobuf data std::unordered_map parameterMap_; diff --git a/python/paddle/trainer/config_parser.py b/python/paddle/trainer/config_parser.py index da99e5bd53458aa0cb201a3525e28c66ab63c52d..b3d5ef95cc816e5d8493ee88097d9e4b6d45daf8 100644 --- a/python/paddle/trainer/config_parser.py +++ b/python/paddle/trainer/config_parser.py @@ -338,7 +338,8 @@ def RecurrentLayerGroupWithoutOutLinksBegin(name, in_links_count += 1 layer_name = MakeLayerNameInParentSubmodel(name) layer = g_layer_map[layer_name] - ScatterAgentLayer(name=name, size=layer.size) + ScatterAgentLayer( + name=name, size=layer.size, width=layer.width, height=layer.height) pair = g_current_submodel.in_links.add() pair.layer_name = layer_name @@ -2197,8 +2198,8 @@ class MaxOutLayer(LayerBase): maxout_conf = self.config.inputs[0].maxout_conf parse_maxout(self.inputs[0].maxout, input_layer.name, maxout_conf) out_channels = maxout_conf.image_conf.channels / maxout_conf.groups - self.set_cnn_layer(name, g_layer_map[input_layer.name].height, - g_layer_map[input_layer.name].width, out_channels) + self.set_cnn_layer(name, maxout_conf.image_conf.img_size_y, + maxout_conf.image_conf.img_size, out_channels) @config_layer('row_conv') @@ -2232,6 +2233,20 @@ class ClipLayer(LayerBase): self.config.inputs[0].clip_conf.max = max +@config_layer('scale_shift') +class ScaleShiftLayer(LayerBase): + def __init__(self, name, inputs, bias=True, **xargs): + super(ScaleShiftLayer, self).__init__( + name, 'scale_shift', 0, inputs=inputs, **xargs) + config_assert( + len(self.inputs) == 1, + 'ScaleShiftLayer must have one and only one input.') + input_layer = self.get_input_layer(0) + self.set_layer_size(input_layer.size) + self.create_input_parameter(0, 1, [1, 1]) + self.create_bias_parameter(bias, 1) + + # key: cost type # value: cost class g_cost_map = {} @@ -2391,9 +2406,11 @@ class GatherAgentLayer(LayerBase): @config_layer('scatter_agent') class ScatterAgentLayer(LayerBase): - def __init__(self, name, size, device=None): + def __init__(self, name, size, width=None, height=None, device=None): super(ScatterAgentLayer, self).__init__( name, 'scatter_agent', size, inputs=[], device=device) + if height and width: + self.set_layer_height_width(height, width) @config_layer('multiplex') diff --git a/python/paddle/trainer_config_helpers/layers.py b/python/paddle/trainer_config_helpers/layers.py index 1bc55c869601551aff5fc0311458f906385522d2..be854c38f76af4cd6d5f628785b3e4dbfc6ebacb 100755 --- a/python/paddle/trainer_config_helpers/layers.py +++ b/python/paddle/trainer_config_helpers/layers.py @@ -16,11 +16,13 @@ import functools import collections import inspect +import paddle.trainer.config_parser as cp from paddle.trainer.config_parser import * from .activations import LinearActivation, SigmoidActivation, TanhActivation, \ ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation from .evaluators import * -from .poolings import MaxPooling, AvgPooling, BasePoolingType +from .poolings import MaxPooling, AvgPooling, BasePoolingType, \ + CudnnAvgPooling, CudnnMaxPooling from .attrs import * from .default_decorators import * @@ -133,6 +135,7 @@ __all__ = [ 'clip_layer', 'slice_projection', 'kmax_sequence_score_layer', + 'scale_shift_layer', ] @@ -230,6 +233,7 @@ class LayerType(object): CLIP_LAYER = 'clip' KMAX_SEQ_SCORE = 'kmax_seq_score' + SCALE_SHIFT_LAYER = 'scale_shift' @staticmethod def is_layer_type(type_name): @@ -328,6 +332,14 @@ class LayerOutput(object): self.outputs = outputs self.reverse = reverse + @property + def width(self): + return cp.g_layer_map[self.full_name].width + + @property + def height(self): + return cp.g_layer_map[self.full_name].height + def set_input(self, input): """ Set the input for a memory layer. Can only be used for memory layer @@ -909,7 +921,13 @@ def data_layer(name, size, height=None, width=None, layer_attr=None): width=width, **ExtraLayerAttribute.to_kwargs(layer_attr)) - return LayerOutput(name, LayerType.DATA, size=size) + num_filters = None + if height is not None and width is not None: + num_filters = size / (width * height) + assert num_filters * width * height == size, \ + "size=%s width=%s height=%s" % (size, width, height) + + return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters) @wrap_name_default("embedding") @@ -2569,6 +2587,10 @@ def img_pool_layer(input, assert input.num_filters is not None num_channels = input.num_filters + assert type(pool_type) in [AvgPooling, MaxPooling, CudnnAvgPooling, + CudnnMaxPooling], \ + "only (Cudnn)AvgPooling, (Cudnn)MaxPooling are supported" + if pool_type is None: pool_type = MaxPooling() elif isinstance(pool_type, AvgPooling): @@ -2578,7 +2600,6 @@ def img_pool_layer(input, if ( isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \ else pool_type.name - pool_size_y = pool_size if pool_size_y is None else pool_size_y stride_y = stride if stride_y is None else stride_y padding_y = padding if padding_y is None else padding_y @@ -4202,8 +4223,7 @@ def conv_operator(img, num_channels = img.num_filters assert isinstance(filter, LayerOutput) - if filter.size is not None: - filter.size = filter_size * filter_size_y * num_filters * num_channels + assert filter.size is not None opCls = ConvTransOperator if trans else ConvOperator @@ -4914,7 +4934,6 @@ def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None): :return: LayerOutput object. :rtype: LayerOutput """ - assert input.layer_type == LayerType.CONV_LAYER assert isinstance(input.activation, LinearActivation) assert groups > 1 if num_channels is None: @@ -6210,3 +6229,43 @@ def kmax_sequence_score_layer(input, name=None, beam_size=1): return LayerOutput( name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size) + + +@wrap_name_default("scale_shift") +@wrap_param_attr_default() +@wrap_bias_attr_default() +def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None): + """ + A layer applies a linear transformation to each element in each row of + the input matrix. For each element, the layer first re-scale it and then + adds a bias to it. + + This layer is very like the SlopeInterceptLayer, except the scale and + bias are trainable. + + .. math:: + + y = w * x + b + + .. code-block:: python + + scale_shift = scale_shift_layer(input=input_layer, bias_attr=False) + + :param name: The Layer Name. + :type name: basestring + :param input: The input layer. + :type input: LayerOutput. + :param param_attr: The parameter attribute of scaling. + :type param_attr: ParameterAttribute + :param bias_attr: The parameter attribute of shifting. + :type bias_attr: ParameterAttribute + :return: LayerOutput object. + :rtype: LayerOutput + """ + Layer( + name=name, + type=LayerType.SCALE_SHIFT_LAYER, + inputs=Input(input.name, **param_attr.attr), + bias=ParamAttr.to_bias(bias_attr)) + return LayerOutput( + name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size) diff --git a/python/paddle/trainer_config_helpers/tests/configs/file_list.sh b/python/paddle/trainer_config_helpers/tests/configs/file_list.sh index a61beb871ad064c617fa141451afcb2a5ac64854..3860699f6fb76871ee8ea100fce1b3118bbc041d 100755 --- a/python/paddle/trainer_config_helpers/tests/configs/file_list.sh +++ b/python/paddle/trainer_config_helpers/tests/configs/file_list.sh @@ -8,6 +8,6 @@ test_spp_layer test_bilinear_interp test_maxout test_bi_grumemory math_ops test_seq_concat_reshape test_pad test_smooth_l1 test_multiplex_layer test_prelu_layer test_row_conv test_detection_output_layer test_multibox_loss_layer test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_layer -test_kmax_seq_socre_layer test_seq_select_layers) +test_kmax_seq_socre_layer test_seq_select_layers test_scale_shift_layer) export whole_configs=(test_split_datasource) diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_scale_shift_layer.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_scale_shift_layer.protostr new file mode 100644 index 0000000000000000000000000000000000000000..35ade126a2586a8e3eee6f0ac3c7e49523c8f5c5 --- /dev/null +++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_scale_shift_layer.protostr @@ -0,0 +1,72 @@ +type: "nn" +layers { + name: "data" + type: "data" + size: 100 + active_type: "" +} +layers { + name: "__scale_shift_0__" + type: "scale_shift" + size: 100 + active_type: "" + inputs { + input_layer_name: "data" + input_parameter_name: "___scale_shift_0__.w0" + } +} +layers { + name: "__scale_shift_1__" + type: "scale_shift" + size: 100 + active_type: "" + inputs { + input_layer_name: "data" + input_parameter_name: "___scale_shift_1__.w0" + } + bias_parameter_name: "___scale_shift_1__.wbias" +} +parameters { + name: "___scale_shift_0__.w0" + size: 1 + initial_mean: 0.0 + initial_std: 1.0 + dims: 1 + dims: 1 + initial_strategy: 0 + initial_smart: true +} +parameters { + name: "___scale_shift_1__.w0" + size: 1 + initial_mean: 0.0 + initial_std: 1.0 + dims: 1 + dims: 1 + initial_strategy: 0 + initial_smart: true +} +parameters { + name: "___scale_shift_1__.wbias" + size: 1 + initial_mean: 0.0 + initial_std: 0.0 + dims: 1 + dims: 1 + initial_strategy: 0 + initial_smart: false +} +input_layer_names: "data" +output_layer_names: "__scale_shift_0__" +output_layer_names: "__scale_shift_1__" +sub_models { + name: "root" + layer_names: "data" + layer_names: "__scale_shift_0__" + layer_names: "__scale_shift_1__" + input_layer_names: "data" + output_layer_names: "__scale_shift_0__" + output_layer_names: "__scale_shift_1__" + is_recurrent_layer_group: false +} + diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_scale_shift_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_scale_shift_layer.py new file mode 100644 index 0000000000000000000000000000000000000000..dd589116fa9932144ca066d3fa4c929d1433a7f1 --- /dev/null +++ b/python/paddle/trainer_config_helpers/tests/configs/test_scale_shift_layer.py @@ -0,0 +1,9 @@ +from paddle.trainer_config_helpers import * + +data = data_layer(name='data', size=100) + +scale = scale_shift_layer(input=data, bias_attr=False) + +scale_shift = scale_shift_layer(input=data) + +outputs(scale, scale_shift) diff --git a/python/paddle/v2/framework/tests/CMakeLists.txt b/python/paddle/v2/framework/tests/CMakeLists.txt index 0e8811bfe76e2793c958b0d1208f5cd14abf2390..3f4110e4a9de796140af9703559937338d27f251 100644 --- a/python/paddle/v2/framework/tests/CMakeLists.txt +++ b/python/paddle/v2/framework/tests/CMakeLists.txt @@ -13,6 +13,7 @@ py_test(test_add_two_op SRCS test_add_two_op.py) py_test(test_sigmoid_op SRCS test_sigmoid_op.py) py_test(test_softmax_op SRCS test_softmax_op.py) py_test(test_cross_entropy_op SRCS test_cross_entropy_op.py) +py_test(test_gather_op SRCS test_gather_op.py) py_test(test_fill_zeros_like_op SRCS test_fill_zeros_like_op.py) py_test(gradient_checker SRCS gradient_checker.py) @@ -22,7 +23,7 @@ py_test(test_rowwise_add_op SRCS test_rowwise_add_op.py) py_test(test_default_scope_funcs SRCS test_default_scope_funcs.py) py_test(test_operator SRCS test_operator.py) -# py_test(test_gaussian_random_op SRCS test_gaussian_random_op.py) +py_test(test_gaussian_random_op SRCS test_gaussian_random_op.py) py_test(test_uniform_random_op SRCS test_uniform_random_op.py) py_test(test_recurrent_op SRCS test_recurrent_op.py) py_test(test_sgd_op SRCS test_sgd_op.py) diff --git a/python/paddle/v2/framework/tests/op_test_util.py b/python/paddle/v2/framework/tests/op_test_util.py index dd65e0f2dc23d3f657ff16c55fb297dae210b2d7..3bc05a0feccbbd3d5e7852d85bd3dc8edaccfd07 100644 --- a/python/paddle/v2/framework/tests/op_test_util.py +++ b/python/paddle/v2/framework/tests/op_test_util.py @@ -64,7 +64,8 @@ class OpTestMeta(type): actual = numpy.array(scope.find_var(out_name).get_tensor()) expect = self.outputs[out_name] self.assertTrue( - numpy.allclose(actual, expect), + numpy.allclose( + actual, expect, atol=1e-05), "output name: " + out_name + "has diff") obj.test_all = test_all diff --git a/python/paddle/v2/framework/tests/test_cross_entropy_op.py b/python/paddle/v2/framework/tests/test_cross_entropy_op.py index 4815192e255c6e0429db3f50918a76a773b30131..d4277f2a42ce2e66e37405ccd3b2ee444d403d1a 100644 --- a/python/paddle/v2/framework/tests/test_cross_entropy_op.py +++ b/python/paddle/v2/framework/tests/test_cross_entropy_op.py @@ -8,9 +8,8 @@ class TestCrossEntropy(unittest.TestCase): __metaclass__ = OpTestMeta def setUp(self): - # TODO this unit test is not passed self.type = "onehot_cross_entropy" - batch_size = 100 + batch_size = 30 class_num = 10 X = numpy.random.random((batch_size, class_num)).astype("float32") label = 5 * numpy.ones(batch_size).astype("int32") @@ -22,9 +21,9 @@ class TestCrossEntropy(unittest.TestCase): class CrossEntropyGradOpTest(GradientChecker): - def test_softmax_grad(self): + def test_check_grad(self): op = create_op("onehot_cross_entropy") - batch_size = 100 + batch_size = 30 class_num = 10 inputs = { "X": numpy.random.uniform( diff --git a/python/paddle/v2/framework/tests/test_gather_op.py b/python/paddle/v2/framework/tests/test_gather_op.py new file mode 100644 index 0000000000000000000000000000000000000000..e86898304252d08be718e40fed46c5e921596af7 --- /dev/null +++ b/python/paddle/v2/framework/tests/test_gather_op.py @@ -0,0 +1,34 @@ +import unittest +from op_test_util import OpTestMeta +from gradient_checker import GradientChecker, create_op +import numpy +import paddle.v2.framework.core as core +from paddle.v2.framework.op import Operator + + +class TestGatherOp(unittest.TestCase): + __metaclass__ = OpTestMeta + + def setUp(self): + self.type = "gather" + xnp = numpy.random.random((10, 20)).astype("float32") + self.inputs = { + 'X': xnp, + 'Index': numpy.array([1, 3, 5]).astype("int32") + } + self.outputs = {'Out': self.inputs['X'][self.inputs['Index']]} + + +class TestGatherGradOp(GradientChecker): + def test_gather_grad(self): + print 'creating op' + op = create_op("gather") + print 'creating op done' + xnp = numpy.random.random((10, 20)).astype("float32") + inputs = {'X': xnp, 'Index': numpy.array([1, 3, 5]).astype("int32")} + print 'correct before check gradient' + self.check_grad(op, inputs, set("X"), "Out") + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_net.py b/python/paddle/v2/framework/tests/test_net.py index b42cadd11ab75abbc35763c8d12e8c27e995f0dc..9339cf28dabc95b46b958777200fb1db9dcf284f 100644 --- a/python/paddle/v2/framework/tests/test_net.py +++ b/python/paddle/v2/framework/tests/test_net.py @@ -6,8 +6,8 @@ import unittest def fc(X, W, Y): ret_v = core.Net.create() - ret_v.add_op(Operator("mul", X="X", Y="W", Out="pre_activation")) - ret_v.add_op(Operator("sigmoid", X="pre_activation", Y=Y)) + ret_v.append_op(Operator("mul", X="X", Y="W", Out="pre_activation")) + ret_v.append_op(Operator("sigmoid", X="pre_activation", Y=Y)) ret_v.complete_add_op(True) return ret_v @@ -16,12 +16,12 @@ class TestNet(unittest.TestCase): def test_net_all(self): net = core.Net.create() op1 = Operator("add_two", X="X", Y="Y", Out="Out") - net.add_op(op1) + net.append_op(op1) net2 = core.Net.create() - net2.add_op(fc(X="X", W="w", Y="fc.out")) + net2.append_op(fc(X="X", W="w", Y="fc.out")) net2.complete_add_op(True) - net.add_op(net2) + net.append_op(net2) net.complete_add_op(True) expected = ''' diff --git a/python/paddle/v2/framework/tests/test_recurrent_op.py b/python/paddle/v2/framework/tests/test_recurrent_op.py index 3d4a34d8d713ff1beeeba8ac48ad95176f7a29f2..d6000ab9f9d5b969f96128b183f48d49000c8a5e 100644 --- a/python/paddle/v2/framework/tests/test_recurrent_op.py +++ b/python/paddle/v2/framework/tests/test_recurrent_op.py @@ -150,7 +150,7 @@ class TestRecurrentOp(unittest.TestCase): sig_op = Operator("sigmoid", X="sum", Y="h@alias") for op in [x_fc_op, h_fc_op, sum_op, sig_op]: - stepnet.add_op(op) + stepnet.append_op(op) stepnet.complete_add_op(True) self.rnnop.set_stepnet(stepnet) diff --git a/python/paddle/v2/framework/tests/test_rowwise_add_op.py b/python/paddle/v2/framework/tests/test_rowwise_add_op.py index 29d72e850099734a9828ccceed47cc0a57fc3d6b..45d569da29d13cf8e2a3cb9d67c2d01e8b365453 100644 --- a/python/paddle/v2/framework/tests/test_rowwise_add_op.py +++ b/python/paddle/v2/framework/tests/test_rowwise_add_op.py @@ -20,7 +20,7 @@ class RowwiseAddGradOpTest(GradientChecker): def test_rowwise_add(self): op = create_op("rowwise_add") inputs = { - "X": np.random.uniform(0.1, 1, [10, 10]).astype("float32"), + "X": np.random.uniform(0.1, 1, [5, 10]).astype("float32"), "b": np.random.uniform(0.1, 1, [10]).astype("float32") } self.check_grad(op, inputs, set(["X", "b"]), "Out")