提交 b21aee63 编写于 作者: W wanghaoshuang

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into crop_op

Conflicts:
	paddle/pybind/pybind.cc
......@@ -22,6 +22,7 @@ cmake-build-*
# generated while compiling
python/paddle/v2/framework/core.so
paddle/pybind/pybind.h
CMakeFiles
cmake_install.cmake
paddle/.timestamp
......
......@@ -26,9 +26,9 @@ set(IGNORE_PATTERN
.*ImportanceSampler.*
.*cblas\\.h.*
.*\\.pb\\.txt
.*LtrDataProvider.*
.*MultiDataProvider.*
.*pb.*)
.*pb.*
.*pybind.h)
# add_style_check_target
#
......
IfOp should have only one branch. An IfOp operator takes a `cond` variable whose value must be a vector of N boolean elements. Its return value has M (M<=N) instances, each corresponds to a true element in `cond`.
```python
import paddle as pd
x = var()
y = var()
cond = var()
b = pd.create_ifop(inputs=[x], output_num=1)
with b.true_block():
x = b.inputs(0)
z = operator.add(x, y)
b.set_output(0, operator.softmax(z))
out = b(cond)
```
If we want the output still has N instances, we can use IfElseOp with a default value, whose minibatch size must be N:
IfOp should have only one branch. An IfOp operator takes a `cond` variable whose value must be a vector of N boolean elements. Its return value has N instances. If cond[i] == True, input instance input[i] will go through true_block() and generate output[i]; otherwise it will produce output from false_bloack().
```python
import paddle as pd
......@@ -39,7 +21,7 @@ with b.false_block():
out = b(cond)
```
If only true_block is set in an IfElseOp, we can have a default value for false as:
If only true_block is set in an IfElseOp, a special case is that we can have a default value for false as:
```python
import paddle as pd
......
......@@ -34,7 +34,7 @@ Kernel实现 | CPU、GPU共享Kernel实现在`.h`文件中,否则,CPU
注册Op | Op注册实现在`.cc`文件;Kernel注册CPU实现在`.cc`文件中,GPU实现在`.cu`文件中
实现新的op都添加至目录[paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators)下,文件命名以`*_op.h`(如有) 、 `*_op.cc``*_op.cu`(如有)结尾。
实现新的op都添加至目录[paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators)下,文件命名以`*_op.h`(如有) 、 `*_op.cc``*_op.cu`(如有)结尾。**系统会根据文件名自动构建op和其对应的Python扩展。**
下面以矩阵乘操作,即[MulOp](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc)为例来介绍如何写带Kernel的Operator。
......@@ -224,45 +224,15 @@ MulOp(const std::string &type, const framework::VariableNameMap &inputs,
### 5. 编译
- 简单**无特殊依赖**的OP无需修改CMakeList.txt文件。[paddle/operators/CMakeLists.txt](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/CMakeLists.txt) 会自动将 `paddle/operators` 目录下新增的 `*_op.cc` 文件加入编译。
- 较为复杂、**有额外依赖** 的operator仍需要修改[paddle/operators/CMakeLists.txt](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/CMakeLists.txt)。如,`mul_op` 依赖 `math_function`,需要在`CMakeLists.txt`中添加如下内容:
运行下面命令可以进行编译:
```
op_library(mul_op SRCS mul_op.cc mul_op.cu DEPS math_function) +
```
- 运行下面命令可以进行编译:
```
make mul_op
```
```
make mul_op
```
## 绑定Python
- 绑定Python
在 [`paddle/pybind/pybind.cc
`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/pybind/pybind.cc) 使用`USE_OP`告知编译器需要链接的Op,具体解释参考[代码注释](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/op_registry.h#L81)。
```
USE_OP(mul);
```
如果只实现了CPU版本,则使用`USE_CPU_ONLY_OP`:
```
USE_CPU_ONLY_OP(gather);
```
如果OP不带Kernel,则使用`USE_NO_KENREL_OP`:
```
USE_NO_KENREL_OP(recurrent);
```
- 生成库
`paddle/operators` 目录下新增的 `*_op.cc` 文件会被自动添加链接到生成的lib库中。
系统会对新增的op自动绑定Python,并链接到生成的lib库中。
## 实现单元测试
......@@ -367,3 +337,10 @@ make test ARGS="-R test_mul_op -V"
```bash
ctest -R test_mul_op
```
## 注意事项
- 为每个Op创建单独的`*_op.h`(如有)、`*_op.cc``*_op.cu`(如有)。不允许一个文件中包含多个Op,这将会导致编译出错。
- 注册Op时的类型名,需要和该Op的名字一样。即不允许在`A_op.cc`里面,注册`REGISTER_OP(B, ...)`等,这将会导致单元测试出错。
- 如果Op没有实现GPU Kernel,请不要创建空的`*_op.cu`,这将会导致单元测试出错。
- 如果多个Op依赖一些共用的函数,可以创建非`*_op.*`格式的文件来存放,如`gather.h`文件。
......@@ -51,18 +51,15 @@ bool operator==(const LoD& a, const LoD& b);
* LoDTensor (Level of details Tensor)
* see https://en.wikipedia.org/wiki/Level_of_details for reference.
*/
class LoDTensor {
class LoDTensor : public Tensor {
public:
LoDTensor() {}
LoDTensor(const LoD& lod, Tensor* t) : lod_(lod), tensor_(t) {}
void set_lod(const LoD& lod) { lod_ = lod; }
void set_tensor(Tensor* tensor) { tensor_ = tensor; }
explicit LoDTensor(const LoD& lod) : lod_(lod) {}
Tensor& tensor() { return *tensor_; }
void set_lod(const LoD& lod) { lod_ = lod; }
LoD lod() { return lod_; }
LoD lod() const { return lod_; }
/*
* Get a element from LoD.
......@@ -104,7 +101,6 @@ class LoDTensor {
private:
LoD lod_;
Tensor* tensor_; // not owned
};
} // namespace framework
} // namespace paddle
......@@ -36,69 +36,64 @@ class LoDTensorTester : public ::testing::Test {
ASSERT_EQ(lod.size(), 3UL);
tensor.Resize({20 /*batch size*/, 128 /*dim*/});
lod_tensor_.Resize({20 /*batch size*/, 128 /*dim*/});
// malloc memory
tensor.mutable_data<float>(place);
lod_tensor_.mutable_data<float>(place);
lod_tensor.set_lod(lod);
lod_tensor.set_tensor(&tensor);
lod_tensor_.set_lod(lod);
}
protected:
platform::CPUPlace place;
Tensor tensor;
LoDTensor lod_tensor;
LoDTensor lod_tensor_;
};
TEST_F(LoDTensorTester, NumLevels) { ASSERT_EQ(lod_tensor.NumLevels(), 3UL); }
TEST_F(LoDTensorTester, NumLevels) { ASSERT_EQ(lod_tensor_.NumLevels(), 3UL); }
TEST_F(LoDTensorTester, NumElements) {
ASSERT_EQ(lod_tensor.NumElements(0), 2UL);
ASSERT_EQ(lod_tensor.NumElements(1), 4UL);
ASSERT_EQ(lod_tensor.NumElements(2), 8UL);
ASSERT_EQ(lod_tensor_.NumElements(0), 2UL);
ASSERT_EQ(lod_tensor_.NumElements(1), 4UL);
ASSERT_EQ(lod_tensor_.NumElements(2), 8UL);
}
TEST_F(LoDTensorTester, SliceLevels) {
// slice 1 level
for (size_t level = 0; level < 3UL; ++level) {
LoDTensor new_lod_tensor = lod_tensor;
LoDTensor new_lod_tensor = lod_tensor_;
new_lod_tensor.SliceLevels(level, level + 1);
ASSERT_EQ(new_lod_tensor.NumLevels(), 1UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor.NumElements(level));
ASSERT_EQ(new_lod_tensor.tensor().data<float>(),
lod_tensor.tensor().data<float>());
ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor_.NumElements(level));
ASSERT_EQ(new_lod_tensor.data<float>(), lod_tensor_.data<float>());
}
// slice 2 level
for (size_t level = 0; level < 2UL; ++level) {
LoDTensor new_lod_tensor = lod_tensor;
LoDTensor new_lod_tensor = lod_tensor_;
new_lod_tensor.SliceLevels(level, level + 2);
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor.NumElements(level));
ASSERT_EQ(new_lod_tensor.NumElements(1), lod_tensor.NumElements(level + 1));
ASSERT_EQ(new_lod_tensor.tensor().data<float>(),
lod_tensor.tensor().data<float>());
ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor_.NumElements(level));
ASSERT_EQ(new_lod_tensor.NumElements(1),
lod_tensor_.NumElements(level + 1));
ASSERT_EQ(new_lod_tensor.data<float>(), lod_tensor_.data<float>());
}
}
TEST_F(LoDTensorTester, SliceInLevel) {
size_t level = 0;
LoDTensor new_lod_tensor = lod_tensor;
LoDTensor new_lod_tensor = lod_tensor_;
new_lod_tensor.SliceInLevel(level, 0, 2);
EXPECT_EQ(new_lod_tensor.NumLevels(), 3UL);
EXPECT_EQ(new_lod_tensor.NumElements(0), 2UL);
EXPECT_EQ(new_lod_tensor.NumElements(1), 4UL);
EXPECT_EQ(new_lod_tensor.NumElements(2), 8UL);
ASSERT_EQ(new_lod_tensor.tensor().data<float>(),
lod_tensor.tensor().data<float>());
ASSERT_EQ(new_lod_tensor.data<float>(), lod_tensor_.data<float>());
level = 1;
new_lod_tensor = lod_tensor;
new_lod_tensor = lod_tensor_;
new_lod_tensor.SliceInLevel(level, 0, 2);
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL);
ASSERT_EQ(new_lod_tensor.tensor().data<float>(),
lod_tensor.tensor().data<float>());
ASSERT_EQ(new_lod_tensor.data<float>(), lod_tensor_.data<float>());
}
} // namespace framework
......
......@@ -26,18 +26,16 @@ __global__ void test(size_t* a, int size) {
}
TEST(LoDTensor, LoDInGPU) {
paddle::framework::Tensor tensor;
paddle::framework::LoDTensor lod_tensor;
paddle::platform::GPUPlace place(0);
paddle::framework::LoD src_lod;
src_lod.push_back(std::vector<size_t>{0, 2, 4, 6, 8, 10, 12, 14});
tensor.Resize({14, 16});
tensor.mutable_data<float>(place);
lod_tensor.Resize({14, 16});
lod_tensor.mutable_data<float>(place);
lod_tensor.set_lod(src_lod);
lod_tensor.set_tensor(&tensor);
CHECK_EQ(lod_tensor.lod_element(0, 2), 4);
CHECK_EQ(lod_tensor.lod_element(0, 4), 8);
......
......@@ -186,6 +186,48 @@ void OperatorBase::GenerateTemporaryNames() {
}
}
template <>
const Tensor* InferShapeContext::Input<Tensor>(const std::string& name) const {
auto* var = InputVar(name);
return var == nullptr ? nullptr : GetTensorFromVar(var);
}
template <>
const std::vector<const Tensor*> InferShapeContext::MultiInput<Tensor>(
const std::string& name) const {
auto names = op().Inputs(name);
std::vector<const Tensor*> res;
res.reserve(names.size());
std::transform(names.begin(), names.end(), std::back_inserter(res),
[&](const std::string& sub_name) {
auto var = scope_.FindVar(sub_name);
return var == nullptr ? nullptr : GetTensorFromVar(var);
});
return res;
}
template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
auto* var = OutputVar(name);
return var == nullptr ? nullptr : const_cast<Tensor*>(GetTensorFromVar(var));
}
template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
const std::string& name) const {
auto names = op().Outputs(name);
std::vector<Tensor*> res;
res.reserve(names.size());
std::transform(names.begin(), names.end(), std::back_inserter(res),
[&](const std::string& sub_name) {
auto var = scope().FindVar(sub_name);
return var == nullptr
? nullptr
: const_cast<Tensor*>(GetTensorFromVar(var));
});
return res;
}
void OpProtoAndCheckerMaker::Validate() {
validated_ = true;
CheckNoDuplicatedInOutAttrs();
......
......@@ -22,6 +22,7 @@ limitations under the License. */
#include "op_info.h"
#include "paddle/framework/attribute.h"
#include "paddle/framework/framework.pb.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
......@@ -326,11 +327,27 @@ class InferShapeContext {
return res;
}
const Tensor* GetTensorFromVar(const Variable* var) const {
if (var->IsType<LoDTensor>()) {
return &var->Get<LoDTensor>();
}
PADDLE_ENFORCE(var->IsType<Tensor>(),
"The Input(%s) must be LoDTensor or Tensor.");
return &var->Get<Tensor>();
}
private:
const OperatorBase& op_;
const Scope& scope_;
};
template <>
const Tensor* InferShapeContext::Input<Tensor>(const std::string& name) const;
template <>
const std::vector<const Tensor*> InferShapeContext::MultiInput<Tensor>(
const std::string& name) const;
template <typename T>
struct EigenDeviceConverter;
......@@ -363,9 +380,37 @@ class ExecutionContext : public InferShapeContext {
return device_context_;
}
// redefine Output function,
// use Variable::Get instead of Variable::GetMutable
template <typename T>
T* Output(const std::string& name) const {
auto var = OutputVar(name);
return var == nullptr ? nullptr : const_cast<T*>(&var->Get<T>());
}
// redefine MultiOutput function.
// use Variable::Get instead of Variable::GetMutable
template <typename T>
std::vector<T*> MultiOutput(const std::string& name) const {
auto names = op().Outputs(name);
std::vector<T*> res;
res.reserve(names.size());
std::transform(
names.begin(), names.end(), std::back_inserter(res),
[&](const std::string& sub_name) { return Output<T>(sub_name); });
return res;
}
const platform::DeviceContext* device_context_;
};
template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;
template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
const std::string& name) const;
class OpKernel {
public:
/**
......
......@@ -22,7 +22,7 @@ namespace framework {
template <typename T>
inline void Tensor::check_memory_size() const {
PADDLE_ENFORCE_NOT_NULL(
holder_, "Tenosr holds no memory. Call Tensor::mutable_data first.");
holder_, "Tensor holds no memory. Call Tensor::mutable_data first.");
PADDLE_ENFORCE_GE(
holder_->size(), numel() * sizeof(T) + offset_,
"Tensor's dims_ is out of bound. Call Tensor::mutable_data "
......
......@@ -36,7 +36,7 @@ TEST(Tensor, DataAssert) {
} catch (paddle::platform::EnforceNotMet err) {
caught = true;
std::string msg =
"holder_ should not be null\nTenosr holds no memory. Call "
"holder_ should not be null\nTensor holds no memory. Call "
"Tensor::mutable_data first.";
const char* what = err.what();
for (size_t i = 0; i < msg.length(); ++i) {
......@@ -112,7 +112,7 @@ TEST(Tensor, ShareDataWith) {
} catch (paddle::platform::EnforceNotMet err) {
caught = true;
std::string msg =
"holder_ should not be null\nTenosr holds no memory. Call "
"holder_ should not be null\nTensor holds no memory. Call "
"Tensor::mutable_data first.";
const char* what = err.what();
for (size_t i = 0; i < msg.length(); ++i) {
......
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLDNNConvLayer.h"
#include "paddle/math/MathUtils.h"
#include "paddle/utils/Logging.h"
using namespace mkldnn; // NOLINT
typedef memory::format format;
namespace paddle {
REGISTER_LAYER(mkldnn_conv, MKLDNNConvLayer);
bool MKLDNNConvLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
if (!MKLDNNLayer::init(layerMap, parameterMap)) {
return false;
}
CHECK_EQ(inputLayers_.size(), 1) << "Only support one input layer yet";
CHECK_EQ(inputLayers_.size(), parameters_.size());
CHECK(config_.shared_biases()) << "Only support shared biases yet";
oc_ = config_.num_filters();
const ConvConfig& conf = config_.inputs(0).conv_conf();
ic_ = conf.channels();
fw_ = conf.filter_size();
fh_ = conf.filter_size_y();
pw_ = conf.padding();
ph_ = conf.padding_y();
dw_ = conf.dilation();
dh_ = conf.dilation_y();
sw_ = conf.stride();
sh_ = conf.stride_y();
gp_ = conf.groups();
oh_ = conf.output_y();
ow_ = conf.output_x();
ih_ = conf.img_size_y();
iw_ = conf.img_size();
caffeMode_ = conf.caffe_mode();
CHECK(caffeMode_) << "Only support caffe mode yet";
CHECK(dh_ == 1 && dw_ == 1) << "Only support dilation 1 yet";
// check group setting
CHECK_EQ((oc_ / gp_) * gp_, oc_) << "group is indivisible for oc";
CHECK_EQ((ic_ / gp_) * gp_, ic_) << "group is indivisible for ic";
// create weight
size_t height = oc_ / gp_;
size_t width = ic_ * fh_ * fw_;
CHECK_EQ(parameters_[0]->getSize(), height * width);
weight_ =
std::unique_ptr<Weight>(new Weight(height, width, parameters_[0], 0));
// create biases
if (biasParameter_.get() != NULL) {
biases_ = std::unique_ptr<Weight>(new Weight(1, oc_, biasParameter_));
}
return true;
}
void MKLDNNConvLayer::convertWeightsFromPaddle() {
if (hasInitedWgt_) {
return;
}
CHECK(wgtVal_) << "should have been initialized";
// the paddle weight format is oihw or goihw
auto targetDim = wgtVal_->getDims();
auto srcFmt = (gp_ == 1) ? memory::format::oihw : memory::format::goihw;
wgtVal_->reorderDataFrom(wgtVal_, srcFmt, targetDim);
hasInitedWgt_ = true;
}
void MKLDNNConvLayer::convertWeightsToPaddle() {
CHECK(wgtVal_) << "should have been initialized";
auto targetDim = wgtVal_->getDims();
auto dstFmt = (gp_ == 1) ? memory::format::oihw : memory::format::goihw;
wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim);
}
void MKLDNNConvLayer::reshape(
int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) {
reshapeInput(bs, ih, iw);
// cal output sizes
// oc can not be changed
int fh = (fh_ - 1) * dh_ + 1;
int fw = (fw_ - 1) * dw_ + 1;
oh = outputSize(ih, fh, ph_, sh_, caffeMode_);
ow = outputSize(iw, fw, pw_, sw_, caffeMode_);
reshapeOutput(oh, ow);
resizeOutput(bs, oc * oh * ow);
printSizeInfo();
}
void MKLDNNConvLayer::resetFwd(std::vector<primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
resetFwdPD(fwdPD_);
resetFwdBuffers(fwdPD_, in, wgt, bias, out);
resetFwdPipeline(pipeline, fwdPD_, in, wgt, bias, out);
printValueFormatFlow();
}
void MKLDNNConvLayer::resetBwd(std::vector<primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
std::shared_ptr<conv_bwdWgt::primitive_desc> bwdWgtPD;
std::shared_ptr<conv_bwdData::primitive_desc> bwdDataPD;
resetBwdWgtPD(bwdWgtPD);
resetBwdDataPD(bwdDataPD);
resetBwdBuffers(bwdWgtPD, bwdDataPD, in, wgt, bias, out);
resetBwdPipeline(pipeline, bwdWgtPD, bwdDataPD, in, wgt, bias, out);
printGradFormatFlow();
}
void MKLDNNConvLayer::updateInputData() {
cpuInVal_->setData(getInputValue(0, CPU_DEVICE)->getData());
}
void MKLDNNConvLayer::updateWeights(const UpdateCallback& callback) {
weight_->getParameterPtr()->incUpdate(callback);
if (biases_ && biases_->getWGrad()) {
biases_->getParameterPtr()->incUpdate(callback);
}
}
void MKLDNNConvLayer::loadConvSettings(memory::dims& wgt,
memory::dims& bias,
memory::dims& stride,
memory::dims& dilation,
memory::dims& padL,
memory::dims& padR) {
wgt = (gp_ == 1) ? memory::dims{oc_, ic_, fh_, fw_}
: memory::dims{gp_, oc_ / gp_, ic_ / gp_, fh_, fw_};
bias = memory::dims{oc_};
stride = memory::dims{sh_, sw_};
padL = memory::dims{ph_, pw_};
padR = getPaddingR();
// note: mkldnn dilation start from 0
dilation = memory::dims{dh_ - 1, dw_ - 1};
}
void MKLDNNConvLayer::resetFwdPD(
std::shared_ptr<conv_fwd::primitive_desc>& pd) {
// dims for conv
memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_};
memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
memory::dims wgtDims, biasDims, strides, dilations, padL, padR;
loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR);
prop_kind pk = passType_ == PASS_TEST ? prop_kind::forward_scoring
: prop_kind::forward_training;
algorithm algo = algorithm::convolution_direct;
padding_kind padKind = padding_kind::zero;
conv_fwd::desc fwdDesc =
biases_ && biases_->getW()
? conv_fwd::desc(pk,
algo,
MKLDNNMatrix::createMemoryDesc(inDims),
MKLDNNMatrix::createMemoryDesc(wgtDims),
MKLDNNMatrix::createMemoryDesc(biasDims),
MKLDNNMatrix::createMemoryDesc(outDims),
strides,
dilations,
padL,
padR,
padKind)
: conv_fwd::desc(pk,
algo,
MKLDNNMatrix::createMemoryDesc(inDims),
MKLDNNMatrix::createMemoryDesc(wgtDims),
MKLDNNMatrix::createMemoryDesc(outDims),
strides,
dilations,
padL,
padR,
padKind);
pd.reset(new conv_fwd::primitive_desc(fwdDesc, engine_));
}
void MKLDNNConvLayer::resetFwdBuffers(
std::shared_ptr<conv_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
CHECK(pd);
resetInValue(pd, in);
resetWgtBiasValue(pd, wgt, bias);
resetOutValue(pd, out);
}
void MKLDNNConvLayer::resetFwdPipeline(
std::vector<primitive>& pipeline,
std::shared_ptr<conv_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
pipeline.clear();
if (cvtInVal_) {
pipeline.push_back(*cvtInVal_);
}
if (bias) {
fwd_.reset(new conv_fwd(*pd, *in, *wgt, *bias, *out));
} else {
fwd_.reset(new conv_fwd(*pd, *in, *wgt, *out));
}
pipeline.push_back(*fwd_);
if (cvtOutVal_) {
pipeline.push_back(*cvtOutVal_);
}
}
void MKLDNNConvLayer::resetInValue(
std::shared_ptr<conv_fwd::primitive_desc>& pd, MKLDNNMatrixPtr& in) {
const MatrixPtr& inMat = inputLayers_[0]->getOutput().value;
in = MKLDNNMatrix::create(inMat, pd->src_primitive_desc());
// create buffer and reorder if input value do not match
cpuInVal_ = nullptr;
cvtInVal_ = nullptr;
if (inputIsOnlyMKLDNN()) {
MKLDNNMatrixPtr dnnIn = std::dynamic_pointer_cast<MKLDNNMatrix>(inMat);
CHECK(dnnIn) << "Input should be MKLDNNMatrix";
if (dnnIn->getPrimitiveDesc() != in->getPrimitiveDesc()) {
CHECK_EQ(dnnIn->getFormat(), format::nc);
CHECK(ih_ == 1 && iw_ == 1) << "when input is nc format";
// create a new one with nchw format and same data
memory::dims inDims = memory::dims{bs_, ic_, 1, 1};
dnnIn = MKLDNNMatrix::create(inMat, inDims, format::nchw, engine_);
CHECK(dnnIn->getPrimitiveDesc() == in->getPrimitiveDesc());
}
in = dnnIn;
} else {
const MatrixPtr& cpuIn = getInputValue(0, CPU_DEVICE);
memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_};
cpuInVal_ = MKLDNNMatrix::create(cpuIn, inDims, format::nchw, engine_);
if (cpuInVal_->getPrimitiveDesc() != in->getPrimitiveDesc()) {
// create new mkldnn matrix
in = MKLDNNMatrix::create(nullptr, pd->src_primitive_desc());
cvtInVal_ = MKLDNNMatrix::createReorder(cpuInVal_, in);
CHECK(cvtInVal_) << "should not be emptry";
} else {
in = cpuInVal_;
}
}
}
void MKLDNNConvLayer::resetWgtBiasValue(
std::shared_ptr<conv_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias) {
wgt = MKLDNNMatrix::create(weight_->getW(), pd->weights_primitive_desc());
VLOG(MKLDNN_FMTS) << "Weight value format: " << wgt->getFormat();
bias = (biases_ && biases_->getW())
? MKLDNNMatrix::create(biases_->getW(), pd->bias_primitive_desc())
: nullptr;
}
void MKLDNNConvLayer::resetOutValue(
std::shared_ptr<conv_fwd::primitive_desc>& pd, MKLDNNMatrixPtr& out) {
out = MKLDNNMatrix::create(output_.value, pd->dst_primitive_desc());
// change original output value from cpu matrix to mkldnn matrix
output_.value = std::dynamic_pointer_cast<Matrix>(out);
// create reorder if output value has cpu device and pd do not match
cpuOutVal_ = nullptr;
cpuOutVal_ = nullptr;
if (!outputIsOnlyMKLDNN()) {
const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).value;
memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
cpuOutVal_ = MKLDNNMatrix::create(cpuOut, outDims, format::nchw, engine_);
if (cpuOutVal_->getPrimitiveDesc() != out->getPrimitiveDesc()) {
cvtOutVal_ = MKLDNNMatrix::createReorder(out, cpuOutVal_);
CHECK(cvtOutVal_) << "should not be emptry";
} else {
// CPU output share the same data of MKLDNN output
cpuOut->setData(out->getData());
cpuOutVal_ = out;
}
}
}
void MKLDNNConvLayer::resetBwdWgtPD(
std::shared_ptr<conv_bwdWgt::primitive_desc>& pd) {
memory::dims wgtDims, biasDims, strides, dilations, padL, padR;
loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR);
// create backward weight using input, output and weight value memory desc
CHECK(inVal_) << "Should have input value";
CHECK(outVal_) << "Should have output value";
CHECK(wgtVal_) << "Should have weight value";
algorithm algo = algorithm::convolution_direct;
padding_kind padKind = padding_kind::zero;
auto bwdWgtDesc = biasVal_ != nullptr
? conv_bwdWgt::desc(algo,
inVal_->getMemoryDesc(),
wgtVal_->getMemoryDesc(),
biasVal_->getMemoryDesc(),
outVal_->getMemoryDesc(),
strides,
padL,
padR,
padKind)
: conv_bwdWgt::desc(algo,
inVal_->getMemoryDesc(),
wgtVal_->getMemoryDesc(),
outVal_->getMemoryDesc(),
strides,
padL,
padR,
padKind);
pd.reset(new conv_bwdWgt::primitive_desc(bwdWgtDesc, engine_, *fwdPD_));
CHECK(pd->src_primitive_desc() == inVal_->getPrimitiveDesc())
<< "primitive desc of in value should equal";
CHECK(pd->diff_dst_primitive_desc() == outVal_->getPrimitiveDesc())
<< "primitive desc of out grad should equal the out value";
CHECK(pd->diff_weights_primitive_desc() == wgtVal_->getPrimitiveDesc())
<< "primitive desc of weight grad should equal the weight value";
}
void MKLDNNConvLayer::resetBwdDataPD(
std::shared_ptr<conv_bwdData::primitive_desc>& pd) {
pd = nullptr;
if (inputLayers_[0]->getOutput().grad == nullptr) {
return;
}
memory::dims wgtDims, biasDims, strides, dilations, padL, padR;
loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR);
CHECK(inVal_) << "Should have input value";
CHECK(outVal_) << "Should have output value";
// create backward data using input and output value memory desc
// but using weight memory desc with any format
auto bwdDataDesc = conv_bwdData::desc(algorithm::convolution_direct,
inVal_->getMemoryDesc(),
MKLDNNMatrix::createMemoryDesc(wgtDims),
outVal_->getMemoryDesc(),
strides,
padL,
padR,
padding_kind::zero);
pd.reset(new conv_bwdData::primitive_desc(bwdDataDesc, engine_, *fwdPD_));
CHECK(pd->diff_src_primitive_desc() == inVal_->getPrimitiveDesc())
<< "primitive desc of in grad should equal the in value";
CHECK(pd->diff_dst_primitive_desc() == outVal_->getPrimitiveDesc())
<< "primitive desc of out grad should equal";
}
void MKLDNNConvLayer::resetBwdBuffers(
std::shared_ptr<conv_bwdWgt::primitive_desc>& wgtPD,
std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
CHECK(wgtPD);
resetOutGrad(wgtPD, out);
resetWgtBiasGrad(wgtPD, wgt, bias);
resetInGrad(dataPD, in);
resetWgtValBwdData(dataPD, wgtValBwdData_);
}
void MKLDNNConvLayer::resetBwdPipeline(
std::vector<primitive>& pipeline,
std::shared_ptr<conv_bwdWgt::primitive_desc>& wgtPD,
std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
pipeline.clear();
if (cvtOutGrad_) {
pipeline.push_back(*cvtOutGrad_);
}
// add bwdWgt handle
if (bias) {
bwdWgt_.reset(new conv_bwdWgt(*wgtPD, *inVal_, *out, *wgt, *bias));
} else {
bwdWgt_.reset(new conv_bwdWgt(*wgtPD, *inVal_, *out, *wgt));
}
pipeline.push_back(*bwdWgt_);
if (dataPD == nullptr) {
return;
}
if (cvtWgtVal_) {
pipeline.push_back(*cvtWgtVal_);
}
// add bwdData handle
CHECK(wgtValBwdData_) << "Should have weight memory";
bwdData_.reset(new conv_bwdData(*dataPD, *out, *wgtValBwdData_, *in));
pipeline.push_back(*bwdData_);
if (cvtInGrad_) {
pipeline.push_back(*cvtInGrad_);
}
}
void MKLDNNConvLayer::resetOutGrad(
std::shared_ptr<conv_bwdWgt::primitive_desc>& wgtPD, MKLDNNMatrixPtr& out) {
const MatrixPtr& outMat = output_.grad;
out = MKLDNNMatrix::create(outMat, wgtPD->diff_dst_primitive_desc());
CHECK(outVal_ != nullptr &&
out->getPrimitiveDesc() == outVal_->getPrimitiveDesc())
<< "primitive desc of out grad and value should be equal";
// TODO(TJ): merge outgrad
// create reorder if has output grad does not match
cpuOutGrad_ = nullptr;
cvtOutGrad_ = nullptr;
if (!outputIsOnlyMKLDNN()) {
const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad;
// same PrimitiveDesc with cpuInVal_
CHECK(cpuOutVal_);
cpuOutGrad_ = MKLDNNMatrix::create(cpuOut, cpuOutVal_->getPrimitiveDesc());
if (cpuOutGrad_->getPrimitiveDesc() == out->getPrimitiveDesc()) {
outMat->setData(cpuOut->getData());
out = cpuOutGrad_;
} else {
cvtOutGrad_ = MKLDNNMatrix::createReorder(cpuOutGrad_, out);
CHECK(cvtOutGrad_);
}
}
}
void MKLDNNConvLayer::resetWgtBiasGrad(
std::shared_ptr<conv_bwdWgt::primitive_desc>& wgtPD,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias) {
wgt = MKLDNNMatrix::create(weight_->getWGrad(),
wgtPD->diff_weights_primitive_desc());
CHECK(nullptr != wgtVal_ &&
wgt->getPrimitiveDesc() == wgtVal_->getPrimitiveDesc())
<< "primitive desc of weight grad and value should be equal";
VLOG(MKLDNN_FMTS) << "weight grad format: " << wgt->getFormat();
bias = nullptr;
if (biasVal_ == nullptr) {
return;
}
bias = MKLDNNMatrix::create(biases_->getWGrad(),
wgtPD->diff_bias_primitive_desc());
CHECK(bias->getPrimitiveDesc() == biasVal_->getPrimitiveDesc())
<< "primitive desc of bias grad should equal the bias value";
}
void MKLDNNConvLayer::resetInGrad(
std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
MKLDNNMatrixPtr& in) {
if (dataPD == nullptr) {
return;
}
// TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done
in = MKLDNNMatrix::create(inputLayers_[0]->getOutput().grad,
dataPD->diff_src_primitive_desc());
CHECK(nullptr != inVal_ &&
in->getPrimitiveDesc() == inVal_->getPrimitiveDesc())
<< "primitive desc of input grad and value should be equal";
// create reorder if has output grad does not match
cpuInGrad_ = nullptr;
cvtInGrad_ = nullptr;
if (!inputIsOnlyMKLDNN()) {
const MatrixPtr& cpuIn = getInputGrad(0, CPU_DEVICE);
// same PrimitiveDesc with cpuInVal_
CHECK(cpuInVal_);
cpuInGrad_ = MKLDNNMatrix::create(cpuIn, cpuInVal_->getPrimitiveDesc());
if (cpuInGrad_->getPrimitiveDesc() != in->getPrimitiveDesc()) {
const MatrixPtr& dnnIn = getInputGrad(0, MKLDNN_DEVICE);
in = MKLDNNMatrix::create(dnnIn, in->getPrimitiveDesc());
cvtInGrad_ = MKLDNNMatrix::createReorder(in, cpuInGrad_);
CHECK(cvtInGrad_);
} else {
in = cpuInGrad_;
}
}
}
void MKLDNNConvLayer::resetWgtValBwdData(
std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
MKLDNNMatrixPtr& wgt) {
if (dataPD == nullptr) {
return;
}
// create new weight value for backward data, and create reorder if necessary
// since the primitive_desc would be different with wgtVal_
CHECK(wgtVal_) << "should have weight value";
if (dataPD->weights_primitive_desc() != wgtVal_->getPrimitiveDesc()) {
wgtValBwdData_ =
MKLDNNMatrix::create(nullptr, dataPD->weights_primitive_desc());
cvtWgtVal_ = MKLDNNMatrix::createReorder(wgtVal_, wgtValBwdData_);
CHECK(cvtWgtVal_);
} else {
wgtValBwdData_ = wgtVal_;
}
VLOG(MKLDNN_FMTS) << "weight value format for backward data"
<< wgtValBwdData_->getFormat();
}
} // namespace paddle
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "MKLDNNLayer.h"
#include "mkldnn.hpp"
namespace paddle {
typedef mkldnn::convolution_forward conv_fwd;
typedef mkldnn::convolution_backward_weights conv_bwdWgt;
typedef mkldnn::convolution_backward_data conv_bwdData;
/**
* @brief A subclass of MKLDNNLayer conv layer.
*
* The config file api is mkldnn_conv
*/
class MKLDNNConvLayer : public MKLDNNLayer {
protected:
// padding height and width
int ph_, pw_;
// stride height and width
int sh_, sw_;
// dilation height and width
int dh_, dw_;
// filter(kenerl) height and width
int fh_, fw_;
// group number
int gp_;
// in resetBwdData, the format of wgtValBwdData_ is different with wgtVal_
MKLDNNMatrixPtr wgtValBwdData_;
// convert handle from wgtVal_ to wgtValBwdData_
std::shared_ptr<mkldnn::reorder> cvtWgtVal_;
// save forward primitive_desc, which can be used backward
std::shared_ptr<conv_fwd::primitive_desc> fwdPD_;
// MKLDNNMatrixPtr which should be created from CPU Device
MKLDNNMatrixPtr cpuInVal_;
MKLDNNMatrixPtr cpuInGrad_;
MKLDNNMatrixPtr cpuOutVal_;
MKLDNNMatrixPtr cpuOutGrad_;
// convert handle between CPU device and MKLDNN device
std::shared_ptr<mkldnn::reorder> cvtInVal_;
std::shared_ptr<mkldnn::reorder> cvtInGrad_;
std::shared_ptr<mkldnn::reorder> cvtOutVal_;
std::shared_ptr<mkldnn::reorder> cvtOutGrad_;
// whether the weight has been init
bool hasInitedWgt_;
// true by default, which impact the calculation of output image size.
// details can refer to mathUtil.h
bool caffeMode_;
// weight and bias
std::unique_ptr<Weight> weight_;
std::unique_ptr<Weight> biases_;
public:
explicit MKLDNNConvLayer(const LayerConfig& config)
: MKLDNNLayer(config), hasInitedWgt_(false), caffeMode_(true) {}
~MKLDNNConvLayer() {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void reshape(
int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) override;
void resetFwd(std::vector<mkldnn::primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) override;
void resetBwd(std::vector<mkldnn::primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) override;
void updateInputData() override;
void updateWeights(const UpdateCallback& callback) override;
void convertWeightsFromPaddle() override;
void convertWeightsToPaddle() override;
void printSizeInfo() override {
MKLDNNLayer::printSizeInfo();
VLOG(MKLDNN_SIZES) << getName() << ": fh: " << fh_ << ", fw: " << fw_
<< ": ph: " << ph_ << ", pw: " << pw_ << ", sh: " << sh_
<< ", sw: " << sw_ << ", dh: " << dh_ << ", dw: " << dw_;
}
void printValueFormatFlow() override {
if (cpuInVal_) {
VLOG(MKLDNN_FMTS) << cpuInVal_->getFormat() << " >>>";
}
MKLDNNLayer::printValueFormatFlow();
if (cpuOutVal_) {
VLOG(MKLDNN_FMTS) << " >>> " << cpuOutVal_->getFormat();
}
}
void printGradFormatFlow() override {
if (cpuInGrad_) {
VLOG(MKLDNN_FMTS) << cpuInGrad_->getFormat() << " <<<";
}
MKLDNNLayer::printGradFormatFlow();
if (cpuOutGrad_) {
VLOG(MKLDNN_FMTS) << " <<< " << cpuOutGrad_->getFormat();
}
}
protected:
/**
* load the dims settings of this conv
*/
void loadConvSettings(mkldnn::memory::dims& wgt,
mkldnn::memory::dims& bias,
mkldnn::memory::dims& stride,
mkldnn::memory::dims& dilation,
mkldnn::memory::dims& padL,
mkldnn::memory::dims& padR);
/**
* reset the forward primitive descriptor.
*/
void resetFwdPD(std::shared_ptr<conv_fwd::primitive_desc>& pd);
/**
* reset the MKLDNNMatrix buffers used in forward.
*/
void resetFwdBuffers(std::shared_ptr<conv_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out);
/**
* reset the forward pipeline.
*/
void resetFwdPipeline(std::vector<mkldnn::primitive>& pipeline,
std::shared_ptr<conv_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out);
/**
* reset MKLDNNMatrix of input value
*/
void resetInValue(std::shared_ptr<conv_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr& in);
/**
* reset MKLDNNMatrix of weight and bias value
*/
void resetWgtBiasValue(std::shared_ptr<conv_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias);
/**
* reset MKLDNNMatrix of output value
*/
void resetOutValue(std::shared_ptr<conv_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr& out);
/**
* reset the backward weight primitive descriptor.
*/
void resetBwdWgtPD(std::shared_ptr<conv_bwdWgt::primitive_desc>& pd);
/**
* reset the backward data primitive descriptor.
*/
void resetBwdDataPD(std::shared_ptr<conv_bwdData::primitive_desc>& pd);
/**
* reset the MKLDNNMatrix buffers used in backward.
*/
void resetBwdBuffers(std::shared_ptr<conv_bwdWgt::primitive_desc>& wgtPD,
std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out);
/**
* reset the backward pipeline.
*/
void resetBwdPipeline(std::vector<mkldnn::primitive>& pipeline,
std::shared_ptr<conv_bwdWgt::primitive_desc>& wgtPD,
std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out);
/**
* reset MKLDNNMatrix of output grad
*/
void resetOutGrad(std::shared_ptr<conv_bwdWgt::primitive_desc>& wgtPD,
MKLDNNMatrixPtr& out);
/**
* reset MKLDNNMatrix of weight and bias grad
*/
void resetWgtBiasGrad(std::shared_ptr<conv_bwdWgt::primitive_desc>& wgtPD,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias);
/**
* reset MKLDNNMatrix of input grad
*/
void resetInGrad(std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
MKLDNNMatrixPtr& in);
/**
* reset MKLDNNMatrix of weight value for backward data
* since the primitive_desc would be different with wgtVal_
*/
void resetWgtValBwdData(std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
MKLDNNMatrixPtr& wgt);
/**
* get padding_r according to
* https://github.com/01org/mkl-dnn/blob/master/tests/gtests/
* test_convolution_forward_common.hpp
* @note: mkldnn dilation start from 0 while paddle start from 1
*/
mkldnn::memory::dims getPaddingR() const {
mkldnn::memory::dims padR = {ph_, pw_};
for (int i = 0; i < 2; ++i) {
if ((ih_ - ((fh_ - 1) * dh_ + 1) + ph_ + padR[0]) / sh_ + 1 != oh_) {
++padR[0];
}
if ((iw_ - ((fw_ - 1) * dw_ + 1) + pw_ + padR[1]) / sw_ + 1 != ow_) {
++padR[1];
}
}
return padR;
}
};
} // namespace paddle
......@@ -17,9 +17,6 @@ limitations under the License. */
using namespace mkldnn; // NOLINT
typedef memory::format format;
typedef inner_product_forward fc_fwd;
typedef inner_product_backward_weights fc_bwdWgt;
typedef inner_product_backward_data fc_bwdData;
namespace paddle {
......@@ -93,35 +90,88 @@ void MKLDNNFcLayer::reshape(
printSizeInfo();
}
void MKLDNNFcLayer::resetFwd(std::vector<mkldnn::primitive>& pipeline,
void MKLDNNFcLayer::resetFwd(std::vector<primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
pipeline.clear();
bool hasBias = biases_ && biases_->getW();
const MatrixPtr& wgtVal = weight_->getW();
const MatrixPtr& biasVal = hasBias ? biases_->getW() : nullptr;
const MatrixPtr& outVal = output_.value;
resetFwdBuffers(in, wgt, bias, out);
resetFwdPD(fwdPD_, in, wgt, bias, out);
resetFwdPipeline(pipeline, fwdPD_, in, wgt, bias, out);
printValueFormatFlow();
}
void MKLDNNFcLayer::resetBwd(std::vector<primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
std::shared_ptr<fc_bwdWgt::primitive_desc> bwdWgtPD;
std::shared_ptr<fc_bwdData::primitive_desc> bwdDataPD;
resetBwdBuffers(in, wgt, bias, out);
resetBwdWgtPD(bwdWgtPD, wgt, bias, out);
resetBwdDataPD(bwdDataPD, in, out);
resetBwdPipeline(pipeline, bwdWgtPD, bwdDataPD, in, wgt, bias, out);
printGradFormatFlow();
}
void MKLDNNFcLayer::updateInputData() {
inVal_->setData(getInputValue(0, CPU_DEVICE)->getData());
}
void MKLDNNFcLayer::updateWeights(const UpdateCallback& callback) {
weight_->getParameterPtr()->incUpdate(callback);
if (biases_ && biases_->getWGrad()) {
biases_->getParameterPtr()->incUpdate(callback);
}
}
void MKLDNNFcLayer::resetFwdBuffers(MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
resetInValue(in);
resetWgtBiasValue(wgt, bias);
resetOutValue(out);
}
void MKLDNNFcLayer::resetInValue(MKLDNNMatrixPtr& in) {
if (inputIsOnlyMKLDNN()) {
const MatrixPtr& inVal = getInputValue(0);
in = std::dynamic_pointer_cast<MKLDNNMatrix>(inVal);
const MatrixPtr& dnnIn = getInputValue(0);
in = std::dynamic_pointer_cast<MKLDNNMatrix>(dnnIn);
CHECK(in) << "Input should be MKLDNNMatrix";
} else {
CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet";
const MatrixPtr& inVal = getInputValue(0, CPU_DEVICE);
const MatrixPtr& cpuIn = getInputValue(0, CPU_DEVICE);
in = MKLDNNMatrix::create(
inVal, memory::dims{bs_, ic_, ih_, iw_}, format::nchw, engine_);
cpuIn, {bs_, ic_, ih_, iw_}, format::nchw, engine_);
}
in->downSpatial();
}
void MKLDNNFcLayer::resetWgtBiasValue(MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias) {
wgt = MKLDNNMatrix::create(
wgtVal, memory::dims{oc_, ic_, ih_, iw_}, format::oihw, engine_);
weight_->getW(), {oc_, ic_, ih_, iw_}, format::oihw, engine_);
wgt->downSpatial();
bias = hasBias ? MKLDNNMatrix::create(biasVal, {oc_}, format::x, engine_)
bias = (biases_ && biases_->getW())
? MKLDNNMatrix::create(biases_->getW(), {oc_}, format::x, engine_)
: nullptr;
out = MKLDNNMatrix::create(outVal, {bs_, oc_}, format::nc, engine_);
}
void MKLDNNFcLayer::resetOutValue(MKLDNNMatrixPtr& out) {
out = MKLDNNMatrix::create(output_.value, {bs_, oc_}, format::nc, engine_);
// change original output value to mkldnn output value
output_.value = std::dynamic_pointer_cast<Matrix>(out);
if (!outputIsOnlyMKLDNN()) {
......@@ -129,10 +179,18 @@ void MKLDNNFcLayer::resetFwd(std::vector<mkldnn::primitive>& pipeline,
// just share point
getOutput(CPU_DEVICE).value->setData(output_.value->getData());
}
}
// create forward handle
void MKLDNNFcLayer::resetFwdPD(std::shared_ptr<fc_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr in,
MKLDNNMatrixPtr wgt,
MKLDNNMatrixPtr bias,
MKLDNNMatrixPtr out) {
CHECK(in);
CHECK(wgt);
CHECK(out);
prop_kind pk = prop_kind::forward;
fc_fwd::desc fwdDesc = hasBias ? fc_fwd::desc(pk,
fc_fwd::desc fwdDesc = bias != nullptr ? fc_fwd::desc(pk,
in->getMemoryDesc(),
wgt->getMemoryDesc(),
bias->getMemoryDesc(),
......@@ -141,34 +199,39 @@ void MKLDNNFcLayer::resetFwd(std::vector<mkldnn::primitive>& pipeline,
in->getMemoryDesc(),
wgt->getMemoryDesc(),
out->getMemoryDesc());
fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_);
if (hasBias) {
fwd_.reset(new fc_fwd(fwdPD, *in, *wgt, *bias, *out));
pd.reset(new fc_fwd::primitive_desc(fwdDesc, engine_));
}
void MKLDNNFcLayer::resetFwdPipeline(
std::vector<primitive>& pipeline,
std::shared_ptr<fc_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
pipeline.clear();
if (bias) {
fwd_.reset(new fc_fwd(*pd, *in, *wgt, *bias, *out));
} else {
fwd_.reset(new fc_fwd(fwdPD, *in, *wgt, *out));
fwd_.reset(new fc_fwd(*pd, *in, *wgt, *out));
}
printValueFormatFlow();
pipeline.push_back(*fwd_);
}
void MKLDNNFcLayer::resetBwd(std::vector<mkldnn::primitive>& pipeline,
MKLDNNMatrixPtr& in,
void MKLDNNFcLayer::resetBwdBuffers(MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
pipeline.clear();
if (!needResetBwd_) {
return;
}
needResetBwd_ = false;
bool hasBias = biases_ && biases_->getWGrad();
resetOutGrad(out);
/// backward weight
CHECK(inVal_) << "Should have input value";
const MatrixPtr& wgtGrad = weight_->getWGrad();
const MatrixPtr& biasGrad = hasBias ? biases_->getWGrad() : nullptr;
resetWgtBiasGrad(wgt, bias);
resetInGrad(in);
}
void MKLDNNFcLayer::resetOutGrad(MKLDNNMatrixPtr& out) {
// TODO(TJ): merge outgrad
int device = outputIsOnlyMKLDNN() ? MKLDNN_DEVICE : CPU_DEVICE;
// for MKLDNN device:
......@@ -178,66 +241,88 @@ void MKLDNNFcLayer::resetBwd(std::vector<mkldnn::primitive>& pipeline,
// for CPU device:
// fc do not need to convert from cpu device since output is always nc format
// only need create from cpu device
const MatrixPtr& outGrad = getOutput(device).grad;
out = MKLDNNMatrix::create(outGrad, outVal_->getPrimitiveDesc());
wgt = MKLDNNMatrix::create(wgtGrad, wgtVal_->getPrimitiveDesc());
bias = hasBias ? MKLDNNMatrix::create(biasGrad, biasVal_->getPrimitiveDesc())
: nullptr;
CHECK(outVal_);
out =
MKLDNNMatrix::create(getOutput(device).grad, outVal_->getPrimitiveDesc());
}
// create memory primitive desc
fc_fwd::desc fwdDesc = fc_fwd::desc(prop_kind::forward,
inVal_->getMemoryDesc(),
wgt->getMemoryDesc(),
out->getMemoryDesc());
fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_);
fc_bwdWgt::desc bwdWgtDesc = hasBias
? fc_bwdWgt::desc(inVal_->getMemoryDesc(),
void MKLDNNFcLayer::resetWgtBiasGrad(MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias) {
CHECK(wgtVal_);
wgt = MKLDNNMatrix::create(weight_->getWGrad(), wgtVal_->getPrimitiveDesc());
bias = nullptr;
if (biasVal_ == nullptr) {
return;
}
bias =
MKLDNNMatrix::create(biases_->getWGrad(), biasVal_->getPrimitiveDesc());
}
void MKLDNNFcLayer::resetInGrad(MKLDNNMatrixPtr& in) {
in = nullptr;
const MatrixPtr& inGrad = inputLayers_[0]->getOutput().grad;
if (inGrad == nullptr) {
return;
}
// TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done
CHECK(inVal_);
in = MKLDNNMatrix::create(inGrad, inVal_->getPrimitiveDesc());
}
void MKLDNNFcLayer::resetBwdWgtPD(
std::shared_ptr<fc_bwdWgt::primitive_desc>& pd,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
CHECK(inVal_);
fc_bwdWgt::desc bwdWgtDesc = bias ? fc_bwdWgt::desc(inVal_->getMemoryDesc(),
wgt->getMemoryDesc(),
bias->getMemoryDesc(),
out->getMemoryDesc())
: fc_bwdWgt::desc(inVal_->getMemoryDesc(),
wgt->getMemoryDesc(),
out->getMemoryDesc());
fc_bwdWgt::primitive_desc bwdWgtPD =
fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, fwdPD);
pd.reset(new fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, *fwdPD_));
}
void MKLDNNFcLayer::resetBwdDataPD(
std::shared_ptr<fc_bwdData::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& out) {
pd = nullptr;
if (in == nullptr) {
return;
}
CHECK(wgtVal_);
fc_bwdData::desc bwdDataDesc = fc_bwdData::desc(
in->getMemoryDesc(), wgtVal_->getMemoryDesc(), out->getMemoryDesc());
pd.reset(new fc_bwdData::primitive_desc(bwdDataDesc, engine_, *fwdPD_));
}
if (hasBias) {
bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *out, *wgt, *bias));
void MKLDNNFcLayer::resetBwdPipeline(
std::vector<primitive>& pipeline,
std::shared_ptr<fc_bwdWgt::primitive_desc>& bwdWgtPD,
std::shared_ptr<fc_bwdData::primitive_desc>& bwdDataPD,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
pipeline.clear();
CHECK(inVal_);
if (bias) {
bwdWgt_.reset(new fc_bwdWgt(*bwdWgtPD, *inVal_, *out, *wgt, *bias));
} else {
bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *out, *wgt));
bwdWgt_.reset(new fc_bwdWgt(*bwdWgtPD, *inVal_, *out, *wgt));
}
pipeline.push_back(*bwdWgt_);
/// backward data
const MatrixPtr& inGrad = inputLayers_[0]->getOutput().grad;
if (inGrad == nullptr) {
if (bwdDataPD == nullptr) {
return;
}
if (getInput(0, MKLDNN_DEVICE).getAllCount() > 1) {
// TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done
} else {
in = MKLDNNMatrix::create(inGrad, inVal_->getPrimitiveDesc());
}
fc_bwdData::desc bwdDataDesc = fc_bwdData::desc(
inVal_->getMemoryDesc(), wgt->getMemoryDesc(), out->getMemoryDesc());
fc_bwdData::primitive_desc bwdDataPD =
fc_bwdData::primitive_desc(bwdDataDesc, engine_, fwdPD);
CHECK(wgtVal_) << "Should have weight memory";
bwdData_.reset(new fc_bwdData(bwdDataPD, *out, *wgtVal_, *in));
printGradFormatFlow();
bwdData_.reset(new fc_bwdData(*bwdDataPD, *out, *wgtVal_, *in));
pipeline.push_back(*bwdData_);
}
void MKLDNNFcLayer::updateInputData() {
inVal_->setData(getInputValue(0, CPU_DEVICE)->getData());
}
void MKLDNNFcLayer::updateWeights(const UpdateCallback& callback) {
weight_->getParameterPtr()->incUpdate(callback);
if (biases_ && biases_->getWGrad()) {
biases_->getParameterPtr()->incUpdate(callback);
}
}
} // namespace paddle
......@@ -18,6 +18,9 @@ limitations under the License. */
#include "mkldnn.hpp"
namespace paddle {
typedef mkldnn::inner_product_forward fc_fwd;
typedef mkldnn::inner_product_backward_weights fc_bwdWgt;
typedef mkldnn::inner_product_backward_data fc_bwdData;
/**
* @brief A subclass of MKLDNNLayer fc layer.
......@@ -32,6 +35,9 @@ protected:
// if has already init the weight
bool hasInitedWgt_;
// save forward primitive_desc, which can be used backward
std::shared_ptr<fc_fwd::primitive_desc> fwdPD_;
// fc weight and bias
std::unique_ptr<Weight> weight_;
std::unique_ptr<Weight> biases_;
......@@ -67,6 +73,59 @@ public:
void convertWeightsFromPaddle() override;
void convertWeightsToPaddle() override;
protected:
/**
* Forward functions: reset buffers(input, output, weight and bias),
* reset primitive descriptor,
* reset pipeline.
*/
void resetFwdBuffers(MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out);
void resetInValue(MKLDNNMatrixPtr& in);
void resetWgtBiasValue(MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias);
void resetOutValue(MKLDNNMatrixPtr& out);
void resetFwdPD(std::shared_ptr<fc_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr in,
MKLDNNMatrixPtr wgt,
MKLDNNMatrixPtr bias,
MKLDNNMatrixPtr out);
void resetFwdPipeline(std::vector<mkldnn::primitive>& pipeline,
std::shared_ptr<fc_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out);
/**
* Backward functions: reset buffers(input, output, weight and bias),
* reset primitive descriptor for backward weight,
* reset primitive descriptor for backward data,
* reset pipeline.
*/
void resetBwdBuffers(MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out);
void resetOutGrad(MKLDNNMatrixPtr& out);
void resetWgtBiasGrad(MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias);
void resetInGrad(MKLDNNMatrixPtr& in);
void resetBwdWgtPD(std::shared_ptr<fc_bwdWgt::primitive_desc>& pd,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out);
void resetBwdDataPD(std::shared_ptr<fc_bwdData::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& out);
void resetBwdPipeline(std::vector<mkldnn::primitive>& pipeline,
std::shared_ptr<fc_bwdWgt::primitive_desc>& bwdWgtPD,
std::shared_ptr<fc_bwdData::primitive_desc>& bwdDataPD,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out);
};
} // namespace paddle
......@@ -17,6 +17,7 @@ limitations under the License. */
#include <vector>
#include "MKLDNNTester.h"
#include "ModelConfig.pb.h"
#include "paddle/math/MathUtils.h"
using namespace paddle; // NOLINT
......@@ -63,6 +64,83 @@ TEST(MKLDNNLayer, FcLayer) {
testFcLayer({/*bs*/ 15, /*ic*/ 3, /*oc*/ 6, /*ih*/ 16, /*iw*/ 16});
}
struct testConvDesc {
int bs, gp;
int ic, ih, iw;
int oc, oh, ow;
int fh, fw;
int ph, pw;
int sh, sw;
int dh, dw;
};
void testConvLayer(const testConvDesc& pm) {
const std::string compareTypes[] = {"mkldnn_conv", "exconv"};
TestConfig cfg;
cfg.layerConfig.set_type(compareTypes[0]);
cfg.layerConfig.set_num_filters(pm.oc);
cfg.layerConfig.set_size(pm.oc * pm.oh * pm.ow);
// cfg.layerConfig.set_partial_sum(1); // TODO: check it
cfg.layerConfig.set_shared_biases(true);
cfg.inputDefs.push_back(
{INPUT_DATA,
"layer_0",
/* size of input layer= */ size_t(pm.ic * pm.ih * pm.iw),
/* size of weight= */ size_t(pm.oc * pm.ic * pm.fh * pm.fw / pm.gp)});
LayerInputConfig* input = cfg.layerConfig.add_inputs();
ConvConfig* conv = input->mutable_conv_conf();
conv->set_groups(pm.gp);
conv->set_img_size(pm.iw);
conv->set_img_size_y(pm.ih);
conv->set_output_x(pm.ow);
conv->set_output_y(pm.oh);
conv->set_filter_size(pm.fw);
conv->set_filter_size_y(pm.fh);
conv->set_channels(pm.ic);
conv->set_padding(pm.pw);
conv->set_padding_y(pm.ph);
conv->set_stride(pm.sw);
conv->set_stride_y(pm.sh);
conv->set_dilation(pm.dw);
conv->set_dilation_y(pm.dh);
conv->set_caffe_mode(true);
conv->set_filter_channels(conv->channels() / conv->groups());
CHECK_EQ(conv->filter_channels() * pm.gp, conv->channels())
<< "it is indivisible";
int fh = (pm.fh - 1) * pm.dh + 1;
int fw = (pm.fw - 1) * pm.dw + 1;
int ow = outputSize(pm.iw, fw, pm.pw, pm.sw, true);
int oh = outputSize(pm.ih, fh, pm.ph, pm.sh, true);
CHECK_EQ(ow, pm.ow) << "output size check failed";
CHECK_EQ(oh, pm.oh) << "output size check failed";
MKLDNNTester tester;
for (auto biasSize : {pm.oc, 0}) {
cfg.biasSize = biasSize;
TestConfig ref = cfg;
ref.layerConfig.set_type(compareTypes[1]);
for (auto bs : {pm.bs, 1}) {
tester.run(cfg, ref, bs, pm.ih, pm.iw);
}
}
}
TEST(MKLDNNLayer, ConvLayer) {
/* bs, gp, ic, ih, iw, oc, oh, ow, fh, fw, ph, pw, sh, sw, dh, dw */
testConvLayer({2, 1, 3, 32, 32, 16, 32, 32, 3, 3, 1, 1, 1, 1, 1, 1});
testConvLayer({2, 1, 8, 16, 16, 8, 16, 16, 3, 3, 1, 1, 1, 1, 1, 1});
testConvLayer({3, 1, 16, 32, 32, 3, 32, 32, 3, 3, 1, 1, 1, 1, 1, 1});
testConvLayer({8, 1, 16, 18, 18, 32, 18, 18, 3, 3, 1, 1, 1, 1, 1, 1});
testConvLayer({16, 1, 1, 42, 31, 32, 23, 11, 4, 5, 3, 2, 2, 3, 1, 1});
testConvLayer({2, 1, 8, 16, 16, 8, 8, 8, 3, 3, 1, 1, 2, 2, 1, 1});
testConvLayer({3, 1, 8, 13, 13, 8, 7, 7, 3, 3, 1, 1, 2, 2, 1, 1});
// with groups
testConvLayer({2, 2, 4, 5, 5, 8, 5, 5, 3, 3, 1, 1, 1, 1, 1, 1});
testConvLayer({2, 3, 3, 5, 5, 3, 5, 5, 3, 3, 1, 1, 1, 1, 1, 1});
testConvLayer({4, 4, 16, 3, 3, 16, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1});
}
// TODO(TJ): add branch test
int main(int argc, char** argv) {
......
......@@ -49,6 +49,27 @@ MKLDNNMatrixPtr MKLDNNMatrix::create(MatrixPtr m,
return create(m, memory::primitive_desc(memory::desc(dims, dtype, fmt), eg));
}
std::shared_ptr<reorder> MKLDNNMatrix::createReorder(const MKLDNNMatrixPtr& src,
const MKLDNNMatrixPtr& dst,
bool checkData) {
if (src == dst || src->getPrimitiveDesc() == dst->getPrimitiveDesc()) {
return nullptr;
}
if (checkData && (src->getData() == dst->getData())) {
LOG(FATAL) << "can not create reorder with inplace data";
return nullptr;
}
memory::dims srcDims = src->getDims();
memory::dims dstDims = dst->getDims();
CHECK_EQ(srcDims.size(), dstDims.size());
for (size_t i = 0; i < srcDims.size(); ++i) {
CHECK_EQ(srcDims[i], dstDims[i]);
}
return std::make_shared<reorder>(*src, *dst);
}
void MKLDNNMatrix::reorderDataFrom(const MKLDNNMatrixPtr& m,
memory::format srcFmt,
memory::dims targetDim) {
......
......@@ -52,6 +52,32 @@ public:
mkldnn::engine& eg,
mkldnn::memory::data_type dtype = mkldnn::memory::data_type::f32);
/**
* Create Memory descriptor.
* default with any format and f32 dtype
*/
static mkldnn::memory::desc createMemoryDesc(
const mkldnn::memory::dims& dims,
const mkldnn::memory::format& fmt = mkldnn::memory::format::any,
const mkldnn::memory::data_type& dtype = mkldnn::memory::data_type::f32) {
return mkldnn::memory::desc(dims, dtype, fmt);
}
/**
* Create reorder primitive.
* Create a mkldnn::reorder handle for converting src MKLDNNMatrix to dst.
* checkData: whether to check the data handle of src and dst.
* if true, it will check the data and do not allow them equal;
* otherwise, it will not check them, then the reorder created
* may have inplace buffer.
* Do not set false, if you can not guarantee the inplace logical
* would work with your reorder.
*/
static std::shared_ptr<mkldnn::reorder> createReorder(
const MKLDNNMatrixPtr& src,
const MKLDNNMatrixPtr& dst,
bool checkData = true);
public:
/**
* Reorder this MKLDNNMatrix from other format.
......
......@@ -62,6 +62,24 @@ void Copy<platform::GPUPlace, platform::GPUPlace>(platform::GPUPlace dst_place,
}
}
template <>
void Copy<platform::CPUPlace, platform::GPUPlace>(platform::CPUPlace dst_place,
void* dst,
platform::GPUPlace src_place,
const void* src, size_t num) {
platform::SetDeviceId(src_place.device);
platform::GpuMemcpySync(dst, src, num, cudaMemcpyDeviceToHost);
}
template <>
void Copy<platform::GPUPlace, platform::CPUPlace>(platform::GPUPlace dst_place,
void* dst,
platform::CPUPlace src_place,
const void* src, size_t num) {
platform::SetDeviceId(dst_place.device);
platform::GpuMemcpySync(dst, src, num, cudaMemcpyHostToDevice);
}
#endif // PADDLE_ONLY_CPU
} // namespace memory
......
file(GLOB GENERAL_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "*_op.cc")
string(REPLACE ".cc" "" GENERAL_OPS "${GENERAL_OPS}")
set(pybind_file ${PADDLE_SOURCE_DIR}/paddle/pybind/pybind.h)
file(WRITE ${pybind_file} "// Generated by the paddle/operator/CMakeLists.txt. DO NOT EDIT!\n\n")
function(op_library TARGET)
# op_library is a function to create op library. The interface is same as
# cc_library. But it handle split GPU/CPU code and link some common library
......@@ -7,10 +9,11 @@ function(op_library TARGET)
set(OP_LIBRARY ${TARGET} ${OP_LIBRARY} PARENT_SCOPE)
set(cc_srcs)
set(cu_srcs)
set(op_common_deps operator op_registry)
set(op_common_deps operator op_registry math_function)
set(options "")
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
set(pybind_flag 0)
cmake_parse_arguments(op_library "${options}" "${oneValueArgs}"
"${multiValueArgs}" ${ARGN})
......@@ -46,22 +49,42 @@ function(op_library TARGET)
cc_library(${TARGET} SRCS ${cc_srcs} DEPS ${op_library_DEPS}
${op_common_deps})
endif()
# net_op doesn't need pybind
if ("${TARGET}" STREQUAL "net_op")
set(pybind_flag 1)
endif()
# pybind USE_NO_KERNEL_OP
file(READ ${TARGET}.cc TARGET_CONTENT)
string(REGEX MATCH "OperatorWithKernel" regex_result "${TARGET_CONTENT}")
string(REPLACE "_op" "" TARGET "${TARGET}")
if (${pybind_flag} EQUAL 0 AND regex_result STREQUAL "")
file(APPEND ${pybind_file} "USE_NO_KERNEL_OP(${TARGET});\n")
set(pybind_flag 1)
endif()
# pybind USE_CPU_ONLY_OP
list(LENGTH cu_srcs cu_srcs_len)
if (${pybind_flag} EQUAL 0 AND ${cu_srcs_len} EQUAL 0)
file(APPEND ${pybind_file} "USE_CPU_ONLY_OP(${TARGET});\n")
set(pybind_flag 1)
endif()
# pybind USE_OP
if (${pybind_flag} EQUAL 0)
file(APPEND ${pybind_file} "USE_OP(${TARGET});\n")
endif()
endfunction()
add_subdirectory(math)
set(DEPS_OPS
identity_op
minus_op
mul_op
recurrent_op
scale_op)
op_library(identity_op DEPS scale_op)
op_library(minus_op DEPS scale_op)
op_library(mul_op DEPS math_function)
cond_op)
op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc
DEPS framework_proto tensor operator net_op)
op_library(scale_op DEPS net_op)
DEPS framework_proto tensor net_op)
op_library(cond_op SRCS cond_op.cc DEPS framework_proto tensor operator net_op)
list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS})
foreach(src ${GENERAL_OPS})
......
......@@ -23,10 +23,15 @@ class AccuracyOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Inference"),
"Input of Inference must be initialized.");
PADDLE_ENFORCE_NOT_NULL(
ctx.InputVar("Inference"),
"Input(Inference) of AccuracyOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
"Input of Inference must be initialized.");
"Input(Label) of AccuracyOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(
ctx.OutputVar("Accuracy"),
"Output(Accuracy) of AccuracyOp should not be null.");
auto *inference = ctx.Input<framework::Tensor>("Inference");
auto *label = ctx.Input<framework::Tensor>("Label");
......@@ -34,7 +39,7 @@ class AccuracyOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ(inference->dims()[0], label->dims()[0],
"inference size must be the same as label size");
ctx.Output<Tensor>("Accuracy")->Resize({1});
ctx.Output<framework::LoDTensor>("Accuracy")->Resize({1});
}
};
......
......@@ -23,10 +23,18 @@ class AddOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of AddOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"),
"Input(Y) of AddOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of AddOp should not be null.");
PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("X")->dims(),
ctx.Input<Tensor>("Y")->dims(),
"Two input of Add Op's dimension must be same.");
ctx.Output<Tensor>("Out")->Resize(ctx.Input<Tensor>("X")->dims());
ctx.Output<framework::LoDTensor>("Out")->Resize(
ctx.Input<Tensor>("X")->dims());
}
};
......
......@@ -25,8 +25,11 @@ class ConcatOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of ConcatOp should not be null.");
auto ins = ctx.MultiInput<framework::Tensor>("X");
auto *out = ctx.Output<framework::Tensor>("Out");
auto *out = ctx.Output<framework::LoDTensor>("Out");
size_t axis = static_cast<size_t>(ctx.Attr<int>("axis"));
size_t n = ins.size();
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/cond_op.h"
#include <cstring>
#include <sstream>
#include "paddle/framework/op_registry.h"
#include "paddle/operators/gather.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/scatter.h"
namespace paddle {
namespace operators {
using Scope = framework::Scope;
using Variable = framework::Variable;
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DDim = framework::DDim;
void CondOp::CreateScope(const Scope& scope) const {
auto sub_scopes_var = scope.FindVar("SubScopes");
PADDLE_ENFORCE_NOT_NULL(sub_scopes_var,
"Output(SubScopes) of CondOp should not be null.");
auto sub_scopes = sub_scopes_var->GetMutable<std::vector<Scope*>>();
auto& sub_scope = scope.NewScope();
sub_scopes->push_back(&sub_scope);
}
void CondOp::CreateIndexTensor(const Scope& scope) const {
auto index_tensors_var = scope.FindVar("IndexTensors");
PADDLE_ENFORCE_NOT_NULL(index_tensors_var,
"Output(IndexTensors) of CondOp should not be null.");
auto& index_tensors =
*index_tensors_var->GetMutable<std::vector<LoDTensor>>();
index_tensors.push_back(LoDTensor());
}
void CondOp::InferShape(const Scope& scope) const {
auto sub_scopes_var = scope.FindVar("SubScopes");
PADDLE_ENFORCE_NOT_NULL(sub_scopes_var,
"Output(SubScopes) of CondOp should not be null.");
auto& sub_scopes = *sub_scopes_var->GetMutable<std::vector<Scope*>>();
for (int i = 0; i < 2; ++i) {
// Create two sub scopes for true and false branches
// sub_scopes[0] for the true branch and sub_scopes[1] for the false
// branch
CreateScope(scope);
// Create two tensors for true and false indices
// index_tensors[0] for the true branch and index_tensors[1] for the false
// branch
CreateIndexTensor(scope);
PADDLE_ENFORCE(!Inputs("Xs").empty(),
"Inputs(Xs) of CondOp can't be empty.");
for (auto& input : Inputs("Xs")) {
// Create a new tensor in sub-scope for input-type tensor
Variable* v = sub_scopes[i]->NewVar(input);
LoDTensor* sub_input = v->GetMutable<LoDTensor>();
sub_input->Resize(scope.FindVar(input)->GetMutable<LoDTensor>()->dims());
}
for (auto& output : (*sub_net_op_[i]).Outputs()) {
for (auto& var_name : output.second) {
sub_scopes[i]->NewVar(var_name);
}
}
// each net calls InferShape
sub_net_op_[i]->InferShape(*sub_scopes[i]);
}
for (auto& output : Outputs("Outs")) {
LoDTensor* tensor_t_out =
sub_scopes[0]->FindVar(output)->GetMutable<LoDTensor>();
PADDLE_ENFORCE_NOT_NULL(tensor_t_out, "True output should not be NULL");
LoDTensor* tensor_f_out =
sub_scopes[1]->FindVar(output)->GetMutable<LoDTensor>();
PADDLE_ENFORCE_NOT_NULL(tensor_f_out, "False output should not be NULL");
auto* tensor_out_var = scope.FindVar(output);
PADDLE_ENFORCE_NOT_NULL(tensor_out_var, "Output not found");
LoDTensor* tensor_out = tensor_out_var->GetMutable<LoDTensor>();
PADDLE_ENFORCE_NOT_NULL(tensor_t_out,
"True output tensor should not be NULL");
// check output size should be same
PADDLE_ENFORCE_EQ(tensor_t_out->dims(), tensor_f_out->dims(),
"Outputs not of the same shape");
tensor_out->Resize(tensor_t_out->dims());
// tensor_out->mutable_data<float>(tensor_out->dims(),
// platform::CPUPlace());
tensor_out->mutable_data<float>(platform::CPUPlace());
}
}
void CondOp::Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const {
auto* sub_scopes_var = scope.FindVar("SubScopes");
PADDLE_ENFORCE_NOT_NULL(sub_scopes_var,
"Output(SubScopes) of CondOp should not be null.");
auto sub_scopes = sub_scopes_var->Get<std::vector<Scope*>>();
auto* index_tensors_var = scope.FindVar("IndexTensors");
PADDLE_ENFORCE_NOT_NULL(index_tensors_var,
"Output(IndexTensors) of CondOp should not be null.");
auto index_tensors = index_tensors_var->Get<std::vector<LoDTensor>>();
std::string cond_name = Input("Cond");
Variable* cond_var = scope.FindVar(cond_name);
PADDLE_ENFORCE_NOT_NULL(cond_var,
"Input(Cond) of CondOp should not be null.");
const LoDTensor* cond = cond_var->GetMutable<LoDTensor>();
// Step 1: get the true/false index at runtime
// index_[0]: vector<int>, contains all index for cond[i] == true
// index_[1]: vector<int>, contains all index for cond[i] == false
for (int i = 0; i < 2; ++i) index_[i].clear();
const int* cond_data = cond->data<int>();
for (int i = 0; i < cond->dims()[0]; ++i) {
if (cond_data[i])
index_[0].push_back(i);
else
index_[1].push_back(i);
}
// put index_[0] and index_[1] into two tensors:
// index_tensor_[0] and index_tensor_[1]
DDim dim = paddle::framework::make_ddim({0});
for (int i = 0; i < 2; ++i) {
dim[0] = index_[i].size();
int* tmp_ptr =
index_tensors[i].mutable_data<int>(dim, platform::CPUPlace());
index_tensors[i].Resize(dim);
memcpy(tmp_ptr, index_[i].data(), dim[0] * sizeof(int));
}
// Step 2: collect data by calling gather
for (int i = 0; i < 2; ++i) {
// i= 0/i for True and False branches respectively
for (auto& input : Inputs("Xs")) {
// find Tensor
Variable* v = scope.FindVar(input);
PADDLE_ENFORCE_NOT_NULL(v);
LoDTensor* tensor_parent = v->GetMutable<LoDTensor>();
v = sub_scopes[i]->FindVar(input);
PADDLE_ENFORCE_NOT_NULL(v);
LoDTensor* tensor_child = v->GetMutable<LoDTensor>();
// Resize child
DDim dim = tensor_child->dims();
dim[0] = index_[i].size();
tensor_child->Resize(dim);
tensor_child->mutable_data<float>(dim, platform::CPUPlace());
Gather<float>(dev_ctx.GetPlace(), tensor_parent, &index_tensors[i],
tensor_child);
}
}
// Step 3: run
for (int i = 0; i < 2; ++i) {
sub_net_op_[i]->Run(*sub_scopes[i], dev_ctx);
}
// Step 4: merge output results
PADDLE_ENFORCE(!Outputs("Outs").empty(),
"Outputs(Outs) of CondOp can't be empty.");
for (int i = 0; i < 2; ++i) {
// i= 0/i for True and False branches respectively
for (auto& output : Outputs("Outs")) {
// find Tensor
Variable* v = scope.FindVar(output);
PADDLE_ENFORCE_NOT_NULL(v);
LoDTensor* tensor_parent = v->GetMutable<LoDTensor>();
v = sub_scopes[i]->FindVar(output);
PADDLE_ENFORCE_NOT_NULL(v);
LoDTensor* tensor_child = v->GetMutable<LoDTensor>();
ScatterUpdate<float>(dev_ctx.GetPlace(), tensor_child, &index_tensors[i],
tensor_parent);
}
}
}
class CondOpProtoAndCheckerMaker : public framework::OpProtoAndCheckerMaker {
public:
CondOpProtoAndCheckerMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Cond", "The condition, which is a bool vector");
AddInput("Xs", "Inputs of Subnets").AsDuplicable();
AddOutput("Outs", "Outputs of Cond_Op after merge").AsDuplicable();
AddOutput("SubScopes", "sub scopes for true and false branches");
AddOutput("IndexTensors", "Index Tensors contains indices for true/false");
AddComment(R"DOC(
Sample dependent Cond Operator:
Given Cond[i] as a 1/0 vector to indicate true/false
The equation is:
Out[i] = subnet_t[i], if Cond[i] == true
Out[i] = subnet_t[i], if Cond[i] == false
)DOC");
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP_WITHOUT_GRADIENT(cond, paddle::operators::CondOp,
paddle::operators::CondOpProtoAndCheckerMaker);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "glog/logging.h"
#include "paddle/framework/ddim.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/tensor.h"
#include "paddle/operators/net_op.h"
namespace paddle {
namespace operators {
/*
* @brief CondOp is a dynamic if-else Operator
*
* It has a input tensor named cond indicating which netop each instance will
* run.
*
* if cond == 1, it will run true_net, which is a NetOp.
*
* if cond == 0, it will run false_net, which is another NetOp.
*/
class CondOp : public framework::OperatorBase {
public:
CondOp(const std::string& type, const framework::VariableNameMap& inputs,
const framework::VariableNameMap& outputs,
const framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {
index_.resize(2);
sub_net_op_.resize(2);
}
CondOp(const CondOp& o)
: framework::OperatorBase(
static_cast<const framework::OperatorBase&>(o)) {
// TODO(yuyang18): Implement copy ctor well.
PADDLE_THROW("Not implemented");
}
void CreateScope(const framework::Scope& scope) const;
void CreateIndexTensor(const framework::Scope& scope) const;
/*
* InferShape must be called before Run.
*/
void InferShape(const framework::Scope& scope) const override;
/*
* Set True Block
*/
void set_truenet(std::unique_ptr<OperatorBase>&& net) {
sub_net_op_[0] = std::move(net);
}
/*
* Set False Block
*/
void set_falsenet(std::unique_ptr<OperatorBase>&& net) {
sub_net_op_[1] = std::move(net);
}
void Run(const framework::Scope& scope,
const platform::DeviceContext& dev_ctx) const override;
private:
// sub_net_op_[0]: subnet_t
// sub_net_op_[1]: subnet_f
std::vector<std::unique_ptr<framework::OperatorBase>> sub_net_op_;
// index_[0]: True_index;
// index_[1]: False_index;
mutable std::vector<std::vector<int>> index_;
};
} // namespace operators
} // namespace paddle
......@@ -25,16 +25,38 @@ class CosSimOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) must not be null.");
PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("X")->dims(),
ctx.Input<Tensor>("Y")->dims(),
"Dimensions of Input(X) and Input(Y) must be the same.");
auto dims = ctx.Input<Tensor>("X")->dims();
ctx.Output<Tensor>("Out")->Resize({dims[0], 1});
ctx.Output<Tensor>("XNorm")->Resize({dims[0], 1});
ctx.Output<Tensor>("YNorm")->Resize({dims[0], 1});
// notnull check
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of CosSimOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"),
"Input(Y) of CosSimOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of CosSimOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("XNorm"),
"Output(XNorm) of CosSimOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("YNorm"),
"Output(YNorm) of CosSimOp should not be null.");
// shape check
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto y_dims = ctx.Input<Tensor>("Y")->dims();
PADDLE_ENFORCE_EQ(x_dims.size(), y_dims.size(),
"Ranks of Input(X) and Input(Y) must be equal.");
PADDLE_ENFORCE_GE(x_dims.size(), 2,
"Rank of Input(X) must not be less than 2.");
PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 1, x_dims.size()),
framework::slice_ddim(y_dims, 1, y_dims.size()),
"All dimensions except the 1st of Input(X) and Input(Y) "
"must be equal.");
PADDLE_ENFORCE(x_dims[0] == y_dims[0] || y_dims[0] == 1,
"The 1st dimension of Input(Y) must be equal to Input(X) or"
" just 1 (which will be broadcasted to match Input(X)).");
// resize tensor
ctx.Output<framework::LoDTensor>("Out")->Resize({x_dims[0], 1});
ctx.Output<framework::LoDTensor>("XNorm")->Resize({x_dims[0], 1});
ctx.Output<framework::LoDTensor>("YNorm")->Resize({y_dims[0], 1});
}
};
......@@ -42,16 +64,27 @@ class CosSimOpMaker : public framework::OpProtoAndCheckerMaker {
public:
CosSimOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The first input of cos_sim op.");
AddInput("Y", "The second input of cos_sim op.");
AddInput("X", "The 1st input of cos_sim op.");
AddInput("Y", "The 2nd input of cos_sim op.");
AddOutput("Out", "The output of cos_sim op.");
AddOutput("XNorm", "Row norm of the first input.").AsIntermediate();
AddOutput("YNorm", "Row norm of the second input.").AsIntermediate();
AddOutput("XNorm",
"Norm of the first input, reduced along the 1st "
"dimension.")
.AsIntermediate();
AddOutput("YNorm",
"Norm of the second input, reduced along the 1st "
"dimension.")
.AsIntermediate();
AddComment(R"DOC(
Cosine Similarity Operator.
The equation is: Out = X^T * Y / (sqrt(X^T * X) * sqrt(Y^T * Y))
The equation is: Out = X^T * Y / (sqrt(X^T * X) * sqrt(Y^T * Y)).
Input(X) and Input(Y) must have the same shape, except that the 1st dimension
of Input(Y) could be just 1 (different from Input(X)), which will be
broadcasted to match the shape of Input(X) before computing their cosine
similarity.
)DOC");
}
};
......@@ -62,34 +95,54 @@ class CosSimOpGrad : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
// notnull check
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) must not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("XNorm"),
"Input(XNorm) must not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("YNorm"),
"Input(YNorm) must not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Out"),
"Input(Out) must not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) must not be null.");
// shape check
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto y_dims = ctx.Input<Tensor>("Y")->dims();
auto xnorm_dims = ctx.Input<Tensor>("XNorm")->dims();
auto ynorm_dims = ctx.Input<Tensor>("YNorm")->dims();
auto out_dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
PADDLE_ENFORCE_EQ(x_dims, y_dims,
"Dimensions of Input(X) and Input(Y) must be the same.");
PADDLE_ENFORCE_EQ(xnorm_dims[0], x_dims[0],
"1st dimension of XNorm must equal that of Input(X).");
PADDLE_ENFORCE_EQ(xnorm_dims[1], 1, "2st dimension of XNorm must be one.");
PADDLE_ENFORCE_EQ(ynorm_dims[0], y_dims[0],
"1st dimension of YNorm must equal that of Input(Y).");
PADDLE_ENFORCE_EQ(ynorm_dims[1], 1, "2st dimension of YNorm must be one.");
PADDLE_ENFORCE_EQ(out_dims[0], x_dims[0],
"1st dimension of Out@GRAD must equal that of Input(X)");
PADDLE_ENFORCE_EQ(out_dims[1], 1, "1st dimension of Out@GRAD must be one.");
auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *y_grad = ctx.Output<Tensor>(framework::GradVarName("Y"));
auto out_dims = ctx.Input<Tensor>("Out")->dims();
auto out_grad_dims =
ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
"Ranks of Input(X) and Input(Y) must be equal.");
PADDLE_ENFORCE_GE(x_dims.size(), 2,
"Rank of Input(X) must not be less than 2.");
PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 1, x_dims.size()),
framework::slice_ddim(y_dims, 1, y_dims.size()),
"All dimensions except the 1st of Input(X) and Input(Y) "
"must be equal.");
PADDLE_ENFORCE(x_dims[0] == y_dims[0] || y_dims[0] == 1,
"The 1st dimension of Input(Y) must be equal to Input(X) or"
" just 1 (which will be broadcasted to match Input(X)).");
auto target_xnorm_dims = framework::make_ddim({x_dims[0], 1});
auto target_ynorm_dims = framework::make_ddim({y_dims[0], 1});
PADDLE_ENFORCE_EQ(xnorm_dims, target_xnorm_dims,
"Shape of Input(XNorm) must be [X.Dim(0), 1].");
PADDLE_ENFORCE_EQ(ynorm_dims, target_ynorm_dims,
"Shape of Input(YNorm) must be [Y.Dim(0), 1].");
PADDLE_ENFORCE_EQ(out_dims, target_xnorm_dims,
"Shape of Input(Out) must be [X.Dim(0), 1].");
PADDLE_ENFORCE_EQ(out_grad_dims, target_xnorm_dims,
"Shape of Input(Out@Grad) must be [X.Dim(0), 1].");
// resize tensor
auto *x_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
auto *y_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("Y"));
if (x_grad) x_grad->Resize(x_dims);
if (y_grad) y_grad->Resize(y_dims);
}
......
......@@ -31,30 +31,38 @@ template <typename Place, typename T>
class CosSimKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* input_x = context.Input<Tensor>("X");
auto* input_y = context.Input<Tensor>("Y");
auto* output_z = context.Output<Tensor>("Out");
auto* output_x_norm = context.Output<Tensor>("XNorm");
auto* output_y_norm = context.Output<Tensor>("YNorm");
// get Tensor
auto* in_x = context.Input<Tensor>("X");
auto* in_y = context.Input<Tensor>("Y");
auto* out_z = context.Output<Tensor>("Out");
auto* out_x_norm = context.Output<Tensor>("XNorm");
auto* out_y_norm = context.Output<Tensor>("YNorm");
out_z->mutable_data<T>(context.GetPlace());
out_x_norm->mutable_data<T>(context.GetPlace());
out_y_norm->mutable_data<T>(context.GetPlace());
output_z->mutable_data<T>(context.GetPlace());
output_x_norm->mutable_data<T>(context.GetPlace());
output_y_norm->mutable_data<T>(context.GetPlace());
auto dims = input_x->dims();
int64_t size = input_x->numel();
auto new_dims = framework::make_ddim({dims[0], size / dims[0]});
auto x = EigenMatrix<T>::From(*input_x, new_dims);
auto y = EigenMatrix<T>::From(*input_y, new_dims);
auto z = EigenVector<T>::Flatten(*output_z);
auto x_norm = EigenVector<T>::Flatten(*output_x_norm);
auto y_norm = EigenVector<T>::Flatten(*output_y_norm);
// convert Tensor to Eigen Tensor
int rows_x = in_x->dims()[0];
int rows_y = in_y->dims()[0];
auto x = EigenMatrix<T>::Reshape(*in_x, 1);
auto y = EigenMatrix<T>::Reshape(*in_y, 1);
auto z = EigenVector<T>::Flatten(*out_z);
auto x_norm = EigenVector<T>::Flatten(*out_x_norm);
auto y_norm = EigenVector<T>::Flatten(*out_y_norm);
// compute
auto place = context.GetEigenDevice<Place>();
auto row_along = Eigen::array<int, 1>({{1}});
x_norm.device(place) = x.square().sum(row_along).sqrt();
y_norm.device(place) = y.square().sum(row_along).sqrt();
if (rows_x == rows_y) {
auto xy = (x * y).sum(Eigen::array<int, 1>({{1}}));
x_norm.device(place) = x.square().sum(Eigen::array<int, 1>({{1}})).sqrt();
y_norm.device(place) = y.square().sum(Eigen::array<int, 1>({{1}})).sqrt();
z.device(place) = xy / x_norm / y_norm;
} else {
Eigen::DSizes<int, 2> bcast(rows_x, 1);
auto xy = (x * y.broadcast(bcast)).sum(row_along);
z.device(place) = xy / x_norm / y_norm.broadcast(bcast);
}
}
};
......@@ -62,43 +70,72 @@ template <typename Place, typename T>
class CosSimGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* input_x = context.Input<Tensor>("X");
auto* input_y = context.Input<Tensor>("Y");
auto* input_z = context.Input<Tensor>("Out");
auto* input_x_norm = context.Input<Tensor>("XNorm");
auto* input_y_norm = context.Input<Tensor>("YNorm");
auto* output_grad_x = context.Output<Tensor>(framework::GradVarName("X"));
auto* output_grad_y = context.Output<Tensor>(framework::GradVarName("Y"));
auto* input_grad_z = context.Input<Tensor>(framework::GradVarName("Out"));
// get Tensor
auto* in_x = context.Input<Tensor>("X");
auto* in_y = context.Input<Tensor>("Y");
auto* in_z = context.Input<Tensor>("Out");
auto* in_x_norm = context.Input<Tensor>("XNorm");
auto* in_y_norm = context.Input<Tensor>("YNorm");
auto* out_grad_x = context.Output<Tensor>(framework::GradVarName("X"));
auto* out_grad_y = context.Output<Tensor>(framework::GradVarName("Y"));
auto* in_grad_z = context.Input<Tensor>(framework::GradVarName("Out"));
auto dims = input_x->dims();
int64_t size = input_x->numel();
auto new_dims = framework::make_ddim({dims[0], size / dims[0]});
auto x = EigenMatrix<T>::From(*input_x, new_dims);
auto y = EigenMatrix<T>::From(*input_y, new_dims);
auto z = EigenMatrix<T>::From(*input_z);
auto x_norm = EigenMatrix<T>::From(*input_x_norm);
auto y_norm = EigenMatrix<T>::From(*input_y_norm);
auto dz = EigenMatrix<T>::From(*input_grad_z);
// convert Tensor to Eigen Tensor
auto x = EigenMatrix<T>::Reshape(*in_x, 1);
auto y = EigenMatrix<T>::Reshape(*in_y, 1);
auto z = EigenMatrix<T>::Reshape(*in_z, 1);
auto x_norm = EigenMatrix<T>::Reshape(*in_x_norm, 1);
auto y_norm = EigenMatrix<T>::Reshape(*in_y_norm, 1);
auto dz = EigenMatrix<T>::Reshape(*in_grad_z, 1);
Eigen::DSizes<int, 2> bcast(1, new_dims[1]);
auto z_bcast = z.broadcast(bcast);
auto dz_bcast = dz.broadcast(bcast);
// compute gradident
int rows_x = in_x->dims()[0];
int rows_y = in_y->dims()[0];
int cols = framework::product(in_x->dims()) / rows_x;
Eigen::DSizes<int, 2> bcast_cols(1, cols);
auto z_bcast = z.broadcast(bcast_cols);
auto dz_bcast = dz.broadcast(bcast_cols);
auto x_snorm_bcast = x_norm.square().eval().broadcast(bcast_cols);
auto place = context.GetEigenDevice<Place>();
auto x_snorm_bcast = x_norm.square().eval().broadcast(bcast);
auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast);
auto norm_prod_bcast = (x_norm * y_norm).eval().broadcast(bcast);
if (output_grad_x) {
output_grad_x->mutable_data<T>(context.GetPlace());
auto dx = EigenMatrix<T>::From(*output_grad_x, new_dims);
dx.device(place) =
dz_bcast * (y / norm_prod_bcast - z_bcast * x / x_snorm_bcast);
if (rows_x == rows_y) {
auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast_cols);
auto norm_prod_bcast = (x_norm * y_norm).eval().broadcast(bcast_cols);
// compute dx
if (out_grad_x) {
out_grad_x->mutable_data<T>(context.GetPlace());
auto dx = EigenMatrix<T>::Reshape(*out_grad_x, 1);
auto grad = y / norm_prod_bcast - z_bcast * x / x_snorm_bcast;
dx.device(place) = dz_bcast * grad;
}
// compute dy
if (out_grad_y) {
out_grad_y->mutable_data<T>(context.GetPlace());
auto dy = EigenMatrix<T>::Reshape(*out_grad_y, 1);
auto grad = x / norm_prod_bcast - z_bcast * y / y_snorm_bcast;
dy.device(place) = dz_bcast * grad;
}
} else {
Eigen::DSizes<int, 2> bcast_rows(rows_x, 1);
Eigen::DSizes<int, 2> bcast_rows_cols(rows_x, cols);
auto y_bcast = y.broadcast(bcast_rows);
auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast_rows_cols);
auto norm_prod_bcast = (x_norm * y_norm.eval().broadcast(bcast_rows))
.eval()
.broadcast(bcast_cols);
// compute dx
if (out_grad_x) {
out_grad_x->mutable_data<T>(context.GetPlace());
auto dx = EigenMatrix<T>::Reshape(*out_grad_x, 1);
auto grad = y_bcast / norm_prod_bcast - z_bcast * x / x_snorm_bcast;
dx.device(place) = dz_bcast * grad;
}
// compute dy
if (out_grad_y) {
out_grad_y->mutable_data<T>(context.GetPlace());
auto dy = EigenMatrix<T>::Reshape(*out_grad_y, 1);
auto grad = x / norm_prod_bcast - z_bcast * y_bcast / y_snorm_bcast;
dy.device(place) = (dz_bcast * grad).sum(Eigen::array<int, 1>({{0}}));
}
if (output_grad_y) {
output_grad_y->mutable_data<T>(context.GetPlace());
auto dy = EigenMatrix<T>::From(*output_grad_y, new_dims);
dy.device(place) =
dz_bcast * (x / norm_prod_bcast - z_bcast * y / y_snorm_bcast);
}
}
};
......
......@@ -141,17 +141,23 @@ template <typename T>
class CropCPUKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext &context) const override {
LOG(INFO) << "CropCPUKernel step1";
auto *x = context.Input<Tensor>("X");
LOG(INFO) << "CropCPUKernel step2";
auto *out = context.Output<Tensor>("Out");
LOG(INFO) << "CropCPUKernel step3";
auto x_data = x->data<T>();
T *out_data = out->mutable_data<T>(paddle::platform::CPUPlace());
LOG(INFO) << "CropCPUKernel step4";
auto x_dims = x->dims();
auto out_dims = out->dims();
LOG(INFO) << "CropCPUKernel step5";
int64_t out_count = framework::product(out_dims);
std::vector<int64_t> x_shape = framework::vectorize(x_dims);
std::vector<int64_t> out_shape = framework::vectorize(out_dims);
auto offsets = context.op().Attr<std::vector<int>>("offsets");
LOG(INFO) << "CropCPUKernel step6";
PADDLE_ENFORCE_EQ(
x_dims.size(), offsets.size(),
"Offsets size should be equal to dimension size of input tensor.");
......@@ -165,6 +171,7 @@ class CropCPUKernel : public framework::OpKernel {
for (int64_t i = 0; i < out_count; ++i) {
out_data[i] = x_data[transIndex(out_shape, x_shape, crop_rules, i)];
}
LOG(INFO) << "CropCPUKernel step7";
}
};
......
......@@ -48,6 +48,7 @@ template <typename T, int D>
void CropCUDAFunctoin(const framework::ExecutionContext& context) {
PADDLE_ENFORCE(platform::is_gpu_place(context.GetPlace()),
"It must use GPUPlace.");
LOG(INFO) << "CropCUDAFunctoin step1";
auto* x = context.Input<Tensor>("X");
auto* out = context.Output<Tensor>("Out");
auto x_data = x->data<T>();
......
......@@ -25,13 +25,19 @@ class ElementWiseMulOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of ElementWiseMulOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"),
"Input(Y) of ElementWiseMulOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(
ctx.OutputVar("Out"),
"Output(Out) of ElementWiseMulOp should not be null.");
auto x_dim = ctx.Input<Tensor>("X")->dims();
auto y_dim = ctx.Input<Tensor>("Y")->dims();
PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(),
"Rank of first input must >= rank of second input.")
ctx.Output<Tensor>("Out")->Resize(x_dim);
ctx.Output<framework::LoDTensor>("Out")->Resize(x_dim);
}
};
......@@ -80,8 +86,10 @@ class ElementWiseMulOpGrad : public framework::OperatorWithKernel {
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto y_dims = ctx.Input<Tensor>("Y")->dims();
auto out_dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *y_grad = ctx.Output<Tensor>(framework::GradVarName("Y"));
auto *x_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
auto *y_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("Y"));
PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
"Rank of first input must >= rank of second input.")
......
......@@ -13,10 +13,8 @@
limitations under the License. */
#pragma once
#include <iostream>
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
namespace paddle {
namespace operators {
......
......@@ -23,7 +23,14 @@ class FillZerosLikeOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
ctx.Output<framework::Tensor>("Dst")->Resize(
PADDLE_ENFORCE_NOT_NULL(
ctx.InputVar("Src"),
"Input(Src) of FillZerosLikeOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(
ctx.OutputVar("Dst"),
"Output(Dst) of FillZerosLikeOp should not be null.");
ctx.Output<framework::LoDTensor>("Dst")->Resize(
ctx.Input<framework::Tensor>("Src")->dims());
}
};
......
......@@ -24,11 +24,18 @@ class GatherOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of GatherOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Index"),
"Input(Index) of GatherOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of GatherOp should not be null.");
int batch_size = ctx.Input<Tensor>("Index")->dims()[0];
PADDLE_ENFORCE_GE(batch_size, 0, "Batch size must be >0");
framework::DDim output_dims(ctx.Input<Tensor>("X")->dims());
output_dims[0] = batch_size;
ctx.Output<Tensor>("Out")->Resize(output_dims);
ctx.Output<framework::LoDTensor>("Out")->Resize(output_dims);
}
};
......@@ -38,7 +45,7 @@ class GatherGradOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto X_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
auto X_grad = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
auto X = ctx.Input<Tensor>("X");
X_grad->Resize(X->dims());
......
......@@ -43,8 +43,12 @@ class GaussianRandomOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext& context) const override {
auto* tensor = context.Output<framework::Tensor>("Out");
void InferShape(const framework::InferShapeContext& ctx) const override {
PADDLE_ENFORCE_NOT_NULL(
ctx.OutputVar("Out"),
"Output(Out) of GaussianRandomOp should not be null.");
auto* tensor = ctx.Output<framework::LoDTensor>("Out");
auto dims = Attr<std::vector<int>>("dims");
std::vector<int64_t> temp;
temp.reserve(dims.size());
......
......@@ -42,6 +42,11 @@ class IdentityOp : public NetOp {
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: NetOp(type, inputs, outputs, attrs) {
PADDLE_ENFORCE_NE(Input("X"), framework::kEmptyVarName,
"Input(X) of IdentityOp should not be null.");
PADDLE_ENFORCE_NE(Output("Out"), framework::kEmptyVarName,
"Output(Out) of IdentityOp should not be null.");
AppendOp(framework::OpRegistry::CreateOp(
"scale", {{"X", {Input("X")}}}, {{"Out", {Output("Out")}}},
{{"scale", static_cast<AttrType>(1)}}));
......
......@@ -22,10 +22,17 @@ class LookupTableOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &context) const override {
auto table_t = context.Input<Tensor>("W");
auto ids_t = context.Input<Tensor>("Ids");
auto output_t = context.Output<Tensor>("Out");
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("W"),
"Input(W) of LookupTableOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Ids"),
"Input(Ids) of LookupTableOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of LookupTableOp should not be null.");
auto table_t = ctx.Input<Tensor>("W");
auto ids_t = ctx.Input<Tensor>("Ids");
auto output_t = ctx.Output<framework::LoDTensor>("Out");
output_t->Resize({ids_t->dims()[0], table_t->dims()[1]});
}
......@@ -56,7 +63,8 @@ class LookupTableOpGrad : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &context) const override {
auto table = context.Input<Tensor>("W");
auto d_table = context.Output<Tensor>(framework::GradVarName("W"));
auto d_table =
context.Output<framework::LoDTensor>(framework::GradVarName("W"));
d_table->Resize(table->dims());
}
};
......
......@@ -24,8 +24,10 @@ class MeanOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input of MeanOp must be initialized.");
ctx.Output<Tensor>("Out")->Resize({1});
"Input(X) of MeanOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of MeanOp should not be null.");
ctx.Output<framework::LoDTensor>("Out")->Resize({1});
}
};
......@@ -45,7 +47,7 @@ class MeanGradOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
ctx.Output<Tensor>(framework::GradVarName("X"))
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"))
->Resize(ctx.Input<Tensor>("X")->dims());
}
};
......
......@@ -27,13 +27,20 @@ class MinusOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of MinusOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"),
"Input(Y) of MinusOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of MinusOp should not be null.");
auto *left_tensor = ctx.Input<framework::Tensor>("X");
auto *right_tensor = ctx.Input<framework::Tensor>("Y");
PADDLE_ENFORCE_EQ(
left_tensor->numel(), right_tensor->numel(),
"Minus operator must take two tensor with same num of elements");
ctx.Output<framework::Tensor>("Out")->Resize(left_tensor->dims());
ctx.Output<framework::LoDTensor>("Out")->Resize(left_tensor->dims());
}
};
......@@ -77,8 +84,6 @@ class MinusGradOp : public NetOp {
} // namespace operators
} // namespace paddle
USE_OP(scale);
USE_NO_KERNEL_OP(identity);
namespace ops = paddle::operators;
REGISTER_OP(minus, ops::MinusOp, ops::MinusOpMaker, minus_grad,
ops::MinusGradOp<float>);
......
......@@ -18,6 +18,7 @@ namespace paddle {
namespace operators {
using framework::Tensor;
using framework::LoDTensor;
class MulOp : public framework::OperatorWithKernel {
public:
......@@ -25,6 +26,13 @@ class MulOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of MulOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"),
"Input(Y) of MulOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of MulOp should not be null.");
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto y_dims = ctx.Input<Tensor>("Y")->dims();
int x_num_col_dims = Attr<int>("x_num_col_dims");
......@@ -45,7 +53,8 @@ class MulOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ(
x_mat_dims[1], y_mat_dims[0],
"First matrix's width must be equal with second matrix's height.");
ctx.Output<Tensor>("Out")->Resize({x_mat_dims[0], y_mat_dims[1]});
ctx.Output<framework::LoDTensor>("Out")->Resize(
{x_mat_dims[0], y_mat_dims[1]});
}
};
......@@ -94,8 +103,10 @@ class MulOpGrad : public framework::OperatorWithKernel {
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto y_dims = ctx.Input<Tensor>("Y")->dims();
auto out_dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *y_grad = ctx.Output<Tensor>(framework::GradVarName("Y"));
auto *x_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
auto *y_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("Y"));
auto x_mat_dims =
framework::flatten_to_2d(x_dims, Attr<int>("x_num_col_dims"));
......
......@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/cross_entropy_op.h"
#include "paddle/operators/onehot_cross_entropy_op.h"
namespace paddle {
namespace operators {
......@@ -23,13 +23,23 @@ class OnehotCrossEntropyOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(
ctx.InputVar("X"),
"Input(X) of OnehotCrossEntropyOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(
ctx.InputVar("label"),
"Input(label) of OnehotCrossEntropyOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(
ctx.OutputVar("Y"),
"Output(Y) of OnehotCrossEntropyOp should not be null.");
auto *X = ctx.Input<Tensor>("X");
auto *label = ctx.Input<Tensor>("label");
PADDLE_ENFORCE_EQ(X->dims().size(), 2, "X's dimension must be 2.");
PADDLE_ENFORCE_EQ(label->dims().size(), 1, "label's dimension must be 1.");
PADDLE_ENFORCE_EQ(X->dims()[0], label->dims()[0]);
ctx.Output<Tensor>("Y")->Resize({X->dims()[0]});
ctx.Output<framework::LoDTensor>("Y")->Resize({X->dims()[0], 1});
}
};
......@@ -39,7 +49,7 @@ class OnehotCrossEntropyGradientOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto dX = ctx.Output<Tensor>(framework::GradVarName("X"));
auto dX = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
auto X = ctx.Input<Tensor>("X");
dX->Resize(X->dims());
......
......@@ -25,6 +25,11 @@ class PadOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of PadOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of PadOp should not be null.");
auto x_dim = ctx.Input<Tensor>("X")->dims();
auto paddings = Attr<std::vector<int>>("paddings");
PADDLE_ENFORCE_EQ(x_dim.size() * 2, int64_t(paddings.size()),
......@@ -34,7 +39,8 @@ class PadOp : public framework::OperatorWithKernel {
for (int i = 0; i < x_dim.size(); ++i) {
out_dims[i] = x_dim[i] + paddings[i * 2] + paddings[i * 2 + 1];
}
ctx.Output<Tensor>("Out")->Resize(framework::make_ddim(out_dims));
ctx.Output<framework::LoDTensor>("Out")->Resize(
framework::make_ddim(out_dims));
}
};
......@@ -95,9 +101,9 @@ class PadOpGrad : public framework::OperatorWithKernel {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
if (x_grad != nullptr) {
x_grad->Resize(x_dims);
auto *x_g = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
if (x_g != nullptr) {
x_g->Resize(x_dims);
}
}
};
......
......@@ -26,10 +26,11 @@ namespace operators {
using Scope = framework::Scope;
using Variable = framework::Variable;
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
void RecurrentAlgorithm::InferShape(const Scope& scope) const {
seq_len_ = scope.FindVar((arg_->inlinks[0]).external)
->GetMutable<Tensor>()
->GetMutable<LoDTensor>()
->dims()[0];
CreateScopes(scope);
auto step_scopes = GetStepScopes(scope);
......@@ -88,7 +89,7 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
// the weight are located in parent scope
for (auto& var_name : input.second) {
if (!step_scope.FindVar(var_name)) {
step_scope.NewVar(var_name)->GetMutable<Tensor>();
step_scope.NewVar(var_name)->GetMutable<LoDTensor>();
}
}
}
......@@ -106,11 +107,12 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
void RecurrentAlgorithm::InitMemories(Scope* step_scope,
bool infer_shape_mode) const {
for (auto& attr : arg_->memories) {
Tensor* pre_mem = step_scope->NewVar(attr.pre_var)->GetMutable<Tensor>();
auto* pre_mem = step_scope->NewVar(attr.pre_var)->GetMutable<LoDTensor>();
PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr,
"memory [%s]'s boot variable [%s] not exists", attr.var,
attr.boot_var);
Tensor* boot_mem = step_scope->FindVar(attr.boot_var)->GetMutable<Tensor>();
auto* boot_mem =
step_scope->FindVar(attr.boot_var)->GetMutable<LoDTensor>();
if (infer_shape_mode) {
pre_mem->Resize(boot_mem->dims());
PADDLE_ENFORCE_EQ(pre_mem->dims().size(), 2);
......@@ -192,9 +194,9 @@ void RecurrentGradientAlgorithm::LinkBootMemoryGradients(
"memory variable [%s] does not exists", attr.var);
PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr,
"boot variable [%s] does not exists", attr.boot_var);
Tensor* mem_grad = step_scope->NewVar(attr.var)->GetMutable<Tensor>();
Tensor* boot_mem_grad =
step_scope->NewVar(attr.boot_var)->GetMutable<Tensor>();
auto* mem_grad = step_scope->NewVar(attr.var)->GetMutable<LoDTensor>();
auto* boot_mem_grad =
step_scope->NewVar(attr.boot_var)->GetMutable<LoDTensor>();
if (infer_shape_mode) {
boot_mem_grad->Resize(mem_grad->dims());
} else {
......@@ -205,7 +207,7 @@ void RecurrentGradientAlgorithm::LinkBootMemoryGradients(
void RecurrentGradientAlgorithm::InferShape(const Scope& scope) const {
seq_len_ = scope.FindVar((arg_->inlinks[0]).external)
->GetMutable<Tensor>()
->GetMutable<LoDTensor>()
->dims()[0];
auto step_scopes = GetStepScopes(scope);
rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
......
......@@ -28,7 +28,11 @@ class ReshapeOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
// input check
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) shouldn't be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of ReshapeOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of ReshapeOp should not be null.");
auto shape = ctx.Attr<std::vector<int>>("shape");
PADDLE_ENFORCE(shape.size() > 0, "Attr(shape) shouldn't be empty.");
for (auto dim : shape) {
......@@ -46,7 +50,7 @@ class ReshapeOp : public framework::OperatorWithKernel {
std::transform(shape.begin(), shape.end(), shape_int64.begin(),
[](int a) { return static_cast<int64_t>(a); });
auto out_dims = framework::make_ddim(shape_int64);
ctx.Output<framework::Tensor>("Out")->Resize(out_dims);
ctx.Output<framework::LoDTensor>("Out")->Resize(out_dims);
}
};
......@@ -90,7 +94,7 @@ class ReshapeGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) shouldn't be null.");
auto dims = ctx.Input<framework::Tensor>("X")->dims();
auto *d_in = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto *d_in = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
d_in->Resize(dims);
}
};
......
......@@ -21,6 +21,7 @@ namespace rnn {
namespace f = paddle::framework;
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
void SegmentInputs(const std::vector<Scope*>& step_scopes,
const std::vector<Link>& inlinks, const size_t seq_len,
......@@ -31,7 +32,7 @@ void SegmentInputs(const std::vector<Scope*>& step_scopes,
PADDLE_ENFORCE(input_var != nullptr, "input link [%s] is not in scope.",
inlinks[i].external);
Tensor* input = input_var->GetMutable<Tensor>();
LoDTensor* input = input_var->GetMutable<LoDTensor>();
f::DDim dims = input->dims();
PADDLE_ENFORCE(static_cast<size_t>(dims[0]) == seq_len,
"all the inlinks must have same length");
......@@ -40,6 +41,8 @@ void SegmentInputs(const std::vector<Scope*>& step_scopes,
Tensor* step_input =
step_scopes[j]->NewVar(inlinks[i].internal)->GetMutable<Tensor>();
if (!infer_shape_mode) {
// The input of operators of each step is Tensor here.
// Maybe need to modify Slice function.
*step_input = input->Slice<float>(j, j + 1);
}
step_input->Resize(step_dims);
......@@ -54,21 +57,23 @@ void ConcatOutputs(const std::vector<Scope*>& step_scopes,
auto output_var = step_scopes[0]->FindVar(outlinks[i].external);
PADDLE_ENFORCE(output_var != nullptr, "output link [%s] is not in scope.",
outlinks[i].external);
Tensor* output = output_var->GetMutable<Tensor>();
LoDTensor* output = output_var->GetMutable<LoDTensor>();
if (infer_shape_mode) {
auto step_scope_var = step_scopes[0]->FindVar(outlinks[i].internal);
PADDLE_ENFORCE(step_scope_var != nullptr, "%s not in scope",
outlinks[i].internal);
f::DDim step_dims = step_scope_var->template GetMutable<Tensor>()->dims();
f::DDim step_dims =
step_scope_var->template GetMutable<LoDTensor>()->dims();
std::vector<int64_t> dims_vec = vectorize(step_dims);
dims_vec.insert(dims_vec.begin(), seq_len);
output->Resize(f::make_ddim(dims_vec));
} else {
output->mutable_data<float>(platform::CPUPlace());
for (size_t j = 0; j < seq_len; j++) {
Tensor* step_output =
step_scopes[j]->FindVar(outlinks[i].internal)->GetMutable<Tensor>();
LoDTensor* step_output = step_scopes[j]
->FindVar(outlinks[i].internal)
->GetMutable<LoDTensor>();
// TODO(luotao02) data type and platform::DeviceContext() should set
// correctly
(output->Slice<float>(j, j + 1))
......@@ -94,8 +99,8 @@ void LinkMemories(const std::vector<Scope*>& scopes,
auto scope = scopes[step_id];
auto linked_scope = scopes[step_id + offset];
for (auto& attr : memories) {
auto mem = scope->FindVar(attr.pre_var)->GetMutable<Tensor>();
auto linked_mem = linked_scope->FindVar(attr.var)->GetMutable<Tensor>();
auto mem = scope->FindVar(attr.pre_var)->GetMutable<LoDTensor>();
auto linked_mem = linked_scope->FindVar(attr.var)->GetMutable<LoDTensor>();
if (infer_shape_mode) {
mem->Resize(linked_mem->dims());
} else {
......
......@@ -25,6 +25,13 @@ class RowwiseAddOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of RowwiseAddOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("b"),
"Input(b) of RowwiseAddOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of RowwiseAddOp should not be null.");
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto b_dims = ctx.Input<Tensor>("b")->dims();
PADDLE_ENFORCE_GT(
......@@ -37,7 +44,7 @@ class RowwiseAddOp : public framework::OperatorWithKernel {
framework::slice_ddim(x_dims, num_col_dims, x_dims.size()), b_dims,
"The width of two operands must be same");
PADDLE_ENFORCE_EQ(ctx.OutputSize("Out"), 1, "The output size must be 1");
ctx.Output<Tensor>("Out")->Resize(x_dims);
ctx.Output<framework::LoDTensor>("Out")->Resize(x_dims);
}
};
......@@ -76,8 +83,8 @@ class RowwiseAddGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ(
framework::slice_ddim(x_dims, num_col_dims, x_dims.size()), b_dims,
"The width of two operands must be same");
auto *dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *db = ctx.Output<Tensor>(framework::GradVarName("b"));
auto *dx = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
auto *db = ctx.Output<framework::LoDTensor>(framework::GradVarName("b"));
if (dx) dx->Resize(x_dims);
if (db) db->Resize(b_dims);
}
......
......@@ -27,8 +27,13 @@ class ScaleOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of ScaleOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of ScaleOp should not be null.");
auto *in = ctx.Input<framework::Tensor>("X");
auto *out = ctx.Output<framework::Tensor>("Out");
auto *out = ctx.Output<framework::LoDTensor>("Out");
out->Resize(in->dims());
}
};
......
......@@ -24,6 +24,15 @@ class ScatterOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Ref"),
"Input(Ref) of ScatterOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Index"),
"Input(Index) of ScatterOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Updates"),
"Input(Updates) of ScatterOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of ScatterOp should not be null.");
PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("Index")->dims().size(), 1,
"Update Index should be 1-D.");
PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("Ref")->dims().size(),
......@@ -35,7 +44,8 @@ class ScatterOp : public framework::OperatorWithKernel {
framework::DDim data_dim(ctx.Input<Tensor>("Updates")->dims());
for (int i = 1; i < data_dim.size(); ++i)
PADDLE_ENFORCE_EQ(data_dim[i], ctx.Input<Tensor>("Updates")->dims()[i]);
ctx.Output<Tensor>("Out")->Resize(ctx.Input<Tensor>("Ref")->dims());
ctx.Output<framework::LoDTensor>("Out")->Resize(
ctx.Input<Tensor>("Ref")->dims());
}
};
......@@ -45,9 +55,11 @@ class ScatterGradOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto *dUpdates = ctx.Output<Tensor>(framework::GradVarName("Updates"));
auto *dUpdates =
ctx.Output<framework::LoDTensor>(framework::GradVarName("Updates"));
auto *Updates = ctx.Input<Tensor>("Updates");
auto *dRef = ctx.Output<Tensor>(framework::GradVarName("Ref"));
auto *dRef =
ctx.Output<framework::LoDTensor>(framework::GradVarName("Ref"));
auto *Ref = ctx.Input<Tensor>("Ref");
dRef->Resize(Ref->dims());
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/sequence_avg_pool_op.h"
namespace paddle {
namespace operators {
class SequenceAvgPoolOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext& ctx) const override {
PADDLE_ENFORCE_NOT_NULL(
ctx.InputVar("X"), "Input(X) of SequenceAvgPoolOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(
ctx.OutputVar("Out"),
"Output(Out) of SequenceAvgPoolOp should not be null.");
auto* x = ctx.Input<framework::LoDTensor>("X");
auto dims = x->dims();
auto lod = x->lod();
PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now.");
PADDLE_ENFORCE_GE(
dims[0],
/*batch size = */ static_cast<int64_t>(lod[0].size() - 1),
"The first dimension of Input(X) must be large than batch size.");
dims[0] = lod[0].size() - 1;
ctx.Output<framework::LoDTensor>("Out")->Resize({dims});
}
};
class SequenceAvgPoolOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SequenceAvgPoolOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of SequenceAvgPoolOp.");
AddOutput("Out", "The output of SequenceAvgPoolOp.");
AddComment(R"DOC(
SequenceAvgPoolOp averages features of all time-steps of each instance.
More detailed comments will be added later.
)DOC");
}
};
class SequenceAvgPoolGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext& ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Gradient of Out should not be null");
auto og_dims =
ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"))->dims();
auto x_dims = ctx.Input<framework::LoDTensor>("X")->dims();
PADDLE_ENFORCE_EQ(og_dims.size(), x_dims.size(),
"The rank of output grad must equal to Input(X).");
for (int64_t i = 1; i < og_dims.size(); ++i) {
PADDLE_ENFORCE_EQ(og_dims[i], x_dims[i], "The dimension mismatch.");
}
auto* x_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
x_grad->Resize(x_dims);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(sequence_avg_pool, ops::SequenceAvgPoolOp,
ops::SequenceAvgPoolOpMaker, sequence_avg_pool_grad,
ops::SequenceAvgPoolGradOp);
REGISTER_OP_CPU_KERNEL(
sequence_avg_pool,
ops::SequenceAvgPoolKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
sequence_avg_pool_grad,
ops::SequenceAvgPoolGradKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/sequence_avg_pool_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
sequence_avg_pool,
ops::SequenceAvgPoolKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
sequence_avg_pool_grad,
ops::SequenceAvgPoolGradKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template <typename Place, typename T>
class SequenceAvgPoolKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Input<LoDTensor>("X");
auto* out = context.Output<LoDTensor>("Out");
auto dims = in->dims();
auto lod = in->lod();
int64_t w = in->numel() / dims[0];
out->mutable_data<T>(context.GetPlace());
auto place = context.GetEigenDevice<Place>();
for (int i = 0; i < static_cast<int>(lod[0].size()) - 1; ++i) {
Tensor in_t = in->Slice<T>(static_cast<int>(lod[0][i]),
static_cast<int>(lod[0][i + 1]));
Tensor out_t = out->Slice<T>(i, i + 1);
int64_t h = static_cast<int64_t>(lod[0][i + 1] - lod[0][i]);
auto in_e = EigenMatrix<T>::From(in_t, {h, w});
auto out_e = EigenMatrix<T>::From(out_t, {h, w});
out_e.device(place) = in_e.mean(Eigen::array<int, 1>({{0}}));
}
}
};
template <typename Place, typename T>
class SequenceAvgPoolGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Output<LoDTensor>("X");
auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
auto* out_g = context.Input<LoDTensor>(framework::GradVarName("Out"));
auto dims = in->dims();
auto lod = in->lod();
int64_t w = in->numel() / dims[0];
in_g->mutable_data<T>(context.GetPlace());
auto place = context.GetEigenDevice<Place>();
for (int i = 0; i < static_cast<int>(lod[0].size()) - 1; ++i) {
auto in_g_t = in_g->Slice<T>(static_cast<int>(lod[0][i]),
static_cast<int>(lod[0][i + 1]));
auto out_g_t = out_g->Slice<T>(i, i + 1);
int64_t h = static_cast<int64_t>(lod[0][i + 1] - lod[0][i]);
auto in_g_e = EigenMatrix<T>::From(in_g_t, {h, w});
auto out_g_e = EigenMatrix<T>::From(out_g_t, {1, w});
Eigen::DSizes<int, 2> bcast(h, w);
in_g_e.device(place) = (out_g_e / static_cast<T>(h)).broadcast(bcast);
}
}
};
} // namespace operators
} // namespace paddle
......@@ -23,10 +23,18 @@ class SGDOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE(
ctx.Input<Tensor>("param")->dims() == ctx.Input<Tensor>("grad")->dims(),
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("param"),
"Input(param) of SGDOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("grad"),
"Input(grad) of SGDOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("param_out"),
"Output(param_out) of SGDOp should not be null.");
PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("param")->dims(),
ctx.Input<Tensor>("grad")->dims(),
"Two input of SGD Op's dimension must be same.");
ctx.Output<Tensor>("param_out")->Resize(ctx.Input<Tensor>("param")->dims());
ctx.Output<framework::LoDTensor>("param_out")
->Resize(ctx.Input<Tensor>("param")->dims());
}
};
......
......@@ -23,7 +23,13 @@ class SigmoidOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
ctx.Output<Tensor>("Y")->Resize(ctx.Input<Tensor>("X")->dims());
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of SigmoidOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Y"),
"Output(Y) of SigmoidOp should not be null.");
ctx.Output<framework::LoDTensor>("Y")->Resize(
ctx.Input<Tensor>("X")->dims());
}
};
......@@ -44,7 +50,7 @@ class SigmoidOpGrad : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
ctx.Output<Tensor>(framework::GradVarName("X"))
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"))
->Resize(ctx.Input<Tensor>("Y")->dims());
}
};
......
......@@ -23,9 +23,15 @@ class SoftmaxOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of SoftmaxOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Y"),
"Output(Y) of SoftmaxOp should not be null.");
PADDLE_ENFORCE(ctx.Input<Tensor>("X")->dims().size() == 2UL,
"The input of softmax op must be a matrix.");
ctx.Output<Tensor>("Y")->Resize(ctx.Input<Tensor>("X")->dims());
ctx.Output<framework::LoDTensor>("Y")->Resize(
ctx.Input<Tensor>("X")->dims());
}
};
......@@ -71,7 +77,7 @@ class SoftmaxOpGrad : public framework::OperatorWithKernel {
ctx.Input<Tensor>(framework::GradVarName("Y"))->dims(),
"Input(Y) and its gradients should have a same shape.");
ctx.Output<Tensor>(framework::GradVarName("X"))
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"))
->Resize(ctx.Input<Tensor>("X")->dims());
}
};
......
......@@ -23,12 +23,18 @@ class SquaredL2DistanceOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext& ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input of SquaredL2DistanceOp "
"must be initialized.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"),
"Target of SquaredL2DistanceOp "
"must be initialized.");
PADDLE_ENFORCE_NOT_NULL(
ctx.InputVar("X"),
"Input(X) of SquaredL2DistanceOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(
ctx.InputVar("Y"),
"Input(Y) of SquaredL2DistanceOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(
ctx.OutputVar("sub_result"),
"Output(sub_result) of SquaredL2DistanceOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(
ctx.OutputVar("Out"),
"Output(Out) of SquaredL2DistanceOp should not be null.");
auto* x = ctx.Input<Tensor>("X");
auto x_dims = x->dims();
......@@ -48,9 +54,9 @@ class SquaredL2DistanceOp : public framework::OperatorWithKernel {
"First dimension of target must be equal to input "
"or to 1.");
ctx.Output<Tensor>("sub_result")
ctx.Output<framework::LoDTensor>("sub_result")
->Resize({x_dims[0], x->numel() / x_dims[0]});
ctx.Output<Tensor>("Out")->Resize({x_dims[0], 1});
ctx.Output<framework::LoDTensor>("Out")->Resize({x_dims[0], 1});
}
};
......@@ -94,8 +100,10 @@ class SquaredL2DistanceGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ(out_dims[1], 1,
"Second dimension of output gradient "
"must be 1.");
auto* x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* y_grad = ctx.Output<Tensor>(framework::GradVarName("Y"));
auto* x_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
auto* y_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("Y"));
if (x_grad) x_grad->Resize(x_dims);
if (y_grad) y_grad->Resize(y_dims);
}
......
......@@ -22,8 +22,13 @@ class SumOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE(!ctx.MultiInputVar("X").empty(),
"Input(X) of SumOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of SumOp should not be null.");
auto ins = ctx.MultiInput<framework::Tensor>("X");
auto *out = ctx.Output<framework::Tensor>("Out");
auto *out = ctx.Output<framework::LoDTensor>("Out");
int N = ins.size();
auto in_dim = ins[0]->dims();
......@@ -55,7 +60,8 @@ class SumGradOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto outputs = ctx.MultiOutput<Tensor>(framework::GradVarName("X"));
auto outputs =
ctx.MultiOutput<framework::LoDTensor>(framework::GradVarName("X"));
auto dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
for (auto output : outputs) {
output->Resize(dims);
......
......@@ -24,7 +24,12 @@ class TopkOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input of TopkOP must be initialized.");
"Input(X) of TopkOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of TopkOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Indices"),
"Output(Indices) of TopkOp should not be null.");
auto *input = ctx.Input<framework::Tensor>("X");
const int k = static_cast<int>(ctx.Attr<int>("k"));
......@@ -35,8 +40,8 @@ class TopkOp : public framework::OperatorWithKernel {
framework::DDim dims = input->dims();
dims[dims.size() - 1] = k;
ctx.Output<Tensor>("Out")->Resize(dims);
ctx.Output<Tensor>("Indices")->Resize(dims);
ctx.Output<framework::LoDTensor>("Out")->Resize(dims);
ctx.Output<framework::LoDTensor>("Indices")->Resize(dims);
}
};
......
......@@ -48,9 +48,13 @@ class UniformRandomOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext& ctx) const override {
PADDLE_ENFORCE_NOT_NULL(
ctx.OutputVar("Out"),
"Output(Out) of UniformRandomOp should not be null.");
PADDLE_ENFORCE(Attr<float>("min") < Attr<float>("max"),
"uniform_random's min must less then max");
auto* tensor = ctx.Output<framework::Tensor>("Out");
auto* tensor = ctx.Output<framework::LoDTensor>("Out");
auto dims = Attr<std::vector<int>>("dims");
std::vector<int64_t> temp;
temp.reserve(dims.size());
......
......@@ -24,3 +24,4 @@ cc_library(device_context SRCS device_context.cc DEPS memory buddy_allocator
nv_test(device_context_test SRCS device_context_test.cc DEPS device_context gpu_info)
nv_test(cudnn_helper_test SRCS cudnn_helper_test.cc DEPS dynload_cuda)
nv_test(transform_test SRCS transform_test.cu DEPS paddle_memory place)
......@@ -4,7 +4,7 @@ Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
......@@ -12,8 +12,45 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/concat_op.h"
#pragma once
namespace ops = paddle::operators;
// TODO(Yancey1989) Add GPU kernel
#ifndef __NVCC__
#error device_ptr_cast must be include by .cu file
#endif
#include <thrust/device_ptr.h>
namespace paddle {
namespace platform {
namespace details {
template <typename T, bool is_ptr>
struct DevicePtrCast;
template <typename T>
struct DevicePtrCast<T, true> {
using ELEM = typename std::remove_pointer<T>::type;
using RTYPE = thrust::device_ptr<ELEM>;
inline thrust::device_ptr<ELEM> operator()(ELEM* ele) const {
return thrust::device_pointer_cast(ele);
}
};
template <typename T>
struct DevicePtrCast<T, false> {
using RTYPE = T;
inline RTYPE operator()(RTYPE it) const { return it; }
};
// Cast T to thrust::device_ptr if T is a pointer.
// Otherwise, e.g., T is a iterator, return T itself.
template <typename T>
auto DevPtrCast(T t) ->
typename DevicePtrCast<T, std::is_pointer<T>::value>::RTYPE {
DevicePtrCast<T, std::is_pointer<T>::value> cast;
return cast(t);
}
} // namespace details
} // namespace platform
} // namespace paddle
......@@ -25,6 +25,10 @@ limitations under the License. */
#include "paddle/string/printf.h"
#include "paddle/string/to_string.h"
#ifdef __GNUC__
#include <cxxabi.h> // for __cxa_demangle
#endif
#ifndef PADDLE_ONLY_CPU
#include "paddle/platform/dynload/cublas.h"
......@@ -42,6 +46,19 @@ limitations under the License. */
namespace paddle {
namespace platform {
namespace {
#ifdef __GNUC__
inline std::string demangle(std::string name) {
int status = -4; // some arbitrary value to eliminate the compiler warning
std::unique_ptr<char, void (*)(void*)> res{
abi::__cxa_demangle(name.c_str(), NULL, NULL, &status), std::free};
return (status == 0) ? res.get() : name;
}
#else
inline std::string demangle(std::string name) { return name; }
#endif
}
struct EnforceNotMet : public std::exception {
std::exception_ptr exp_;
std::string err_str_;
......@@ -61,8 +78,8 @@ struct EnforceNotMet : public std::exception {
Dl_info info;
for (int i = 0; i < size; ++i) {
if (dladdr(call_stack[i], &info)) {
auto demangled = info.dli_sname;
if (dladdr(call_stack[i], &info) && info.dli_sname) {
auto demangled = demangle(info.dli_sname);
auto addr_offset = static_cast<char*>(call_stack[i]) -
static_cast<char*>(info.dli_saddr);
sout << string::Sprintf("%-3d %*0p %s + %zd\n", i,
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/platform/enforce.h"
#include "paddle/platform/hostdevice.h"
#include "paddle/platform/place.h"
#include <algorithm>
#include <type_traits>
#ifdef __NVCC__
#include <thrust/transform.h>
#include "paddle/platform/details/device_ptr_cast.h"
#endif
namespace paddle {
namespace platform {
// Transform on host or device. It provides the same API in std library.
template <typename Place, typename InputIter, typename OutputIter,
typename UnaryOperation>
void Transform(Place place, InputIter first, InputIter last, OutputIter result,
UnaryOperation op) {
if (is_cpu_place(place)) {
std::transform(first, last, result, op);
} else {
#ifdef __NVCC__
using namespace details;
thrust::transform(DevPtrCast(first), DevPtrCast(last), DevPtrCast(result),
op);
#else
PADDLE_THROW("Do not invoke `Transform<GPUPlace>` in .cc file");
#endif
}
}
template <typename Place, typename InputIter1, typename InputIter2,
typename OutputIter, typename BinaryOperation>
void Transform(Place place, InputIter1 first1, InputIter1 last1,
InputIter2 first2, OutputIter result, BinaryOperation op) {
if (is_cpu_place(place)) {
std::transform(first1, last1, first2, result, op);
} else {
#ifdef __NVCC__
using namespace details;
thrust::transform(DevPtrCast(first1), DevPtrCast(last1), DevPtrCast(first2),
DevPtrCast(result), op);
#else
PADDLE_THROW("Do not invoke `Transform<GPUPlace>` in .cc file");
#endif
}
};
} // namespace platform
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/memory/memcpy.h"
#include "paddle/memory/memory.h"
#include "paddle/platform/transform.h"
template <typename T>
class Scale {
public:
explicit Scale(const T& scale) : scale_(scale) {}
HOSTDEVICE T operator()(const T& a) const { return a * scale_; }
private:
T scale_;
};
template <typename T>
class Multiply {
public:
HOSTDEVICE T operator()(const T& a, const T& b) const { return a * b; }
};
TEST(Transform, CPUUnary) {
using namespace paddle::platform;
float buf[4] = {0.1, 0.2, 0.3, 0.4};
Transform(CPUPlace(), buf, buf + 4, buf, Scale<float>(10));
for (int i = 0; i < 4; ++i) {
ASSERT_NEAR(buf[i], static_cast<float>(i + 1), 1e-5);
}
}
TEST(Transform, GPUUnary) {
using namespace paddle::platform;
using namespace paddle::memory;
GPUPlace gpu0(0);
float cpu_buf[4] = {0.1, 0.2, 0.3, 0.4};
float* gpu_buf = static_cast<float*>(Alloc(gpu0, sizeof(float) * 4));
Copy(gpu0, gpu_buf, CPUPlace(), cpu_buf, sizeof(cpu_buf));
Transform(gpu0, gpu_buf, gpu_buf + 4, gpu_buf, Scale<float>(10));
Copy(CPUPlace(), cpu_buf, gpu0, gpu_buf, sizeof(cpu_buf));
Free(gpu0, gpu_buf);
for (int i = 0; i < 4; ++i) {
ASSERT_NEAR(cpu_buf[i], static_cast<float>(i + 1), 1e-5);
}
}
TEST(Transform, CPUBinary) {
using namespace paddle::platform;
using namespace paddle::memory;
int buf[4] = {1, 2, 3, 4};
Transform(CPUPlace(), buf, buf + 4, buf, buf, Multiply<int>());
for (int i = 0; i < 4; ++i) {
ASSERT_EQ((i + 1) * (i + 1), buf[i]);
}
}
TEST(Transform, GPUBinary) {
using namespace paddle::platform;
using namespace paddle::memory;
int buf[4] = {1, 2, 3, 4};
GPUPlace gpu0(0);
int* gpu_buf = static_cast<int*>(Alloc(gpu0, sizeof(buf)));
Copy(gpu0, gpu_buf, CPUPlace(), buf, sizeof(buf));
Transform(gpu0, gpu_buf, gpu_buf + 4, gpu_buf, gpu_buf, Multiply<int>());
Copy(CPUPlace(), buf, gpu0, gpu_buf, sizeof(buf));
Free(gpu0, gpu_buf);
for (int i = 0; i < 4; ++i) {
ASSERT_EQ((i + 1) * (i + 1), buf[i]);
}
}
\ No newline at end of file
......@@ -19,10 +19,12 @@ limitations under the License. */
#include "paddle/framework/backward.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/cond_op.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/recurrent_op.h"
#include "paddle/platform/enforce.h"
#include "paddle/platform/place.h"
#include "paddle/pybind/pybind.h"
#include "paddle/pybind/tensor_py.h"
#include "paddle/string/to_string.h"
#include "pybind11/numpy.h"
......@@ -31,34 +33,6 @@ limitations under the License. */
namespace py = pybind11;
USE_OP(add);
USE_OP(onehot_cross_entropy);
USE_OP(sgd);
USE_OP(mul);
USE_OP(elementwise_mul);
USE_OP(mean);
USE_OP(sigmoid);
USE_OP(softmax);
USE_OP(rowwise_add);
USE_OP(fill_zeros_like);
USE_NO_KERNEL_OP(recurrent);
USE_OP(gaussian_random);
USE_OP(uniform_random);
USE_OP(lookup_table);
USE_OP(scale);
USE_NO_KERNEL_OP(identity);
USE_OP(minus);
USE_OP(cos_sim);
USE_CPU_ONLY_OP(gather);
USE_OP(pad);
USE_CPU_ONLY_OP(scatter);
USE_OP(crop);
USE_CPU_ONLY_OP(concat);
USE_OP(top_k);
USE_OP(squared_l2_distance);
USE_OP(sum);
USE_OP(reshape);
namespace paddle {
namespace framework {
......@@ -124,27 +98,21 @@ PYBIND11_PLUGIN(core) {
return self.data<float>()[offset];
});
py::class_<LoDTensor>(m, "LoDTensor", R"DOC(LoD(Leval of Ddetails) Tensor.
The tensor and LoD info should be created before creating the LoDTensor, then
call the set_tensor and set_lod functions to set them.
)DOC")
.def("__init__",
[](LoDTensor &instance,
const std::vector<std::vector<size_t>> &lod,
Tensor *t) {
py::class_<LoDTensor, Tensor>(m, "LoDTensor")
.def_buffer(
[](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
.def(
"__init__",
[](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
#ifdef PADDLE_ONLY_CPU
new (&instance) LoDTensor(lod, t);
new (&instance) LoDTensor(lod);
#else
paddle::framework::LoD new_lod;
new_lod.reserve(lod.size());
std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
new (&instance) LoDTensor(new_lod, t);
new (&instance) LoDTensor(new_lod);
#endif
})
.def("set_tensor",
[](LoDTensor &self, Tensor *tensor) { self.set_tensor(tensor); })
.def("set_lod",
[](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
#ifdef PADDLE_ONLY_CPU
......@@ -156,9 +124,6 @@ call the set_tensor and set_lod functions to set them.
self.set_lod(new_lod);
#endif
})
.def("tensor",
[](LoDTensor &self) -> Tensor & { return self.tensor(); },
py::return_value_policy::reference)
.def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
#ifdef PADDLE_ONLY_CPU
return self.lod();
......@@ -187,9 +152,6 @@ All parameter, weight, gradient are variables in Paddle.
[](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
.def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
.def("get_tensor",
[](Variable &self) -> Tensor * { return self.GetMutable<Tensor>(); },
py::return_value_policy::reference)
.def("get_lod_tensor",
[](Variable &self) -> LoDTensor * {
return self.GetMutable<LoDTensor>();
},
......@@ -327,6 +289,28 @@ All parameter, weight, gradient are variables in Paddle.
[](operators::RecurrentOp &self, const operators::NetOp &net)
-> void { self.set_stepnet(net.Clone()); });
// cond_op
py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
.def_static("create",
[](py::bytes protobin) -> operators::CondOp * {
OpDesc desc;
PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
"Cannot parse user input to OpDesc");
PADDLE_ENFORCE(desc.IsInitialized(),
"User OpDesc is not initialized, reason %s",
desc.InitializationErrorString());
auto cond_op = OpRegistry::CreateOp(desc);
return static_cast<operators::CondOp *>(cond_op.release());
})
.def("set_truenet",
[](operators::CondOp &self, const operators::NetOp &net) -> void {
self.set_truenet(net.Clone());
})
.def("set_falsenet",
[](operators::CondOp &self, const operators::NetOp &net) -> void {
self.set_falsenet(net.Clone());
});
m.def("unique_integer", UniqueIntegerGenerator);
m.def("is_compile_gpu", IsCompileGPU);
......
......@@ -2055,20 +2055,26 @@ class ConvLayerBase(LayerBase):
if num_filters is not None:
self.config.num_filters = num_filters
use_mkldnn = int(g_command_config_args.get("use_mkldnn", 0))
use_gpu = int(g_command_config_args.get("use_gpu", 0))
parallel_nn = int(g_command_config_args.get("parallel_nn", 0))
# Automatically select cudnn_type for GPU and exconv for CPU
# Automatically select cudnn_type for GPU, exconv for CPU
# and mkldnn_conv for MKLDNN
# if set type=conv, but still reserve the way user specify
# exconv or cudnn_conv manually.
# exconv, mkldnn_conv or cudnn_conv manually.
if self.layer_type == "cudnn_conv":
config_assert(use_gpu, "cudnn_conv only support GPU")
if self.layer_type == "mkldnn_conv":
config_assert(use_mkldnn, "mkldnn_conv only support MKLDNN")
if (use_gpu == 1 and self.layer_type != "exconv" and
self.layer_type != "mkldnn_conv" and
(parallel_nn == 0 or self.config.device > -1)):
self.layer_type = "cudnn_conv"
else:
self.layer_type = "exconv"
self.layer_type = "mkldnn_conv" if use_mkldnn else "exconv"
# need to specify layer in config
self.config.type = self.layer_type
......@@ -2100,6 +2106,11 @@ class ConvLayer(ConvLayerBase):
layer_type = 'exconv'
@config_layer('mkldnn_conv')
class ConvLayer(ConvLayerBase):
layer_type = 'mkldnn_conv'
@config_layer('cudnn_conv')
class ConvLayer(ConvLayerBase):
layer_type = 'cudnn_conv'
......
......@@ -215,5 +215,27 @@ class __RecurrentOp__(object):
return core.RecurrentOp.create(proto.SerializeToString())
class __CondOp__(object):
__proto__ = None
type = "cond"
def __init__(self):
# cache recurrent_op's proto
if self.__proto__ is None:
for op_proto in get_all_op_protos():
if op_proto.type == self.type:
self.__proto__ = op_proto
def __call__(self, *args, **kwargs):
if self.type not in args and "type" not in kwargs:
kwargs["type"] = self.type
# create proto
create_method = OpDescCreationMethod(self.__proto__)
proto = create_method(*args, **kwargs)
# create condop
return core.CondOp.create(proto.SerializeToString())
Operator = OperatorFactory() # The default global factory
RecurrentOp = __RecurrentOp__()
CondOp = __CondOp__()
......@@ -181,8 +181,10 @@ class OpTest(unittest.TestCase):
self.op.infer_shape(self.scope)
ctx = core.DeviceContext.create(place)
self.op.run(self.scope, ctx)
print "finish self.op.run"
for out_name, out_dup in Operator.get_op_outputs(self.op.type()):
print "finish Operator.get_op_outputs"
print "out_dup=%s; out_name=%s" % (out_dup, out_name)
if out_dup:
sub_out = self.outputs[out_name]
for sub_out_name in sub_out:
......@@ -194,12 +196,17 @@ class OpTest(unittest.TestCase):
actual, expect, atol=1e-05),
"output name: " + out_name + "has diff")
else:
v = self.scope.find_var(out_name)
print "var=%s" % v
print "tensor=%s" % v.get_tensor()
actual = np.array(self.scope.find_var(out_name).get_tensor())
print "actual=%s" % actual
expect = self.outputs[out_name]
self.assertTrue(
np.allclose(
actual, expect, atol=1e-05),
"output name: " + out_name + "has diff")
print "finish check in %s" % place
def check_output(self):
places = [core.CPUPlace()]
......
import logging
import paddle.v2.framework.core as core
import unittest
import numpy as np
from paddle.v2.framework.op import Operator, CondOp
class PySimpleCond(object):
'''
A simple implementation of dynamic if-else based on numpy
'''
def __init__(self):
array = [1] * 10
for i in range(1, 10, 2):
array[i] = 0
self.cond = np.array(array)
self.x = np.ones(shape=(10, 1))
def forward(self):
self.index_t = np.where(self.cond == 1)
self.index_f = np.where(self.cond == 0)
y_t = self.x[self.index_t]
y_f = self.x[self.index_f]
y_t = y_t * 2.
y_f = y_f * (-2.)
output = np.zeros(shape=(10, 1))
output[self.index_t] = y_t
output[self.index_f] = y_f
return output
class PySimpleCondTest(unittest.TestCase):
def setUp(self):
self.condnn = PySimpleCond()
def test_forward(self):
output = self.condnn.forward()
def create_tensor(scope, name, shape, np_data):
tensor = scope.new_var(name).get_tensor()
tensor.set_dims(shape)
tensor.set(np_data, core.CPUPlace())
return tensor
class TestCondOp(unittest.TestCase):
'''
Test CondOp
equation:
cond = [True, False, True, False, ...]
y[index_t] = x[index_t] * 2.
y[index_f] = x[index_f] * -2.
outputs:
y
'''
def setUp(self):
self.py_cond = PySimpleCond()
def forward(self):
self.scope = core.Scope()
self.create_global_variables()
self.create_cond_op()
self.create_sub_net()
ctx = core.DeviceContext.create(core.CPUPlace())
self.condop.infer_shape(self.scope)
self.condop.run(self.scope, ctx)
return np.array(self.scope.find_var("Out").get_tensor())
def create_global_variables(self):
x_np_data = self.py_cond.x
create_tensor(self.scope, "X", [10, 1], x_np_data)
cond_np_data = self.py_cond.cond.astype("int32")
create_tensor(self.scope, "cond", [10, 1], cond_np_data)
self.scope.new_var("SubScopes")
self.scope.new_var("IndexTensors")
self.scope.new_var("Out")
def create_cond_op(self):
self.condop = CondOp(
Cond="cond",
Xs=["X"],
Outs=["Out"],
SubScopes="SubScopes",
IndexTensors="IndexTensors")
def create_sub_net(self):
truenet = core.Net.create()
scale_op_t = Operator("scale", X='X', Out='Out', scale=2.)
truenet.append_op(scale_op_t)
truenet.complete_add_op(True)
self.condop.set_truenet(truenet)
falsenet = core.Net.create()
scale_op_t = Operator("scale", X='X', Out='Out', scale=-2.)
falsenet.append_op(scale_op_t)
falsenet.complete_add_op(True)
self.condop.set_falsenet(falsenet)
def test_forward(self):
print 'test cond op forward'
pd_output = self.forward()
py_output = self.py_cond.forward()
print 'pd_output', pd_output
print
print 'py_output', py_output
self.assertEqual(pd_output.shape, py_output.shape)
print 'test passed'
return 0
if __name__ == "__main__":
unittest.main()
......@@ -7,8 +7,8 @@ class TestCosSimOp(OpTest):
def setUp(self):
self.op_type = "cos_sim"
self.inputs = {
'X': np.random.random((10, 5)).astype("float32"),
'Y': np.random.random((10, 5)).astype("float32")
'X': np.random.random((6, 5)).astype("float32"),
'Y': np.random.random((6, 5)).astype("float32")
}
expect_x_norm = np.linalg.norm(self.inputs['X'], axis=1)
expect_y_norm = np.linalg.norm(self.inputs['Y'], axis=1)
......@@ -28,12 +28,66 @@ class TestCosSimOp(OpTest):
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.05, no_grad_set=set('X'))
['Y'], 'Out', max_relative_error=0.05, no_grad_set=set("X"))
def test_check_grad_ignore_y(self):
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.05, no_grad_set=set('Y'))
if __name__ == "__main__":
class TestCosSimOp2(TestCosSimOp):
def setUp(self):
self.op_type = "cos_sim"
self.inputs = {
'X': np.random.random((6, 5)).astype("float32"),
'Y': np.random.random((1, 5)).astype("float32")
}
expect_x_norm = np.linalg.norm(self.inputs['X'], axis=1)
expect_y_norm = np.linalg.norm(self.inputs['Y'], axis=1)
expect_out = (self.inputs['X'] * self.inputs['Y']).sum(axis=1) / \
expect_x_norm / expect_y_norm
self.outputs = {
'XNorm': np.expand_dims(expect_x_norm, 1),
'YNorm': np.expand_dims(expect_y_norm, 1),
'Out': np.expand_dims(expect_out, 1)
}
class TestCosSimOp3(TestCosSimOp):
def setUp(self):
self.op_type = "cos_sim"
self.inputs = {
'X': np.random.random((6, 5, 2)).astype("float32"),
'Y': np.random.random((6, 5, 2)).astype("float32")
}
expect_x_norm = np.linalg.norm(self.inputs['X'], axis=(1, 2))
expect_y_norm = np.linalg.norm(self.inputs['Y'], axis=(1, 2))
expect_out = (self.inputs['X'] * self.inputs['Y']).sum(axis=(1, 2)) / \
expect_x_norm / expect_y_norm
self.outputs = {
'XNorm': np.expand_dims(expect_x_norm, 1),
'YNorm': np.expand_dims(expect_y_norm, 1),
'Out': np.expand_dims(expect_out, 1)
}
class TestCosSimOp4(TestCosSimOp):
def setUp(self):
self.op_type = "cos_sim"
self.inputs = {
'X': np.random.random((6, 5, 2)).astype("float32"),
'Y': np.random.random((1, 5, 2)).astype("float32")
}
expect_x_norm = np.linalg.norm(self.inputs['X'], axis=(1, 2))
expect_y_norm = np.linalg.norm(self.inputs['Y'], axis=(1, 2))
expect_out = (self.inputs['X'] * self.inputs['Y']).sum(axis=(1, 2)) / \
expect_x_norm / expect_y_norm
self.outputs = {
'XNorm': np.expand_dims(expect_x_norm, 1),
'YNorm': np.expand_dims(expect_y_norm, 1),
'Out': np.expand_dims(expect_out, 1)
}
if __name__ == '__main__':
unittest.main()
......@@ -52,39 +52,40 @@ class TestCropOp(OpTest):
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X'], 'Out', max_relative_error=0.006)
class TestCase1(TestCropOp):
def initTestCase(self):
self.x_shape = (16, 16, 16)
self.crop_shape = [2, 2, 3]
self.offsets = [1, 5, 3]
class TestCase2(TestCropOp):
def initTestCase(self):
self.x_shape = (4, 4)
self.crop_shape = [4, 4]
self.offsets = [0, 0]
class TestCase3(TestCropOp):
def initTestCase(self):
self.x_shape = (16, 16, 16)
self.crop_shape = [2, 2, 3]
self.offsets = [1, 5, 3]
self.crop_by_input = True
class TestCase4(TestCropOp):
def initTestCase(self):
self.x_shape = (4, 4)
self.crop_shape = [4, 4]
self.offsets = [0, 0]
self.crop_by_input = True
print "finish check_output"
#def test_check_grad_normal(self):
# self.check_grad(['X'], 'Out', max_relative_error=0.006)
#class TestCase1(TestCropOp):
# def initTestCase(self):
# self.x_shape = (16, 16, 16)
# self.crop_shape = [2, 2, 3]
# self.offsets = [1, 5, 3]
#
#
#class TestCase2(TestCropOp):
# def initTestCase(self):
# self.x_shape = (4, 4)
# self.crop_shape = [4, 4]
# self.offsets = [0, 0]
#
#
#class TestCase3(TestCropOp):
# def initTestCase(self):
# self.x_shape = (16, 16, 16)
# self.crop_shape = [2, 2, 3]
# self.offsets = [1, 5, 3]
# self.crop_by_input = True
#
#
#class TestCase4(TestCropOp):
# def initTestCase(self):
# self.x_shape = (4, 4)
# self.crop_shape = [4, 4]
# self.offsets = [0, 0]
# self.crop_by_input = True
#
if __name__ == '__main__':
......
......@@ -4,7 +4,7 @@ from paddle.v2.framework.op import Operator
import numpy
class GaussianRandomTest(unittest.TestCase):
class TestGaussianRandomOp(unittest.TestCase):
def test_cpu(self):
self.gaussian_random_test(place=core.CPUPlace())
......
import unittest
import numpy as np
from op_test import OpTest
class TestIdentityOp(OpTest):
def setUp(self):
self.op_type = "identity"
self.inputs = {'X': np.random.random((10, 10)).astype("float32")}
self.outputs = {'Out': self.inputs['X']}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
if __name__ == "__main__":
unittest.main()
......@@ -3,7 +3,7 @@ import numpy as np
from op_test import OpTest
class MinusOpTest(OpTest):
class TestMinusOp(OpTest):
def setUp(self):
self.op_type = "minus"
self.inputs = {
......
......@@ -3,25 +3,27 @@ import numpy
from op_test import OpTest
class TestCrossEntropy(OpTest):
class TestOnehotCrossEntropyOp(OpTest):
def setUp(self):
self.op_type = "onehot_cross_entropy"
batch_size = 30
class_num = 10
X = numpy.random.uniform(0.1, 1.0,
[batch_size, class_num]).astype("float32")
label = (class_num / 2) * numpy.ones(batch_size).astype("int32")
self.inputs = {'X': X, 'label': label}
Y = []
for i in range(0, batch_size):
Y.append(-numpy.log(X[i][label[i]]))
self.outputs = {'Y': numpy.array(Y).astype("float32")}
labels = numpy.random.randint(0, class_num, batch_size, dtype="int32")
cross_entropy = numpy.asmatrix(
[[-numpy.log(X[i][labels[i]])] for i in range(X.shape[0])],
dtype="float32")
self.inputs = {"X": X, "label": labels}
self.outputs = {"Y": cross_entropy}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Y')
self.check_grad(["X"], "Y")
if __name__ == "__main__":
......
......@@ -22,7 +22,7 @@ class TestPadOp(OpTest):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X'], 'Out')
self.check_grad(['X'], 'Out', max_relative_error=0.006)
def initTestCase(self):
self.shape = (16, 16)
......
......@@ -3,20 +3,7 @@ import numpy as np
from op_test import OpTest
class IdentityTest(OpTest):
def setUp(self):
self.op_type = "identity"
self.inputs = {'X': np.random.random((10, 10)).astype("float32")}
self.outputs = {'Out': self.inputs['X']}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class ScaleTest(OpTest):
class TestScaleOp(OpTest):
def setUp(self):
self.op_type = "scale"
self.inputs = {'X': np.random.random((10, 10)).astype("float32")}
......
......@@ -3,7 +3,7 @@ import numpy as np
from op_test import OpTest
class TestSGD(OpTest):
class TestSGDOp(OpTest):
def setUp(self):
self.op_type = "sgd"
w = np.random.random((102, 105)).astype("float32")
......
......@@ -3,7 +3,7 @@ import numpy as np
from op_test import OpTest
class TestSigmoid(OpTest):
class TestSigmoidOp(OpTest):
def setUp(self):
self.op_type = "sigmoid"
self.inputs = {
......
......@@ -44,26 +44,20 @@ class TestTensor(unittest.TestCase):
self.assertAlmostEqual(2.0, tensor_array_2[19, 11])
def test_int_lod_tensor(self):
places = [core.CPUPlace(), core.GPUPlace(0)]
for place in places:
place = core.CPUPlace()
scope = core.Scope()
var = scope.new_var("test_tensor")
var_lod = scope.new_var("test_lod_tensor")
lod_tensor = var_lod.get_tensor()
tensor = var.get_tensor()
lod_tensor = var_lod.get_lod_tensor()
tensor.set_dims([4, 4, 6])
tensor.alloc_int(place)
array = numpy.array(tensor)
lod_tensor.set_dims([4, 4, 6])
lod_tensor.alloc_int(place)
array = numpy.array(lod_tensor)
array[0, 0, 0] = 3
array[3, 3, 5] = 10
tensor.set(array, place)
lod_tensor.set_tensor(tensor)
lod_tensor.set(array, place)
lod_tensor.set_lod([[0, 2, 4]])
lod_v = numpy.array(lod_tensor.tensor())
lod_v = numpy.array(lod_tensor)
self.assertTrue(numpy.alltrue(array == lod_v))
lod = lod_tensor.lod()
......@@ -72,27 +66,21 @@ class TestTensor(unittest.TestCase):
self.assertEqual(4, lod[0][2])
def test_float_lod_tensor(self):
places = [core.CPUPlace(), core.GPUPlace(0)]
for place in places:
place = core.CPUPlace()
scope = core.Scope()
var = scope.new_var("test_tensor")
var_lod = scope.new_var("test_lod_tensor")
tensor = var.get_tensor()
lod_tensor = var_lod.get_lod_tensor()
tensor.set_dims([5, 2, 3, 4])
tensor.alloc_float(place)
lod_tensor = var_lod.get_tensor()
lod_tensor.set_dims([5, 2, 3, 4])
lod_tensor.alloc_float(place)
tensor_array = numpy.array(tensor)
tensor_array = numpy.array(lod_tensor)
self.assertEqual((5, 2, 3, 4), tensor_array.shape)
tensor_array[0, 0, 0, 0] = 1.0
tensor_array[0, 0, 0, 1] = 2.0
tensor.set(tensor_array, place)
lod_tensor.set_tensor(tensor)
lod_tensor.set(tensor_array, place)
lod_v = numpy.array(lod_tensor.tensor())
lod_v = numpy.array(lod_tensor)
self.assertAlmostEqual(1.0, lod_v[0, 0, 0, 0])
self.assertAlmostEqual(2.0, lod_v[0, 0, 0, 1])
self.assertEqual(len(lod_tensor.lod()), 0)
......@@ -104,19 +92,18 @@ class TestTensor(unittest.TestCase):
def test_lod_tensor_init(self):
scope = core.Scope()
var = scope.new_var("test_tensor")
place = core.CPUPlace()
tensor = var.get_tensor()
tensor.set_dims([5, 2, 3, 4])
tensor.alloc_float(place)
tensor_array = numpy.array(tensor)
lod_py = [[0, 2, 5], [0, 2, 4, 5]]
lod_tensor = core.LoDTensor(lod_py)
lod_tensor.set_dims([5, 2, 3, 4])
lod_tensor.alloc_float(place)
tensor_array = numpy.array(lod_tensor)
tensor_array[0, 0, 0, 0] = 1.0
tensor_array[0, 0, 0, 1] = 2.0
tensor.set(tensor_array, place)
lod_py = [[0, 2, 5], [0, 2, 4, 5]]
lod_tensor.set(tensor_array, place)
lod_tensor = core.LoDTensor(lod_py, tensor)
lod_v = numpy.array(lod_tensor.tensor())
lod_v = numpy.array(lod_tensor)
self.assertAlmostEqual(1.0, lod_v[0, 0, 0, 0])
self.assertAlmostEqual(2.0, lod_v[0, 0, 0, 1])
self.assertListEqual(lod_py, lod_tensor.lod())
......
......@@ -21,6 +21,9 @@ class TestTopkOp(OpTest):
self.outputs = {'Out': output, 'Indices': indices}
def test_check_output(self):
self.check_output()
class TestTopkOp3d(OpTest):
def setUp(self):
......@@ -42,6 +45,9 @@ class TestTopkOp3d(OpTest):
self.outputs = {'Out': output, 'Indices': indices}
def test_check_output(self):
self.check_output()
if __name__ == "__main__":
unittest.main()
......@@ -4,7 +4,7 @@ import paddle.v2.framework.core as core
import numpy
class UniformRandomTest(unittest.TestCase):
class TestUniformRandomOp(unittest.TestCase):
def test_uniform_random_cpu(self):
self.uniform_random_test(place=core.CPUPlace())
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册