提交 b4c826c5 编写于 作者: T tensor-tang

Merge remote-tracking branch 'ups/develop' into fea/jit/rnn

test=develop
...@@ -166,8 +166,8 @@ copy(framework_lib DEPS ${framework_lib_deps} ...@@ -166,8 +166,8 @@ copy(framework_lib DEPS ${framework_lib_deps}
set(module "memory") set(module "memory")
copy(memory_lib copy(memory_lib
SRCS ${src_dir}/${module}/*.h ${src_dir}/${module}/detail/*.h SRCS ${src_dir}/${module}/*.h ${src_dir}/${module}/detail/*.h ${src_dir}/${module}/allocation/*.h
DSTS ${dst_dir}/${module} ${dst_dir}/${module}/detail DSTS ${dst_dir}/${module} ${dst_dir}/${module}/detail ${dst_dir}/${module}/allocation
) )
set(inference_deps paddle_fluid_shared paddle_fluid) set(inference_deps paddle_fluid_shared paddle_fluid)
......
...@@ -46,7 +46,7 @@ void IrAnalysisComposePass::InitTensorRTAttrs(Argument *argument) { ...@@ -46,7 +46,7 @@ void IrAnalysisComposePass::InitTensorRTAttrs(Argument *argument) {
{"mul", "conv2d", "pool2d", "relu", "softmax", "sigmoid", {"mul", "conv2d", "pool2d", "relu", "softmax", "sigmoid",
"depthwise_conv2d", "batch_norm", "concat", "tanh", "pad", "depthwise_conv2d", "batch_norm", "concat", "tanh", "pad",
"elementwise_add", "elementwise_mul", "dropout", "split", "prelu", "elementwise_add", "elementwise_mul", "dropout", "split", "prelu",
"conv2d_transpose"}); "conv2d_transpose", "leaky_relu"});
if (!node->IsOp()) return false; if (!node->IsOp()) return false;
if (teller_set.count(node->Op()->Type())) { if (teller_set.count(node->Op()->Type())) {
......
...@@ -551,4 +551,5 @@ USE_TRT_CONVERTER(pad); ...@@ -551,4 +551,5 @@ USE_TRT_CONVERTER(pad);
USE_TRT_CONVERTER(split); USE_TRT_CONVERTER(split);
USE_TRT_CONVERTER(prelu); USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose); USE_TRT_CONVERTER(conv2d_transpose);
USE_TRT_CONVERTER(leaky_relu);
#endif #endif
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
nv_library(tensorrt_converter nv_library(tensorrt_converter
SRCS mul_op.cc conv2d_op.cc fc_op.cc pool2d_op.cc elementwise_op.cc SRCS mul_op.cc conv2d_op.cc fc_op.cc pool2d_op.cc elementwise_op.cc
batch_norm_op.cc activation_op.cc softmax_op.cc concat_op.cc dropout_op.cc batch_norm_op.cc activation_op.cc softmax_op.cc concat_op.cc dropout_op.cc
pad_op.cc split_op.cc prelu_op.cc pad_op.cc split_op.cc prelu_op.cc leaky_relu_op.cc
DEPS tensorrt_engine tensorrt_plugin operator scope framework_proto op_registry) DEPS tensorrt_engine tensorrt_plugin operator scope framework_proto op_registry)
nv_test(test_op_converter SRCS test_op_converter.cc DEPS nv_test(test_op_converter SRCS test_op_converter.cc DEPS
...@@ -38,3 +38,5 @@ nv_test(test_trt_split_op SRCS test_split_op.cc split_op.cc ...@@ -38,3 +38,5 @@ nv_test(test_trt_split_op SRCS test_split_op.cc split_op.cc
nv_test(test_trt_prelu_op SRCS test_prelu_op.cc prelu_op.cc nv_test(test_trt_prelu_op SRCS test_prelu_op.cc prelu_op.cc
DEPS ${FLUID_CORE_MODULES} ${GLOB_OPERATOR_DEPS} tensorrt_engine tensorrt_plugin DEPS ${FLUID_CORE_MODULES} ${GLOB_OPERATOR_DEPS} tensorrt_engine tensorrt_plugin
prelu_op SERIAL) prelu_op SERIAL)
nv_test(test_trt_leaky_relu_op SRCS test_leaky_relu_op.cc leaky_relu_op.cc
DEPS ${FLUID_CORE_MODULES} ${GLOB_OPERATOR_DEPS} tensorrt_engine activation_op SERIAL)
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle {
namespace inference {
namespace tensorrt {
// LeakyRelu converter from fluid to tensorRT
class LeakyReluOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope, bool test_mode) override {
VLOG(4) << "convert fluid leaky_relu op to tensorrt layer";
framework::OpDesc op_desc(op, nullptr);
// Declare inputs
int input_num = op_desc.Input("X").size();
PADDLE_ENFORCE(input_num == 1);
auto* input = engine_->GetITensor(op_desc.Input("X")[0]);
// Get output
size_t output_num = op_desc.Output("Out").size();
PADDLE_ENFORCE(output_num == 1);
// Get attrs
float alpha = boost::get<float>(op_desc.GetAttr("alpha"));
platform::CPUPlace place;
std::unique_ptr<framework::LoDTensor> alpha_tensor(
new framework::LoDTensor());
alpha_tensor->Resize(framework::make_ddim({2}));
float* alpha_data = alpha_tensor->mutable_data<float>(place);
alpha_data[0] = alpha;
alpha_data[1] = 1.f - alpha;
// the leaky relu formula y = (x > 0) ? x : alpha * x is equal to
// y = alpha * x + (x > 0) ? (1 - alpha) * x : 0
TensorRTEngine::Weight scale{nvinfer1::DataType::kFLOAT, &alpha_data[0], 1};
TensorRTEngine::Weight shift{nvinfer1::DataType::kFLOAT, nullptr, 0};
TensorRTEngine::Weight power{nvinfer1::DataType::kFLOAT, nullptr, 0};
// y_scale = alpha * x
auto* scale_layer = TRT_ENGINE_ADD_LAYER(
engine_, Scale, *input, nvinfer1::ScaleMode::kUNIFORM, shift.get(),
scale.get(), power.get());
PADDLE_ENFORCE(nullptr != scale_layer);
// y_relu = (x > 0) : x : 0
auto* relu_layer = TRT_ENGINE_ADD_LAYER(engine_, Activation, *input,
nvinfer1::ActivationType::kRELU);
PADDLE_ENFORCE(nullptr != relu_layer);
//
TensorRTEngine::Weight sub_scale{nvinfer1::DataType::kFLOAT, &alpha_data[1],
1};
auto* scale_relu_layer =
TRT_ENGINE_ADD_LAYER(engine_, Scale, *(relu_layer->getOutput(0)),
nvinfer1::ScaleMode::kUNIFORM, shift.get(),
sub_scale.get(), power.get());
PADDLE_ENFORCE(nullptr != scale_relu_layer);
auto* output_layer =
TRT_ENGINE_ADD_LAYER(engine_, ElementWise, *(scale_layer->getOutput(0)),
*(scale_relu_layer->getOutput(0)),
nvinfer1::ElementWiseOperation::kSUM);
PADDLE_ENFORCE(nullptr != output_layer);
// keep alpha tensor to avoid release it's memory
std::string alpha_name = op_desc.Output("Out")[0] + "_alpha";
PADDLE_ENFORCE(engine_->weight_map.find(alpha_name) ==
engine_->weight_map.end());
engine_->weight_map[alpha_name] = std::move(alpha_tensor);
std::string layer_name = "leaky_relu (Output: ";
auto output_name = op_desc.Output("Out")[0];
output_layer->getOutput(0)->setName(output_name.c_str());
engine_->SetITensor(output_name, output_layer->getOutput(0));
layer_name += output_name;
if (test_mode) {
engine_->DeclareOutput(output_name);
}
output_layer->setName((layer_name + ")").c_str());
}
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(leaky_relu, LeakyReluOpConverter);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h"
namespace paddle {
namespace inference {
namespace tensorrt {
TEST(leaky_relu_op, test_leaky_relu) {
std::unordered_set<std::string> parameters;
framework::Scope scope;
TRTConvertValidation validator(10, parameters, scope, 1000);
validator.DeclInputVar("leaky_relu_input", nvinfer1::DimsCHW(3, 2, 2));
validator.DeclOutputVar("leaky_relu_out", nvinfer1::DimsCHW(3, 2, 2));
// Prepare Op description
framework::OpDesc desc;
desc.SetType("leaky_relu");
desc.SetInput("X", {"leaky_relu_input"});
desc.SetOutput("Out", {"leaky_relu_out"});
desc.SetAttr("alpha", 0.1f);
validator.SetOp(*desc.Proto());
validator.Execute(1);
}
} // namespace tensorrt
} // namespace inference
} // namespace paddle
// USE_OP(leaky_relu);
USE_OP(leaky_relu);
nv_library(tensorrt_plugin nv_library(tensorrt_plugin
SRCS trt_plugin.cc split_op_plugin.cu elementwise_op_plugin.cu prelu_op_plugin.cu SRCS trt_plugin.cc split_op_plugin.cu elementwise_op_plugin.cu prelu_op_plugin.cu
DEPS enforce device_context) DEPS enforce tensorrt_engine)
...@@ -27,14 +27,14 @@ function(inference_analysis_api_test_with_fake_data target install_dir filename ...@@ -27,14 +27,14 @@ function(inference_analysis_api_test_with_fake_data target install_dir filename
endfunction() endfunction()
# RNN1 # RNN1
if(NOT APPLE) if(NOT APPLE AND WITH_MKLML)
set(RNN1_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/rnn1") set(RNN1_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/rnn1")
download_model_and_data(${RNN1_INSTALL_DIR} "rnn1%2Fmodel.tar.gz" "rnn1%2Fdata.txt.tar.gz") download_model_and_data(${RNN1_INSTALL_DIR} "rnn1%2Fmodel.tar.gz" "rnn1%2Fdata.txt.tar.gz")
inference_analysis_api_test(test_analyzer_rnn1 ${RNN1_INSTALL_DIR} analyzer_rnn1_tester.cc) inference_analysis_api_test(test_analyzer_rnn1 ${RNN1_INSTALL_DIR} analyzer_rnn1_tester.cc)
else() else()
# TODO: fix this test on MACOS, the reason is that # TODO: fix this test on MACOS and OPENBLAS, the reason is that
# fusion_seqexpand_concat_fc_op is not supported on MACOS # fusion_seqexpand_concat_fc_op is not supported on MACOS and OPENBLAS
message(WARNING "These tests has been disabled in OSX before being fixed: \n test_analyzer_rnn1") message(WARNING "These tests has been disabled in OSX or WITH_MKL=OFF before being fixed: \n test_analyzer_rnn1")
endif() endif()
# RNN2 # RNN2
......
...@@ -147,20 +147,32 @@ class StackKernel : public framework::OpKernel<T> { ...@@ -147,20 +147,32 @@ class StackKernel : public framework::OpKernel<T> {
auto &dim = x[0]->dims(); auto &dim = x[0]->dims();
for (auto i = 0; i < axis; ++i) pre *= dim[i]; for (auto i = 0; i < axis; ++i) pre *= dim[i];
for (auto i = axis; i < dim.size(); ++i) post *= dim[i]; for (auto i = axis; i < dim.size(); ++i) post *= dim[i];
int total_num = pre * n * post;
auto &dev_ctx = ctx.template device_context<DeviceContext>();
#ifdef __NVCC__ #ifdef __NVCC__
int total_num = pre * n * post;
auto &dev_ctx = ctx.template device_context<DeviceContext>();
thrust::device_vector<const T *> device_x_vec(x_datas); thrust::device_vector<const T *> device_x_vec(x_datas);
auto x_data_arr = device_x_vec.data().get(); auto x_data_arr = device_x_vec.data().get();
#else
auto x_data_arr = x_datas.data();
#endif
StackFunctorForRange(dev_ctx, x_data_arr, y_data, total_num, n, post); StackFunctorForRange(dev_ctx, x_data_arr, y_data, total_num, n, post);
#ifdef __NVCC__
// Wait() must be called because device_x_vec may be destructed before // Wait() must be called because device_x_vec may be destructed before
// kernel ends // kernel ends
dev_ctx.Wait(); dev_ctx.Wait();
#else
auto x_data_arr = x_datas.data();
size_t x_offset = 0;
size_t y_offset = 0;
for (int i = 0; i < pre; i++) {
for (int j = 0; j < n; j++) {
std::memcpy(y_data + y_offset, x_data_arr[j] + x_offset,
post * sizeof(T));
y_offset += post;
}
x_offset += post;
}
#endif #endif
} }
}; };
......
...@@ -38,6 +38,7 @@ std::once_flag p2p_init_flag; ...@@ -38,6 +38,7 @@ std::once_flag p2p_init_flag;
void InitGflags(std::vector<std::string> argv) { void InitGflags(std::vector<std::string> argv) {
std::call_once(gflags_init_flag, [&]() { std::call_once(gflags_init_flag, [&]() {
FLAGS_logtostderr = true;
argv.insert(argv.begin(), "dummy"); argv.insert(argv.begin(), "dummy");
int argc = argv.size(); int argc = argv.size();
char **arr = new char *[argv.size()]; char **arr = new char *[argv.size()];
......
...@@ -5788,7 +5788,7 @@ def image_resize(input, ...@@ -5788,7 +5788,7 @@ def image_resize(input,
Examples: Examples:
.. code-block:: python .. code-block:: python
out = fluid.layers.image_resize(input, out_shape=[12, 12]) out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
""" """
resample_methods = { resample_methods = {
'BILINEAR': 'bilinear', 'BILINEAR': 'bilinear',
...@@ -5891,6 +5891,11 @@ def resize_bilinear(input, ...@@ -5891,6 +5891,11 @@ def resize_bilinear(input,
Returns: Returns:
${out_comment}. ${out_comment}.
Examples:
.. code-block:: python
out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
""" """
return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape) return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
...@@ -5937,6 +5942,11 @@ def resize_nearest(input, ...@@ -5937,6 +5942,11 @@ def resize_nearest(input,
Returns: Returns:
${out_comment}. ${out_comment}.
Examples:
.. code-block:: python
out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
""" """
return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape) return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
......
...@@ -45,6 +45,10 @@ if(APPLE) ...@@ -45,6 +45,10 @@ if(APPLE)
list(REMOVE_ITEM TEST_OPS test_dist_se_resnext) list(REMOVE_ITEM TEST_OPS test_dist_se_resnext)
list(REMOVE_ITEM TEST_OPS test_fuse_elewise_add_act_pass) list(REMOVE_ITEM TEST_OPS test_fuse_elewise_add_act_pass)
endif() endif()
if(NOT WITH_MKLML)
# this op is not support on openblas
list(REMOVE_ITEM TEST_OPS test_fusion_seqexpand_concat_fc_op)
endif()
function(py_test_modules TARGET_NAME) function(py_test_modules TARGET_NAME)
if(WITH_TESTING) if(WITH_TESTING)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册